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ÖRÜNTÜ SINIFLANDIRMASI İLE SALDIRI TESPİTİ 

ÖZET 

Bilgisayarların ve bilgisayar ağlarının hızlanması, bilgisayar kullananların ve  
internete ulaşabilenlerin sayısı artması teknolojik gelişmenin göstergeleridir. Ne 
yazık ki herkes teknolojiyi iyi amaçlar doğrultusunda kullanmamaktadır, bazı kişiler 
kendilerinin ya da başkalarının çıkarlarına hizmet etmek için teknolojinin açıklarını 
bulmaya çalışmaktadırlar. 

Bilgisayar saldırıları günümüzde çok popüler bir araştırma konusudur ve olmaya da 
devam edecektir. Çünkü her yeni saldırıya karşı bir önlem bulundukça, saldırganlar 
da yeni saldırılar yaratmaktadırlar. Bugün bir çok büyük ya da küçük şirket, kamu 
kuruluşu ya da organizasyon saldırıya maruz kalmaktadır ve bu organizasyonlar 
prestijlerinin kaybetmemek için bu saldırıların çok azını kamuya açıklamaktadırlar. 

Saldırı tespit sistemleri, 1980‟lerden beri geliştirilmektedirler. Temel olarak iki tip 
saldırı tespit sistemi vardır: Davranış bazlı ve bilgi bazlı. Bilgi bazlı sistemler sadece 
bildikleri saldırıları yakalayabilirler. Yeni saldırılara karşı dayanaksızdırlar. Davranış 
bazlı saldırı tespit sistemleri ise normal davranışları öğrenirler ve bu davranıştan 
farklı olan davranışları anormal olarak tanımlarlar. Her iki tip yakalama yönteminde 
uzman sistemler, veri madenciliği gibi belli algoritmalar kullanılmış ve bir çok 
birbirine alternatif saldırı tespit sistemi geliştirilmiştir. 

Örüntü sınıflandırması son yıllarda saldırı tespitinde kullanılmaya başlamıştır. 
Örüntü sınıflandırması çok uzun yıllardan beri biyoloji, görüntü tanıma gibi bir çok 
alan kullanılmış ve bu konuda bir çok algoritma geliştirilmiştir. Örüntü sınıflandırması 
hem bilgi bazlı hem davranış bazlı saldırı tespitini biraraya getirerek optimum 
sonuca ulaşmada yol gösterici olmaktadır. 

Örüntü sınıflandırmada iki tür yöntem vardır: Öğretimli sınıflandırma, öğretimsiz 
sınıflandırma. Öğretimli sınıflandırmada belli bir örüntü kümesiyle algoritma 
çalıştırılır ve algoritma bu kümede önceden belirlenmiş sınıfları ve sınıfların 
özelliklerini öğrenir. Test örüntüsü algoritmaya verildiğinde bu test verisinin hangi 
sınıftan olduğu belirlenir. Öğretimsiz sınıflandırmada ise örüntülerin hangi sınıfta 
oldukları önceden bilinmez. Örüntülerden birbirine yakın özellikte olanlar aynı sınıfa 
toplanır. Daha sonra bunlar etiketlenir. Tüm algoritmalarda özelliklerin neler olduğu, 
hangi özelliklerin seçileceği, hangi özellliğe ne ağırlık atanacağı gibi bilgiler sonuca 
doğrudan etki eder. 

ACM Special Interest Group on Knowledge Discovery and Data Mining tarafından 
her yıl yapılan veri madenciliği yarışmasında 1999 yılında saldırı tespit verileri 
kullanılmış ve bu veriler bir çok saldırı tespit sisteminin gelişmesinde rol oynamıştır.  

Bu tezde de bu veriler kullanılarak bir örüntü sınıflandırması ile saldırı tespit sistemi 
gerçeklenmeye çalışılmıştır. Bu saldırı tespit sistemi CLIDS (Cluster based Intrusion 
Detection System) olarak adlandırılmıştır. Bu sistemde öncelikle bilinen ataklarla 
eğitim verileri içinde sınıf karakterisitikleri çıkarılmaktadır. Bunu yaparken de bilinen 
sınıflandırma algoritmaları doğrudan kullanılmamıştır. Eğitim verileri, Lei Yu ve  
Huan Liu tarafından geliştirilmiş ve sonuçları kanıtlanmış FCBF algoritmasıyla ayırt 



 

 xiii 

edici özellikleri bulunduktan sonra sınıflandırılmıştır. Bu sınıflandırmada saldırı 
tespitinde çok önemli rol oynayan sembolik veriler (protokol tipi, hizmet tipi, bayrak 
tipi vb) öne çıkarılarak, FCBF tarafından seçilmiş sembolik verilerle etiketlenen 
sınıflar oluşturulmuştur.  Bundan sonra CLIDS „in içindeki algoritma test örüntülerini, 
“normal – atak ” verilerinin oluşturduğu sınıflara göre yaptığı karşılaştırmalarla hangi 
sınıflara yakın olduğunu, eğer birden fazla sınıfa yakın bulduysa bunlardan 
hangisinin seçilmesi gerektiğini bulur  ya da hiç bir sınıfa önceden belirlenmiş bir 
eşikten daha yakın değise “anormal” olarak etiketler. 

CLIDS gerçek zamanlı çalışmamakla birlikte öğretimli örüntü sınıflandırmasının ve 
özellik seçiminin saldırı tespitinde kullanılabileceğini kanıtlayan, anormal durumları 
bulmada yeni bir bakış açısı getiren ve ilerde geliştirilmeye çok açık bir çalışma 
niteliğindedir. 
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INTRUSION DETECTION WITH PATTERN CLASSIFICATION 

SUMMARY 

The computers become more and more faster, and number of computer users  and 
internet users increase day by day, which are indicators of technology 
improvements. Unfortunately, not all of these people use technology in the good 
way, some of them use it for his/her or others benefit in bad way, to find vulnerable 
sides of it.  

Computer hacking is in our day a very popular research topic, and it is going to be 
also. Then, as more and more preventions of computer attacks are developed, 
attackers create new, unseen attacking methods. Today, many big or little firms are 
exposed of computer hijacking and in order not to lose their prestige, they explain 
only a few of these happenings. 

Intrusion detection systems are developed since 1980‟s. Basically, there are two 
types of intrusion detection systems: Behaviour based and knowledge-based. 
Knowledge-based systems can only detect the intrusions which are defined in their 
knowledge database. They are incapable of detecting new and unseen intrusions. 
Behaviour based intrusion detection systems learn first normal behaviour and then 
they define deviations from these behaviour as anomaly. In both types of intrusion 
detecting, algorithms like expert systems and data mining are used and many 
intrusion detection systems are developed alternative to each other. 

Pattern classification is used in last years in the field of intrusion detection, it is used 
for many years by many fields as biology, image recognition, and there are many 
algorithms by this subject. Pattern classification can combine knowledge-based and 
behaviour based intrusion detection and guide to find the optimum solution. 

In Pattern Classification there are two methods: Supervised clustering and 
unsupervised clustering. By supervised clustering the algorithm runs first with 
training data, so the algorithm learns the clusters and their characteristic. If the 
algorithm runs then with test data, it determines that which cluster this test data 
belongs to. By unsupervised clustering the clusters of the training data is not known. 
The patterns with similar features are grouped into same cluster, then these clusters 
are labeled. By all of these algortihms, the features of the patterns, the selected 
features and the weights of the features influence the result directly. 

By KDD cup, organized every year by ACM Special Interest Group on Knowledge 
Discovery and Data Mining , is in 1999 intrusion detection data used, and these data 
has been a guide to development of many intrusion detection systems.  

In this thesis, these data has been used to develop an intrusion detection system 
with pattern classification. This system is named by CLIDS (Cluster based Intrusion 
Detection System). The system is trained first with known attacks and the cluster 
characteristics are determined in the training data set. So, by doing this, the known 
clustering algorithms are not used directly. The distinctive features of the training 
data are selected by the FCBF algorithm developed by Lei Yu and  Huan Liu, which 
is proven by its results, and these features are used to make clusters. By this 
clustering, the symbolic values (protocol type, service type, flag type etc.) which 
have a big role by intrusion detection are brought forward and the symbolic values 
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which are selected by FCBF, are given as labels to the clusters. Then, the algorithm 
in CLIDS  compares the test patterns with the clusters of the “normal – attack” data 
and finds the nearest clusters, if it finds more than one cluster, than it finds which 
cluster should be selected, if the test pattern is not near enough than the limit 
defined previously, it labels it as “anomaly”. 

However CLIDS is not working real time, it is a work which proves that supervised 
pattern classification and the feature selection can be used by intrusion detection, it 
brings a new look for finding “anomalies” and it is very open to be developed more. 
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1. INTRODUCTION 

1.1. Aim of This Thesis 

Intrusion detection is a part of computer security.  Other parts may be firewalls, 

electronic signatures, encrypting, IPSEC protocol, antivirus programs etc. However 

common features of all these security items are the same: 

 Authentication  

 Authorization 

 Non-Repudiation 

 Confidentiality 

 Integrity 

 Availability 

Every security system perform some or all features above.   

In this thesis, Chapter 1 gives a first look to intrusion detection. Intrusion detection is 

introduced briefly, in order to give an idea everybody, who are not familiar with the 

term computer security. 

Chapter 2 gives some basic knowledge to understand the network protocols and the 

attacks which use the vulnerabilites of these protocols. In Chapter 3 the 

classification of ID systems is explained and some example ID systems are 

introduced. In Chapter 4, some basic knowledge of pattern classification is studied. 

Chapter 5 introduces research in intrusion detection with pattern classification. And 

at the end Chapter 6 studies CLIDS which is implemented and presented in this 

thesis in detail. 
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1.2. Definition of Intrusion Detection 

Intrusion detection is the process of monitoring the events occuring in a computer 

system or network and analyzing them for signs of intrusions, defined as attempts to 

compromise the confidentiality, integrity, availability, or bypass the security 

mechanisms of a computer or network. [1] 

1.3. Intrusions and Intruders in History 

Internet was born in 1990‟s , so network intrusions have a history of about 15, but 

host based intrusions are more old. In the Figure 1.1 it is shown that the attack 

sophistication becomes more and more complicated, although intruder knowledge 

becomes low, because of attack tools, which can be found on internet widely. [3] 

 

 

Figure 1.1 Intruder Knowledge vs. Attack Sophitication [3] 

1.4. Terminology 

Intrusion detection is a young field, and many terms are not used consistently. Here 

are some ID concepts explained: 

Attack:  An action conducted by one adversary, the intruder, against another 

adversary, the victim.The intruder carries out an attack with a specific objective in 

mind. From the perspective of an administrator responsible for maintaining a 

system, an attack is a set of one or more events that may have one or more security 

consequences. From the perspective of an  intruder, an attack is a mechanism to 

fulfill an objective. 
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Exploit:  The process of using a vulnerability to violate a security policy. A tool or 

defined method that could be used to violate a security policy is often referred to as 

an exploit script. 

False negative:  An event that the IDS fails to identify as an intrusion when one has 

in fact occurred 

False positive:  An event, incorrectly identified by the IDS as being an intrusion 

when none has occurred 

Incident:  A collection of data representing one or more related attacks. Attacks may 

be related by attacker, type of attack, objectives, sites, or timing. 

Intruder:  The person who carries out an attack. Attacker is a common synonym for 

intruder. The words attacker and intruder apply only after an attack has occurred. A 

potential intruder may be referred to as an adversary. Since the label of intruder is 

assigned by the victim of the intrusion and is therefore contingent on the victim's 

definition of encroachment, there can be no ubiquitous categorization of actions as 

being intrusive or not.  

Intrusion:  A common synonym for the word “attack”; more precisely, a successful 

attack.  

Vulnerability:  A feature or a combination of features of a system that allows an 

adversary to place the system in a state that is contrary to the desires of the people 

responsible for the system and increases the probability or magnitude of undesirable 

behaviour in or of the system. [2] 
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2. NETWORK PROTOCOLS AND NETWORK INTRUSIONS 

2.1. Network Protocols 

The TCP-IP protocol is the protocol that the computers use to communicate each 

other. This protocol is used in local area networks as well as in wide area netwoks, 

such as Internet.  

2.2. Structure of the Protocol Stack 

The TCP-IP stack contains four protocol layers, as shown in Figure 2.2. The four 

layers are stacked so that each one uses the services of the layer below it. [21] 

 Applications: Such as mail, login, file transfer, http... 

 Transport: The TCP protocol, supports the applications by providing a 

reliable “virtual circuit”.  The UDP protocol do not provide a reliable “virtual 

circuit”. 

 Internet: The IP potocol serves as a packet multiplexer. 

 Network interface:  The bottom layer consists of device drivers that manage 

the physical communications medium, such as ethernet. [21] 

 

Figure 2.2 Simplified TCP-IP Protocol Stack [21]
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2.2.1. Encapsulation and the Packet Headers 

A packet which is used in  TCP-IP protocol is formed of data and headers of 

protocols , which are encapsulated, as shown in Figure 2.3 

 

Figure 2.3 Encapsulation of headers [22] 

2.2.1.1. TCP Header  

The TCP header, which is shown in Figure 2.4, is the inner header of packet. The 

data area contains the application data. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 The TCP Header [22] 
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The header segments have the following meanings: 

Source port number (16 bits): The port number of the source system 

Destination port number(16 bits): The port number of the destination system 

Sequence number (32 bits): The sequence number of the first data octet in this 

segment (except when SYN is present). If SYN is present the sequence number is 

the   initial sequence number (ISN) and the first data octet is ISN+1. 

Acknowledgement number: If the ACK control bit is set this field contains the value 

of the next sequence number the sender of the segment is expecting to receive.  

Once a connection is established this is always sent. 

Header Length(Hdr lgth): The number of 32 bit words in the TCP Header.  This 

indicates where  the data begins.  The TCP header (even one including options) is 

an integral number of 32 bits long. 

Reserved ( 6 bits):  Reserved for future use.  Must be zero. 

The segment flags: 

SYN (S) : synchronize the sequence numbers to establish a connection 

ACK (A): acknowledgement number is valid 

RST (R): reset (abort) the connection 

FIN (F): sender is finished sending data –initiate a half close 

PSH (P): tells receiver not to buffer the data before passing it to the application 

(interactive applications use this) 

URG (U): urgent pointer is valid (often results from an interrupt) 

Window (16 bits):  The number of data octets beginning with the one indicated in the 

acknowledgment field which the sender of this segment is willing to accept. 

Checksum(16 bits) :  The checksum field is the 16 bit one's complement of the one's   

complement sum of all 16 bit words in the header and text. 

Urgent Pointer(16 bits):  This field communicates the current value of the urgent 

pointer as a  positive offset from the sequence number in this segment.   

Options(variable):  Options may occupy space at the end of the TCP header and are 

a  multiple of 8 bits in length.  All options are included in the  checksum.  [35] 
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2.2.1.2. UDP Header  

 

 

 

 

 

Figure 2.5 The UDP Header [22] 

If the UDP protocol is used as the transport protocol, the UDP Header, which is 

shown Figure 2.5  is the inner header. 

Source Port(16 bits):The port number of the sender. Cleared to zero if not used. 

Destination Port(16 bits)The port this packet is addressed to. 

Length(16 bits):The length in bytes of the UDP header and the encapsulated data. 

The minimum value for this field is 8. 

Checksum(16 bits) Computed as the 16-bit one's complement of the one's 

complement sum of a pseudo header of information from the IP header, the UDP 

header, and the data, padded as needed with zero bytes at the end to make a 

multiple of two bytes. If the checksum is cleared to zero, then checksuming is 

disabled. If the computed checksum is zero, then this field must be set to 0xFFFF. 

[35] 

2.2.1.3. ICMP Header  

 

 

 

 

Figure 2.6 The ICMP Header [22] 
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The ICMP Header format depends on type and code. In Figure 2.6 is example 

specific format , echo request and reply is illustrated.  

The Internet Control Message Protocol (ICMP) is used for error reporting and 

debugging of the IP Protocol. Some of ICMP's functions are to:  

Announce network errors: Such as a host or entire portion of the network being 

unreachable, due to some type of failure.  

Announce network congestion: When a router begins buffering too many packets, 

due to an inability to transmit them as fast as they are being received, it will 

generate ICMP Source Quench messages. Directed at the sender, these messages 

should cause the rate of packet transmission to be slowed.  

Assist Troubleshooting: ICMP supports an Echo function, which just sends a packet 

on a round--trip between two hosts.  

Announce Timeouts: If an IP packet's TTL field drops to zero, the router discarding 

the packet will often generate an ICMP packet announcing this fact. [35]  

2.2.2. TCP Session Establishment and Closing 

The setup phase of a TCP connection is a three way handshake. The client machine 

sends a TCP packet to the server with an initial TCP sequence number and the SYN 

flag set. The server sends back a packet with both SYN and ACK bit is set, an initial 

sequence number , as well as an acknowledgement for the client‟s initial sequence 

number.  Finally the client sends back a packet acknowledging the server‟s initial 

sequence number. For remainder of the session the ACK bit is set.  

At the end of TCP session one party initiates the closing sequence by sending a FIN 

packet (the ACK packet is still valid to keep the packets sequnced in correct order). 

The FIN is ACKed by the other end of the connection and a “half close” is taken 

place, which means that no more data will be flowing in that direction.  Since TCP 

connection is full-duplex (data can be flowing in each direction independently), each 

directional channel mest be shut down independently. Figure 2.7 shows a TCP 

session establishment and closing. [22] 



 

 9 

 

Figure 2.7 TCP Session Establishment and Closing [22] 

2.3. Types of Network Intrusions 

There are many intrusions types, some of them are the most seen types. The 

network intrusions can be grouped in two groups: Denial of Service Attack, Probe 

Attack 

2.3.1. Denial of Service Attacks 

The common feature of this type of intrusions is to bring the operating system of 

victim machine in a blocked and unstable state. 

2.3.1.1. Smurf Attack 

By Smurf attack, the victim machine gets too many packets, so that its operating 

system is blocked. 
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Figure 2.8 The Smurf Attack [23] 

If a Smurf attack, which is illustrated in Figure 2.8 network traffic is sniffed by 

Tcpdump program, these data may be seen. In Figure 2.9 , the logs shows a Smurf 

attack. The timestamps are close together and ICMP echo request is broadcasted. 

[22] 

 

Figure 2.9 Smurf attack logs [22] 

 

00:00:05.327 spoofed.target.com > 192.168.15.255: icmp echo request 
00:00:05.342 spoofed.target.com > 192.168.1.255: icmp echo request 
00:00:14.154 spoofed.target.com > 192.168.15.255: icmp echo request 
00:00:14.171 spoofed.target.com > 192.168.1.255: icmp echo request 

 
05:20:48.261 spoofed.target.com > 192.168.0.0: icmp echo request 
05:20:48.263 spoofed.target.com > 255.255.255.255: icmp echo request 
05:21:35.792 spoofed.target.com > 192.168.0.0: icmp echo request 
05:21:35.819 spoofed.target.com > 255.255.255.255: icmp echo request 
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2.3.1.2. Ping of Death Attack 

The Ping of Death attack causes a buffer to overflow on the target host by sending 

an echo request packet that is larger than the maximum IP packet size of 65535 

bytes. Theoretically, any IP packet that is larger than the maximum packet is could 

be used, but the attack has been popularized in the form of an ICMP echo request. 

In order to generate such as an “impossible packet”, the attacker uses special tools 

to craft fragments and send them to the target. Because no intermediary network 

devices will attempt to reassemble the fragments, the packets are simply forwarded 

until they reach the specified destination address. When the target host receives 

these fragments and tries to reassemble them or process the reassembled 

datagram its operating system may crash or hang. 

If a Ping of Death attack network traffic is sniffed by Tcpdump program, these data 

may be seen. In Figure 2.10 , the logs show a Ping of  Death attack. In the last line it 

is seen that the attacker sends a ping packet that is larger than the maximum IP 

packet size of 65535 bytes (380+65360=65740) [22] 

  

Figure 2.10 Ping of Death attack logs [22] 

2.3.1.3. TearDrop Attack 

The Teardrop attack depends on the fact that the network protocols are not good at 

math. They are especially bad at negative numbers.  

In Figure 2.11, the logs show a Teardrop attack. The top line shows a fragment 

named 242 with 36 octets of data of offset 0. The second line shows 4 more octets 

of data for offset 24.  Therefore to service this packet the operating system would 

have to rewind from 36 to 24. Negative numbers can translate to very large positive 

numbers, and so the operating system, and so the operating system is likely to 

12:43:58.431 big.pinger.org > www.mynetwork .net : icmp echo request 
(frag 4321: 380@0+) 
12:43:58.431 big.pinger.org > www.mynetwork .net : icmp echo request 
(frag 4321: 380@2656+) 
12:43:58.431 big.pinger.org > www.mynetwork .net : icmp echo request 
(frag 4321: 380@3040+) 
 
... 
12:43:58.431 big.pinger.org > www.mynetwork .net : icmp echo request 
(frag 4321: 380@649476+) 
12:43:58.431 big.pinger.org > www.mynetwork .net : icmp echo request 
(frag 4321: 380@65360+) 
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scribble all over some other program‟s section of memory. [23] If this many times 

happens, the system may be blocked. 

 

Figure 2.11 TearDrop Attack [23] 

2.3.2. Probe Attacks 

The common feature of these intrusions is to find live hosts or ports. 

2.3.2.1. PortSweep Attack 

The Portsweep attack tries to find live ports on a host, because an open port 

indicates that a service is offered and if an attacker knows what services are offered, 

he/she may be able to guess what security vulnerabilities are available to exploit. 

For a Linux operating system it is determined which flag will be set by which flag of 

source packet. On Table 2.1 the flags on response packets are showed. 

Table 2.1 TCP flags on response packets with TCP flags [22] 

Flags Live Port Dead Port 

None 0 RA 

F 0 RA 

S SA RA 

SF SFA RA 

R 0 0 

RF 0 0 

SR 0 0 

SRF 0 0 

A R R 

FA R R 

SA R R 

SFA R R 

RA 0 0 

RFA 0 0 

SRA 0 0 

SFRA 0 0 

while-e-coyote.45599  > target.net.3964 :udp 28 (frag 242:36@0+)  

while-e-coyote  > target.net.3964 :udp 28 (frag 242:4@24) 
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If the attacker do not want to use packets having the SYN flag set, he/she can use 

packets with no flag is set.  Because based on RFC specifications 

 a closed port should respond with RESET 

 an open port should simply discard the probe packet and not respond at all 

[22] 

In Figure 2.12, the logs show Portsweep attack. 

 

Figure 2.12 Scanning with Null packets (no flags) [22] 

2.3.2.2. Ipsweep Attack 

The Ipsweep attack is to find live hosts. If the attacker finds live hosts, he/she can 

begin other types of attacks. These attack is also done in the same way of 

portsweep attack, but by this attack hosts more than one are scanned. 

2.4. The KDD Cup 99 Data 

The KDD Cup is the annual Data Mining and Knowledge Discovery competition 

organized by ACM Special Interest Group on Knowledge Discovery and Data 

Mining, the leading professional organization of data miners. 

The 1998 DARPA Intrusion Detection Evaluation Program was prepared and 

managed by MIT Lincoln Labs. The objective was to survey and evaluate research 

in intrusion detection.  A standard set of data to be audited, which includes a wide 

variety of intrusions simulated in a military network environment, was provided.  The 

1999 KDD intrusion detection contest used a version of this dataset, which is also 

used by this thesis. 

Lincoln Labs set up an environment to acquire nine weeks of raw TCP dump data 

for a local-area network (LAN) simulating a typical U.S. Air Force LAN.  They 

operated the LAN as if it were a true Air Force environment, but peppered it with 

multiple attacks.  

11:33:36.225 scanner.org.63816 > target.com.821: . 
11:33:36.225 scanner.org.63816 > target.com.405: . 
11:33:36.225 scanner.org.63816 > target.com.391: . 
11:33:36.225 scanner.org.63816 > target.com.59: . 
11:33:36.225 scanner.org.63816 > target.com.91: . 
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The raw training data was about four gigabytes of compressed binary TCP dump 

data from seven weeks of network traffic.  This was processed into about five million 

connection records.  Similarly, the two weeks of test data yielded around two million 

connection records.  In Chapter 3.3.1.5 is this detailed explained. 

A connection is a sequence of TCP packets starting and ending at some well 

defined times, between which data flows to and from a source IP address to a target 

IP address under some well defined protocol.  Each connection is labeled as either 

normal, or as an attack, with exactly one specific attack type.  Each connection 

record consists of about 100 bytes. 

The datasets contain a total of 22 training attack types, with an additional 18 types in 

the test data only. This data has the features as defined in Table 2.2.  [27] 

Table 2.2 Features used by KDD Cup data to identify packets and connections [27] 

Feature Name Description  Type 

duration  
length (number of 

seconds) of the 

connection  

continuous 

protocol_type  
type of the protocol, e.g. 

tcp, udp, etc.  
discrete 

service  
network service on the 

destination, e.g., http, 

telnet, etc.  

discrete 

src_bytes  
number of data bytes from 

source to destination  
continuous 

dst_bytes  
number of data bytes from 

destination to source  
continuous 

flag  
normal or error status of 

the connection  
discrete  

land  
1 if connection is from/to 

the same host/port; 0 

otherwise  

discrete 

wrong_fragment  
number of ``wrong'' 

fragments  
continuous 

urgent  number of urgent packets  Continuous 

hot  
number of ``hot'' 

indicators 
continuous 

num_failed_logins  
number of failed login 

attempts  
continuous 

logged_in  
1 if successfully logged 

in; 0 otherwise  
discrete 

num_compromised  
number of 

``compromised'' 

conditions  

continuous 

root_shell  
1 if root shell is obtained; 

0 otherwise  
discrete 
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su_attempted  
1 if ``su root'' command 

attempted; 0 otherwise  
discrete 

num_root  
number of ``root'' 

accesses  
continuous 

num_file_creations  
number of file creation 

operations  
continuous 

num_shells  number of shell prompts  continuous 

num_access_files  
number of operations on 

access control files  
continuous 

num_outbound_cmds 
number of outbound 

commands in an ftp 

session  

continuous 

is_hot_login  
1 if the login belongs to 

the ``hot'' list; 0 otherwise  
discrete 

is_guest_login  
1 if the login is a 

``guest''login; 0 otherwise  
Discrete 

count  

number of connections to 

the same host as the 

current connection in the 

past two seconds  

continuous 

 

Note: The following  

features refer to these 

same-host connections. 

 

serror_rate  
% of connections that 

have ``SYN'' errors  
continuous 

rerror_rate  
% of connections that 

have ``REJ'' errors  
continuous 

same_srv_rate  
% of connections to the 

same service  
continuous 

diff_srv_rate  
% of connections to 

different services  
continuous 

srv_count  
number of connections to 

the same service as the 

current connection in the 

past two seconds  

continuous 

 

Note: The following 

features refer to these 

same-service connections. 

 

srv_serror_rate  
% of connections that 

have ``SYN'' errors  
continuous 

srv_rerror_rate  
% of connections that 

have ``REJ'' errors  
continuous 

srv_diff_host_rate  
% of connections to 

different hosts  
continuous  
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The attack types trained in KDD Cup data are as in Table 2.3. 

Table 2.3 KDD Cup 99 attack types [27] 

Dos Probe R2L U2R 

smurf portsweep 
ftp_write buffer_overflow 

teardrop ipsweep guess_passwd perl 

 neptune satan imap 

 
loadmodule 

rootkit back nmap multihop 
rootkit 

pod  phf  

land  spy  

  warezclient  

  warezmaster  

The data in these attack categories are not in the same number as in Figure 2.13. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 KDD Cup 99 Attack Categorization [29] 
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In KDD Cup 99 Data, the TCP flags has some meanings which are defined as in 

Table 2.4.  

Table 2.4 Flags by KDD Cup 99 Data [24] 

Flag Meaning 

S0 Connection attempt seen, no reply. 

S1 Connection established, not terminated. 

SF Normal establishment and termination. Note that 
this is the same symbol as for state S1. You can 
tell the two apart because for S1 there will not be 
any byte counts in the summary, while for SF 
there will be. 

REJ Connection attempt rejected. 

S2 Connection established and close attempt by 
originator seen (but no reply from responder). 

S3 Connection established and close attempt by 
responder seen (but no reply from originator). 

RSTO Connection established, originator aborted (sent 
a RST). 

RSTR Established, responder aborted. 

RSTOS0 Originator sent a SYN followed by a RST, we 
never saw a SYN ACK from the responder. 

RSTRH Responder sent a SYN ACK followed by a RST, 
we never saw a SYN from the (purported) 
originator. 

SH Originator sent a SYN followed by a FIN, we 
never saw a SYN ACK from the responder 
(hence the connection was ``half" open). 

SHR Responder sent a SYN ACK followed by a FIN, 
we never saw a SYN from the originator. 

OTH No SYN seen, just midstream traffic (a ``partial 
connection'' that was not later closed). 
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3. INTRUSION DETECTION SYSTEMS 

Intrusion detection system history begins by 1980, when James P.  Anderson wrote 

a report published in planning study for the U.S Air Force. In this report, he 

proposed changes to computer audit mechanisms to provide information for use by 

computer security personnel when tracking problems. He proposed a taxonomy fo 

classifiying risks and threats to computer systems. If the not authorized user of 

computer uses data or program, it is “External Penetration”, if the authorized user of 

computer uses not authorized data or program, it is “Internal Penetration”. He 

devotes to the problem associated with masquearades, those adversaries who 

acess systems using purloined user ids and passwords. He suggests that some sort 

of statistical analysis of user behaviour, capable of determining unusual patterns of 

system use, might represent a way of detecting masquerades. This suggestion was 

tested in the next milestone of intrusion detection the IDES project. [21] 

First intrusion detection systems were host-based, because the internet is born and 

grows up in early 1990‟s.  Then the network-based ID systems were developed. 

3.1. Classification of Intrusion Detection Systems 

The intrusion detection systems are classified as in Figure 3.14.  [2] 

The detection method describes the characteristics of the analyzer. When the 

intrusion detection system uses information about the normal behaviour of the 

system it monitors, it is behaviour based. This means , if IDS finds deviation from 

normal behaviour, then this type of detection is described as anomaly detection.  

When the intrusion detection system uses information about the attacks, it is 

knowledge-based. This means IDS have a information(a database) about the known 

intrusions, so it matches the behaviours with that information. This type of detection 

is described as misuse detection. [2] 

The behaviour on detection describes the response of the intrusion detection system 

to attacks. When it actively reacts to the attack by taking either corrective (closing 

holes) or pro-active (logging out possible attackers, closing down services) actions, 
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then the intrusion detection system is said to be active. If the intrusion detection 

system merely generates alarms (including paging, etc), it is said to be passive. [2] 

The audit source location discriminates intrusion detection systems based on the 

kind of input information they analyze. This input information can be audit trails (for 

example system logs) on a host, network packets, application logs or intrusion 

detection alerts generated by other intrusion detection systems. [2] 

The detection paradigm describes the detection mechanism used by the intrusion 

detection system. Intrusion detection systems can evaluate states (secure or 

insecure) or transitions (from secure to insecure). In addition, this evaluation can be 

performed in a non-obtrusive way or by actively stimulating the system to obtain a 

response. [2] 

The usage-frequency is an orthogonal concept. Certain intrusion detection systems 

have real-time continuous monitoring capabilities, whereas others have to be run 

periodically. [2] 

 

 

Figure 3.14 Intrusion Detection Taxonomy [2] 
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3.2. Intrusion Detection System Components 

Most intrusion detection systems have common features. The functionality of an 

generic IDS can be logically distributed into three components: sensors, analyzers, 

and a user interface.  [3] 

Sensors : Sensors are responsible for collecting data. The input for a sensor may be 

any part of a system that could contain evidence of an intrusion. Example types of 

input to a sensor are network packets, log files, and system call traces. Sensors 

collect and forward this information to the analyzer. [3] 

Analyzers: Analyzers receive input from one or more sensors or from other 

analyzers. The analyzer is responsible for determining if an intrusion has occurred. 

The output of this component is an indication that an intrusion has occurred. The 

output may include evidence supporting the conclusion that an intrusion occurred. 

The analyzer may provide guidance about what actions to take as a result of the 

intrusion. [3] 

User interface:  The user interface to an IDS enables a user to view output from the 

system or control the behaviour of the system. In some systems, the user interface 

may equate to a “manager,” “director,” or “console” component. [3] 

In addition to these three essential components, an IDS may be supported by a 

“honeypot,” i.e., a system designed and configured to be visible to an intruder and to 

appear to have known vulnerabilities. A honeypot provides an environment and 

additional information that can be used to support intrusion analysis. The honeypot 

serves as a sensor for an IDS by waiting for intruders to attack the apparently 

vulnerable system. Having a honeypot serve as a sensor provides indications and 

warnings of an attack. Honeypots have the ability to detect intrusions in a controlled 

environment and preserve a known state. [3] 

3.3. Intrusion Detection Systems by Detection Method 

3.3.1. Knowledge Based Intrusion Detection Systems 

An ID System that uses misuse detection, have information about specific attacks 

and system vulnerabilities. So, it compares the logs with that information, and when 

it finds a match, it raises alarm.  

Advantages of the knowledge-based approches are that they have low false positive 

alarm rate. It is more easy to understand and to update. 
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Disadvantages are the difficulty gathering of required information on the known 

attacks and keeping it up to date with new vulnebarilities and environments. When it 

is not enough often updated, the false negative alarm rate can be very high, which 

means intrusion patterns are treated as normal.  

Misuse-based systems were some of the earliest systems proposed and having 

reduced false positive rate they are most common form of IDS used in production 

today, for example SNORT. 

3.3.1.1. Expert Systems 

Expert Systems are used primarily by knowledge based intrusion detection. The 

expert system contains a set of rules that describe attacks. Audit events are 

translated into facts carrying their semantics in the expert system, and the inference 

engine draws conclusions using these rules and facts. [2] 

Examples of misuse detection systems using expert systems are IDES (Intrusion 

Detection Expert System)(1987), ComputerWatch (1990), NIDX (Network Intrusion 

Detection Expert System)(1988) [6] 

3.3.1.2. Signature Analysis 

The semantic description of the attacks is transformed into information that can be 

found in the audit trail in a straightforward way. For example, attack scenarios might 

be translated into the sequences of audit events they genarate or into patterns of 

data that can be sought in the audit trail generated by the system. [6] 

This technique allows a very efficient implementation and is therefore applied in 

commercial intrusion detection products. [2] 

Systems that use signature analysis include Haystack(1988),  NetRanger(1990), 

RealSecure(1990) and MuSig(1998).[6] 

3.3.1.3. Petri Nets 

To represent signatures of intrusions, IDIOT, a knowledge-based intrusion detection 

system developed by Purdue University uses Colored Petri Nets. Figure 3.15 shows 

a simple example of a Colored Petri Net that issues an alarm if the number of 

unsuccessful login attempts exceeds four within one minute. The transition 

represented by a vertical bar, from state S1 to S2 can occur if there is a token in 

state S1 and an unsuccesful login attempt. The time of the first unsuccessful login 

attempt is stored in the token variable T1. The transition from state S4 to state S5 
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can happen if there is a token in S4, an unsuccesful login attempt, and the time 

difference between this and the first unsuccesful login attempt is less then 60 

seconds. Reaching final state S5 corresponds to a matched signature and may 

therefore result in an alarm being issued. [2] 

 

Figure 3.15 PetriNet State Diagram used by IDIOT [2] 

Advantages of colored Petri nets include their generality, their conceptual 

simplicity,and their ability to be represented as graphs. However, matching a 

complex signature against the audit trail can become computationally expensive. [2] 

3.3.1.4. State Transition Analysis 

State transition analysis describes attacks with a set of goals and transitions based 

on state transition diagrams. Any event that triggers an attack state will be 

considered an intrusion. Examples of systems applying state transition analysis are 

USTAT (Unix State Transition Analysis Tool) (1992) and NetSTAT (Network-based 

State Transition Analysis Tool) (1998).[6] 

3.3.1.5. Data Mining  

Data mining approach can be used in misuse detection as well as in anomaly 

detection. 

Data mining refers to a process of nontrivial extraction of implicit, previously 

unknown, and potentially useful information from databases. Example misuse 

detection systems that use data mining include JAM (Java Agents for Metalearning) 

(1998), MADAM ID (Mining Audit Data for Automated Models for Intrusion 

Detection) (2000), and Automated Discovery of Concise Predictive Rules for 

Intrusion Detection (1999). [6] 
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JAM (developed at Columbia University) uses data mining techniques to discover 

patterns of intrusions. It then applies a meta-learning classifier to learn the signature 

of attacks. The association rules algorithm determines relationships between fields 

in the audit trail records, and the frequent episodes algorithm models sequential 

patterns of audit events. Features are then extracted from both algorithms and used 

to compute models of intrusion behaviour. The classifiers build the signature of 

attacks. So essentially, data mining in JAM builds a misuse detection model. [6] 

MADAM ID uses data mining to develop rules for misuse detection. The motivation 

is that current systems require extensive manual effort to develop rules for misuse 

detection. While MADAM ID performed well in the 1998 DARPA evaluation of 

intrusion detection systems, it is ineffective in detecting attacks that have not already 

been specified. [6] 

In the paper “A Data Mining Framework for Building Intrusion Detection Models” [5] , 

Wenke Lee, Salvatore J. Stolfo and  Kui W. Mok (Columbia University) explain how 

they mine intrusion data. They  participated in the DARPA Intrusion Detection 

Evaluation Program, prepared and managed by MIT Lincoln Labs. They were 

provided with about 4 gigabytes of compressed tcpdump data of 7 weeks of network 

traffic. This data can be processed into about 5 million of connection records of 

about 100 bytes each. The data contains content (i.e., the data portion) of every 

packet transmitted between hosts inside and outside a simulated military base. 

Four main categories of attacks were simulated, they are: 

 DOS, denial-of-service, for example, ping-of-death,teardrop, smurf, syn 

flood, etc., 

 R2L, unauthorized access from a remote machine, for example, guessing 

password, 

 U2R, unauthorized access to local superuser privileges by a local 

unprivileged user, for example, various of buffer overflow attacks, 

 PROBING, surveillance and probing, for example, port-scan, ping-sweep, 

etc. 

They used Bro [24] tool, which perform IP packet filtering and reassambling,and 

allow event handlers to output summarized connection records. 

Example network connection records are in Table 3.5. 
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Table 3.5 Network connection records by BRO [5] 

 

The approach taken by MADAM ID differs from the others covered in that instead of 

looking at individual packets it focuses on connection sessions. The approach is 

unique in that it is data-led rather than model-led. Data Mining tools and methods 

are used to distinguish anomalous sessions from normal sessions in an iterative 

manner using the training data as reference [4] 

In their approach, the learned rules replace the manually encoded intrusion patterns 

and profiles, and system features and measures are selected by considering the 

statistical patterns computed from the audit data. Meta-learning is used to learn the 

correlation of intrusion evidence from multiple detection models, and produce a 

combined detection models. [5] 

Their experiment results on intrusion data are shown in Table 3.6. 

Table 3.6 Example “traffic” connection records [5] 

 

Their RIPPER [25] algorithm used in MADAM ID gives rules as in Table 3.7. 
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Table 3.7 Example RIPPER Rules for DOS and PROBING attacks [5] 

RIPPER Rule Meaning 

Smurf:- service= ecr_i, host-count >= 5, 

Host_srv_count >= 5 

If the service is icmp echo request and for the 

past 2 seconds, the number of connections that 

have the same destination host as the current 

one is at least 5, and the number of connections 

that have the same service as the current one is 

at least 5, then this is a smurf attack (a DOS 

attack). 

Satan: host_REJ_% >= %83, host_diff_srv_% >= 

%87 

If for the connections in the past 2 seconds that 

have same the destination host as the current 

connection, the percentage of rejected 

connections are at least %87, then this is a satan 

attack (a PROBING attack). 

Although their models were intended for misuse detection, they experiment the 

features for new intrusion data. The results are as in Table 3.8. 

Table 3.8 Comparing Detection Rates (in %) on Old and New Attacks by MADAM ID [5] 

Category Old New 

DOS 79.9 24.3 

PROBING 97.0 96.7 

U2R 75 81.8 

R2L 60.0 5.9 

Overall 80.2 37.7 

3.3.2. Behaviour Based Intrusion Detection Systems 

Behaviour based intrusion detection techniques assume that an intrusion can be 

detected by observing a deviation from the normal or expected behaviour of the 

system or the users. The model of normal or valid behaviour is extracted from 

reference information collected by various means. The intrusion detection system 

later compares this model with the current activity. When a deviation is observed, an 

alarm is raised. [2] 
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Advantages of behaviour based approaches are that they can detect attempts to 

exploit new and unforeseen vulnerabilities, so they can even discover new attacks. 

[2] 

The high false positive alarm rate is the main drawback of behaviour based 

techniques because the entire scope of the behaviour of an information system may 

not be covered during the learning phase. Also behaviour can change over time, so 

the behaviour profile should be periodically updated. Here should be considered that 

the behaviour profile do not include intrusive behaviour. [2] 

3.3.2.1. Statistics 

The most widely used to build behaviour based intrusion detection systems is 

statistics. The user or system behaviour is measured by a number of variables over 

time.  Examples of these variables are the login and logout time of each session, the 

resource duration, and the amount of processor-memory-disk-resources consumed 

during the session. The original model keeps averages of all these variables and 

detects whether thresholds are exceeded based on the standard deviation of the 

variable. [2] 

Example systems employing statistical methods for anomaly detection are IDES 

(Intrusion Detection Expert System), NIDES (Next- Generation Intrusion Detection 

Expert System), and Event Monitoring Enabling Responses to Anomalous Live 

Disturbances (EMERALD). [2] 

3.3.2.2. Expert systems 

Expert system used in behaviour based intrusion detection depends also on 

statistical anomaly detection. Two examples are Wisdom&Sense and AT&T‟s 

Computer Watch. The tool of Wisdom&Sense first builds a set of rules that 

statistically describe the behaviour of the users based on recordings of their 

activities over a given period of time. Current activity is then matched against these 

rules to detect inconsistent behaviour. [2] 

The tool of AT&T checks the actions of users according to a set of rules that 

describe proper usage policy. [2] 

3.3.2.3. Neural Networks 

Neural networks are algorithmic techniques used to first learn the relationship 

between two sets of information, and then “generalize” to obtain new input-output 
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pairs in a reasonable way. In the intrusion detection field, neural networks have 

been mainly used to learn the behaviour of actors in the system (e.g users, 

daemons). [2] 

An example is NNID (Neural Network Intrusion Detector). A host-based, 

backpropagation neural network intrusion detection system was tested 

experimentally on a system of 10 users. The system was 96% accurate in detecting 

unusual activity, with 7% false alarm rate.[13] 

3.3.2.4. Computer Immunology  

The idea of using immunological principles in computer security has been described 

by  Stephanie Forrest in 1994. [6] 

This technique attempts to build a model of normal behaviour of the UNIX network 

services, rather than of the behaviour of users. This model consists of short 

sequences of system calls made by processes. The tool first collects a set of 

reference audits, which represent the appropriate behaviour of the service, and 

extracts a reference table containing all the known “good” sequences of system 

calls. These patterns are then used for live monitoring to check whether the 

sequences generated are listed in the table; if not the intrusion detection system 

generates an alarm. This technique has a very low false alarm rate if the reference 

table is sufficiently exhaustive. [2]  

3.3.2.5. Data Mining  

 Intrusion  detection attempts  to  identify  existing attack  patterns  and  recognise  

new  intrusion  methods,  employing  methods  from sciences such as mathematics, 

statistics and machine learning. Data mining, generally perceived to be a tool to 

discover unknown regularities  in  data,  also  lends  itself  to this  task.  In  

particular,  it  promises  to  help  in  the  detection  of  previously  unseen attacks  by  

establishing  sets  of  commonly  observed  regularities  in  network  data. These  

sets  can  be  compared  to  current  traffic  for  deviation  analysis.  Data  mining 

techniques, however, are traditionally employed on large amounts of off-line data. It 

therefore remains to be seen how well they are able to support ID systems 

commonly required to operate in real time. [33] 

Applications of data mining to anomaly detection include ADAM (Audit Data Analysis 

and Mining) (2001), IDDM (Intrusion Detection using Data Mining) (2001), and 

eBayes (2000).  [6] 
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ADAM (developed at George Mason University Center for Secure Information 

Systems) uses a combination of association rules mining and classification to 

discover attacks in TCP dump data. The ADAM system is able to detect network 

intrusions in real time with a very low false alarm rate. [6] 

IDDM  (Intrusion  Detection  using  Data  Mining)  project focuses on the use of data 

mining in the  latter  context,  by  producing  descriptions  of  network  data  and  

using  this information for deviation analysis. It   aims  to  explore  data mining as a 

supporting paradigm in extending intrusion detection capabilities. The system 

characterizes change between network data descriptions at different times, and 

produces alarms when detecting large deviations between descriptions. However, 

IDDM has problems achieving real-time operation. [6] 

3.3.2.6. Pattern Classification 

All intrusion detection systems that use pattern classification algorithms are 

behaviour based. Some examples of them are given in Chapter 5, after studying 

pattern classification algorithms in Chapter 4. 
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4. PATTERN CLASSIFICATION 

Pattern classification is a type of machine learning, that is to build machines that can 

recognize patterns [16]. The areas where pattern classification used are: 

 Speech recognition 

 DNA sequence identification 

 Fingerprint identification 

 Optical character recognition 

 Archeology 

 Geology etc. [8] 

4.1. Definitions and Notation 

Pattern (feature vector, observation or datum) :  x is a single data item used by the 

clustering algorithm. It typically consists of a vector of d measurements : 

),...,,( 21 dxxxx   

Feature :  The individual scalar components ix  of a pattern x are called features (or 

attributes). 

Dimensionality : d is the dimensionality of the pattern or of the pattern space. 

Pattern set : A pattern set is denoted },..,,{ 21 nxxxH  . The ith pattern in H is 

denoted ),...,,( ,2,1, diiii xxxx  .  In many cases a pattern set to be clustered is 

viewed as an n x d  pattern matrix. 

Class : A class, in the abstract, refers to a state of nature that governs the pattern 

generation process in some cases. More concretely, a class can be viewed as a 

source of patterns whose distribution in feature space is governed by a probability 

density specific to the class. Clustering techniques attempt to group patterns so that 

the classes thereby obtained reflect the different pattern generation processes 

represented in the pattern set. 
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Hard clustering : Hard clustering techniques assign a class label il  to each patterns 

ix  identifying its class. The set of all labels for a pattern set H is },..,,{ 21 nlllL   with 

},..,1{ kli  , where k is the number of clusters. 

Fuzzy clustering : Fuzzy clustering procedures assign to each input pattern ix a 

fractional degree of membership ijf  in each output cluster j. 

Distance measure : Distance measure is a metric on the feature space used to 

quantify the similarity of patterns. [19] 

4.2. Typical Components of Clustering  

Although there are many clustering algorithms, they have all common tasks: 

a. Pattern representation: The features of patterns are determined. This 

features are optionally selected and/or extracted and normalized. (Chapter 

4.2.2) 

b. Definition of pattern similitary measure: The measure is selected appropriate 

to the data domain and clustering algorithm, such as Euclidean distance, 

Manhattan distance or Mahalonobis distance. (Chapter 4.2.1) 

c. Clustering or grouping: The algorithm makes clusters of the data 

d. Data abstraction: The clusters are simple labeled, usually in terms of cluster 

prototypes or representative patterns such as centroid. 

e. Assesment of output: The output is validated if needed. [19] 

The common stages in clustering is shown in Figure 4.16. 

 

Figure 4.16 Stages in clustering [19] 

4.2.1. Distance Measures 

The distance functions or metrics must have four properties. D is distance and for all 

vectors a,b, and c, these properties are as follows: [16] 
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Nonnegativitiy: 0),( baD  

Reflexitivity: 0),( baD if and only if ba   

Symmetry : ),(),( abDbaD   

Triangle inequality: ),(),(),( caDcbDbaD   

The Minkowski Metric : 

k
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                                                                            (4.1) 

The Euclidean Metric : 

The Euclidean metric is the 2L  form of Minkowski metric: 
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The Manhattan or City Block Metric : 

The Manhattan metric is the 1L  form of Minkowski metric  
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kk babaD
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||),(              (4.3) 

4.2.2. The Normalization of Features 

The drawback to direct use of the Minkowski metrics is the tendency of the largest 

scaled feature to dominate the others. Solutions to this problem include 

normalization of the continuous features (to a common range or variance) or other 

weighting schemes.  [19] 

Some normalization approaches are: [34] 

 Min-max normalization: 

v  is a variable, 'v  is the normalized variable, Amax  is the maximum value 

which can v  take, Amin  is the minimum value which v  can take, Anew max_  

is the maximum value which 'v  can take, Anew min_  is the minimum value 

which 'v  can take. 

  AnewAnewAnew
AA

Av
v min_min_max_

minmax

min
' 













      (4.4) 
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 Zero-mean normalization: 

In pattern set H with N patterns , jv  is jth element of a pattern, 'jv  is the 

normalized jth element of the pattern. 

j

jj

j
devstd

meanv
v

_
'


        

 (4.5) 

The mean vector of jth feature in H jmean is calculated as follows: [12] 
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The standard deviation is calculated as follows: 
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4.3. Pattern Classification Algorithms 

Pattern classification algorithms can be grouped as in Figure 4.17: 

 

Figure 4.17 Classification of  Pattern Classification algorithms [8] 

 Exclusive vs. Nonexclusive: By exclusive classification each object belongs 

to exactly one subset, or cluster. Nonexclusive classification can assign an 

object to several classes.  

 Unsupervised vs. Supervised: An unsupervised classification uses only the 

proximity matrix to perform the classification. Supervised classification uses 

category labels on the subjects as well as the proximity matrix. Unsupervised 

classification is named also clustering. [8] 

 

Classification 
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Supervised Unsupervised 
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Bayesian decision theory is a fundemantal statistical approach to the problem of 

pattern classification [16]. So, before studying some pattern classification 

algorithms, we will first study, bayesian decision rule. 

Bayesian decision rule: 

Suppose we have two categories ,1w and .2w  The prior probabilities are P( )iw . 

And we know the value of the feature of the categories which is defined by x. The 

conditional probability is p(x| )iw . The posterior probabilty is  

)(

)()|(
)|(

xp

wPwxp
xwP ii

i            (4.8) 

where p(x) is the probability density. 

Bayesian decison rule in two categories is as follows:  

Decide 1w  if )()( 21 wPwP   ; otherwise decide 2w  . [16] 

4.3.1. Supervised Classification 

In supervised learning, a teacher provides a category label or cost for each pattern 

in a training set, and seeks to reduce the sum of the costs for these patterns [16].  

So , the patterns in test set are labeled by labels in training set in order to minimize 

the error. Some supervised classification algorithms are k-NN nearest neighbour 

algoritm and support vector machines.  

4.3.1.1. K-Nearest Neighbour Rule 

K-Nearest Neighbour rule is based on bayesian classificaition. Let nV be the volume 

of n dimensional Euclidean space nR , nk be the samples falling in nR , and )(xpn  

be the nth estimate for )(xp : 

n

n

n
V

nk
xp

/
)(                                  (4.9) 

Here the volume nV  is grown until it encloses nk  neighbours of x, and  nk  is a 

function of n such as nkn  . This is the nk -nearest neighbour estimation method. 

[16] 
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The k-Nearest Neighbour algorithm is the most basic of all Instance-Based Learning 

(IBL) methods. Instance-Based Learning (IBL) algorithms consist of simply storing 

the presented training examples (data). When a new instance is encountered, a set 

of similar, related instances is retrieved from memory and used to classify the query 

instance (target function). [18] 

Other most common IBL methods are: 

 Locally Weighted Regression  

 Radial Basis Function [18] 

The k-Nearest Neighbour algorithm assumes all instances correspond to points in 

the n-dimensional space Rn. The nearest neighbours of an instance are defined in 

terms of standard Euclidean geometry (distances between points in n-dimensional 

space). More precisely, let an arbitrary  instance x  be  described  by  the  feature  

attribute lists: < a1(x), a2(x), a3(x), ..., an(x)>, where ar(x) denotes the value of the 

rth attribute of instance x. The distance between the two instances xi and xj is given 

by Equation 4.8. This is the general form for calculating distance in n-dimensional 

space. [18] 

 
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jrirji xaxaxxd
1

2
)()(),(                    (4.10) 

The k – nearest-neighbor rule is to classify x by assigning it the label most frequently 

represented among the k nearest samples and use a voting scheme.[16] 

 

Figure 4.18 An example for the k-Nearest Neigbour rule [16] 

In Figure 4.18 is an example for the k-Nearest Neighbour shown. The k-Nearest 

Neighbour query starts at the best point x  and grows a spherical region until it 
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encloses k  training samples and it labels the test point by a majority vote of these 

samples. The computational complexity of k–Nearest Neighbor rule is )( 2nO . So it 

has to be optimized for use in intrusion detection.[16] 

4.3.1.2. Support Vector Machines 

Support vector machines rely on preproccesing the data to represent patterns in a 

high dimension - typically much higher than the original feature space. With an 

appropriate nonlinear mapping  .  to a sufficiently high dimension, data from two 

categories can always be sperated by a hyperplane. Here it is assumed that kx  has 

been transformed to )( kk xy  . For each of the n patterns, k = 1,2,...,n , 1kz , 

according to whether pattern k is in 1w  or 2w . [16] 

yayg t)(                      (4.11) 

1)( kk ygz  , k= 1,...,n                   (4.12) 

,
||||

)(
b

a

ygz kk   k=1,...,n                   (4.13) 

The goal is to find weight vector a that maximizes b. The solution vector can be 

scaled arbitrarily and still preserve the hyperplane, so to ensure the uniquness it 

should be 

1|||| ab                      (4.14) 

The support vectors are the (transformed) training patterns for which Eq. (4.12) 

represents an equality, that is, the support vectors are (equally) close to the 

hyperplane(Figure 4.19). The support vectors are the training samples that define 

the optimal separating hyperplane and are the most difficult patterns to classify. 

Informally defined, they are the patterns most informative for the classification task. 

[16]  
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Figure 4.19 Support vectors and the hyperplane [16] 

The hyperplane divides the nR  into two regions. To use the maximal margin 

classifier, it is determined on which side the test pattern lies and assign the 

corresponding class label.  [26] 

4.3.2. Unsupervised Learning and Clustering 

In unsupervised learning or clustering there is no explicit teacher, and the system 

forms clusters or “natural groups” of the input patterns. “Natural” is always defined 

explicitly or implicitly in the clustering system itself, and  given a particular set of 

patterns or cost function , different clustering algorithms lead to different clusters.  

[16]  

The clustering algorithm taxonomy is illustrated in Figure 4.20. The best algorithm 

depends on data, which is to be clustered. 
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Figure 4.20 A taxonomy of clustering approaches [19] 

A hierarchical classification is a nested sequence of partitions, whereas a partitional 

classification is a single partition. [8] 

Here are k-means clustering as a type of partional clustering and hierarchical 

clustering studied. 

4.3.2.1. K-Means Clustering 

The most intuitive and frequently used criterion function in partitional clustering 

techniques is the squared error criterion, which tends to work well with isolated and 

compact clusters. The squared error for a clustering L of a pattern set H (containing 

K clusters) is  
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where 
)( j

ix  is the 
thi   pattern belonging to the 

thj  cluster and jc  is the centroid of 

the 
thj  cluster. [19] 
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The k-Means Algorithm [8] 

 

The advantage of this algorithm is that it has a computational complexity of O(n), 

where n is the number of patterns, but the disadvantage is it is sensitive of the initial 

clusters. [19] 

4.3.2.2. Hierarchical Clustering 

Hiearchical clustering algorithms yield a dendrogram representing the nested 

grouping of patterns and similarity levels at which groupings change. [19] 

Hierarchical Clustering Algorithm [8] 
 
 

 

 

 

 

 

 

Step 1. Select an initial partition with K clusters. 

Step 2. Generate a new partition by assigning each pattern to its closest 

cluster  center. 

Step 3. Compute new cluster centers as the centers of the clusters. 

Step 4. Repeat step2 and 3 until an optimum value of the criterion function 

is found. Typical convergence criteria are: no (or minimal) reassignment of 

patterns to new cluster centers, or minimal decrease in squared error. 

Step 5. Adjust the number of clusters by merging and splitting existing 

clusters or by removing small, or outlier, clusters. 

 

Step 1: Assign each object to its own cluster. 

Step 2: Computer the distances between all clusters. 

Step 3: Merge the two clusters that are closest to each other. 

Step 4: Return to step 2 until there is only one cluster left. 
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Figure 4.21 Points falling in three clusters [19] 

In Figure 4.21, there are 7 points (A,B,C,D,E,F,G). If the hiearchical clustering 

algorithm is applied, first the points (B,C), (D,E), and (F,G) are merged in a cluster. 

The second loop of the algorithm merges the point A with the cluster of (B,C). The 

(D,E) cluster is also merged with (F,G) cluster. In the  third and last loop, the (A,B,C) 

cluster is merged with (D,E, F,G) cluster. In Figure 4.22 the dendogram, which is the 

output of this algorithm is showed. [19] 

 

 

Figure 4.22 The dendogram obtained using hierarchical clustering [19] 

In hierarchial clustering algorithm, cutting the dendogram, which means stopping the 

loop of the algorithm creates the clusters. 

Most popular hierarchical clustering algorithms  are single-link, complete-link and 

avearge link algorithms. 
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By the single-linkage clustering algorithm the distance between the closest nodes 

calculated: [8] 

              

 

By the complete-linkage clustering algorithm the distance between the farthest 

nodes calculated: [8] 

   

 

 

By the average-linkage clustering algorithm the distance between the median 

calculated: [8] 

   
   

 

 

The single-linkage algorithm allows clusters to grow long and thin. The complete-

linkage algorithm produces more compact clusters. Both the single-linkage algorithm 

and the complete-linkage algorithm are susceptible to distortion by outliers or 

deviant observation. The average-linkage algorithm is an attempt to compromise 

between the extreme of the single-linkage algorithm and the complete-linkage 

algorithm. 

4.3.2.3. Comparison of Hierachical vs. Partitional Algorithms 

Hierarchical algorithms are more versatile than partitional algorithms. For example, 

the single-link clustering algorithm works well on data sets containing non-isotropic 

clusters including well-separated, chain-like, and concentric clusters, whereas a 

typical partitional algorithm such as the k-means algorithm works well only on data 

sets having isotropic clusters On the other hand, the time and space complexities of 

the partitional algorithms are typically lower than those of the hierarchical 

algorithms. 

4.4. Feature Selection 

Feature selection is highly important in pattern classification, especially for patterns 

with high dimensionality, because reducing the feature size can improve the speed 

of pattern classification. 
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In all feature selection algorithms the concept is the same: A feature is good if it s 

relevant to the class concept but is not redundant to any of other relavant features. 

That means a feature is good if it is higly correlated with the class but not highly 

correlated with any of the other feautures. [30] 

To overcome this problem there are two approaches to measure the correlation 

between two random variables. One is based on classical linear correlation and the 

other is based on information theory. Under the first approach, the most well known 

measure is linear correlation coefficent. For a pair of variables ),( YX , the linear 

correlation coefficient r is given by the formula 
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where 


ix  is the mean of X  and 


iy  is the mean of Y . The value r  lies between -1 

and 1, inclusive. If X and Y  are completely correlated, r  takes the value of 1 or  -1; 

if X and Y are totally indpendent r  is zero. It is symmetrical measure for two 

variables. [30] 

It is known that if data is linearly seperable in original representation, it is still linearly 

seperable if all but one of a group of linearly dependent features are removed. 

However, it is not safe to always assume linear correlation between features in the 

real world. Linear correlation measures may not be able to capture correlations that 

are not linear in the nature. Another limitation is that the calculation requires all 

features contain numerical values. [30] 

The FCBF( Fast Correlation Based Feature) solution adopts the second approach .  

So, it chooses a correlation measure based on information-theoretical concept of 

entropy, a measure of uncertainty of a random variable. The entropy of a variable 

X  is defined as  


i

ii xPxPXH ))((log)()( 2       (4.20) 

and the entropy of X  after observing values of another variable Y  is defined as 



 

 42 

 
i j

jijij yxPyxPyPYXH ))|((log)|()()|( 2    (4.21) 

where )( ixP  is the prior probalities for all values of X  and )|( ii yxP  is the 

posterior probabilities of X  given the values of Y . The amount by which the 

entropy of X  decreases reflects additional information about X  provided by Y  and 

is called information gain, given by 

)|()()|( YXHXHYXIG        (4.22) 

According to this measure, a feature Y  is regarded more correlated to feature X  

than to feature Z , if )|()|( YZIGYXIG  .  The information gain is symmetrical for 

two random variables X and Y . The algorithm uses symmetrical uncertaintity to 

ensure that the values are normalized: 
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It compensates for information gain‟s bias toward features with more values and 

normalizes its values to the range [0,1] with the value 1 indicating that knowledge of 

the value of either one completely predicts the value of the other and the value 0 

indicating that X  and  Y  are independent.  [30] 

The FBCF algorithm is described in  [30]. 

One of the other famous feature selection algorithms is Relief.  Relief is a feature 

weighting technique. It is originally introduced by  Rendell L. Kira K. and extended to 

Relief-f by Kononenko I. for handling noisy, incomplete and multi-class data sets. 

[32] 

Relief is based on 1L  Metric. Similarities between feature values are defined 

by
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The similarity between instances is defined by 

if  feature q  is continuous 

 

if feature q is discrete and j
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Iniatilizing every feature weight with zero, the weight algorithm iterates m times 

through a procedure for weight optimization. First the procedure randomly selects an 

instance from the instance base, secondly determines k nearest neighbours of the 

instance in the same class (nearest hits) k nearest neighbours in diffrent classes 

(nearest misses) and thirdly updates each feature weight by 

   













  

 

k

i

k

i

j

qmiss

j

q

Rj

qhit

j

q

R

qq
ii xxxx

mk
ww

1 1

,,
*

1
    (4.26) 

The Relief algorithm expects a user defined threshold value  . Feature q is 

selected if qw  holds, otherwise it is neglected. [32] 

The performance results of FCBF algorithm is given as in Table 4.9 and Table 4.10. 

Table 4.9 The running time (in ms) and the number of selected features for each feature 

selection algorithm [30] 

 

Table 4.10 Accuracy of C4.5 on selected features for each feature selection algorithm [30] 
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5. RESEARCH IN INTRUSION DETECTION WITH PATTERN CLASSIFICATION 

In literature there are many recently published papers about intrusion detection with 

pattern classificaiton. Some of them are studied in this thesis. 

5.1. Intrusion Detection with Unsupervised Clustering 

5.1.1. Intrusion Detection with Single-Linkage Clustering 

By this work KDD Cup 99 data has been used [12] .The data was normalized with 

zero-mean normalization (Chapter 4.2.2).  Then with the algorithm as shown in 

Figure 5.23 the data has been classified into clusters.  

 

Figure 5.23 The algorithm of IDS with single linkage clustering [12] 

Read the cluster  names and 
initialize them to S, the empty 

set 

Create a cluster 
with d as the 
defining instance 

Yes 

Find the cluster in S that is 
closest to this intance  

Dist(C,d) <= dist ( 1C ,d) 

No 

If  dist (C,d) <= W, thean associate d 
with the cluster C,  
Otherwise create new cluster 

}{ nCSS   

End 

No 

Yes 
Yes 

Obtain a instance d from 
the training set ? 

Is S empty? 
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S is the cluster set, C is the cluster, W is the constant width, d  is the distance 

between vectors. 

In Table 5.11 are the results. 

Table 5.11 Results of Single Linkage algorithm [12] 

Width N  Detection Rate False Positive Rate 

20 %15 35.7% 1.44% 

20 %7 66.2% 2.7% 

20 %2 0.88% 8.14% 

N is percentage of the largest cluster to label normal during detection. 

5.1.2. Intrusion Detection with Optimized KNN Algorithm 

Though a k-Nearest Neighbor value will give yield an excellent sense of how closely 

a new instance fits in with the rest of the data, it is extremely costly to calculate, with 

a complexity of )( 2nO . This problem is accentuated with the complex data used for 

intrusion detection, as a large amount of data-points are required for a solid cross-

section of the data. Thus, it is necessary to find computational shortcuts that will 

allow performing anomaly detection with greater celerity. The clusters by optimized  

k-NN Algorithm is showed in  Figure 5.24 . [30]  

 

Figure 5.24 Clusters by optimized k-NN algortithm [30] 

In this project, KDD Cup 99 Data are used. The instances in data classified into 

clusters with fixed width and most of the computation is spent checking the distance 
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between points in D to the cluster centers. This is significantly more efficient than 

computing the pair wise distances between all points. 

Performance of this algorithm is as in Table 5.12. 

Table 5.12 Performance of optimized k-NN-Algorithm [30] 

Attack Type Detection Rate  

 
False Positive Rate 

DOS 91%  

 
8% 

Probe 23% 

 

6% 

 U2R 11% 

 

4% 

 R2L 5% 

 

2% 

 

5.1.3. Intrusion Detection with Y-means Algorithm 

The k-Means algorithm is further researched and new algorithms are devoleped:   

One of them is Y-means algorithm. [19] 

The k-Means algorithm has two shortcomings in clustering large data sets: number 

of clusters dependency and degeneracy. Number of clusters dependency is that the 

value of k is very critical to the clustering result. Obtaining the optimal k for a given 

data set is an NP-hard problem. Degeneracy means that the clustering may end 

with some empty clusters. This is not what we expect since the classes of the empty 

clusters are meaningless for the classification. [19] 

By Y-means algorithm number of clusters , k, can be a given integer between 1 and 

n exclusively, where n is the total number of instances. The next step is to find 

whether there are any empty clusters. If there are, new clusters will be created to 

replace these empty clusters; and then instances will be reassigned to existing 

centers. This iteration will continue until there is no empty cluster. Subsequently, the 

outliers of clusters will be removed to form new clusters, in which instances are 

more similar to each other; and overlapped adjacent clusters will merge into a new 

cluster. In this way, the value of k will be determined automatically by splitting or 

merging clusters. The last step is to label the clusters according to their populations; 

that is, if the population ratio of one cluster is above a given threshold, all the 

instances in the cluster will be classified as normal; otherwise, they are labeled 

intrusive. The Y-means algorithm is showed in Figure 5.25. [19] 
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Figure 5.25 The Y-means Algorithm [19] 

Y-means is tested with a subset of KDD Cup 99 Data, with 2,456 instances. 

On average, it detected 86.63% of intrusions with a 1.53% of false alarm rate, as 

shown in Figure 5.26. 

 

Figure 5.26 Y­means with different initial number of clusters [19] 

5.2. Intrusion Detection with Supervised Clustering 

5.2.1. MINDS (Minnesota Intrusion Detection System)  

The Minnesota Intrusion Detection System (MINDS) uses a suite of data mining 

techniques to automatically detect attacks against computer networks and systems. 

Input to MINDS is Netflow version 5 data collected using Netflow tools. Netflow data 

for each 10 minute window, which typically result in 1 to 2 million flows, is stored in 
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a flat file. The analyst uses MINDS to analyze these 10-minute data files in a batch 

mode. Before applying MINDS to these data files, a data filtering step is performed 

by the system administrator to remove network traffic that the analyst is not 

interested in analyzing. For example, the removed attack-free network data in data 

filtering step may include the data coming from trusted sources, non-interesting 

network data (e.g. portions of http traffic) or unusual/anomalous network behavior 

for which it is known that it does not correspond to intrusive behavior. [16] 

In Figure 5.27 , the architecture of MINDS is shown. 

 

Figure 5.27 Architecture of Minnesota Intrusion Detection System [16] 

The first step in MINDS includes constructing features that are used in the data 

mining analysis. Basic features include source IP address and port, destination IP 

address and port, protocol, flags, number of bytes, and number of packets. After the 

feature construction step, the known attack detection module is used to detect 

network connections that correspond to attacks for which the signatures are 

available, and then to remove them from further analysis. Next, the data is fed into 

the MINDS anomaly detection module that uses an outlier detection algorithm to 

assign an anomaly score to each network connection. A human analyst then has to 

look at only the most anomalous connections to determine if they are actual attacks 

or other interesting behavior. [16] 

MINDS anomaly detection module assigns a degree of being an outlier to each data 

point, which is called the local outlier factor (LOF). The outlier factor of a data point 

is local in the sense that it measures the degree of being an outlier with respect to 

its neighborhood. For each data example, the density of the neighborhood is first 

computed. The LOF of specific data example p represents the average of the ratios 

of the density of the example p and the density of its nearest neighbors. [16] 
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In Figure 5.28 two outlier examples p1 and p2 are shown. The simple nearest 

neighbour approach based on computing the distances fail in these scenarios. 

However, the example p1 may be detected as outlier using the distances to the 

nearest neighbor. On the other side, LOF is able to capture both outliers (p1 and p2) 

due to the fact that it considers the density around the points. [16] 

 

Figure 5.28 Outlier Examples [16] 

 

As a result, MINDS and SNORT have been comparison.  Here are the results: 

 Content based attacks: These attacks are out of scope for the anomaly 

detection module in MINDS since it does not consider the content of the packets, 

and therefore SNORT is superior in identifying those attacks. However, SNORT is 

able to detect only those contentbased attacks that have known signatures/rules. 

Despite the fact that SNORT is more successful in detecting the content-based 

attacks, it is important to note that once a computer has been attacked successfully, 

its behavior could become anomalous and therefore detected by the anomaly 

detection module in MINDS. 

 Scanning activities: When detecting various scanning activities SNORT and 

MINDS anomaly detection module have similar performance for certain types of 

scans, but they have very different detection capabilities for other types. 

 Policy violations: MINDS anomaly detection module is much more successful 

than SNORT in detecting policy violations (e.g. rogue and unauthorized services), 

since it looks for unusual network behavior. SNORT may detect these policy 

violations only if it has a rule for each of these specific activities. [16] 
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6. APPLICATION – CLIDS (Cluster based Intrusion Detection System) 

The implementation of this thesis is an intrusion detection system, which is named   

CLIDS (Cluster Based Intrusion Detection System) and it is based on feature 

selection and  pattern classification. The training and the test values come from 

KDD Cup 99 data. 

6.1. Specification of CLIDS  

The feature selection algorithm is FCBF algorithm modified for using continuous 

values of KDD Cup 99 data. The FCBF algorithm expects that the value scala for 

every feature is given in a configuration file, so this is possible for symbolic values 

(like tcp,udp,ismp etc.) but impossible for continuous values (numbers). In order to 

use the continuous values in FCBF algorithm, the value scala for every feature with 

continuous values is split by a factor, default 10. So, in this example there will be 10 

groups for every continuous feature.  

The FCBF algorithm expects a configuration file, in which there are feature values in 

value file and the value file, in which there are the values with the cluster names. It 

evaluates the clusters given by these files and gives as the result the selected 

features, which value is bigger than predefined threshold. 

So, our clusters are our attacks. CLIDS evalautes features pairwise between 

attacks. That means the selected features between normal-smurf, normal-teardrop, 

normal-nmap, etc., and smurf-teardrop, smurf-nmap etc. are evaluated.  After 

getting all selected features and feature weights pairwise between all clusters, the 

“training clusters” are created. Then in the test phase, a test vector is tested if it is 

enough near to these training clusters by calculating the Euclidean distance. By this 

calculation the continuous values are normalized by min-max normalization. 

6.1.1. Creating of Clusters by Training 

The count of the training clusters depend on the attack clusters which they come 

from. After getting selected features between two attacks, the values which 
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correspond these features are selected. The values are also normalized by min-max 

normalization. 

Example: For the example, let us see the “normal” and “neptune” clusters. We take 

1000 “normal” and 1000 “neptune” instances. The modified FCBF algorithm gives us 

the result in Table 6.13.  

Table 6.13 The selected features by normal-neptune 

Selected Feature Selected Feature Weight Type of the Feature 

flag 1.0 symbolic 

serror_rate 0.9892109978609052 continuous 

logged_in 0.8368075392414093 symbolic 

service 0.6794651909145254 symbolic 

The  selected  features with symbolic values gives the labels to  the training clusters. 

So, in this example the training clusters with following labels are created. 

Normal:        http, SF,1 
      Smtp, SF, 1 
      Finger, SF, 0 

    Domain_u, SF, 0 
    Auth, SF, 1 
    http, SF, 0 
    telnet, SF, 1 
    ftp , SF, 1 
    eco_i, SF,0 
    ecr_i, SF, 0 

  
Neptune:      private, S0, 0 
      smtp, S0, 0 
      Nnsp, S0,0 

    Login, S0, 0 

 

When a test vector is tested, if  it is near these training clusters the following method 

is used: The values of the selected features with symbolic values of the test vector 

are compared  with all training clusters of an attack. If none of them are equal then it 

will be compared with other pairwise selected training clusters. If a training cluster is 

found then the Euclidean distance is calculated between the test vector and the 

mean of the training cluster. By calculating this, the selected features with 

continuous value are multiplied by (selected factor)*weight, if the weight is greater 
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than 1/feature weight. So the weight of the selected features is also used. In Figure 

6.29 the training clusters of “normal-neptune” are shown. 

 

Figure 6.29 Finding the distance of a test vector to the temproary training clusters 

By this calculation, the decision is that the test vector is either “normal” or “neptune”. 

But if the test vector is none of these actually, then the decision will be false. So we 

need an algorithm to be sure what type of cluster this is (here an attack or “normal”). 

If we can not name the test vector then we will name it “anomaly”.  

6.1.2. Implementation Specification 

The implementation is written in JAVA, so it is platform-independent and object-

oriented.  

An attack class knows the other known attack instances and the selected features, 

which distinguish this type of attack and the other known attacks, so it knows the 

training clusters between other attack instances. When a test vector should be 

tested, it is first tested with the class “Normal”. The class of “Normal” tests that, to 

which of the known attacks the test vector near is. So, in first step it can be found 

that the test vector is near to more than one attack.  

So, we need a second step to be sure to which type of attack this is.  The classes of 

every found attack run the same algorithm as in the first step. That means, they also 

test the test vector with the training clusters of the known attacks. And the found 

attacks by these tests are put in the “suspicious nearest neighbour attacks”.  The 

maximum count of the attack in the set of the “suspicious nearest neighbour attacks” 

gives the decision what type of attack this test vector is. 

In the training phase, every attack class is trained to create the training clusters and 

also the maximum radius of every cluster is also calculated. This ensure also that 

the found type of attack is in the cluster. If the found cluster is nearest to the test 
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attack, but the distance of the test attack to the median of the cluster is greater than 

[ factor*(radius of  the cluster)] , than this test attack is labeled as “anomaly”. 

In Figure 6.30 the decision of test between classes is illustrated. 

 

Figure 6.30 Test decision of suspicious Nearest Neighbour Attacks 

6.2. The Algorithms Used in CLIDS 

The implementation consists of training phase and the testing phase. The testing 

phase consists of two algorittms. 

6.2.1. Training Phase Algorithm 

The training phase algorithm which is explained before is shown in Figure 6.31. 
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Figure 6.31 Algorithm of training phase 

6.2.2. Testing Phase Algorithm 

The testing phase algorithm consists of two parts. In the first part, it is found that ,  

which of the training clusters of the known attacks of class “normal” to the test vector 

nearest is. In the second part, it is found that which type of attack this test vector is. 

In Figure 6.32 and in Figure 6.33  the algorithm of the test part 1 is shown. 
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Figure 6.32 Algorithm of the part 1 of test phase 
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Figure 6.33 Algorithm of the part 1 of test phase (continued) 

Every attack class knows every other type attacks, so if more than one known attack 

tells that the test attack is that type of attack, this must come to a result, which type 

of this test instance is.  In algorithm of test phase 2 the individual test algorithm is 

explained as shown in  Figure 6.34, in Figure 6.35 and in Figure 6.36. 
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Figure 6.34 Algorithm of the part 2 of test phase 
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Figure 6.35 Algorithm of the part 2 of test phase (continued)
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Figure 6.36 Algorithm of the part 2 of test phase (continued) 
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6.2.3. The implementation parameters of the program 

The implementation parameters of the program are shown in Table 6.14. 

Table 6.14 The implementation parameters, their description and the default values 

Parameter Value Description Default Value 

Feature Weight 

Calculation 

The multiply factor of the 

selected continuous features 

by the Euclidean distance 

calculation 

10 

Continuous Feature Split 

Count 

The split count of the 

continuous features to 

calculate the entropy value 

10 

Radius Factor Radius = Radius  * Radius 

Factor  

The difference between 

radius and the distance of 

the test vector to the median 

of the cluster 

1.2 

6.2.4. Training and Test Procedures 

In all of tests, the instances in test data set are labeled individually and the results 

are compared with corrected data set, which are published in KDD Cup Results 

page. 

In the training data, there are 22 types of attacks, which are: 

Probe: ipsweep, nmap, portsweep, satan 

DOS: back, land, neptune, pod, smurf, teardrop 

U2R: buffer_overflow, loadmodule, perl, rootkit  

R2L: ftp_write, guess_passwd, imap, multihop, phf, spy, warezclient, warezmaster 

In the test data, there are 40 types of attacks, which are: 

Probe: ipsweep, mscan, nmap, portsweep, saint, satan 
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DOS: apache2, back, land, neptune, pod, processtable, smurf, teardrop,  udpstorm  

U2R: buffer_overflow, httptunnel, loadmodule, mailbomb, multihop, perl, ps, rootkit, 

sqlattack , xterm 

R2L: ftp_write, guess_passwd, httptunnel, imap, multihop, named, phf, spy, 

sendmail, snmpgetattack, snmpguess, worm, xlock, xsnoop, warezmaster 

The test dataset contains 311,029 examples. 

As seen above, there are types of attacks in test data set, which are not in training 

data set. These type of instances are labeled as “anomaly” in the CLIDS.  

Because of the limits of memory and CPU of the computer the traning attack 

instances are maximum for 1000 selected.  

Training attack counts (max:1000 intances):  

Normal: 1000 

Probe: ipsweep:1000, nmap: 231, portsweep:1000, satan:1000 

DOS: back:1000, land:21, neptune:5000, pod:264, smurf:1000, teardrop:1000 

U2R: buffer_overflow:30, loadmodule:9, perl:3, rootkit:10 

R2L: ftp_write:8, guess_passwd:53, imap:11, multihop:7, phf:4, spy:2, 

warezclient:1000, warezmaster:20 

As seen, the training counts are not equal because of the training file. So, the 

instances of back, teardrop, ipsweep, portsweep, warezclient, smurf, normal, 

neptune, satan are in feature selection algorithm for 1000 instances. 

Then, in order to balance the counts of instances of pod, nmap, land, 

buffer_overflow, guess_passwd, loadmodule, perl, rootkit, ftp_write, imap, multihop, 

phf, spy and warezmaster attacks, these instances have been copied to reach 1000 

instances. 

Training Procedure: 

CLIDS has 2 configuration files. In one of them, there are selected features and 

weights between the attacks, and in the other one there are cluster specifications. 

So, these files has been created once and used in every test . 

In every test CLIDS is trained with DOS, Probe, U2R and  R2L attacks. 
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Test Procedure: 

There are 2 files, in one of them there are unlabeled instances, and in the other one 

there are labeled instances, which corresponds the other file.  

These files are each 43 MB, so because of the physical limits of memory of the test 

computer, these files are split in files. In every test, the same 10 test files, in which 

10000 test instances are, are used and the sum of counts of attacks in these test 

files is given in Table 6.15.  

Table 6.15 Sum of counts of attack instances in test files 

Normal DOS Probe U2R R2L Anomaly 

normal. 

34448 

smurf. 

32529 

portsweep. 

347 

buffer_overflow. 

17 

ftp_write. 3 mscan. 1053 

 pod. 68 ipsweep. 

306 

loadmodule. 2 guess_passwd. 

4366 

saint. 0 

 Teardrop. 6 satan. 1242 perl. 1 imap. 1 apache2. 596 

 neptune. 

10865 

nmap. 44 rootkit. 13 multihop. 15 processtable. 506 

 back. 99   phf. 2 udpstorm. 2 

 land. 8   spy. 0 httptunnel. 143 

    warezclient. 0 mailbomb. 4999 

    warezmaster. 

1595 

ps. 16 

     sqlattack. 1 

     xterm. 13 

     named. 10 

     sendmail. 15 

     snmpgetattack. 

5919 

     snmpguess. 0 
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     worm. 1 

     xlock. 9 

     xsnoop. 4 

Some terminology used in test procedure is given below: 

Anomaly for Attacks: The count of instances which have been labeled as anomaly 

instead of an attack name which they are really 

False Positive for Attack :The count of intances which have been labeled as an 

attack type or anomaly instead of type “normal” which are really 

False Positive for Anomaly: The count of intances which have been labeled as an 

anomaly instead of type “normal” which are really 

Attack False: The count of instances which have been labeled as a type of an attack 

which are really another  type of attack 

False Negative for Attacks: The count of instances which have been labeled 

“normal” instead of an attack which are really 

False Negative for Anomaly: The count of instances which have been labeled 

“normal” instead of an anomaly which are really. 

6.3. Experimental Results with Min-Max Normalization 

In these tests, the training and test instances are normalized with min-max 

normalization. In the trainig phase the minimum and maximum values for every 

feature in every attack class are found and written to the configuration file of CLIDS. 

Then in test phase, these values are used for normalization of test instances. 

6.3.1. Test Results with Change of the Radius 

6.3.1.1. Test Results with Radius  Factor 1.2 

In this test CLIDS is trained with DOS, Probe, U2R, R2L attacks and tested with 

radius factor 1.2. Feature weight is selected as 10 and continuous feature split count 

is selected as 10. 

The sum of all true identifed test instances is given in Table 6.16. 
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Table 6.16 Sum of true indentified instances with Radius Factor 1.2 

Normal DOS Probe U2R R2L Anomaly 

normal. 

24975  

smurf. 

32370 

ipsweep.0 buffer_overflow. 

7 

ftp_write. 0 mscan. 120 

 neptune. 

110 

portsweep. 

3 

loadmodule. 1 guess_passwd. 

2 

saint. 12 

 teardrop. 5 satan. 1134 perl. 0 imap. 0 apache2. 582 

 pod. 58 nmap. 44 rootkit. 0 multihop. 0 processtable. 453 

 back. 98   phf. 1 udpstorm. 2 

 land. 8   spy. 0 httptunnel. 16 

    warezclient. 0 mailbomb. 4944 

    warezmaster. 

498 

ps. 4 

     sqlattack. 0 

     xterm. 3 

     named. 3 

     sendmail. 3 

     snmpgetattack. 5911 

     snmpguess. 0 

     worm. 0 

     xlock. 5 

     xsnoop. 2 

6.3.1.2. Calculated Results with Radius 1.2 

The sum of counts of test instances, grouped by attack types, if they are true 

identifed or if they are “false negative” found or if they are “false positive” found, is 

given in Table 6.17 with calculated results of percentages. 
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Table 6.17 Detection, False Negative and False Positive counts of test files with radius factor 1.2 

Attack 

Type 

Counts 

Tested 

True 

Count 

False 

Negative 

Count 

False 

Positive 

Count 

Detection 

Rate 

False 

Negative 

False 

Positive 

Rate 

DOS 43575 32649 0 29 %74.9 %0 %0.1 

Probe 1939 1181 0 515 %60,9 %0 %26.5 

U2R 33 8 0 40 %24,2 %0 %121,2 

R2L 5982 501 0 688  %8,4 %0 %11.5 

Normal 34448 24975 - - %72,5 - - 

Anomaly 14020 12060 4 8202 %85,9 %0 %58,5 

The sum of test instances, which are found as “false attack” and which are found 

“anomaly for attack” is given in Table 6.18 with calculated results of percentages. 

Table 6.18 Attack False and Anomaly for Attack counts  with radius factor 1.2 

Attack False Count 15199 

Anomaly for Attack Count 3950 

Attack False/ Attack 

Count  

%29,5 

Anomaly for Attack Count 

/ Attack Count 

%7,7 

6.3.1.3. Test Results with Radius Factor 2.0 

In this test CLIDS is trained with DOS, Probe, U2R, R2L attacks and tested with 

radius factor 2.0. Feature weight is selected as 10 and continuous feature split count 

is selected as 10. 

The sum of all true identifed test instances is given in Table 6.19. 
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Table 6.19 Sum of true indentified instances with Radius Factor 2.0 

Normal DOS Probe U2R R2L Anomaly 

normal.24975 smurf. 

32400 

ipsweep. 0 buffer_overflow. 

7 

ftp_write. 0 mscan. 120 

 neptune. 

110 

portsweep. 

3 

loadmodule. 1 guess_passwd. 

2 

saint. 12 

 teardrop. 5 satan. 1134 perl. 0 imap. 0 apache2. 582 

 pod. 58 nmap. 44 rootkit. 0 multihop. 0 processtable. 453 

 back. 98   phf. 1 udpstorm. 2 

 land. 8   spy. 0 httptunnel. 16 

    warezmaster. 

498 

mailbomb. 4944 

    warezclient. 0 ps. 4 

     sqlattack. 0 

     xterm. 3 

     named. 3 

     sendmail. 3 

     snmpgetattack. 

5911 

     snmpguess. 0 

     worm. 0 

     xlock. 5 

     xsnoop. 2 
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6.3.1.4. Calculated Results with Radius 2.0 

The sum of counts of test instances, grouped by attack types, if they are true 

identifed or if they are “false negative” found or if they are “false positive” found, is 

given in Table 6.20 with calculated results of percentages. 

Table 6.20 Detection, False Negative and False Positive counts of test files with radius factor 2.0 

Attack 

Type 

Counts 

Tested 

True 

Count 

False 

Negative 

Count 

False 

Positive 

Count 

Detection 

Rate 

False 

Negative 

Rate 

False 

Positive 

Rate 

DOS 43575 32649 0 12 %74,9 %0 %0 

Probe 1939 1181 0 567 %60.9 %0 %29,2 

U2R 33 8 0 40 %24,2 %0 %121,1 

R2L 5982 501 0 630 %8,4 %0 %11,1 

Normal 34448 24975 - - %72,5 - - 

Anomaly 14020 12054 4 8202 %86,0 %0 %58,5 

The sum of test instances, which are found as “false attack” and which are found 

“anomaly for attack” is given in Table 6.21 with calculated results of percentages. 

Table 6.21 Attack False and Anomaly for Attack counts with radius factor 2.0 

Attack False Count 15199 

Anomaly for Attack Count 3950 

Attack False/ Attack 

Count  

%29,5 

Anomaly for Attack Count 

/ Attack Count 

%7,7 

6.3.1.5. Test Results with Radius Factor 1.0 

In this test CLIDS is trained with DOS, Probe, U2R, R2L attacks and tested with 

radius factor 1.0. Feature weight is selected as 10 and continuous feature split count 

is selected as 10. The sum of all true identifed test instances is given in Table 6.22.
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Table 6.22 Sum of true indentified instances with Radius Factor 1.0 

Normal DOS Probe U2R R2L Anomaly 

normal.24572 smurf. 

32370 

ipsweep. 0 buffer_overflow. 

4 

ftp_write. 0 mscan. 184 

 neptune. 60 portsweep. 

11 

loadmodule. 1 guess_passwd. 

2 

saint. 6 

 teardrop. 5 satan. 1217 perl. 1 imap. 0 apache2. 582 

 pod. 58 nmap. 44 rootkit. 0 multihop. 0 processtable. 453 

 back. 98   phf. 1 udpstorm. 2 

 land. 8   spy. 0 httptunnel. 16 

    warezmaster. 

588 

mailbomb. 4944 

    warezclient. 0 ps. 6 

     sqlattack. 0 

     xterm. 4 

     named. 5 

     sendmail. 6 

     snmpgetattack. 

5911 

     snmpguess. 0 

     worm. 0 

     xlock. 7 

     xsnoop. 2 
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6.3.1.6. Calculated Results with Radius 1.0 

The sum of counts of test instances, grouped by attack types, if they are true 

identifed or if they are “false negative” found or if they are “false positive” found, is 

given in Table 6.23 with calculated results of percentages. 

Table 6.23 Detection, False Negative and False Positive counts of test files with radius factor 1.0 

Attack 

Type 

Counts 

Tested 

True 

Count 

False 

Negative 

Count 

False 

Positive 

Count 

Detection 

Rate 

False 

Negative 

Rate 

False 

Positive 

Rate 

DOS 43575 32599 0 30 %74,8 %0 %0,1 

Probe 1939 1272 0 482 %65,6 %0 %24,9 

U2R 33 6 0 376 %18,2 %0 %1139,4 

R2L 5982 591 0 284 %9,9 %0 %4,7 

Normal 34448 24572 - - %71,3 - - 

Anomaly 14020 12134 2 8644 %86,5 %0 

 

%61,5 

The sum of test instances, which are found as “false attack” and which are found 

“anomaly for attack” is given in Table 6.24 with calculated results of percentages. 

Table 6.24 Attack False and Anomaly for Attack counts with radius factor 1.0 

Attack False Count 14707 

Anomaly for Attack Count 4241 

Attack False/ Attack 

Count  

%28,5 

Anomaly for Attack Count 

/ Attack Count 

%8,2 

 

6.3.1.7. Test Results with Radius Factor 0.8 

In this test CLIDS is trained with DOS, Probe, U2R, R2L attacks and tested with 

radius factor 0.8. Feature weight is selected as 10 and continuous feature split count 

is selected as 10. The sum of all true identifed test instances is given in Table 6.25.
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Table 6.25 Sum of true indentified instances with Radius Factor 0.8 

Normal DOS Probe U2R R2L Anomaly 

normal.20330 smurf. 

32370 

ipsweep. 0 buffer_overflow. 

8 

ftp_write. 0 mscan. 357 

 neptune. 22 portsweep. 

12 

loadmodule. 0 guess_passwd. 

6 

saint. 13 

 teardrop. 4 satan. 1235 perl. 1 imap. 0 apache2. 582 

 pod. 58 nmap. 44 rootkit. 4 multihop. 0 processtable. 453 

 back. 97   phf. 1 udpstorm. 2 

 land. 8   spy. 0 httptunnel. 16 

    warezmaster. 

34 

mailbomb. 4989 

    warezclient. 0 ps. 10 

     sqlattack. 0 

     xterm. 8 

     named. 8 

     sendmail. 10 

     snmpgetattack. 

5917 

     snmpguess. 0 

     worm. 1 

     xlock. 7 

     xsnoop. 2 
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6.3.1.8. Calculated Results with Radius 0.8 

The sum of counts of test instances, grouped by attack types, if they are true 

identifed or if they are “false negative” found or if they are “false positive” found, is 

given in Table 6.26 with calculated results of percentages. 

Table 6.26 Detection, False Negative and False Positive counts of test files with radius factor 0.8 

Attack 

Type 

Counts 

Tested 

True 

Count 

False 

Negative 

Count 

False 

Positive 

Count 

Detection 

Rate 

False 

Negative 

Rate 

False 

Positive 

Rate 

DOS 43575 32559 0 24 %74,8 %0 %0.1 

Probe 1939 1291 0 431 %66,6 %0 %22,2 

U2R 33 13 0 405 %39,4 %0 %1227,3 

R2L 5982 41 0 139 %0,7 %0 %2.3 

Normal 34448 20330 - - %59,0 - - 

Anomaly 14020 12375 1 13118 %88,3 %0 %93,6 

The sum of test instances, which are found as “false attack” and which are found 

“anomaly for attack” is given in Table 6.27 with calculated results of percentages. 

Table 6.27 Attack False and Anomaly for Attack counts with radius factor 0.8 

Attack False Count 14830 

Anomaly for Attack Count 4442 

Attack False/ Attack 

Count  

%28,8 

Anomaly for Attack Count 

/ Attack Count 

%8,6 

6.3.1.9. Graphical Results for Rates with Change of the Radius Factor 

In Figure 6.37 Rates for attacks DOS, in Figure 6.38 Rates for attacks PROBE, in 

Figure 6.39 Rates for attacks U2R, in Figure 6.40 Rates for attacks R2L, in Figure 

6.41  Rates for attacks Anomaly, in Figure 6.42  Detection Rate for Normal are 

given. 
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Figure 6.37 Rates for attacks DOS with change of the radius factor 

Rates for PROBE
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Figure 6.38 Rates for attacks PROBE with change of the radius factor 

Rates for U2R
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Figure 6.39 Rates for attacks U2R with change of the radius factor 



 

 73 

Rates for R2L
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Figure 6.40 Rates for attacks R2L with change of the radius factor 

Rates for Anomaly
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Figure 6.41 Rates for attacks Anomaly with change of the radius factor 
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Figure 6.42 Detection Rate for Normal with change of the radius factor 
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6.3.2. Test Results with Change of the Continuous Feature Split Count 

6.3.2.1. Test Results with Continuous Feature Split Count 100 

Continuous features are split by a factor in order to get entropy for using FCBF 

algorithm. So default value of this factor is 10. In this test this value is selected as 

100, to show the difference of rates. The radius factor is 1.2, the feature weight 

factor is 10. The sum of all true identifed test instances is given in Table 6.28. 

Table 6.28 Sum of true indentified instances with Feature Split Count 100 

Normal DOS Probe U2R R2L Anomaly 

normal. 

25069 

smurf. 

32337 

ipsweep. 0 buffer_overflow. 

4 

ftp_write. 0 mscan. 0 

 neptune. 38 portsweep. 

0 

loadmodule. 0 guess_passwd. 

0 

saint. 13 

 teardrop. 3 satan. 1231 perl. 0 imap. 0 apache2. 554 

 pod. 60 nmap. 44 rootkit. 4 multihop. 0 processtable. 499 

 back. 99   phf. 1 udpstorm. 2 

 land. 8   spy. 0 httptunnel. 15 

    warezmaster. 

362 

mailbomb. 4986 

    warezclient. 0 ps. 4 

     sqlattack. 0 

     xterm. 6 

     named. 4 

     sendmail. 6 

     snmpgetattack. 5909 

     snmpguess. 0 

     worm. 0 

     xlock. 6 

     xsnoop. 2 
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6.3.2.2. Calculated Results with Continous Split Factor 100  

The sum of counts of test instances, grouped by attack types, if they are true 

identifed or if they are “false negative” found or if they are “false positive” found, is 

given in Table 6.29 with calculated results of percentages. 

Table 6.29 Detection, False Negative and False Positive counts of test files with continuous split 

factor 100 

Attack 

Type 

Counts 

Tested 

True 

Count 

False 

Negative 

Count 

False 

Positive 

Count 

Detection 

Rate 

False 

Negative 

False 

Positive 

Rate 

DOS 43575 32545 0 20 %74,7 %0 %0 

Probe 1939 1275 0 446 %65,8 %0 %23,0 

U2R 33 8 0 52 %24,2 %0 %157,6 

R2L 5982 363 0 606 %6,1 %0 %10,1 

Normal 34448 25069 - - %72,8 - - 

Anomaly 14020 12018 7 8227 %85,7 %0 %58,7 

The sum of test instances, which are found as “false attack” and which are found 

“anomaly for attack” is given in Table 6.30 with calculated results of percentage 

Table 6.30 Attack False and Anomaly for Attack counts with continuous split factor 100 

Attack False Count 15297 

Anomaly for Attack Count 4039 

Attack False/ Attack 

Count  

%29,7 

Anomaly for Attack Count 

/ Attack Count 

%7,8 

6.3.2.3. Graphical Results for Rates with Change of the Continous Split Factor 

In Figure 6.43 Rates for attacks DOS, in Figure 6.44 Rates for attacks PROBE, in 

Figure 6.45 Rates for attacks U2R, in Figure 6.46 Rates for attacks R2L, in Figure 

6.47 Rates for attacks Anomaly, in Figure 6.48 Detection Rate for Normal are given. 
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Figure 6.43 Rates for attacks DOS with change of the continous split factor 
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Figure 6.44 Rates for attacks PROBE with change of the continous split factor 

Rates for U2R
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Figure 6.45 Rates for attacks U2R with change of the continous split factor 
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Rates for R2L
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Figure 6.46 Rates for attacks with change of the continous split factor 

Rates for Anomaly
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Figure 6.47 Rates for attacks Anomaly with change of the continous split factor 
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Figure 6.48 Detection Rate for Normal with change of the continous split factor 
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6.3.3. Test Results with Change of the Feature Weight Factor 

6.3.3.1. Test Results with Feature Weight Factor 100 

In the tests before, the feature weight factor used to calculate the Euclidean 

distance between instances  was selected as default 10. So, in this test , the feature 

weight factor is selected as 100. The radius factor is 1.2, the continuous split factor 

is 10. The sum of all true identifed test instances is given in Table 6.31. 

Table 6.31 Sum of true indentified instances with Feature Weight Factor 100 

Normal DOS Probe U2R R2L Anomaly 

normal. 

1775 

smurf. 

32260 

ipsweep. 

249 

buffer_overflow. 

5 

ftp_write. 0 mscan. 259 

 neptune. 

254 

portsweep. 

205 

loadmodule. 0 guess_passwd. 

15 

saint. 6 

 teardrop. 2 satan. 927 perl. 0 imap. 0 apache2. 596 

 pod. 59 nmap. 44 rootkit. 4 multihop. 0 processtable. 504 

 back. 80   phf. 1 udpstorm. 2 

 land. 7   spy. 0 httptunnel. 125 

    warezmaster. 

27 

mailbomb. 4999 

    warezclient. 0 ps. 4 

     sqlattack. 0 

     xterm. 5 

     named. 7 

     sendmail. 7 

     snmpgetattack. 5911 

     snmpguess. 0 

     worm. 0 

     xlock. 7 

     xsnoop. 2 
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6.3.3.2. Calculated Results with Feature Weight Factor 100 

The sum of counts of test instances, grouped by attack types, if they are true 

identifed or if they are “false negative” found or if they are “false positive” found, is 

given in Table 6.32 with calculated results of percentages. 

Table 6.32 Detection, False Negative and False Positive counts of test files with feature weight 

factor 100 

Attack 

Type 

Counts 

Tested 

True 

Count 

False 

Negative 

Count 

False 

Positive 

Count 

Detection 

Rate 

False 

Negative 

False 

Positive 

Rate 

DOS 43575 32662 0 9 %75,0 %0 %0 

Probe 1939 1425 0 276 %73,5 %0 %14,2 

U2R 33 9 0 27 %27,2 %0 %81,8 

R2L 5982 43 0 582 %7,2 %0 %9,7 

Normal 34448 1775 - - %5,2 - - 

Anomaly 14020 12495 0 31747 %89,1 %0 %226,4 

The sum of test instances, which are found as “false attack” and which are found 

“anomaly for attack” is given in Table 6.33 with calculated results of percentages. 

Table 6.33 Attack False and Anomaly for Attack counts with feature weight factor 100 

Attack False Count 14362 

Anomaly for Attack Count 4556 

Attack False/ Attack 

Count  

%28 

Anomaly for Attack Count 

/ Attack Count 

%9 

6.3.3.3. Test Results with Feature Weight Factor 1 

In the tests before, the feature weight factor used to calculate the Euclidean 

distance between instances  was selected as default 10. So, in this test , the feature 



 

 80 

weight factor is selected as 1. The radius factor is 1.2, the continuous split factor is 

10. The sum of all true identifed test instances is given in Table 6.34. 

Table 6.34 Sum of true indentified instances with Feature Weight Factor 1 

Normal DOS Probe U2R R2L Anomaly 

normal. 

23526 

smurf. 

32387 

ipsweep. 

47 

buffer_overflow. 

1 

ftp_write. 0 mscan. 24 

 neptune. 2 portsweep. 

4 

loadmodule. 0 guess_passwd. 

0 

saint. 6 

 teardrop. 2 satan. 1068 perl. 1 imap. 0 apache2. 511 

 pod. 12 nmap. 44 rootkit. 0 multihop. 0 processtable. 390 

 back. 98   phf. 1 udpstorm. 2 

 land. 8   spy. 0 httptunnel. 14 

    warezmaster. 

526 

mailbomb. 4999 

    warezclient. 0 ps. 1 

     sqlattack. 0 

     xterm. 1 

     named.3 

     sendmail. 4 

     snmpgetattack.1 

     snmpguess. 0 

     worm. 0 

     xlock.4 

     xsnoop. 2 
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6.3.3.4. Calculated Results with Feature Weight Factor  1 

The sum of counts of test instances, grouped by attack types, if they are true 

identifed or if they are “false negative” found or if they are “false positive” found, is 

given in Table 6.35 with calculated results of percentages. 

Table 6.35 Detection, False Negative and False Positive counts of test files with feature weight 

factor 1 

Attack 

Type 

Counts 

Tested 

True 

Count 

False 

Negative 

Count 

False 

Positive 

Count 

Detection 

Rate 

False 

Negative 

False 

Positive 

Rate 

DOS 43575 32507 0 97 %74,6 %0 %0,2 

Probe 1939 1163 0 9178 %60,0 %0 %473,3 

U2R 33 4 0 21 %12,1 %0 %63,6 

R2L 5982 527 0 574 %8,8 %0 %9,6 

Normal 34448 23526 - - %68,3 - - 

Anomaly 14020 963 0 680 %6,9 %0 %4,9 

The sum of test instances, which are found as “false attack” and which are found 

“anomaly for attack” is given in Table 6.36 with calculated results of percentages. 

Table 6.36 Attack False and Anomaly for Attack counts with feature weight factor 1 

Attack False Count 26663 

Anomaly for Attack Count 3724 

Attack False/ Attack Count  %51,7 

Anomaly for Attack Count / Attack 

Count 

%7,2 

6.3.3.5. Graphical Results for Rates with Change of the Feature Weight Factor 

In Figure 6.49 Rates for attacks DOS, in Figure 6.50 Rates for attacks PROBE, in 

Figure 6.51 Rates for attacks U2R, in Figure 6.52 Rates for attacks R2L, in Figure 

6.53 Rates for attacks Anomaly, in Figure 6.54 Detection Rate for Normal are given. 
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Figure 6.49 Rates for attacks DOS with change of the feature weight factor 
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Figure 6.50 Rates for attacks PROBE with change of the feature weight factor 
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Figure 6.51 Rates for attacks U2R with change of the feature weight factor 
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Rates for R2L
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Figure 6.52 Rates for attacks R2L with change of the feature weight factor 
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Figure 6.53 Rates for attacks Anomaly with change of the feature weight factor 
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Figure 6.54 Detection Rate for Normal with change of the feature weight factor 
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6.4. Experimental Results with Zero-Mean Normalization 

In these tests, the training phase the mean and the standard deviaton for every 

feature in every attack class are found and written to the configuration file of CLIDS. 

Then in test phase, these values are used for normalization of test instances. 

6.4.1. Test Results with Change of the Radius 

6.4.1.1. Test Results with Radius Factor 1.2 

The radius factor is selected as 1.2, the feature weight factor is 10, the continuous 

split factor is 10. The sum of all true identifed test instances is given in Table 6.37. 

Table 6.37 Sum of true indentified instances with Radius Factor 1.2 with Zero-Mean 

Normalization 

Normal DOS Probe U2R R2L Anomaly 

normal. 

109 

smurf. 

32398 

ipsweep. 

47 

buffer_overflow. 

4 

ftp_write. 0 mscan. 44 

 neptune. 49 portsweep. 

121 

loadmodule. 0 guess_passwd. 

20 

saint. 22 

 teardrop. 6 satan. 

1153 

perl. 1 imap. 0 apache2. 339 

 pod. 60 nmap. 44 rootkit. 0 multihop. 0 processtable. 276 

 back. 97   phf. 1 udpstorm. 2 

 land. 8   spy. 0 httptunnel. 13 

    warezmaster. 414 mailbomb. 4897 

    warezclient. 0 ps. 6 

     sqlattack. 1 

     xterm. 5 

     named.3 

     sendmail. 3 

     snmpgetattack. 

5911 

     snmpguess. 0 
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     worm. 0 

     xlock. 7 

     xsnoop. 2 

 

6.4.1.2. Calculated Results with Radius Factor  1.2 

The sum of counts of test instances, grouped by attack types, if they are true 

identifed or if they are “false negative” found or if they are “false positive” found, is 

given in Table 6.38 with calculated results of percentages. 

Table 6.38 Detection, False Negative and False Positive counts of test files with Radius Factor 

1.2 with Zero-Mean Normalization 

Attack 

Type 

Counts 

Tested 

True 

Count 

False 

Negative 

Count 

False 

Positive 

Count 

Detection 

Rate 

False 

Negative 

False 

Positive 

Rate 

DOS 43575 32618 0 81 %74,9 %0 %0,2 

Probe 1939 1318 0 225 %68,0 %0 %11,6 

U2R 33 5 0 26 %15,2 %0 %78,8 

R2L 5982 435 0 469 %7,3 %0 %7,8 

Normal 34448 109 - - %0,3 - - 

Anomaly 14020 11531 0 32774 %82,2 %0 %233,8 

The sum of test instances, which are found as “false attack” and which are found 

“anomaly for attack” is given in Table 6.39 with calculated results of percentages. 

Table 6.39 Attack False and Anomaly for Attack counts with Radius Factor 1.2 with Zero-Mean 

Normalization 

Attack False Count 15660 

Anomaly for Attack Count 3985 

Attack False/ Attack Count  %30,4 

Anomaly for Attack Count / Attack Count %7,7 
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6.4.1.3. Test Results with Radius Factor 2 

The radius factor is selected as 2, the feature weight factor is 10, the continuous 

split factor is 10. The sum of all true identifed test instances is given in Table 6.40. 

Table 6.40 Sum of true indentified instances with Radius Factor 2 with Zero-Mean 

Normalization 

Normal DOS Probe U2R R2L Anomaly 

normal. 

119 

smurf. 

32306 

ipsweep. 

47 

buffer_overflow. 

1 

ftp_write. 0 mscan. 8 

 neptune. 49 portsweep. 

115 

loadmodule. 0 guess_passwd. 

5 

saint. 21 

 teardrop. 6 satan. 1047 perl. 1 imap. 0 apache2. 331 

 pod. 60 nmap. 44 rootkit. 0 multihop. 0 processtable. 276 

 back. 97   phf. 1 udpstorm. 2 

 land. 8   spy. 0 httptunnel. 3 

    warezmaster. 

607 

mailbomb. 421 

    warezclient. 0 ps. 6 

     sqlattack. 1 

     xterm. 3 

     named.2 

     sendmail. 2 

     snmpgetattack. 58 

     snmpguess. 0 

     worm. 0 

     xlock. 5 

     xsnoop. 1 
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6.4.1.4. Calculated Results with Radius Factor 2 

The sum of counts of test instances, grouped by attack types, if they are true 

identifed or if they are “false negative” found or if they are “false positive” found, is 

given in Table 6.41 with calculated results of percentages. 

Table 6.41 Detection, False Negative and False Positive counts of test files with Radius Factor 2 

with Zero-Mean Normalization 

Attack 

Type 

Counts 

Tested 

True 

Count 

False 

Negative 

Count 

False 

Positive 

Count 

Detection 

Rate 

False 

Negative 

False 

Positive 

Rate 

DOS 43575 32477 0 150 %74,5 %0 %0,3 

Probe 1939 1206 0 604 %62,2 %0 %31,2 

U2R 33 1 0 131 %3,0 %0 %397,0 

R2L 5982 613 0 18112 %10,3 %0 %302,8 

Normal 34448 119 - - %0,3 - - 

Anomaly 14020 1139 0 15131 %8,1 %0 %108,0 

The sum of test instances, which are found as “false attack” and which are found 

“anomaly for attack” is given in Table 6.42 with calculated results of percentages. 

Table 6.42 Attack False and Anomaly for Attack counts with with Radius Factor 2 with Zero-

Mean Normalization 

Attack False Count 29563 

Anomaly for Attack Count 553 

Attack False/ Attack Count  %57 

Anomaly for Attack Count / Attack 

Count 

%1,1 

6.4.1.5. Graphical Results for Rates with Change of the Radius Factor 

In Figure 6.55 Rates for attacks DOS, in Figure 6.56 Rates for attacks PROBE, in 

Figure 6.57 Rates for attacks U2R, in Figure 6.58 Rates for attacks R2L, in Figure 

6.59 Rates for attacks Anomaly, in Figure 6.60 Detection Rate for Normal are given. 
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Figure 6.55 Rates for attacks DOS with change of the radius factor with Zero-Mean Norm. 

Rates for PROBE
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Figure 6.56 Rates for attacks PROBE with change of the radius factor with Zero-Mean Norm. 

Rates for U2R
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Figure 6.57 Rates for attacks U2R with change of the radius factor with Zero-Mean Norm. 
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Rates for R2L
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Figure 6.58 Rates for attacks R2L with change of the radius factor with Zero-Mean Norm. 
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Figure 6.59 Rates for attacks Anomaly with change of the radius factor with Zero-Mean Norm. 
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Figure 6.60 Rates for attacks Normal with change of the radius factor with Zero-Mean Norm. 
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7. CONCLUSION and FUTURE WORK 

CLIDS (Cluster Based Intrusion Detection) gives a new methodology in intrusion 

detection , which is pattern classification. Until today many methodologies are used 

in intrusion detection, which depend mostly to match the database of intrusion 

detection system. If the packet or log matches the rules in database then it is 

defined as an intrusion. In this methodology new rules should be added manually.  

Then, to overcome not to add the rules manually, the database mining methodology 

is used. So, an algorithm is given by the training instances of the intrusions and 

normal patterns, and the algorithm gives the rules automatically. 

By all of these methodologies, in which there are no machine learning algorithm, it is 

impossible to identify new intrusions, which are not defined as an intrusion in the 

rules database of the intrusion detection system. 

One methodology to identify the “anomalies”, the patterns which do not suit the rules 

of the IDS, is the pattern classification. Pattern classification algorithms are used in 

many areas, including genetics, speech recognition and fingerprint identification. 

The pattern classification algorithms can be grouped mainly in two areas: 

Supervised classification, unsupervised classification. Supervised classification 

algorithms are trained first with training instances. So, the test instances can be 

labeled in this way. But the unsupervised classification algorithms are not trained. 

They are given by the test instances, and the algorithm makes clusters in these 

instances, but it can not label them, because it doesn‟t know. 

In this thesis, two problems are tried to solve: First: The IDS should label the test 

intances, whatever the instance is. Second: The IDS should find the anomalies. 

To produce intrusion data is a very hard and expensive work. So, the KDD Cup Data 

99, the data which are produced in 1998 by DARPA for using in Data Mining and 

Knowledge Discovery competition organized by ACM Special Interest Group on 

Knowledge Discovery and Data Mining, which are used also in many works, are 

used in this thesis. There are 311,029 test instances which should be labeled.  
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In the KDD Cup 99, the database mining algorithms are used, the winning entry 

gives results of %99 for normal, % 83.3 for DOS, % 97 for Probe, % 13 for U2R and 

%8 for R2L. In these results, there are no information to identify the anomalies.  

The patterns, in general, have features which are learned by the pattern 

classification algorithms. These features can be reduced by a feature selection 

algorithm to speed up the training and testing. In KDD Cup  Data 99, every pattern 

has 41 features. So, in CLIDS the FCBF algorithm is used to reduce these features. 

These algorithm is a new and fast algorithm and it gives better results than the other 

known feature selection algorithms. These algorithm depends on finding the entropy 

of the features of the patterns.  

CLIDS has 3 implementation parameters. These parameters have default values in 

the program, but they are changed and the tests are repeated to show the difference 

in the test results. 

The FCBF algorithm should be given first by a value scala for every feature in a 

configuration file, so this is possible for symbolic values but impossible for 

continuous values. In order to use the continuous values in FCBF algorithm, the 

value scala for every feature with continuous values is split by a factor. This split 

factor is a parameter in CLIDS. 

By calculating the Euclidean distance between instances a feature weight factor is 

used. This feature weight factor is also a parameter in CLIDS. 

To find the anomalies, the distance between the test instance and the median of the 

clusters of the intrusions are tested , if it is bigger than the radius of the cluster. This 

radius is multiplied by a radius factor to make the cluster bigger. This radius factor is 

also a parameter in CLIDS. 

By using the default values(Radius Factor 1.2, Continous Split Factor 10, Feature 

Weight Factor 10) the test results are as the following: Detection Rate DOS: %74.9, 

Probe % 60.9, U2R % 24.2 , R2L % 8.4, Normal, %72.5, Anomaly %85.9.  

First, by making the radius factor bigger, it is seen that the detection rate of DOS 

doesn‟t change, the detection rate of PROBE is getting less, the detection rate of 

U2R and R2L depend on radius. The false positive rate of DOS is getting less, the 

false positive rate of PROBE is getting higher, the false positive rate of U2R is very 

high by radius factor 0.8 and 1, the false positive rate of R2L is getting higher with 

making bigger the radius factor. The detection rate of normal is getting higher, but 

the detection rate of anomaly is getting less also with making bigger the radius 
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factor. This results are expected, since making the radius of all clusters bigger, 

makes to find the anomalies hard and more attack instances are labeled as 

“normal”, instead of an attack type. 

Second, by training phase, the continuous split factor is selected as 100, which is 10 

times bigger than the default value. The results are as the following: The detection 

rate of DOS has a small change of getting less,  the detection rate of PROBE is 

getting higher, the detection rate of U2R doesn‟t change, the detection rate of R2L is 

getting less, the detection rate of normal and anomaly have a small change. These 

have the following meaning: The continuous features of PROBE are and R2L 

attacks are not grouped as by attacks DOS and U2R. So, by training phase, the 

continuous split factor should be selected differerent for every type of attack, which 

is not supported by CLIDS yet. 

Third, the feature weight factor is selected as 1 and 100. The detection rates of 

DOS, PROBE and U2R are getting higher , the detection rate of R2L is getting less, 

the detection rate of anomaly is getting higher but the detection rate of normal is 

getting very less, by making the feature weight factor is bigger. The false positive 

rate of DOS has a small change, the false positive rate of PROBE is very high by 

feature weight factor 1, the false positive rates of U2R and R2L are less by feature 

weight factor 1, the false positive rate of anomaly is getting very high by feature 

weight factor 100. It is also seen that the attack false/attack count ratio is getting 

very high, too. These results have the following meaning: Making the feature weight 

factor higher, makes the clusters to sit each other, so, they intersect each other, and 

this makes the results worse. 

By all of these tests, the normalization was selected as Min-Max normalization. The 

fourth test was with Zero-Mean Normalization. In this test, it is seen that, the 

detection rates of the attacks are higher, but the detection rate of normal is very low, 

and the false positive rates of the attacks U2R, R2L and anomaly are very high. So, 

in this type of normalization, the other parameters should be changed to come in a 

suitable result. 

In conclusion, CLIDS is an implementation of feature selection and pattern 

classification algorithms specified for intrusion detection. It shows, in general, better 

results than the other pattern classification ID systems that are mentioned in this 

thesis. It finds the trained attacks and the anomalies, which was the goal of this 

thesis. 
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As a future work, it should be developed more to run faster offline. Making the 

training database bigger will give better results, since there will be more clusters. 

CLIDS labels anomalies as “anomaly”, so these anomalies can be categorized as 

DOS, probe, U2R or R2L also. But to give a label to the found anomalies is an 

manual work. After labelling these instances, they can be also trained, and can be 

given CLIDS as training attacks. 
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