

İSTANBUL TECHNICAL UNIVERSITY  INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Müge ÇEVİK

JANUARY 2005

INTRUSION DETECTION WITH PATTERN

CLASSIFICATION

Department : Computer Engineering

Programme: Computer Engineering

 ii

İSTANBUL TECHNICAL UNIVERSITY  INSTITUTE OF SCIENCE AND TECHNOLOGY

INTRUSION DETECTION WITH PATTERN

CLASSIFICATION

M.Sc. Thesis by

Müge ÇEVİK
 504011404

Date of submission : 27 December 2004

Date of defence examination: 31 December 2004

Supervisor (Chairman): Prof. Dr. Bülent ÖRENCİK

Members of the Examining Committee Prof.Dr. Bilge GÜNSEL

 Assoc. Prof.Dr. Coşkun Sönmez

JANUARY 2005

 ii

ACKNOWLEDGEMENTS

First of all, I am deeply appreciated to Prof.Dr. Bülent ÖRENCİK for his supervising
and his kind tolerance to me. His support and encouragement made me write this
thesis.

I am also appreciated to Prof.Dr. Bilge GÜNSEL, for her patience and guidance to
my questions about Pattern Classification.

I dedicate this thesis to my father and mother who supported me in every phase of
my educational life, and all my teachers who thought me analysing, researching,
and determined working. Without them everything would diffucult for me.

December 2004 Müge ÇEVİK

 iii

TABLE OF CONTENTS

ABBREVIATIONS vi

LIST OF TABLES viii

LIST OF FIGURES x

ÖZET xii

SUMMARY xiv

1. INTRODUCTION 1

1.1. Aim of This Thesis 1
1.2. Definition of Intrusion Detection 2
1.3. Intrusions and Intruders in History 2
1.4. Terminology 2

2. NETWORK PROTOCOLS AND NETWORK INTRUSIONS 4

2.1. Network Protocols 4
2.2. Structure of the Protocol Stack 4

2.2.1. Encapsulation and the Packet Headers 5
2.2.1.1. TCP Header 5
2.2.1.2. UDP Header 7
2.2.1.3. ICMP Header 7

2.2.2. TCP Session Establishment and Closing 8
2.3. Types of Network Intrusions 9

2.3.1. Denial of Service Attacks 9
2.3.1.1. Smurf Attack 9
2.3.1.2. Ping of Death Attack 11
2.3.1.3. TearDrop Attack 11

2.3.2. Probe Attacks 12
2.3.2.1. PortSweep Attack 12
2.3.2.2. Ipsweep Attack 13

2.4. The KDD Cup 99 Data 13

3. INTRUSION DETECTION SYSTEMS 18

3.1. Classification of Intrusion Detection Systems 18
3.2. Intrusion Detection System Components 20
3.3. Intrusion Detection Systems by Detection Method 20

3.3.1. Knowledge Based Intrusion Detection Systems 20
3.3.1.1. Expert Systems 21
3.3.1.2. Signature Analysis 21
3.3.1.3. Petri Nets 21
3.3.1.4. State Transition Analysis 22
3.3.1.5. Data Mining 22

3.3.2. Behaviour Based Intrusion Detection Systems 25
3.3.2.1. Statistics 26
3.3.2.2. Expert systems 26
3.3.2.3. Neural Networks 26

 iv

3.3.2.4. Computer Immunology 27
3.3.2.5. Data Mining 27
3.3.2.6. Pattern Classification 28

4. PATTERN CLASSIFICATION 29

4.1. Definitions and Notation 29
4.2. Typical Components of Clustering 30

4.2.1. Distance Measures 30
4.2.2. The Normalization of Features 31

4.3. Pattern Classification Algorithms 32
4.3.1. Supervised Classification 33

4.3.1.1. K-Nearest Neighbour Rule 33
4.3.1.2. Support Vector Machines 35

4.3.2. Unsupervised Learning and Clustering 36
4.3.2.1. K-Means Clustering 37
4.3.2.2. Hierarchical Clustering 38
4.3.2.3. Comparison of Hierachical vs. Partitional Algorithms 40

4.4. Feature Selection 40

5. RESEARCH IN INTRUSION DETECTION WITH PATTERN CLASSIFICATION
 44

5.1. Intrusion Detection with Unsupervised Clustering 44
5.1.1. Intrusion Detection with Single-Linkage Clustering 44
5.1.2. Intrusion Detection with Optimized KNN Algorithm 45
5.1.3. Intrusion Detection with Y-means Algorithm 46

5.2. Intrusion Detection with Supervised Clustering 47
5.2.1. MINDS (Minnesota Intrusion Detection System) 47

6. APPLICATION – CLIDS (Cluster based Intrusion Detection System) 50

6.1. Specification of CLIDS 50
6.1.1. Creating of Clusters by Training 50
6.1.2. Implementation Specification 52

6.2. The Algorithms Used in CLIDS 53
6.2.1. Training Phase Algorithm 53
6.2.2. Testing Phase Algorithm 54
6.2.3. The implementation parameters of the program 60
6.2.4. Training and Test Procedures 60

6.3. Experimental Results with Min-Max Normalization 63
6.3.1. Test Results with Change of the Radius 63

6.3.1.1. Test Results with Radius Factor 1.2 63
6.3.1.2. Calculated Results with Radius 1.2 64
6.3.1.3. Test Results with Radius Factor 2.0 65
6.3.1.4. Calculated Results with Radius 2.0 67
6.3.1.5. Test Results with Radius Factor 1.0 67
6.3.1.6. Calculated Results with Radius 1.0 69
6.3.1.7. Test Results with Radius Factor 0.8 69
6.3.1.8. Calculated Results with Radius 0.8 71
6.3.1.9. Graphical Results for Rates with Change of the Radius Factor 71

6.3.2. Test Results with Change of the Continuous Feature Split Count 74
6.3.2.1. Test Results with Continuous Feature Split Count 100 74
6.3.2.2. Calculated Results with Continous Split Factor 100 75
6.3.2.3. Graphical Results for Rates with Change of the Continous Split
Factor 75

6.3.3. Test Results with Change of the Feature Weight Factor 78

 v

6.3.3.1. Test Results with Feature Weight Factor 100 78
6.3.3.2. Calculated Results with Feature Weight Factor 100 79
6.3.3.3. Test Results with Feature Weight Factor 1 79
6.3.3.4. Calculated Results with Feature Weight Factor 1 81
6.3.3.5. Graphical Results for Rates with Change of the Feature Weight
Factor 81

6.4. Experimental Results with Zero-Mean Normalization 84
6.4.1. Test Results with Change of the Radius 84

6.4.1.1. Test Results with Radius Factor 1.2 84
6.4.1.2. Calculated Results with Radius Factor 1.2 85
6.4.1.3. Test Results with Radius Factor 2 86
6.4.1.4. Calculated Results with Radius Factor 2 87
6.4.1.5. Graphical Results for Rates with Change of the Radius Factor 87

7. CONCLUSION and FUTURE WORK 90

REFERENCES 94

AUTOBIOGRAPHY 96

 vi

ABBREVIATIONS

ACK :Acknowledgement

ACM :Association for Computer Machinery

ADAM :Audit Data Analysis and Mining

ATM :Asynchronous Transfer Mode

CLIDS :Cluster Based Intrusion Detection System

DARPA :The Defense Advanced Research Projects Agency

DOS :Denial of Service

DNA :Deoxyribase Nucleic Acid

DNS :Domain Name Service

EQ :Equation

EX :Example

FCBF :Fast Correlation Based Filter

FDDI :Fiber Distributed Data Interface

FIN :Finish

FTP :File Transfer Protocol

HTTP :Hypertext Transfer Protocol

IBL :Instance Based Learning

ICMP :Internet Control Message Protocol

ID :Intrusion Detection

IDDM :Intrusion Detection using Data Mining

IDES :Intrusion Detection Expert System

IDIOT :Intrusion Detection in Our Time

IDS :Intrusion Detection System

IP :Internet Protocol

IPSEC :Internet Protocol Security

ISDN :Integrated Services Digital Network

JAM :Java Agents for Metalearning

KDD :Knowledge Discovery and Data Mining

KNN :K-Nearest Neighbour

LAN :Local Area Network

MADAM ID :Mining Audit Data for Automated Models for Intrusion Detection

MAX :Maximum

MIN :Minimum

MINDS :Minnesota Intrusion Detection System

MIT :Massachusetts Institute of Technology

NETSTAT :Network-based State Transition Analysis Tool

NIDES :Next Generation Intrusion Detection Expert System

NIDX :Network Intrusion Detection Expert System

NNID :Neural Network Intrusion Detector

NP :Nondeterministic Polynamial

OSPF :Open Shortest Path First

POP :Post Office Protocol

 vii

PSH :Push

R2L :Unauthorized Access From a Remote Machine

RFC :Request for Comment

RST :Reset

SLIP :Serial Line Internet Protocol

SMTP :Simple Mail Transport Protocol

SNMP :Simple Network Management Protocol

SVM :Support Vector Machine

SYN :Synchronize

TCP :Transmission Control Protocol

U2R :Unauthorized Access to Local Superuser

UDP :User Datagram Protocol

URG :Urgent

U.S :United States

USTAT :Unix State Transition Analysis Tool

 viii

LIST OF TABLES

 Page Number

Table 2.1 : TCP flags on response packets with TCP flags [22] 12

Table 2.2 : Features used by KDD Cup data to identify packets and connections

[27] ... 14

Table 2.3 : KDD Cup 99 attack types [27] .. 16

Table 2.4 : Flags by KDD Cup 99 Data [24] .. 17

Table 3.5 : Network connection records by BRO [5] ... 24

Table 3.6 : Example “traffic” connection records [5] ... 24

Table 3.7 : Example RIPPER Rules for DOS and PROBING attacks [5] 25

Table 3.8 : Comparing Detection Rates (in %) on Old and New Attacks by

MADAM ID [5] ... 25

Table 4.9 : The running time (in ms) and the number of selected features for each

feature selection algorithm [30] ... 43

Table 4.10 : Accuracy of C4.5 on selected features for each feature selection

algorithm [30]... 43

Table 5.11 : Results of Single Linkage algorithm [12] ... 45

Table 5.12 : Performance of optimized k-NN-Algorithm [30] 46

Table 6.13 : The selected features by normal-neptune .. 51

Table 6.14 : The implementation parameters, their description and the default values

 .. 60

Table 6.15 : Sum of counts of attack instances in test files 62

Table 6.16 : Sum of true indentified instances with Radius Factor 1.2 64

Table 6.17 : Detection, False Negative and False Positive counts of test files with

radius factor 1.2 .. 65

Table 6.18 : Attack False and Anomaly for Attack counts with radius factor 1.2 ... 65

Table 6.19 : Sum of true indentified instances with Radius Factor 2.0 66

Table 6.20 : Detection, False Negative and False Positive counts of test files with

radius factor 2.0 .. 67

Table 6.21 : Attack False and Anomaly for Attack counts with radius factor 2.0 67

Table 6.22 : Sum of true indentified instances with Radius Factor 1.0 68

Table 6.23 : Detection, False Negative and False Positive counts of test files with

radius factor 1.0 .. 69

Table 6.24 : Attack False and Anomaly for Attack counts with radius factor 1.0 69

Table 6.25 : Sum of true indentified instances with Radius Factor 0.8 70

Table 6.26 : Detection, False Negative and False Positive counts of test files with

radius factor 0.8 .. 71

Table 6.27 : Attack False and Anomaly for Attack counts with radius factor 0.8 71

Table 6.28 : Sum of true indentified instances with Feature Split Count 100 74

Table 6.29 : Detection, False Negative and False Positive counts of test files with

continuous split factor 100 ... 75

 ix

Table 6.30 : Attack False and Anomaly for Attack counts with continuous split

factor 100 ... 75

Table 6.31 : Sum of true indentified instances with Feature Weight Factor 100 78

Table 6.32 : Detection, False Negative and False Positive counts of test files with

feature weight factor 100 ... 79

Table 6.33 : Attack False and Anomaly for Attack counts with feature weight factor

100 .. 79

Table 6.34 : Sum of true indentified instances with Feature Weight Factor 1 80

Table 6.35 : Detection, False Negative and False Positive counts of test files with

feature weight factor 1 ... 81

Table 6.36 : Attack False and Anomaly for Attack counts with feature weight factor

1 .. 81

Table 6.37 : Sum of true indentified instances with Radius Factor 1.2 with Zero-

Mean Normalization... 84

Table 6.38 : Detection, False Negative and False Positive counts of test files with

Radius Factor 1.2 with Zero-Mean Normalization .. 85

Table 6.39 : Attack False and Anomaly for Attack counts with Radius Factor 1.2

with Zero-Mean Normalization.. 85

Table 6.40 : Sum of true indentified instances with Radius Factor 2 with Zero-Mean

Normalization ... 86

Table 6.41 : Detection, False Negative and False Positive counts of test files with

Radius Factor 2 with Zero-Mean Normalization ... 87

Table 6.42 : Attack False and Anomaly for Attack counts with with Radius Factor 2

with Zero-Mean Normalization.. 87

 x

LIST OF FIGURES

 Page Number

Figure 1.1 : Intruder Knowledge vs. Attack Sophitication [3].................................. 2

Figure 2.1 : Simplified TCP-IP Protocol Stack [21] ... 4

Figure 2.2 : Encapsulation of headers [22] ... 5

Figure 2.3 : The TCP Header [22] .. 5

Figure 2.4 : The UDP Header [22] .. 7

Figure 2.5 : The ICMP Header [22] .. 7

Figure 2.6 : TCP Session Establishment and Closing [22] 9

Figure 2.7 : The Smurf Attack [23]... 10

Figure 2.8 : Smurf attack logs [22] ... 10

Figure 2.9 : Ping of Death attack logs [22] ... 11

Figure 2.10 : TearDrop Attack [23] .. 12

Figure 2.11 : Scanning with Null packets (no flags) [22] ... 13

Figure 2.12 : KDD Cup 99 Attack Categorization [29] .. 16

Figure 3.1 : Intrusion Detection Taxonomy [2] .. 19

Figure 3.2 : PetriNet State Diagram used by IDIOT [2] ... 22

Figure 4.1 : Stages in clustering [19] .. 30

Figure 4.2 : Classification of Pattern Classification algorithms [8] 32

Figure 4.3 : An example for the k-Nearest Neigbour rule [17] 34

Figure 4.4 : Support vectors and the hyperplane [17] ... 36

Figure 4.5 : A taxonomy of clustering approaches [19] ... 37

Figure 4.6 : Points falling in three clusters [19] .. 39

Figure 4.7 : The dendogram obtained using hierarchical clustering [19] 39

Figure 5.1 : The algorithm of IDS with single linkage clustering [12] 44

Figure 5.2 : Clusters by optimized k-NN algortithm [30]....................................... 45

Figure 5.3 : The Y-means Algorithm [20] .. 47

Figure 5.4 : Y­means with different initial number of clusters [20] 47

Figure 5.5 : Architecture of Minnesota Intrusion Detection System [16] 48

Figure 5.6 : Outlier Examples [16] ... 49

Figure 6.1 : Finding the distance of a test vector to the temproary training clusters

 .. 52

Figure 6.2 : Test decision of suspicious Nearest Neighbour Attacks 53

Figure 6.3 : Algorithm of training phase... 54

Figure 6.4 : Algorithm of the part 1 of test phase ... 55

Figure 6.5 : Algorithm of the part 1 of test phase (continued)................................ 56

Figure 6.6 : Algorithm of the part 2 of test phase ... 57

Figure 6.7 : Algorithm of the part 2 of test phase (continued)................................ 58

Figure 6.8 : Algorithm of the part 2 of test phase (continued)................................ 59

Figure 6.9 : Rates for attacks DOS with change of the radius factor 72

Figure 6.10 : Rates for attacks PROBE with change of the radius factor 72

Figure 6.11 : Rates for attacks U2R with change of the radius factor 72

 xi

Figure 6.12 : Rates for attacks R2L with change of the radius factor....................... 73

Figure 6.13 : Rates for attacks Anomaly with change of the radius factor 73

Figure 6.14 : Detection Rate for Normal with change of the radius factor 73

Figure 6.15 : Rates for attacks DOS with change of the continous split factor 76

Figure 6.16 : Rates for attacks PROBE with change of the continous split factor ... 76

Figure 6.17 : Rates for attacks U2R with change of the continous split factor 76

Figure 6.18 : Rates for attacks with change of the continous split factor 77

Figure 6.19 : Rates for attacks Anomaly with change of the continous split factor . 77

Figure 6.20 : Detection Rate for Normal with change of the continous split factor . 77

Figure 6.21 : Rates for attacks DOS with change of the feature weight factor 82

Figure 6.22 : Rates for attacks PROBE with change of the feature weight factor.... 82

Figure 6.23 : Rates for attacks U2R with change of the feature weight factor 82

Figure 6.24 : Rates for attacks R2L with change of the feature weight factor 83

Figure 6.25 : Rates for attacks Anomaly with change of the feature weight factor.. 83

Figure 6.26 : Detection Rate for Normal with change of the feature weight factor . 83

Figure 6.27 : Rates for attacks DOS with change of the radius factor with Zero-

Mean Norm. ... 88

Figure 6.28 : Rates for attacks PROBE with change of the radius factor with Zero-

Mean Norm. ... 88

Figure 6.29 : Rates for attacks U2R with change of the radius factor with Zero-Mean

Norm. ... 88

Figure 6.30 : Rates for attacks R2L with change of the radius factor with Zero-Mean

Norm. ... 89

Figure 6.31 : Rates for attacks Anomaly with change of the radius factor with Zero-

Mean Norm. ... 89

Figure 6.32 : Rates for attacks Normal with change of the radius factor with Zero-

Mean Norm. ... 89

 xii

ÖRÜNTÜ SINIFLANDIRMASI İLE SALDIRI TESPİTİ

ÖZET

Bilgisayarların ve bilgisayar ağlarının hızlanması, bilgisayar kullananların ve
internete ulaşabilenlerin sayısı artması teknolojik gelişmenin göstergeleridir. Ne
yazık ki herkes teknolojiyi iyi amaçlar doğrultusunda kullanmamaktadır, bazı kişiler
kendilerinin ya da başkalarının çıkarlarına hizmet etmek için teknolojinin açıklarını
bulmaya çalışmaktadırlar.

Bilgisayar saldırıları günümüzde çok popüler bir araştırma konusudur ve olmaya da
devam edecektir. Çünkü her yeni saldırıya karşı bir önlem bulundukça, saldırganlar
da yeni saldırılar yaratmaktadırlar. Bugün bir çok büyük ya da küçük şirket, kamu
kuruluşu ya da organizasyon saldırıya maruz kalmaktadır ve bu organizasyonlar
prestijlerinin kaybetmemek için bu saldırıların çok azını kamuya açıklamaktadırlar.

Saldırı tespit sistemleri, 1980‟lerden beri geliştirilmektedirler. Temel olarak iki tip
saldırı tespit sistemi vardır: Davranış bazlı ve bilgi bazlı. Bilgi bazlı sistemler sadece
bildikleri saldırıları yakalayabilirler. Yeni saldırılara karşı dayanaksızdırlar. Davranış
bazlı saldırı tespit sistemleri ise normal davranışları öğrenirler ve bu davranıştan
farklı olan davranışları anormal olarak tanımlarlar. Her iki tip yakalama yönteminde
uzman sistemler, veri madenciliği gibi belli algoritmalar kullanılmış ve bir çok
birbirine alternatif saldırı tespit sistemi geliştirilmiştir.

Örüntü sınıflandırması son yıllarda saldırı tespitinde kullanılmaya başlamıştır.
Örüntü sınıflandırması çok uzun yıllardan beri biyoloji, görüntü tanıma gibi bir çok
alan kullanılmış ve bu konuda bir çok algoritma geliştirilmiştir. Örüntü sınıflandırması
hem bilgi bazlı hem davranış bazlı saldırı tespitini biraraya getirerek optimum
sonuca ulaşmada yol gösterici olmaktadır.

Örüntü sınıflandırmada iki tür yöntem vardır: Öğretimli sınıflandırma, öğretimsiz
sınıflandırma. Öğretimli sınıflandırmada belli bir örüntü kümesiyle algoritma
çalıştırılır ve algoritma bu kümede önceden belirlenmiş sınıfları ve sınıfların
özelliklerini öğrenir. Test örüntüsü algoritmaya verildiğinde bu test verisinin hangi
sınıftan olduğu belirlenir. Öğretimsiz sınıflandırmada ise örüntülerin hangi sınıfta
oldukları önceden bilinmez. Örüntülerden birbirine yakın özellikte olanlar aynı sınıfa
toplanır. Daha sonra bunlar etiketlenir. Tüm algoritmalarda özelliklerin neler olduğu,
hangi özelliklerin seçileceği, hangi özellliğe ne ağırlık atanacağı gibi bilgiler sonuca
doğrudan etki eder.

ACM Special Interest Group on Knowledge Discovery and Data Mining tarafından
her yıl yapılan veri madenciliği yarışmasında 1999 yılında saldırı tespit verileri
kullanılmış ve bu veriler bir çok saldırı tespit sisteminin gelişmesinde rol oynamıştır.

Bu tezde de bu veriler kullanılarak bir örüntü sınıflandırması ile saldırı tespit sistemi
gerçeklenmeye çalışılmıştır. Bu saldırı tespit sistemi CLIDS (Cluster based Intrusion
Detection System) olarak adlandırılmıştır. Bu sistemde öncelikle bilinen ataklarla
eğitim verileri içinde sınıf karakterisitikleri çıkarılmaktadır. Bunu yaparken de bilinen
sınıflandırma algoritmaları doğrudan kullanılmamıştır. Eğitim verileri, Lei Yu ve
Huan Liu tarafından geliştirilmiş ve sonuçları kanıtlanmış FCBF algoritmasıyla ayırt

 xiii

edici özellikleri bulunduktan sonra sınıflandırılmıştır. Bu sınıflandırmada saldırı
tespitinde çok önemli rol oynayan sembolik veriler (protokol tipi, hizmet tipi, bayrak
tipi vb) öne çıkarılarak, FCBF tarafından seçilmiş sembolik verilerle etiketlenen
sınıflar oluşturulmuştur. Bundan sonra CLIDS „in içindeki algoritma test örüntülerini,
“normal – atak ” verilerinin oluşturduğu sınıflara göre yaptığı karşılaştırmalarla hangi
sınıflara yakın olduğunu, eğer birden fazla sınıfa yakın bulduysa bunlardan
hangisinin seçilmesi gerektiğini bulur ya da hiç bir sınıfa önceden belirlenmiş bir
eşikten daha yakın değise “anormal” olarak etiketler.

CLIDS gerçek zamanlı çalışmamakla birlikte öğretimli örüntü sınıflandırmasının ve
özellik seçiminin saldırı tespitinde kullanılabileceğini kanıtlayan, anormal durumları
bulmada yeni bir bakış açısı getiren ve ilerde geliştirilmeye çok açık bir çalışma
niteliğindedir.

 xiv

INTRUSION DETECTION WITH PATTERN CLASSIFICATION

SUMMARY

The computers become more and more faster, and number of computer users and
internet users increase day by day, which are indicators of technology
improvements. Unfortunately, not all of these people use technology in the good
way, some of them use it for his/her or others benefit in bad way, to find vulnerable
sides of it.

Computer hacking is in our day a very popular research topic, and it is going to be
also. Then, as more and more preventions of computer attacks are developed,
attackers create new, unseen attacking methods. Today, many big or little firms are
exposed of computer hijacking and in order not to lose their prestige, they explain
only a few of these happenings.

Intrusion detection systems are developed since 1980‟s. Basically, there are two
types of intrusion detection systems: Behaviour based and knowledge-based.
Knowledge-based systems can only detect the intrusions which are defined in their
knowledge database. They are incapable of detecting new and unseen intrusions.
Behaviour based intrusion detection systems learn first normal behaviour and then
they define deviations from these behaviour as anomaly. In both types of intrusion
detecting, algorithms like expert systems and data mining are used and many
intrusion detection systems are developed alternative to each other.

Pattern classification is used in last years in the field of intrusion detection, it is used
for many years by many fields as biology, image recognition, and there are many
algorithms by this subject. Pattern classification can combine knowledge-based and
behaviour based intrusion detection and guide to find the optimum solution.

In Pattern Classification there are two methods: Supervised clustering and
unsupervised clustering. By supervised clustering the algorithm runs first with
training data, so the algorithm learns the clusters and their characteristic. If the
algorithm runs then with test data, it determines that which cluster this test data
belongs to. By unsupervised clustering the clusters of the training data is not known.
The patterns with similar features are grouped into same cluster, then these clusters
are labeled. By all of these algortihms, the features of the patterns, the selected
features and the weights of the features influence the result directly.

By KDD cup, organized every year by ACM Special Interest Group on Knowledge
Discovery and Data Mining , is in 1999 intrusion detection data used, and these data
has been a guide to development of many intrusion detection systems.

In this thesis, these data has been used to develop an intrusion detection system
with pattern classification. This system is named by CLIDS (Cluster based Intrusion
Detection System). The system is trained first with known attacks and the cluster
characteristics are determined in the training data set. So, by doing this, the known
clustering algorithms are not used directly. The distinctive features of the training
data are selected by the FCBF algorithm developed by Lei Yu and Huan Liu, which
is proven by its results, and these features are used to make clusters. By this
clustering, the symbolic values (protocol type, service type, flag type etc.) which
have a big role by intrusion detection are brought forward and the symbolic values

 xv

which are selected by FCBF, are given as labels to the clusters. Then, the algorithm
in CLIDS compares the test patterns with the clusters of the “normal – attack” data
and finds the nearest clusters, if it finds more than one cluster, than it finds which
cluster should be selected, if the test pattern is not near enough than the limit
defined previously, it labels it as “anomaly”.

However CLIDS is not working real time, it is a work which proves that supervised
pattern classification and the feature selection can be used by intrusion detection, it
brings a new look for finding “anomalies” and it is very open to be developed more.

 1

1. INTRODUCTION

1.1. Aim of This Thesis

Intrusion detection is a part of computer security. Other parts may be firewalls,

electronic signatures, encrypting, IPSEC protocol, antivirus programs etc. However

common features of all these security items are the same:

 Authentication

 Authorization

 Non-Repudiation

 Confidentiality

 Integrity

 Availability

Every security system perform some or all features above.

In this thesis, Chapter 1 gives a first look to intrusion detection. Intrusion detection is

introduced briefly, in order to give an idea everybody, who are not familiar with the

term computer security.

Chapter 2 gives some basic knowledge to understand the network protocols and the

attacks which use the vulnerabilites of these protocols. In Chapter 3 the

classification of ID systems is explained and some example ID systems are

introduced. In Chapter 4, some basic knowledge of pattern classification is studied.

Chapter 5 introduces research in intrusion detection with pattern classification. And

at the end Chapter 6 studies CLIDS which is implemented and presented in this

thesis in detail.

 2

1.2. Definition of Intrusion Detection

Intrusion detection is the process of monitoring the events occuring in a computer

system or network and analyzing them for signs of intrusions, defined as attempts to

compromise the confidentiality, integrity, availability, or bypass the security

mechanisms of a computer or network. [1]

1.3. Intrusions and Intruders in History

Internet was born in 1990‟s , so network intrusions have a history of about 15, but

host based intrusions are more old. In the Figure 1.1 it is shown that the attack

sophistication becomes more and more complicated, although intruder knowledge

becomes low, because of attack tools, which can be found on internet widely. [3]

Figure 1.1 Intruder Knowledge vs. Attack Sophitication [3]

1.4. Terminology

Intrusion detection is a young field, and many terms are not used consistently. Here

are some ID concepts explained:

Attack: An action conducted by one adversary, the intruder, against another

adversary, the victim.The intruder carries out an attack with a specific objective in

mind. From the perspective of an administrator responsible for maintaining a

system, an attack is a set of one or more events that may have one or more security

consequences. From the perspective of an intruder, an attack is a mechanism to

fulfill an objective.

 3

Exploit: The process of using a vulnerability to violate a security policy. A tool or

defined method that could be used to violate a security policy is often referred to as

an exploit script.

False negative: An event that the IDS fails to identify as an intrusion when one has

in fact occurred

False positive: An event, incorrectly identified by the IDS as being an intrusion

when none has occurred

Incident: A collection of data representing one or more related attacks. Attacks may

be related by attacker, type of attack, objectives, sites, or timing.

Intruder: The person who carries out an attack. Attacker is a common synonym for

intruder. The words attacker and intruder apply only after an attack has occurred. A

potential intruder may be referred to as an adversary. Since the label of intruder is

assigned by the victim of the intrusion and is therefore contingent on the victim's

definition of encroachment, there can be no ubiquitous categorization of actions as

being intrusive or not.

Intrusion: A common synonym for the word “attack”; more precisely, a successful

attack.

Vulnerability: A feature or a combination of features of a system that allows an

adversary to place the system in a state that is contrary to the desires of the people

responsible for the system and increases the probability or magnitude of undesirable

behaviour in or of the system. [2]

 4

2. NETWORK PROTOCOLS AND NETWORK INTRUSIONS

2.1. Network Protocols

The TCP-IP protocol is the protocol that the computers use to communicate each

other. This protocol is used in local area networks as well as in wide area netwoks,

such as Internet.

2.2. Structure of the Protocol Stack

The TCP-IP stack contains four protocol layers, as shown in Figure 2.2. The four

layers are stacked so that each one uses the services of the layer below it. [21]

 Applications: Such as mail, login, file transfer, http...

 Transport: The TCP protocol, supports the applications by providing a

reliable “virtual circuit”. The UDP protocol do not provide a reliable “virtual

circuit”.

 Internet: The IP potocol serves as a packet multiplexer.

 Network interface: The bottom layer consists of device drivers that manage

the physical communications medium, such as ethernet. [21]

Figure 2.2 Simplified TCP-IP Protocol Stack [21]

 Telnet FTP HTTP Finger DNS SNMP Ping

TCP UDP ICM

P

Ethernet Token

Ring

OSP

F

FDDI X.25 Frame

Relay

ISDN ATM SLI

P

IP

SMTP POP

 5

2.2.1. Encapsulation and the Packet Headers

A packet which is used in TCP-IP protocol is formed of data and headers of

protocols , which are encapsulated, as shown in Figure 2.3

Figure 2.3 Encapsulation of headers [22]

2.2.1.1. TCP Header

The TCP header, which is shown in Figure 2.4, is the inner header of packet. The

data area contains the application data.

Figure 2.4 The TCP Header [22]

 IP Data

IP Datagram

Header

 Protocol Data ICMP/UDP/TCP

Header

Interface

Layer

Internet

Layer

Transport

Layer

Source port number Destination port number

Sequence number

Acknowledgement number

Hdr lgth reserved U A P R S F Window size

TCP checksum Urgent pointer

Options field (variable length, max length 40 bytes)

0 16 31

data

 Frame Data Area Frame

Header

 6

The header segments have the following meanings:

Source port number (16 bits): The port number of the source system

Destination port number(16 bits): The port number of the destination system

Sequence number (32 bits): The sequence number of the first data octet in this

segment (except when SYN is present). If SYN is present the sequence number is

the initial sequence number (ISN) and the first data octet is ISN+1.

Acknowledgement number: If the ACK control bit is set this field contains the value

of the next sequence number the sender of the segment is expecting to receive.

Once a connection is established this is always sent.

Header Length(Hdr lgth): The number of 32 bit words in the TCP Header. This

indicates where the data begins. The TCP header (even one including options) is

an integral number of 32 bits long.

Reserved (6 bits): Reserved for future use. Must be zero.

The segment flags:

SYN (S) : synchronize the sequence numbers to establish a connection

ACK (A): acknowledgement number is valid

RST (R): reset (abort) the connection

FIN (F): sender is finished sending data –initiate a half close

PSH (P): tells receiver not to buffer the data before passing it to the application

(interactive applications use this)

URG (U): urgent pointer is valid (often results from an interrupt)

Window (16 bits): The number of data octets beginning with the one indicated in the

acknowledgment field which the sender of this segment is willing to accept.

Checksum(16 bits) : The checksum field is the 16 bit one's complement of the one's

complement sum of all 16 bit words in the header and text.

Urgent Pointer(16 bits): This field communicates the current value of the urgent

pointer as a positive offset from the sequence number in this segment.

Options(variable): Options may occupy space at the end of the TCP header and are

a multiple of 8 bits in length. All options are included in the checksum. [35]

 7

2.2.1.2. UDP Header

Figure 2.5 The UDP Header [22]

If the UDP protocol is used as the transport protocol, the UDP Header, which is

shown Figure 2.5 is the inner header.

Source Port(16 bits):The port number of the sender. Cleared to zero if not used.

Destination Port(16 bits)The port this packet is addressed to.

Length(16 bits):The length in bytes of the UDP header and the encapsulated data.

The minimum value for this field is 8.

Checksum(16 bits) Computed as the 16-bit one's complement of the one's

complement sum of a pseudo header of information from the IP header, the UDP

header, and the data, padded as needed with zero bytes at the end to make a

multiple of two bytes. If the checksum is cleared to zero, then checksuming is

disabled. If the computed checksum is zero, then this field must be set to 0xFFFF.

[35]

2.2.1.3. ICMP Header

Figure 2.6 The ICMP Header [22]

Destination port number UDP datagram length

UDP Checksum

Optional data

Source Port Number

type code checksum

0 8 16 31

identifier Sequence number

Optional data

 8

The ICMP Header format depends on type and code. In Figure 2.6 is example

specific format , echo request and reply is illustrated.

The Internet Control Message Protocol (ICMP) is used for error reporting and

debugging of the IP Protocol. Some of ICMP's functions are to:

Announce network errors: Such as a host or entire portion of the network being

unreachable, due to some type of failure.

Announce network congestion: When a router begins buffering too many packets,

due to an inability to transmit them as fast as they are being received, it will

generate ICMP Source Quench messages. Directed at the sender, these messages

should cause the rate of packet transmission to be slowed.

Assist Troubleshooting: ICMP supports an Echo function, which just sends a packet

on a round--trip between two hosts.

Announce Timeouts: If an IP packet's TTL field drops to zero, the router discarding

the packet will often generate an ICMP packet announcing this fact. [35]

2.2.2. TCP Session Establishment and Closing

The setup phase of a TCP connection is a three way handshake. The client machine

sends a TCP packet to the server with an initial TCP sequence number and the SYN

flag set. The server sends back a packet with both SYN and ACK bit is set, an initial

sequence number , as well as an acknowledgement for the client‟s initial sequence

number. Finally the client sends back a packet acknowledging the server‟s initial

sequence number. For remainder of the session the ACK bit is set.

At the end of TCP session one party initiates the closing sequence by sending a FIN

packet (the ACK packet is still valid to keep the packets sequnced in correct order).

The FIN is ACKed by the other end of the connection and a “half close” is taken

place, which means that no more data will be flowing in that direction. Since TCP

connection is full-duplex (data can be flowing in each direction independently), each

directional channel mest be shut down independently. Figure 2.7 shows a TCP

session establishment and closing. [22]

 9

Figure 2.7 TCP Session Establishment and Closing [22]

2.3. Types of Network Intrusions

There are many intrusions types, some of them are the most seen types. The

network intrusions can be grouped in two groups: Denial of Service Attack, Probe

Attack

2.3.1. Denial of Service Attacks

The common feature of this type of intrusions is to bring the operating system of

victim machine in a blocked and unstable state.

2.3.1.1. Smurf Attack

By Smurf attack, the victim machine gets too many packets, so that its operating

system is blocked.

ACK rest of the session

FIN ACK

ACK

FIN ACK

ACK

SYN

SYN-ACK

ACK

 10

Figure 2.8 The Smurf Attack [23]

If a Smurf attack, which is illustrated in Figure 2.8 network traffic is sniffed by

Tcpdump program, these data may be seen. In Figure 2.9 , the logs shows a Smurf

attack. The timestamps are close together and ICMP echo request is broadcasted.

[22]

Figure 2.9 Smurf attack logs [22]

00:00:05.327 spoofed.target.com > 192.168.15.255: icmp echo request
00:00:05.342 spoofed.target.com > 192.168.1.255: icmp echo request
00:00:14.154 spoofed.target.com > 192.168.15.255: icmp echo request
00:00:14.171 spoofed.target.com > 192.168.1.255: icmp echo request

05:20:48.261 spoofed.target.com > 192.168.0.0: icmp echo request
05:20:48.263 spoofed.target.com > 255.255.255.255: icmp echo request
05:21:35.792 spoofed.target.com > 192.168.0.0: icmp echo request
05:21:35.819 spoofed.target.com > 255.255.255.255: icmp echo request

Attacker Attacker forms packets of

ICMP echo request, in

which the source address

is spoofed to be the victim

machine

Router Router lets this packets

Victim

machine

The live machines

reply by ICMP

echo reply to real

victim machine

 11

2.3.1.2. Ping of Death Attack

The Ping of Death attack causes a buffer to overflow on the target host by sending

an echo request packet that is larger than the maximum IP packet size of 65535

bytes. Theoretically, any IP packet that is larger than the maximum packet is could

be used, but the attack has been popularized in the form of an ICMP echo request.

In order to generate such as an “impossible packet”, the attacker uses special tools

to craft fragments and send them to the target. Because no intermediary network

devices will attempt to reassemble the fragments, the packets are simply forwarded

until they reach the specified destination address. When the target host receives

these fragments and tries to reassemble them or process the reassembled

datagram its operating system may crash or hang.

If a Ping of Death attack network traffic is sniffed by Tcpdump program, these data

may be seen. In Figure 2.10 , the logs show a Ping of Death attack. In the last line it

is seen that the attacker sends a ping packet that is larger than the maximum IP

packet size of 65535 bytes (380+65360=65740) [22]

Figure 2.10 Ping of Death attack logs [22]

2.3.1.3. TearDrop Attack

The Teardrop attack depends on the fact that the network protocols are not good at

math. They are especially bad at negative numbers.

In Figure 2.11, the logs show a Teardrop attack. The top line shows a fragment

named 242 with 36 octets of data of offset 0. The second line shows 4 more octets

of data for offset 24. Therefore to service this packet the operating system would

have to rewind from 36 to 24. Negative numbers can translate to very large positive

numbers, and so the operating system, and so the operating system is likely to

12:43:58.431 big.pinger.org > www.mynetwork .net : icmp echo request
(frag 4321: 380@0+)
12:43:58.431 big.pinger.org > www.mynetwork .net : icmp echo request
(frag 4321: 380@2656+)
12:43:58.431 big.pinger.org > www.mynetwork .net : icmp echo request
(frag 4321: 380@3040+)

...
12:43:58.431 big.pinger.org > www.mynetwork .net : icmp echo request
(frag 4321: 380@649476+)
12:43:58.431 big.pinger.org > www.mynetwork .net : icmp echo request
(frag 4321: 380@65360+)

 12

scribble all over some other program‟s section of memory. [23] If this many times

happens, the system may be blocked.

Figure 2.11 TearDrop Attack [23]

2.3.2. Probe Attacks

The common feature of these intrusions is to find live hosts or ports.

2.3.2.1. PortSweep Attack

The Portsweep attack tries to find live ports on a host, because an open port

indicates that a service is offered and if an attacker knows what services are offered,

he/she may be able to guess what security vulnerabilities are available to exploit.

For a Linux operating system it is determined which flag will be set by which flag of

source packet. On Table 2.1 the flags on response packets are showed.

Table 2.1 TCP flags on response packets with TCP flags [22]

Flags Live Port Dead Port

None 0 RA

F 0 RA

S SA RA

SF SFA RA

R 0 0

RF 0 0

SR 0 0

SRF 0 0

A R R

FA R R

SA R R

SFA R R

RA 0 0

RFA 0 0

SRA 0 0

SFRA 0 0

while-e-coyote.45599 > target.net.3964 :udp 28 (frag 242:36@0+)

while-e-coyote > target.net.3964 :udp 28 (frag 242:4@24)

 13

If the attacker do not want to use packets having the SYN flag set, he/she can use

packets with no flag is set. Because based on RFC specifications

 a closed port should respond with RESET

 an open port should simply discard the probe packet and not respond at all

[22]

In Figure 2.12, the logs show Portsweep attack.

Figure 2.12 Scanning with Null packets (no flags) [22]

2.3.2.2. Ipsweep Attack

The Ipsweep attack is to find live hosts. If the attacker finds live hosts, he/she can

begin other types of attacks. These attack is also done in the same way of

portsweep attack, but by this attack hosts more than one are scanned.

2.4. The KDD Cup 99 Data

The KDD Cup is the annual Data Mining and Knowledge Discovery competition

organized by ACM Special Interest Group on Knowledge Discovery and Data

Mining, the leading professional organization of data miners.

The 1998 DARPA Intrusion Detection Evaluation Program was prepared and

managed by MIT Lincoln Labs. The objective was to survey and evaluate research

in intrusion detection. A standard set of data to be audited, which includes a wide

variety of intrusions simulated in a military network environment, was provided. The

1999 KDD intrusion detection contest used a version of this dataset, which is also

used by this thesis.

Lincoln Labs set up an environment to acquire nine weeks of raw TCP dump data

for a local-area network (LAN) simulating a typical U.S. Air Force LAN. They

operated the LAN as if it were a true Air Force environment, but peppered it with

multiple attacks.

11:33:36.225 scanner.org.63816 > target.com.821: .
11:33:36.225 scanner.org.63816 > target.com.405: .
11:33:36.225 scanner.org.63816 > target.com.391: .
11:33:36.225 scanner.org.63816 > target.com.59: .
11:33:36.225 scanner.org.63816 > target.com.91: .

 14

The raw training data was about four gigabytes of compressed binary TCP dump

data from seven weeks of network traffic. This was processed into about five million

connection records. Similarly, the two weeks of test data yielded around two million

connection records. In Chapter 3.3.1.5 is this detailed explained.

A connection is a sequence of TCP packets starting and ending at some well

defined times, between which data flows to and from a source IP address to a target

IP address under some well defined protocol. Each connection is labeled as either

normal, or as an attack, with exactly one specific attack type. Each connection

record consists of about 100 bytes.

The datasets contain a total of 22 training attack types, with an additional 18 types in

the test data only. This data has the features as defined in Table 2.2. [27]

Table 2.2 Features used by KDD Cup data to identify packets and connections [27]

Feature Name Description Type

duration
length (number of

seconds) of the

connection

continuous

protocol_type
type of the protocol, e.g.

tcp, udp, etc.
discrete

service
network service on the

destination, e.g., http,

telnet, etc.

discrete

src_bytes
number of data bytes from

source to destination
continuous

dst_bytes
number of data bytes from

destination to source
continuous

flag
normal or error status of

the connection
discrete

land
1 if connection is from/to

the same host/port; 0

otherwise

discrete

wrong_fragment
number of ``wrong''

fragments
continuous

urgent number of urgent packets Continuous

hot
number of ``hot''

indicators
continuous

num_failed_logins
number of failed login

attempts
continuous

logged_in
1 if successfully logged

in; 0 otherwise
discrete

num_compromised
number of

``compromised''

conditions

continuous

root_shell
1 if root shell is obtained;

0 otherwise
discrete

 15

su_attempted
1 if ``su root'' command

attempted; 0 otherwise
discrete

num_root
number of ``root''

accesses
continuous

num_file_creations
number of file creation

operations
continuous

num_shells number of shell prompts continuous

num_access_files
number of operations on

access control files
continuous

num_outbound_cmds
number of outbound

commands in an ftp

session

continuous

is_hot_login
1 if the login belongs to

the ``hot'' list; 0 otherwise
discrete

is_guest_login
1 if the login is a

``guest''login; 0 otherwise
Discrete

count

number of connections to

the same host as the

current connection in the

past two seconds

continuous

Note: The following

features refer to these

same-host connections.

serror_rate
% of connections that

have ``SYN'' errors
continuous

rerror_rate
% of connections that

have ``REJ'' errors
continuous

same_srv_rate
% of connections to the

same service
continuous

diff_srv_rate
% of connections to

different services
continuous

srv_count
number of connections to

the same service as the

current connection in the

past two seconds

continuous

Note: The following

features refer to these

same-service connections.

srv_serror_rate
% of connections that

have ``SYN'' errors
continuous

srv_rerror_rate
% of connections that

have ``REJ'' errors
continuous

srv_diff_host_rate
% of connections to

different hosts
continuous

 16

The attack types trained in KDD Cup data are as in Table 2.3.

Table 2.3 KDD Cup 99 attack types [27]

Dos Probe R2L U2R

smurf portsweep
ftp_write buffer_overflow

teardrop ipsweep guess_passwd perl

 neptune satan imap

loadmodule

rootkit back nmap multihop
rootkit

pod phf

land spy

 warezclient

 warezmaster

The data in these attack categories are not in the same number as in Figure 2.13.

Figure 2.13 KDD Cup 99 Attack Categorization [29]

Attack Breakdown

smurf.

57.32215%

neptune.

21.88491% portsweep.

0.21258%

land.

0.00043%

warezmaster.

0.00041%

buffer_overflow.

0.00061%

teardrop.

0.01999%

warezclient.

0.02082%

back.

0.04497%

nmap.

0.04728%

imap.

0.00024%
rootkit.

0.00020%
ftp_write.

0.00016%

guess_passwd.

0.00108%

pod.

0.00539%

multihop.

0.00014%

phf.

0.00008%
spy.

0.00004%

perl.

0.00006%

loadmodule.

0.00018%

normal.

19.85903%

ipsweep.

0.25480%

Other

0.93391%

satan.

0.32443%

smurf.

neptune.

normal.

satan.

ipsweep.

portsweep.

nmap.

back.

warezclient.

teardrop.

pod.

guess_passwd.

buffer_overflow.

land.

warezmaster.

imap.

rootkit.

loadmodule.

ftp_write.

multihop.

phf.

perl.

spy.

 17

In KDD Cup 99 Data, the TCP flags has some meanings which are defined as in

Table 2.4.

Table 2.4 Flags by KDD Cup 99 Data [24]

Flag Meaning

S0 Connection attempt seen, no reply.

S1 Connection established, not terminated.

SF Normal establishment and termination. Note that
this is the same symbol as for state S1. You can
tell the two apart because for S1 there will not be
any byte counts in the summary, while for SF
there will be.

REJ Connection attempt rejected.

S2 Connection established and close attempt by
originator seen (but no reply from responder).

S3 Connection established and close attempt by
responder seen (but no reply from originator).

RSTO Connection established, originator aborted (sent
a RST).

RSTR Established, responder aborted.

RSTOS0 Originator sent a SYN followed by a RST, we
never saw a SYN ACK from the responder.

RSTRH Responder sent a SYN ACK followed by a RST,
we never saw a SYN from the (purported)
originator.

SH Originator sent a SYN followed by a FIN, we
never saw a SYN ACK from the responder
(hence the connection was ``half" open).

SHR Responder sent a SYN ACK followed by a FIN,
we never saw a SYN from the originator.

OTH No SYN seen, just midstream traffic (a ``partial
connection'' that was not later closed).

 18

3. INTRUSION DETECTION SYSTEMS

Intrusion detection system history begins by 1980, when James P. Anderson wrote

a report published in planning study for the U.S Air Force. In this report, he

proposed changes to computer audit mechanisms to provide information for use by

computer security personnel when tracking problems. He proposed a taxonomy fo

classifiying risks and threats to computer systems. If the not authorized user of

computer uses data or program, it is “External Penetration”, if the authorized user of

computer uses not authorized data or program, it is “Internal Penetration”. He

devotes to the problem associated with masquearades, those adversaries who

acess systems using purloined user ids and passwords. He suggests that some sort

of statistical analysis of user behaviour, capable of determining unusual patterns of

system use, might represent a way of detecting masquerades. This suggestion was

tested in the next milestone of intrusion detection the IDES project. [21]

First intrusion detection systems were host-based, because the internet is born and

grows up in early 1990‟s. Then the network-based ID systems were developed.

3.1. Classification of Intrusion Detection Systems

The intrusion detection systems are classified as in Figure 3.14. [2]

The detection method describes the characteristics of the analyzer. When the

intrusion detection system uses information about the normal behaviour of the

system it monitors, it is behaviour based. This means , if IDS finds deviation from

normal behaviour, then this type of detection is described as anomaly detection.

When the intrusion detection system uses information about the attacks, it is

knowledge-based. This means IDS have a information(a database) about the known

intrusions, so it matches the behaviours with that information. This type of detection

is described as misuse detection. [2]

The behaviour on detection describes the response of the intrusion detection system

to attacks. When it actively reacts to the attack by taking either corrective (closing

holes) or pro-active (logging out possible attackers, closing down services) actions,

 19

then the intrusion detection system is said to be active. If the intrusion detection

system merely generates alarms (including paging, etc), it is said to be passive. [2]

The audit source location discriminates intrusion detection systems based on the

kind of input information they analyze. This input information can be audit trails (for

example system logs) on a host, network packets, application logs or intrusion

detection alerts generated by other intrusion detection systems. [2]

The detection paradigm describes the detection mechanism used by the intrusion

detection system. Intrusion detection systems can evaluate states (secure or

insecure) or transitions (from secure to insecure). In addition, this evaluation can be

performed in a non-obtrusive way or by actively stimulating the system to obtain a

response. [2]

The usage-frequency is an orthogonal concept. Certain intrusion detection systems

have real-time continuous monitoring capabilities, whereas others have to be run

periodically. [2]

Figure 3.14 Intrusion Detection Taxonomy [2]

(Intrusion Detection System

Detection
Method

Behaviour
on
Detection

Audit Source
Location

Usage
Frequency

Detection Paradigm

Knowledge
Based

Behavior
Based

Passive
Alerting

Aktive
Response

Host Log Files

Network
Packets

Application
Log Files

IDS sensor
alerts

State-Based

Transiton-Based

Continuous
Monitoring

Periodic
Analysis

 20

3.2. Intrusion Detection System Components

Most intrusion detection systems have common features. The functionality of an

generic IDS can be logically distributed into three components: sensors, analyzers,

and a user interface. [3]

Sensors : Sensors are responsible for collecting data. The input for a sensor may be

any part of a system that could contain evidence of an intrusion. Example types of

input to a sensor are network packets, log files, and system call traces. Sensors

collect and forward this information to the analyzer. [3]

Analyzers: Analyzers receive input from one or more sensors or from other

analyzers. The analyzer is responsible for determining if an intrusion has occurred.

The output of this component is an indication that an intrusion has occurred. The

output may include evidence supporting the conclusion that an intrusion occurred.

The analyzer may provide guidance about what actions to take as a result of the

intrusion. [3]

User interface: The user interface to an IDS enables a user to view output from the

system or control the behaviour of the system. In some systems, the user interface

may equate to a “manager,” “director,” or “console” component. [3]

In addition to these three essential components, an IDS may be supported by a

“honeypot,” i.e., a system designed and configured to be visible to an intruder and to

appear to have known vulnerabilities. A honeypot provides an environment and

additional information that can be used to support intrusion analysis. The honeypot

serves as a sensor for an IDS by waiting for intruders to attack the apparently

vulnerable system. Having a honeypot serve as a sensor provides indications and

warnings of an attack. Honeypots have the ability to detect intrusions in a controlled

environment and preserve a known state. [3]

3.3. Intrusion Detection Systems by Detection Method

3.3.1. Knowledge Based Intrusion Detection Systems

An ID System that uses misuse detection, have information about specific attacks

and system vulnerabilities. So, it compares the logs with that information, and when

it finds a match, it raises alarm.

Advantages of the knowledge-based approches are that they have low false positive

alarm rate. It is more easy to understand and to update.

 21

Disadvantages are the difficulty gathering of required information on the known

attacks and keeping it up to date with new vulnebarilities and environments. When it

is not enough often updated, the false negative alarm rate can be very high, which

means intrusion patterns are treated as normal.

Misuse-based systems were some of the earliest systems proposed and having

reduced false positive rate they are most common form of IDS used in production

today, for example SNORT.

3.3.1.1. Expert Systems

Expert Systems are used primarily by knowledge based intrusion detection. The

expert system contains a set of rules that describe attacks. Audit events are

translated into facts carrying their semantics in the expert system, and the inference

engine draws conclusions using these rules and facts. [2]

Examples of misuse detection systems using expert systems are IDES (Intrusion

Detection Expert System)(1987), ComputerWatch (1990), NIDX (Network Intrusion

Detection Expert System)(1988) [6]

3.3.1.2. Signature Analysis

The semantic description of the attacks is transformed into information that can be

found in the audit trail in a straightforward way. For example, attack scenarios might

be translated into the sequences of audit events they genarate or into patterns of

data that can be sought in the audit trail generated by the system. [6]

This technique allows a very efficient implementation and is therefore applied in

commercial intrusion detection products. [2]

Systems that use signature analysis include Haystack(1988), NetRanger(1990),

RealSecure(1990) and MuSig(1998).[6]

3.3.1.3. Petri Nets

To represent signatures of intrusions, IDIOT, a knowledge-based intrusion detection

system developed by Purdue University uses Colored Petri Nets. Figure 3.15 shows

a simple example of a Colored Petri Net that issues an alarm if the number of

unsuccessful login attempts exceeds four within one minute. The transition

represented by a vertical bar, from state S1 to S2 can occur if there is a token in

state S1 and an unsuccesful login attempt. The time of the first unsuccessful login

attempt is stored in the token variable T1. The transition from state S4 to state S5

 22

can happen if there is a token in S4, an unsuccesful login attempt, and the time

difference between this and the first unsuccesful login attempt is less then 60

seconds. Reaching final state S5 corresponds to a matched signature and may

therefore result in an alarm being issued. [2]

Figure 3.15 PetriNet State Diagram used by IDIOT [2]

Advantages of colored Petri nets include their generality, their conceptual

simplicity,and their ability to be represented as graphs. However, matching a

complex signature against the audit trail can become computationally expensive. [2]

3.3.1.4. State Transition Analysis

State transition analysis describes attacks with a set of goals and transitions based

on state transition diagrams. Any event that triggers an attack state will be

considered an intrusion. Examples of systems applying state transition analysis are

USTAT (Unix State Transition Analysis Tool) (1992) and NetSTAT (Network-based

State Transition Analysis Tool) (1998).[6]

3.3.1.5. Data Mining

Data mining approach can be used in misuse detection as well as in anomaly

detection.

Data mining refers to a process of nontrivial extraction of implicit, previously

unknown, and potentially useful information from databases. Example misuse

detection systems that use data mining include JAM (Java Agents for Metalearning)

(1998), MADAM ID (Mining Audit Data for Automated Models for Intrusion

Detection) (2000), and Automated Discovery of Concise Predictive Rules for

Intrusion Detection (1999). [6]

S1

(Start)

S2 S3 S4 S5(End)

t=T1
unsuccesful
login

t=T2
unsuccesful login

unsuccesful
login

unsuccesful
login

T2-T1<=60

seconds 4 unsuccesful login in 1 minute

 23

JAM (developed at Columbia University) uses data mining techniques to discover

patterns of intrusions. It then applies a meta-learning classifier to learn the signature

of attacks. The association rules algorithm determines relationships between fields

in the audit trail records, and the frequent episodes algorithm models sequential

patterns of audit events. Features are then extracted from both algorithms and used

to compute models of intrusion behaviour. The classifiers build the signature of

attacks. So essentially, data mining in JAM builds a misuse detection model. [6]

MADAM ID uses data mining to develop rules for misuse detection. The motivation

is that current systems require extensive manual effort to develop rules for misuse

detection. While MADAM ID performed well in the 1998 DARPA evaluation of

intrusion detection systems, it is ineffective in detecting attacks that have not already

been specified. [6]

In the paper “A Data Mining Framework for Building Intrusion Detection Models” [5] ,

Wenke Lee, Salvatore J. Stolfo and Kui W. Mok (Columbia University) explain how

they mine intrusion data. They participated in the DARPA Intrusion Detection

Evaluation Program, prepared and managed by MIT Lincoln Labs. They were

provided with about 4 gigabytes of compressed tcpdump data of 7 weeks of network

traffic. This data can be processed into about 5 million of connection records of

about 100 bytes each. The data contains content (i.e., the data portion) of every

packet transmitted between hosts inside and outside a simulated military base.

Four main categories of attacks were simulated, they are:

 DOS, denial-of-service, for example, ping-of-death,teardrop, smurf, syn

flood, etc.,

 R2L, unauthorized access from a remote machine, for example, guessing

password,

 U2R, unauthorized access to local superuser privileges by a local

unprivileged user, for example, various of buffer overflow attacks,

 PROBING, surveillance and probing, for example, port-scan, ping-sweep,

etc.

They used Bro [24] tool, which perform IP packet filtering and reassambling,and

allow event handlers to output summarized connection records.

Example network connection records are in Table 3.5.

 24

Table 3.5 Network connection records by BRO [5]

The approach taken by MADAM ID differs from the others covered in that instead of

looking at individual packets it focuses on connection sessions. The approach is

unique in that it is data-led rather than model-led. Data Mining tools and methods

are used to distinguish anomalous sessions from normal sessions in an iterative

manner using the training data as reference [4]

In their approach, the learned rules replace the manually encoded intrusion patterns

and profiles, and system features and measures are selected by considering the

statistical patterns computed from the audit data. Meta-learning is used to learn the

correlation of intrusion evidence from multiple detection models, and produce a

combined detection models. [5]

Their experiment results on intrusion data are shown in Table 3.6.

Table 3.6 Example “traffic” connection records [5]

Their RIPPER [25] algorithm used in MADAM ID gives rules as in Table 3.7.

 25

Table 3.7 Example RIPPER Rules for DOS and PROBING attacks [5]

RIPPER Rule Meaning

Smurf:- service= ecr_i, host-count >= 5,

Host_srv_count >= 5

If the service is icmp echo request and for the

past 2 seconds, the number of connections that

have the same destination host as the current

one is at least 5, and the number of connections

that have the same service as the current one is

at least 5, then this is a smurf attack (a DOS

attack).

Satan: host_REJ_% >= %83, host_diff_srv_% >=

%87

If for the connections in the past 2 seconds that

have same the destination host as the current

connection, the percentage of rejected

connections are at least %87, then this is a satan

attack (a PROBING attack).

Although their models were intended for misuse detection, they experiment the

features for new intrusion data. The results are as in Table 3.8.

Table 3.8 Comparing Detection Rates (in %) on Old and New Attacks by MADAM ID [5]

Category Old New

DOS 79.9 24.3

PROBING 97.0 96.7

U2R 75 81.8

R2L 60.0 5.9

Overall 80.2 37.7

3.3.2. Behaviour Based Intrusion Detection Systems

Behaviour based intrusion detection techniques assume that an intrusion can be

detected by observing a deviation from the normal or expected behaviour of the

system or the users. The model of normal or valid behaviour is extracted from

reference information collected by various means. The intrusion detection system

later compares this model with the current activity. When a deviation is observed, an

alarm is raised. [2]

 26

Advantages of behaviour based approaches are that they can detect attempts to

exploit new and unforeseen vulnerabilities, so they can even discover new attacks.

[2]

The high false positive alarm rate is the main drawback of behaviour based

techniques because the entire scope of the behaviour of an information system may

not be covered during the learning phase. Also behaviour can change over time, so

the behaviour profile should be periodically updated. Here should be considered that

the behaviour profile do not include intrusive behaviour. [2]

3.3.2.1. Statistics

The most widely used to build behaviour based intrusion detection systems is

statistics. The user or system behaviour is measured by a number of variables over

time. Examples of these variables are the login and logout time of each session, the

resource duration, and the amount of processor-memory-disk-resources consumed

during the session. The original model keeps averages of all these variables and

detects whether thresholds are exceeded based on the standard deviation of the

variable. [2]

Example systems employing statistical methods for anomaly detection are IDES

(Intrusion Detection Expert System), NIDES (Next- Generation Intrusion Detection

Expert System), and Event Monitoring Enabling Responses to Anomalous Live

Disturbances (EMERALD). [2]

3.3.2.2. Expert systems

Expert system used in behaviour based intrusion detection depends also on

statistical anomaly detection. Two examples are Wisdom&Sense and AT&T‟s

Computer Watch. The tool of Wisdom&Sense first builds a set of rules that

statistically describe the behaviour of the users based on recordings of their

activities over a given period of time. Current activity is then matched against these

rules to detect inconsistent behaviour. [2]

The tool of AT&T checks the actions of users according to a set of rules that

describe proper usage policy. [2]

3.3.2.3. Neural Networks

Neural networks are algorithmic techniques used to first learn the relationship

between two sets of information, and then “generalize” to obtain new input-output

 27

pairs in a reasonable way. In the intrusion detection field, neural networks have

been mainly used to learn the behaviour of actors in the system (e.g users,

daemons). [2]

An example is NNID (Neural Network Intrusion Detector). A host-based,

backpropagation neural network intrusion detection system was tested

experimentally on a system of 10 users. The system was 96% accurate in detecting

unusual activity, with 7% false alarm rate.[13]

3.3.2.4. Computer Immunology

The idea of using immunological principles in computer security has been described

by Stephanie Forrest in 1994. [6]

This technique attempts to build a model of normal behaviour of the UNIX network

services, rather than of the behaviour of users. This model consists of short

sequences of system calls made by processes. The tool first collects a set of

reference audits, which represent the appropriate behaviour of the service, and

extracts a reference table containing all the known “good” sequences of system

calls. These patterns are then used for live monitoring to check whether the

sequences generated are listed in the table; if not the intrusion detection system

generates an alarm. This technique has a very low false alarm rate if the reference

table is sufficiently exhaustive. [2]

3.3.2.5. Data Mining

 Intrusion detection attempts to identify existing attack patterns and recognise

new intrusion methods, employing methods from sciences such as mathematics,

statistics and machine learning. Data mining, generally perceived to be a tool to

discover unknown regularities in data, also lends itself to this task. In

particular, it promises to help in the detection of previously unseen attacks by

establishing sets of commonly observed regularities in network data. These

sets can be compared to current traffic for deviation analysis. Data mining

techniques, however, are traditionally employed on large amounts of off-line data. It

therefore remains to be seen how well they are able to support ID systems

commonly required to operate in real time. [33]

Applications of data mining to anomaly detection include ADAM (Audit Data Analysis

and Mining) (2001), IDDM (Intrusion Detection using Data Mining) (2001), and

eBayes (2000). [6]

 28

ADAM (developed at George Mason University Center for Secure Information

Systems) uses a combination of association rules mining and classification to

discover attacks in TCP dump data. The ADAM system is able to detect network

intrusions in real time with a very low false alarm rate. [6]

IDDM (Intrusion Detection using Data Mining) project focuses on the use of data

mining in the latter context, by producing descriptions of network data and

using this information for deviation analysis. It aims to explore data mining as a

supporting paradigm in extending intrusion detection capabilities. The system

characterizes change between network data descriptions at different times, and

produces alarms when detecting large deviations between descriptions. However,

IDDM has problems achieving real-time operation. [6]

3.3.2.6. Pattern Classification

All intrusion detection systems that use pattern classification algorithms are

behaviour based. Some examples of them are given in Chapter 5, after studying

pattern classification algorithms in Chapter 4.

 29

4. PATTERN CLASSIFICATION

Pattern classification is a type of machine learning, that is to build machines that can

recognize patterns [16]. The areas where pattern classification used are:

 Speech recognition

 DNA sequence identification

 Fingerprint identification

 Optical character recognition

 Archeology

 Geology etc. [8]

4.1. Definitions and Notation

Pattern (feature vector, observation or datum) : x is a single data item used by the

clustering algorithm. It typically consists of a vector of d measurements :

),...,,(21 dxxxx 

Feature : The individual scalar components ix of a pattern x are called features (or

attributes).

Dimensionality : d is the dimensionality of the pattern or of the pattern space.

Pattern set : A pattern set is denoted },..,,{ 21 nxxxH  . The ith pattern in H is

denoted),...,,(,2,1, diiii xxxx  . In many cases a pattern set to be clustered is

viewed as an n x d pattern matrix.

Class : A class, in the abstract, refers to a state of nature that governs the pattern

generation process in some cases. More concretely, a class can be viewed as a

source of patterns whose distribution in feature space is governed by a probability

density specific to the class. Clustering techniques attempt to group patterns so that

the classes thereby obtained reflect the different pattern generation processes

represented in the pattern set.

 30

Hard clustering : Hard clustering techniques assign a class label il to each patterns

ix identifying its class. The set of all labels for a pattern set H is },..,,{ 21 nlllL  with

},..,1{ kli  , where k is the number of clusters.

Fuzzy clustering : Fuzzy clustering procedures assign to each input pattern ix a

fractional degree of membership ijf in each output cluster j.

Distance measure : Distance measure is a metric on the feature space used to

quantify the similarity of patterns. [19]

4.2. Typical Components of Clustering

Although there are many clustering algorithms, they have all common tasks:

a. Pattern representation: The features of patterns are determined. This

features are optionally selected and/or extracted and normalized. (Chapter

4.2.2)

b. Definition of pattern similitary measure: The measure is selected appropriate

to the data domain and clustering algorithm, such as Euclidean distance,

Manhattan distance or Mahalonobis distance. (Chapter 4.2.1)

c. Clustering or grouping: The algorithm makes clusters of the data

d. Data abstraction: The clusters are simple labeled, usually in terms of cluster

prototypes or representative patterns such as centroid.

e. Assesment of output: The output is validated if needed. [19]

The common stages in clustering is shown in Figure 4.16.

Figure 4.16 Stages in clustering [19]

4.2.1. Distance Measures

The distance functions or metrics must have four properties. D is distance and for all

vectors a,b, and c, these properties are as follows: [16]

 31

Nonnegativitiy: 0),(baD

Reflexitivity: 0),(baD if and only if ba 

Symmetry :),(),(abDbaD 

Triangle inequality:),(),(),(caDcbDbaD 

The Minkowski Metric :

k
d

i

k

iik babaL

/1

1

||),(







 



 (4.1)

The Euclidean Metric :

The Euclidean metric is the 2L form of Minkowski metric:

2/1

1

2)(),(







 



d

k

kk babaD (4.2)

The Manhattan or City Block Metric :

The Manhattan metric is the 1L form of Minkowski metric





d

k

kk babaD
1

||),((4.3)

4.2.2. The Normalization of Features

The drawback to direct use of the Minkowski metrics is the tendency of the largest

scaled feature to dominate the others. Solutions to this problem include

normalization of the continuous features (to a common range or variance) or other

weighting schemes. [19]

Some normalization approaches are: [34]

 Min-max normalization:

v is a variable, 'v is the normalized variable, Amax is the maximum value

which can v take, Amin is the minimum value which v can take, Anew max_

is the maximum value which 'v can take, Anew min_ is the minimum value

which 'v can take.

  AnewAnewAnew
AA

Av
v min_min_max_

minmax

min
' 













 (4.4)

 32

 Zero-mean normalization:

In pattern set H with N patterns , jv is jth element of a pattern, 'jv is the

normalized jth element of the pattern.

j

jj

j
devstd

meanv
v

_
'




 (4.5)

The mean vector of jth feature in H jmean is calculated as follows: [12]





n

i

jij x
n

mean
1

,

1
 (4.6)

The standard deviation is calculated as follows:
















n

i

jjij meanx
n

devstd
1

2

,)(
1

1
_ (4.7)

4.3. Pattern Classification Algorithms

Pattern classification algorithms can be grouped as in Figure 4.17:

Figure 4.17 Classification of Pattern Classification algorithms [8]

 Exclusive vs. Nonexclusive: By exclusive classification each object belongs

to exactly one subset, or cluster. Nonexclusive classification can assign an

object to several classes.

 Unsupervised vs. Supervised: An unsupervised classification uses only the

proximity matrix to perform the classification. Supervised classification uses

category labels on the subjects as well as the proximity matrix. Unsupervised

classification is named also clustering. [8]

Classification

 Non-Exclusive Exclusive

Supervised Unsupervised

 33

Bayesian decision theory is a fundemantal statistical approach to the problem of

pattern classification [16]. So, before studying some pattern classification

algorithms, we will first study, bayesian decision rule.

Bayesian decision rule:

Suppose we have two categories ,1w and .2w The prior probabilities are P()iw .

And we know the value of the feature of the categories which is defined by x. The

conditional probability is p(x|)iw . The posterior probabilty is

)(

)()|(
)|(

xp

wPwxp
xwP ii

i  (4.8)

where p(x) is the probability density.

Bayesian decison rule in two categories is as follows:

Decide 1w if)()(21 wPwP  ; otherwise decide 2w . [16]

4.3.1. Supervised Classification

In supervised learning, a teacher provides a category label or cost for each pattern

in a training set, and seeks to reduce the sum of the costs for these patterns [16].

So , the patterns in test set are labeled by labels in training set in order to minimize

the error. Some supervised classification algorithms are k-NN nearest neighbour

algoritm and support vector machines.

4.3.1.1. K-Nearest Neighbour Rule

K-Nearest Neighbour rule is based on bayesian classificaition. Let nV be the volume

of n dimensional Euclidean space nR , nk be the samples falling in nR , and)(xpn

be the nth estimate for)(xp :

n

n

n
V

nk
xp

/
)( (4.9)

Here the volume nV is grown until it encloses nk neighbours of x, and nk is a

function of n such as nkn  . This is the nk -nearest neighbour estimation method.

[16]

 34

The k-Nearest Neighbour algorithm is the most basic of all Instance-Based Learning

(IBL) methods. Instance-Based Learning (IBL) algorithms consist of simply storing

the presented training examples (data). When a new instance is encountered, a set

of similar, related instances is retrieved from memory and used to classify the query

instance (target function). [18]

Other most common IBL methods are:

 Locally Weighted Regression

 Radial Basis Function [18]

The k-Nearest Neighbour algorithm assumes all instances correspond to points in

the n-dimensional space Rn. The nearest neighbours of an instance are defined in

terms of standard Euclidean geometry (distances between points in n-dimensional

space). More precisely, let an arbitrary instance x be described by the feature

attribute lists: < a1(x), a2(x), a3(x), ..., an(x)>, where ar(x) denotes the value of the

rth attribute of instance x. The distance between the two instances xi and xj is given

by Equation 4.8. This is the general form for calculating distance in n-dimensional

space. [18]

 





nr

r

jrirji xaxaxxd
1

2
)()(),((4.10)

The k – nearest-neighbor rule is to classify x by assigning it the label most frequently

represented among the k nearest samples and use a voting scheme.[16]

Figure 4.18 An example for the k-Nearest Neigbour rule [16]

In Figure 4.18 is an example for the k-Nearest Neighbour shown. The k-Nearest

Neighbour query starts at the best point x and grows a spherical region until it

 35

encloses k training samples and it labels the test point by a majority vote of these

samples. The computational complexity of k–Nearest Neighbor rule is)(2nO . So it

has to be optimized for use in intrusion detection.[16]

4.3.1.2. Support Vector Machines

Support vector machines rely on preproccesing the data to represent patterns in a

high dimension - typically much higher than the original feature space. With an

appropriate nonlinear mapping  . to a sufficiently high dimension, data from two

categories can always be sperated by a hyperplane. Here it is assumed that kx has

been transformed to)(kk xy  . For each of the n patterns, k = 1,2,...,n , 1kz ,

according to whether pattern k is in 1w or 2w . [16]

yayg t)((4.11)

1)(kk ygz , k= 1,...,n (4.12)

,
||||

)(
b

a

ygz kk  k=1,...,n (4.13)

The goal is to find weight vector a that maximizes b. The solution vector can be

scaled arbitrarily and still preserve the hyperplane, so to ensure the uniquness it

should be

1|||| ab (4.14)

The support vectors are the (transformed) training patterns for which Eq. (4.12)

represents an equality, that is, the support vectors are (equally) close to the

hyperplane(Figure 4.19). The support vectors are the training samples that define

the optimal separating hyperplane and are the most difficult patterns to classify.

Informally defined, they are the patterns most informative for the classification task.

[16]

 36

Figure 4.19 Support vectors and the hyperplane [16]

The hyperplane divides the nR into two regions. To use the maximal margin

classifier, it is determined on which side the test pattern lies and assign the

corresponding class label. [26]

4.3.2. Unsupervised Learning and Clustering

In unsupervised learning or clustering there is no explicit teacher, and the system

forms clusters or “natural groups” of the input patterns. “Natural” is always defined

explicitly or implicitly in the clustering system itself, and given a particular set of

patterns or cost function , different clustering algorithms lead to different clusters.

[16]

The clustering algorithm taxonomy is illustrated in Figure 4.20. The best algorithm

depends on data, which is to be clustered.

 37

Figure 4.20 A taxonomy of clustering approaches [19]

A hierarchical classification is a nested sequence of partitions, whereas a partitional

classification is a single partition. [8]

Here are k-means clustering as a type of partional clustering and hierarchical

clustering studied.

4.3.2.1. K-Means Clustering

The most intuitive and frequently used criterion function in partitional clustering

techniques is the squared error criterion, which tends to work well with isolated and

compact clusters. The squared error for a clustering L of a pattern set H (containing

K clusters) is


 


K

j

n

i

j

j

i

j

cxLHe
1 1

2)(2 ||||),((4.15)

where
)(j

ix is the
thi pattern belonging to the

thj cluster and jc is the centroid of

the
thj cluster. [19]

 38

The k-Means Algorithm [8]

The advantage of this algorithm is that it has a computational complexity of O(n),

where n is the number of patterns, but the disadvantage is it is sensitive of the initial

clusters. [19]

4.3.2.2. Hierarchical Clustering

Hiearchical clustering algorithms yield a dendrogram representing the nested

grouping of patterns and similarity levels at which groupings change. [19]

Hierarchical Clustering Algorithm [8]

Step 1. Select an initial partition with K clusters.

Step 2. Generate a new partition by assigning each pattern to its closest

cluster center.

Step 3. Compute new cluster centers as the centers of the clusters.

Step 4. Repeat step2 and 3 until an optimum value of the criterion function

is found. Typical convergence criteria are: no (or minimal) reassignment of

patterns to new cluster centers, or minimal decrease in squared error.

Step 5. Adjust the number of clusters by merging and splitting existing

clusters or by removing small, or outlier, clusters.

Step 1: Assign each object to its own cluster.

Step 2: Computer the distances between all clusters.

Step 3: Merge the two clusters that are closest to each other.

Step 4: Return to step 2 until there is only one cluster left.

 39

Figure 4.21 Points falling in three clusters [19]

In Figure 4.21, there are 7 points (A,B,C,D,E,F,G). If the hiearchical clustering

algorithm is applied, first the points (B,C), (D,E), and (F,G) are merged in a cluster.

The second loop of the algorithm merges the point A with the cluster of (B,C). The

(D,E) cluster is also merged with (F,G) cluster. In the third and last loop, the (A,B,C)

cluster is merged with (D,E, F,G) cluster. In Figure 4.22 the dendogram, which is the

output of this algorithm is showed. [19]

Figure 4.22 The dendogram obtained using hierarchical clustering [19]

In hierarchial clustering algorithm, cutting the dendogram, which means stopping the

loop of the algorithm creates the clusters.

Most popular hierarchical clustering algorithms are single-link, complete-link and

avearge link algorithms.

 40

By the single-linkage clustering algorithm the distance between the closest nodes

calculated: [8]

By the complete-linkage clustering algorithm the distance between the farthest

nodes calculated: [8]

By the average-linkage clustering algorithm the distance between the median

calculated: [8]

The single-linkage algorithm allows clusters to grow long and thin. The complete-

linkage algorithm produces more compact clusters. Both the single-linkage algorithm

and the complete-linkage algorithm are susceptible to distortion by outliers or

deviant observation. The average-linkage algorithm is an attempt to compromise

between the extreme of the single-linkage algorithm and the complete-linkage

algorithm.

4.3.2.3. Comparison of Hierachical vs. Partitional Algorithms

Hierarchical algorithms are more versatile than partitional algorithms. For example,

the single-link clustering algorithm works well on data sets containing non-isotropic

clusters including well-separated, chain-like, and concentric clusters, whereas a

typical partitional algorithm such as the k-means algorithm works well only on data

sets having isotropic clusters On the other hand, the time and space complexities of

the partitional algorithms are typically lower than those of the hierarchical

algorithms.

4.4. Feature Selection

Feature selection is highly important in pattern classification, especially for patterns

with high dimensionality, because reducing the feature size can improve the speed

of pattern classification.

),(max),(
,

badCCD
ji Cbca

jiCL




ji Cbcaji

jiAL ba
NN

CCD



,

),(
1

),(

),(min),(
,

badCCD
ji Cbca

jiSL


 (4.16)

(4.17)

(4.18)

 41

In all feature selection algorithms the concept is the same: A feature is good if it s

relevant to the class concept but is not redundant to any of other relavant features.

That means a feature is good if it is higly correlated with the class but not highly

correlated with any of the other feautures. [30]

To overcome this problem there are two approaches to measure the correlation

between two random variables. One is based on classical linear correlation and the

other is based on information theory. Under the first approach, the most well known

measure is linear correlation coefficent. For a pair of variables),(YX , the linear

correlation coefficient r is given by the formula













i

ii

i

ii

i

iiii

yyxx

yyxx

r

22
_

_

)()(

))((

 (4.19)

where


ix is the mean of X and


iy is the mean of Y . The value r lies between -1

and 1, inclusive. If X and Y are completely correlated, r takes the value of 1 or -1;

if X and Y are totally indpendent r is zero. It is symmetrical measure for two

variables. [30]

It is known that if data is linearly seperable in original representation, it is still linearly

seperable if all but one of a group of linearly dependent features are removed.

However, it is not safe to always assume linear correlation between features in the

real world. Linear correlation measures may not be able to capture correlations that

are not linear in the nature. Another limitation is that the calculation requires all

features contain numerical values. [30]

The FCBF(Fast Correlation Based Feature) solution adopts the second approach .

So, it chooses a correlation measure based on information-theoretical concept of

entropy, a measure of uncertainty of a random variable. The entropy of a variable

X is defined as


i

ii xPxPXH))((log)()(2 (4.20)

and the entropy of X after observing values of another variable Y is defined as

 42

 
i j

jijij yxPyxPyPYXH))|((log)|()()|(2 (4.21)

where)(ixP is the prior probalities for all values of X and)|(ii yxP is the

posterior probabilities of X given the values of Y . The amount by which the

entropy of X decreases reflects additional information about X provided by Y and

is called information gain, given by

)|()()|(YXHXHYXIG  (4.22)

According to this measure, a feature Y is regarded more correlated to feature X

than to feature Z , if)|()|(YZIGYXIG  . The information gain is symmetrical for

two random variables X and Y . The algorithm uses symmetrical uncertaintity to

ensure that the values are normalized:

 











)()(

)|(
2),(

YHXH

YXIG
YXSU (4.23)

It compensates for information gain‟s bias toward features with more values and

normalizes its values to the range [0,1] with the value 1 indicating that knowledge of

the value of either one completely predicts the value of the other and the value 0

indicating that X and Y are independent. [30]

The FBCF algorithm is described in [30].

One of the other famous feature selection algorithms is Relief. Relief is a feature

weighting technique. It is originally introduced by Rendell L. Kira K. and extended to

Relief-f by Kononenko I. for handling noisy, incomplete and multi-class data sets.

[32]

Relief is based on 1L Metric. Similarities between feature values are defined

by





















0

1

||

||
),(

minmax

qq

j

q

i

qj

q

i

q

R

xx

xx
xx

The similarity between instances is defined by

if feature q is continuous

if feature q is discrete and j

q

i

q xx  (4.24)

if feature q is discrete and
j

q

i

q xx 

 43





Q

q

j

q

i

q

RR

ij xxd
1

),( (4.25)

Iniatilizing every feature weight with zero, the weight algorithm iterates m times

through a procedure for weight optimization. First the procedure randomly selects an

instance from the instance base, secondly determines k nearest neighbours of the

instance in the same class (nearest hits) k nearest neighbours in diffrent classes

(nearest misses) and thirdly updates each feature weight by

   













  

 

k

i

k

i

j

qmiss

j

q

Rj

qhit

j

q

R

qq
ii xxxx

mk
ww

1 1

,,
*

1
 (4.26)

The Relief algorithm expects a user defined threshold value  . Feature q is

selected if qw holds, otherwise it is neglected. [32]

The performance results of FCBF algorithm is given as in Table 4.9 and Table 4.10.

Table 4.9 The running time (in ms) and the number of selected features for each feature

selection algorithm [30]

Table 4.10 Accuracy of C4.5 on selected features for each feature selection algorithm [30]

 44

5. RESEARCH IN INTRUSION DETECTION WITH PATTERN CLASSIFICATION

In literature there are many recently published papers about intrusion detection with

pattern classificaiton. Some of them are studied in this thesis.

5.1. Intrusion Detection with Unsupervised Clustering

5.1.1. Intrusion Detection with Single-Linkage Clustering

By this work KDD Cup 99 data has been used [12] .The data was normalized with

zero-mean normalization (Chapter 4.2.2). Then with the algorithm as shown in

Figure 5.23 the data has been classified into clusters.

Figure 5.23 The algorithm of IDS with single linkage clustering [12]

Read the cluster names and
initialize them to S, the empty

set

Create a cluster
with d as the
defining instance

Yes

Find the cluster in S that is
closest to this intance

Dist(C,d) <= dist (1C ,d)

No

If dist (C,d) <= W, thean associate d
with the cluster C,
Otherwise create new cluster

}{ nCSS 

End

No

Yes
Yes

Obtain a instance d from
the training set ?

Is S empty?

 45

S is the cluster set, C is the cluster, W is the constant width, d is the distance

between vectors.

In Table 5.11 are the results.

Table 5.11 Results of Single Linkage algorithm [12]

Width N Detection Rate False Positive Rate

20 %15 35.7% 1.44%

20 %7 66.2% 2.7%

20 %2 0.88% 8.14%

N is percentage of the largest cluster to label normal during detection.

5.1.2. Intrusion Detection with Optimized KNN Algorithm

Though a k-Nearest Neighbor value will give yield an excellent sense of how closely

a new instance fits in with the rest of the data, it is extremely costly to calculate, with

a complexity of)(2nO . This problem is accentuated with the complex data used for

intrusion detection, as a large amount of data-points are required for a solid cross-

section of the data. Thus, it is necessary to find computational shortcuts that will

allow performing anomaly detection with greater celerity. The clusters by optimized

k-NN Algorithm is showed in Figure 5.24 . [30]

Figure 5.24 Clusters by optimized k-NN algortithm [30]

In this project, KDD Cup 99 Data are used. The instances in data classified into

clusters with fixed width and most of the computation is spent checking the distance

 46

between points in D to the cluster centers. This is significantly more efficient than

computing the pair wise distances between all points.

Performance of this algorithm is as in Table 5.12.

Table 5.12 Performance of optimized k-NN-Algorithm [30]

Attack Type Detection Rate

False Positive Rate

DOS 91%

8%

Probe 23%

6%

 U2R 11%

4%

 R2L 5%

2%

5.1.3. Intrusion Detection with Y-means Algorithm

The k-Means algorithm is further researched and new algorithms are devoleped:

One of them is Y-means algorithm. [19]

The k-Means algorithm has two shortcomings in clustering large data sets: number

of clusters dependency and degeneracy. Number of clusters dependency is that the

value of k is very critical to the clustering result. Obtaining the optimal k for a given

data set is an NP-hard problem. Degeneracy means that the clustering may end

with some empty clusters. This is not what we expect since the classes of the empty

clusters are meaningless for the classification. [19]

By Y-means algorithm number of clusters , k, can be a given integer between 1 and

n exclusively, where n is the total number of instances. The next step is to find

whether there are any empty clusters. If there are, new clusters will be created to

replace these empty clusters; and then instances will be reassigned to existing

centers. This iteration will continue until there is no empty cluster. Subsequently, the

outliers of clusters will be removed to form new clusters, in which instances are

more similar to each other; and overlapped adjacent clusters will merge into a new

cluster. In this way, the value of k will be determined automatically by splitting or

merging clusters. The last step is to label the clusters according to their populations;

that is, if the population ratio of one cluster is above a given threshold, all the

instances in the cluster will be classified as normal; otherwise, they are labeled

intrusive. The Y-means algorithm is showed in Figure 5.25. [19]

 47

Figure 5.25 The Y-means Algorithm [19]

Y-means is tested with a subset of KDD Cup 99 Data, with 2,456 instances.

On average, it detected 86.63% of intrusions with a 1.53% of false alarm rate, as

shown in Figure 5.26.

Figure 5.26 Y­means with different initial number of clusters [19]

5.2. Intrusion Detection with Supervised Clustering

5.2.1. MINDS (Minnesota Intrusion Detection System)

The Minnesota Intrusion Detection System (MINDS) uses a suite of data mining

techniques to automatically detect attacks against computer networks and systems.

Input to MINDS is Netflow version 5 data collected using Netflow tools. Netflow data

for each 10 minute window, which typically result in 1 to 2 million flows, is stored in

 48

a flat file. The analyst uses MINDS to analyze these 10-minute data files in a batch

mode. Before applying MINDS to these data files, a data filtering step is performed

by the system administrator to remove network traffic that the analyst is not

interested in analyzing. For example, the removed attack-free network data in data

filtering step may include the data coming from trusted sources, non-interesting

network data (e.g. portions of http traffic) or unusual/anomalous network behavior

for which it is known that it does not correspond to intrusive behavior. [16]

In Figure 5.27 , the architecture of MINDS is shown.

Figure 5.27 Architecture of Minnesota Intrusion Detection System [16]

The first step in MINDS includes constructing features that are used in the data

mining analysis. Basic features include source IP address and port, destination IP

address and port, protocol, flags, number of bytes, and number of packets. After the

feature construction step, the known attack detection module is used to detect

network connections that correspond to attacks for which the signatures are

available, and then to remove them from further analysis. Next, the data is fed into

the MINDS anomaly detection module that uses an outlier detection algorithm to

assign an anomaly score to each network connection. A human analyst then has to

look at only the most anomalous connections to determine if they are actual attacks

or other interesting behavior. [16]

MINDS anomaly detection module assigns a degree of being an outlier to each data

point, which is called the local outlier factor (LOF). The outlier factor of a data point

is local in the sense that it measures the degree of being an outlier with respect to

its neighborhood. For each data example, the density of the neighborhood is first

computed. The LOF of specific data example p represents the average of the ratios

of the density of the example p and the density of its nearest neighbors. [16]

 49

In Figure 5.28 two outlier examples p1 and p2 are shown. The simple nearest

neighbour approach based on computing the distances fail in these scenarios.

However, the example p1 may be detected as outlier using the distances to the

nearest neighbor. On the other side, LOF is able to capture both outliers (p1 and p2)

due to the fact that it considers the density around the points. [16]

Figure 5.28 Outlier Examples [16]

As a result, MINDS and SNORT have been comparison. Here are the results:

 Content based attacks: These attacks are out of scope for the anomaly

detection module in MINDS since it does not consider the content of the packets,

and therefore SNORT is superior in identifying those attacks. However, SNORT is

able to detect only those contentbased attacks that have known signatures/rules.

Despite the fact that SNORT is more successful in detecting the content-based

attacks, it is important to note that once a computer has been attacked successfully,

its behavior could become anomalous and therefore detected by the anomaly

detection module in MINDS.

 Scanning activities: When detecting various scanning activities SNORT and

MINDS anomaly detection module have similar performance for certain types of

scans, but they have very different detection capabilities for other types.

 Policy violations: MINDS anomaly detection module is much more successful

than SNORT in detecting policy violations (e.g. rogue and unauthorized services),

since it looks for unusual network behavior. SNORT may detect these policy

violations only if it has a rule for each of these specific activities. [16]

 50

6. APPLICATION – CLIDS (Cluster based Intrusion Detection System)

The implementation of this thesis is an intrusion detection system, which is named

CLIDS (Cluster Based Intrusion Detection System) and it is based on feature

selection and pattern classification. The training and the test values come from

KDD Cup 99 data.

6.1. Specification of CLIDS

The feature selection algorithm is FCBF algorithm modified for using continuous

values of KDD Cup 99 data. The FCBF algorithm expects that the value scala for

every feature is given in a configuration file, so this is possible for symbolic values

(like tcp,udp,ismp etc.) but impossible for continuous values (numbers). In order to

use the continuous values in FCBF algorithm, the value scala for every feature with

continuous values is split by a factor, default 10. So, in this example there will be 10

groups for every continuous feature.

The FCBF algorithm expects a configuration file, in which there are feature values in

value file and the value file, in which there are the values with the cluster names. It

evaluates the clusters given by these files and gives as the result the selected

features, which value is bigger than predefined threshold.

So, our clusters are our attacks. CLIDS evalautes features pairwise between

attacks. That means the selected features between normal-smurf, normal-teardrop,

normal-nmap, etc., and smurf-teardrop, smurf-nmap etc. are evaluated. After

getting all selected features and feature weights pairwise between all clusters, the

“training clusters” are created. Then in the test phase, a test vector is tested if it is

enough near to these training clusters by calculating the Euclidean distance. By this

calculation the continuous values are normalized by min-max normalization.

6.1.1. Creating of Clusters by Training

The count of the training clusters depend on the attack clusters which they come

from. After getting selected features between two attacks, the values which

 51

correspond these features are selected. The values are also normalized by min-max

normalization.

Example: For the example, let us see the “normal” and “neptune” clusters. We take

1000 “normal” and 1000 “neptune” instances. The modified FCBF algorithm gives us

the result in Table 6.13.

Table 6.13 The selected features by normal-neptune

Selected Feature Selected Feature Weight Type of the Feature

flag 1.0 symbolic

serror_rate 0.9892109978609052 continuous

logged_in 0.8368075392414093 symbolic

service 0.6794651909145254 symbolic

The selected features with symbolic values gives the labels to the training clusters.

So, in this example the training clusters with following labels are created.

Normal: http, SF,1
 Smtp, SF, 1
 Finger, SF, 0

 Domain_u, SF, 0
 Auth, SF, 1
 http, SF, 0
 telnet, SF, 1
 ftp , SF, 1
 eco_i, SF,0
 ecr_i, SF, 0

Neptune: private, S0, 0
 smtp, S0, 0
 Nnsp, S0,0

 Login, S0, 0

When a test vector is tested, if it is near these training clusters the following method

is used: The values of the selected features with symbolic values of the test vector

are compared with all training clusters of an attack. If none of them are equal then it

will be compared with other pairwise selected training clusters. If a training cluster is

found then the Euclidean distance is calculated between the test vector and the

mean of the training cluster. By calculating this, the selected features with

continuous value are multiplied by (selected factor)*weight, if the weight is greater

 52

than 1/feature weight. So the weight of the selected features is also used. In Figure

6.29 the training clusters of “normal-neptune” are shown.

Figure 6.29 Finding the distance of a test vector to the temproary training clusters

By this calculation, the decision is that the test vector is either “normal” or “neptune”.

But if the test vector is none of these actually, then the decision will be false. So we

need an algorithm to be sure what type of cluster this is (here an attack or “normal”).

If we can not name the test vector then we will name it “anomaly”.

6.1.2. Implementation Specification

The implementation is written in JAVA, so it is platform-independent and object-

oriented.

An attack class knows the other known attack instances and the selected features,

which distinguish this type of attack and the other known attacks, so it knows the

training clusters between other attack instances. When a test vector should be

tested, it is first tested with the class “Normal”. The class of “Normal” tests that, to

which of the known attacks the test vector near is. So, in first step it can be found

that the test vector is near to more than one attack.

So, we need a second step to be sure to which type of attack this is. The classes of

every found attack run the same algorithm as in the first step. That means, they also

test the test vector with the training clusters of the known attacks. And the found

attacks by these tests are put in the “suspicious nearest neighbour attacks”. The

maximum count of the attack in the set of the “suspicious nearest neighbour attacks”

gives the decision what type of attack this test vector is.

In the training phase, every attack class is trained to create the training clusters and

also the maximum radius of every cluster is also calculated. This ensure also that

the found type of attack is in the cluster. If the found cluster is nearest to the test

Http,

Sf,1,

Normal

Private,

S0,0,

neptune

Test vector

Smtp,

S0,0

neptune

.......

Training

clusters

 53

attack, but the distance of the test attack to the median of the cluster is greater than

[factor*(radius of the cluster)] , than this test attack is labeled as “anomaly”.

In Figure 6.30 the decision of test between classes is illustrated.

Figure 6.30 Test decision of suspicious Nearest Neighbour Attacks

6.2. The Algorithms Used in CLIDS

The implementation consists of training phase and the testing phase. The testing

phase consists of two algorittms.

6.2.1. Training Phase Algorithm

The training phase algorithm which is explained before is shown in Figure 6.31.

Attack 1
Attack 2

Normal

Attack n

Attack

1

Attack

n

Attack

1

Attack n Attack 1 Attack n

Suspicious Nearest Neighbour Attacks

 54

Figure 6.31 Algorithm of training phase

6.2.2. Testing Phase Algorithm

The testing phase algorithm consists of two parts. In the first part, it is found that ,

which of the training clusters of the known attacks of class “normal” to the test vector

nearest is. In the second part, it is found that which type of attack this test vector is.

In Figure 6.32 and in Figure 6.33 the algorithm of the test part 1 is shown.

The Kdd Cup Data

is given

User select the knowledge

base of IDS

For every selected attack type is a

class created. This attack class

knows other attack types too.

Every attack class find selected

features and feature weights for

other atacks with FCBF algorithm

The attack class creates training

clusters with selected symbolic

features. If no symbolic feature is

selected, than only attack type will be

label of the cluster

The attack class calculates the

radius of every cluster

 55

Figure 6.32 Algorithm of the part 1 of test phase

After this calculations the minimum

distance of the test vector to a

cluster is found.

Is there a selected symbolic

value for the known attack?

Test if there are the

same selected

symbolic values as in

training clusters?

Yes No

Is there any

training cluster

found?

Calculate the Euclidean distance between median of the cluster and

the test instance. In the calculation the selected values are multiplied

by (selected factor) if they are greater than 1/feature weight

Test instance is given to the “Normal” class.

Normal class knows the selected features and

selected feature weights for every attack.

Yes

The test vector

is Anomaly

No

1

 56

Figure 6.33 Algorithm of the part 1 of test phase (continued)

Every attack class knows every other type attacks, so if more than one known attack

tells that the test attack is that type of attack, this must come to a result, which type

of this test instance is. In algorithm of test phase 2 the individual test algorithm is

explained as shown in Figure 6.34, in Figure 6.35 and in Figure 6.36.

Is the distance of the test vector to the

median less than the radius*factor of the

cluster?

Yes
No

The test vector

is Anomaly

The test vector is found

type of attack or normal,

it depends on the found

cluster label

1

 57

Figure 6.34 Algorithm of the part 2 of test phase

Put it to the

nearest

neighbours

Yes

No

Add +1 to

normalcount

Add +1 to

anomalycount

Is it normal

or is it

anomaly?

Is test vector known

type of attack ?

Do it for all known

type of attacks

Is (normalcount = known

attack count) ?

Put “normal”

to the nearest

neighbours

Yes
No

1

Normal

Anomaly

 58

Figure 6.35 Algorithm of the part 2 of test phase (continued)

Is (anomalycount = known

attack count)?

Put “anomaly ”

to the nearest

neighbours

Yes No

Is nearest neighbour empty?

Yes

Put “anomaly ” to the

nearest neighbours

All found attacks in nearest neighbours are selected from attacks table as a

class and are given by the test vector. The test vector is compared pairwise

created clusters in these classes. (Test Algoritm Part 1)

1

2

 59

Figure 6.36 Algorithm of the part 2 of test phase (continued)

Is there a known

type of attack or

normal in nearest

neighbours ?

Put it to the suspicious

nearest neighbours

Yes

Is it

anomaly?

No

Add +1 to anomalycount

If (anomalycount = known attack count), then put

“anomaly” to suspicious the nearest neighbours.

After all calculations with all found types of attacks, find the most found

type of label in suspicious nearest neighbours

The test vector is the found type

of attack, normal or anomaly

2

Yes

 60

6.2.3. The implementation parameters of the program

The implementation parameters of the program are shown in Table 6.14.

Table 6.14 The implementation parameters, their description and the default values

Parameter Value Description Default Value

Feature Weight

Calculation

The multiply factor of the

selected continuous features

by the Euclidean distance

calculation

10

Continuous Feature Split

Count

The split count of the

continuous features to

calculate the entropy value

10

Radius Factor Radius = Radius * Radius

Factor

The difference between

radius and the distance of

the test vector to the median

of the cluster

1.2

6.2.4. Training and Test Procedures

In all of tests, the instances in test data set are labeled individually and the results

are compared with corrected data set, which are published in KDD Cup Results

page.

In the training data, there are 22 types of attacks, which are:

Probe: ipsweep, nmap, portsweep, satan

DOS: back, land, neptune, pod, smurf, teardrop

U2R: buffer_overflow, loadmodule, perl, rootkit

R2L: ftp_write, guess_passwd, imap, multihop, phf, spy, warezclient, warezmaster

In the test data, there are 40 types of attacks, which are:

Probe: ipsweep, mscan, nmap, portsweep, saint, satan

 61

DOS: apache2, back, land, neptune, pod, processtable, smurf, teardrop, udpstorm

U2R: buffer_overflow, httptunnel, loadmodule, mailbomb, multihop, perl, ps, rootkit,

sqlattack , xterm

R2L: ftp_write, guess_passwd, httptunnel, imap, multihop, named, phf, spy,

sendmail, snmpgetattack, snmpguess, worm, xlock, xsnoop, warezmaster

The test dataset contains 311,029 examples.

As seen above, there are types of attacks in test data set, which are not in training

data set. These type of instances are labeled as “anomaly” in the CLIDS.

Because of the limits of memory and CPU of the computer the traning attack

instances are maximum for 1000 selected.

Training attack counts (max:1000 intances):

Normal: 1000

Probe: ipsweep:1000, nmap: 231, portsweep:1000, satan:1000

DOS: back:1000, land:21, neptune:5000, pod:264, smurf:1000, teardrop:1000

U2R: buffer_overflow:30, loadmodule:9, perl:3, rootkit:10

R2L: ftp_write:8, guess_passwd:53, imap:11, multihop:7, phf:4, spy:2,

warezclient:1000, warezmaster:20

As seen, the training counts are not equal because of the training file. So, the

instances of back, teardrop, ipsweep, portsweep, warezclient, smurf, normal,

neptune, satan are in feature selection algorithm for 1000 instances.

Then, in order to balance the counts of instances of pod, nmap, land,

buffer_overflow, guess_passwd, loadmodule, perl, rootkit, ftp_write, imap, multihop,

phf, spy and warezmaster attacks, these instances have been copied to reach 1000

instances.

Training Procedure:

CLIDS has 2 configuration files. In one of them, there are selected features and

weights between the attacks, and in the other one there are cluster specifications.

So, these files has been created once and used in every test .

In every test CLIDS is trained with DOS, Probe, U2R and R2L attacks.

 62

Test Procedure:

There are 2 files, in one of them there are unlabeled instances, and in the other one

there are labeled instances, which corresponds the other file.

These files are each 43 MB, so because of the physical limits of memory of the test

computer, these files are split in files. In every test, the same 10 test files, in which

10000 test instances are, are used and the sum of counts of attacks in these test

files is given in Table 6.15.

Table 6.15 Sum of counts of attack instances in test files

Normal DOS Probe U2R R2L Anomaly

normal.

34448

smurf.

32529

portsweep.

347

buffer_overflow.

17

ftp_write. 3 mscan. 1053

 pod. 68 ipsweep.

306

loadmodule. 2 guess_passwd.

4366

saint. 0

 Teardrop. 6 satan. 1242 perl. 1 imap. 1 apache2. 596

 neptune.

10865

nmap. 44 rootkit. 13 multihop. 15 processtable. 506

 back. 99 phf. 2 udpstorm. 2

 land. 8 spy. 0 httptunnel. 143

 warezclient. 0 mailbomb. 4999

 warezmaster.

1595

ps. 16

 sqlattack. 1

 xterm. 13

 named. 10

 sendmail. 15

 snmpgetattack.

5919

 snmpguess. 0

 63

 worm. 1

 xlock. 9

 xsnoop. 4

Some terminology used in test procedure is given below:

Anomaly for Attacks: The count of instances which have been labeled as anomaly

instead of an attack name which they are really

False Positive for Attack :The count of intances which have been labeled as an

attack type or anomaly instead of type “normal” which are really

False Positive for Anomaly: The count of intances which have been labeled as an

anomaly instead of type “normal” which are really

Attack False: The count of instances which have been labeled as a type of an attack

which are really another type of attack

False Negative for Attacks: The count of instances which have been labeled

“normal” instead of an attack which are really

False Negative for Anomaly: The count of instances which have been labeled

“normal” instead of an anomaly which are really.

6.3. Experimental Results with Min-Max Normalization

In these tests, the training and test instances are normalized with min-max

normalization. In the trainig phase the minimum and maximum values for every

feature in every attack class are found and written to the configuration file of CLIDS.

Then in test phase, these values are used for normalization of test instances.

6.3.1. Test Results with Change of the Radius

6.3.1.1. Test Results with Radius Factor 1.2

In this test CLIDS is trained with DOS, Probe, U2R, R2L attacks and tested with

radius factor 1.2. Feature weight is selected as 10 and continuous feature split count

is selected as 10.

The sum of all true identifed test instances is given in Table 6.16.

 64

Table 6.16 Sum of true indentified instances with Radius Factor 1.2

Normal DOS Probe U2R R2L Anomaly

normal.

24975

smurf.

32370

ipsweep.0 buffer_overflow.

7

ftp_write. 0 mscan. 120

 neptune.

110

portsweep.

3

loadmodule. 1 guess_passwd.

2

saint. 12

 teardrop. 5 satan. 1134 perl. 0 imap. 0 apache2. 582

 pod. 58 nmap. 44 rootkit. 0 multihop. 0 processtable. 453

 back. 98 phf. 1 udpstorm. 2

 land. 8 spy. 0 httptunnel. 16

 warezclient. 0 mailbomb. 4944

 warezmaster.

498

ps. 4

 sqlattack. 0

 xterm. 3

 named. 3

 sendmail. 3

 snmpgetattack. 5911

 snmpguess. 0

 worm. 0

 xlock. 5

 xsnoop. 2

6.3.1.2. Calculated Results with Radius 1.2

The sum of counts of test instances, grouped by attack types, if they are true

identifed or if they are “false negative” found or if they are “false positive” found, is

given in Table 6.17 with calculated results of percentages.

 65

Table 6.17 Detection, False Negative and False Positive counts of test files with radius factor 1.2

Attack

Type

Counts

Tested

True

Count

False

Negative

Count

False

Positive

Count

Detection

Rate

False

Negative

False

Positive

Rate

DOS 43575 32649 0 29 %74.9 %0 %0.1

Probe 1939 1181 0 515 %60,9 %0 %26.5

U2R 33 8 0 40 %24,2 %0 %121,2

R2L 5982 501 0 688 %8,4 %0 %11.5

Normal 34448 24975 - - %72,5 - -

Anomaly 14020 12060 4 8202 %85,9 %0 %58,5

The sum of test instances, which are found as “false attack” and which are found

“anomaly for attack” is given in Table 6.18 with calculated results of percentages.

Table 6.18 Attack False and Anomaly for Attack counts with radius factor 1.2

Attack False Count 15199

Anomaly for Attack Count 3950

Attack False/ Attack

Count

%29,5

Anomaly for Attack Count

/ Attack Count

%7,7

6.3.1.3. Test Results with Radius Factor 2.0

In this test CLIDS is trained with DOS, Probe, U2R, R2L attacks and tested with

radius factor 2.0. Feature weight is selected as 10 and continuous feature split count

is selected as 10.

The sum of all true identifed test instances is given in Table 6.19.

 66

Table 6.19 Sum of true indentified instances with Radius Factor 2.0

Normal DOS Probe U2R R2L Anomaly

normal.24975 smurf.

32400

ipsweep. 0 buffer_overflow.

7

ftp_write. 0 mscan. 120

 neptune.

110

portsweep.

3

loadmodule. 1 guess_passwd.

2

saint. 12

 teardrop. 5 satan. 1134 perl. 0 imap. 0 apache2. 582

 pod. 58 nmap. 44 rootkit. 0 multihop. 0 processtable. 453

 back. 98 phf. 1 udpstorm. 2

 land. 8 spy. 0 httptunnel. 16

 warezmaster.

498

mailbomb. 4944

 warezclient. 0 ps. 4

 sqlattack. 0

 xterm. 3

 named. 3

 sendmail. 3

 snmpgetattack.

5911

 snmpguess. 0

 worm. 0

 xlock. 5

 xsnoop. 2

 67

6.3.1.4. Calculated Results with Radius 2.0

The sum of counts of test instances, grouped by attack types, if they are true

identifed or if they are “false negative” found or if they are “false positive” found, is

given in Table 6.20 with calculated results of percentages.

Table 6.20 Detection, False Negative and False Positive counts of test files with radius factor 2.0

Attack

Type

Counts

Tested

True

Count

False

Negative

Count

False

Positive

Count

Detection

Rate

False

Negative

Rate

False

Positive

Rate

DOS 43575 32649 0 12 %74,9 %0 %0

Probe 1939 1181 0 567 %60.9 %0 %29,2

U2R 33 8 0 40 %24,2 %0 %121,1

R2L 5982 501 0 630 %8,4 %0 %11,1

Normal 34448 24975 - - %72,5 - -

Anomaly 14020 12054 4 8202 %86,0 %0 %58,5

The sum of test instances, which are found as “false attack” and which are found

“anomaly for attack” is given in Table 6.21 with calculated results of percentages.

Table 6.21 Attack False and Anomaly for Attack counts with radius factor 2.0

Attack False Count 15199

Anomaly for Attack Count 3950

Attack False/ Attack

Count

%29,5

Anomaly for Attack Count

/ Attack Count

%7,7

6.3.1.5. Test Results with Radius Factor 1.0

In this test CLIDS is trained with DOS, Probe, U2R, R2L attacks and tested with

radius factor 1.0. Feature weight is selected as 10 and continuous feature split count

is selected as 10. The sum of all true identifed test instances is given in Table 6.22.

 68

Table 6.22 Sum of true indentified instances with Radius Factor 1.0

Normal DOS Probe U2R R2L Anomaly

normal.24572 smurf.

32370

ipsweep. 0 buffer_overflow.

4

ftp_write. 0 mscan. 184

 neptune. 60 portsweep.

11

loadmodule. 1 guess_passwd.

2

saint. 6

 teardrop. 5 satan. 1217 perl. 1 imap. 0 apache2. 582

 pod. 58 nmap. 44 rootkit. 0 multihop. 0 processtable. 453

 back. 98 phf. 1 udpstorm. 2

 land. 8 spy. 0 httptunnel. 16

 warezmaster.

588

mailbomb. 4944

 warezclient. 0 ps. 6

 sqlattack. 0

 xterm. 4

 named. 5

 sendmail. 6

 snmpgetattack.

5911

 snmpguess. 0

 worm. 0

 xlock. 7

 xsnoop. 2

 69

6.3.1.6. Calculated Results with Radius 1.0

The sum of counts of test instances, grouped by attack types, if they are true

identifed or if they are “false negative” found or if they are “false positive” found, is

given in Table 6.23 with calculated results of percentages.

Table 6.23 Detection, False Negative and False Positive counts of test files with radius factor 1.0

Attack

Type

Counts

Tested

True

Count

False

Negative

Count

False

Positive

Count

Detection

Rate

False

Negative

Rate

False

Positive

Rate

DOS 43575 32599 0 30 %74,8 %0 %0,1

Probe 1939 1272 0 482 %65,6 %0 %24,9

U2R 33 6 0 376 %18,2 %0 %1139,4

R2L 5982 591 0 284 %9,9 %0 %4,7

Normal 34448 24572 - - %71,3 - -

Anomaly 14020 12134 2 8644 %86,5 %0

%61,5

The sum of test instances, which are found as “false attack” and which are found

“anomaly for attack” is given in Table 6.24 with calculated results of percentages.

Table 6.24 Attack False and Anomaly for Attack counts with radius factor 1.0

Attack False Count 14707

Anomaly for Attack Count 4241

Attack False/ Attack

Count

%28,5

Anomaly for Attack Count

/ Attack Count

%8,2

6.3.1.7. Test Results with Radius Factor 0.8

In this test CLIDS is trained with DOS, Probe, U2R, R2L attacks and tested with

radius factor 0.8. Feature weight is selected as 10 and continuous feature split count

is selected as 10. The sum of all true identifed test instances is given in Table 6.25.

 70

Table 6.25 Sum of true indentified instances with Radius Factor 0.8

Normal DOS Probe U2R R2L Anomaly

normal.20330 smurf.

32370

ipsweep. 0 buffer_overflow.

8

ftp_write. 0 mscan. 357

 neptune. 22 portsweep.

12

loadmodule. 0 guess_passwd.

6

saint. 13

 teardrop. 4 satan. 1235 perl. 1 imap. 0 apache2. 582

 pod. 58 nmap. 44 rootkit. 4 multihop. 0 processtable. 453

 back. 97 phf. 1 udpstorm. 2

 land. 8 spy. 0 httptunnel. 16

 warezmaster.

34

mailbomb. 4989

 warezclient. 0 ps. 10

 sqlattack. 0

 xterm. 8

 named. 8

 sendmail. 10

 snmpgetattack.

5917

 snmpguess. 0

 worm. 1

 xlock. 7

 xsnoop. 2

 71

6.3.1.8. Calculated Results with Radius 0.8

The sum of counts of test instances, grouped by attack types, if they are true

identifed or if they are “false negative” found or if they are “false positive” found, is

given in Table 6.26 with calculated results of percentages.

Table 6.26 Detection, False Negative and False Positive counts of test files with radius factor 0.8

Attack

Type

Counts

Tested

True

Count

False

Negative

Count

False

Positive

Count

Detection

Rate

False

Negative

Rate

False

Positive

Rate

DOS 43575 32559 0 24 %74,8 %0 %0.1

Probe 1939 1291 0 431 %66,6 %0 %22,2

U2R 33 13 0 405 %39,4 %0 %1227,3

R2L 5982 41 0 139 %0,7 %0 %2.3

Normal 34448 20330 - - %59,0 - -

Anomaly 14020 12375 1 13118 %88,3 %0 %93,6

The sum of test instances, which are found as “false attack” and which are found

“anomaly for attack” is given in Table 6.27 with calculated results of percentages.

Table 6.27 Attack False and Anomaly for Attack counts with radius factor 0.8

Attack False Count 14830

Anomaly for Attack Count 4442

Attack False/ Attack

Count

%28,8

Anomaly for Attack Count

/ Attack Count

%8,6

6.3.1.9. Graphical Results for Rates with Change of the Radius Factor

In Figure 6.37 Rates for attacks DOS, in Figure 6.38 Rates for attacks PROBE, in

Figure 6.39 Rates for attacks U2R, in Figure 6.40 Rates for attacks R2L, in Figure

6.41 Rates for attacks Anomaly, in Figure 6.42 Detection Rate for Normal are

given.

 72

Rates for DOS

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

0,8 1 1,20 2

Radius Factor

P
e
rc

e
n

ta
g

e
 o

f
D

O
S

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.37 Rates for attacks DOS with change of the radius factor

Rates for PROBE

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

0,8 1 1,2 2

Radius Factor

P
e
rc

e
n

ta
g

e
 o

f
P

R
O

B
E

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.38 Rates for attacks PROBE with change of the radius factor

Rates for U2R

0,00%

200,00%

400,00%

600,00%

800,00%

1000,00%

1200,00%

1400,00%

0,8 1 1,2 2

Radius Factor

P
e
rc

e
n

ta
g

e
 o

f
U

2
R

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.39 Rates for attacks U2R with change of the radius factor

 73

Rates for R2L

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

0,8 1 1,2 2

Radius Factor

P
e
rc

e
n

rt
a
g

e
 o

f
R

2
L

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.40 Rates for attacks R2L with change of the radius factor

Rates for Anomaly

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0,8 1 1,2 2

Radius Factor

P
e
rc

e
n

ta
g

e
 o

f
A

n
o

m
a
ly

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.41 Rates for attacks Anomaly with change of the radius factor

Detection Rate of Normal

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

0,8 1 1,2 2

Radius Factor

P
e
rc

e
n

ta
g

e
 o

f
N

o
rm

a
l

te
s
t

in
s
ta

n
c
e
s

Detection Rate

Figure 6.42 Detection Rate for Normal with change of the radius factor

 74

6.3.2. Test Results with Change of the Continuous Feature Split Count

6.3.2.1. Test Results with Continuous Feature Split Count 100

Continuous features are split by a factor in order to get entropy for using FCBF

algorithm. So default value of this factor is 10. In this test this value is selected as

100, to show the difference of rates. The radius factor is 1.2, the feature weight

factor is 10. The sum of all true identifed test instances is given in Table 6.28.

Table 6.28 Sum of true indentified instances with Feature Split Count 100

Normal DOS Probe U2R R2L Anomaly

normal.

25069

smurf.

32337

ipsweep. 0 buffer_overflow.

4

ftp_write. 0 mscan. 0

 neptune. 38 portsweep.

0

loadmodule. 0 guess_passwd.

0

saint. 13

 teardrop. 3 satan. 1231 perl. 0 imap. 0 apache2. 554

 pod. 60 nmap. 44 rootkit. 4 multihop. 0 processtable. 499

 back. 99 phf. 1 udpstorm. 2

 land. 8 spy. 0 httptunnel. 15

 warezmaster.

362

mailbomb. 4986

 warezclient. 0 ps. 4

 sqlattack. 0

 xterm. 6

 named. 4

 sendmail. 6

 snmpgetattack. 5909

 snmpguess. 0

 worm. 0

 xlock. 6

 xsnoop. 2

 75

6.3.2.2. Calculated Results with Continous Split Factor 100

The sum of counts of test instances, grouped by attack types, if they are true

identifed or if they are “false negative” found or if they are “false positive” found, is

given in Table 6.29 with calculated results of percentages.

Table 6.29 Detection, False Negative and False Positive counts of test files with continuous split

factor 100

Attack

Type

Counts

Tested

True

Count

False

Negative

Count

False

Positive

Count

Detection

Rate

False

Negative

False

Positive

Rate

DOS 43575 32545 0 20 %74,7 %0 %0

Probe 1939 1275 0 446 %65,8 %0 %23,0

U2R 33 8 0 52 %24,2 %0 %157,6

R2L 5982 363 0 606 %6,1 %0 %10,1

Normal 34448 25069 - - %72,8 - -

Anomaly 14020 12018 7 8227 %85,7 %0 %58,7

The sum of test instances, which are found as “false attack” and which are found

“anomaly for attack” is given in Table 6.30 with calculated results of percentage

Table 6.30 Attack False and Anomaly for Attack counts with continuous split factor 100

Attack False Count 15297

Anomaly for Attack Count 4039

Attack False/ Attack

Count

%29,7

Anomaly for Attack Count

/ Attack Count

%7,8

6.3.2.3. Graphical Results for Rates with Change of the Continous Split Factor

In Figure 6.43 Rates for attacks DOS, in Figure 6.44 Rates for attacks PROBE, in

Figure 6.45 Rates for attacks U2R, in Figure 6.46 Rates for attacks R2L, in Figure

6.47 Rates for attacks Anomaly, in Figure 6.48 Detection Rate for Normal are given.

 76

Rates for DOS

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

10,00 100

Continuous Split Factor

P
e
rc

e
n

ta
g

e
 o

f
D

O
S

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.43 Rates for attacks DOS with change of the continous split factor

Rates for PROBE

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

10,00 100

Continuous Split Factor

P
e
rc

e
n

ta
g

e
 o

f
P

R
O

B
E

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.44 Rates for attacks PROBE with change of the continous split factor

Rates for U2R

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

140,00%

160,00%

180,00%

10,00 100

Continuous Split Factor

P
e
rc

e
n

ta
g

e
 o

f
U

2
R

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.45 Rates for attacks U2R with change of the continous split factor

 77

Rates for R2L

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

10,00 100

Continuous Split Factor

P
e
rc

e
n

ta
g

e
 o

f
R

2
L

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.46 Rates for attacks with change of the continous split factor

Rates for Anomaly

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

10,00 100

Continuous Split Factor

P
e
rc

e
n

ta
g

e
 o

f
A

n
o

m
a
ly

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.47 Rates for attacks Anomaly with change of the continous split factor

Detection Rate for Normal

72,35%

72,40%

72,45%

72,50%

72,55%

72,60%

72,65%

72,70%

72,75%

72,80%

72,85%

10,00 100

Continuous Split Factor

D
e
te

c
ti

o
n

 o
f

N
o

rm
a
l

te
s
t

in
s
ta

n
c
e
s

Detection Rate

Figure 6.48 Detection Rate for Normal with change of the continous split factor

 78

6.3.3. Test Results with Change of the Feature Weight Factor

6.3.3.1. Test Results with Feature Weight Factor 100

In the tests before, the feature weight factor used to calculate the Euclidean

distance between instances was selected as default 10. So, in this test , the feature

weight factor is selected as 100. The radius factor is 1.2, the continuous split factor

is 10. The sum of all true identifed test instances is given in Table 6.31.

Table 6.31 Sum of true indentified instances with Feature Weight Factor 100

Normal DOS Probe U2R R2L Anomaly

normal.

1775

smurf.

32260

ipsweep.

249

buffer_overflow.

5

ftp_write. 0 mscan. 259

 neptune.

254

portsweep.

205

loadmodule. 0 guess_passwd.

15

saint. 6

 teardrop. 2 satan. 927 perl. 0 imap. 0 apache2. 596

 pod. 59 nmap. 44 rootkit. 4 multihop. 0 processtable. 504

 back. 80 phf. 1 udpstorm. 2

 land. 7 spy. 0 httptunnel. 125

 warezmaster.

27

mailbomb. 4999

 warezclient. 0 ps. 4

 sqlattack. 0

 xterm. 5

 named. 7

 sendmail. 7

 snmpgetattack. 5911

 snmpguess. 0

 worm. 0

 xlock. 7

 xsnoop. 2

 79

6.3.3.2. Calculated Results with Feature Weight Factor 100

The sum of counts of test instances, grouped by attack types, if they are true

identifed or if they are “false negative” found or if they are “false positive” found, is

given in Table 6.32 with calculated results of percentages.

Table 6.32 Detection, False Negative and False Positive counts of test files with feature weight

factor 100

Attack

Type

Counts

Tested

True

Count

False

Negative

Count

False

Positive

Count

Detection

Rate

False

Negative

False

Positive

Rate

DOS 43575 32662 0 9 %75,0 %0 %0

Probe 1939 1425 0 276 %73,5 %0 %14,2

U2R 33 9 0 27 %27,2 %0 %81,8

R2L 5982 43 0 582 %7,2 %0 %9,7

Normal 34448 1775 - - %5,2 - -

Anomaly 14020 12495 0 31747 %89,1 %0 %226,4

The sum of test instances, which are found as “false attack” and which are found

“anomaly for attack” is given in Table 6.33 with calculated results of percentages.

Table 6.33 Attack False and Anomaly for Attack counts with feature weight factor 100

Attack False Count 14362

Anomaly for Attack Count 4556

Attack False/ Attack

Count

%28

Anomaly for Attack Count

/ Attack Count

%9

6.3.3.3. Test Results with Feature Weight Factor 1

In the tests before, the feature weight factor used to calculate the Euclidean

distance between instances was selected as default 10. So, in this test , the feature

 80

weight factor is selected as 1. The radius factor is 1.2, the continuous split factor is

10. The sum of all true identifed test instances is given in Table 6.34.

Table 6.34 Sum of true indentified instances with Feature Weight Factor 1

Normal DOS Probe U2R R2L Anomaly

normal.

23526

smurf.

32387

ipsweep.

47

buffer_overflow.

1

ftp_write. 0 mscan. 24

 neptune. 2 portsweep.

4

loadmodule. 0 guess_passwd.

0

saint. 6

 teardrop. 2 satan. 1068 perl. 1 imap. 0 apache2. 511

 pod. 12 nmap. 44 rootkit. 0 multihop. 0 processtable. 390

 back. 98 phf. 1 udpstorm. 2

 land. 8 spy. 0 httptunnel. 14

 warezmaster.

526

mailbomb. 4999

 warezclient. 0 ps. 1

 sqlattack. 0

 xterm. 1

 named.3

 sendmail. 4

 snmpgetattack.1

 snmpguess. 0

 worm. 0

 xlock.4

 xsnoop. 2

 81

6.3.3.4. Calculated Results with Feature Weight Factor 1

The sum of counts of test instances, grouped by attack types, if they are true

identifed or if they are “false negative” found or if they are “false positive” found, is

given in Table 6.35 with calculated results of percentages.

Table 6.35 Detection, False Negative and False Positive counts of test files with feature weight

factor 1

Attack

Type

Counts

Tested

True

Count

False

Negative

Count

False

Positive

Count

Detection

Rate

False

Negative

False

Positive

Rate

DOS 43575 32507 0 97 %74,6 %0 %0,2

Probe 1939 1163 0 9178 %60,0 %0 %473,3

U2R 33 4 0 21 %12,1 %0 %63,6

R2L 5982 527 0 574 %8,8 %0 %9,6

Normal 34448 23526 - - %68,3 - -

Anomaly 14020 963 0 680 %6,9 %0 %4,9

The sum of test instances, which are found as “false attack” and which are found

“anomaly for attack” is given in Table 6.36 with calculated results of percentages.

Table 6.36 Attack False and Anomaly for Attack counts with feature weight factor 1

Attack False Count 26663

Anomaly for Attack Count 3724

Attack False/ Attack Count %51,7

Anomaly for Attack Count / Attack

Count

%7,2

6.3.3.5. Graphical Results for Rates with Change of the Feature Weight Factor

In Figure 6.49 Rates for attacks DOS, in Figure 6.50 Rates for attacks PROBE, in

Figure 6.51 Rates for attacks U2R, in Figure 6.52 Rates for attacks R2L, in Figure

6.53 Rates for attacks Anomaly, in Figure 6.54 Detection Rate for Normal are given.

 82

Rates for DOS

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

1 10,00 100

Feature Weight Factor

P
e
rc

e
n

ta
g

e
 o

f
D

O
S

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Positive Rate

False Negative Rate

Figure 6.49 Rates for attacks DOS with change of the feature weight factor

Rates for PROBE

0,00%

50,00%

100,00%

150,00%

200,00%

250,00%

300,00%

350,00%

400,00%

450,00%

500,00%

1 10,00 100

Feature Weight Factor

P
e
rc

e
n

ta
g

e
 o

f
P

R
O

B
E

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.50 Rates for attacks PROBE with change of the feature weight factor

Rates for U2R

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

140,00%

1 10,00 100

Feature Weight Factor

P
e
rc

e
n

ta
g

e
 o

f
U

2
R

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.51 Rates for attacks U2R with change of the feature weight factor

 83

Rates for R2L

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

1 10,00 100

Feature Weight Factor

P
e
rc

e
n

ta
g

e
 o

f
R

2
L

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.52 Rates for attacks R2L with change of the feature weight factor

Rates for Anomaly

0,00%

50,00%

100,00%

150,00%

200,00%

250,00%

1 10,00 100

Feature Weight Factor

P
e
rc

e
n

ta
g

e
 o

f
A

n
o

m
a
ly

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.53 Rates for attacks Anomaly with change of the feature weight factor

Detection Rate for Normal

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

1 10,00 100

Feature Weight Factor

P
e
rc

e
n

ta
g

e
 o

f
N

o
rm

a
l

te
s
t

in
s
ta

n
c
e
s

Detection Rate

Figure 6.54 Detection Rate for Normal with change of the feature weight factor

 84

6.4. Experimental Results with Zero-Mean Normalization

In these tests, the training phase the mean and the standard deviaton for every

feature in every attack class are found and written to the configuration file of CLIDS.

Then in test phase, these values are used for normalization of test instances.

6.4.1. Test Results with Change of the Radius

6.4.1.1. Test Results with Radius Factor 1.2

The radius factor is selected as 1.2, the feature weight factor is 10, the continuous

split factor is 10. The sum of all true identifed test instances is given in Table 6.37.

Table 6.37 Sum of true indentified instances with Radius Factor 1.2 with Zero-Mean

Normalization

Normal DOS Probe U2R R2L Anomaly

normal.

109

smurf.

32398

ipsweep.

47

buffer_overflow.

4

ftp_write. 0 mscan. 44

 neptune. 49 portsweep.

121

loadmodule. 0 guess_passwd.

20

saint. 22

 teardrop. 6 satan.

1153

perl. 1 imap. 0 apache2. 339

 pod. 60 nmap. 44 rootkit. 0 multihop. 0 processtable. 276

 back. 97 phf. 1 udpstorm. 2

 land. 8 spy. 0 httptunnel. 13

 warezmaster. 414 mailbomb. 4897

 warezclient. 0 ps. 6

 sqlattack. 1

 xterm. 5

 named.3

 sendmail. 3

 snmpgetattack.

5911

 snmpguess. 0

 85

 worm. 0

 xlock. 7

 xsnoop. 2

6.4.1.2. Calculated Results with Radius Factor 1.2

The sum of counts of test instances, grouped by attack types, if they are true

identifed or if they are “false negative” found or if they are “false positive” found, is

given in Table 6.38 with calculated results of percentages.

Table 6.38 Detection, False Negative and False Positive counts of test files with Radius Factor

1.2 with Zero-Mean Normalization

Attack

Type

Counts

Tested

True

Count

False

Negative

Count

False

Positive

Count

Detection

Rate

False

Negative

False

Positive

Rate

DOS 43575 32618 0 81 %74,9 %0 %0,2

Probe 1939 1318 0 225 %68,0 %0 %11,6

U2R 33 5 0 26 %15,2 %0 %78,8

R2L 5982 435 0 469 %7,3 %0 %7,8

Normal 34448 109 - - %0,3 - -

Anomaly 14020 11531 0 32774 %82,2 %0 %233,8

The sum of test instances, which are found as “false attack” and which are found

“anomaly for attack” is given in Table 6.39 with calculated results of percentages.

Table 6.39 Attack False and Anomaly for Attack counts with Radius Factor 1.2 with Zero-Mean

Normalization

Attack False Count 15660

Anomaly for Attack Count 3985

Attack False/ Attack Count %30,4

Anomaly for Attack Count / Attack Count %7,7

 86

6.4.1.3. Test Results with Radius Factor 2

The radius factor is selected as 2, the feature weight factor is 10, the continuous

split factor is 10. The sum of all true identifed test instances is given in Table 6.40.

Table 6.40 Sum of true indentified instances with Radius Factor 2 with Zero-Mean

Normalization

Normal DOS Probe U2R R2L Anomaly

normal.

119

smurf.

32306

ipsweep.

47

buffer_overflow.

1

ftp_write. 0 mscan. 8

 neptune. 49 portsweep.

115

loadmodule. 0 guess_passwd.

5

saint. 21

 teardrop. 6 satan. 1047 perl. 1 imap. 0 apache2. 331

 pod. 60 nmap. 44 rootkit. 0 multihop. 0 processtable. 276

 back. 97 phf. 1 udpstorm. 2

 land. 8 spy. 0 httptunnel. 3

 warezmaster.

607

mailbomb. 421

 warezclient. 0 ps. 6

 sqlattack. 1

 xterm. 3

 named.2

 sendmail. 2

 snmpgetattack. 58

 snmpguess. 0

 worm. 0

 xlock. 5

 xsnoop. 1

 87

6.4.1.4. Calculated Results with Radius Factor 2

The sum of counts of test instances, grouped by attack types, if they are true

identifed or if they are “false negative” found or if they are “false positive” found, is

given in Table 6.41 with calculated results of percentages.

Table 6.41 Detection, False Negative and False Positive counts of test files with Radius Factor 2

with Zero-Mean Normalization

Attack

Type

Counts

Tested

True

Count

False

Negative

Count

False

Positive

Count

Detection

Rate

False

Negative

False

Positive

Rate

DOS 43575 32477 0 150 %74,5 %0 %0,3

Probe 1939 1206 0 604 %62,2 %0 %31,2

U2R 33 1 0 131 %3,0 %0 %397,0

R2L 5982 613 0 18112 %10,3 %0 %302,8

Normal 34448 119 - - %0,3 - -

Anomaly 14020 1139 0 15131 %8,1 %0 %108,0

The sum of test instances, which are found as “false attack” and which are found

“anomaly for attack” is given in Table 6.42 with calculated results of percentages.

Table 6.42 Attack False and Anomaly for Attack counts with with Radius Factor 2 with Zero-

Mean Normalization

Attack False Count 29563

Anomaly for Attack Count 553

Attack False/ Attack Count %57

Anomaly for Attack Count / Attack

Count

%1,1

6.4.1.5. Graphical Results for Rates with Change of the Radius Factor

In Figure 6.55 Rates for attacks DOS, in Figure 6.56 Rates for attacks PROBE, in

Figure 6.57 Rates for attacks U2R, in Figure 6.58 Rates for attacks R2L, in Figure

6.59 Rates for attacks Anomaly, in Figure 6.60 Detection Rate for Normal are given.

 88

Rates for DOS

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

1,20 2

Radius Factor

P
e
rc

e
n

ta
g

e
 o

f
D

O
S

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.55 Rates for attacks DOS with change of the radius factor with Zero-Mean Norm.

Rates for PROBE

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

1,2 2

Radius Factor

P
e
rc

e
n

ta
g

e
 o

f
P

R
O

B
E

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.56 Rates for attacks PROBE with change of the radius factor with Zero-Mean Norm.

Rates for U2R

0,00%

50,00%

100,00%

150,00%

200,00%

250,00%

300,00%

350,00%

400,00%

450,00%

1,2 2

Radius Factor

P
e
rc

e
n

ta
g

e
 o

f
U

2
R

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.57 Rates for attacks U2R with change of the radius factor with Zero-Mean Norm.

 89

Rates for R2L

0,00%

50,00%

100,00%

150,00%

200,00%

250,00%

300,00%

350,00%

1,2 2

Radius Factor

P
e
rc

e
n

ta
g

e
 o

f
R

2
L

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.58 Rates for attacks R2L with change of the radius factor with Zero-Mean Norm.

Rates for Anomaly

0,00%

50,00%

100,00%

150,00%

200,00%

250,00%

1,2 2

Radius Factor

P
e
rc

e
n

ta
g

e
 o

f
A

n
o

m
a
ly

 t
e
s
t

in
s
ta

n
c
e
s

Detection Rate

False Negative Rate

False Positive Rate

Figure 6.59 Rates for attacks Anomaly with change of the radius factor with Zero-Mean Norm.

Detection Rate for Normal

0,00%

0,05%

0,10%

0,15%

0,20%

0,25%

0,30%

0,35%

1,2 2

Radius Factor

P
e
rc

e
n

ta
g

e
 o

f
N

o
rm

a
l

te
s
t

in
s
ta

n
c
e
s

Detection Rate

Figure 6.60 Rates for attacks Normal with change of the radius factor with Zero-Mean Norm.

 90

7. CONCLUSION and FUTURE WORK

CLIDS (Cluster Based Intrusion Detection) gives a new methodology in intrusion

detection , which is pattern classification. Until today many methodologies are used

in intrusion detection, which depend mostly to match the database of intrusion

detection system. If the packet or log matches the rules in database then it is

defined as an intrusion. In this methodology new rules should be added manually.

Then, to overcome not to add the rules manually, the database mining methodology

is used. So, an algorithm is given by the training instances of the intrusions and

normal patterns, and the algorithm gives the rules automatically.

By all of these methodologies, in which there are no machine learning algorithm, it is

impossible to identify new intrusions, which are not defined as an intrusion in the

rules database of the intrusion detection system.

One methodology to identify the “anomalies”, the patterns which do not suit the rules

of the IDS, is the pattern classification. Pattern classification algorithms are used in

many areas, including genetics, speech recognition and fingerprint identification.

The pattern classification algorithms can be grouped mainly in two areas:

Supervised classification, unsupervised classification. Supervised classification

algorithms are trained first with training instances. So, the test instances can be

labeled in this way. But the unsupervised classification algorithms are not trained.

They are given by the test instances, and the algorithm makes clusters in these

instances, but it can not label them, because it doesn‟t know.

In this thesis, two problems are tried to solve: First: The IDS should label the test

intances, whatever the instance is. Second: The IDS should find the anomalies.

To produce intrusion data is a very hard and expensive work. So, the KDD Cup Data

99, the data which are produced in 1998 by DARPA for using in Data Mining and

Knowledge Discovery competition organized by ACM Special Interest Group on

Knowledge Discovery and Data Mining, which are used also in many works, are

used in this thesis. There are 311,029 test instances which should be labeled.

 91

In the KDD Cup 99, the database mining algorithms are used, the winning entry

gives results of %99 for normal, % 83.3 for DOS, % 97 for Probe, % 13 for U2R and

%8 for R2L. In these results, there are no information to identify the anomalies.

The patterns, in general, have features which are learned by the pattern

classification algorithms. These features can be reduced by a feature selection

algorithm to speed up the training and testing. In KDD Cup Data 99, every pattern

has 41 features. So, in CLIDS the FCBF algorithm is used to reduce these features.

These algorithm is a new and fast algorithm and it gives better results than the other

known feature selection algorithms. These algorithm depends on finding the entropy

of the features of the patterns.

CLIDS has 3 implementation parameters. These parameters have default values in

the program, but they are changed and the tests are repeated to show the difference

in the test results.

The FCBF algorithm should be given first by a value scala for every feature in a

configuration file, so this is possible for symbolic values but impossible for

continuous values. In order to use the continuous values in FCBF algorithm, the

value scala for every feature with continuous values is split by a factor. This split

factor is a parameter in CLIDS.

By calculating the Euclidean distance between instances a feature weight factor is

used. This feature weight factor is also a parameter in CLIDS.

To find the anomalies, the distance between the test instance and the median of the

clusters of the intrusions are tested , if it is bigger than the radius of the cluster. This

radius is multiplied by a radius factor to make the cluster bigger. This radius factor is

also a parameter in CLIDS.

By using the default values(Radius Factor 1.2, Continous Split Factor 10, Feature

Weight Factor 10) the test results are as the following: Detection Rate DOS: %74.9,

Probe % 60.9, U2R % 24.2 , R2L % 8.4, Normal, %72.5, Anomaly %85.9.

First, by making the radius factor bigger, it is seen that the detection rate of DOS

doesn‟t change, the detection rate of PROBE is getting less, the detection rate of

U2R and R2L depend on radius. The false positive rate of DOS is getting less, the

false positive rate of PROBE is getting higher, the false positive rate of U2R is very

high by radius factor 0.8 and 1, the false positive rate of R2L is getting higher with

making bigger the radius factor. The detection rate of normal is getting higher, but

the detection rate of anomaly is getting less also with making bigger the radius

 92

factor. This results are expected, since making the radius of all clusters bigger,

makes to find the anomalies hard and more attack instances are labeled as

“normal”, instead of an attack type.

Second, by training phase, the continuous split factor is selected as 100, which is 10

times bigger than the default value. The results are as the following: The detection

rate of DOS has a small change of getting less, the detection rate of PROBE is

getting higher, the detection rate of U2R doesn‟t change, the detection rate of R2L is

getting less, the detection rate of normal and anomaly have a small change. These

have the following meaning: The continuous features of PROBE are and R2L

attacks are not grouped as by attacks DOS and U2R. So, by training phase, the

continuous split factor should be selected differerent for every type of attack, which

is not supported by CLIDS yet.

Third, the feature weight factor is selected as 1 and 100. The detection rates of

DOS, PROBE and U2R are getting higher , the detection rate of R2L is getting less,

the detection rate of anomaly is getting higher but the detection rate of normal is

getting very less, by making the feature weight factor is bigger. The false positive

rate of DOS has a small change, the false positive rate of PROBE is very high by

feature weight factor 1, the false positive rates of U2R and R2L are less by feature

weight factor 1, the false positive rate of anomaly is getting very high by feature

weight factor 100. It is also seen that the attack false/attack count ratio is getting

very high, too. These results have the following meaning: Making the feature weight

factor higher, makes the clusters to sit each other, so, they intersect each other, and

this makes the results worse.

By all of these tests, the normalization was selected as Min-Max normalization. The

fourth test was with Zero-Mean Normalization. In this test, it is seen that, the

detection rates of the attacks are higher, but the detection rate of normal is very low,

and the false positive rates of the attacks U2R, R2L and anomaly are very high. So,

in this type of normalization, the other parameters should be changed to come in a

suitable result.

In conclusion, CLIDS is an implementation of feature selection and pattern

classification algorithms specified for intrusion detection. It shows, in general, better

results than the other pattern classification ID systems that are mentioned in this

thesis. It finds the trained attacks and the anomalies, which was the goal of this

thesis.

 93

As a future work, it should be developed more to run faster offline. Making the

training database bigger will give better results, since there will be more clusters.

CLIDS labels anomalies as “anomaly”, so these anomalies can be categorized as

DOS, probe, U2R or R2L also. But to give a label to the found anomalies is an

manual work. After labelling these instances, they can be also trained, and can be

given CLIDS as training attacks.

 94

REFERENCES

[1] Mace R. and Mell P., 2000, Intrusion Detection Systems NIST Special
Publication
[2] Debar H., Dacier M., Wespi A., 1999, Research Report, A Revised
Taxonomy for Intrusion-Detection Systems IBM Reserch Zurich Research
Laboratory
[3] Allen J., Christie A., Fithen W., McHugh J., Pickel J, Stoner E., 2000,
State of the Practice of Intrusion Detection Technologies, Carnegie Mellon, Software
Engineering Institute
[4] Werret J., 2003, Review of Anomaly-Based Network Intrusion Detection,
School of Computer Science & Software Engineering, University of Western
Australia
[5] Lee W., Stolfo S., Mok K. W., 1999, A Data Mining Framework for Building
Intrusion Detection Models,Computer Science Department, Columbia University
[6] Noel S., Wijesekera D., Youman C., 2001, Modern intrusion detection
system , data mining, and degrees of attack guilt
[7] Dasgupta D., 1999, Immunity-Based Intrusion Detection System:A General
Framework, Division of Computer Science Mathematical Sciences Department, The
University of Memphis
[8] Su M., 2003, Cluster Analysis, Department of Computer Science and
Information Engineering National Central University
[9] Puttini, R. S., Marrakchi R., Mé L., 2003, A Bayesian Classification Model
for Real-Time Intrusion Detection
[10] Zanero S., Savaresi S. M., 2004, Unsupervised learning techniques for an
intrusion detection system , SAC’04 March 14-17 2004, Nicosia
[11] Prerau M. J., Eskin, M., 2001, Unsupervised Anomaly Detection Using an
Optimized K-Nearest Neighbors Algorithm
[12] Portnoy L., 2000, Data Mining Lab, Columbia University, Intrusion Detection
with unlabeled data using clustering
[13] Ryan J., Lin M. J., Miikkulainen R., 1998, Intrusion Detection with Neural
Networks, Advances in Neural Information Processing Systems 10, Cambridge,
MAMIT Press
[14] Barry P. J. , 2002, Intrusion Detection – Evolution beyond Anomalous
Behaviour and Pattern Matching, Security Essentials Version 1.4
[15] Chittur A., 2001, Model Generation for an Intrusion Detection System Using
Genetic Algorithms , Ossining High School Ossining, NY
[16] Ertoz L., Eilertson E., Lazarevic A., Tan P. N., Dokas P., Kumar V.,
Srivastava J., 2004, Detection of Novel Network Attacks Using Data Mining,
Computer Science Department
[17] Duda R. O. Hart P. E., Stork D.G., 2001, Pattern Classification, Wileyans
Sons, Second Edition
[18] http://www.developer.com/java/article.php/10922_1491641_1
[19] Jain A.K., Murt M.N. Flynn P.J, 1999, Data Clustering: A Review, ACM
Computing Surveys, Vol. 31, No. 3

http://www.developer.com/java/article.php/10922_1491641_1

 95

[20] Guan Y., Ghorbani A.A, Belacel N., 2003, Y-MEANS: A Clustering method
for intrusion detection, Montreal, May/mai 2003 IEEE
[21] Bace R. G., 2000, Intrusion Detection, Macmillan Technical Publishing
[22] SANS Conference Notes, 2000
[23] Northott S., Novak J., McLachlan D., 2001, Network Intrusion Detection An
Analyst‟s Handbook, New Riders Publishing
[24] Paxon V., 1998, Bro: A system for detecting network intruders in real-time.
In Proceedings of the 7th USENIX SecuritySymposium, San Antonio, TX.
[25] Cohen W. W., 1995, Fast effective rule induction. In MachineLearning: the
12th International Conference, Lake Taho,CA.

[26] Bozkurt B., 2003, Predicton of protein subcellular localization using global

protein sequence feature, M.Sc.,Thesis, The Middle East Technical University

[27] http://kdd.ics.uci.edu/databases/kddcup99/task.html

[28] http://www-cse.ucsd.edu/users/elkan/clresults.html

[29] Mukkamala S., Sung A. H., 2003, Feature Ranking and Selection for
Intrusion Detection using Support Vector Machines , Computer Science Department,
New Mexico Tech

[30] Eskin E., Prerau M.J, 2001,Unsupervised Anomaly Detection Using an
Optimized K-Nearest Neighbors Algorithm

[31] Yu L., Liu H., 2003, Feature Selection for High-Dimensional Data: A Fast
Correlation-Based Filter Solution , Proceedings of the Twentieth International
Conference on Machine Learning (ICML-2003), Washington DC

[32] Sherf M., Brauer W., 1997, Feature Selection by Means of Feature
Weighting Approach, Technical Report, Technics University, Munich

[33] Abraham T., 2001, IDDM: Intrusion Detection using Data MiningTechniques,
Information Technology Division Electronics and Surveillance Research Laboratory

[34] Guozhu Dong, 2003, Data Preparation and Preprocessing Lecture Notes

[35] http://www.freesoft.org/CIE/index.htm

http://kdd.ics.uci.edu/databases/kddcup99/task.html
http://www-cse.ucsd.edu/users/elkan/clresults.html
http://www.freesoft.org/CIE/index.htm

 96

AUTOBIOGRAPHY

Müge ÇEVİK was born in 18/07/1977 in İstanbul. She graduated in 1996 from
Istanbul High School and in 2000 from Istanbul Technical University
Control&Computer Engineering. She worked from November 2000 to April 2004 by
TÜBİTAK UEKAE (National Research Institute of Electronics&Cryptology) as
Researcher. She has been working now by SIEMENS TURKEY in Programming
and System Engineering as Software Engineer from May 2004.

