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DEPOSITION OF COPPER THIN FILMS ON PLASMATREATED 

POLYIMIDE SURFACES  

SUMMARY 

Flexible electronics and micro-electro-mechanical devices have drawn much 

attention because they have wider application field, provides low cost and ease of 

fabrication when we compare to the silicon based electronic devices. For fabrication 

flexible electronics and MEMS devices, metals must be deposited on flexible 

substrates. In this study, polyimide was selected as a flexible substrate because of its 

desirable properties; good mechanical strength, high temperature resistance, good 

dimensional stabilities and low dielectric constant. The adhesion strength between 

metal and polymer is a critical issue. To overcome this problem, plasma surface 

modifications were used on polyimide surface by inductively coupled plasma 

treatment system. The results of contact angle measurements and atomic force 

microscopy (AFM) show a large increase in surface roughness with increasing 

duration and complete wetting after argon and oxygen plasma treatment. Analysis of 

chemical composition by Fourier transform infrared spectroscopy (FTIR) shows an 

increase in carbon-oxygen functional groups and the concentration of oxygen on the 

surfaces for argon plasma treated polyimide. To attain further improvement on 

adhesion between polyimide and metal, thin metal adhesion promoting layer (120 

nm) was used before sputtering copper seed layer (200 nm). At last step, pulse 

reverse plating technique was used for attaining blanket layer on polyimide films. 

The electroplating experiments show that the smooth surface morphology is obtained 

at a mean current density of 8 mA/cm
2 

and 90 ms on period, 10 ms off period. SEM 

micrographs show that the balanced on and off periods give the smooth, uniform 

surface morphology. 90 ms on period and 10 ms off period were selected as optimum 

pulse waveforms. By this method, fine metallization with few micrometers was 

observed. 
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PLAZMA İŞLEMİ UYGULANMIŞ POLYİMİDE YÜZEYLERİNE BAKIR 

KAPLANMASI  

ÖZET 

Silisyum temelli elektronik cihazlar ile karşılaştırıldığında, daha geniş uygulama 

alanına sahip olmaları, düşük maliyetli ve kolay üretim imkanı sağlamalarıyla esnek 

elektronik cihazlar ve mikro-elektro-mekanik-sistemler (MEMS) dikkatleri 

üzerlerine çekmektedirler. Esnek elektronik cihazların ve MEMS donanımlarının 

üretimi için, esnek altlık malzeme üzerine metal kaplanması gerekmektedir. Bu 

çalışmada, polyimide,  iyi mekanik dayanım, yüksek sıcaklık dayanımı, iyi boyutsal 

kararlılık ve düşük dielektrik katsayısı gibi cazip özellikleri sebebiyle, esnek altlık 

malzeme olarak seçilmiştir. Metal ve polimer arasındaki adezyon kuvveti hassas bir 

konudur. Bu problemi aşmak için, etkileşik çiftlenmiş plazma yöntemiyle polyimide 

yüzeyleri üzerinde plazma yüzey modifikasyonları uygulanmıştır. Argon ve oksijen 

plazma işlemi sonunda, ölçülen kontak açı ve atomsal kuvvet mikroskopisi (AFM) 

sonuçları artan süreyle birlikte yüzey pürüzlülüğünde büyük bir artma ve polyimide 

yüzeylerinde ise tam ıslanma olduğunu göstermektedir. Fourier dönüşümlü kızılötesi 

spektroskopisi (FTIR) ile yapılan kimyasal yapı analizi ise argon plazma işlemi 

sonrasında yüzeyde karbon-oksijen fonksiyonel gruplarında ve yüzeydeki oksijen 

miktarında artma olduğunu göstermektedir. Sıçratma yöntemiyle 200 nm kalınlığında 

çekirdek bakır tabakasının kaplanmasından önce metal ve polyimide arasındaki 

adezyonu daha da güçlendirmek için 120 nm adezyonu artırıcı ince bir metal tabaka 

kullanılmıştır. Son aşamada ise, pulse-reverse kaplama tekniği polyimide yüzeyler 

üzerinde blanket bakır tabakasının elde edilmesinde kullanılmıştır. Ortalama akım 

yoğunluğu 8 mA/cm
2
, açık periyot 90 ms, kapalı periyot 10 ms iken düzgün, 

pürüzsüz yüzeyler elde edilmiştir. SEM mikrografları göstermektedir ki dengeli 

pulse dalga formları düzgün ve uniform yüzey morfolojisi vermektedir. 90 ms açık 

periyot, 10 ms kapalı periyot optimum dalga formları olarak belirlenmiştir. Bu 

yöntemle birkaç mikrometre kalınlığında kaliteli bir metal kaplama gözlemlenmiştir. 
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1.  INTRODUCTION 

Polymers have long been one of the most commonly used material in many 

industries. There are many applications such as food packaging, durable fibres, resins 

for photo resists, advanced composites, biopolymers [1]. Electronic industry is one of 

the application areas of polymers, and among them, polyimide is the most used 

polymer in electronic industry due to its desirable properties; good mechanical 

strength, high temperature resistance, good dimensional stabilities and low dielectric 

constant.  

Polyimide is the material of choice as a substrate for flexible electronics and  Micro-

Electro-Mechanical-Systems (MEMS). Silicon based MEMS are not appropriate for 

non-rigid or non-planar surfaces while flexible substrates can bend and twist so as to 

absorb the stress.  Also, flexible substrates provide low-cost and ease of fabrication. 

 Many studies can be found in the literature in the field of flexible electronics and 

MEMS devices including flexible thin films transistor, flexible printed circuit boards, 

organic light emitting devices, photovoltaic devices, flexible MEMS systems, liquid 

crystal displays and flexible flat panels [2]. Flexible tactile sensors, which can be 

used as the fingertips or hands of humanoid robots in the area of medicine, robotics 

and industrial automation, are among the most studied areas in flexible MEMS [3].  

There are four basic fabrication steps; plasma treatment for better adhesion between 

metal and polymer, adhesion promoting metal and seed layer deposition for attaining 

conductive layer on polyimide films, photolithography for patterning of metals and 

electroplating. In this thesis, plasma treatment, seed layer metal deposition and Cu 

electroplating were performed on polyimide films. Patterning the polyimide substrate 

by photolithography will be investigated in another study with the guidance of this 

current study. 
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2.   LITERATURE  

2.1 Plasma modification  

Adhesion between polyimide and  copper  is a critical issue in the area of electronic 

packaging devices [4]. To improve the strentgh of the boundary layer between 

polyimide and metal, different types of treatments such as plasma [2,5-13], ion beam 

[14,15], or chemical treatment [16] are used. Inagaki et al. stated that different types 

of plasma gases such as Ar, N2, NO, NO2, O2, CO, CO2, atmospheric can be used as 

a plasma gas for treatment [16]. Lin et. al. investigated different plasma gases; 

oxygen, nitrogen, argon effects on polyimide films Kapton E and Upilex S [10,7,5]. 

The experiments are performed at  200W of power, 60mTorr of chamber pressure, 10 

sccm of gas flow rate. Also, the experiments are carried out in three different 

duration intervals; 0, 1, 3 min. The optimum results are obtained at 3 min. treated 

films for Kapton E and Upilex S for oxygen plasma. After oxygen treatment of the 

surfaces, the peel strengths enhance from 1.2 g/mm and 0.7 g/mm for sputtured 

copper thin films on Kapton E and Upilex S to 262.2 g/mm and 195.5 g/mm for 

sputtered copper films on oxygen plasma treated Kapton E and Upilex S for a 

duration of 3 min. Plasma modification induces the mechanical, chemical and 

physical changes on polyimide substrates. As seen in the Fig. 2.1 and Fig. 2.2, the 

surfaces of Kapton E and Upilex S become roughened by oxygen plasma treatment. 

The most roughened and crosslinkid surfaces of Kapton E and Upilex S are observed 

at duration of 3 min. Plasma surface modification has an enormous effect on surface 

energy on PI films.  Fig. 2.3 shows the surface energy of Kapton E and Upilex S as a 

function of duration. Nano scale surface roughness may decreases the contact angle 

by generating hydrophilic functional groups on surface or increases the contact angle 

by generating hydrophobic functional groups on surface [12]. When we compare to 

the AFM results, we can say that the increased surface roughness induces the 

increase in surface energy. The maximum surface energy is observed at duration of 3 

min. 
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Figure 2.1 : Two dimensional  AFM images of (a) unmodified, (b) 0.5 min, 

(c) 1 min, (d) 3 min of oxygen plasma modified Kapton E [5]. 

 

Figure 2.2 : Two dimensional  AFM images of (a) unmodified, (b) 0.5 min, 

(c) 1 min, (d) 3 min of oxygen plasma modified Upilex S [5]. 
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Figure 2.3 : Surface energies of oxygen plasma-modified polyimide 

substrates as a function of  plasma modification duration [5].   

 

Figure 2.4 : Proportion of chemical bonds for un-modified and oxygen 

plasma modified (a) Kapton E and (b) Upilex S as a function of 

plasma modification duration [5].   
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Fig 2.4 shows that the proportion of the chemical bonds as a function of duration. It 

is observed that oxygen plasma improves the surface energies of polyimide 

substrates by increasing oxygen surface concentration and C-O bond proportion.   

Two different studies were performed by the same group. The experimental 

conditions are the same except the plasma gases, argon and nitrogen. After argon 

treatment of the surfaces, the peel strengths enhance from 1.2 g/mm and 0.7 g/mm 

for sputtered copper thin films on Kapton E and Upilex S to 110.3 g/mm and 98 

g/mm for sputtered copper films on argon plasma treated Kapton E and Upilex S for 

a duration of 1 min [10]. Also nitrogen plasma enhances the peel strentgh from 1.2 

g/mm and 0.7 g/mm sputtered copper thin films on Kapton E and Upilex S to 152.2 

g/mm and 140.1 g/mm for sputtered copper films on argon plasma treated Kapton E 

and Upilex S for a duration of 1 min [7]. The significant difference between the 

previous study is stated by this group that an increase in C-O, C=O, C-N for argon 

and an increase in C-O, improves the adhesive strength between polyimide and 

copper. The second effective parameter in plasma process is plasma power. Kim et. 

al. [6] stated that substrate bias power controls the bombardment energy of the ions 

in the ICP system. Excessive substrate bias power density induces the excessive 

chain scission on polyimide surface and leads to the weak boundary layer between 

polymer and metal so they selected the low substrate bias power density. The oxygen 

plasma treatments are performed at the top power of 40W and the bottom power of 0, 

60, 125W. According to the results, the maximum peel strength value of 126 gf/mm 

is observed at bottom power of 125W. 

 

Figure 2.5 : 4 x4µm
2 

AFM image of the oxygen plasma treated PI surfaces 

with substrate bias power of (a) untreated, (b) 0W, (c) 60W, (d) 

125W [6] .  
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As seen in Fig. 2.5, the increased substrate bias power increases the surface 

roughness by increased bombardment energy of oxygen ions. The most cross linked 

surface is observed at substrate bias power of 125W. Fig. 2.6 shows the correlation 

between the contact angle and RMS roughness. The results shows that the large 

increase in the surface roughness provides complete wetting condition and improves 

the surface roughness. 

 

Figure 2.6 :  Contact angles and RMS roughness as a function of bottom 

power [6].  

 

Figure 2.7 : Wide scan spectra of the untreated (a) and oxygen plasma treated 

PI films as a function of substrate bias power; (b) 0W, (c) 60W, 

(d) 125W [6]. 
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When we look at the XPS results as a function of bottom power in Fig. 2.7, we 

realized that the intensities of the C 1s and O 1s spectra increase by increased bottom 

power. As a result of oxygen plasma modification, new functional groups; C-O and 

C=O are observed on the surface of the polyimide film.  

2.2 Magnetron Sputtering  

To improve the adhesive strength between polyimide and copper, the adhesion 

promoting layer; Cr, Ni, NiCr, Ti, ITO is used after plasma treatment [17]. The 

adhesion strength is determined by the chemical bonding in polymer surfaces and 

metal-polymer interfaces.  Kim et. al. selected 50 nm thin Cr layer as an adhesion 

promoter prior to the copper sputtering, Ni layer is deposited by magnetron 

sputtering at argon flow of 20 sccm, chamber pressure of 2mTorr, power of 100W. 

Copper deposition parameters are same [6]. Noh et. al. [17] investigated the effect of 

seed layer thickness on the adhesion strentgh of Cu/Ni-Cr/polyimide films for 

flexible printed circuits. After argon ion treatment on polyimide surface, Ni-Cr 

(Ni:Cr=95:5 ratio) layers with thickness of 100 Å, 200 Å, 300Å are deposited at flow 

rate of 120 sccm, power of 600W,800W,1200W by magnetron sputtering prior to 

copper electroplating. As seen in Fig. 2.8, the peel strength increases with the 

increasing seed layer thickness. Furthermore, after peel test, the surface roughness of 

the fracture samples are measured by AFM. The RMS roughness increases with the 

increasing seed layer thickness so we can say that boundary layer becomes stronger 

with increasing seed layer thickness.  

 

Figure 2.8 : Peel strength as a function of seed layer thickness [17].  
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Fig. 2.9 shows that the relationship between the peel strentgh and chemical bonding 

ratio as a function of seed layer thickness. It is estimated that the reaarrangement of 

the C-N bonding during Ni-Cr deposition causes the increase in C-O bonding. As a 

result, the formation of Cr-O-C bonding increases the adhesion strentgh.  

 

Figure 2.9 : Relationship between chemical bonding and peel strength as a 

function of the seed layer thickness [17].  

2.3 Electroplating  

Electroplating is a process which metal ions migrate from the anode to the cathode 

through an electrolyte and deposit on the cathode surface by an external electric 

current. Various materials like metals, conductive polymers, metal alloys and some 

semiconductors can be deposited by the electroplating method. There are seventeen 

metals which can be used for this process. But some of them is appropriate for 

micro-electrodeposition. Copper is mostly used one. Because it has low resistivity 

(1.6730 x 10
-6 

Ω/cm), excellent gap fill capability and higher allowed current density, 

it can be deposited directly on a wafer or non conductive material with a thin metal 

seed layer [8,18].  

The copper films can be deposited using various techniques such as PVD, CVD and 

electroplating. However the CVD method cannot be used in the manufacturing 

applications because of high cost, great film stress and low deposition speed [19] .  
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PVD methods such as sputtering, e-beam evaporation and thermal evaporation cause 

some problems during filling trenches holes because of shadow effect. But 

electroplating technique has many advantages over PVD and CVD techniques: 

 low temperature process. (for copper at room temperature) 

 quick process, it takes only few seconds. 

 no clean room needed 

 low operating cost 

 precise control 

 great reliability for high aspect ratio structures 

Also the deposited material’s properties such as texture, grain size, crystallographic 

structure and composition can be easily controlled by plating parameters such as 

deposition temperature, pH, current density, bath composition and agitation.  

2.3.1 Electroplating mechanism 

The sample and copper immersed in the bath. The sample and copper are connected 

to the cathode and the anode terminals respectively. When the sufficient potential is 

provided between anode and cathode, electrons move from anode to cathode. 

Cathode and anode reactions occur as follows: 

Cathode reaction:  

Cu
+2

 + 2e
-
 → Cu    (2.1) 

Anode reaction: 

Cu → Cu
+2

 + 2e
-
    (2.2) 

As seen in Fig. 2.10, electroplating setup consists of: 

 an electrically conductive substrate such as wafer or non-conductive substrate 

like polymers. If a non-conductive substrate will be used, a thin metal film 

must be deposited to obtain conducting surface on the substrate by sputtering. 

 an electrolyte solution 

 current or voltage source  
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 a counter electrode 

 a reference electrode. 

 

Figure 2.10 : Schematic represantation of the electroplating system [20].  

2.3.2 Electroplating parameters 

Current density can be obtained by dividing the deposition current to the deposition 

area.  Studies have shown that the current density has an enormous effect on the 

deposition rate, the resistivity and the surface morphology [19,21]. Film resistivity 

can be obtained by calculation of the sheet resistance and the film thickness. The 

resistivity of the film changes suddenly at high current densities because small and 

rougher grain increased the resistivity of the film sharply.  

 

Figure 2.11 : Deposition rate and surface morphology as a function of current 

density hematic represantation of the electroplating system [19].  
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The proper current density should be determined according to the appropriate surface 

morphology and resistivity. Fig. 2.11 shows that grain size decreased with the 

increasing current density. Smoother surface is obtained at 50 mA/cm
2
. Temperature 

has an enormous effect on electroplating. Studies have shown that the films plated 

with high current densities have the small surface irregularities with increasing bath 

temperature than the films plated with low current densities [22]. The most favoured 

temperature for copper electroplating in acid copper solutions is 25 °C - 30 °C. 

During electroplating, the concentration of ions will reduce around the cathode. 

Agitation is necessary for elimination of low concentration areas. Also agitation is a 

useful method which is used to remove hydrogen bubbles from cathode surface [23]. 

There are four types of copper plating solutions: cyanide, pyrophosphate, fluoborate 

and acid copper solutions. Cyanide solutions have waste treatment problems because 

of their toxicity. So noncyanide solutions can be used instead of cyanide solutions. 

Fluoborate solutions are used at high current densities. But acid copper sulphate 

solutions have many advantages such as easy to control, quick to prepare and low 

cost.  Acid copper sulphate solution is the most preferred one. Acid copper sulphate 

solutions consist of CuSO4 , H2SO4 and additives.  

Park et. al. investigated the electrode distance effect for copper electroplating on Si 

wafer. The experiments are performed for 3 min with current density from 2.4 A/dm
2
 

to 3.2 A/dm
2 

and electrode distance from 1 cm to 4cm.  As seen in Fig. 2.12, film 

thickness increases with the reduced electrode distance. Also, Fig. 2.13 shows the 

SEM images as a function of a electrode distance.  

 

Figure 2.12 : Film thickness as a function of electrode distance [19]. 
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The images show that the films plated with large electrode distance have the bad 

roughness and the lower deposition rate than the films plated with small electrode 

distance. But there was no difference between in grain sizes and shapes between 

different electrode distances [19]. 

 

Figure 2.13 : SEM images as a function of electrode distance; (a) 1 cm, (b) 

2cm, (c) 3cm [19]. 

2.3.3 Two step electroplating  

Two step electroplating technique can be preferred in order to solve adhesion 

problems obtain uniform and faster plating. Seah et al. [24] have studied on filling of 

the sub-0.25 µm line trenches and contact vias by two step electroplating. In the first 

step, a low current density of 0.05 A/m
2
 and a short deposition time of 2s were 

applied for copper electrodeposition.  By this way, the small copper crystallites 

nucleate the entire surface regularly. In the second step, a high current density of 

0.15 A/m
2 

and a high deposition time of 30 s were applied due to faster deposition.  

The deposition time was 70 s at normal condition for complete filling. Fujita et al. 

[25] have studied different two step electroplating technique. In this method, an 

annealing process replaced between the first and second electroplating and occurred 

at 250 C° for 30 min and 3mTorr vacuum condition. They achieved gold 

electroplating on silicon surface for MEMS applications without seed layer. 



 
14 

2.3.4  Pulse plating  

Pulse plating is an alternative technique instead of DC plating. Peak current density, 

the cathodic duration (on time) and the presence of reversed current (off time) 

parameters can be controlled in pulse plating but in DC plating, there is only one 

parameter; current [23]. The films plated with DC plating have the larger grain size 

than the films plated with pulse plating because there is only one nucleation step in 

DC plating, whereas pulse plating involves on and off periods in the total pulse 

cycle. New nucleation occurs at every on period of pulse cycle. Fig. 2.14 indicates 

the grain growth in pulse plating. In this study, TaN is used as a seed layer for copper 

electroplating on Si wafer.  

 

Figure 2.14 : Proposed model for smaller copper grain growth during normal 

pulse plating [24]. 

Also new grains grow continually with increasing deposition time but a lower rate 

than DC plating and align along the new grain boundaries of electroplated copper.  

As seen in Fig. 2.15, fine grains of size less than or equal 0.1 µm are produced in 

pulse plating. Seah et al. [24] reported that there is no important difference between 

the grain size and growth pattern of copper films plated with different current 

densities in pulse plating. Also negatively charged layer is formed around the 

cathode during electroplating process. In DC plating, this layer charges with a 

definite thickness blocks the ions from the reach the part. But in pulse plating, when 

current is not applied at TOFF, this layer discharges. By this way, the ions pass 
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through the layer and reach the part easily. Furthermore, high current density zones 

involve more consumed of ions than low current density zones in the bath. In pulse 

plating, during off time, ions move to the consumed zones in the bath and distribute 

equally for deposition [26]. Zinsou [27] has achieved to obtain uniform, void free 

and conformal films on patterned Si wafer with seed layer using the forward current 

density of 13 mA/cm
2
 at 15 ms and the reverse current density of -27 mA/cm

2
 at 1 

ms. Also total cycle was completed at 20 min. 

 

Figure 2.15 : AFM images of a pulsed reverse copper plating [21]. 

Fig. 2.16 shows the different pulse wave forms for electroplating such as; pulse super 

imposed pulse, duplex pulse, pulsed pulse, pulse on pulse, pulse reverse, pulse 

reverse with off tine, pulsed pulse reverse in pulse plating. Quemper et al. have 

investigated the effects of different pulse wave forms with ranging from 3ms on + 

0.5 ms off to 9.9 ms on + 2.5 ms off on copper deposition through photo resist molds 

[21]. As seen in Fig. 2.17, too high on period induces the copper growth fast and 

leading to the pinch off the via. 
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Figure 2.16 : Different combinations of pulse wave forms [23]. 
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Figure 2.17 : SEM images of line trenches and via holes as a function of 

different pulse waveform; (a) 3ms on + 0.5 ms off, (b)  6ms on + 

2 ms off, (c) 8ms on + 1 ms off, (d) 9.9 ms on + 2.5 ms off [24].  
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3.  EXPERIMENTS AND RESULTS  

3.1 Plasma Process  

The main focus of plasma process is to create strong boundary layer between 

polyimide and metal for improving adhesion. Plasma parameters such as plasma 

gases, duration were optimized and the effects of plasma treatment were investigated 

with different characterization techniques. 

3.1.1 Sample preparation  

The surface of the PI films were cleaned with methanol in an ultrasonic water bath 

for 30 min and then dried in a vacuum oven at room temperature. 

3.1.2 Plasma modification  

The plasma modification of polyimide substrates, such as Kapton TABE and Kapton 

HN, was carried out in inductively coupled plasma system, ICP-DRIE Beijing 

Technol. Science Instruments as shown in Fig. 3.1 before the deposition of Ti/Cu 

layers. First, the reactor chamber was pumped down to a chamber pressure less than 

50 mTorr by mechanical vacuum pump. After rough vacuum was achieved, turbo 

molecular pump was started to obtain low vacuum. Plasma gases, such as argon or 

oxygen were fed in to chamber. When the chamber pressure stabilizes, top power and 

bottom power were applied to create plasma as shown in Fig. 3. 2. After surface 

treatment of PI films, bottom and top power were turned off. Gases pumped out, the 

vacuum was broken by opening deflation valve to admit air in to the chamber. 

Chamber pressure reaches the atmospheric pressure within 2-3 min and plasma 

treated samples were taken out for characterization. The plasma parameters are given 

in Table 3.1. 
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Figure 3.1 : Inductively coupled plasma 

 

Figure 3.2 : Plasma creation 

Test Material  Gas 

 Flow 

rate 

[sccm] 

Power        

[W] 

Chamber 

pressure 

[mTorr] 

Duration 

[min] 

SET 1 Kapton  HN Oxygen 30 40-125 30 0, 1, 3 and 5 

SET 2 
Kapton  

TABE 
Oxygen 30 40-125 30 0, 1, 3 and 5 

SET 3 
Kapton 

TABE 
Argon 30 40-125 30 0, 1, 3 and 5 

SET 4 Kapton  HN Argon 30 40-125 30 0, 1, 3 and 5 

Table 3.1: The settings for the plasma modification on PI films. 
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3.1.3 Contact angle measurements 

The wettability of the PI films was evaluated by measuring the contact angle between 

the film surface and a distilled water droplet, using KSV CAM200. An average of 

ten measurements with a standard deviation below 1 degree were obtained. During 

the contact angle measurement, we investigated the argon and oxygen plasma effects 

on different PI films: Kapton TABE and Kapton HN. Fig. 3.3 shows the measured 

contact angle values of the argon plasma treated Kapton TABE and Kapton HN films 

at top power of 40W, substrate bias power of 125W and gas flow rate of 30 sccm. 

While the contact angle of the untreated Kapton TABE was 70.55°, contact angle of 

the argon plasma treated Kapton TABE films were reduced to 8.37° after 1 min. 

While the contact angle of the untreated Kapton HN were 68.55°, contact angles of 

the argon plasma treated Kapton HN films were reduced to 10.16°. after 1 min. After 

3 minutes of treatment, the contact angles for both film were reduced to 0°.  Fig. 3.4 

shows the  measured contact angle values of the oxygen plasma treated Kapton 

TABE and Kapton HN films. The contact angle values of the plasma treated Kapton 

TABE films were reduced to 0°, after 1 minute of treatment. On the other hand the 

contact angle values of the plasma treated Kapton HN films were reduced 0° after 3 

minutes. According to these contact angle measurement results, it is found that there 

is not much of a difference between the wettability characteristics of Kapton TABE 

and Kapton HN films.  

 

Figure 3.3 : Contact angle values of argon plasma treated Kapton HN and Kapton 

TABE films as a function of duration. 
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Figure 3.4 : Contact angle values of oxygen plasma treated Kapton HN and Kapton 

TABE films as a function of duration. 

Furthermore, Fig 3.5-3.8 shows the images of the measured contact angle values as a 

function of duration. The hydrophilic surfaces gives the lower contact angle and 

shows the higher surface energy. The higher surface energy provides better adhesion 

strength between metal and polymer. 

    

   (a)                      (b)                        (c)                      (d) 

Figure 3.5 : Contact angle images of argon plasma treated Kapton HN films as a 

function of a duration  (a) unmodified, (b) 1 min, (c) 3 min, (d) 5 min. 

    

  (a)                       (b)                        (c)                       (d) 

Figure 3.6 : Contact angle images of argon plasma treated Kapton TABE films as a 

function of a duration  (a) unmodified, (b) 1 min, (c) 3 min, (d) 5 min. 
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                           (a)                       (b)                       (c)                       (d) 

Figure 3.7 : Contact angle images of oxygen  plasma treated Kapton HN films as a 

function of a duration  (a) unmodified, (b) 1 min, (c) 3 min, (d) 5 min. 

    

                            (a)                     (b)                        (c)                       (d) 

Figure 3.8 : Contact angle images of oxygen plasma treated Kapton TABE films as 

a function of a duration  (a) unmodified, (b) 1 min, (c) 3 min, (d) 5 min. 

3.1.4 AFM analysis  

The surface morphologies of the plasma treated PI films were studied by AFM, using 

Nanomagnetics Instruments. For each sample, an area of 4x4 µm was scanned using 

tapping mode. The AFM observations was carried out at ambient pressure and room 

temperature. The mean square root of roughness was calculated. Fig. 3.9 shows 4.0 x 

4.0 µm
2
 AFM image of the argon treated PI films as a function of duration. 

Accelerated oxygen and argon ions roughen the surface of the Kapton TABE 

polyimide films. Root-mean-squared (RMS) roughness values of the untreated 

Kapton TABE film was 1.58 nm. The AFM image of the 1 min. argon treated 

polyimide films cannot be seen in Fig. 3.9, because the cantilever sticked the 1 min. 

argon treated samples. To determine the 1 minute argon treated sample roughness, 

the roughness of the sample was measured on different regions of the sample and the 

average surface roughness was calculated. The RMS roughness values of the argon 

treated Kapton TABE films at the duration of 1, 3, 5 min were increased to 7.3, 

23.39, and 32.21 nm, respectively. As seen in Fig.3.9, increased duration roughens 

the surface by increased argon bombardments. Grass like surface morphologies with 

increased surface roughness were observed as duration increases. Fig. 3.10 shows 4.0 

x 4.0 µm
2
 AFM image of the oxygen treated PI films as a function of duration. The 

RMS roughness values of the oxygen treated Kapton TABE films at the duration of 

1, 3, 5 min were increased to 7.05, 18.96, and 28.55 nm, respectively.  Increased 

duration roughens the surface by increased oxygen bombardments.  Much more cross 

linked surface morphologies with increased surface roughness were observed as the 
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duration increases. Fig. 3.11 and Fig. 3.12 shows the measured contact angle values 

of the argon and oxygen plasma treated Kapton TABE films together with the RMS 

roughness values obtained from the AFM images in Fig. 3.9 and Fig. 3.10. The 

results show that the large increase in the RMS roughness causes to decrease in 

contact angles. Nano scale roughness increases the total surface area and as a result 

reduced contact angles. 

 

Figure 3.9 : 4.0 x 4.0 µm
2
 AFM image of argon plasma treated Kapton TABE 

surfaces as a function of duration; (a) untreated, (b) 3 min, (c) 5 min. 
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Figure 3.10 : 4.0 x 4.0 µm
2
 AFM image of oxygen plasma treated Kapton TABE 

surfaces as a function of duration; (a) untreated, (b) 1 min, (c) 3 min, 

(d) 5 min. 

 

Figure 3.11 : Relationship between contact angle and RMS roughness of oxygen 

plasma treated Kapton TABE films as a function of duration.  
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Figure 3.12 : Relationship between contact angle and RMS roughness of argon 

plasma treated Kapton TABE films as a function of duration. 

3.1.5 FTIR analysis  

FTIR spectra of plasma treated PI films were obtained using Perkin Elmer 

spectrometer. The scans were shown from 650 to 4000 cm
-1

 and required 40s to 

complete. Fig. 3.13 indicates the chemical composition of argon plasma treated 

Kapton TABE films as a function of duration. As seen in Fig. 3.13, the bands 

observed around 717, 1083, 1238, 1350, 1500, 1707, 1774, were assigned 

respectively to the C=O bending, C-O-C stretching, C-O-C asymmetrical stretching, 

C-N stretching, aromatic C=C ring stretch., C=O symmetrical stretching and C=O 

asymmetrical stretching. The chemical bands of polyimide conform with the FTIR 

analysis polyimide done by other researchers [11,28-30]. The C=O bending and 

symmetrical stretching peaks at 717 and 1770 cm
-1 

and 
 
C-O-C stretching and 

asymmetrical stretching peaks at  1083 and 1238 cm
-1

 become stronger at one minute 

treatment and become weaker with increasing time. C-N chemical bond gives strong 

peaks (corresponding to 1350 cm-
1
) at one minute duration and decreases with 

increasing time.  Also, new peak arose at 3485 cm
-1

 (corresponding to O-H 

stretching) after one minute argon treatment. Moreover, new peak at 3746 cm
-1

 

(corresponding to N-H stretching) is observed on the argon treated polyimide for one 

minute. 
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Figure 3.13 : FTIR spectra of argon plasma treated Kapton TABE films as a 

function of duration  (a) 5 min (b) 1 min (c) 0 min (d) 3 min 

These changes indicate that chemical structure of polyimide films change after 

plasma treatment. The formation of O-H functional groups show that reactive free 

radical colloid with the surface of PI films [12]. Previous studies reported that the 

increased number of functional groups such as C=O, C-O-C by the plasma treatment 

improve the adhesion strength between metal and polymer [10,7,5,6]. In the light of 

previous studies, we can say that argon treatment for one minute duration creates 

more functional groups on surface. This oxygen containing functional groups interact 

with the metals to form chelate-like complexes and provides good adhesion between 

metal and polyimide. FTIR spectra of the oxygen treated polyimide films could not 

obtained. The analysis of the FTIR method is inadequate for the oxygen plasma 

modification. 

3.2 Magnetron Sputtering 

The main focus of sputtering process is to create an adhesion layer and seed layer 

prior to electroplating. Deposition of Ti and Cu layers on polyimide substrate was 

carried out in physical vapour deposition system, Beijing Technol. Science 

Instruments as shown in Fig. 3.14. 
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Figure 3.14 : Physical vapor deposition system 

This functional PVD system has different deposition systems like e-beam, thermal 

evaporation and DC magnetron sputtering. Prior deposition, the reactor chamber was 

pumped down to a chamber pressure less than 3 Pa by mechanical vacuum pump. 

After rough vacuum was achieved, turbo molecular pump was started to obtain low 

vacuum less than 10
-3 

Pa and then argon gas fed in to the chamber. When the 

chamber pressure reached the set point, the power value was adjusted. Then shutter 

was opened and a visible glow discharge was observed. Positive ions in the plasma 

strike and eject the negative target atoms with momentum transfer.  

Target atoms pass the discharge region and deposit on the substrate. After deposition 

of metal on the substrate, shutter was closed. Gases pumped out, the vacuum was 

broken by opening deflation valve to admit air in to the chamber. Chamber pressure 

reaches the atmospheric pressure within 15-20 min. 

3.2.1 Deposition of Ti and Cu seed layer on the polyimide substrate  

In this study, Ti was selected as an adhesion promoting layer between the polyimide 

and copper. To determine sufficient power for ejecting the Ti atoms on the cathode 

surface, five different power values were compared. The deposition parameters are 

given in Table 3.2. 
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Test 

 Flow 

rate 

[sccm] 

Power        

[W] 

Chamber 

pressure 

[Pa] 

Duration 

[min] 

SET 1 65 100 W 0.9 15 min 

SET 2 65 150 W 0.9 15 min 

SET 3 65 200W 0.9 15 min 

SET 4 65 250 W 0.9 15 min 

SET 5 65 300 W 0.9 15 min 

After experiments, it was seen that power of 100W, 150W, 200W are inadequate for 

ejecting titanium atoms on the cathode surface. On the other hand, the power of 

150W is sufficient to eject the copper atoms on the cathode surface during sputtering 

process. Because the sputtering yield of the titanium is very low, when we compare 

with the sputter yield of copper. 

For determining the thickness of the Ti and Cu layers, the small pieces of Si wafers 

were metalized with polyimide samples. Because polyimide is a flexible material and 

it causes problem when measuring thickness by profilometre.  After thickness 

measurements of the Si by profilometre, it was seen that the deposition rates of 

titanium was 12 nm/min at power of 250 W, flow rate of 65 sccm, chamber pressure 

of 0.9 Pa and the deposition rate of copper 40 nm/min at power of 150W, flow rate of 

65 sccm, chamber pressure of 0.9 Pa. The deposition parameters are given in Table 

3.3. 

 

Table 3.2: The settings for Ti deposition on PI films.  
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Figure 3.15 : Sputtering yields data for metals [31]. 

Metal 
 Flow rate 

[sccm] 

Power        

[W] 

Chamber 

pressure 

[Pa] 

Duration 

[min] 

Thickness 

[µm] 

Ti 65 250 W 0.9 10 min 120 nm 

Cu 65 150 W 0.9 5 min 200 nm 

3.3 Magnetron Sputtering 

Pulse plating parameters such as current density and pulse waveforms were 

optimized and the effects of current density and pulse waveforms on films were 

investigated with scanning electron microscopy.  

As seen in Fig. 3.16, electroplating setup consists of: 

 an anode; 5x5 cm
2
 %99.99 pure copper sheet  

Table 3.3: The settings for Cu deposition on PI films.  

2.35 

0.51 
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 an electrolyte solution which includes; 0.3 M CuSO4, 2M H2SO4, 1.4x 10
-3

 

HCl 

 Microstar Dynatronix pulse plating instrument,  

 a cathode;  3 cm
2 

Cu/Ti/polyimide film 

 cell 

 aquarium pump 

 flow meter; flow rate adjusted to the 4 l/h 

 

Figure 3.16 : The experimental setup. 

During electroplating, the concentration of the ions near the cathode decreases, so 

recirculation system was used to determine the homogenous electrolyte. Electrolyte 

was circulated by aquarium pump and the flow rate of the electrolyte was determined 

by flow meter. All electroplating experiments were carried out at the room 

temperature and pH 3. Other electroplating parameters are given in Table 3.4. 

Test Iforward Ireverse Iaverage on time off time 
duty 

cycle 

SET 1 

15 mA 15 mA 12 mA 90 ms 10 ms 100 ms 

30 mA 30 mA 24 mA 90 ms 10 ms 100 ms 

45 mA 45 mA 36 mA 90 ms 10 ms 100 ms 

60 mA 60 mA 48 mA 90 ms 10 ms 100 ms 

SET 2 

30 mA 30 mA 24 mA 90 ms 10 ms 100 ms 

30 mA 30 mA 18 mA 80 ms 20 ms 100 ms 

30 mA 30 mA 12 mA 70 ms 30 ms 100 ms 

30 mA 30 mA 6 mA 60 ms 40 ms 100 ms 

Table 3.4: The settings for the copper electroplating on Cu/Ti/PI films.  
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3.3.1 Effect of current density  

The first sets of experiments were designed for investigating the effect of current 

density on film properties. The surface characteristics of the electroplated copper 

films were characterized by SEM and profilometer. As seen in Fig. 3.17-3.20, SEM 

micrographs of the electroplated copper show that the smooth surface was obtained 

with a mean current density of 8 mA/cm
2
. Analysis of the roughness by profilometer 

confirms this observation. The surface roughness was obtained using Veeco Dektak 

6M stylus profiler. 

Test Iforward Ireverse Iaverage on time off time duty cycle Ra  

SET 1 

15 mA 15 mA 12 mA 90 ms 10 ms 100 ms 0.500 

30 mA 30 mA 24 mA 90 ms 10 ms 100 ms 0.031 

45 mA 45 mA 36 mA 90 ms 10 ms 100 ms 0.054 

60 mA 60 mA 48 mA 90 ms 10 ms 100 ms 0.074 

 

Figure 3.17 : SEM micrographs of electroplated copper at a mean current density of 

4mA/cm
2
  

Table 3.5: The average roughness of the copper films as a function of the current 

density.  
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Figure 3.18 : SEM micrographs of electroplated copper at a mean current density of 

8 mA/cm
2
 

 

Figure 3.19 : SEM micrographs of electroplated copper at mean current density of 

12 mA/cm
2
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Figure 3.20 : SEM micrographs of the electroplated copper at a mean current density 

of 16 mA/cm
2
 

 

Figure 3.21 : SEM micrographs of the electrplated copper at a mean current density 

of  20 mA/cm
2
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When the current density exceeded the 16 mA/cm
2
, the formation of hydrogen 

bubbles were observed on the cathode surface. This causes porous surface and 

increases the darkness of the film.  

3.3.2 Effect of pulse waveforms  

The second sets of experiments were designed for investigating the effect of pulse 

waveforms on film properties. The surface characteristics of the electroplated copper 

films were characterized by SEM. The current was alternatively turned on and off in 

during pulse cycle. During on period in every pulse cycle, new nucleation occurs at 

high energy sites, thus new grains grow continually and the negatively charged layer 

is formed around the cathode during electroplating process. During off period in 

every pulse cycle, this layer discharge and provides uniform bath composition. By 

this way, ions easily reach the cathode surface.  As seen in Fig. 3.22 to 3.25, the high 

average current density causes the greater grain growth of copper grains. The greatest 

growth of copper grains can be seen in Fig. 3.25. On and off period should be 

balanced, on the other hand, the secondary growth of copper grains can be observed 

as seen in Fig. 3.22 to 3.24. Also these secondary growth of copper grains increases 

with the increased mean current density.  The smooth surface was obtained at pulse 

waveform of 90 ms on and 10 ms off with a current density of 8 mA/cm
2
 because on 

and off periods were balanced. 
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Figure 3.22 : SEM micrograph of the electroplated copper at pulse waveform of 60 

ms on + 40 ms off and a current density of 2 mA/cm
2 
 

 

Figure 3.23 : SEM micrograph of the electroplated copper at pulse waveform of 70 

ms on + 30 ms off and a cuurent density of 4 mA/cm
2
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Figure 3.24 : SEM micrograph of the electroplated copper at 80 ms on + 20 ms off 

and a current density of 6 mA/cm
2
  

 

Figure 3.25 : SEM micrograph of the electroplated copper at 90 ms on + 10 ms off 

and a current density of 8 mA/cm
2
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4.  CONCLUSION AND RECOMMENDATIONS 

In this work, the results demonstrated that the argon and oxygen plasma modification 

are the good modification methods. Because the adhesion performance of the 

sputtered layer on polyimide films is strongly affected by the increased surface 

energy, the increased surface roughness and the formation of functional groups on 

polyimide films after plasma treatment.  It appeared that argon and oxygen plasma 

treatment provide higher surface energy, thereby leading to improved adhesion. Also, 

surface roughness increases the surface area and provides the physical interactions 

and mechanical interlocking with metal layer. However, the excessive treatment of 

polyimide films leads to the formation of weak boundary layer between metal and 

polyimide. Analysis of FTIR from argon plasma treated polyimide films showed the 

increased C=O, C-O-C functional groups, which provide stronger chemical bonding 

with metal layer, at duration of 1 minute.  The number of functional groups decreases 

with increasing time after one minute treatment. As a result of the characterization, 

the optimal argon plasma settings such as duration of 1 min, top power of 40W, 

substrate bias power of 125W, and argon flow rate of 30 sccm are selected. The 

optimal oxygen plasma settings cannot be determined because the chemical structure 

analysis of the oxygen plasma treated polyimide surfaces cannot be obtained by 

FTIR so the chemical analysis of the oxygen treated polyimide surfaces should be 

investigated by advance characterization techniques such as XPS. The electroplating 

experiments show that the smooth surface morphology was obtained at a mean 

current density of 8 mA/cm
2
 and 90 ms on period, 10 ms off period. SEM 

micrographs show that the balanced on and off periods give the smooth, uniform 

surface morphology. 90 ms on period and 10 ms off period were selected as optimum 

pulse waveforms. In this study, Ti was selected as a adhesion promoting layer. 

Different type of metals like Cr or TaN can be used and their effects on the adhesion 

can be investigated for future work. Different type of additive effects on the film 

properties can be investigated for future work. 
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