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ABSTRACT

In this thesis, the dynamic behaviour of a thin circular cylindrical shell
subjected to shock loading is studied analytically. The shell theory is established based
on the Love's first approximation of elastic thin shells. Shock loading is represented
for simplicity as a concentrated moving load at a constant speed along the axial
direction but not varying in the circumferential direction. In order to obtain a solution
which is also valid for high load speeds, the effects of transverse shear deformation
and rotatory inertia, which become increasingly important as the speed is increased, are
taken into account. On the other hand, strain and inertial force in the longitudinal
directon are neglected. The governing equations of circular cylindrical shell with
simply supported edges are derived by the use of Naghdi's theory. The coupled
governing equations are solved by the Assumed-Modes Method. The effects of the
shock load speed and the diameter of cylindrical shell on the dynamic behaviour are
examined. The numerical resuits are compared with the results of beam under moving
load as a special case of the problem and a good agreement is observed.
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HAREKETLl $OK YUKUNE MARUZ DAIRESEL SILINDIRIK
BIR KABUGUN DINAMIK ANALIZI

OZET

Bu tezde, sok yiikiine maruz dairesel silindirik bir kabugun dinamik davranip
analitik olarak incelenmistir. Basitlestirme igin ok y{ikil sabit bir hizla hareket eden
eksenel simetrik bir tekil yilk olarak g6zoniine ahnmsgtir ve dairesel silindirik kabugun
ekseni dogrultusundaki hareket ¢ok kiigik kabul edildiginden eksenel dogrultudaki
atalet kuvvetleri ve radyal yéndeki deplasmanlann kiigiik kabul edilmesinden dolay: da
cksenel dogrultudaki gekil degigimleri ihmal edilmagtir.

Aynica yapilan analizin yiiksek uzlarda da gegerli olmas: igin kesme ve donel
atalet etkileri de dikkate alinmgtr.

Baglangigta genel bir kabuk elemam ele ahnms ve bu cleman igin Love'm ik
kabulleri olarak adlandirilan su kabuller yapilmgtir:

1) Kabugun kalmlig, egrilik yangapt ve uzunluk gibi diger boyutlar yanunda
kiigiik kabul edilmisgtir.

2) Sekil degisimleri ve deplasmaniar yeterince kiigiik oldugundan gekil
degisimi-yer degistirme bagmnlannda ikinci ve daha yiiksek mertebeden terimler birinci
mertebeden olan terimler vaninda ihmal edilmigtir.

3) Radyal dogrultudaki normal gerilmeler diger dogrultulardaki normal
gerilmeler yaninda kiiciik kabul edilmis ve ihmal edilmigtir.

4) Deformasyondan 6nce orta ditzieme dik olan kesitlerin deformasyondan
sonra da orta diizieme dik kaldigi kabul edilmigtir.

Bu kabuller aginda 3-boyutlu elastisite teorisinin egrisel koordinatlardaki gekil
degistirme-yer degigtirme bagmtlan asagidaki sekilde ifade edilmigtir.
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Burada U, V, W kabuk elemam icindeki herhangi bir noktamn yer degistirme
bilegenlerini gdstermektedir.

Genel ince bir kabuk eleman i¢in gerilme-sekil degigtirme bagintilarinin kuvvet
ve momentlerin hesabinda kullaniimasiyla ve hesaplanan bu ifadelerin genel bir kabuk
elemaninin dénel ve uzunlamasma dengesinde yerine konmastyla agagidaki denge
denklemieri elde edilmistir.
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Buradan dairesel silindirik bir kabuk igin gerekli doniiglimier yapilarak hareket
denklemleri elde edilmis ve bu denklemler eksenel simetrik bir hareket i¢in bizim
problemimizi tammiayan agagidaki denklem takimina dontgtiirilmUgtiir:

1- v

3 3
Eh c*%_xg;,(éﬁ%):&ﬁvg
12(1- V) &* & 12 &

KGh[ﬁw+awx)_ Bh_w o ph

Basit mesnetli uglarda sinir gartlan

w(0,)=0, wL,f=0
M (0,)=0, My (L) =0
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ve baglangy; sartlar ise agagrdaki yekildedir:

wx,0)=0, Wwx0)=0
W ®0)=0, yy(x0)=0

Yiikleme ise agagidaki gibi verilmigtir:
S, f) = P 8(e-V?)

Bu diferansiyel denklem takimmmn ¢éziimii i¢in gerek analitik gerekse niimerik
olarak birgok ¢dziim metodu mevcuttur. Bunlann baginda Sonlu Elemanlar Metodu
(Finite Element Method), Galerkin Metodu, Kollokasyon (Collocation) Metodu,
Modal Analiz Metodu ve Kabul Edilen Modlar Metodu (Assumed Modes Method)
gelmektedir. Diferansiyel denklem takimmmn ¢6zlimiinde ¢dzlim sayilan modlar
metodu (Assumed Modes Method) kullamlmgstir.,

Bu diferansivel denklem takiminin ¢dziimiinde ¢6ziim fonksiyonlan olarak

N 4
W, (x,1) = ZB,,(t)cos——”:“
n=l

w(x,t) = ?IiCn(t)smz?

n=1

secilmigtir. Burada secilmig olan trigonometrik fonksiyonlar smir sarflanm otomatik
olarak saglamaktadir. Bu fonksiyonlarnn kismi diferansiyel denklem takimna
uygulanmastyla ¢6ziim fonksiyonlanmn zamana bagh kisimlanm ihtiva eden adi
diferansiyel denklem takims elde edilmigtir. Bu denklem takimimn ¢6ziimii agagidaki
sekilde bulunmugtur:

B (1)=c,e™ +cy e +c,e™ +c,e” +kyy, sink,,t
14

Cu(t)=- k_l‘ [(kaz + 55, )(¢,e™ + ¢y e )

3n
+ (er T szn )( c}nesz"t + 04”8‘32,.* )+ (kz,, - k7n )klln sin k7nt]

Bu denklemlerdeki sabit olan katsayilar baslangic sartlanmn kullamlmasiyla
bulunmugtur. Aynca buraya kadarki tiim ifadelerde veralan terimler tez igerisinde yeri
geldikce tammlanmgtir.



Bdéylece bulunan ¢6ziimler degigik parametreler igin tekrarlanmig ve elde edilen
sonuglar grafik olarak sunuimugtur. Bu sonuglardan baslica gu yargilara vanimigtir:

1) Dairesel silindirik kabugun statik ¢ozlimit dinamik analizin 6zel bir hali
olarak elde edilmigtir ve bulunan sonuglann dairesel silindirik kabugun analitik statik
¢Ozlimityle uyumiu oldugu gézlemlenmigtir.

2) Cok ince kabuklanin egilme ¢Sziimleri diiglik ve yiiksek hizlarda oldukga
yaklasik sonuglar vermigtir.

3) Harcket eden ylikim hizn arttikga atalet kuvvetleri Snem kazanmaya
baslamaktadir.

4) Hareket eden yiikkiin gok yiiksek olan hizlan icin -atalet kuvvetleri etkin
oldugundan dolayr- silindirik kabugun radyal dogrultudaki yer degigtirmeleri sifira gok
yakindr.



CHAPTER1

INTRODUCTION

In this thesis, the dynamic behaviour of a thin circular cylindrical shell
subjected to shock loading is studied analytically. Representing shock load as a
moving load at a constant speed, the problem is changed to the moving load problem.
Moving load problem is a special topic in structural dynamics as it varies in position in
contrast to other dynamic loads. The problem has large application areas such as in
the field of transportation e. g. bridges, guide ways, cable ways, runways, in the field
of military applications e. g. gun barrels and in other areas.

Academical researches related to moving load problem were started in 19%
century and widely continued in 20% century. A large number of studies of the moving
load problem are referred to Fryba [1]. To solve simple moving load problems many
analytical methods have been proposed to solve simple moving load problems [2-8].
Among them there have been ones related to cylindrical shells subjected to the moving
load [3, 4, 8]. In general analysis, where analytical treatments are insufficient,
numerical methods have to be used. For this purpose Yoshida and Weaver [9] first
applied Finite Element Method (FEM) to the moving load problem in 1950's. Since
then FEM has been used by many investigators, Olsson [2], Taheri and C. Ting [10].

In this study the shell theory is established based on Love's first approximation
of elastic thin shells. In order to obtain a solution which is also valid for high load
speeds, the effects of transverse shear deformation and rotatory inertia are taken into
account. The governing equations of circular cylindrical shell with simply supported
edges are derived by the use of Naghdi's theory. The coupled governing equations are
solved by the Assumed-Modes Method. The effects of shock load speed and the
diameter of circular cylindrical shell on the dynamic behaviour are examined. The
numerical results are compared with the results of beam under moving load as a
special case of the problem and a good agreement is observed.



CHAPTER 2

FUNDAMENTAL EQUATIONS OF THIN ELASTIC SHELLS

2.1. THIN SHELL THEORY

A thin shell is a three-dimensional body which is bounded by two closely
spaced curved surfaces, the distance between the surfaces being small in comparison
with the other dimensions. The distance between the surfaces measured along the
normal to the middle surface is the thickness of the shell at that point.

a=CONSTANT

Figure 2.1. Middle surface coordinates.

The deformation of a thin shell will be completely determined by the
displacements of its middle surface. Any point on the undeformed middle surface can
be determined using parameters o and 5 by the radius vector

r=r(a p) (2.1)

and the lengths of the vector r,, and r, p Which are tangent to the o and fcurves,

respectively, are
[rgd =4, |r,g =B (2.2a)



where
re=0r!/da , rg=0r0p (2.2b)
2.2. SHELL COORDINATES AND THE FUNDAMENTAL SHELL ELEMENT

To describe the location of an arbitrary point in the space occupied by a thin
shell, the position vector is defined as

R(o, fz)=r(a, f)+zi, (2.3)

where z measures the distance of the point from the corresponding point on the middle
surface along /, and varies over the thickness (-#/2<z<h/2).

The magnitude of an arbitrary infinitesimal change in the vector R (2, A,z) is
determined by

(dsy)=dR.dR (2.4)
which is equal to
(dsp=g,da*+ g,dff+g,dz? (2.5)
where
g,=[4(1+2/R,)P (2.62)
g2,=[B(1+z/Ry)P (2.6b)
g;=1 (2.6¢)

Having established the coordinate system of the shell space, the fundamental
three-dimensional thin shell element will be defined next. The fundamental shell
clement is the differential element bounded by two surfaces dz apart at a distance z
from the middle surface and four ruled surfaces whose generators are the normals to
the middle surface along the parametric curves a=a,, a=ay+ do, f=pf, and
f=p,+ dp. The assumption that the parametric curves are lines of principal curvature
ensures that the ruled surfaces will be plane surfaces and, furthermore, that these
planes intersect cach other at right angles. The lengths of the edges of this
fundamental element are according to equations (2.5) and (2.6) (Figure 2.1).

ds,@=A(1+z/R,)da (2.7a)
dsy@=B(1+z/R;)dp Q2.7b)



Figure 2.2. Notation and positive directions of stresses in shell coordinates.

The differential areas of the edge faces of the fundamental element are

d4,@=A(1+z/R,)dadz (2.83)
d43@=B (1+z/Ry)dfdz (2.8b)

while the volume of the fundamental element is

dVO=[A(1+z/R)][B(1+z/Ry)ldadfdz 2.9)

2.3. ASSUMPTIONS OF CLASSICAL THIN SHELL THEORY

In the classical theory of small displacements of thin shell assumptions are
based on Love's first approximation as follows [11]:

1) The shell thickness 4 is very small in comparison with other shell
dimensions such as radius of curvature, length, etc.

2) Strains and displacements are sufficiently small so that the quantities of
second and higher order magnitude in the strain-displacement relations may be
neglected in comparison with the first-order terms.

3) The transverse normal stress i8 small compared with the other normal stress

components and may be neglected.



4) Normals to the undeformed middle surface remain straigth and normal to
the deformed middle surface and suffer no extension.

These four assumptions are the background of any linear theory of thin shells.
The first assumption defines the thin shell. Denoting the thickness of the shell by 4
and the smallest radius of curvature by R, then it will be convenient at various places in
the derivation of shell theories to neglect higher powers of z/R or /R in comparison
with unity. The second assumption permits one to refer all calculations to the original
configuration of the shell and ensures that the differential equations will be linear. The
third and fourth assumptions transform the original three-dimensional problem of the
mathematical theory of elasticity into a two-dimensional one. The fourth assumption
ntrinsically expresses Kirchhoff 's hypothesis on cross-section deformation. As a
consequence of the assumed geometry of deformation we must have

Yz =Yy = 8,= 0 (2.10)
such that normal stresses in the radial direction become zero (o, = 0).

Different sets of equations have been obtained by various academicians.
Differences in the theories are due to the simplifying assumptions and/or the exact
point in a derivation where given assumptions is used. For example, AR or z/R is
neglected in comparison with unity in some places instead of expanding (1 + z/R, )!
into geometric series gives Vlasov's equations [11].

2.4. STRAIN-DISPLACEMENT EQUATIONS

Using tensoral notation, strain-displacement equations of the three dimensional
theory of clasticity in orthogonal curvilinear coordinates can be written as

U 13 & U,
e = (1 i
AN AT .

ij=123; i#j (2.11)

1 R a,U,)]

?92@[ & aaj\\/gl—)'*'gj aai\\/g—j




here ¢; denotes normal strains, y;; shear strains, U; displacement components at an
arbitrary point. In the shell coordinates the indices 1, 2, 3 are replaced by o, 4, =
respectively, except for the displacements U, U, , Us, which are replaced by U, 7]
W respectively.

Using (2.6) in (2.11) yields

lléU V&IW

1+_Z_Az9a AB&,B R,

a

—)

) (2.12a)

A(1+z/R) a[ U i B(1+z/Rﬂ)ﬁ{ 14 ]
e B+ zR,) B A(+zR) ' A(+zR,) da' B(l+zR)

Y =

v ] (2.12b)

1w, y
AQ+zRY)Z] — Y
+Ad+zR )] A(1+2R)

A(l+zIR)) da

1 ¥
= B(l+z/R —
Ve B(1+z/R,) ET t+=zRy [ B(1+ zIR,) ]

According to the Kirchhoff hypothesis the displacements of any point in the shell are
as follows:

Ua, frz)=ula, p)+z ya ) (2.13a)

Ha, pz)=va, p)+z yla, £ (2.13b)

Wa, pz)=wa, b (2.13¢c)



where %, v and w are the components of displacement at the middle surface in the @,
and normal direction, respectively. y, and y, are the rotations of the normal to the

middle surface during deformation about the f and @ axes, respectively, i.c.
Y,=cU/ ¢z, ws= EV/éz (2.14)

Using (2.14) in (2.12¢) and (2.12f) from the conditions y,,= v, =0 we obtain

w,= u/R,-(1/A)(éw/ia) (2.15a)
wg= /Ry~ (L/BY(¢w/ i) (2.15b)

Therefore from the preceding equations the strain-displacement relations are
expressed as follows:

Ra
ey = —L«:ﬂ + zk ) (2.16)
1+ =
Rﬁ
1 z* z
Y ap [ a- )E 5+ 2(1+ +——)7 ]
( 1”)(11_2_) R.R, 2R, 2R,
1+ 2 B

where €, &, and €, are the normal and shear strains in the middle surface (z = 0)

given by



1 v A w
£,= —— b ———+ —
e AB J8 R,
u B 1& w
g B 1S w 2.17
"~ 4B 2a B R, @1
Adu B Oy
‘= A 12D

and k, and k; are the midsurface changes in curvature and z the hardsurface twist,
given by
ka = _1_ il//.‘l‘. 4 _'ly_i aﬁ
A e AB B

aB 1 ‘?Vﬂ
18
k5 = ABﬁa+B 28 (218)

;L AOY BOY, 1 1a v B

BE/S’( )"LA%{B)J’E:(B@B 1B 70
114 u A4
*® A7 48 2

These are the strain-displacement equations used by Byrne, Fliigge, Goldenveizer,
Lur'ye and Novozhilov.

If in above equations one neglects the terms z/R, and z/R; and their products
as being small in comparison with unity one obtain strain-displacement equations of
Love, Timoshenko, Naghdi, Berry and Reisner as



e,=&,+7zk,
eg=Ey+2ky (2.19)

Yap = Eeg+ 2T

Recognizing that for a shell z/R, (i = @, f) is less than unity and expanding the
quotient (1+2zR,)! into geometric series one obtains the equations of Viasov.

From the derivations of strain-displacement equations it can be seen that
equations are either general or special case of each other.

2.5. STRESS-STRAIN RELATIONS

Considering material isotropic and following Hooke's law which gives linear
relations between stress and strains for a threc-dimensional element the following

equations can be written

e, = %_‘;[O'Q - Yo+ O'z)]

eg = —El—[a,, - o, + az)]

e, = —é—[o; - v(cﬂ + O'a)]

(2.20)
21+ v)
Yapg = 7 e
2(1+v)
Ve = I O
2(1+ v)

Y 7 Cp
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where o, and o are the normal stresses and 0,5 and oy, are the shear stresses in
the tangential (@ and /) directions and o, and op are the transverse (in the z
direction) shear siresses, ”all acting on the transverse faces of a shell element; £ is
Young's modulus, and v is Poisson's ratio (Figure 2.2). Assuming the symmetry of the
stress tensor (neglecting body couples), then 6,5 = 64,

The Kirchhoff hypothesis yields e, =3, =, =0 and this leads to
0= 0,=0 and o,= VW 6,+ 05). Retaining the assumption that o, is negligibly
small reduces three-dimensional problem to one of plane stress problem. In this case
equations (2.20) reduce to

e, = %(od ~ vog)
1
€5 = E(O'ﬂ - vo,) (2.21)
21+ v

7apg = 7 T s

which, when inverted, give

Oy = —1—_%(% + ve,) (2.22)
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2.6. FORCE AND MOMENT RESULTANTS

The arc length of the intercepts at z distance from the middle surface
perpendicular to the q-axis (Figure 2.2) is dsg@=B (1 +z/Ry)dp  The

infinitesimal clement force acting upon the elemental area of thickness dz on the
face is then given by o, ds; @ dz.  Integrating such force over the shell and dividing

Bdp yield the force resultant N, Similarly N, and (), are expressed in units of
force per unit length of middle surface. Therefore, the force resultants acting on this
face are written as

N} [e.
N = o 1 _Z_
Qqa _J/z G@, [ + Rﬂsz (2.23)

Similarly those on the face perpendicular to the B axis are

Ny T

hi2 z
Nio :—J/Z C e (1+1—2—)dz (2.24)
Op Cp ’

The positive directions of the force resultants are shown in Figure 2.3.

Figure 2.3. Notation and positive directions of force resultants in shell coordinates.
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Similarly, the moment of the infinitesimal force o, ds;@dz about the f -line
is simply zo, dsy@dz and the moment resultant M, is obtained by dividing the total
integrated moment over the thickness by Bdp. Thus, the moment resultants per unit
length of middle surface are given by

Pl o o
M‘w —hi2 O'aﬂ Rﬂ

Mﬂ _h/z Gﬂ +_Z_ ;
{Mﬂa}—-’{’z{%}(l Ra) “

(2.25)

Figure 2.4. Notation and positive directions of moment resultants in shell coordinates.

By using (2.22) in (2.23), (2.24) and (2.25) and expanding (1+z/R_) and
(1+2/R;) into geometric series truncating after terms of the third degree, the following

general expressions are arrived at for the force and moment resultants:
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Eh /L S | £
N = S U ¢ S
@ 1-¢[£“+V€” ﬁ(Ra R,,)(“ Ra)]
Eh 11 5
N_= —_ e — Xk, - =
PTTL ot e % R R ]
Eh h2 1 1.7 ga,g
T v)[ ATV R Ra)]
Eh K1 1 7 £y
. [ e Ho--206--D) ]
21+ v 12'R, R,2 R,
(2.26)
EW 1 1
= k_+ vk ~(—-—)¢
“ 121 v’)[ - *’“(R,, R,)“]
ER 1 1
=—— [%& ~(—~ )¢
g 12(1—1/‘)[ I (Rﬁ Ra)ﬂ]
EX of

To obtain force and moment resultants in terms of the displacement #, v and
w, it would be necessary to replace e, , eg and v,; with the equivalents.

2.7. EQUATIONS OF MOTION

There are three distinct methods used in obtaining equations of motion, all
depending on the results obtained in the previous scctions. The first method is the
application of Newton's laws by summing forces and moments which act on a shell
element of thickness 4. The second method begins with the equations of motion of
an infinitesimal element of the three-dimensional theory of elasticity and integrates
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them over the thickness to obtain the equations of motion for a shell element. The
third method is actually a class of variational methods.

Now let us consider the equilibrium of the shell clement of thickness /4 in
Figure 2.2 under the influence of internal force and moment resultants as shown in
Figures 2.3 and 2.4.

The total internal forces acting on the faces defined by a = constant and by
f = constant denotedby F, and F; can be written as

F,=(N, + N, +Q,i,)Bdp
Q.27

F, = (Npoi, + N, + Qi VAda

The total external force intensity vector § which includes body forces
surface loads as well as inertial terms is

q = Qula + 55 + dul (2.28)

g is force vector per unit area and has three components considered to be acting at the
middle surface.

Using (2.27) and (2.28) the vector equation of force equilibrium for the shell
element based on Newton's second law is given by

—

Lo da+ Gl df+GABd adf=0 (2.29)
ae g B -

Substituting (2.27), (2.28) into (2.29) gives the following scalar components
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a8 AB
';—(BN‘!)‘F ;ﬂ'(ANﬂd)-'- ﬁﬁ aﬂ P N R—a‘QQ + ABq a= 0 (2.303)
ﬁ A
ﬂ ,,)+—{BN¢,,}+ Npo=GaVat 2 Qﬂ+ABqﬂ—0 (2.30b)
AB AB
— Ea—' N - R— N + —(BQQ)'F ;’;(AQIS)-}—ABq n= 0 (2.300)

The total moments acting upon the faces defined by @ = constant and by 5=
constant denoted by M, and M,, respectively, are

M, =(-M 4, +Mj,)Bdp
(2.31)
@_ﬂ = (—Mﬂx—"a _ Mﬂaf:g)Ada

and let the moment intensity vector due to external fields such as gravitational,
accelerative, magnetic etc. be given by

M= mg, +mg,+m,i, (2.32)
where 77 denotes moment per unit area.
The vector equation of moment equilibrium for the shell element is given by
oM M ,

L_?c;: da+ 2

. . ds . .. ds
7 2 : a
dp—-(F, x1g) > “(F,g x’a)_"z

. & L dsy
o (P, v e day . (ds 7, + i)
Ja 2 (2.33)

. F . .
+(Fﬂ+—a-5dﬁ)x(dspz’ﬂ+é2ﬂia)+ mABd adf=0
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where ds, =A daand ds; =A dp, and substituting (2.31) and (2.32) into (2.33)

yields the following three scalar components

B
—-(BM )+-73(AM,¢)+aﬂM¢ﬂ M= ABQ .+ ABmy =0
a A
7 ﬁy—(BMaﬁ)ﬂu Mﬂa Z- ~ABQ s+ ABm =0
M, M,
Neo=Noe* "R, ~°

(2.34)

(2.30) and (2.34) are general equations of motion of a thin shell for translational and

rotatory movements.

If the third equilibrium equation of (2.34) is rewritten in terms of the force and

moment resultants (egs. (2.23), (2.24) and (2.25)) then it becomes

B2
z Z
;’{; (G ap — Tpa)(1+ Ea—)(l + ]—Z;)dz =0

which is identically satisfied if the symmetry of the siress tensor is assumed.

(2.35)

In general case the possible set of boundary conditions is given on an edge

where a= constant by
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N, or u=0

Moeﬂ
WNy+—) or v=0
Rp

M
(Q¢,+l #y or w=0
B 3B
M, or (Q,=0

y
Maﬂwl =0
A

and on an edge where f~= constant by

Mg,
Ny, + 5 ) or u=0

o

N‘, or v=0
lmﬂa
+ — or w=0
©s A é‘a)
Mg or Q=0
@

lw ﬂaw = 0

L1

(2.36)

(2.37)



CHAPTER 3

FORMULATION OF PROBLEM

3.1. EQUATIONS OF MOTION OF CIRCULAR CYLINDRICAL SHELLS

¥

Figure 3.1. Closed circular cylindrical shell and coordinate system.

The basic equations which describe the dvnamic behaviour of cylindrical shells
under arbitrary loads and moments are derived from the system of equations which
has been presented in Chapter 2 by using the change of the following parameters:

il

6
= (3.1)
R

=g b
B

A=r,
R,=« Ry

It

in (2.30) and (2.34) equations of motion of a circular cylindrical shell reduce to the
equations below
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_K_a;Jri‘_%Jr__@uq”:o (.2)
R r, dp R3IE
1ad, ad,
-z - + =
r, dp RIB Qp +ms
aL
}_Mg _l W_Q9+m -
R & r, dp 4

Making the following change of variable, based on the fact that when the generators
are straight the curvature is zero:

lim (7, do)= dke (33)

and replacing the variable ¢ with x , the below general equations of motion for a

circular cvlindrical shell are arrived at
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K oy,

—_— ; 3 '
M, =l ER (iﬁ'/’xﬁ'_fﬁo_ L1
2 2(0-v)\R X & ) R

_l-v ER® 18, o,
2 12(1-vH|\R

(3.4)

(39)
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where « is a constant used to modify shear stress-strain relation whose value depends
on cross section geometry [12]. Similar expressions were derived by Lin and Morgan
[13], Herrmann and Mirsky [14].

3.2. AXISYMMETRIC MOTIONS OF CIRCULAR CYLINDRICAL SHELLS

In the preceding equations, (3.4) and (3.5), equations were written for
nonaxially symmetric i.e. for general motions of a circular cylindrical sheil.

Since axisymmetric motions are of importance in the problem, which means

v=y,=8 )/ =0 (3.6)

and because of the assumption of small displacements, the displacement u and its

derivatives can be neglected in order to admit analytical treatment including rotatory
and translational motions. In the loading case there are only g, and m, as nonzero

terms while others are equal to zero.

As the loads include surface loads and inertial loads, they can be separated as

below
a,=f-ph(@?w/08) 3.7
me=1 (G?y, /0¢) 3.8)

where [ = ph3/12, moment of inertia and f denotes external (surface) load per unit
arca. Substituting (3.6), (3.7) and (3.8) into (3.4) and (3.5) one can obtain the
following equations of motion

(3.9)
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If the effects of transverse shear deformation and rotatory inertia are not
important, then, y, = - dw /& x and equations of motion, (3.9), reduce to the

following equation

EW  Bw w Fw
Ba-Ha TR G19

3.3. BOUNDARY AND INITIAL CONDITIONS
In the problem, the boundary conditions at simply supported edges become

wo,H=0, wlH=0 (3.11a)
M0,)=0, M, (LH=0 (3.11b)

and the following initial conditions

wx,0) =0, w(x0)=0 (3.12a)
¥, (50 =0, ¥, (50 =0 (3.12b)

which mean displacement, rotation and their derivatives with respect to time at # = 0.
3.4. LOADING

In this study the shock load is considered. For simplicity in the analysis this
load is modeled as a concentrated load moving at a constant speed J in the x-
direction but not varying in the circumferential direction in magnitude.

A moving load can generally be described by

Ax,8) = F(t) 8(x-V1) for 0<Ve<L
fx, =0 for Vi-L

where F(f) describes the time dependence of the load. In this case F{(z) is constant,
which means load position varies while its magnitude remains the same, i.e.

Ax,t) = P 8(x-V)

where 8 is Dirac delta function and the time t is set to zero when the moving load
enters the cylindrical shell [15].



CHAPTER 4

METHODS OF SOLUTION

There are many methods in order to solve the equations of motion both
analytically and numerically. Among the analytical methods are modal analysis
method, assumed modes method, Galerkin's method, Collocation method and so on.
Development of computers has enabled us to use numerical methods efficiently in the
dynamic analysis of structures which are impossible to treat analytically. Most widely
used of numerical methods is finite element method. In this chapter it will be given
brief information to the solution of equations of motion except for assumed modes
method. Assumed modes method will be explained in detail for the equations of
motion will be solved by this method.

4.1. FINITE ELEMENT METHOD

The increasing complexity of machine and structural systems and sophistication
of digital computers have been instrumental in the development of finite clement
method. This method is a numerical procedure in which a complex structure is
considered as an assemblage of a number of smaller clements, where cach clement is a
continuous structural member called a finite element. The elements are assumed to be
interconnected at certain points called nodes. Since it is very difficult to find the exact
solution (such as displacements) of the original structure under the specified loads, a
convenient approximate solution is assumed in cach finite clement. By requiring that
the displacements be compatible and the forces balance at the joints, the entire
structure is compelled to behave as a single entity.
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- X

Figure 4.1.

The displacement w{x,»,f) for Figure 4.1. can be expressed in terms of the
unknown nodal displacements #,(¢) in the form

W(x,p,£) = z N, (x, )W, (1) 4.1)

where N(x,3) is called the shape function corresponding to the nodal displacement
W(#) and » is the number of unknown nodal displacements (» = 9 in Figure 4.1.).

In finite element method everything including mass, distributed force, stiffness
etc. is converted into nodal values then the equation of motion for complete structure
is obtained as follow

—
'3 —~

[M }mm Upm + [K an Up = FLXL 4.2)

where # denotes the number of free node displacements, [A] mass matrix, [K]
stiffness matrix, 7 force vector, 1 displacement vector of the structure.

The solution of (4.2) yields the wanted values at nodes [4].
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4.2. MODAL ANALYSIS METHOD

In this method, system behaviour is determined as a superposition of normal
modes multiplying corresponding time-dependent generalized coordinates. Therefore
in order to obtain system response it is necessary to find eigenfunctions of free
vibration.

Let us consider a continuous system described by the partial differential
equation

LIw(R,0)] + M(PYEWP,1) /i = AP, 1) (4.3)

over the domain D. In the above L is a linear homogenous self-adjoint differential
operator consisting of derivatives with respect to time, AP,?) is a distributed force.

The normal modes analysis calls for the solution of the special eigenvalue
problem consisting of the differential equation

Liw] = AMw = Mw (4.4)
to be satisfied over the domain D.

The solution of the eigenvalue problem (4.4) consists of an infinite set of
denumerable eigenfunctions #(P) with corresponding natural frequencies ®, .

The cigenfunctions are orthogonal, and if they are normalized such that
[p M(P) W(P) W(P) dD(P) = 8, (4.52)
it follows

[, WPy LIW(P)] dD(P) = & ?8,, (4.5b)

Using the expansion theorem the solution of (4.3) can be written as a
superposition of the normal modes W ,(P) multiplying corresponding time-dependent
generalized coordinates n (). Therefore w(P,f) is

w(P,t) = gff:(P)n,m (4.6)
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Substituting (4.6) into (4.3) gives
-] f -
1 Em Py, 0|+ MY 2 EW Py )= 70 @7

multiplying (4.7) by W (P) and integrating over the domain D with the help of (4.5)
one obtains

M40 + 0,2 0,0 = Ny®) r=12,.. 4.8)
which represents an infinite set of ordinary differential equations easy to solve where
N =], W(P)f&,1) dD(P) (4.9)
4.3. GALERKIN'S METHOD

This method is based on the error concept. First, an approximate solution
satisfying the associated boundary conditions is assumed and then the weighted error
integrated over the domain is made equal fo zero. After this procedure ordinary
differential equations are obtained which can be solved easily.

Let us consider a continuous system described before by the differential
equation (4.3) as

LIw(P, O] + M(PYGW(P, 1) /é8? = LP,5) (4.10)

and let the approximate solution of the above equation be

w,,(P,t):ich}-(P)qj(t) J=12,.0m (4.11)
#

such that it satisfies the associated boundary conditions. Here $(P) are comparison
functions depending on the spatial coordinates and g(f) are time-dependent
generalized coordinates. Since W, (P,r) is only an approximate solution it will not
satisfy (4.10) exactly and therefore there will be a small difference between the
approximate and the exact solution. Denoting this difference by s(P,#), we have

e(P,1) = L[w(P, O)] + M(PYAw(P,t) /¢t - AP,D (4.12)
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where €(P,7) is referred to as the error. According to the Galerkin's method the
weighted error integrated over the domain must be zero. The weighting functions are
the comparison functions ¢(P) such that

[, s(®,) o(P) dD(P)=0 r=12 ..,n (4.13)

This procedure gives us ordinary differential equations which can be solved
castily by other methods.

4.4. COLLOCATION METHOD

Another method based on the error concept is the collocation method. The
collocation method also assumes an approximate solution as a combination of some
functions and associated coefficients. The method consists of selecting a function and
a set of locations called stations. The coefficients are determined by insisting that at
the selected stations approximate solution satisfies the differential equation.

As an example let us consider the equation (4.10)

LIW(P,1)] + M(P)EW(P,5) /&2 = AP, 1) (4.10)

with the assumed solution (4.11) as below

wn(P,t)zilQ?}(P)qj(z‘) i=12,..n (4.11)
J

where ¢(P) are a set of comparison functions.
Substituting (4.11) into (4.10) gives (4.12) as mentioned before as
(P, = L[W(P,0)] + M(P)Ew(P,1) /iE - RP,2) (4.12)

where g(P,f) denotes the difference between the approximate and exact solution as

mentioned before.

Letting the error be zero at » such points, we obtain a set of » ordinary
differential equations as



%ﬁ, O[ME)IS,(P)]+2a,OL[@,(B)|=f Bty r=12.0m (419)
J= i

which can be solved using other methods.

4.5. ASSUMED-MODES METHOD

This method resembles modal analysis method. In this method the response of
a system is assumed in the form

w(P,t) = ga(mqim (4.15)

where ¢,(P) arc admissable functions, which are functions of spatial coordinates P
and satisfy the geometric boundary conditions of the system and g¢,(f) are time-
dependent generalized coordinates. In this manner a continuous system is
approximated by an n-degree of freedom system.

Now, the governing equations of motion of the problem given by (3.9) are
solved by means of this method, although many other methods mentioned before are
possible for the solution. The solution is assumed as

v.(x0)= £B,(1)cos "

n=1

v (4.16)
w(x,t)=ZC, (z‘)sinﬁLz
n=1

where cos n—f— and sin %@ are admissible functions satisfying the following

boundary conditions:

w0,=0, wL,)=0
M, (0H=0, M (L») =0

Substituting (4.16) into (3.9) and multiplying (3.9a) by sin(macZ), (3.9b) by
cos(mmx/L) and integrating from zero to L and using the orthogonality relations of
trigonometric functions give the following system of ordinary coupled differential
equations:



B (£)=-k, B, (t)-k,C,(t)

C, ()= ~ky, B, () — ks, C, (2) + kg sin (o, 2)

where

12 W ont
k, =—Ak, + ——
o hzf( 12 2 )

12k, nx
k3n= 7.1 5

h'y L
k4n=‘i£1'7_i1—7£

vy~ L

1 nn 1
k, = (ki ——+ —
Sn };(1 L., Rz)
f_ 2P

phL

nay
k7n= L

and [ denotes the velocity of the moving load.

Solutions of (4.17) are

(4.17)
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B, (1) =ce™ +cye™ +c,,e" +cy,e” + kyy, sinko, ¢

L (4.18)
C ()= = [(kz,, + 82 )(cy,e™ +c, e ")
3n

+(k,y, + 52 )(c;,e" + ¢, )+ (ky, ~ Ky, Yoy, sink.,nt]

where
—k&t + Vkszn - 4k9n
8y, = 3
_kSn - Vk82n - 4k9n
8,, = 5
and
kg, = ky, + ks,
k9rx . kz;:ks»; - k3nk4n
klOn = ﬁkSnkG
kl klOn

e gk, + oy

The constants ¢,,, c,,¢c,,c,, are determined from the initial conditions. Then
substituting (4.18) into (4.16) gives the analytical solution of the coupled governing
equations of motion given by (3.9). With this analytical solution, some parametric
studies are performed and represented graphically in the following chapter.



CHAPTER 5

RESULTS AND DISCUSSION
The system parameters indicating the cylindrical shell and the moving load are

A=3mm R=6cm L=80cm P =50 bar
p = 7860 kg/m? v=0.25 E = 20000 kg/mm?

For various speed values the following graphics for mid-span displacement are
obtined. From these results it is observed that

1) As the speed of the moving load increases, the behaviour of the elastic
circular shell changes. The shell exhibits some clastic waves with increases in
amplitudes before the load reaches and after it passes the mid-span of the shell up to
speed about 1000 m/s (Figure 5.1-6).

2) The speed about 1000 m/s is special value for the problem because at
speeds greater than this value, amplitudes of the points before and after mid-span
reach their maximum with decreases in frequency. For the speed about 1000 m/s mid-
span seems to reach its maximum after the load exits the circular shell (Figure 5.6).

3) From the speed 1250 to 2000 m/s both the amplitude and the frequency
decrease before and after the mid-span (Figure 5.7-10).

4) For very high speeds the amplitudes of the points decrease and become
almost zero (Figure 5.10-12).

5) In the problem, as the shell is very thin there is no big difference between
the solutions obtained by taking into account the effects of transverse shear
deformation and rotatory inertia and that obtained by pure bending.

6) The results obtained by the use of Naghdi's equations, as (h/R)<<1, are in
good agreement with the beam solution by Olsson [2].
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CHAPTER 6

CONCLUSIONS

The dynamic analysis of a thin circular cylindrical shell subjected to shock
loading is done. To simplify the complete three-dimensional equations to two-
dimensional ones, some assumptions are made: The shock loading is represented as a
concentrated moving load at a constant speed along the axial direction but not varying
in the circumferential direction and the small displacement theory is used. In order to
make the analytical solution valid for high frequencies, the effects of transverse shear
deformation and rotatory inertia, which become increasingly important as the
frequency is increased, are taken into account. However, the longitudinal inertia force
is neglected. Then the obtained two-dimensional partial differential equations are
reduced to two-ordinary coupled differential equations by means of The Assumed
Modes Method with application of the orthogonalization procedure. These equations
are solved analytically. Finally, from the obtained results in the previous chapter the
following conclusions are arrived at:

1) The static solution of the circular cylindrical shell is obtained as a special
case of the dynamic analysis. It is consistent with the analytical static solution of the
circular cylindrical shell [16].

2) For very thin shells pure bending solutions are in good accuracy at low and
high speeds.

3) As the speed increases, inertial forces begin to become important.

4) For very high speeds, as the inertial forces are completely active,
displacements of the pomts of the cylindrical shell are near zero.
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