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A NUMERICAL STUDY ON THE IMPACT BEHAVIOR OF 

THERMOPLASTIC PLATES 

SUMMARY 

In this thesis, dynamic response of exposure to a certain velocity impact of  

polycarbonate and polymethylemethacrylate plates were investigated depending on 

increasing thickness of plates and impacts at locations center of the plate, 20 and  40 

mm were carried out by a spherical steel projectile using finite element and compare 

to each target plate behavior. First of all, it was investigated that impact events for 

polycarbonate and polymethylemethacrylate armor plates. It was conducted that 

explicit analyses later in this way. Analysis methods for impact problem are searched 

Lagrangian formulation is chosen for this study.   Also, von Mises criteria is used for 

pc plates in this thesis. PMMA was assumed to obey the Drucker – Prager material 

model in the present study. Polycarbonate and PMMA materials are shown elastic- 

plastic behavior. Further, these polymer types are also shown viscoelastic behavior. 

However, it is realized that at extremely high strain rates, the strength of the material 

does not increase indefinitely. For these reasons, a reasonable choice was made to 

preserve the measured ductility while neglecting viscous effects at very high strain 

rates. That is, it was ignored viscoelastic behavior in this thesis. Thus, polymers like 

pc and PMMA are only modeled with elasic-plastic properties when it is used 

analysis program which Abaqus, Autodyn etc.  

Three different thickness of plate and three different impact locations are taken 

consideration in this study. Plate thickness was selected as 1.4, 1.9 and 2.4 mm. In 

addition, the plates were modeled using 90×90 mm. Thin square polycarbonate and 

PMMA plates was subjected to a spherical projectile impact at a velocity of 140 m/s. 

Subsequent impacts were made at plate center, 20 and 40 mm of the plate  depending 

on changing plate thickness. The target plate outer edge was constrained for all 

degrees of freedom. A spherical steel projectile of 6.98 mm diameter was launched 

against the square plate and also the mass of projectile was calculated as 0.00139 kg. 

According to this information, kinetic energy of the projectile was computed as 

13.693 joule. The distance between target plate and projectile doesn’t have any effect 

on the results, because gravitational force is neglected. When setting the material 

properties, “Bilinear Kinematic Hardening” model is used from the Ansys Library. 

Since polycarbonate is a ductile material, it is selected that plastic strain failure 

criteria for pc. PMMA is shown brittle fracture and ductile deformation at room 

temperature. Therefore, two failure criteria are combined which tensile failure and 

ductile failure during numerical modeling. 

Plastic strain, von Mises stresses, maximum shear stresses, deformation of plate and 

energy absorption histories were recorded in this study. As increasing plate 

thickness, energy absorption quantity is increased as predicted for both 

polycarbonate and PMMA plates. At 1.9 and 2.4 mm thick, there was no 
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fragmentation for pc plates. However, it was observed that perforated event at all 

plate thickness for PMMA. It is expected that this phenomenon because PMMA has 

less impact resistance than pc material. Also, all energy absorption values are seen to 

be higher for pc than PMMA material at all plate thickness. That is, kinetic energy 

was not completely transformed into internal energy and therefore it was occurred 

that perforated event during impact loading for PMMA target plate. Furthermore, 

maximum plastic strain values were decreased while thickness of plate was 

increased. This situation was expected as well because resistance of plate is increased 

when the plate thickness is higher. On the other hand, it is occurred that higher stress 

values at close to fixed edge than other impact locations for both target material since 

square plate edges are constraint, as expected. It is observed that plastic deformation 

and fragmentation events with different plate thickness and impact points in this 

thesis. Furthermore, it was conducted that a validation analysis before thesis study. It 

can be said that this verification study is similar with thesis thesis. It was used that a 

circular polycarbonate plate. Once it was accomplished the validation analysis, it was 

implemented thesis study. 
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TERMOPLASTİK LEVHALARIN DARBE DAVRANIŞININ NÜMERİK 

OLARAK İNCELENMESİ 

 

ÖZET 

Bu tez kapsamında, sabit bir hıza sahip olan vurucu cismin, polikarbonat ve 

akrilikten yapılmış levhalara çarptırılarak; levhaların dinamik yükler altındaki 

davranışı incelenmek istenmiştir. Bu darbe yükü altındaki levhaların davranışları, 

farklı kalınlıkta ve değişen darbe yerlerine bağlı olarak incelenmiştir. Levha 

kalınlıkları 1.4, 1.9 ve 2.4 mm olarak seçilmiştir. Ayrıca darbe yerleri levhanın 

merkezinden başlayarak 20 mm aralıklarla dış kenara doğru yapılmıştır. Yani vurucu 

cisim levhanın merkezine, merkezden 20 mm mesafeye ve aynı şekilde 40 mm 

merkezden uzaklığa olmak üzere darbe analizi gerçekleştirilmiştir. Bu çalışmada, 

farklı kalınlıklardaki levhalarda ve farklı darbe noktalarındaki davranışlar 

birbirleriyle kıyaslanmıştır.  

Vurucu eleman olarak 7850 kg/m
3 

yoğunluğa sahip olan çelik bilye kullanılmıştır ve 

bu malzemenin özellikleri Ansys kütüphanesinden alınmıştır. Analize başlamadan 

önce, ilk olarak polikarbonat ve PMMA malzemeleri ile yapılmış olan darbe 

çalışmaları incelenmiştir ve bu yönde malzemeleri modelleyip çalışma yapılmıştır. 

Bu çarpışma çalışması için “Lagrange” methodunu kullanarak analiz yapılması 

uygun görülmüştür. Ayrıca  sünek malzemeler için daha çok kullanılan von Mises 

akma kriterine gore polikarbonat modellenmiştir. Fakat PMMA sünek 

deformasyonun yanı sıra  oda koşullarında gevrek kopma gibi bir özellik 

gösterdiğinden Ansys kütüphanesinde malzemenin failure kriterlerini atarken bu 

gevreklik özelliğine uyum gösteren  ‘the Drucker – Prager’ malzeme modeli 

seçilmiştir. Polikarbonat ve PMMA hem elastik hem de plastik davranış gösteren 

malzeme tipleridir. Ancak bu özelliklerinin dışında ayrıca viskoelastik özelliğe de 

sahiptirler.  

Deneysel yapılan çalışmalarda anlaşılmış ki yüksek gerinim oranlarında malzemenin 

mukavemeti sonsuz biçimde artma göstermez. Bu sebepten ötürü, viskoz özellik 

ihmal edilirken yüksek gerinim oranlarında makul bir seçim yapılarak  malzemenin 

sünekliliğini koruyaracak şekilde plastisite ve diğer failure kriterleri atanmıştır. Bu 

yüzden polikarbonat ve PMMA gibi polimerler bilgisayar üzerinde analiz programı 

kullanırken, örneğin Abaqus, Autodyn gibi, yalnızca elasto-plastik davranışlarına 

bağlı olarak malzeme modellemesi yapıldığı literatürde görülmüştür. Aynı şekilde bu 

çalışmada da viskoz özellik ihmal edilmiştir.  

Polikarbonat ve PMMA’dan yapılmış levhalar 90x90 mm boyutlarında kare plaka 

olarak tasarlanmıştır. Farklı kalınlıklarda üretilmiş bu levhalara çelik bilye 140 m/s 

hızla fırlatılmıştır. Polikarbonat ve PMMA malzemelerinden yapılmış olan tüm farklı 

kalınlıktaki levhalarda ve aynı zamanda üç farklı darbe noktasında yalnızca 140 m/s 

hızında çelik bilye fırlatılmıştır. Yani bu hız değeri tüm analizlerde sabit kalmıştır.  
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Darbe noktaları levhanın merkezi, 20 ve 40 mm merkezden uzaklıkta olacak şekilde 

ayarlanmıştır. Kullanılan levhalar dört kenardan ankastre olarak mesnetlenmiştir. 

Fırlatılan çelik bilyenin çapı 6.98 mm kadardır. Çeliğin yoğunluk değerinden 

faydalanılarak kütlesi 0.00139 kg olarak bulunmuştur. Bu bilgiler ışığında 

cismimizin kinetik enerjisi 13.693 joule olarak hesaplanmıştır. Yerçekimi dikkate 

alınmadığından, levhalarla ve çarpan çelik bilye arasındaki ilk mesafe sonuca etki 

etmeyeceği düşünülmüştür. Malzeme özellikleri atanırken polikarbonat için “Bilinear 

Kinematic Hardening” plastisite özelliği seçilmiştir. Buna ilaveten polikarbonat 

sünek bir malzeme olduğundan dolayı failure kriteri olarak “plastic strain failure” 

seçilmiştir. PMMA malzemesini modellerken ise, bu malzeme oda koşullarında 

gevrek kopma ve sünek deformasyon gösterdiği için iki farklı failure kriteri kombin 

yapılarak modellenmiştir. Bu kriterler “tensile failure” ve “ductile failure” 

şeklindedir.  

Bu tez çalışmasında, maksimum von Mises gerilimi, soğurulan enerji, maksimum 

deformasyon, maksimum plastik gerinim ve maksimum shear gerilmeleri 

bulunmuştur. Daha sonra bu sonuçlar farklı kalınlıklarda ve değişen darbe yerlerinde 

birbiriyle kıyas edilmiştir. Hem polikarbonat hem de PMMA malzemelerinden 

yapılmış levhalarda, levha kalınlığı arttıkça beklenildiği üzere soğurulan enerjinin de 

arttığı görülmüştür. 1.9 ve 2.4 mm kalınlıktaki polikarbonat levhalarda 

parçalanmanın görülmediği, yalnızca plastik deformasyonun meydana geldiği ancak 

PMMA ile yapılan çalışmalarda tüm kalınlıklarda çelik bilyenin levhayı parçalayıp 

geçtiği görüldü. Bu sonuç beklenen bir durumdu çünkü PMMA’nın darbe dayanımı 

polikarbonata göre daha düşüktür. Bu yüzden polikarbonat levhaların birçoğunda 

parçalanmanın meydana gelmemesi daha muhtemeldir. Aynı şekilde birçok farklı 

kalınlıktaki polikarbonat levhaların hemen hemen hiçbirinde parçalanma olayı 

meydana gelmediği analizler sonucunda kolaylıkla görülmüştür. Bu yüzdendir ki 

soğurulan enerji tüm kalınlıklarda polikarbonat levhalarda daha yüksek 

mertebelerdedir. Bu durumdan da anlaşılıyor ki, PMMA levhalarda kinetik enerji iç 

enerjiye tam olarak dönüşmemiş olduğu anlaşılmıştır. Bu yüzden de parçalanma 

olayı meydana gelmektedir. Bunun haricinde her iki malzeme tipindeki levhalarda 

plastik gerinim değeri levha kalınlığı arttıkça azalmıştır. Bu durum beklenen bir 

olaydır. Çünkü levhanın kalınlığı arttıkça daha mukavemetli bir hal alacaktır ve 

deforme olması daha zor olacaktır. Diğer yandan ankastre kenara yaklaştıkça her iki 

levhada gerilme değerleri yüksek çıkmıştır ki bu da beklenen bir durumdur. Bu 

çalışmada sonuç olarak, genel olarak farklı kalınlık ve darbe yerlerine bağlı olarak 

plastik deformasyon ve parçalanma olayları gözlemlenmiştir. Yapılan tüm 

çalışmalarda gözlemlenildiği üzere polikarbonat malzemesinin PMMA malzemesine 

göre çok daha yüksek darbe dayanımı olduğu tespit edilmiştir. 

 Aynı şekilde literatürde de yapılmış olan benzer çalışmalarda çıkan sonuçlara paralel 

sonuçların elde edildiği bulunmuştur. Kullanılmış olan bu iki farklı malzemenin 

kimyasal yapıları da incelenmiş olup, beklenilen bir sonucun alındığı 

gözlemlenmiştir. Malzemelerin kimyasal yapıları incelenmiş ve polikarbonat 

malzemesinin kimyasal bağ yapısı çok daha yüksek mertebede olduğu görülmüştür. 

Elde edilen sonuçlarda yine bu duruma paralel olarak çıkmıştır. Ayrıca tez 

çalışmasından önce, tez kapsamında kullanılan  polikarbonat malzemesi ile yapılmış 

olan akademik bir çalışmanın doğrulama analizi yapılmıştır. Bu doğrulama çalışması 

başarıyla yapıldıktan sonra tez çalışmasına geçilmiştir. 
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1.  INTRODUCTION 

1.1 Purpose of Thesis 

In this thesis, canopy structure was investigated to see the results of fragmentation. For 

this situation, polycarbonate and PMMA materials were utilized to composed plates for 

structure. These materials were chosen in order to contribute in the literature due to 

lacking of the studies. In this study, dynamic provision of exposure to a fixed velocity 

impact of  polycarbonate and polymethylemethacrylate plates were investigated 

depending on increasing thickness of plates and impacts at locations center of the plate, 

20 and  40 mm were carried out by a spherical steel projectile using finite element and 

compare to each target plate attitude. Ansys workbench software program, which is 

commanly preferred for explicit dynamics, was used by developing and analysis in 

Autodyn. Here the most significant point in this study, polycarbonate and PMMA 

materials have ideal physical and chemical properties for situations of impact in 

comparison with the materials used for canopy structures.   

1.2 The Importance of Engineering Thermoplastics in Aerospace Industry  

Engineering thermoplastics have a combination of perfect thermal, mechanical, 

electrical and chemical properties compared to basic material resins. These plastics can 

be composed into parts that can bear loads and high stresses, perform at high rise 

temperatures and be modified to come close to the properties of metal, glass, and wood. 

It is widely known that engineering thermoplastics can be amorphous. It can be given 

that amorphous engineering thermoplastic types include acrylics, polycarbonates (PCs) 

and polyurethanes. Polycarbonate and acrylic materials were used in this study. This 

thesis study will describe their production, properties and impact behavior. 

Optically crystalline multi-layered polymer layers was used in military defense 

applications like transparent shield for personnel guard and air/ground vehicle windows. 
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The general requirements for see-through shield are to hinder incoming threats, 

withstand multiple impacts and maintain optical clarity with minimal disintegration and 

optical distortion for the user [1-3]. A characteristic format of transparent shield consists 

of multiple rigid thermoplastic polymer external layers with rubbery interlayer sticks. 

The transparency, toughness and rate dependence of Polycarbonate and acrylic materials 

are the primary reasons they are excellent choices for use in see-through shield to 

withstand projectile impact. 

Significant implementation of polymers is as an adhesive for joining airplane 

components. It is possible to manufacture quite high strength, durable joints using 

polymer adhesives without the need for bonders such as rivets and screws [4-5]. 

Polycarbonate windscreens are also invulnerable to damage by large hailstones. Damage 

induced to aircraft windows by bird strike or hail. Even though the polycarbonate 

windows are damaged, they were impacted under heavy conditions that would have 

caused most other polymer materials to break leading to cabin depressurisation. PMMA 

is one of the polymers that is most resistant to straight sunlight exposure. This property 

of acrylic makes it appropriate for products intended for long open‐air operation. PMMA 

has less impact resistance than Polycarbonate. However, it has 10-24 times more 

resistant than glass. 

In present study, these materials which polycarbonate and PMMA are investigated and 

then their impact behaviors are compared in engineering scope. 

1.3 Literature Review 

Owing to its good impact resistance specialties, the polycarbonate material is used in 

and bulletproof armored vehicles [1]. Polycarbonate (PC) is also under exploration for 

the progress and manufacture of sandwiched panels for bullet-proof waistcoats and 

armored systems where alternate layers of polymethylemethacrylate acrylic (PMMA) 

and polycarbonate are used to diminish the damage caused by high-velocity projectiles 

[2]. Polycarbonate is a in the extreme ductile matter at room temperature. Also, it 

undergoes major plastic deformation when loaded statically and dynamically. The 

deformation in a static loading case is larger than on the dynamic loading condition 
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cause under dynamic loading the failure might happen at a smaller plastic strain. Back 

plane spall and breakup might not show a difficulty to the polycarbonate armor plate. As 

a general practice most of the armored plates are tested by subjecting them to a plate 

mid-point impact however there are very few studies where the defense talent has been 

investigated based upon the impact position on a particular shaped shield plate [3, 4]. In 

[4] it was seen that for annular polycarbonate armor sheet the thickness close to the fixed 

edge reduced by 53% and then impact matched to its original thickness before hit. 

Additionally, 10% scale down in thickness was enlisted when matched to the thickness 

at the plate center after hit. A rather affecting investigation respecting the Multiple- Hit- 

Criterion evaluation way for a patterned armor consisting of ceramic quarries has been 

negotiated in [5]. It has been explained that due to the performance requirements none of 

the armor can beat the threat of a continuous gun fire. Thus, an armor should be drafted 

which can continue the automatic gun fire that can land at least 10 rounds at a single 

point or in its vicinity. Multiple impact wreckage to the airplane fuselage lap joints and 

their reparation procedure has been mentioned in [6]. On account of their light weight, 

economical, even simple manufacturing processes, the usage of polymers is on the 

uptrend in a lot of industries. Experimental studies noticed on the attitude of polymers 

are not as numberless as on metals and numerical studies are even rare because of the 

absent of convenient material models [7–13].  The response of rectangular sheets 

subjected to explode loading was noticed where the authors research the response of 

quadrangular stiffened steel sheets [14-15]. In this study, target model is selected a 

square model. Similarly, impact event was started from plate center to clamped edge. 

The influences of large and close range explosions on circular shield plates have been 

investigated very lately where [16]. Numerical studies on the reaction of shield systems 

made up of PC and PMMA were studied [8] where perfect particle hydrodynamics was 

used to simulate the response of PC and acrylic layers. Furthermore, numerical results 

based upon the tests [17] have been reported in [18] where the effect of varying support 

forms have been investigated on the plastic failure of the annular steel plates. Annular 

plates subjected to intensive fragment cluster impact [19-20] research the failure process 

of shield plates subjected to a fragment cluster consisting of plenty projectiles impacting 

the plate at the same time. It was studied that the ballistic resistance of fixed very thin 
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PC sheets to single [21, 22]. It was concluded that reinforcements have to be provided 

close to the fixed edges. A study was made on sloped impact of polymethylmethacrylate 

(PMMA) thick sheets [23, 24].  

Glazed polymers such as polymethylmethacrylate (PMMA) are an desirable choice for 

shield related applications owing to their material properties for instance pressure 

sensitivity, strain rate dependent strength, transparency, low density and very high 

durability [25]. For this purpose, it was seen that on punch experiments [26], PMMA 

fractures in a brittle format in the absence of external limitation. The mechanical 

features of glazed polymers at high strain rates and limitation were studied: PMMA [27]. 

Impact and puncture of acrylic plates have been studied [28]. In their simulations the 

real mechanical properties of acrylic were not handled, however were systematically 

varied till a convincing resemblance between the experiments and the simulations was 

obtained. Their primary result was that spalling is the primary responsible agent for the 

formation of the ricochet [29]. According to these works, analyses were implemented 

properly on Autodyn. 
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2.  GENERAL  INFORMATION  OF  THERMOPLASTICS 

It was predicted to be given a general information about thermoplastics for this study. It 

was given some information about polymers since polycarbonate and PMMA are used 

during analysis. The use of thermoplastics in aircraft is small compared with the much 

greater use of thermosets. Some sectors of the aerospace industry are prying to increase 

the use of thermoplastics in composite materials, and the number of applications is 

gradually increasing. It is widely known that thermoplastics ensure many significant 

advantages over thermosets when used in composite materials, most considerably better 

hit damage resistance, higher fracture toughness, even higher operating temperatures. 

However, thermoplastics have to be processed at high temperature that makes them 

sumptuous to fabricate into aircraft composite supplementaries. Many types of 

thermoplastics are transparent, even tough impact durable which makes them well 

conformed for airplane windows and canopies. The thermoplastics most frequently 

handled in airplane windows are PMMA and polycarbonates. Acrylic plastics are any 

polymer and copolymer of acrylic acid. A model of acrylic plastic used in airplane 

windows is polymethyl- methacrylate (PMMA). PMMA plastics have different names 

such as Plexiglas and Perspex. Acrylic plastics are lighter, stronger and tougher than  

glass. Polycarbonates are stronger and tougher than acrylic plastics and are used when 

high-impact resistance is needed, such as cockpit windows and canopies. In 

polycarbonate applications, the material must have high impact strength due to the risk 

of clash with birds. Even though bird strikes do not occur at cruise heights, they present 

a considerable risk at low heights, specially during take-off and landing [30]. 

Polycarbonate windscreens are also invulnerable to damage by large hailstones. It is 

given that Figs 2.1 and 2.2 examples of damage caused to aircraft windows by bird  

strike or hail, respectively. Even though the polycarbonate windows are damaged, they 

were impacted under heavy conditions that would have caused most other polymer 

materials to break leading to cabin depressurisation. A large bird hit the window shown 
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in Fig. 2.1 when the aircraft was flying at several hundred kilometres per hour and 

hailstones larger than golf balls caused the damage shown in Fig. 2.2. Had these 

windows been made with glazing the bird and hailstones would almost definitely have 

holed through and entered the cockpit. Polycarbonate windows help to rather good 

safety to the flight crew against intense impact events [31]. 

 

Figure 2.1: Bird strike damage to a cockpit window [31]. 

 

 

Figure 2.2: Hail damage to a cockpit window [31]. 

2.1 Material Production and Properties of Polycarbonates  

Polycarbonate is a quite tough material. Even though polycarbonate has high impact 

resistance, it has weak scratch strength and so a hard coating is implemented to 
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polycarbonate eyewear lenses and polycarbonate outer automotive components. The 

typicals of polycarbonate are quite like those of polymethylmethacrylate (PMMA, 

acrylic). However, polycarbonate is stronger and useable over a greater temperature 

range. Polycarbonate is highly see-through to appearing light, with better light 

conduction than many types of glazing Url-1. The main type of polycarbonate used in 

airplane is given Fig. 2.3 Url-2. 

 

Figure 2.3: The main type of polycarbonate Url-2. 

Polycarbonate has a glass transition temperature of about 147 °C (297 °F), so it 

attempers by stages above this point and flows above about 155 °C (311 °F). Low 

rise molecular mass categories are easier to give shape than higher grades. However, 

their strength is lower.  

Unlike most thermoplastics, polycarbonate could undergo major plastic deformations 

without cracking or rupturing. Consequently, it can be operated and created at room 

temperature using plate metal techniques, like bending on a brake. Insomuch that for 

sharp angle bends with a strict radius, heating might not be imperative. This provides it 

precious in prototyping applications where see-through and electrically non-conductive 

parts are required, which cannot be made from sheet metal. 

- Polycarbonate applications 

The high clearness and perfect impact resistance of polycarbonates provide them 

appropriate for applications like high-pressure injectors, disposable dental instruments, 

surgical face shields, blood oxygenators, blood collection reservoirs, blood separation 

devices, surgical devices, kidney dialysis equipment and centrifuge bowls. The 

toughness of PC is required in the medicinal environment to prevent from rupture when 

http://en.wikipedia.org/wiki/Eyewear
http://en.wikipedia.org/wiki/Corrective_lens
http://en.wikipedia.org/wiki/Polymethyl_methacrylate
http://en.wikipedia.org/wiki/Transparency_(optics)
http://en.wikipedia.org/wiki/Visible_light
http://en.wikipedia.org/wiki/Glass_transition_temperature
http://en.wikipedia.org/wiki/Molecular_mass
http://en.wikipedia.org/wiki/Sheet_metal
http://en.wikipedia.org/wiki/Brake_(sheet_metal_bending)
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apparatus are struck by trays or carts. A great deal other medical applications for 

polycarbonate include medicinal equipment parts, such as housings, connectors and 

stopcocks, tubing, surgical skin stapler housings, syringe assemblies for labs. 

Polycarbonate is used for particular medical packing applications as well [32]. Other 

applications of polycarbonates include automotive, traffic lights, cash dispencer, 

drinking bottle, mobile phone, Riot shields. Furthermore, significant application area 

which the cockpit canopy of the F-22 Raptor  jet fighter is made from a piece of high 

optic standard polycarbonate and is the largest part of its type formed all around the 

world (Figure 2.4) Url-3. 

 

Figure 2.4: F-22 Raptor  jet fighter canopy Url-3. 

2.2 Production and Properties of Polymethylmethacrylate (PMMA) 

General Polymethacrylates are polymers of the esters of methacrylic acids. The most 

usually used among them is PMMA.  PMMA is a linear thermoplastic polymer [33]. The 

main type of PMMA is shown Fig. 2.5. 

http://en.wikipedia.org/wiki/F-22_Raptor
http://en.wikipedia.org/wiki/F-22_Raptor
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Figure 2.5: The main type of PMMA Url-4. 

Its strength features during injection cast differ significantly in longitudinal and 

transversal direction as a result of the orientation influence. The mechanical specialties 

of PMMA change as the warmth replaces as in the case with other thermoplastics. This 

material tends to creep. It is not much appropriate for process under multiple dynamic 

loads.  

PMMA is one of the polymers that the most resistant to straight sunlight exposure. Its 

resistance characteristics indicate quite small changes under the influence of 

UV‐radiation, as well as in the being of ozone. These features of acrylic provide it 

appropriate for products purposed for long time open‐air operation.  

PMMA depicts very well optic features it conveys more light (up to 93% of visible light) 

than glass.. Unlike glass, PMMA does not drain ultraviolet light. PMMA conveys UV 

light down to 300 nm and permits infrared light of up to 2800 nm to pass. 

Acrylics are uninfluenced by watery solutions of most laboratory chemicals, by 

detergents, cleaners, dilute inorganic acids, alkalis however, acrylics are not 

recommended for use with chlorinated, esters and ketone. It dissolves completely in 

chloroform, di‐ and tri‐chlorethane, which is used for procurement of glues. The 

chemical resistance will change with stress level, temperature, reagents and duration of 

exposure [34]. 

PMMA are physiologically innocuous. Owing to their low rise humidity adsorption 

capacity they are not attacked by moldiness and enzymes.  
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It can be said that PMMA is appropriate for injection moulding, pressing, extrusion blow 

moulding (impact modified acrylics only), casting. Acrylics are easily holed, milled, 

engraved and finished with sharp car‐bide‐tipped tools. They are with ease bent at low 

rise temperature and solvent linking of agreeably fitting parts produces a strong, out of 

sight joint as well. PMMA can be welded by all the plastics welding treatments such as 

hot‐blade, hot‐gas, ultrasonic and spin welding [35].  

- Polymethyl methacrylate applications 

PMMA has very quite high optic clearness and UV transmittance. The high optic 

clearness of PMMA provides it a very appropriate material in diagnostic applications 

like diagnostic test packs and optical sensor view ports [36]. Diverse types of acrylics 

are used in a extensive variety of areas and applications, including [37].  

 Optics: Dust covers for hi‐fi equipment, , watch glasses, lenses, sunglasses;  

 Vehicles: Rear lights (Fig. 2.6) Url-5, indicators, warning triangles, 

tachometer covers;  

 Electrical engineering: Lamp covers (Fig. 2.7) Url-6, switch parts, control, 

buttons dials;  

 Office equipment: Writing and drawing instruments, pens;  

 Others: Leaflet dispensers, shatter‐resistant glazing, shower cubicles, 

transparent pipelines, toy, artificial fingernails are sometimes made of 

acrylic. 

 

Figure 2.6: Rear lights Url-5. 
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Figure 2.7: Lamp covers Url-6. 

2.3 Key Characteristics / Differences of Acrylic and Polycarbonate 

2.3.1 Acrylic compared to polycarbonate 

 More likely to chip, less impact resistance then Polycarbonate. (still 10-24 times 

more resistant than glass) 

 Less likely to scratch. 

 More of a consumer (household) level and is easier to find at hardware stores. 

 Does not yellow after time. 

 Better clarity and can be restored to optical clarity Url-7. 

2.3.2 Polycarbonate compared to acrylic    

 Impact/chip resistance is much higher with Polycarbonate. (about 30 times more 

resistant than glass) 

 More likely to scratch. 

 Substantially more expensive. (roughly 2 to 3 times) 

 Used for more industry applications. 

 Bulletproof when thick enough. 

 More bendable. 
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 More formable. 

 Yellows over time due to ultraviolet rays. 

 Easier to work with (cut, less likely to break). 

 Poorer clarity, diffuses light, can lighten (could be positive) Url-7. 
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3.  FINITE ELEMENT ANALYSIS 

3.1 Introduction 

It can be said that finite element analysis (FEA) has become ordinary in recent years and 

is now the basis of a multibillion dollar per year industry. Numerical solutions to even 

very complicated stress problems can now be obtained routinely using FEA, and the 

method is so important that even introductory treatments of Mechanics of  Materials - 

such as these modules - should outline its principal features. 

In spite of the great power of FEA, the disadvantages of computer solutions must be 

kept in mind when using this and similar methods: they do not necessarily reveal how 

the stresses are influenced by important problem variables such as materials properties 

and geometrical features, and errors in input data can produce wildly incorrect results 

that may be overlooked by the analyst. It might be the most important function of 

theoretical modeling is that of sharpening the designer's intuition; users of finite element 

codes should plan their strategy toward this end, supplementing the computer simulation 

with as much closed-form and experimental analysis as possible [38]. 

Finite element codes are less complicated than many of the word processing and 

spreadsheet packages found on modern microcomputers. Nevertheless, they are complex 

enough that most users do not find it effective to program their own code. A number of 

prewritten commercial codes are available, representing a broad price range and 

compatible with machines from microcomputers to supercomputers [38]. However, 

users with specialized needs should not necessarily shy away from code development, 

and may find the code sources available in such texts as that by  Zienkiewicz [39] to be a 

useful starting  point. Most finite element software is written in Fortran, but some newer 

codes such as felt are in C or other more modern programming languages.  
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3.2 Numerical Methods 

There are many practical engineering problems for which we cannot obtain exact 

solutions. This inability to obtain an exact solution may be attributed to either the 

complex nature of governing differential equations or the difficulties that arise from 

dealing with the boundary and initial conditions. To deal with such problems, we resort 

to numerical approximations. In contrast to analytical solutions, which show the exact 

behavior of a system at any point within the system, numerical solutions approximate 

exact solutions only at discrete points, called nodes the first step of any numerical 

procedure is discretization. This process divides the medium of interest into a number of 

small subregions and nodes .There are two common classes of numerical methods: (1) 

finite difference methods and (2) finite element methods. With finite difference methods, 

the differential equation is written for each node, and the derivatives are replaced by 

difference equations. This approach results in a set of simultaneous linear equations 

.Although finite difference methods are easy to understand and employ in simple 

problems: they become difficult to apply to problems with complex geometry or  

complex boundary conditions. This situation is also true for problems with nonisotropic 

material properties. 

In contrast, the finite element method uses integral formulations rather than difference 

equations to create a system of algebraic equations. Moreover, an approximate 

continuous function is assumed to represent the solution for each element. The complete 

solution is then generated by connecting or assembling the individual solutions, allowing 

for continuity at the interelemental boundaries [40]. 

3.3 Basic Steps In The Finite Element Method 

The basic steps involved in any finite element analysis consist of the following:  

Preprocessing phase  

1. Create and discretize the solution domain into finite elements; that is, subdivide the 

problem into nodes and elements.  
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2. Assume a shape function to represent the physical behavior of an element; that is, an 

approximate continuous function is assumed to represent the solution of an element.  

3. Develop equations for an element. 

4. Assemble the elements to present the entire problem. Construct the global stiffness 

matrix.  

5. Apply boundary conditions, initial conditions, and loading.  

Solution phase  

6. Solve a set of linear or nonlinear algebraic equations simultaneously to obtain nodal 

results such as displacement values at different nodes or temperature values at different 

nodes in a heat transfer problem. 

 Postprocessing phase 

 7. Obtain other important information. At this point, you may be interested in values of 

principal stresses, heat fluxes, etc.  

In general, there are several approaches to formulating finite element problems: (1) 

Direct Formulation, (2) The Minimum Total Potential Energy Formulation and (3) 

Weighted Residual Formulations Again.  It is important to note that the basic steps 

involved in any finite element analysis regardless of how we generate the finite element 

model will be the same as those listed above [41].  

3.4 Numerical Analysis Methods 

3.4.1 Methods of space discretization 

The spatial discretization is performed by representing  the fields and structures of the 

problem using computational points in space , usually connected with each other through  

computational grids. Usually, the finer the grid is, more accurate the solution. The most 

commonly used spatial discretizations are Lagrange, Euler, ALE (Arbitrary Lagrange 

Euler - a mixture of Lagrange and Euler), and meshfree methods such as SPH (Smooth 

Particles Hydrodynamics) [41].  
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3.4.1.1 Lagrange method 

The Lagrange method of space discretization, as described in [42], where the numerical 

grid moves and deforms with the material, is ideal for following the material motion and 

deformation in regions of relatively low distortion, and possibly large displacement. 

Conservation of mass is automatically satisfied and material boundaries are clearly 

defined. The Lagrange method is most appropriate for representing solids like structures 

and projectiles. The advantages of the Lagrange method are computational performance 

and ease of incorporating complex material models. The disadvantage of Lagrange is 

that the numerical grid can become severely distorted or tangled in an extremely 

deformed region, which can lead to adverse effects on the integration time step and 

accuracy. However, these problems can be overcome to a certain extent by applying 

numerical techniques such as erosion and rezoning. In this thesis, it has been conducted 

with Lagrange Method in Autodyn . 

The Lagrangian description can be visualized in terms of the corresponding meshes 

(Figure 3.1) Url-9. 

 

Figure 3.1: Lagrangian Mesh Url-9. 

3.4.1.2 Euler method 

The Euler method of space discretization, as described in [43], where the numerical grid 

is fixed in space while the physical material flows through the grid, is typically well 

suited for the description of the material behavior of severe deformations. The Euler 

http://en.wikiversity.org/wiki/File:LagrangianMesh.png
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method is generally used for representing fluids and gases, for example, the gas product 

of high explosives after detonation. To describe solid behavior, additional calculations 

are required to transport the solid stress tensor and the history of the material through the 

grid. The advantage of the Euler method is that large deformations or flow situations, by 

definition, do not result in grid distortions due to the fixed grid. The tradeoff is the extra 

computational work required to maintain material interfaces and to reduce numerical 

diffusion [43].   

The Eulerian description can be visualized in terms of the corresponding meshes (Fig. 

3.2) Url-9. 

 

Figure 3.2: Eulerian Mesh Url-9. 

3.4.1.3 ALE (Arbitrary Lagrange Euler) method  

The ALE (Arbitrary Lagrange Euler) method of space discretization is a hybrid of the 

Lagrange and Euler methods. It allows redefining the grid continuously in arbitrary and 

predefined ways as the calculation proceeds, which effectively provides a continuous 

rezoning facility. Various predefined grid motions can be specified such as free 

(Lagrange), fixed (Euler), equipotential, equal spacing, and others. The ALE method can 

model solids as well as liquids. The advantage of ALE is the ability to reduce and 

sometimes eliminate difficulties caused by severe mesh distortions encountered by the 

Lagrange method and allows a calculation to continue efficiently. However, compared 

http://en.wikiversity.org/wiki/File:EulerianMesh.png
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with Lagrange, an additional computational step of rezoning is employed, as described 

in [42, 43], to move the grid and remap the solution onto a new grid. 

3.4.2 Meshfree lagrangian method – SPH (Smooth particles hydrodynamics) 

The meshfree Lagrangian method of space discretization - SPH (Smooth Particles 

Hydrodynamics), initially was used in astro-physics [44]. It was implemented in 

AUTODYN in 1995 [44]. The SPH particles are not only interacting mass points but 

also interpolation points used to calculate the value of physical variables based on the 

data from neighboring SPH particles, scaled by a weighting function. Because there is 

no grid defined, the SPH method does not suffer from grid tangling in large deformation 

problems. Compared with the Euler method, material boundaries and interfaces in the 

SPH are rather well defined and material separation is naturally handled. Therefore, the 

SPH method is very useful to simulate material behavior subject to severe deformation 

and distortion, for example, in hyper-velocity impact and for the cracking of brittle 

materials. However, the SPH method requires a sort of the particles in order to locate 

current neighboring particles, which makes the computational time per cycle more 

expensive than mesh based Lagrangian techniques – this can make meshfree methods 

less efficient than mesh based Lagrangian methods with comparable resolution. 

It is given an example of Lagrange, Euler, ALE, and SPH Methods below.  

To demonstrate the use of Lagrange, Euler, ALE, and SPH methods, a numerical 

simulation of an impact problem shown in Fig. 3.3 is conducted. The steel projectile has 

a diameter of 7.5mm and weighs about 2.9g. It impacts 22.5 mm thick aluminium plate 

at a velocity of 1000 m/s. An erosion mechanism is applied to the Lagrange as well as 

ALE grids to eliminate the elements that become highly distorted. 

All of these methods display similar impact damage on both the projectile and the target. 

The Euler method needs extra cells around the materials representing a void region into 

which deformed materials may flow. The ALE grid distorts less than the Lagrange grid 

because of equipotential rezoning where a node is re-positioned relative to its nearest 
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neighbors. Compared with the Lagrange and the ALE, the SPH method maintains a 

well-defined material interface without the need to use erosion [44].   

 

Figure 3.3: Examples of Lagrange, Euler, ALE, and SPH Methods on an impact     

problem [44]. 

It can be also seen that an example of lagrange/lagrange interaction and euler/lagrange 

coupling in the impact simulations in Fig. 3.5. 

 

Figure 3.4: Example of Lagrange/Lagrange Interaction and Euler/Lagrange Coupling in    

the impact simulations [44]. 
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3.5 Elastic-Plastic Model Theory 

3.5.1 Introduction 

The theory of linear elasticity is useful for modeling materials which undergo small 

deformations and which return to their original configuration upon removal of load. 

Almost all real materials will undergo some   permanent   deformation, which remains 

after removal of load. With metals, significant permanent deformations will usually 

occur when the stress reaches some critical value, called the yield stress, a material 

property. Elastic deformations are termed reversible; the energy expended in 

deformation is stored as elastic strain energy and is completely recovered upon load 

removal. Permanent deformations involve the dissipation of energy; such processes are 

termed irreversible, in the sense that the original state can be achieved only by the 

expenditure of more energy. The characteristic look of the stress-strain curve of a plastic 

material is shown in Fig. 3.5 Url-10. 

 

Figure 3.5: True stress-strain curve from tensile test Url-10. 



21 

 

The classical theory of plasticity grew out of the study of metals in the late nineteenth 

century. It is concerned with materials which initially deform elastically, but which 

deform plastically upon reaching a yield stress. In metals and other crystalline materials 

the occurrence of   plastic deformations at the micro-scale level is due to the motion of 

dislocations and the migration of grain boundaries on the micro-level.  A good part of 

the discussion in what follows is concerned with the plasticity of metals; this is the 

‘simplest’ type of plasticity and it serves as a good background and introduction to the 

modeling of plasticity in other material-types. There are two broad groups of metal 

plasticity problem which are of interest to the engineer and analyst. The first involves 

relatively small plastic strains, often of the same order as the elastic strains which occur. 

Analysis of problems involving small plastic strains allows one to design structures 

optimally, so that they will not fail when in service, but at the same time are not stronger 

than they really need to be. In this sense, plasticity is seen as a material failure (two 

other types of failure, brittle fracture, due to dynamic crack growth, and the buckling of 

some structural components, can be modeled reasonably accurately using elasticity 

theory). The second type of problem involves very large strains and deformations, so 

large that the elastic strains can be disregarded. These problems occur in the analysis of 

metals manufacturing and forming processes, which can involve extrusion, drawing, 

forging, rolling and so on. In these latter-type problems, a simplified model known as 

perfect plasticity is usually employed, and use is made of special limit theorems which 

hold for such models. Plastic deformations are normally rate independent, that is, the 

stresses induced are independent of the rate of deformation (or rate of loading). This is 

in marked contrast to classical Newtonian fluids for example, where the stress levels are 

governed by the rate of deformation through the viscosity of the fluid. Materials 

commonly known as “plastics” are not plastic in the sense described here. They, like 

other polymeric materials, exhibit viscoelastic behavior where, as the name suggests, the 

material response has both elastic and viscous components. Due to their viscosity, their 

response is, unlike the plastic materials, rate-dependent. Further, although the 

viscoelastic materials can suffer irrecoverable deformation, they do not have any critical 

yield or threshold stress, which is the characteristic property of plastic behavior. When a 

material undergoes plastic deformations, i.e. irrecoverable and at a critical yield stress 
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and these effects are rate dependent, the material is referred to as being viscoplastic Url-

10. 

In this thesis, it was only used with elasto-plastic stress analysis for both polycarbonate 

and PMMA materials, although polymers have elastic, plastic and viscoelastic 

properties.  It will be explained that why viscoelasticity property not used later. 

3.5.2 Elastic plastic behavior 

With elastic-plastic models, calculations of stress and strain distributions at low strains 

are based on linear elasticity. The onset of non-linearity is attributed to plastic 

deformation and occurs at a stress level regarded as the first yield stress. The subsequent 

increase in stress with strain is associated with the effects of strain hardening, and 

increases to a maximum corresponding to the flow region. In this non-linear region, the 

total strain is considered to be the sum of a recoverable elastic component and a plastic 

component, which is non-recoverable. Stress analysis calculations then involve the use 

of multiaxial yield criteria and a flow law. The yield criterion relates components of 

applied stress field to material parameters after the onset of yielding (Fig. 3.6). The 

material parameters will depend upon the plastic strain for a strain hardening material 

Url-11. 

 

Figure 3.6: The stress-strain graph for polymer materials Url-11. 
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The calculation of plastic strain components is achieved in plasticity theory using a flow 

rule, which relates increments of plastic strain to a plastic flow potential. If the flow 

behavior for a particular material is such that the flow potential can be identified with 

the yield function then this is termed associated flow. In general, this will be an 

approximation and extra information is needed to characterise non-associated flow. In 

order to calculate some of the parameters in elastic-plastic models, it is necessary to 

select stress values from different tests under the same state of yielding. This requires 

the definition of an effective plastic strain, and equivalent stresses are then a set of 

stresses that characterise stress states having the same effective plastic strain. 

The formulation of elasto-plastic relation for a complex problem under multiaxial 

stresses can be achieved by assuming a reasonable mathematical model to correlate 

between the uniaxial test results and the multiaxial cases. The general relation between 

stress and strain can be obtained in terms of the uniaxial behavior, by specifying the 

following rules and conditions [45]. 

(i) The elastic stress–strain relations,  

(ii) An initial yield condition,  

(iii) A flow rule which relates the plastic strain increments to the stresses and 

stress increments,  

(iv) A hardening rule for establishing the conditions for subsequent yield from a 

plastic state. 

It is necessary to have an initial yield condition which characterize the transition of a 

material from the elastic state to the state of yielding under any possible combination of 

stresses. One of the most widely used yield criteria for metallic materials is the von 

Mises criterion. The von Mises criterion is based on the assumption that the hydrostatic 

stress has no effect on yielding of metallic materials, i.e the only effective component is 

the deviatoric stress [46]. 
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3.5.3 Elasticity 

The characteristic of elastic strain is that the response is independent of the load history. 

After removing the load, the material returns to its initial condition and the unloading 

stress-strain curve retraces the loading curve, cf. Fig. 3.7 [47]. 

 

Figure 3.7: Elastic behavior [47]. 

The elastic part of the stress-strain curve of most metals is linear. The stress is related to 

the strain by an elastic modulus which is constant through the elastic region. However, 

the elasticity of materials such as plastics and rubber shows a non-linear elastic 

behavior. Not only is the stress-strain curve non-linear, but the stress level is also 

dependent of the strain rate, cf. Figure 3.8 [47]. 

 

Figure 3.8: Strain rate dependence [47]. 
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3.5.4 Viscoelastic behavior 

Viscoelasticity is the property of materials that exhibit 

both viscous and elastic characteristics when undergoing deformation. Viscous 

materials, like honey, resist shear flow and strain linearly with time when a stress is 

applied. Elastic materials strain when stretched and quickly return to their original state 

once the stress is removed. Viscoelastic materials have elements of both of these 

properties and, as such, exhibit time-dependent strain. Whereas elasticity is usually the 

result of bond stretching along crystallographic planes in an ordered solid, viscosity is 

the result of the diffusion of atoms or molecules inside an amorphous material [48].  

So some plastics like polystyrene yield, but others fracture in a brittle manner like 

polystyrene. Rubbers do not yield, but at high strains some of them crystallise and hence 

stiffen. When the stresses are removed from a polymeric material before fracture, the 

strain recovery path is not necessarily identical to that of the loading part of the 

deformation cycle. So energy must have been dissipated during the deformation of such 

materials – another indication of deviation from perfect elasticity. Both the deformation 

and the subsequent recovery are time-dependent, suggesting that some part of their 

behavior is viscous. In fact solid polymers show a combination of elastic and viscous 

behavior known as viscoelasticity. The degree of viscoelasticity is strongly dependent 

upon the temperature of test and the rate at which the polymer is deformed, as well as 

such structural variables as degree of crystallinity, crosslinking and molecular mass Url-

12. 

3.5.5 Plasticity 

At sufficiently high strain levels, most materials exhibit a non-linear behavior. This is 

often an irreversible process known as plasticity.  Fig. 3.9 shows a typical stress-strain 

relation from a tensile test on a metal bar for small deformations [47]. 

 

http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Elasticity_(physics)
http://en.wikipedia.org/wiki/Deformation_(engineering)
http://en.wikipedia.org/wiki/Shear_flow
http://en.wikipedia.org/wiki/Strain_(materials_science)
http://en.wikipedia.org/wiki/Stress_(physics)
http://en.wikipedia.org/wiki/Amorphous
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Figure 3.9: Plastic loading [47]. 

The elastic limit is defined by a yield criterion and the plastic curve is governed by laws 

of hardening and a flow rule. The strains can be divided into an elastic part and a plastic 

part.  

ε = ε
e
 + ε

p
            

When unloading in the plastic region, the behavior is again elastic. After complete 

unloading, the remaining strain is the plastic strain ε
p
 or damage in the material, cf. Fig. 

3.10. The stress level is not uniquely determined from the strain though it is dependent 

of the strain history. 

 

Figure 3.10: Plastic unloading [47]. 

 

(3.1) 
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3.5.5.1 Yield criteria for polymers 

-  Traditional criteria 

A tensile test alone cannot give a full description of the yield behavior for design and it 

is important to obtain a general yield criteria, ie a function of the stress or strain 

components which reaches a critical value for all forms of test and combinations of 

stress components. 

Although many yield criteria have been suggested, with varying experimental support, 

the two main criteria adopted for metals are those of Tresca (1864) and von Mises 

(1913). With some modification these criteria can also be applicable to polymers. The 

criteria for isotropic materials are normally given in terms of the stress components of 

the stress tensor, ij. 

ij =     
      
      
      

                                       

By choosing axes parallel to the principal stress directions, ie where the shear stresses 

are all zero, the stress tensor becomes: 

ij =     
     
   
   

        

and the criteria can be written in terms of the three principal stresses, 1, 2 and 3. 

For isotropic materials the yield criteria must be invariant with respect to coordinate 

transformation [49]. 

- Tresca yield criterion  

This criterion proposes that yield occurs when the maximum shear stress, s, reaches a 

critical value. For 1 > 2 > 3  

S 
    

 
            

(3.2) 

(3.3) 

(3.4) 
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In a tensile test 1 = applied stress and 2 = 3 = 0 

s 
  

 
 

 

 
 

where y = tensile yield stress. 

The Tresca criterion is therefore: 

     

 
 

 

 
       

von Mises yield criterion 

This criterion is based on the condition that yield occurs when the strain energy of shear 

reaches a critical value. It can be expressed as follows: 

                                 

 

In a tensile test this reduces to: 

2 1
2 
= constant 

The critical value for the constant is 2 y
2 

where y = tensile yield stress. Von Mises 

criterion is therefore: 

                            

In pure shear 1 = - 2 and 3 = 0 and the criterion gives:  

  
 

  
 

The shear yield stress is predicted to be 1/3 times the tensile yield stress compared with 

y / 2 for the Tresca condition [49]. 

 

 

  (3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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- Graphical presentation of Tresca and von Mises criterion in plane stress 

Consider initially the case of plane stress, 3 = 0. Von Mises criterion reduces to:  

                   

 
 

 
     

 

 
    

 

 
  

 

 
    

which describes an ellipse in principal stress space as shown in Fig. 3.11.  

 

Figure 3.11: Tresca and von Mises yield criteria for plane stress [49]. 

The Tresca criterion in plane stress depends on the sign of the applied stress 

components. For 1 and 2 with the same sign (both either tensile or compressive): 

        or      

For 1 and   with opposite signs (one tensile and the other compressive): 

                  

It can be seen from Fig. 8 that the Tresca criterion inscribes the von Mises ellipse. Von 

Mises predicts the possibility of an applied stress larger than the tensile yield stress in 

some stress states. This is not the case for Tresca [50]. 

 

(3.11) 

(3.13) 

(3.14) 

(3.12) 
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3.5.5.2 Modified criteria for polymers 

The applicability of either of the above criteria can be tested by performing experiments 

with different states of stress, eg plane stress, pure shear, biaxial tension etc. 

Modifications of the criteria have been found necessary for polymers. Firstly, it was 

found that compressive strengths are greater than tensile strengths, having the effect of 

shifting the yield ellipse or hexagon to the more compressive values. Hydrostatic 

pressure has also been shown to have a pronounced effect on the yield behavior, a fact 

clearly related to the increased compressive strengths. Von Mises and Tresca criteria 

have therefore been modified to take into account the effect of hydrostatic stress. In most 

cases polymers tend to follow a pressure dependent von Mises criterion. The effect of 

hydrostatic stress can be introduced into von Mises criterion through an additional 

hydrostatic term: 

                                     

A and B can be defined in terms of the tensile and compressive yield stresses, YT and 

YC, since in these cases 2 = 3 = 0. Thus:  

  
         

       
 

and 

  
 

        
 

Fig. 3.12 shows the modified von Mises criterion fitted to polystyrene data. That is same 

criterion has been found acceptable where glassy amorphous are used makes it seem 

unnecessary to use different yield criteria for polymers of varying structural conditions 

[51].  In addition, a modified Tresca helix based on Coulomb's work on failure in soils is 

shown.  

(3.15) 

(3.16) 

(3.17) 
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Figure 3.12: Yield criteria fitted to data [51]. 

3.5.5.3 Hardening 

-  Bilinear kinematic hardening 

Bilinear Kinematic Hardening model was chosen in this study for polycarbonate model. 

This option assumes the total stress range is equal to twice the yield stress, so that the 

Bauschinger effect is included. Bilinear Kinematic Hardening may be used for materials 

that obey von Mises yield criteria (which includes most metals). The material behavior 

is described by a bilinear total stress-total strain curve starting at the origin and with 

positive stress and strain values. The initial slope of the curve is taken as the elastic 

modulus of the material. At the specified yield stress, the curve continues along the 

second slope defined by the tangent modulus, (having the same units as the elastic 

modulus). The tangent modulus cannot be less than zero nor greater than the elastic 

modulus [52].  Kinematic hardening of the von Mises criterion is illustrated in Figure 

3.13 [53].  
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Figure 3.13: Kinematic hardening of the von Mises criterion [53]. 

Figure 3.13 shows subsequent yield in compression is decreased by the amount that the 

yield stress in tension increased, so that a 2   difference between the yields is always 

maintained. This phenomenon is called the Bauschinger effect and is illustrated in 

Figure 3.14 [53].  

 

Figure 3.14: Bauschinger effect [53]. 

- The  Drucker – Prager yield criterion 

The Drucker–Prager yield criterion  is a pressure-dependent model for determining 

whether a material has failed or undergone plastic yielding. The criterion was introduced 

to deal with the plastic deformation of soils. It and its many variants have been applied 

to rock, concrete, polymers, foams and other pressure-dependent materials [54]. When 
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the Drucker–Prager yield criterion is used, it is occurred that plasticity property is 

deactivate. This situation is expected because The Drucker–Prager yield criterion is used 

for brittle materials. It is known that PMMA behaviors brittle manner at room 

temperature. The Drucker–Prager model has been used to model for PMMA in this 

study.  
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4.  IMPACT ANALYSIS SETUP 

4.1 Target Model 

4.1.1 Geometry 

The plates were modeled using 90×90 mm size and 1.4 mm, 1.9 mm and 2.4 mm 

thickness. Subsequent impacts were made at the center, 20 and 40 mm of the plate 

depending on increasing thickness of plates. The exposed area of the polycarbonate 

and PMMA armor plates with impact locations on the horizontal paths as shown in 

Fig. 4.1. 

 

Figure 4.1: The exposed area of the plates with impact locations on the horizontal 

paths. 
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Also, target plate model was given as CAD model in Fig. 4.2 below. 

 

Figure 4.2: Target model. 

4.1.2 Material properties 

In this study, the impact performances of thin polycarbonate and acrylic plates were 

investigated in detail. These material properties were given as Table 4.1 and Table 

4.2 [55].  

Table 4.1: Material Property of PC [55]. 

Density ( kg/m
3 

) 1200 
 

Elastic Modulus (MPa) 1530  

Poisson ratio 0.38 

Yield Strength (MPa) 63  

Tangent Modulus (MPa) 35  
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Table 4.2: Material Property of PMMA [56]. 

Density ( kg/m
3 

) 1190 
 

Elastic Modulus (GPa) 5.76  

Poisson’s  ratio 0.42 

Yield Strength (MPa) 44  

Frictional  Drucker–Prager angle  

( β ) 

20
o 

 

Bilinear Kinematic Hardening was selected for polycarbonate material model and 

PMMA was assumed to obey the Drucker–Prager material model in the present 

study.  

4.2 Projectile 

4.2.1 Geometry 

A spherical steel projectile of 6.98 mm diameter was launched against the square 

plate. The spherical steel projectile was selected from ANSYS menu as rigid model 

in this study. The mass of projectile was calculated as 0.00139 kg from the density of 

steel projectile.  Also, projectile velocity of 140 m/s was determined.  According to 

this information, kinetic energy of the projectile was computed as 13.693 joule. The 

spherical steel projectile was shown in Fig. 4.3. 

 

Figure 4.3: The spherical steel projectile. 
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4.2.2 Material properties of spherical steel projectile 

The properties of spherical steel projectile were given Table 4.3. 

Table 4. 3: Material Properties [57]. 

Density ( kg/m
3 

) 7850 
 

Elastic Modulus (GPa) 200  

Poisson’s  ratio 0.3 

 

4.3 Numerical Analysis 

4.3.1 Material models 

The polycarbonate and PMMA plates were modeled into ANSYS/ Workbench/ 

Autodyn with approximately 94000 solid elements. Further, the polycarbonate target 

was modeled with approximately 67000 shell elements. One portion of finite-element 

mesh is shown in Fig. 4.4. The target plate outer edge was constrained for all degrees 

of freedom. Projectile was launched against the target plate with an initial velocity of 

140 m/s. Plastic strain, von Mises stresses, maximum shear stresses, deformation of 

plate and energy absorption histories were recorded. Further, impacts at locations 

center of the plate, 20 and 40 mm were carried out by a spherical steel projectile of 

6.98 mm by 20 mm towards the boundary of the plate depending on changing plate 

thickness.  

 

Figure 4.4: A portion of the target plate and rigid projectile mesh for finite-element 

simulation. 

Firstly, the material model used for the polycarbonate target plate was Kinematic 

Hardening with a bi-linear trend with an elastic modulus of 1530 MPa and a 

Poisson’s ratio of 0.38. A tangent modulus of 35 MPa was used to incorporate the 

plastic deformation until the material failure under a plastic failure strain. The 
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polycarbonate material density used was 1200 kg/ m
3
. The yield strength for 

polycarbonate was considered to be 63 MPa. These material properties were shown 

as Table 4.1 [55]. The steel ball projectile was modeled as a rigid material with a 

density of 7850 kg/ m
3 

with an elastic modulus of 200 GPa and a Poisson’s ratio of 

0.30. The properties of spherical steel projectile were given Table 4.3 [57]. 

Secondly, the material properties of commercial PMMA were previously 

investigated by Rittel and Brill [2]. PMMA is assumed to obey the Drucker–Prager 

material model, with dynamic elastic properties (from [55]) (E, ν), density (ρ) and 

pressure sensitivity (β) all listed in Table 4.2 [56]. Experimentally uniaxial 

determined stress–plastic strain curves at different strain rates (ϵ=0.0001; 1; 2000 and 

4000 s 
-1

) are shown in Fig. 4.5. In the absence of experimental data at significantly   

higher strain rates, we assumed that the behavior of the material is that measured at 

4000 s
-1

. Yet, it should be kept in mind that at high strain rates, under confined 

compression, PMMA was shown to fail by adiabatic shear banding, which is the 

main characteristic to be preserved in the simulation, as opposed to pure brittleness 

(shattering). In parallel, it is realized that at extremely high strain rates, the strength 

of the material does not increase indefinitely. For these reasons, a reasonable choice 

was made to preserve the measured ductility while neglecting viscous effects at very 

high strain rates. In this study, it is taken consideration only elastic-plastic behavior. 
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Figure 4.5: The hardening properties of PMMA for rates   ϵ= 0:0001; 1; 2000; 4000 

and 40000 s
-1

 [56].     

4.3.2 Failure criterias 

The material properties available for polycarbonate material at high strain rate found 

in the literature were very scarce and material models in most cases were incomplete 

or lacked precision [58–60]. Polycarbonate tensile tests were therefore performed on 

the test coupon shown in Fig.4.6 Stress–strain curve obtained from the tension test at 

various strain rates. Failure strain was found to be 150%. A low capacity polymer 

testing machine was used to conduct the tensile tests. At low loading rate the strain to 

failure is observed to be large but for dynamic loads the strain to failure is smaller. 

As is evident from the stress–strain curves the elastic modulus at higher strain rates 

increases significantly unlike most metals. The curve with the largest failure strain 

was obtained from the static tensile test. The rest of the curves were obtained for 

higher strain rates. As the strain rate increases the yield strength increases but for 

polymers it remain constant after a certain strain rate. Although the material 

properties used were obtained at lower strain rates than the actual material properties 

that are required to be conducted at higher strain rates [61] that are encountered in 

bullet impacts, the results still closely agree with the experimental investigations.  
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Figure 4. 6: Test specimen of polycarbonate with a gage length of 50 mm, a 

thickness of 1.91mm and a width of 9.74 mm [61]. 

The influence of the confinement on the mechanical response of these materials was 

determined. A simple dynamic pressure-sensitive constitutive equation was 

identified, and it was also observed [27] that under a suitable confinement level and 

strain rate, PMMA can undergo a brittle–ductile transition resulting in the formation 

of an adiabatic shear band. It is therefore evident that aside from a brittle (spalling) 

failure mechanism, PMMA can also undergo ductile deformations (including 

localized). The extent to which plasticity plays a role in the slant impact/perforation 

process remains to be investigated. Consequently, this study addresses the impact 

and perforation of PMMA plates under the combined effects of brittle spalling and 

ductile deformations. The investigation is done essentially by numerical simulations 

into which the ductile and the brittle responses of this material are included. Two 

failure criteria which are used on Autodyn explicit [62] were used for PMMA: tensile 

failure and ductile failure. The failure criteria can be applied combined without any 

need of user subroutine.  

The ‘‘tensile failure’’ uses the hydrostatic pressure as a measure of the failure stress 

to model dynamic spall, or a pressure cutoff. It is designed for high-strain-rate 

deformation and offers a number of choices to model failure. Five failure choices are 

offered for the failed material points: the default choice, which includes element 

removal, and four different spall models (the crumbling of a material). It is used the 
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default choice in which when the tensile failure criterion is met at an element 

integration point, the material point fails and the element is removed. This criterion 

can be used in conjunction with other failure criteria. It means that in each material 

point each failure criteria is tested separately.  Polymethylmethacrylate is known to 

be extremely brittle at high strain rates, with a typical spall strength of 100–150 MPa 

[63]. A representative value of 133 MPa is used throughout this work. 

The ‘‘ductile failure’’ criterion is used to predict the onset of damage due to 

nucleation, growth and coalescence of voids. The model assumes that the equivalent 

plastic strain at the onset of damage is a function of the stress triaxiality and plastic 

strain rate.  Maximum plastic strains at which failure initiates as a function of strain 

rate and triaxiality are listed in Table 4.4 [27]. The data is taken from Table 4.4. Note 

that the higher strain-rate response is assumed to be similar to that measured at 4000 

s
-1

. 

Table 4.4: Ductile damage initiation properties for PMMA [27]. 

Strain rate (s
-1

) εp
max 

Triaxiality 

Quasi-static 0.30 all 

1 0.20 all 

2000 0.12 all 

4000 0.10 all 

40000 0.10 all 
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5.  RESULTS AND DISCUSSIONS 

5.1 Introduction 

In this thesis study, dynamic response of exposure to a constant velocity impact of  

polycarbonate and polymethylemethacrylate plates were investigated depending on 

increasing thickness of plates and impacts at locations center of the plate, 20 and  40 

mm were carried out by a spherical steel projectile using finite element analysis 

program which AUTODYN modul. The velocity of spherical steel projectile was 

selected as 140 m/s and also impacted approximately 21 mm distance from the center 

of plate. The contact time of projectile was calculated as 0.000153 s. Thus, analysis 

time which means end time was given as 2.5 times of contact time. That is, end time 

is 0.000338 s. Analyses were studied for polycarbonate and PMMA plates at 

different thickness of plates and impact locations. Furthermore, all results with 

respect to comments of graphs and tables will be explained in conclusions section.  

It is getting started this chapter, it was conducted that a validation study before thesis 

study. This validation study is similar to thesis study. It was used circular 

polycarbonate plate and it was impacted by a spherical steel projectile in academic 

study. 

5.2 Verification Study 

A 1.91-mm thick circular polycarbonate plate of 115mm diameter was impacted by a 

spherical steel projectile of 6.98mm diameter at its center. Subsequent impacts were 

made at 10, 20, 30, 40, and 50 mm radii of the plate. For a constant projectile 

velocity of 138 m/s which was below the perforation limit of the plate under 

investigation, a maximum thickness reduction close to the edge support was 

observed. This study was modeled into explicit finite-element analysis program 

LSDYNA for simulations. The polycarbonate plate was modeled into LSDYNA with 

41,751 shell elements. Additionally, the polycarbonate plate was modeled into 

ANSYS/ Workbench/ AUTODYN with approximately 40000 shell elements.  
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Maximum energy absorption and plastic strain values were recorded. Stress–strain 

curve obtained from the tension test at various strain rates. Failure strain was found 

to be 150% [21]. It can be shown material properties in Tables 5.1 and 5.2 below 

[21]. 

Table 5.1: Material Properties of PC [21]. 

Density 1200 kg/m
3 

Elastic Modulus 1530 MPa 

Poisson ratio 0.38 

Yield Strength 63 MPa 

Tangent Modulus 35 MPa 

 

Table 5.2: Material Properties of Projectile [21]. 

Density 7850 kg/m
3 

Elastic Modulus 200 GPa 

Poisson’s  ratio 0.3 

 

It can be also seen that impact points Figure 5.1 [21]. 

 

Figure 5.1: Impact Points [21]. 

- Results and validation 

It is given that energy absorption distribution with LSDYNA and Autodyn.  
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Figure 5.2: History of Energy Absorption with LSDYNA [21]. 

 

Figure 5.3: History of Energy Absorption with AUTODYN. 

It was also compared that plastic strain values at each impact point. It is given that 

graphs below. 
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Figure 5.4: Plastic strain at the point of impact with LSDYNA [21]. 

 

Figure 5.5: Plastic strain at the point of impact with AUTODYN. 

It can be understood that both energy absorption and plastic strain values are close to 

quite each other. It is concluded that under a constant projectile velocity that is 

unable to cause any material separation in the plate center region, the plate 

perforation may be possible near the clamped edge of an armor plate. In order to 

prevent such failure close to the fixed edge it is suggested to incorporate an 

additional annular plate to cover the near edge zone. In this way, it can be said that 

verification study has been implemented successfully. 
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5.3 Behavior of polycarbonate plates during impact 

Numerical simulations were performed as shown in Fig. 5.6 below.  

 

Figure 5.6: Numerical simulations. 

Von Mises stress at the center of polycarbonate plate and 1.9 mm thickness is shown 

in Fig. 5.7. The yield stress of polycarbonate is 63 MPa and it was obtained that the 

yield stress was 88.759 MPa after analysis. Thus, it was occurred plastic deformation 

as expected.  

 

Figure 5.7: Von Mises stress at the center of polycarbonate plate and 1.9 mm thick. 
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The side profile of plate is shown that penetration and partially perforated in Fig. 5.8. 

 

Figure 5.8: Von Mises Stress at the side profile of plate at 1.9 mm thick. 

It is shown that von Mises stresses at different thickness and different impact 

locations for polycarbonate plates in table 5.3. 

Table 5.3: Von Mises stresses for polycarbonate plates. 

 1.4 mm thickness 1.9 mm thickness 2.4 mm thickness 

Plate Center (MPa) 100.5  101.7  88.8  

At 20 mm (MPa) 100.7 99.1 89.3  

At 40 mm (MPa) 97.9  102.8 102.7  

   

It was also seen that perforated at 40 mm distance from plate center in 1.9 mm 

thickness in Fig. 5.9 and other impact  locations were shown partially perforated.   
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Figure 5.9: Von Mises stress distribution and perforated at 40 mm distance and 1.9 

mm thick. 

It is seen that von Mises stress was increased from plate center to fixed edge for 2.4 

mm thickness. At the same thickness of plate, it was shown that it was occurred 

plastic deformation at plate center and 40 m distance. Further, there was seen a 

diminutive fragmentation at 40 mm distance in Figs. 5.10 and 5.11 at different 

perspective. 

 

 

Figure 5.10: Von Mises stress distribution at 40 mm distance and 2.4 mm thickness 

(in front of plate). 
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Figure 5.11: Von Mises stress distribution at 40 mm distance and 2.4 mm thickness 

(back of plate). 

It is given that von Mises stress distribution at 40 mm distance and 2.4 mm thickness 

in Fig. 5.12.  

 

Figure 5.12: Von Mises stress distribution at 40 mm distance and 2.4 mm thickness. 

It was observed that all impact points were showed that perforated at 1.4 mm 

thickness of polycarbonate plate. The fragmentation simulation was given in Fig. 

5.13 below. 
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Figure 5.13: Von Mises stress and fragmentation at plate center and 1.4 mm 

thickness of plate. 

After impacts, maximum deformation was 9.0131 mm at plate center and 2.4 mm 

thickness of plate in Fig. 5.14. Similarly, it was found that maximum deformation at 

20 mm distance was 9.20 mm and maximum deformation at 40 mm was 9.011 mm. 

 

Figure 5.14: Maximum deformation at plate center and 2.4 mm thickness. 
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Maximum deformation is also shown at plate center and 1.4 mm thickness of plate in 

Fig. 5.15. 

 

Figure 5.15: Maximum deformation at plate center and 1.4 mm thickness of plate. 

It is given that max. deformation values at different thicknesses in 0.000338 s as 

table 5.4 below.  

Table 5.4: Maximum deformation values. 

 1.4 mm thickness 1.9 mm thickness 2.4 mm thickness 

Plate Center (mm) 8.6  10.5  9,1 

At 20 mm (mm) 8.6  10.6  9.2  

At 40 mm (mm) 7.3  7.1 9.1 

 

It is seen that maximum shear stress values at different thicknesses and different 

impact locations in table 5.5.  

Table 5.5: Maximum shear stress values. 

 1.4 mm thickness 1.9 mm thickness 2.4 mm thickness 

Plate Center (MPa) 57.1  56.8 45.4 

At 20 mm (MPa) 57.4  56.1  46.1 

At 40 mm (MPa) 55.1 58.4 57.9 
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Maximum shear stress increased toward clamped edge as table 5.5. Maximum shear 

stress distribution is given for plate of 1.9 mm thickness as Fig. 5.16 below. 

 

Figure 5. 16: Maximum shear stress distribution at 1.9 mm thickness. 

It is given that maximum plastic strain values at different thicknesses and different 

impact locations in table 5.6. 

Table 5.6: Maximum plastic strain values. 

 1.4 mm thickness 1.9 mm thickness 2.4 mm thickness 

Plate Center 1.2 1.1 0.8 

At 20 mm 1.3 1.1 0.9 

At 40 mm 1.3 1.3 1.2 

 

For all different thickness of plate, plastic strain values increased from plate center to 

fixed edge. It is shown that plastic strain distribution at plate center in Fig. 5.17. It is 

also shown that plastic strain values decreased while thickness of polycarbonate plate 

increased in Fig. 5.17. 
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Figure 5.17: Plastic strain values at plate center. 

It is given that maximum plastic strain simulation at 40 m distance and plate of 1.9 

mm thickness in Fig. 5.18. 

 

Figure 5.18: Maximum plastic strain simulation at 40 m distance and 1.9 mm 

thickness. 

It is given that maximum energy absorption values at different thicknesses in Table 

5.7. The energy absorption increased from 1.4 mm thickness to 2.4 mm thickness.  
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Table 5.7: Maximum energy absorption values. 

 1.4 mm thickness 1.9 mm thickness 2.4 mm thickness 

Plate Center (J) 5.2 8.8  9.4  

At 20 mm (J) 5.2  9.7  10.2  

At 40 mm (J) 5.1 7.9   11.7  

 

It is given that energy absorption distribution for plate of 2.4 mm thickness in Fig. 

5.19. Maximum energy absorption was found at close to the clamped edge which is 

at 40 mm distance. 

 

 

Figure 5.19: Energy absorption distribution for 2.4 mm thickness. 

It is also given that energy absorption distribution at different thickness and 40 mm 

distance in Fig.5.20. Maximum energy absorption was found for 2.4 mm thickness of 

polycarbonate plate.  
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Figure 5.20: Energy absorption distribution at 40 mm distance. 

5.4 Behavior of PMMA plates during impact 

It was occurred that fragmentation all analyses for PMMA plates at any thickness of 

plate and any impact points. It was seen that von Mises stress values increased when 

thickness of PMMA plates are increased. Also, von Mises stresses increased toward 

clamped edge at all thickness in table 5.8.  

Table 5.8: Maximum von Mises stress values. 

 1.4 mm thickness 1.9 mm thickness 2.4 mm thickness 

Plate Center (MPa) 53.1  56.8  57.6  

At 20 mm (MPa) 56.6  58.7  58.9  

At 40 mm (MPa) 59.4  61.6  60.9  

 

It is shown that von Mises stress at middle of PMMA plates and different thickness. 

Maximum Stress is seen at 2.4 mm thickness in Fig. 5.21 below. 
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Figure 5.21: Von Mises stress distribution at plate center. 

It is shown that maximum shear stress increased towards fixed edge when thickness 

of plate increased. Furthermore, maximum shear stres increased toward clamped 

edge at same thickness of PMMA plate in Table 5.9. 

Table 5.9: Maximum shear stress values for PMMA plates. 

 1.4 mm thickness 1.9 mm thickness 2.4 mm thickness 

Plate Center (MPa) 30.5 32.6  33.2  

At 20 mm (MPa) 32.6  33.9  34.1  

At 40 mm (MPa) 34.2  35.6  35.2  

 

It is seen that maximum shear stress simulations at plate center and 1.4 m thickness 

of plate in Fig. 5.22 and 5.23. 
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Figure 5.22: Maximum shear stress in front of plate. 

 

Figure 5.23: Maximum shear stress at back of plate. 

It is given that maximum shear stress graph at plate center and different thickness of 

plates in Fig. 5.24. Maximum shear stress increased from 1.4 mm thickness to 2.4 

mm thickness.  
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Figure 5.24: Maximum shear stress graph at plate center. 

It is shown that maximum shear stress simulation at 40 mm distance and 1.9 mm 

thickness in Fig. 5.25. 

 

Figure 5.25: Maximum shear stress simulation at 40 mm distance and 1.9 mm 

thickness of plate. 

It is given that maximum deformation values for PMMA plates in table 5.10. 

Table 5.10: Maximum deformation values. 

 1.4 mm thickness 1.9 mm thickness 2.4 mm thickness 

Plate Center (mm) 8.9 8.9  10.2 

At 20 mm (mm) 8.8  9.3  10.1  

At 40 mm (mm) 7.8  8.2  8.6  
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Maximum deformation was shown at 20 distance and 1.9 mm thickness of plate for 

PMMA plate in Fig. 5.26. 

 

Figure 5.26: Maximum deformation simulation at 20 distance and 1.9 mm thickness. 

It is given that maximum plastic strain values at different thicknesses and different 

impact locations in table. All values were close to each other as shown in table 5.11 

below. 

Table 5.11: Maximum plastic strain values for PMMA plates. 

 1.4 mm thickness 1.9 mm thickness 2.4 mm thickness 

Plate Center 1.49 1.48 1.49 

At 20 mm 1.49 1.42 1.48 

At 40 mm 1.48 1.48 1.49 

 

It is given that maximum plastic strain values for 1.4 mm thickness in Fig. 5.27. 
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Figure 5.27: Maximum plastic strain values for 1.4 mm thickness of plate. 

It is seen that maximum plastic strain simulation for 40 mm distance and 1.4 mm 

thickness in Fig. 5.28.  

 

Figure 5.28: Maximum plastic strain simulation at 40 mm distance and 1.4 mm 

thickness of plate. 

It is given that maximum energy absorption values at different thicknesses and 

different impact points in table 5.12. The energy absorption increased from 1.4 mm 

thickness to 2.4 mm thickness.  
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Table 5.12: Maximum energy absorption values for PMMA plates. 

 1.4 mm thickness 1.9 mm thickness 2.4 mm thickness 

Plate Center (J) 3.2 5.1 7.6  

At 20 mm (J) 3.1  5.2  7.9 

At 40 mm (J) 3.3  5.2 7.6  

It is given that energy absorption distribution for 2.4 mm thickness of plate in Fig. 

5.29. It was found that all results regarding energy absorption for PMMA plates at 

different thicknesses of plate were close to each other. 

 

Figure 5.29: Energy absorption distribution for 2.4 mm thickness. 

It can be seen that energy absorption distribution at different thicknesses and at plate 

center for PMMA plates in Fig. 5.30. The energy absorption increased from 1.4 mm 

thickness to 2.4 mm thickness. 
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Figure 5.30: Energy absorption distribution at plate center. 

5.5 Comparison of Behavior of Polycarbonate and PMMA Plates Under Impact 

The polycarbonate and PMMA plates were modeled as 1.4 mm, 1.9 mm and 2.4 mm 

thickness. Additionally, impacts were made at the center, 20 and 40 mm of the plate. 

Some results are shown in Fig. 5.31 below. 

 

 

 

Figure 5.31: At plate center and 1.9 mm thickness. 
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Maximum von Mises stress of polycarbonate plate was 104.07 MPa and maximum 

von Mises stress of PMMA plate was 56.836 MPa for 1.9 mm thickness of plate in 

Fig. 5.31. Also, all values of maximum von Mises stress of polycarbonate plates 

were greater than the values of PMMA plates at any thickness of plates as shown in 

table 5.13. 

Table 5.13: Von Mises Stress for PC and PMMA plates. 

 

PC 

(MPa) 

Thickness Plate Center 20 mm 40 mm 

1.4 mm 100.5  100.7  97.9  

1.9 mm 101.7  99.1  102.7  

2.4 mm 88.8 46.1 102.7  

 

PMMA 

(MPa) 

1.4 mm 53.2  56.7  59.4  

1.9 mm 56.8  58.7  61.6  

2.4 mm 57.6  58.9  60.9  

 

The values of maximum shear stress of polycarbonate plates were greater than the 

values of PMMA plates at any thickness and any points as shown table 5.14 below.  

Table 5.14: Maximum shear stress for PC and PMMA plates. 

 

 

PC 

(MPa) 

Thickness Plate Center 20 mm 40 mm 

1.4 mm 57.1  57.4  55.1  

1.9 mm 56.8  56.1  58.3  

2.4 mm 45.5 46.1  57.9  

 

PMMA 

(MPa) 

1.4 mm 30.5 32.6  34.3 

1.9 mm 32.6  33.9  35.5  

2.4 mm 33.2  34.1  35.2  

 

The value of maximum shear stress at middle of plate and 1.4 mm thickness for 

polycarbonate and PMMA plates are shown in Fig. 5.32. 
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Figure 5.32: Maximum shear stress for PC and PMMA at middle of plate and 1.4 

mm thickness. 

The values of deformation for polycarbonate and PMMA plates are shown in table 

5.15.  

Table 5.15: Maximum Deformation of PC and PMMA plates. 

 

 

PC 

(mm) 

Thickness Plate Center 20 mm 40 mm 

1.4 mm 8.6  8.6  7.3  

1.9 mm 10.5  10.6  7.1 

2.4 mm 9.1  9.2  9.1  

 

PMMA 

(mm) 

1.4 mm 8.8  8.8  7.8  

1.9 mm 8.9  9.3  8.2  

2.4 mm 10.1  10.1  8.6  

 

The values of maximum plastic strain for PMMA were greater than the values of 

maximum plastic strain for polycarbonate as shown table 5.16 below . As shown in 

table 5.16, maximum values of plastic stain for PMMA plates were greater than 

maximum values of plastic stain for polycarbonate plates. 
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Table 5.16: Maximum plastic strain for PC and PMMA plates. 

 

 

PC 

 

Thickness Plate Center 20 mm 40 mm 

1.4 mm 1.3 1.3 1.3 

1.9 mm 1.2 1.1 1.3 

2.4 mm 0.8 0.9 1.2 

 

PMMA 

1.4 mm 1.5 1.5 1.4 

1.9 mm 1.4 1.4 1.4 

2.4 mm 1.5 1.4 1.5 

 

Maximum plastic strain curves were drawn at the center of plate for 1.4 mm 

thickness of plate in Fig. 5.33. 

 

Figure 5.33: Maximum plastic strain for PC and PMMA plates. 

The maximum energy absorption values for polycarbonate plates were found greater 

than the values of  PMMA plates at all thickness and impact points as shown in table 

5.17.  
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Table 5.17: The maximum energy absorption for PC and PMMA plates. 

 

 

PC  

(J) 

Thickness Plate Center 20 mm 40 mm 

1.4 mm 5.2  5.2  5.1 

1.9 mm 8.8   9.7  7.9  

2.4 mm 9.5 10.2  11.7   

 

PMMA 

(J) 

1.4 mm 3.2  3.2  3.2  

1.9 mm 5.1 5.2 5.2  

2.4 mm 7.6  7.9 7.6  

 

Energy absorption curves are given for polycarbonate and PMMA plates at 40 mm 

distance from center of plate and for 1.4 mm thickness of plate in Fig. 5.34. 

 

Figure 5.34: Energy absorption for PC and PMMA plates at 1.4 mm thickness. 

Energy absorption curves are given for polycarbonate and PMMA plates at the center 

of plate and 2.4 mm thickness of plate in Fig. 5.35 below.  
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Figure 5.35: Energy absorption for PC and PMMA plates for 2.4 mm thickness and 

at center of plate. 

Energy absorption curves are shown for polycarbonate and PMMA plates at 40 mm 

distance from center of plate and for 2.4 mm thickness of plate in Fig. 5.36. 

 

Figure 5.36: Energy absorption for PC and PMMA plates for 2.4 mm thickness of 

plate and 40 mm distance from center of plate. 
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5.6 Determine Strain Rates of Polycarbonate Plates For 1.9 mm Thickness At 

Plate Center 

This study was implemented to determine strain rates at different velocity for PC. It 

is shown that strain rates at plate center in 1.9 mm thickness in table 5.18. 

Table 5.18: Strain Rates at Different Velocity. 

Velocity (m/s) Strain Rates (s
-1

) 

90 3448.008 

140 6587.875 

180 21626.35 

 

 

5.7 Determine Strain Rates of PMMA Plates For 1.9 mm Thickness At Plate 

Center 

This study was implemented to determine strain rates at different velocity for PMMA 

similarly. It is given that strain rates at plate center in 1.9 mm thickness in table 5.19. 

Table 5.19: Strain Rates at Different Velocity. 

Velocity (m/s) Strain Rates (s
-1

) 

90 4702.524 

140 17209.302 

180 21988.157 

 

5.8 Comparison of Polycarbonate Plates For Shell and Solid Elements 

It is given some results about polycarbonate plates for 1.9 mm thickness of plate 

using shell elements during impact loading. Shell element placement is only used 

polycarbonate modeling on finite element analysis such as LSDYNA, Abaqus, 

AUTODYN etc.  

It is shown that von Mises stress simulations for shell elements at plate center in Fig. 

5.37. 
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Figure 5.37: Von Mises stress simulation at plate center and 1.9 mm thickness of 

plate for shell element. 

It is also given that von Mises stress simulations for shell element at plate center as 

other perspective in Fig. 5.38. 

 

Figure 5.38: Von Mises stress simulation at side profile of plate and 1.9 mm 

thickness for shell element. 

It is shown that von Mises stress simulations for solid elements at plate center in Fig. 

5.39. 
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Figure 5.39: Von Mises stress simulation at plate center and 1.9 mm thickness of 

plate for solid element. 

It is given that von Mises stress comparison for shell and solid elements at 40 mm 

distance from plate center and 1.9 mm thickness of plate in Fig. 5.40. 

 

 

Figure 5.40: Von Mises stress at 40 mm distance and 1.9 mm thickness for solid and 

shell element. 

It is shown that maximum shear stress simulations for shell elements at plate center 

in Fig. 5.41 below. 
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Figure 5.41: Maximum shear stress simulation at plate center and 1.9 mm thickness 

of plate for shell element. 

It is shown that maximum shear stress comparison for shell and solid elements at 

middle of plate and 1.9 mm thickness in Fig. 5.42. 

 

 

Figure 5.42: Maximum shear stress at plate center and 1.9 mm thickness for solid 

and shell element. 
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It is shown that deformation simulation for shell elements at plate center in Fig. 5.43. 

 

Figure 5.43: Deformation simulation at plate center and 1.9 mm thickness for shell 

element. 

It is given that plastic strain simulation for shell elements at plate center in Fig. 5.44. 

 

Figure 5.44: Plastic strain simulation at plate center and 1.9 mm thickness for shell 

element. 

It is shown that plastic strain comparison for shell and solid elements at middle of 

plate and 1.9 mm thickness in Fig. 5.45. 
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Figure 5.45: Plastic strain at plate center and 1.9 mm thickness for solid and shell 

element. 

It is shown that energy absorption comparison for shell and solid elements at plate 

center and 1.9 mm thickness in Fig. 5.46. 

 

Figure 5.46: Energy absorption distribution at plate center for solid and shell 

element 

All results about shell and solid elements for polycarbonate plate at plate center, 20 

and 40 mm distance from center of plate are shown in table 5.20.   
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Table 5.20: All conclusions for shell and solid elements. 

 Plate Center 20 mm 40 mm 

 

 

 

 

PC 

Shell 

Maximum  von Mises Stress 

(MPa) 

100.8 97.6 105.6 

Maximum Shear 

Stress (MPa) 

54.3 53.3 59.7 

Maximum 

Deformation mm 

10.4 10.1 12.4 

Maximum Plastic Strain 

(mm/mm) 

1.4 0.7 1.9 

Maximum Energy Absorption 

(J) 

8.9 9.7 7.1 

 

 

 

 

PC 

Solid 

Maximum  von Mises Stress 

(MPa) 

101.7 99.1 102.8 

Maximum Shear 

Stress (MPa) 

56.8 56.1 58.3 

Max. 

Deformation (mm) 

14.1 15.2 19.1 

Maximum Plastic Strain 

(mm/mm) 

1.2 1.2 1.3 

Maximum Energy Absorption 

(J) 

8.8 9.7 7.9 

In this study, it was performed that difference using shell and solid elements for 1.9 

mm thickness polycarbonate plates toward clamped edge on ANSYS/Autodyn. It is 

predicted to understand with only experimental work with respect to accuracy of 

which it was used element type in this present work.  Thus, it was given some results 

for shell elements without commentary. 
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6.  CONCLUSIONS 

Thin square polycarbonate and PMMA plates was subjected to a spherical projectile 

impact at a velocity of 140 m/s. Successive impacts under similar conditions were 

conducted at locations of plate center, 20 and 40 mm distances.  For polycarbonate 

plates, it was shown that maximum stress increased when thickness of plate was 

increased. Similarly, when thickness of plate is increased, maximum shear stress 

decreased. Furthermore, maximum shear stress values increased towards clamped 

edge. Since square plate edges were constraint, it was occurred that higher stress at 

close to fixed edge than other impact locations as expected. For 1.4 mm thickness of 

pc plates, it was observed that fragmentation all impact locations. That is, kinetic 

energy was not completely transformed into internal energy and therefore it was 

occurred that perforated event. Maximum plastic strain values decreased while 

thickness of plate was increased. This situation was expected as well because 

resistance of plate increased when the plate thickness was higher. Further, maximum 

plastic strain increased toward clamped edge. It was seen that maximum plastic strain 

value was 1.3487 at 40 mm distance from plate center and 1.4 mm thickness. For 1.9 

mm thickness for polycarbonate plates, it was shown that partially perforated at plate 

center and 20 mm distance. At 40 mm distance, it was seen that completely 

perforated. It was observed that large deformation at all impact points. At close to 

clamped edge, stress and strain values caused perforated event. Therefore, it was 

possible to be perforated at near the fixed edge. It was already observed that 

perforated event at 40 mm distance and all thickness of polycarbonate plates. For 

polycarbonate plates at all impact locations, maximum energy absorption values 

increased from 1.4 mm thickness to 2.4 mm thickness. This phenomenon was also 

expected due to the thicker plates have more resistance. Maximum energy absorption 

was seen that as 11.743 j at 40 mm distance and 2.4 mm thickness. At plate center, 

there was no perforation at 1.9 mm and 2.4 mm thickness. The reason for no 

perforation at the plate midpoints is due to the fact that the plate can deflect freely to 

a large lateral distance therefore absorbing more energy in plate failure mechanism. 
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For a certain projectile velocity which cause only an acceptable plastic deformation 

at the plate midpoints the deformation near the firmly clamped edge was 

significantly higher for a impact event. Also, it was observed that for the impact at 40 

mm distance from plate center that is in the vicinity of the constrained edge, the 

localized deformation was very high as compared to the plate midpoint impact case. 

This is because due to rigid constraint the transverse plate deflection was minimized 

and all the projectile energy was consumed in local material deformation that results 

in a deep dent near to the plate edge.  

For PMMA plates during impact loading, maximum shear stress values increased at 

any thickness of plates toward clamped edge. Likewise, maximum shear stress values 

increased from 1.4 mm thickness to 2.4 mm thickness. Maximum shear stress is 

found that as 35.214 MPa at 40 mm distance from plate center and 2.4 mm thickness. 

Furthermore, von Mises stress values increased when thickness of plate was 

increased for PMMA plates. Similarly, it was shown that von Mises stress values 

increased towards fixed edge. It was occurred that fragmentation event at all plate 

thickness and impact points for PMMA plates. It was found that maximum plastic 

strain results were close to each other and these results were higher than 

polycarbonate results. The higher deformation, the higher plastic strain. PMMA is a 

brittle material at room temperature. However, PMMA undergoes ductile 

deformation until it is fractured. Thus, two failure criteria were combined which 

ductile failure and tensile failure during numerical modeling. Additionally, energy 

absorption values for PMMA plates were close to each other. Energy absorption 

values for PMMA plates were found to be less than polycarbonate plate values 

regarding energy absorption values as expected. Because, polycarbonate material is 

more impact resistance than PMMA material.  

As it is clear from the above mentioned discussion that the impact points near the 

fixed straight edge is the crucial locations for the possible earlier failure, it was 

decided to investigate the plate midpoint, 20 mm and especially 40 mm distance 

from plate center. When designing the rectangular or square armor plates made up of 

a ductile polymer like polycarbonate, special care must be taken for the protection 

against the projectile striking near the clamped straight should be provided near the 

clamped edges. Some impact points were occurred that penetration and perforation 
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for pc and PMMA plates. In fact, it was seen that perforated event all impact 

locations for PMMA target plates. In addition, it was shown that perforated for 1.4 

mm thickness and all impact points for pc plates. Further, for 2.4 mm thickness and 

40 mm distance, it was seemed to be perforated. In order to prevent such failure 

especially close to clamped edge it is suggested to incorporate an additional plate to 

cover the near edge zone. In addition to these results, it is understand that 

polycarbonate plates are much more useful than PMMA plates with respect to 

designing more firm material such as canopy, bullet proof etc. 

There might be conducted two future works. First study is comparison of the results 

by using different software program. Further, it can be used solver targets such as 

LS-DYNA. The second one is an experimental study of the comparison of 

polycarbonate and PMMA materials. 
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