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THE EFFECT OF HELICOBACTER FELIS ON MACROPHAGE 

POLARIZATION 

SUMMARY 

Helicobacter pylori (H. pylori) has been identified and classified as type I carcinogen 
for gastric malignancies such as chronic gastritis, peptic ulcer and gastric 
adenocarcinoma. Even though more than half of the world’s population is infected 
with the H. pylori, only a minority develops gastric complications and/or remain 
asymptomatic. The bacteria are rarely eliminated, colonization usually persists 
throughout life, and infection involves both innate and adaptive immune responses. 
Helicobacter felis (H. felis) is a gram-negative, spiral- shaped bacterium which was 
first isolated from the stomach of a domestic cat. It is more immunogenic on mice and 
zoonotic species of H. pylori. Hence, it is widely used in murine Helicobacter studies 
because it causes similar pathogenic effect on mice as H. pylori on humans. However, 
H. felis lacks Vacuolating cytotoxin A (VacA) and Cytotoxin-associated gene A 
(CagA) virulence factors. Despite lacking important H. pylori virulence factors, it 
causes more severe gastric inflammation than H. pylori does on mice. 

Neutrophils, dendritic cells and macrophages mediate innate immune response against 
H. pylori. Macrophages are plastic and heterogenic group of cells, which can polarize 
to different types under different stimuli. Polarization status of macrophages changes 
according to stimuli and the local microenvironment, allowing them to shape the local 
inflammatory status to adapt to outside stimuli. However, different stimuli do not exist 
alone in tissues and macrophages may not form clear-cut activated subsets or expand 
clonally. The various macrophage functions are associated with the stimuli variety, 
receptor recognition on the macrophage upon stimuli and the presence of cytokines. 
There are two distinct states of polarized activation for macrophages: the classically 
activated -M1 type- macrophages and the alternatively activated -M2 type- 
macrophage subsets. Cell markers alone do not fully define the many subpopulations 
of macrophages. Therefore, macrophages should be defined based on their specific 
functional activities.  
M1 type macrophages are the pro-inflammatory effector cells in innate immune 
response. Granulocyte macrophage stimulating factor (GM-CSF), lipopolysaccharide 
(LPS) and IFN-γ polarize macrophages towards the M1 phenotype which induces the 
macrophage to produce large amounts of pro-inflammatory cytokines, such as TNF-
α, IL-1β, IL-6, IL-12/ IL-23. The antimicrobial functions of M1 macrophages are 
linked to up-regulation of inducible nitric oxide synthase (iNOS) that generates nitric 
oxide from L-arginine and substantial production of NO. M1 type macrophages are 
professional antigen presenting cells and phagocytes, they express high levels of MHC 
I and class II antigens, CD40, CD80 (B7.1), CD86 (B7.2) co-stimulatory molecules 
and secrete complement factors to facilitate complement-mediated phagocytosis. Even 
though cell markers alone are not enough to fully define the subpopulations of 
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macrophages, it has been shown that M1 type macrophages express CD11c surface 
marker along with the specific macrophage identification markers such as CD11b and 
F4/80. 

M2 type macrophages function in immunosuppression and tissue repair. Exposure to 
IL-4 or treatment with M-CSF produces an “anti-inflammatory” meaning, 
alternatively activated M2 macrophages. M2 type macrophages are generally 
characterized by production of high levels of IL-10 and IL-1RA and low expression of 
IL-12/ IL-23, combined with high levels of scavenger, mannose (CD206). They 
repurpose arginine metabolism to ornithine and polyamine by arginase, which 
promotes growth. Meaning that, they do not produce NO. However, M2 macrophages 
can be further divided into subsets. M2a, M2b, and M2c based on their cytokine 
expression profiles. The M2a subtype is induced by IL-4 or IL-13. The M2b is elicited 
by IL-1R ligands or exposure to immune complexes plus LPS. The M2c subtype is 
characterized by production of IL-10, TGF-β and glucocorticoid hormones.  
The fourth type of macrophage M2d (or TAMs) is characterized by an IL-10high IL-
12low M2 profile. M2d’s have phenotypic and functional attributes distinct from M2a-
c. Their functions are immunosuppression, low tumoricidal activity and promotion of 
tissue remodeling and angiogenesis. 
There are several studies regarding effects of H. pylori on macrophages. In early 
studies, it has been shown that H. pylori induces the expression of inducible NO 
synthetase (iNOS) from macrophages along with pro- inflammatory cytokines such as 
IL-6, IL-8, TNF-α, IL-1-β. However, in recent studies, it has been shown that, in 
human gastric biopsy specimens from H. pylori positive individuals, CD163+ 

(alternatively activated; M2) macrophages were detected. Also, upon H. pylori 
infection, human monocytes secreted IL-1β, IL-6, IL-10, and IL-12p40 (partially 
secreted as IL-23), but not IL-12p70, meaning that, M2 macrophages were up-
regulated and secreted IL-10 but produced less of the pro-inflammatory cytokines than 
M1 macrophages. 

Furthermore, cytokines secreted from innate immune cells, antigen presentation from 
macrophages and dendritic cells and changes in the microenvironment, also activates 
the adaptive immune response against H. pylori. Pro-inflammatory Th1 and Th17 
CD4+T cells mediate the pre-dominant adaptive response against H. pylori, the latter 
being induced by IL-23, IL-1β, and IL-6. In spite of evidence for CD4+ T-cell-
mediated protection against H. pylori infection in mouse models, Th1 and Th17 
responses in humans are also present in chronic H. pylori infection as is IL-17. In mice, 
the induction of regulatory T (Treg) cells with the simultaneous suppression of Th17 
cells may contribute to bacterial persistence.  
Also, recent findings revealed that murine splenic B cells produce and secrete IL-10 
upon Helicobacter-infection in vitro as well as in vivo. IL-10 producing regulatory B 
cells restrain excessive Th1-type pro-inflammatory immune response and gastric 
immunopathology of C57BL/6 mice via suppression of CD4+ effector T cells. The 
interaction between regulatory B cells and T cells were also denoted as required for 
the function of regulatory B cells (Bregs). Bregs were shown to be able to convert 
CD4+ T cells into IL-10-producing T regulatory 1 (Tr-1) cell through direct 
interaction. Tr-1 cells and Bregs work in harmony in order to restore the immune 
balance in Helicobacter-infection by ameliorating excessive gastric immunopathology 
while preventing bacterial clearance in the gastric mucosa. 



xxv 
 

Furthermore, in humoral response, H. pylori- specific serum IgM antibodies were 
present in H. pylori infected humans. Also, Serum IgA and IgG antibodies were 
directed toward many different H. pylori antigens. 

Above information shows that there is some information about the effects of H. pylori 
on macrophages but not definite characterization of H. pylori or H. felis on murine or 
human studies. Therefore, in this study, we investigated the effect of H. felis on 
polarization of two types of macrophages: bone marrow- derived macrophages and 
peritoneal macrophages to show the polarization status and their differences according 
to their surface receptor expressions and cytokine profiles. 

For that purpose, firstly bone marrow cells were isolated from leg bones of C57BL/6 
mice and were differentiated to bone marrow- derived macrophages in the presence of 
M-CSF derived from L929 cell line. Peritoneal macrophages were collected from 
peritoneal cavity of thioglycollate induced C56BL/6 mice. After determining the 
percentage of differentiation and purity of isolation, cells were treated with LPS, H. 
felis sonicate, or left untreated as an internal control for 24 hours. Small portion of cell 
pellets were used for surface marker stainings of activation markers (CD40, CD80 and 
CD86) and of M1 and M2- type specific surface markers (CD11c and CD206, 
respectively). Also, their supernatants were collected for ELISA to measure IL-12/IL-
23 (p40), TNF-α, IL-1β, IL-10, and NO secretion levels via griess reagent protocol. In 
addition to that, their pellets were collected for relative gene expression analysis of  
IL-12/IL-23 (p40), TNF-α, IL-1β, IL-10, IL-6 and iNOS using real-time PCR assay.  
The results of this study indicated that both LPS and H. felis sonicate- treated cells 
express high levels of activation markers of CD40 and CD80. CD86, which also is an 
activation marker, was the determining marker in identifying the activation status. 
CD86 marker expression suggesting the activation status, did not affect the 
polarization status of both bone marrow- derived and peritoneal macrophages. LPS 
treated bone marrow- derived macrophages were categorized as M1 type macrophages 
with the high CD11c and low CD206 expression, and H. felis sonicate- treated bone 
marrow -derived macrophages were categorized as M2 type macrophages with the 
high CD206 and low CD11c expression. However, high levels of CD11c surface 
marker expression was detected in LPS and H. felis sonicate- treated, thioglycollate 
induced peritoneal macrophages. Despite the high levels of CD11c expression, there 
was higher CD206 expression among H. felis sonicate- treated peritoneal macrophages 
when compared to LPS treated group. Therefore, as a result of surface marker 
expressions, there seems to be no correlation between the activation status and 
polarization status of peritoneal macrophages. 

After that, cytokine profiles of activated macrophages were also examined. Firstly, 
activation status of bone marrow- derived and peritoneal macrophages were assessed 
via CD86 marker expression. After that, cytokine profiles of activated macrophages 
were identified. As a result, LPS- treated BM- derived and peritoneal macrophages 
were polarized to M1 phenotype with high IL-12/IL-23 (p40), TNF-α, IL-1β, IL-6 
cytokine expression and secretion, NO production and iNOS expression. Furthermore, 
H. felis sonicate- treated bone marrow -derived and peritoneal macrophages 
categorized as M2b phenotype with the high anti-inflammatory IL-10 production 
along with TNF-α, IL-1β, and IL-6 production. Also, IL-10 secretion observed from 
LPS- treated bone marrow- derived and peritoneal macrophages was thought to be the 
protective effect of IL-10 against LPS toxicity. However, production of pro-
inflammatory IL-12/IL23 (p40) cytokine lead us to the conclusion that H. felis does 
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not drive macrophages to polarize into only one phenotype of M2b, but there is 
probably M1 type macrophages mixed in the population. 
In conclusion, this study has contributed to the literature through providing definitive 
characterization of H. felis infected bone marrow- derived and peritoneal macrophages 
polarization, describing the surface marker and cytokine profiles for the first time.  
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HELICOBACTER FELIS’İN MAKROFAJ POLARİZASYONU ÜZERİNE 
ETKİSİ 

ÖZET 

Helicobacter pylori (H. pylori), mide kanserinin gelişimine neden olan en önemli risk 
faktörlerinden birisi olarak tanımlanmıştır. Türkiye'nin dahil olduğu gelişmekte olan 
ülkelerde bireylerin %80'i H. pylori ile enfekte durumdadır. Ancak, enfekte bireylerin 
sadece %20’si gastrit, ülser veya mide kanseri gibi gastrik komplikasyonlar 
göstermektedir. H. pylori enfeksiyon patogenezi ile ilgili birçok durum hücre kültürü 
deneyleri ve fare modelleri kullanılarak aydınlatılmaya çalışılmaktadır.   
Helicobacter felis (H. felis), spiral şekilli, gram negatif bir bakteridir. Fare 
modellerinde, H. pylori'nin yanı sıra onunla aynı aileden ve farelerde immünojenliği 
daha yüksek olan H. felis yaygın şekilde kullanılmaktadır. C57BL/6 fare modellerinde 
H. felis'in kronik enfeksiyonunun pre-neoplastik patolojiyi tetiklediği gösterilmiştir. 
Histolojik olarak mide atrofisi, pit hücre hiperplazisi ve intestinal metaplazi ile 
karakterizedir. H. felis normalde H. pylori’nin bulundurduğu önemli virulans 
faktörlerini taşımamaktadır. Buna rağmen, fare modellerinde H. pylori’den daha ağır 
mide inflamasyonlarına sebep olmaktadır.  
H. pylori’ye karşı proinflamatuar doğal immün cevap makrofajlar, nötrofiller ve 
dendritik hücreler tarafından sağlanmaktadır. Makrofajlar heterojenik ve dinamik 
hücrelerdir ve gerekli durumlarda, farklı uyaranlara cevap olarak farklı tiplere polariza 
olabilirler. Polarizasyon durumu, uyaranlara ve yerel mikro-çevrenin durumuna göre 
değişiklik gösterir ve makrofajların değişen ortama uyum sağlamasına olanak sağlar. 
Farklı uyaranlar tek dokularda tek başlarına var olmazlar ve makrofajlar sadece tek bir 
tipe polarize olup, tek tipte klonal olarak çoğalmayabilirler. Makrofajların farklı 
fonksiyonları; uyaranlara, mikro-çevreki sitokin profiline göre ve uyaranların farklı 
reseptörler ile tanınması ile ilişkilidir. Klasik olarak aktive edilmiş makrofajlar (M1 
tip) ve alternatif olarak aktive edilmiş makrofajlar (M2 tip) olmak üzere iki genel 
makrofaj polarizasyon fenotipi bulunmaktadır. Bu fenotipleri sadece hücre yüzey 
belirteçleri sayesinde karakterize etmek mümkün değildir. Bu yüzden, makrofajlar 
hücre yüzey belirteçlerinin yanı sıra, spesifik fonksiyonları ve ürettikleri sitokin 
profilleri incelenerek kategorize edilmelidirler. 
Klasik olarak aktive edilmiş (M1 tip) makrofajlar proinflamatuar efektör doğal immün 
cevap hücreleridir. Bu hücreler GM-CSF, LPS ve IFN-γ ile aktive olurlar ve yüksek 
miktarlarda TNF-α, IL-1β, IL-6, IL-12/ IL-23 proinflamatuar sitokinlerini salgılarlar. 
Anti mikrobiyal fonksiyonları, iNOS enzimi tarafından üretilen nitrik oksit (NO) ile 
ilişkilidir. M1 tipi makrofajlar profesyonel antijen sunan hücrelerdir ve yüksek 
miktarlarda MHC sınıf I ,sınıf II antijenleri ile beraber, CD40, CD80 (B7.1), CD86 
(B7.2) yardımcı uyaran molekülleri ve fagositoz aktivasyonu için kompleman sistemi 
proteinlerini eksprese ederler. Aynı zamanda, hücre yüzey belirteçlerinden CD11c’nin 
M1 tipi makrofajlarda eksprese edildiği obesite çalışmasında kanıtlanmıştır. 
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Alternatif olarak aktive edilmiş (M2 tip) makrofajlar immün baskılama ve doku 
onarımında görev alırlar. Bu hücreler IL-4 veya M-CSF ile aktive olurlar. Genelde 
yüksek miktarda anti-inflamatuar IL-10 sitokin salgılaması, IL-1RA ekspresyonu, 
CD206 yüzey belirteci ekspresyonu ve düşük miktarda IL-12/ IL-23 sitokini 
salgılaması ile karakterizedirler. M2 tip makrofajlar, M2a, M2b ve M2c olarak üç alt 
gruba ayrılırlar. M2a alt tipi IL-4 veya IL-13 sitokinleri ile uyarılırlar. M2b alt tipi IL-
1R ligandı ve/veya LPS ve immünkompleksleri ile uyarılırlar. M2c alt tipi ise IL-10, 
TGF-β ve glukokortikoid hormonları ile uyarılırlar.  
Dördüncü M2d (TAM) tipi makrofajlar ise yüksek IL-10 ve düşük IL-12 sekresyonu 
ile karakterizedirler. Bu makrofajların fenotipik and fonksiyonel özellikleri M2a-c tipi 
makrofajlardan farklıdır. Fonksiyonları arasında immün cevabın baskılanması, düşük 
tümörisidal aktivite, doku yenilenmesi ve anjiyogenez bulunmaktadır. 
Literatürde bazı çalışmalarda H. pylori’nin makrofajlar üzerindeki bazı etkileri 
gösterilmiştir. İlk çalışmalarda, H. pylori’nin makrofajlarda iNOS ekspresyonunu 
indüklediği, aynı zamanda IL-6, IL-8, TNF-α, IL-1-β gibi proinflamatuar sitokinlerin 
salgılanmasını sağladığı gösterilmiştir. Fakat, yakın zamandaki insan mide biyopsileri 
ile gerçekleştirilen çalışmalarda, H. pylori pozitif hastaların dokularında CD163+ 
(alternatif olarak aktive edilmiş (M2 tip) makrofaj) makrofajlara rastlanmıştır. Ayrıca, 
H. pylori enfekte insanların monositlerinden IL-1β, IL-6, ve IL-12p40 proinflamatuar 
sitokinlerin yanı sıra, anti-inflamatuar IL-10 salgılandığı gösterilmiştir. Başka bir 
deyişle, M2 tipi makrofajlar yukarı regüle edilmiştir ve yüksek miktarda anti-
inflamatuar sitokinler ile M1 tipi makrofajlara kıyasla daha düşük miktarda pro-
inflamatuar sitokinlerin salgılandığı gözlemlenmiştir. 
H. pylori’ye karşı edinsel immün cevap, doğal bağışıklık hücrelerinin salgıladıkları 
sitokinler, antijen sunan hücrelerinin edinsel bağışıklık hücreleri ile etkileşimleri ve 
mikro-çevredeki değişimler sayesinde aktive olur. Pre-neoplastik patoloji, sadece 
enfeksiyon tarafından değil (örneğin 'bakteriyel onkoprotein' olarak davranan 
Helicobacter virulans faktörleri aracılığıyla), aynı zamanda local CD4+ efektör T 
hücrelerce (Th-1) üretilen interferon-γ aracılığıyla oluşur. Th-1 hücrelerinin yanı sıra 
proinflamatuar Th-17 hücreler de Helicobacter patolojisinde rol almaktadır. Th-17 
hücre grubu IL-23, IL-1β, ve IL-6 sitokinleri tarafından uyarılır. Helicobacter- enfekte 
farelerde, CD4+ efektör T hücreleri regülatör T hücre (Treg) popülasyonunun sıkı 
kontrolü altındadır. Treg’lerin eliminasyonu mide patolojisini kötüleştirir. 

Treg hücre grubunun yanı sıra, yakın zamanlarda, fare dalağından izole edilen B 
hücrelerinin Helicobacter enfeksiyonunda IL-10 ürettiği ve salgıladığı in vivo ve in 
vitro çalışmalarda gösterilmiştir. Helicobacter –asosiye mide patolojisinin 
baskılanmasında Helicobacter –aktive regulatör B hücrelerinin (Hsps Breg) rolü 
gösterilmiştir. Bu IL-10 üreten regülatör B (Breg) hücreleri, C57BL/6 faresindeki 
Helicobacter kaynaklı yüksek Th1 dominant immün cevabı baskılamaktadır. Uyarılan 
Helicobacter spesifik- Breg hücre grubu, naif T hücrelerinin IL-10 üreten CD4+CD25+ 

T regülatör-1 (Tr-1) hücrelerine farklılaşmasını sağlayarak, Helicobacter- kaynaklı 
gastrik patolojiyi in vivo ve in vitro’da baskılamaktadır.  
Aynı zamanda, Helicobacter enfekte hastaların serumlarında, Helicobacter- spesific 
IgM, IgA ve IgG antikorlarına rastlanmıştır. 
Yukarıda bahsi geçen bilgiler H. pylori’nin makrofajlar üzerindeki bazı etkilerini 
ortaya koymaktadır. Fakat, halen H. pylori ya da H. felis’in makrofaj üzerindeki 
etkilerinin kesin olarak karakterize edildiği bir bilgi bulunmamaktadır. Bu sebeple, 
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çalışmamız, Helicobacter felis’in kemik iliği kökenli makrofajların (Kİ- kökenli 
makrofajlar) ve peritoneal makrofajların polarizasyonu üzerindeki etkisini incelemeyi 
amaçlamaktadır. Bu etki, M1 ve M2 tipi makrofajlara özgü yüzey belirteçlerinin ve 
sitokin profillerinin aralarındaki farklılıklar baz alınarak açıklanmıştır. 
Bu sebeple, C57BL/6 tipi farelerin uzuv kemiklerinden elde edilen kemik iliği 
hücreleri, L929 hücresince üretilen M-CSF varlığında ex vivo ortamda Kİ- kökenli 
makrofajlarına çevrilmiştir. Peritoneal makrofajlar ise thioglycollate enjekte edilmiş 
C57BL/6 farenin periton boşluğundan izole edilmiştir. Kİ- kökenli makrofajlarına 
farklılaşmanın teyidi ve peritoneal makrofajların saflığının teyidi için, makrofaj 
spesifik anti-F4/80 ve anti-CD11b antikorlarıyla sağlanmıştır. Ardından, elde edilen 
makrofajlar, bakteriyel lipopolisakkarit (LPS) ve Helicobacter felis (H. felis) sonikatı 
ile, 24 saat süresince muamele edilmiştir. Hücre peletleri hücre aktivasyon belirteci 
(CD40, CD80 ve CD86) boyamaları ve M1 ve M2 tipi spesifik belirteçleri (sırasıyla, 
CD11c ve CD206) boyamaları için ve IL-12/IL-23 (p40), TNF-α, IL-1β, IL-10, IL-6 
ve iNOS sitokinleri için gerçek zamanlı PZR testleri için kullanılmıştır. Hücre 
süpernatanları ise IL-12/IL-23(p40), TNF-α, IL-1β ve IL-10 spesifik ELIZA testleri 
ile NO sekresyonu tayini için griess bileşim protokolü testi için kullanılmıştır. 

Gerçekleştirilen deneylerin sonucunda, kemik iliği hücrelerinin ex vivo ortamda, 
%90’ın üzerinde saflıkla Kİ- kökenli makrofajlarına dönüştüğü, ve peritoneal 
makrofajların yine %90 üzerinde saflıkla izole edildiği, makrofaj spesifik F4/80 ve 
CD11b yüzey belirteçleri ile teyit edilmiştir. Aktivasyon belirteci boyamaları 
sonucunda, Kİ- makrofajları ile peritoneal makrofajlar, muameleden bağımsız olarak 
yüksek miktarlarda CD40 ve CD80 yüzey belirteci eksprese ettikleri gözlemlenmiştir. 
Bunun yanında, belirleyici olarak CD86 belirteci, muamele görmeyen gruba kıyasla, 
H. felis sonikatı ile muamele gören Kİ- kökenli makrofajlarından ve peritoneal 
makrofajlarından yüksek miktarda eksprese edilmiştir. Yapılan deneylerde, CD86 
antikoru ile belirlenen aktivasyon statüsünün, CD11c ve CD206 antikorları ile 
belirlenen sırasıyla M1 tipi ve M2 tipi makrofajlara polarizasyonu statüsünün arasında 
bir ilişki gözlemlenememiştir. polarizasyon statüsünün karakterizasyonu için, yüzey 
belirteçlerinin yanı sıra aktif makrofajların sitokin profilleri de incelenmiştir. Bu 
incelemeler sonucunda, Helicobacter felis sonikatı ile muamele edilen kemik iliği ve 
peritoneal makrofajlarının yüksek düzeyde IL-10 sitokini üretmeleri ve NO 
üretmemelerinden dolayı, M2 tipine benzer fenotip sergilediği gösterilmiştir. Aynı 
zamanda, Helicobacter felis sonikatı ile muamele edilen bu makrofajların, muamele 
edilmeyen gruba göre, yüksek oranda IL-12/IL-23(p40), TNF-α, IL-1β ve IL-6 
sitokinlerini salgıladıkları ve eksprese ettikleri gözlemlenmiştir. 
Sonuç olarak, LPS ile muamele edilen Kİ- kökenli makrofajları, ex vivo ortamda,  
yüzeylerinde bulundurdukları yüksek miktardaki CD86 ile daha aktif, CD11c belirteci 
ve salgıladıkları IL-12/IL-23(p40), TNF-α, IL-1β, IL-6 sitokinleri ve NO üretmeleri 
dolayısıyla tarafımızdan M1 tipi makrofaj olarak sınıflandırılmıştır. Öte 
yandan, Helicobacter felis sonikatı ile muamele edilmiş Kİ-makrofajlarının, M2 tipi 
makrofajlara özgü CD206 yüzey belirteci bulundurmaları ve IL-10 sitokini 
salgılamaları dolayısıyla, M2 tipine benzer bir fenotip sergilediği önerilmektedir. 
Aktiflik statüsünün, makrofajların polarizasyonuna etki etmediği de yüzey belirteçleri 
ile belirlenmiştir. Ayrıca makrofajların TNF-α ve IL-1β sitokinleri ile beraber IL-6 
sitokinini salgılamaları ile beraber literatürde bilinen M2b fenotipi makrofajlara 
polarize oldukları gözlemlenmiştir. Bu makrofajların aynı zamanda M1 tipi 
makrofajlara özgü IL-12/IL-23(p40) sitokini de ürettikleri gözlemlenmiştir.  
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Çalışmalarımızın sonucunda, Helicobacter felis sonikatı ile muamele edilmiş Kİ- 
makrofajlarının, M2b ve M1 tipine benzeyen hücrelere farklılaştıkları önerilmektedir. 
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1.  INTRODUCTION 

1.1 Helicobacter Strains 

1.1.1 Helicobacter pylori 

Helicobacter pylori (H. pylori) is a gram-negative, spiral shaped bacterium which 

colonizes in the stomach (Figure 1.1). It can persist for long time periods within the 

host without being extinguished by the immune system or by the frequent gastric 

environmental changes. Around %50 of individuals is infected with H. pylori around 

the world. The prevalence of H. pylori is decreasing in the Western world; however, it 

is still a significant medical issue in less industrialized countries, with constant higher 

infection rates and more widespread distribution. Most of infected individual remain 

asymptomatic (Bauer & Meyer, 2011). 

 

Figure 1.1 : Helicobacter pylori (Electron Micrographs courtesy of Lucy Thompson, 
school of Biotechnology & Biomolecular Sciences, University of New 
South Wales). 

H. pylori is typically acquired in childhood and can persist for many decades despite 

the development of an adaptive immune response (Algood & Cover,2006). Nearly all 

infected individuals develop chronic active gastritis, which in turn may progress to 

other conditions; especially peptic ulcer disease, distal gastric adenocarcinomas and 

gastric lymphomas (Figure 1.2.) (Ernst & Gold, 2000). Therefore, H. pylori is 

classified as type I carcinogen for gastric malignancies (Blaser, Atherton, 2004). 
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Survival of H. pylori in host depends on how the bacteria elicit effective escape 

mechanisms, which often causing cellular damage and inflammation (Petersson, 

Forsberg, and Aspholm et al, 2006). These escape mechanisms are mostly virulence 

factors of varying strains of H. pylori and its enzymatic activities (Figure 1.2.). For 

example, stomach’s low pH value, which is ranging from pH 2 to 6 from luminal 

surface to epithelial lining, inhibits growth of most ingested bacteria. However, this 

strong acidity is defeated by H. pylori’s cytosolic or cell-surface related urease activity. 

Urease is highly conserved among Helicobacter strains and breaks down urea to 

release ammonia and carbonate which neutralizes the acidic environment. Therefore, 

the bacteria can persist in the gastric epithelium (Graham. Go &Evans, 1992; Solnick 

et al., 1995). 

 

Figure 1.2 : Role of Helicobacter pylori on gastric malignancies (adapted from 
Johannes et al., 2006). 

H. pylori infection starts with adherance and colonization of the bacteria, then bacteria 

evade the immune system, finally invade into mucosa and cause damage at the last 

step (Sheu et al., 2010). Outer membrane proteins (e.g. Blood group antigen binding 

adhesin-BabA; Outer membrane inflammatory protein-OipA) help bacteria to adhere 

to the gastric epithelium. Also, different adhesion protein expression within a single 

strain over time leads to the dynamic adaption capacities by switching of gene 

expression on/off, gene inactivation, or recombination (Aspholm-Hurtig et al., 2004; 

Bâckstrôm et al., 2004; Solnick, 2004). Flagellins (FlaA and FlaB) give motility to 

bacteria (Gewirtz et al., 2004). After invading, H. pylori leads to immune response 

attenuation and persists with the help of their other virulence factors such as cell wall 

component peptidoglycan (PGN) and lipopolysaccharide (LPS) (He et al., 2014). For 

efficient invasion and damage, H. pylori translocates effector proteins such as 
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vacuolating cytotoxin A (VacA), and cytotoxin-associated gene A (CagA), which 

modulate host cell immune response for the benefit of bacterium (Kim & Blanke, 

2012) (Figure 1.3). 

 

Figure 1.3 : Helicobacter pylori virulence factors (adapted from Morales-Guerrero et 
al., 2013). 

VacA virulence protein causes vacuolation of host cell. After it is translocated to host 

and internalized, vacuole formation occurs, which may interrupt trafficking inside host 

cell (Palframan et al., 2012). Also, VacA leads to apoptosis of host cells by interacting 

with mitochondria. It inhibits T cell response by directly binding to T cell integrin 

proteins (Peek, Fiske &Wilson, 2010) (Figure 1.3). 

Cag pathogenicity island (cag- PAI) is mostly the main cause for H. pylori 

pathogenicity. Cag- PAI encodes type IV secretion system (T4SS) that is necessary for 

the translocation of the virulence proteins into host cell. Translocation starts with a 

pilus from CagY protein, which interacts with host integrin β1 protein together with 

CagL virulence factor, and cause conformational changes to inject CagA into host cell. 

Also, CagE gives the energy needed for translocation of CagA by acting as an NTPase 

(Odenberit et al., 2000; Bauer et al., 2005). 

After CagA is translocated into the host cell, it can directly affect cellular responses 

such as; interacting with tight junctions, increasing cell number, changing polarity of 

cells, and activating inflammatory response. Also, it can phosphorylate itself by Abl 

or Src family kinases, which starts from tyrosine aminoacids on Glu-Pro-Ile-Tyr-Ala 

(called as EPIYA) motifs. This process results with host cell shape change and motility 

(Jones, Whitmire &Merrell, 2010). 
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1.1.2 Helicobacter felis 

The spiral-shaped, gram-negative bacteria, Helicobacter felis (H. felis) was first 

isolated from the stomach of a cat and was later also found in dogs (Lee, Hazell, 

O’Rourke & Kouprach, 1988) (Figure 1.4). Meaning that, it is one of the Helicobacter 

species with zoonotic potential. Also, H. felis is highly motile; on agar plates, it does 

not really form colonies, but rather grows as a lawn (Gottwein et al., 2001). 

 

Figure 1.4 : Helicobacter felis (adapted from Neiger&Simpson, 2000). 

The bacterium contains a urease enzyme and two flagellin genes (flaA and flaB). 

Flagellin genes are inactivated, also mutation of flaA gene results in the inability to 

colonize a murine model of infection (Josenhans et al., 1999). However, H. felis lacks 

VacA and CagA virulence factors. Despite lacking important H. pylori virulance 

factors, it causes more severe gastric inflammation than H. pylori (Sakagami et al., 

1996). H. felis may induce gastritis, epithelial cell proliferation, and apoptosis in 

murine models, therefore, it is widely used in murine Helicobacter studies. (Court et 

al., 2002; Schmitz et al., 2011). It has been shown with C57BL/6 mice that H. felis 

infection induces Th1 type response with IFN-γ production. This IFN-γ release from 

Th1 type cells is reversely correlated with bacterial colonization in the stomach (Sayi 

et al., 2009).  

1.2 Macrophages 

Macrophages were first identified by Ilya Metchnikoff and his identification and 

description of phagocytosis brought him the Nobel Prize for Medicine in 1905 

(Nathan, 2008). Macrophages are heterogeneous and dynamic cells. They are found 

almost in all tissues with different functions. However, their main functions are to 

respond to pathogens for shaping the adaptive immune response via antigen processing 

and presentation and to be first line of defense for innate immune response (Hoebe, 

Janssen & Beutler, 2004). Moreover, generation and resolution of inflammation and 
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tissue repair are among the functions of macrophages (Mosser and Edwards 2008). 

Although macrophages are very effective in antigen presentation and microbicidal 

effects, several pathogens have evolved strategies to escape and interfere with 

macrophage activation and to modulate host responses (Russell, 2007). 

1.3 Monocyte / Macrophage Development 

Monocytes originate from myeloid hematopoietic progenitors located in bone marrow. 

They enter the peripheral blood circulation, and within three days or so, circulating 

monocytes migrate into different tissues, such as the spleen, which serves as a storage 

reservoir for immature monocytes (Geissmann, 2010). After exposure to local growth 

factors, cytokines, pathogens, pathogen related compounds in migrated tissues, 

monocytes differentiate into macrophages and/or dendritic cells (Tacke & Randolph, 

2006) This process is called “mononuclear phagocyte system” (Figure 1.5). The 

variety of undifferentiated circulating monocytes may affect their polarization status 

in different tissues (Gordon & Taylor, 2005). Mainly, monocytes play a key role in 

eliminating invading bacteria, virus, fungi, and protozoans. However, they also may 

have negative effects on the pathogenesis of inflammatory and degenerative diseases 

(Strauss-Ayali, Conrad & Mosser, 2007). 

 

Figure 1.5 : The mononuclear phagocyte system (adapted from Lawrance & Natoli, 
2011) (solid lines represent common pathway of development and 
dashed lines represent alternative pathway of development). 
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Macrophages are sorted based on their anatomical location and function; such as 

specialized tissue-resident macrophages include osteoclasts (bone), alveolar 

macrophages (lung), histiocytes (interstitial connective tissue) and Kupffer cells (liver) 

(Gordon & Taylor, 2005). The functions of tissue-specific macrophages are to ingest 

foreign materials and recruit additional macrophages from circulation during an 

infection or following injury (Figure 1.6).  

For example, gut is populated with various types of macrophages, which work together 

to maintain tolerance to the gut flora and to food. Also, secondary lymphoid organs 

contain different macrophage populations, such as marginal zone macrophages in the 

spleen, which suppress innate and adaptive immunity to apoptotic cells (McGaha et 

al., 2011), and subcapsular sinus macrophages of lymph nodes, which clear viruses 

from the lymph and activate antiviral humoral immune responses (Jannacone et al., 

2010; Junt et al., 2007). Moreover, macrophages are also present at immune-privileged 

sites, such as the brain (microglia), eye and testes. They function mainly in tissue 

remodelling and homeostasis. 

 

Figure 1.6 : Different tissue macrophages (adapted from Murray & Wynn, 2011). 

However, not all tissue macrophages are differentiated from monocytes. For instance, 

Langerhans cells in the skin and microglial cells in the brain proliferate locally. Also, 
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recent studies indicate that these cells initially develop from M-CFU in the yolk sac of 

the developing embryo (Lawrance & Natoli, 2011). 

The peritoneal cavity is a membrane-bound and fluid-filled abdominal cavity of 

mammals. The liver, spleen, most of the gastro-intestinal tract and other organs are 

located in peritoneal cavity. It also contains different immune cells including 

macrophages, B1 cells and T cells. The presence of a high number of naïve 

macrophages in the peritoneal cavity makes it a preferred site for the collection of 

naïve tissue resident macrophages. Typically, 5-10 million peritoneal cavity cells can 

be obtained from an unmanipulated mouse and among them, 50-60% are B1 cells, 

~30% are peritoneal macrophages and 5-10% are T cells (Zhang, Goncalves, & 

Mosser, 2008). Moreover, peritoneal macrophages (PMs) have been widely used as a 

macrophage source in mice since the 1960s (Rous, 1925; Kaufmann & Schaible, 

2005).  

Macrophages are distinguished from dendritic cells (DCs) and from other 

mononuclear cells by differential expression of specific surface makers such as CD11b 

and F4/80 (which is encoded by EGF-like module containing, mucin-like, hormone 

receptor-like sequence 1 (Emr1) (Austyn & Gordon, 1981). Also, CD18 (also known 

as MAC1), CD68 and Fc receptors may be used. 

1.4 Pathogen Recognition of Macrophages Via Toll-like Receptors 

The toll-like receptors (TLRs) are type I transmembrane family proteins expressed by 

antigen presenting cells (macrophages, B lymphocytes, dendritic cells) and 

neutrophils. Their primary function is to recognize structurally conserved molecules 

or pathogen associated molecular patterns (PAMPs) derived from microbes. Also, 

TLRs function to recognize infectious organisms and danger signals; initiate 

inflammatory responses; activate microbial killing and clearance mechanisms (Akira 

& Takeda, 2004). There are known 13 paralogous TLRs; 10 in humans and 12 in mice 

(Figure 1.7). 

TLRs act principally to initiate an innate immune response, and inflammation is the 

central hallmark of this response. TLRs have also been described as ‘necessary’ or 

‘required’ for an adaptive immune response (Janeway et al., 2007). 
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TLR4 responds to LPS from Gram-negative bacterial cell walls. TLR4 can signal 

through two different pathways dependent on, and modulated by, separate adaptor 

proteins MyD88 or Toll/IL-1R domain–containing adapter inducing IFN-β (TRIF) 

(Rossol et al., 2011). Hence, TLR4 signalling causes macrophages to produce 

inflammatory cytokines such as tumor necrosis factor TNF-α, IL-1 and IL-6. 

 

Figure 1.7 : Toll like receptors and their ligands (adapted from Janeways 
Immunobiology 7th edition, 2007). 

LPS and flagellin of H. felis were found to be recognized by TLR2, and its signaling 

depends on MyD88 adapter protein. However, their recognition is not dependent on 

TLR4 or 5 as typical LPS and flagellin (Figure 1.8). Helicobacter’s LPS is less 

proinflammatory than LPSs from many other gram-negative species (Khamri et al., 

2005). For instance, Escherichia coli or Salmonella enterica serovar Typhimurium’s 

LPS has 500-fold-higher endotoxic activity than Helicobacter LPS. Also, macrophage 

production of proinflammatory cytokines, nitric oxide, and prostaglandins stimulation 

by Helicobacter is weak (Bliss et al., 1998; Perez- Perez et al., 1995). The low 

biological activity of H. pylori LPS is caused by modifications of its lipid A component 

(Moran & Aspinall, 1998, Muotiala et al., 1992) and H. pylori expresses tetra-acylated 

LPS, which is less biologically active than the hexa-acylated form that is typical of 

other gram-negative pathogens (Salama, Hartung & Müller, 2013) (Figure 1.8). 

Helicobacter commonly express LPS O antigens that have similar structure to Lewis 

blood group antigens found on human cells (Monteiro et al., 1998; Aspinall & 

Monteiro, 1996). This similarity causes molecular mimicry or immune tolerance that 

allows Helicobacter LPS antigens to be protected from immune recognition because 

of similarity to “self” antigens. Also, H. pylori flagella are not detected by TLR5 owing 

to mutations in the TLR5 binding site of flagellin. 
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Study conducted by Sayi et al. (2011) showed that H. felis activates B lymphocytes 

through TLR2 and cells up-regulate CD40, MHC-II and other co-stimulatory 

molecules and also production of IL-10, IL-6, IgM and IgG2b. TLR2 recognition of 

helicobacter mosty caused by its unusual lipid composition of the bacterial envelope 

which consits of high concentration of lysophospholipids and cholesteryl glucosides 

(Tannaes and Bukholm, 2005) (Figure 1.8). 

 

Figure 1.8 : Helicobacter pylori recognition by Toll- like receptors (adapted from 
Salama, Hartung &Müller, 2013). 

1.5 Macrophage Polarization and Plasticity 

Under different stimuli, macrophages can polarize into different phenotypes. 

However, these phenotypes are not stable. For instance, the macrophage changes 

phenotype from classically to alternatively activated during tumor progression (Sica, 

Larghi & Mancino et al., 2008). However, in obesity case, the macrophage phenotype 

changes from M2 to M1 (Suganami & Ogawa, 2010). These data clearly suggest that 

polarization status of macrophages changes according to stimuli and the local 

microenvironment, allowing them to shape the local inflammatory status to adapt to 

outside stimuli (Mosser & Edwards, 2008). However, the main limitations of the 

current strict classifications are: First, it ignores the source and context of the stimuli; 



10 

second, the M1 and M2 stimuli do not exist alone in tissues; and, third, macrophages 

may not form clear-cut activation subsets nor expand clonally. 

1.5.1 Classically activated, M1 type macrophages 

There are two distinct states of polarized activation for macrophages: the classically 

activated (M1) macrophages and the alternatively activated (M2) macrophage subsets 

(Murray & Wynn, 2011). M1 polarization occurs either wtih human Granulocyte 

macrophage colony-stimulating factor (GM-CSF), interferon-γ (IFN- γ) stimulation 

alone or together with bacterial components, such as lipopolysaccharide (LPS) or 

cytokines (e.g., tumor necrosis factor-α (TNF-α)) (Mantovani et al., 2002; Jaguin et al. 

2013) (Figure 1.7). Classically activated M1 type macrophages secrete high levels of 

pro-inflammatory cytokines, which are TNF-α, IL-1β, IL-6, IL-12, and IL-23, and 

increase their concentrations of superoxide anions, oxygen radicals, and nitrogen 

radicals, which helps them to exert killing functions (Fairweather & Cihakova, 2009; 

Sindrilaru, Peters & Wieschalka et al., 2011) (Table 1.1). Moreover, since 

macrophages are professional antigen presenting cells and phagocytes, they express 

high levels of MHC I and class II antigens, CD40, CD80 (B7.1), CD86 (B7.2) co-

stimulatory molecules and secrete complement factors to facilitate complement-

mediated phagocytosis (Mantovani et al., 2004). In order to accurately identify the M1 

subtype, inducible nitric oxide synthase (iNOS; NOS2) activity must be observed. 

iNOS degrades arginine into nitric oxide (NO) and citrulline which in turn initiate 

killing functions of macrophages (Modolell et al., 1995).  

The secretion of cytokines and chemokines occurs after TLR signaling; it does not 

require an additional stimulation except for IL-1β. IL-1β is an inflammatory cytokine 

whose secretion depends on processing after expression (Mariathasan et al., 2006). 

Cytokine is expressed as pro– IL-1β protein, 35 kDa, and after that is cleaved to active 

IL-1β, 17 kDa, by caspase-1 or other polymorphonuclear neutrophil proteases, such as 

proteinase-3, elastase, chymase, and granzyme A (Martinon et al., 2006; Kanneganti 

et all., 2007). Caspase activation occurs via inflammazome NLRP3 which is in turn 

activated by silica crystals or ATP, active IL-1β is then secreted into the extracellular 

environment (Netea et al., 2008; Peeters et al., 2013)  

Furthermore, different inducers of M1 type macrophages may exert different 

properties. For example, IFN-γ stimulation results in high secretion levels of IL-12 and 
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IL-23 but low levels of IL-10 (Gordon & Taylor, 2005; Marie et al., 2008; Solinas et 

al., 2009). As a result, while secreted IL-12 promotes differentiation of Th1 cells, 

which improve antigen phagocytosis [Marie et al., 2008; Cassol et al., 2010), secreted 

IL-23 triggers the development and expansion of Th17 cells, which results in secretion 

high levels of IL-17 and contribute to inflammatory autoimmune pathologies (Verreck, 

de Boer, & Langenberg et al. 2004; Kolls & Linden, 2004). 

Classically activated M1 type macrophages also express pro-inflammatory 

chemokines such as CCL10, CCL11, CCL5, CCL8, CCL9, CCL2, CCL3, CCL4 and 

also CXCL9 and CXCL10 (Duluc et al., 2007; Hao et al., 2012). These 

proinflammatory chemokines improve intracellular pathogen killing and attract Th1 

cells (Mantovani et al., 2004).  

In addition to cytokine and chemokine profiles, M1 type macrophages were identified 

by F4/80, CD11b, and CD11c+ surface marker expressions in a recent obesity study 

(Lumeng et al., 2007; Fujisaka et al., 2009). 

Classically activated M1 type macrophages exert resistance to intracellular bacteria 

and controls the acute phase of infection. For example, during Listeria monocytogenes 

infection, disease in immunocompromised patients and pregnant women, M1 type 

macrophages are activated. Therefore, bacterial phagosome escape is prevented and 

intracellular killing of bacteria is achieved by M1 type macrophages in vitro and in 

vivo (Shaughnessy & Swanson, 2007). Also, mice without IFN- γ and TNF and their 

respective receptors die from L. monocytogenes infection, since M1 type macrophages 

cannot destroy the pathogen effectively without IFN- γ and TNF-α (Pfeffer, 1993). 

Similarly, the M1 type polarization of human and murine macrophages is exerted by 

Salmonella typhi, which is the agent of typhoid fever, and Salmonella typhimurium, 

which is a gastroenteritis agent. Control of the infection is associated with the M1 type 

macrophages (Benoit et al., 2008).  

Moreover, during the early phase of Mycobacterium tuberculosis infection, 

macrophages are polarized to M1 type according to the clinical data collected from 

active tuberculosis patients (Chacon-Salinas, 2005). Also, other mycobacterial 

diseases such as Buruli disease caused by Mycobacterium ulcerans and opportunistic 

infections by Mycobacterium avium are also characterized and controlled by M1 

polarization of macrophages (Murphy et al., 2006; Kiszewski et al., 2006). 

Even though M1 type macrophages control the infection against intracellular 
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pathogens, an excessive and/or prolonged M1 type macrophage effect can be 

deleterious for the host during acute infections with Escherichia coli (E. coli) or 

Streptococcus sp., which causes many diseases, including gastroenteritis, urinary tract 

infections, neonatal meningitis, and sepsis. Sepsis causes systemic inflammatory 

response with immune dysregulation, leading to tissue damage and multiple organ 

failure caused my prolonged M1 macrophage response (O’Reilly, Newcomb & 

Remick, 1999). 

1.5.2 Alternatively activated, M2 type macrophages 

Aside from classical activation, exposure to IL-4 or treatment with M-CSF produces 

an “anti-inflammatory” meaning, alternatively activated M2 macrophages (Jaguin et 

al. 2013). M2 type macrophages generally characterized by production of high levels 

of IL-10 and IL-1RA and low expression of IL-12 and IL-23 (Solinas et al., 2009; 

Condeelis & Pollard, 2006). Generally, functions of M2 type macrophages include: 

parasite clearance, reduction of inflammation, immuneregulation, tissue remodeling 

and tumor progression (Sindrilaru, Peters, Wieschalka et al., 2011). M2 macrophages 

also express high levels of scavenger (SR), mannose (MR or CD206) and galactose 

receptors (GR) (Verreck et al., 2006).  

M2 macrophages inhibit CXCL9, CXCL10, and CXCL5 expression by 

downregulating NF-κB and STAT1, which are the M1 type macrophage pathways for 

production of pro-inflammatory cytokines (Li & Verma, 2002; Hu et al., 2003). 

IL-4 is a major promotor of wound healing because it can activate arginase, which 

contributes to the production of the extracellular matrix. The differential metabolism 

of L-arginine provides a means of distinguishing the two macrophage activation states. 

M1 macrophages upregulate iNOS to catabolize L-arginine to nitric oxide (NO) and 

citrulline, but M2 macrophages induce arginase 1, which metabolizes arginine to 

ornithine and polyamines, which are precursors necessary for collagen synthesis and 

cellular proliferation (Odegaard & Chawla, 2008). 

M2 macrophages are polarized by distinct stimuli and can be further subdivided into 

M2a, M2b, and M2c macrophages (Figure 1.9). 
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Figure 1.9 : Inducers and selected functional properties of classically (M1) and 
alternatively (M2) activated macrophage populations (adapted from 
Mantovani et al., 2004). 

1.5.2.1 M2a type macrophages 

M2a macrophages are stimulated by the IL-4 or IL-13 cytokines and secrete IL-10, 

TGF-β and IL-1 receptor antagonist (IL-1ra) cytokines (Figure 1.9) (Martinez, 

Helming & Gordon, 2009) and chemokine (C–C motif) ligand 24 (CCL24), CCL17, 

and CCL22. These chemokines can specifically combine with Chemokine (C–C motif) 

receptor 3 (CCR3) and CCR4, which accelerate the recruitment of eosinophils, 

basophils, and T helper 2 type (Th2) cells, to lead to a type II response that is associated 

with asthma and allergy (Romagnani, 1999). In a study conducted by Lu et al. (2013), 

it has been shown that M2a type macrophages exhibit anti-inflammatory functions in 

vitro and protect against renal injury in vivo. 

1.5.2.2 M2b type macrophages 

M2 cells are generally characterized by low production of pro-inflammatory cytokines 

(IL-1, TNF and IL-6). M2b macrophages, which are induced by immune complexes 

(ICs), LPS, TLRs, and/or the IL-1 receptor antagonist (IL-1ra), are the exception 

(Martinez, Helming & Gordon, 2009). Because, they retain high levels of 

inflammatory cytokine production with concomitant high IL-10 and low IL-12 levels 

(Mosser, 2003) (Figure 1.9). In spite of their high production of inflammatory 

cytokines and toxic molecules, M2b cells protect mice against LPS toxicity because of 
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IL-10 secretion (Mosser et al., 1999). IL-10 alone or in concert with LPS activates four 

distinct transcriptional programs: (i) control and deactivation of immunity and 

inflammation, including suppression of inflammatory cytokines and induction of 

signaling lymphocytic activation molecule; (ii) tuning of cytokine or G protein-

coupled receptor signaling, (iii) remodeling of the extracellular matrix; (iv) B-cell 

function and lymphoid tissue neogenesis. Thus, IL-10 is more than a mere deactivator 

of macrophage and DC function (Mantovani et al., 2004). 

The only difference seperates M2b type macrophages from other M2 subtypes is the 

IL-6 secretion (Duluc et al., 2007). Furthermore, M2b cells always secrete CCL1, 

which combines with CCR1 to promote the infiltration of eosinophils, Th2, and 

regulatory T cells. These cells exert immune regulation and drive the Th2 response. 

1.5.2.3 M2c type macrophages 

M2c macrophages are induced by IL-10, transforming growth factor-β (TGF-β), or 

glucocorticoids (GCs) and secrete also IL-10 and TGF-β (Martinez, Helming & 

Gordon, 2009) (Figure 1.9). IL-10 induces CXCL13, CCL16, and CCL18, which can 

combine with CXCR5, CCR1, and CCR8 to promote the accumulation of eosinophils 

and naive T cells, which play a prominent role in suppressing immune responses and 

promoting tissue remodeling (Mantovani et al., 2004). Also, in a recent study 

conducted about murine adriamycin nephrosis, it has been found that M2c 

macrophages effectively reduced glomerulosclerosis, tubular atrophy, interstitial 

expansion and proteinuria. They also reduced the effector CD4+ Tcells infiltration and 

induced Treg induction and proliferation in kidney. Thus, M2c are potent in protecting 

against renal injury due to their ability to induce Tregs via their secretion of IL-10 and 

TGF-β. 

1.5.2.4 Tumor associated macrophages (TAMs) 

Studies conducted in mice models showed that different macrophage populations help 

to disperse malignant tumor cells to survive and grow in distant sites. The process is 

called metastasis of tumor cells and one of the major causes of patient’s death. 

Metastasis relies on the help of macrophages and removal of these macrophages 

inhibits tumor growth and reduces cancer mortality. 
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Macrophages are one of the major populations of infiltrating leukocytes associated 

with solid tumors (Gordon & Taylor, 2005). Initially, classically activated M1- 

polarized macrophages can exhibit antitumor activity and to elicit tumor tissue 

disruption (Mantovani et al., 2002). However, in some models of carcinogenesis in the 

mouse, macrophage polarization switches from M1 to M2 (Zaynagetdinov et al., 

2011). At later stages of cancer in mice and humans, tumor associated macrophages 

(TAMs) show similar functions to M2 type macrophages, having an IL-10high IL-

12low phenotype (Mantovani et al. 2002) with potent immunosuppressive functions, 

low tumoricidal activity and promotion of tissue remodeling and angiogenesis (Figure 

1.10).  

 

Figure 1.10 : TAM functions in tumor progression (adapted from Hao et al., 2012). 

TAM infiltration, associated with poor prognosis, has been shown in Hodgkin disease, 

glioma, cholangiocarcinoma, and breast carcinoma (Steidl et al., 2010; Chen et al., 

2011). Lymphocytes are key orchestrators of TAM function with different pathways 

in different tumors (Biswas & Mantovani, 2010). For example, macrophages were 

polarized to M2 type mediated by IL-4–producing Th2 cells in skin (Schioppa et al., 

2011; Andreu et al., 2010), also by B1 cells (Biswas & Mantovani, 2010) and by 

antibody-producing B cells (plasma cells) in breast cancer (DeNardo et al., 2009; 

Pedroza-Gonzalez et al., 2011). Moreover, fibroblasts contribute to drive macrophage 

polarization into M2 type and tumor promotion (Erez et al., 2010). 

Tumor cell produce extracellular matrix components, IL-10, CSF-1, and chemokines 

(CCL2, CCL18, CCL17, and CXCL4). These products polarize macrophages in a M2-
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like, cancer-promoting mode (Mantovani, Allavena, Sica & Balkwill, 2008; Roca et 

al., 2009). TAMs also interact with and promote the tumorigenicity of cancer stem 

cells (CSCs) (Jinushi et al., 2011). Moreover, CD163 surface marker is used for 

identification of TAMs sensitively and accurately (Lau et al., 2004; Pettersen et al., 

2011).  

1.6 Intreactions Between Helicobacter and Immune Cells 

H. pylori- induced inflammation is stimulated by different bacterial factors that 

stimulate epithelial cells, macrophages, and DCs activation, also pre-dominant Th1 

response. Actually, colonization of H. pylori can be prevented by immunizing the host 

with bacterial components such as urease (Panchal et al., 2003) indicating activation 

of the adaptive response. However, urease is a major activator of macrophages, 

stimulating cytokine and NO generation (Gobert et al., 2002). Therefore, 

distinguishing between purely an innate or adaptive response is difficult, and the 

recognition that cells such as B cells can respond to H. pylori directly or via the 

interaction of activated T cells illustrates the complexity of the host immune response 

(Peek et al., 2010). 

Chronic infection of H. pylori named as “chronic superficial gastritis” (Warren, 2000) 

in which T cell, B cell, macrophage, neutrophil, mast cell, and dendritic cell (DCs) 

infiltration is seen (Suzuki et al., 2002; Bergman et al., 2004). CD4+ T cells present 

more abundantly than CD8+ T cells (Lundgren et al., 2005; Quiding-Jarbrink et al., 

2001). CD4+/CD25hi/ FOXP3+ natural regulatory T cells (Tregs) also seen in higher 

numbers in the gastric mucosa of H. pylori- infected individuals, hence, they seemed 

to have an important role in the regulation of inflammatory response (Lundren et al., 

2005). Therefore, H. pylori specific- chronic gastric mucosal inflammatory response 

occurs in a combination of cellular immune response and an ongoing stimulation of an 

innate immune response. 

1.6.1 Innate immune response against Helicobacter pylori 

1.6.1.1 Epithelial cells 

Gastric epithelial cells express TLRs and can recognize pathogen-associated molecular 

patterns (PAMPs). When bacteria invade and penetrate the gastric epithelial barrier, 
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the alternate pathway of complement is activated, and macrophages and neutrophils 

recruited to infection area upon recognition. However, H. pylori localize within the 

gastric mucus layer, do not invade gastric tissue. Therefore, contact between H. pylori 

and phagocytic cells do not occur unless there are disruptions in the gastric epithelial 

barrier (Backhed et al., 2003; Schmausser et al., 2004). 

Levels of numerous cytokines, including IFN-γ, TNF-α, IL-1β, IL-6, IL-7, IL-8, IL-

18, which have pro-inflammatory effects, and IL-10, which is an immune-regulatory 

cytokine that may limit the inflammatory response, increased in the stomachs of H. 

pylori infected humans compared to uninfected humans (Lindholm et al., 1998). 

Polymorphisms which reduce the production of anti-inflammatory cytokines such as 

IL-10 increases the gastric cancer risk (El-Omar et al., 2003). Also, polymorphisms of 

IL-1β, TNF-α, and IL-10 combined, increase the risk of cancer 27- fold over baseline 

(El-Omar et al., 2003). 

In a study conducted in 2004 by Graham et al., 20 human volunteers were 

experimentally infected with 104 to 1010 CFU of an H. pylori and course of infection 

was observed. Symptoms which were seen in >50% of subjects including dyspepsia, 

headaches, anorexia, abdominal pain, belching, and halitosis, started during the second 

week after infection. After that, lymphocyte and monocyte infiltration was observed 

in gastric biopsies along with significantly increased IL-1β, IL-8, and IL-6 cytokine 

expression in the gastric antrum (Graham et al., 2004). Also, after four weeks of 

infection, the numbers of gastric CD4+ and CD8+ T cells were higher than pre-infection 

levels. These observations showed that a short while after H. pylori infection, gastric 

inflammation develops. The initial colonization of the stomach by H. pylori results in 

upper gastro-intestinal symptoms of acute infection. However, in persistent H. pylori 

infection becomes chronic and unless cleared, with the help of the immune response, 

may lead to gastric carcinoma (Figure 1.11).  

1.6.1.2 Dendritic cells (DCs) 

Dendritic cells are the primary responders to signals and professional antigen-present 

cells (APCs), which act as a bridge between innate and adaptive immune responses 

(Figure 1.11) (Pulendran et al., 2001; Sallusto & Lanzavecchia, 1999). They are able 

to penetrate between epithelial monolayers in vitro and in vivo to take up bacteria 

directly directly (Chieppa et al., 2006; Niess et al., 2005; Rescigno et al., 2001). 
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Recoginition by the TLRs on their surface, after that, they present bacterial products 

to T cells to activate them in different ways, inducing either a Th1 or Th2/ regulatory 

T-cell (Treg) response by generation of IL-12 or IL-10 (Banchereau et al., 2000). 

Recoginition by the TLRs on their surface, after that, they present bacterial products 

to T cells to activate them in different ways, inducing either a Th1 or Th2/ regulatory 

T-cell (Treg) response by generation of IL-12 or IL-10 (Banchereau et al., 2000). 

When stimulated with H. pylori ex vivo, human peripheral blood mononuclear cell- 

derived DCs produce IL-12 and IL-10 (Kranzer et al., 2004; Guiney et al., 2003). Also, 

after the co-culture of activated DCs with naïve T cells, TNF-α, IFN-γ, and IL-2 

secretion is observed, indicating Th1 response (Hafsi et al., 2004). However, Lewis 

antigen expression by H. pylori LPS can suppress Th1 responses by binding to DC-

SIGN (CD209) on DCs, hence suggesting immunosuppression (Appelmelk et al., 

2003). 

 

Figure 1.11 : Multifactorial pathway leading to gastric carcinoma (adapted from 
Wroblewski et al., 2010). 

When mouse bone marrow- derived DCs stimulated with H. pylori ex vivo, bacteria 

are phagocytized and pro- inflammatory cytokines such as IL-1α, IL-1β, and IL-6 are 

secreted. However, another pro- inflammatory cytokine IL-12 secretion is low (Zavros 

et al., 2002). Also, when 8 hour long and 48 hour long stimulation of DCs by H. pylori 
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were examined, it is seen that 48 hour long stimulation induce more IFN-γ production 

upon co-culture with naïve T cells than 8 hour long stimulation. However, there was 

loss of response to CD40 ligation (Mitchell et al., 2007). Therefore, this suggests that 

long time H. pylori exposure of DCs results in a loss of ability to induce a Th1 response 

that could help to the persistence of the infection. Ex vivo activation of DCs by H. 

pylori skew the Th17/Treg balance toward Tregs contributing to bacterial immune 

evasion (Kao et al., 2009) and hence leading to chronic inflammation and cancer risk. 

 

Figure 1.12 : Innate and adaptive immune response stimulated by Helicobacter pylori 
(adapted from Peek et al., 2010). 

1.6.1.3 Neutrophils 

Phagocytosis is one of the most important features of the innate immune response in 

clearing pathogens. During a typical H. pylori infection, neutrophils migrate into the 

gastric mucosa and then inflammation starts (Figure 1.12). Even though neutrophils 

are present in the H. pylori infected environment, bacteria can survive by manipulating 

phagocytosis and oxidative reactions. H. pylori secretes neutrophil-activating protein 

(HP-NAP) which is a virulance factor that promotes neutrophil recruitment and 

induces production of reactive oxygen radicals (Polenghi et al., 2007; Satin et al., 

2000). HP-NAP recognized by TLR2 and in downstream upregulates IL-12, IL-23, 

and TNF-α (Amedei et al., 2006). Also, HP-NAP stimulates production ofTh1 cells, 



20 

resulting in increased production of IFN-γ, TNF-α and increased cytolytic activity. 

In order to survive, H. pylori escape opsonization with the help of low pH and mucins, 

which are the natural local gastric environment and they prevent complement system 

antibody binding to the bacterial surface (Berstad et al., 1997). Also, H. pylori urease 

prevents deposition of Complement antibody 3 (Rokita et al., 1998). Moreover, H. 

pylori uprregulates decay-accelerating factor and CD59, both of which inhibit 

complement-mediated opsonization (Sasaki et al., 1998). 

Furthermore, H. pylori can escape neutrophilic phagocytosis by disrupting genes in 

the cagPAI, which enhances engulfment. This shows the important function of type 

IV secretion system in preventing phagocytosis (Ramarao et al., 2000). 

H. pylori can also survive within neutrophils by disrupting the synthesis of reactive 

oxygen species (ROS). H. pylori engulfed neutrophils produce a significant amount of 

ROS. However, they do not accumulate inside the phagosomes, and neutrophil releases 

ROS into the extracellular space, resulting in increased local inflammation (Allen et 

al., 2005). 

Therefore, to promote its survival, the H. pylori modulate phagocytosis through 

production of bacterial constituents and dysregulation of host signaling pathways and 

diverts ROS formation away from the phagosome and into the extracellular space 

(Peek et al, 2010). 

1.6.1.4 Macrophages 

Monocytes, macrophages and dendritic cells in the lamina propria of the gastric 

mucosa play important roles in antigen presentation (Kranzer et al., 2004, Suzuki et 

al., 2002). Priming of the immune response to H. pylori may occur within lymph nodes 

draining the stomach or may occur at intestinal sites in response to H. pylori antigens 

or intact organisms that are shed from the stomach. 

In H. pylori infection, macrophages along with DCs activate adaptive immunity by 

producing factors such as IL-12 (Meyer et al., 2003) that stimulate Th1 cells and 

production of IFN-γ. Also, the of H. pylori neutrophil-activating protein (HP-NAP) 

cause IL-12 and IL-23 secretion from neutrophils and monocytes, both of which 

contributes to Th1 polarization (Amedei et al., 2006). Macrophages are also involved 
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in amplification of the inflammatory response by production of cytokines such as IL-

1β, TNF-α, and IL-6 (Gobert et al., 2004). 

In the first stages of acute inflammation, H. pylori induces the expression of inducible 

NO synthetase (iNOS) in gastric mucosal epithelial cells, vascular endothelial cells or 

infiltrated inflammatory immune cells. Increased iNOS induces NO production using 

L-arginine as a substrate in these cells, where the main source of NO production is 

macrophages (Tsuji et al., 1996). NO production by macrophages is a normal host 

immune response against H. pylori, and this NO can kill H. pylori in in vitro 

experiments (Kuwahara et al., 2000). However, in human stomach, NO cannot 

eliminate H. pylori and therefore the chronic inflammation persists in the gastric 

mucosa. However, in chronic inflammation, H. pylori also suppresses NO production 

by inducing apoptosis of macrophages. Its LPS stimulates macrophages to produce 

polyamine, which induces apoptosis of macrophages (Bussiere et al., 2005) and 

suppresses their iNOS expression, by inducing arginase and ornithine decarboxylase 

(ODC) (Figure 1.13) (Gobert et al., 2001).   

Studies of iNOS-deficient mice have shown that iNOS promotes development of 

atrophy and cancer in the gastric mucosa during Helicobacter infection (Nam et al., 

2004; Ihrig et al., 2005). Moreover, clearance of H. pylori after vaccination occurs 

independently of iNOS (Garhart et al., 2003). Thus, iNOS appears to contribute to host 

pathology rather than protection during infection with H. pylori. 

IL-1β and TNF are acid-suppressive pro-inflammatory cytokines, which are 

significantly increased within H. pylori-colonized human gastric mucosa (Crabtree et 

al., 1991; Noach et al., 1994). Also, increase in pro-inflammatory cytokines, such as 

IL-6, IL-8, TNF-α, IL-1-β, and granulocyte macrophage colony-stimulating factor is 

seen in the gastric biopsy sections of H. pylori infected individuals and resulting in the 

recruitment of granulocytes, mononuclear phagocytes and lymphocytes to the gastric 

mucosa (Lindholm et al., 1998). 

H. pylori is able to stimulate IL-6 secretion in human blood- derived macrophages 

nearly to the same extent as E. coli LPS, which is known being a potent inducer of IL-

6. However, in contrast to E. coli, H. pylori must be ingested by macrophages to induce 

a substantial amount of IL-6 secretion in these cells (Odenbreit et al., 2006). 
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In human gastric biopsy speciments from H. pylori positive individuals, CD163+ 

alternatively activated (M2 type) macrophages were detected (Fehlings et al., 2012). 

Also, Upon H. pylori infection, human monocytes secreted IL-1β, IL-6, IL-10, and IL-

12p40 (partially secreted as IL-23) but not IL-12p70. Also, CD14 and CD32 up- and 

CD11b and HLA-DR down-regulations are observed (Fehlings et al., 2012). Human 

M2 macrophages up-regulated CD14 and CD206 and secreted IL-10 but produced less 

of the pro-inflammatory cytokines than M1 macrophages (Fehlings et al., 2012). 

 

Figure 1.13 : Regulation of iNOS and NO production (adapted from Wroblewski et 
al., 2010). 

B7-H1(CD80) and B7-H2 (CD86) expressions were significantly induced following 

H. pylori infection. CD80 is constitutively expressed on freshly isolated murine splenic 

T cells, B cells, macrophages and dendritic cells, and is up-regulated on T cells, 

macrophages, and dendritic cells after activation (Liang et al., 2003). 

In vitro treatment of human monocytes with H. pylori stimulates co-stimulatory 

molecules and MHC-II (Mai et al., 1991). Therefore, the failure to up-regulate MHC-

II and CD86 on gastric macrophages in chronic H. pylori infection may be caused by 

the inflammatory milieu. For instance, Tregs are prevalent in the H. pylori infected 

gastric mucosa (Lundgren et al., 2005; Rad et al., 2006) and are able to prevent the up-

regulation of co-stimulatory molecules and MHC-II (Yamazaki et al., 2006). In 
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addition, IL-10 can prevent the up-regulation of co-stimulatory molecules and MHC-

II on macrophages (Moore et al., 2001). 

Vaccination of mice against H. pylori amplifies M1 polarization of gastric 

macrophages (Quiding-Jârbrink et al., 2010). Also, in human atrophic gastritis where 

the mixed M1/M2 polarization present in uncomplicated gastritis is replaced by an M1 

dominated polarization. This may induce a tumor-promoting inflammation, and 

shifting macrophage polarization from M1 to M2 could therefore represent a 

therapeutic target in chronic H. pylori infection (Quiding-Jârbrink et al., 2010). 

Also, H. pylori can escape from effective phagocytosis by macrophages (Allen et al., 

2000; Zheng & Jones, 2003). Although H. pylori can be internalized into phagosomes 

by macrophages, phagosomes fuse and form “megasomes” containing large numbers 

of live bacteria. Also, H. pylori CAG+ strains that produce VacA toxin prevent the 

fusion of phagosomes with lysosomes that is needed for bacterial killing. Therefore, 

this disruption of phagosome maturation is lost when cells are infected with isogenic 

vacA− mutant strains (Zheng & Jones, 2003). 

1.6.2 Humoral immune response against Helicobacter pylori 

Simultaneously with adaptive response, humoral immune response was initiated and 

resulted in H. pylori-specific serum IgM antibodies were present in H. pylori infected 

humans. This situation was seen approximately after 4-weeks post-infection 

(Nurgalieva et al., 2005). Serum IgA and IgG antibodies were directed toward many 

different H. pylori antigens (Mattsson et al., 1998; Perez- Perez et al., 1988). H. pylori-

specific IgA or IgM antibodies secreted from activated plasma cells were detected in 

the gastric mucosae of H. pylori-infected individuals (Mattsson et al., 1998). Also, 

secretory IgA antibodies were present in gastric juice, which suggests that local 

secretory IgA response in the stomach was initiated (Hayashi et al., 1998). 

1.6.3 Adaptive immune response against Helicobacter pylori 

1.6.3.1 T cells 

IFN-γ, which is the defining Th1 cytokine, is expressed in higher levels from gastric 

T cells of H. pylori-infected individuals than uninfected individuals (Lindholm et al., 

1998; Bamford et al., 1998). Also, in the experiments carried out with H. pylori 

infected IFN-γ-/- mice, it has been seen that mice develop less severe gastric 
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inflammation but have higher bacterial colonization densities compared to wild type 

mice (Akhiani et al., 2002; Sommer et al., 2001). These results can be interpreted as 

that IFN-γ increase severity of H. pylori- induced gastric inflammation however 

reduces bacterial colonization. Also, H. pylori- infected SCID (severe combined 

immunodeficient) mice grafted with splenocytes that express IFN-γ, developed more 

severe gastritis than did mice grafted with IFN-γ- deficient splenocytes (Eaton, 

Mefford & Thevenot, 2001). IFN-γ functions indirectly by activating macrophages to 

secrete pro-inflammatory cytokines and also down-regulates the expression of anti-

inflammatory cytokines (e.g TGF-β) to affect the severity of gastritis (Strober et al., 

1997). 

Furthermore, to investigate the effects of Th2 response, C57BL/6 mice were initially 

infected with a nematode that induces a strong Th2 response and then challenged with 

H. felis (Fox et al., 2000). The mice co-infected with H. felis and the nematode had 

reduced gastric Th1 cytokines expression (IFN-γ, TNF, and IL-1β), increased gastric 

Th2 cytokines expression (IL-4, IL-10, and TGF-β) and reduced gastric inflammatory 

scores than mice infected with only H. felis (Fox et al., 2000). These data prove that 

the Th2 response decreases the severity of H. pylori-induced gastric inflammation. 

However, there is also evidence that Th2 response may not be required for protection 

from H. pylori infection. In the study conducted with IL-4 and IL-5 knockout C57BL/6 

mice, after immunization; these mice were successfully protected from H. pylori 

infection (Garhart et al., 2003). Moreover, IL-4 receptor α-chain-deficient BALB/c 

mice (mice deficient of both IL-4 and IL-13 signaling) were successfully protected 

from H. pylori infection (Lucas et al., 2001). However, adoptive transfer of Th2 cells 

from H. felis-infected C57BL/6 mice into infected C57BL/6 mice significantly 

reduced the bacterial load compared to when Th1 cells were adoptively transferred 

(Mohammadi et al., 1997). The data described above, involving experiments with 

different knockout or wild type mice, shows that expression of IFN-γ (or Th1 response) 

contributes to enhanced gastric inflammation, whereas expression of IL-10 and IL-4 

(or Th2 response) contributes to diminished inflammation.  

Furthermore, mice lack in CD8+ T cells (MHC class I-/- mice) were immunized and 

protected against colonization of H. pylori (Pappo et al., 1999), but mice lack CD4+ T 

cells (MHC classII-/- mice) were not protected by prophylactic immunization against 
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H. pylori (Pappo et al., 1999). CD4+ T cells from H. felis-immunized mice can mediate 

protective immunity if adoptively transferred into immunodeficient Rag1-/- mice 

(Gottwein et al., 2001). These data suggest that CD4+ T cells, but not CD8+ cells, are 

necessary for protection.  

Immunization of mice with H. pylori lysate increases IL-17 (Th17 response) 

expression in the gastric mucosa and in CD4+ T cells isolated from spleens and co-

cultured with H. pylori-treated DCs or macrophages. These data were associated with 

increased gastric inflammation and decreased colonization (DeLyria et al., 2009). 

Therefore, defective IL-17/Th17 response contributes to chronic persistence of the 

bacterium. In H. felis infection, stimulation of Th17 response with increased IL-17 

cytokine production was shown by Velin et al. (2009). Also, it has been proved that 

IL-1 receptor deficient mice presented less H. felis– associated pathology and showed 

reduced Th1 and Th17 responses (Hitzler et al., 2012). 

In addition, Wang et al. (2001) reported that, H. pylori itself causes immune tolerance 

by selecting H. pylori non-reactive T cells via induction of T-cell apoptosis. Also, there 

are several investigations exist, which implicate Treg role in the H. pylori infection. 

Circulating memory T cells from H. pylori-infected individuals have less proliferation 

and IFN-γ production in response to H. pylori-treated DCs than do T cells from naïve 

donors. This defect can be rescued by depletion of CD4+ CD25high Tregs. This means 

that H. pylori-specific Tregs suppress memory T-cell responses and contribute to the 

continuity of the infection (Lundgren et al., 2003).  

H. pylori infected individuals have increased levels of CD4+ CD25high FOXP3 

expressing Tregs in the gastric and duodenal mucosa (Lundgren et al., 2005). The anti-

CD25 monoclonal antibody PC61 depletes Foxp3+ Treg cells and results in increased 

H. pylori gastritis severity, gastric cytokine levels, and serum IgG1 and IgG2c levels 

and a decrease in bacterial colonization in C57BL/6 mice (Rad et al., 2006). Together 

with findings that H. pylori- infected patients express increased levels of FOXP3 

mRNA and protein in gastric lymphocytes (Rad et al., 2006). This study suggests that 

the induction of a Treg response helps to set up an equilibrium between host and 

bacterium, allowing H. pylori to survive, but also preventing the risk of destructive 

inflammation. 
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1.6.3.2 B cells 

B-cell-deficient (µ-MT) mice infected with H. pylori, develop gastritis that is more 

severe than wild-type mice, and eventually H. pylori infection is cleared (Akhiani et 

al., 2004). One of the reasons why H. pylori-induced gastritis can be more severe in µ-

MT mice than in wild-type mice is that antibodies produced by wild-type mice engage 

the inhibitory IgG receptor (FcγRIIb) on leukocytes and increase expression of anti-

inflammatory cytokines such as IL-10 (Akhiani et al., 2004). 

Helicobacter-infected IL-10-/- mice develop more severe gastritis than wild type mice 

(Chen et al., 2001). IL-10 is known to be a potent anti-inflammatory and 

immunoregulatory cytokine, and therefore it seems likely that IL-10 has a role in 

decreasing the H. pylori-induced inflammation (Chen et al., 2001). Also, H. pylori-

infected IL-4-/- C57BL/6 mice developed more severe gastritis than H. pylori-infected 

wild-type C57BL/6 mice (Smythies et al., 2000). Similarly, H. felis-infected IL-4-/- 

mice developed significantly more severe gastric inflammation than did H. felis-

infected IL-4+/+ mice. These data suggest that both IL-10 and IL-4 have a role in down-

regulating gastric inflammation (Smythies et al., 2000; Zavros et al., 2003). 

A major focus of investigation has been related to the development of gastric MALT 

lymphoma, which arises from activated B cells. Naïve mouse splenocytes exposed to 

H. pylori are protected from spontaneous apoptosis and exhibit proliferation in 

response to low, but not high, multiplicities of infection, and the responding cells are 

derived from B-cell populations (Bussiere et al., 2006). Furthermore, chronic infection 

with H. pylori protects splenic B cells from apoptosis, indicating a B-cell 

activation/survival phenotype that may have implications for MALT lymphoma 

(Bussiere et al., 2006).  

Recent findings revealed that murine splenic B cells produce and secrete IL-10 upon 

Helicobacter-infection in vitro as well as in vivo. H. felis was found to be recognized 

by Toll-like receptor 2 (TLR2) of B cells and subsequent activation of myeloid 

differentiation primary response gene 88 (MyD88) is required for induction of  IL-10  

since TLR2 or MyD88 knock-out mice (TLR2-/-or  MyD88-/-) had significantly less 

IL-10 secretion when compared to wild type (WT) mice. Gastric pathology 

developed upon Helicobacter infection was similar to WT in TLR4-/- and TLR9-/- 

mice. Moreover, both TLR2-/- and MyD88-/- mice developed accelerated gastric 
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histopathology compared to WT mice. IL-10 producing regulatory B cells restrain 

excessive Th1-type pro-inflammatory immune response and gastric immunopathology 

of C57BL/6 mice via suppression of CD4+ effector T cells (Sayi et al., 2011). The 

interaction between regulatory B cells and T cells were also denoted as required for 

the function of regulatory B cells. Bregs were shown to be able to convert CD4+ T 

cells into IL-10-producing T regulatory 1 (Tr-1) cell through direct interaction. Tr-1 

cells and Bregs work in harmony in order to restore the immune balance in 

Helicobacter-infection by ameliorating excessive gastric immunopathology while 

preventing bacterial clearance in the gastric mucosa (Sayi et al., 2011). This study 

was significant for demonstrating a B cell subset with regulatory function in a 

bacteria-associated disease model for the first time. 

1.7 Interactions Between Helicobacter felis and Macrophages 

In literature, most of the studies were conducted using H. pylori. Even in mouse 

studies, mouse adapted strain of H. pylori were used instead of H. felis. However, H. 

felis causes more similar pathology on mice comparing to humans. Therefore, 

regarding the H. felis effects on macrophages, there is little amount of data present. H. 

felis stimulates murine macrophages through TLR2 to produce IL-6 more than E. coli 

LPS (Mandell et al. 2004). Also, macrophages produce IL-1β upon Helicobacter felis 

treatment (Tu et al., 2011).  
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1.8 Aim of The Study 

Macrophages exist as heterogeneous and plastic group, consisting of M1 (pro-

inflammatory) and M2 (anti-inflammatory) phenotypes. Depending on the conditions, 

M1 and M2 phenotypes polarize to one another. Even though Helicobacter pylori (H. 

pylori) effects on macrophage polarization is somewhat investigated in both human 

and mice studies, there is not a definite characterization regarding effects of 

Helicobacter felis (H. felis) on macrophages. Therefore, we aim to investigate the 

effect of H. felis on the polarization of macrophages to either M1 or M2 type. We 

examined the macrophage polarization by utilizing activation specific surface markers 

(CD40, CD80 and CD86) and cell-type specific surface markers of M1 and M2 type 

macrophages (CD11c and CD206 respectively). Furthermore, different secretion and 

expression levels of M1 type specific cytokines (IL-12, TNF-α, IL-1β, and IL-6 ), M1 

type specific enzyme inducible nitric oxide synthase (iNOS) M1 type specific 

production of nitric oxide (NO), M2 type specific cytokine (IL-10)  were assessed.  
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2.  MATERIALS AND METHOD 

2.1 Materials 

2.1.1 Bacteria 

Helicobacter felis (H. felis) strain was kindly provided by Prof. Dr. Anne Müller from 

University of Zurich. Bacteria were spreaded on Columbia Agar plates supplemented 

with 1000X antibiotic cocktail. Ingredients of Columbia Agar (BD, U.S.A.) plate and 

1000X antibiotic cocktail were given in Table 1 and Table 2, respectively. Solutions 

and chemicals used in the maintenance of Helicobacter felis are given in Tables 2.1 

and 2.2. 

Table 2.1 : Components of Columbia Agar Plates. 

Component Amount 
Columbia Agar 42,5 g 

Horse Blood 50 ml 
β-cyclodexin 10 ml 

1000X Antibiotic Cocktail 1 ml 

Table 2.2 : Components of 1000X Antibiotic Cocktail. 

Content Amount 
Trimethoprim 100 mg 

Amphotericin B 160 mg 
DMSO 20 ml 

2.1.1.1 Antibiotics 

Antibiotics used in Helicobacter felis Columbia agar plate are listed in Table 2.3. 

Table 2.3 : Antibiotics used in Helicobacter felis culture. 

Content Supplier company 
Trimethoprim HiMedia 

Amphotericin B HiMedia 
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2.1.1.2 Liquid culture 

Ingredients of liquid culture of Helicobacter felis are shown in Table 2.4 with a 

representative volume of 50 ml. The volume of ingredients may change depending 

on the required volume of components for proper growth of bacteria. 

Table 2.4 : Components of Helicobacter felis liquid culture. 

Content Amount 
Brucella Broth 50 ml 

FBS [10% (v/v)] 5 ml 
Vancomysin (1000X) 5 µl 

2.1.1.3 Freezing Helicobacter felis 

The medium suitable for freezing Helicobacter felis for stock purposes is depicted in 

Table 2.5 with its ingredients. Upon preparation the medium can be stored at 4°C. 

Table 2.5 : Freezing medium for Helicobacter felis. 

Component Amount 
Brucella Broth 25 ml 

Glycerol 25 ml 

2.1.2 Cell lines 

L929 cell line was kindly provided by Assoc. Prof. Dr. Nesrin Özören from 

Boğaziçi University. Cells were maintained and cultured in DMEM medium 

supplemented with 10% FBS, 1% Penicillin/Streptomycin. 

2.1.3 Cell culture 

Culture media and solutions used in cell culture studies can be seen in Table 2.6 

and buffers used in cell culture studies are listed in Table 2.7. 

Table 2.6 : Solutions and media used in cell culture studies. 

Solution Supplier Company 
Roswell Park Memorial Institute 

(RPMI) Medium Lonza 

Dulbecco’s Modified Eagle Medium 
(DMEM) Lonza 

Fetal Bovine Serum (FBS) (10%) Lonza 
Penicillin/Streptomycin (1%) Gibco 

Trypan Blue Lonza 
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Table 2.6 (cont’d.): Solutions and media used in cell culture studies. 

Solution  Supplier company  
DMSO Fisher-Scientific 

Table 2.7 : Buffers and media used in cell culture studies. 

Buffers Content and Amount 
1X PBS 9,55g in 1L ddH2O 

MACS Buffer 0,5% BSA and 2mM EDTA in 1X PBS 
FACS Buffer 2% FBS in 1X PBS 

Complete RPMI growth medium RPMI medium with 10% FBS, 1% 
Penicillin/Streptomycin 

Complete DMEM growth medium DMEM medium with 10% FBS, 1% 
Penicillin/Streptomycin 

L929 cell line derived macrophage 
condition medium (LCCM) Contains M-CSF 

Thioglycollate medium 3% (w/v) in ddH2O 

Complete Macrophage growth medium RPMI medium with 10% LCCM, 10% 
FBS, 1% Penicillin/Streptomycin 

RPMI Freezing medium FBS:RPMI:DMSO (5:4:1 ratio, v/v) 
DMEM Freezing medium FBS:DMEM:DMSO (5:4:1 ratio, v/v) 

Detaching buffer 10 mM EDTA in 1X PBS  

2.1.4 Primary cells 

2.1.4.1 Bone marrow- derived macrophages 

Bone marrow cells were isolated from C57BL/6 mice’s leg bones (femur and tibia) 

and cultured in Roswell Park Memorial Institute (RPMI) medium supplemented 

with 10% LCCM, 10% FBS, 1% Penicillin/Streptomycin for differentiation into 

macrophages for 7 days. 

2.1.4.2 Peritoneal macrophages 

Peritoneal macrophages were isolated from thioglycollate induced C57BL/6 mice’s 

peritoneal cavity and cultured overnight in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% FBS, 1% Penicillin/Streptomycin for separation 

from B1 cells.  After incubation, adherent cells are peritoneal macrophages. 

2.1.5 ELISA 

Solutions that were used in IL-12 / IL-23 (p40), IL-1β, TNF-α, IL-10 ELISA are 

given in Table 2.8. 
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Table 2.8 : Solutions used in ELISA experiments. 

Solution App. Amount 

PBS/T 1X (0.05%) All ELISA experiments 0.05% Tween-20 in 1X 
PBS 

Stop Solution All ELISA experiments 2N H2SO4 in ddH2O 

2.1.6 Equipments and supplies 

Laboratory equipment and supplies used in this study are shown in Table 2.9 and Table 

2.10 with their companies, respectively. 

Table 2.9 : Laboratory equipments used in the study. 

Equipment         Company 
Laminar Air Flow Cabinets FASTER BH-EN 2003 

Pipettes 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl 
Socorex and 10 µl, 100 µl, 1000 µl 

Biohit 
Electronic Pipette CappAid 

 
 

Centrifuges 

Beckman Coulter Allegra ™ 25 R 
Centrifuge 

Scanspeed 1730 R  
Labogene Scanspeed mini 

Incubator with CO2 BINDER 
Nanodrop 2000 Thermo Scientific 

Shakers Heidolp Duomax 1030 
Step One Real Time Systems Applied Biosystem 

Sonicator Bandelin Sonopuls 
Vortex Mixer Uzusio VTX-3000L,LMS 

Quick spin LMS 
Magnetic stirrer WiseStir MSH-20D, Wisd Laboratory 

Equipment 
Light Microscope Olympus CH30 
Hemacytometer Isolab 

Ice Machine Scotsman AF10 
 

Freezers 
Altus ( + 4 0C) 

Siemens ( -20 0C) 
Haier (- 80 0C) 

Flow Cytometer BD Accuri C6 
Nitrogen Tank Air Liquid 

Microplate Spectrophotometer BIO-RAD Benchmark Plus 

Table 2.10 : Laboratory supplies used in the study. 

Supplies Company 
Nitrocellulose membrane (0.2 µm pore 

size) Santa Cruz 

Scale Precisa 
Examination Gloves Beybi 
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Table 2.10 (cont’d.) : Laboratory supplies used in the study. 

Supplies Company 
Tissue culture flasks (25 cm2, 75 cm2) Sarstedt 

Anaerobic Jar Anaerocult 
Erlens Isolab 

Falcons (15 ml, 50 ml) Isolab 
Slides Interlab 

Coverslips Interlab 
Cotton Swap Interlab 

96-well F plate (for ELISA studies) Nunc 
6-well F plate Sarstedt 

 
 

Tissue flasks 
 
 

Sarstedt 
Serological pipettes Sarstedt 

Centrifuge tubes Sarstedt 
Eppendorf tubes (0,6ml, 1,5ml, 2ml) Interlab 

Cell strainer (70 µm) BD 

2.1.7 Commercial kits 

Commercial kits used in this study are listed with their supplier companies in the table 

below (Table 2.11). 

Table 2.11 : Commercial kits used in this study 

Kit Supplier Company 
BCA™ Protein Assay Reagent Assay Thermo Scientific 

NucleoSpin RNA Isolation Kit Macherey-Nagel 
High capacity cDNA syntesis Kit, 

200 rxns Applied Biosystems 

Power SYBR® Green PCR Master Applied Biosystems 
Mouse IL-12/IL-23 (p40) ELISA Max 

Deluxe Biolegend 

Mouse IL-1β ELISA Max Deluxe Biolegend 
Mouse TNF-α ELISA Max Deluxe Biolegend 
Mouse IL-10 ELISA Max Deluxe Biolegend 

Griess Reagent Kit for Nitrite 
Determination Molecular Probes 

2.1.8 General chemicals 

General chemicals used in this study are listed with their supplier companies in Table 

2.12. 

Table 2.12 : General chemicals used in this study. 

Chemical Supplier Company 
EDTA Applichem 

Ethanol (absolute) Merck 
NaCl Merck 
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Table 2.12 (cont’d.) : General chemicals used in this study. 

Chemical Supplier Company 
Glycerol Merck 

Phosphate-Buffered Saline (PBS) 10X Lonza 
Tween-20 Fisher-Scientific 

Bovine Serum Albumin (BSA) Santa Cruz 
DMSO Fisher Scientific 

β-Mercaptoethanol Sigma-Aldrich 
Columbia Agar BD 
Brucella Broth BD 

CampyGen 2.5L Oxoid 
Lipopolysaccharide (LPS) Sigma-Aldrich 

Fixation Buffer (4%) Biolegend 
Permeabilization Buffer (10X) Biolegend 

Isopropanol Sigma-Aldrich 
HCl Sigma-Aldrich 

NaOH Sigma-Aldrich 

2.1.9 Primers 

Primers used in this study are given in table 2.13. 

Table 2.13 : Primers used in the study and their sequences. 

Primer 
Name Sequence (5’-3’) Spec. Tm Exp. 

Size 
TNF-α Fw 
TNF-α Rv 

GTCGTAGCAAACCACCAAGT m 58°C 139 bp CCTGGGAGTAGACAAGGTACAA 
IL-1β Fw 
IL-1β Rv 

GAGGACATGAGCACCTTCTTT m 59°C 105 bp TCTAATGGGAACGTCACACAC 
IL-12 Fw 
IL-12 Rv 

GCACTCCCCATTCCTACTTC m 60°C 103 bp AACGCACCTTTCTGGTTACA 
iNOS Fw 
iNOS Rv 

CTTGGAAGAGGAGCAACTACTG m 59°C 124 bp CCTGAAGGTGTGGTTGAGTT 
IL-10 Fw 
IL-10 Rv 

GAGGCGCTGTCATCGATTTCT m 60°C 103 bp GGCCTTGTAGACACCTTGGTC 
IL-6 Fw 
IL-6 Rv 

CACAGAGGATACCACTCCCAACA m 60°C 120 bp TCAGAATTGCCATTGCACAACT 
18s rRNA Fw 
18s rRNA Rv 

GGCCCTGTAATTGGAATGAGTC m/h 60°C 146 bp CCAAGATCCAACTACGAGCTT 
Oligo dT TTTTTTTTTTTTTTTTTTTT - - - 

2.1.10 Antibodies 

Antibodies used in this study are given in table 2.14. 
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Table 2.14 : Antibodies used in this study. 

Antibody Clone Supplier 
Company Application 

Rat anti-mouse/human 
CD11b-biotin M1/70 Biolegend FACS 

Rat anti-mouse F4/80-
biotin BM8 Biolegend FACS 

Armenian hamster anti-
mouse CD11c-APC N418 Biolegend FACS 

Rat anti-mouse CD206-
APC C068C2 Biolegend FACS 

Rat anti-mouse CD86-PE GL-1 Biolegend FACS 
Rat anti-mouse CD40 FGK4.5 BioXcell FACS 

Armenian hamster anti-
mouse CD80-APC 16-10A1 Biolegend FACS 

Rat anti-mouse IL-10-PE JES5-16E3 Biolegend FACS 
anti-rat PE - BioXcell FACS 

streptavidin-PE - Biolegend FACS 
streptavidin-APC - Biolegend FACS 

2.2 Methods 

2.2.1 Maintenance of Helicobacter felis 

Helicobacter felis was seeded on a Columbia blood agar containing appropriate 

antibiotics and incubated at 37°C under microaerophilic conditions in an anaerobic jar 

for 3-4 days. Microaerophilic conditions in anaerobic jar were maintained by 

utilization of CampyGen packs. For preparation of Columbia agars, 42,5 g Columbia 

agar was dissolved in 1000 ml water. Liquid was autoclaved. The bottle was put in 

560C water bath for an hour. 50 ml horse blood was added to the agar. 10 ml β-

cyclodexin and 1 ml of 1000X antibiotic cocktail (see table 2.2) was added for H.felis 

growth. After 3-4 days, the grown bacteria were checked under light microscope for 

their viability and mobility, and transferred into liquid Brucella Broth containing 

10.000 X Vancomycin (final concentration: 1X) with necessary dilutions for optimal 

growth. For preparation of Brucella Broth medium, 28 g of brucella broth powder was 

resuspended in 1L of sterile distilled water (ddH2O). Following resuspension, the 

liquid medium was autoclaved at 121°C for 15 min for sterilization. 

2.2.2 Sonication of Helicobacter felis 

Sonication procedure was started with 120-200 ml liquid culture of Helicobacter 

strains. Before sonication Helicobacter felis (10 µl)’s mobility was checked under light 
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microscope. 120- 200 ml liquid culture of Helicobacter felis was aliqouted to 15 ml 

falcons. Falcons were centrifuged at 3000 rpm for 10 minutes, and supernatant was 

discarded. 10 ml PBS was used to wash bacteria. 15 ml falcon was centrifuged at 3000 

rpm for 7 minutes, and supernatant was discarded. 3.5 ml PBS was added on pellet and 

mixed. Tube was taken to sonication with ice. Sonication was performed as 30 second 

pulse on, 50 second pulse off for 6 minutes 30 seconds at 50 watts (MS 72 probe of 

the sonicator was used). They were aliquoted to 1.5 ml eppendorfs at 500 µl for each. 

They were centrifuged at 4 °C, 5000 rcf (3000 rpm) for 10 minutes. Supernatant was 

taken to new eppendorf tubes and labeled. Sonicate concentration was measured with 

BCA assay. 

2.2.3 Protein bicinchoninic acid (BCA) assay 

The determination of protein concentration was performed using Thermo Scientific’s 

Protein BCA Assay. The Bradford dye was diluted with distilled water at 1:4 ratios. 

Bovine Serum Albumin (BSA) Standard Set was chosen for microassay. 1X BCA 

working reagent was prepared from Solution B and Solution A as 1:50 ratio, 

respectively and was warmed to ambient temperature. 200 µl of working reagent was 

distributed into each assayed well of a 96-well plate, and all the samples were 

duplicated to confirm linear range of standards and to get more accurate results. 10 µL 

of diluted BSA standards in duplicates were put into working reagent-containing wells 

with the concentrations of 0,025; 0,125; 0,25; 0,5; 1; 1,5; 2 mg/mL, respectively. 

Dilution scheme for BSA standards are given in Table 2.15. 10 µL of protein samples 

(diluted of undiluted) with unknown concentrations were put into working reagent-

containing wells, and microplate was incubated at 37°C for at least 30 minutes. After 

30-minute-long incubation, absorbances were measured at 562 nm on microplate 

reader. 

Table 2.15 : Dilutions of BCA assay standarts. 

Vial Volume of diluents 
ddH2O (µl) 

Volume & source of 
BSA 
(µL) 

Final BSA 
Concentration 

(µg/ml) 
A 0 300 of stock 2,000 
B 125 375 of stock 1,500 
C 325 325 of stock 1,000 
D 175 175 of vial B dilution 750 
E 325 325 of vial C dilution 500 
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Table 2.15 (cont’d.) : Dilutions of BCA assay standarts. 

Vial Volume of diluents 
ddH2O (µl) 

Volume & source of 
BSA 
(µL) 

Final BSA 
Concentration 

(µg/ml) 
F 325 325 of vial E dilution 250 
G 325 325 of vial F dilution 125 
H 400 100 of vial G dilution 25 
I 400 0 0=Blank 

2.2.4 Preparation of thioglycollate medium 

Thioglycollate medium was kindly provided by Prof. Dr. İhsan Gürsel from Bilkent 

University. For preparation of the medium, 30 g thioglycollate medium was dissolved 

in 1000 ml distilled water. Solution was brought to boil to dissolve all solids and 

autoclaved to sterilize. Autoclaved thioglycollate medium was stored in the dark for 

up to 3 months (or longer) at room temperature. 

2.2.5 Preparation of L929 cell line derived macrophage condition medium 

(LCCM) 

L929 cell line was kindly provided by Assoc. Prof. Dr. Nesrin Özören from Boğaziçi 

University. L929 cells are naturally capable of producing macrophage colony 

stimulating factor (M-CSF), which is used in differentiation of bone marrow cells into 

macrophages. After cells were fully grown in culture media, cells were detached and 

6x106 of L929 cells were put into 40ml complete DMEM medium. After 7 days of 

continuous incubation, cells were discarded. Medium, which contains M-CSF, was 

taken, filtered with 0,22µm filter, aliquoted and stored at -200C until further use 

(Figure 2.1). 

2.2.6 Differentiation of bone marrow cells into bone marrow- derived 

macrophages 

Macrophages were differentiated from bone marrow cells of C57BL/6 mice. The 

procedure is explained in detail in section. 2.2.6.1 

2.2.6.1 Bone marrow cells isolation and differentiation into bone marrow- 

derived macrophages 

Leg bones of a sacrificed C57BL/6 mouse were cut without damaging the tips of the 

bones by surgical scissors. Tissue and muscles around the bones were carefully 



38 

cleaned by pinching with gauze soaked in 70% ethanol. After proper cleaning, tips of 

the bones were cut and bone marrow cells were flushed out into a falcon tube with 

complete RPMI medium. Procedure was done for all bones. To obtain single cell 

suspension and to get rid of the any impurities, cells were put through 70-µm filters. 

Filter was washed with complete RPMI and cell suspension was centrifuged at 1780 

rpm (300g) for 8 minutes. Supernatant was discarded. Cell pellet was dissolved in 1 

ml complete RPMI and counted in hemacytometer by diluting with complete RPMI 

(1:200). Cell viability checked with trypan blue dye. 

For differentiation, cell suspension is adjusted to 1x106 cells/ml and placed into 

complete macrophage growth medium. Cells were incubated in 6 well F bottomed 

plates, 2x106 cells per well, for 7 days at 370C and 5% CO2. At every other day, 

medium is discarded, cells were washed gently with pre-warmed 1X PBS, and 

complete macrophage growth medium was renewed. After 7 days, bone marrow- 

derived macrophages were thought to be fully differentiated. After washing cells with 

pre-warmed 1X PBS, ~1 ml of detaching buffer was put onto cells and incubated on 

ice for ~10 minutes. Then, gentle scraping and pipetting; cells were harvested, 

centrifuged at 3000 RPM for 8 minutes. Supernatant was discarded. Then, flow 

cytometer analysis for CD11b and F4/80 surface markers were performed in order to 

determine the purity of differentiated cells. The steps of procedures including 

preparation of L929 cell line derived macrophage condition medium (LCCM) and 

bone marrow cells isolation and differentiation into bone marrow- derived 

macrophages are displayed in Figure 2.1. 

2.2.6.2 Flow staining for CD11b – F4/80 surface markers for purity 

Purity of bone marrow- derived macrophages was determined using flow cytometer. 

5x105 cells were stained with 0.2-µl biotin conjugated anti- CD11b antibody and 

biotin conjugated anti-F4/80 antibody in 50-µl FACS Buffer in the dark on ice for at 

least 45 minutes. A fraction of bone marrow derived- macrophages was left as 

unstained controls. Then, cells were washed once with 1 ml FACS Buffer by 

centrifugation at 3000 rpm for 8 minutes. For secondary staining, 0.2-µl APC 

conjugated anti- biotin (streptavidin) antibody was used to stain same cells in 50 µl 

FACS Buffer in the dark on ice for at least 45 minutes. Then, the cells were washed 

once with 1 ml FACS Buffer by centrifugation at 3000 rpm for 8 minutes. Supernatant 
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was discarded and pellet was resuspended in 150 µl of FACS Buffer and samples (both 

unstained and stained) were analyzed on flow cytometer. 

 

Figure 2.1 : Isolation of bone marrow- derived macrophages. 

2.2.7 Isolation of peritoneal macrophages 

Peritoneal macrophages were isolated from C57BL/6 mice. The procedure is explained 

in detail in section. 2.2.8.1 – 2.2.8.3. 

2.2.7.1 Thioglycollate injection to C57BL/6 mice 

~2ml previously prepared (Mat. & Met. part, 2.5.4.) thioglycollate medium was 

injected to living C57BL/6 mice intraperitoneally. After 4-5 days of incubation, mice 

were sacrificed. Peritoneal cavity was opened without damaging peritoneal membrane. 

~4-5 ml of sterile complete DMEM medium was injected into peritoneal cavity with 

small needle. After gentle palpation of peritoneum, medium was withdrawn without 

damaging peritoneal membrane.  

2.2.7.2 Collecting peritoneal cells from C57BL/6 mice 

Peritoneal cell number was determined and cells were incubated in 6 well F bottomed 

plates, 5x106 cells per well in 2 ml of complete DMEM medium, for 24 hours in 370C, 
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5% CO2. Peritoneal cavity provides two different population of cells: peritoneal 

macrophages which are adherent in nature, and B1 cells which are suspension in 

nature. After 24-hour incubation, B1 cells were removed from the suspension and 

peritoneal macrophages were attached to bottom of the plate. To harvest peritoneal 

macrophages, cells were washed with pre-warmed 1X PBS, and ~1ml of detaching 

buffer was put onto cells and incubated on ice for ~10 minutes. Then, with gentle 

scraping and pipetting, cells were harvested, centrifuged at 3000 RPM for 8 minutes. 

Supernatant was discarded. Then, flow cytometer analysis for CD11b and F4/80 

surface markers were performed in order to determine the purity of cells. 

2.2.7.3 Flow staining for CD11b – F4/80 surface markers for purity 

Purity of peritoneal macrophages was determined using flow cytometer. 5x105 cells 

were stained with 0.2-µl biotin conjugated anti- CD11b antibody and biotin conjugated 

anti-F4/80 antibody in 50-µl FACS Buffer in the dark on ice for at least 45 minutes. A 

fraction of peritoneal macrophages was left as unstained controls. Then, cells were 

washed once with 1 ml FACS Buffer by centrifugation at 3000 rpm for 8 minutes. For 

secondary staining, 0.2-µl APC conjugated anti- biotin (streptavidin) antibody was 

used to stain same cells in 50 µl FACS Buffer in the dark on ice for at least 45 minutes. 

Then, the cells were washed once with 1 ml FACS Buffer by centrifugation at 3000 

rpm for 8 minutes. Supernatant was discarded and pellet was resuspended in 150 µl of 

FACS Buffer and samples (both unstained and stained) were analyzed on flow 

cytometer. 

2.2.8 Treatments 

2.2.8.1 Lipopolysaccharide (LPS) 

Cells were treated with H. felis sonicates with a final concentration of 100 ng/ml when 

needed for 24-hours. However, when combined with silica treatment for IL-1β 

secretion, 4 hours of incubation, followed by 8 hours of silica treatment. 

2.2.8.2 Helicobacter felis (H. felis) sonicate 

Cells were treated with H. felis sonicates with a final concentration of 10 µg/ml when 

needed for 24-hours. However, when combined with silica treatment for IL-1β 

secretion, 4 hours of incubation, followed by 8 hours of silica treatment. 
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2.2.9 Antibody stainings for flow cytometry (for surface markers) 

After treatments, for harvesting, cells were washed with pre-warmed 1X PBS, and 

~1ml of detaching buffer was put onto cells and incubated on ice for ~10 minutes. 

Then, with gentle scraping and pipetting, cells were harvested, centrifuged at 3000 

RPM for 8 minutes. Supernatant was discarded. Cells were resuspended in FACS 

Buffer and divided to 0,5 ml eppendorf tubes for different stainings. Stainings were 

only F4/80, F4/80-CD11c, F4/80-CD206 and a fraction of cells were left unstained. 

2.2.10 IL-12 / IL-23 (p40) ELISA 

IL-12 / IL-23 (p40) protein levels in supernatants were analyzed via Biolegend Mouse 

IL-12 / IL-23 (p40) ELISA Max Deluxe Kit. For quantitative determination of secreted 

IL-12 / IL-23 (p40) protein levels in culture medium of bone marrow derived and 

peritoneal macrophages, Nunc 96-well plates were coated with IL-12 / IL-23 (p40) 

capture antibody 1:200 diluted in coating buffer 1X and plate was incubated at 4°C 

overnight. Following day, plate was washed four times with PBS/T. Then, 100-µl of 

Assay Diluent A 1X (diluted from 5X with PBS 1X) was added into assayed wells and 

the plate was incubated at room temperature for 1 hour with shaking in order to block 

non-specific binding. Recombinant IL-12 / IL-23 (p40) protein standards were 

prepared by serial dilution according to manufacturer‟s instructions. After that, plate 

was again washed four times with PBS/T. Following washing steps, diluted 

recombinant IL-12 / IL-23 (p40) standards and culture media supernatants (50-µl) 

were added as biological duplicates. Plate was incubated at room temperature for 2 

hours with shaking. Following 2 hours of incubation, plate was washed four times with 

PBS/T. Biotinylated IL-12 / IL-23 (p40) detection antibody diluted 1:200 in Assay 

Diluent 1X was added into each assayed well and plate was incubated at room 

temperature for 1 hour with shaking. After washing of assayed wells with PBS/T for 

four times, Avidin conjugated HRP enzyme, 1:1000 diluted in Assay Diluent A 1X, 

was added into each assayed well as 50-µl and plate was incubated in the dark for 30 

minutes with shaking at room temperature. After 30 minutes of incubation, plate was 

washed for five times with PBS/T and 50-µl of TMB Substrate Solution Mixture (1:1 

v/v of TMB Substrate A and TMB Substrate B) was added into each assayed well. The 

plate was incubated for at least 30 minutes at room temperature in dark. High 

concentration standards and samples turned into blue. After that, the reaction was 
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stopped with 50-µl stop solution (2N H2SO4). Then, the absorbances of the samples 

were measured at 450 nm on a microplate reader. 

2.2.11 IL-1β ELISA 

IL-1β protein levels in supernatants were analyzed via Biolegend Mouse IL-1β ELISA 

Max Deluxe Kit. For quantitative determination of secreted IL-1β protein levels in 

culture medium of bone marrow derived and peritoneal macrophages, Nunc 96-well 

plates were coated with IL-1β capture antibody 1:200 diluted in coating buffer 1X and 

plate was incubated at 4°C overnight. Following day, plate was washed four times with 

PBS/T. Then, 100-µl of Assay Diluent A 1X (diluted from 5X with PBS 1X) was 

added into assayed wells and the plate was incubated at room temperature for 1 hour 

with shaking in order to block non-specific binding. Recombinant IL-1β protein 

standards were prepared by serial dilution according to manufacturer‟s instructions. 

After that, plate was again washed four times with PBS/T. Following washing steps; 

diluted recombinant IL-1β standards and culture media supernatants (50-µl) were 

added as biological duplicates. Plate was incubated at room temperature for 2 hours 

with shaking. Following 2 hours of incubation, plate was washed four times with 

PBS/T. Biotinylated IL-1β detection antibody diluted 1:200 in Assay Diluent 1X was 

added into each assayed well and plate was incubated at room temperature for 1 hour 

with shaking. After washing of assayed wells with PBS/T for four times, Avidin 

conjugated HRP enzyme, 1:1000 diluted in Assay Diluent A 1X, was added into each 

assayed well as 50-µl and plate was incubated in the dark for 30 minutes with shaking 

at room temperature. After 30 minutes of incubation, plate was washed for five times 

with PBS/T and 50-µl of Solution D (substrate) was added into each assayed well. The 

plate was incubated for at least 30 minutes at room temperature in dark. High 

concentration standards and samples turned into blue. After that, the reaction was 

stopped with 50-µl stop solution (2N H2SO4). Then, the absorbances of the samples 

were measured at 450 nm on a microplate reader. 

2.2.12 TNF-α ELISA 

TNF-α protein levels in supernatants were analyzed via Biolegend Mouse TNF-α 

ELISA Max Deluxe Kit. For quantitative determination of secreted TNF-α protein 

levels in culture medium of bone marrow derived and peritoneal macrophages, Nunc 
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96-well plates were coated with TNF-α capture antibody 1:200 diluted in coating 

buffer 1X and plate was incubated at 4°C overnight. Following day, plate was washed 

four times with PBS/T. Then, 100-µl of Assay Diluent A 1X (diluted from 5X with 

PBS 1X) was added into assayed wells and the plate was incubated at room 

temperature for 1 hour with shaking in order to block non-specific binding. 

Recombinant TNF-α protein standards were prepared by serial dilution according to 

manufacturer‟s instructions. After that, plate was again washed four times with PBS/T. 

Following washing steps; diluted recombinant TNF-α standards and culture media 

supernatants (50-µl) were added as biological duplicates. Plate was incubated at room 

temperature for 2 hours with shaking. Following 2 hours of incubation, plate was 

washed four times with PBS/T. Biotinylated TNF-α detection antibody diluted 1:200 

in Assay Diluent 1X was added into each assayed well and plate was incubated at room 

temperature for 1 hour with shaking. After washing of assayed wells with PBS/T for 

four times, Avidin conjugated HRP enzyme, 1:1000 diluted in Assay Diluent A 1X, 

was added into each assayed well as 50-µl and plate was incubated in the dark for 30 

minutes with shaking at room temperature. After 30 minutes of incubation, plate was 

washed for five times with PBS/T and 50-µl of TMB Substrate Solution Mixture (1:1 

v/v of TMB Substrate A and TMB Substrate B) was added into each assayed well. The 

plate was incubated for at least 30 minutes at room temperature in dark. High 

concentration standards and samples turned into blue. After that, the reaction was 

stopped with 50-µl stop solution (2N H2SO4). Then, the absorbances of the samples 

were measured at 450 nm on a microplate reader. 

2.2.13 Griess reagent protocol for nitrite determination 

Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) enzyme was 

measured by griess reagent kit. In principle, sulfanilic acid was quantitatively 

converted to a diazonium salt by reaction with nitrite in acid solution. The diazonium 

salt was then coupled to N- (1-naphthyl) ethylenediamine, forming an azo dye that can 

be spectrophotometrically quantitated based on its absorbance at 548 nm. Firstly, equal 

volumes of N-(1-naphthyl) ethylenediamine (Component A) and sulfanilic acid 

(Component B) was mixed together to form the Griess Reagent. Nitrite standards were 

prepared with concentrations between 1-100 µM by diluting the nitrite standart 

solution (component C) with deionized water. After that, in a microplate, 20-µl of 

griess reagent, 150-µl of sample and standarts, and 130-µl deionized water was mixed 
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and incubated at room temperature for 30 minutes. Also, photometric reference sample 

(negative control) was prepared by mixing 20-µl of griess reagent and 280-µl of 

deionized water. Absorbances were measured relative to the reference samples 

(standarts) in spectrophotometric microplate reader at 548 nm. 

2.2.14 IL-10 ELISA 

IL-10 protein levels in supernatants were analyzed via Biolegend Mouse IL-10 ELISA 

Max Deluxe Kit. For quantitative determination of secreted IL-10 protein levels in 

culture medium of bone marrow- derived and peritoneal macrophages, Nunc 96-well 

plates were coated with IL-10 capture antibody 1:200 diluted in coating buffer 1X and 

plate was incubated at 4°C overnight. Following day, plate was washed four times with 

PBS/T. Then, 100-µl of Assay Diluent A 1X (diluted from 5X with PBS 1X) was 

added into assayed wells and the plate was incubated at room temperature for 1 hour 

with shaking in order to block non-specific binding. Recombinant IL-10 protein 

standards were prepared by serial dilution according to manufacturer‟s instructions. 

After that, plate was again washed four times with PBS/T. Following washing steps; 

diluted recombinant IL-10 standards and culture media supernatants (50-µl) were 

added as biological duplicates. Plate was incubated at room temperature for 2 hours 

with shaking. Following 2 hours of incubation, plate was washed four times with 

PBS/T. Biotinylated IL-10 detection antibody diluted 1:200 in Assay Diluent 1X was 

added into each assayed well and plate was incubated at room temperature for 1 hour 

with shaking. After washing of assayed wells with PBS/T for four times, Avidin 

conjugated HRP enzyme, 1:1000 diluted in Assay Diluent A 1X, was added into each 

assayed well as 50-µl and plate was incubated in the dark for 30 minutes with shaking 

at room temperature. After 30 minutes of incubation, plate was washed for five times 

with PBS/T and 50-µl of TMB Substrate Solution Mixture (1:1 v/v of TMB Substrate 

A and TMB Substrate B) was added into each assayed well. The plate was incubated 

for at least 30 minutes at room temperature in dark. High concentration standards and 

samples turned into blue. After that, the reaction was stopped with 50-µl stop solution 

(2N H2SO4). Then, the absorbances of the samples were measured at 450 nm on a 

microplate reader. 
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2.2.15 Analysis of relative expression levels 

2.2.15.1 RNA isolation 

To determine relative expression levels, bone marrow derived and peritoneal 

macrophages pellets were used to isolate their RNA. 350 µl of RA1 lysis buffer and 

3,5 µl β-mercaptoethanol was added to cell pellets and vortex vigorously. Samples 

were taken to nucleospin filter (violet ring) tubes and centrifuged at 11,000 x g for 1 

minute. Nucleospin filter (violet ring) was discarded and 350 µl of 70% of ethanol was 

added to lysate and mixed by pipetting up and down (5 times). For each preparation, 

one nucleospin RNA column (light blue ring) was placed into a collection tube and 

lysates were pipetted up and down 2-3 times more and loaded to the column. Columns 

were centrifuged at 11,000 x g for 30 seconds. 350 µl of MBD (membrane desalting 

buffer) was added and centrifuged at 11,000 x g for 1 minute to dry the membrane. 

Then, DNase reaction mixture was prepared. For each isolation, in a sterile 1,5ml 

microcentrifuge tube, 10 µl reconstituted rDNase (reconstituted by manifacturer’s 

guides) was added to 90 µl reaction buffer for rDNase, and mixed by flicking by the 

tube. Then, 95 µl DNase reaction mixture was applied directly onto the center of the 

silica membrane of the column. Column was incubated at room temperature for 15 

minutes. After incubation, 200 µl of RAW2 buffer was added and centrifuged at 

11,000 x g for 30 seconds to inactivate the rDNase. Then, 600 µl of RA3 buffer was 

added to column and centrifuged at 11,000 x g for 30 seconds. Lastly, columns were 

placed onto new collection tubes, 250 µl of RA3 buffer was added onto the column 

and centrifuged at 11,000 x g for 2 minutes to dry the membrane. Finally, columns 

were settled into new eppendorf tubes. To elute the RNA, 35 µl of RNAse-free water 

was added on columns and columns were centrifuged at 11,000 x g for 1 minute. Flow 

through was kept as isolated RNA. To get more concentrated RNA, flow through was 

put onto the center of the column once and centrifuged again at 11,000 x g for 1 minute. 

RNA concentrations were measured with NanoDrop. 

2.2.15.2 cDNA synthesis 

Synthesis of cDNA was performed according to manufacturer’s instructions. Amounts 

used in synthesis reaction are given in Table 2.15. Synthesis conditions are given in 

Table 2.16. 
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Table 2.16 : cDNA synthesis reaction components. 

Component  Amount  
RNA (1µg) Depends on concentration 

ddH2O 15.075 µl – amount of RNA 
10X RT Buffer 2 µl 

Oligo dT (10µM) 1 µl 
Ribolack Rnase inhibitor 0,125 µl 

Reverse transcriptase enzyme 1 µl 
25X dNTP mix 0,8 µl 

Table 2.17 : cDNA synthesis reaction conditions. 

Temperature  Time  
25°C 10 min 
37°C 120 min 
85°C 5 min 
4°C ∞ 

2.2.15.3 Real-time PCR 

Relative expression levels of IL-12 / IL-23 (p40), IL-1β, TNF-α, iNOS, IL-6, IL-10, 

and arginase-1 were analyzed with Real-time PCR. Amounts used in reaction are given 

in Table 2.17. PCR conditions performed are given in Table 2.18. 

Table 2.18 : Components of real time PCR. 

Component  Amount  
Power Sybr Master Mix (2X) 5 µl 

Forward Primer (10 µM) 0,5 µl 
Reverse Primer (10 µM) 0,5 µl 

PCR Grade water 1,5 µl 

Table 2.19 : Real time PCR reaction conditions. 

Temperature  Time  
95°C 5 min 
95°C 30 sec 

Depending on primer sets 1 min (45 cycle) 
72°C 1 min 
72°C 5 min 
4°C ∞ 

2.2.16 Flow cytometry analysis 

Flow cytometry analyses were performed using BD accuri C6 software and FlowJo 

software. 
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2.2.17 Statistical analysis 

All p values were calculated using GraphPad Prism 5.0 software and determined by 

Student t test. In all analyses, a two-tailed t-test was applied and p-value of more than 

0.05 was considered statistically not significant. In column bar graphs, vertical bars 

indicate standard deviations of the mean, n.d. stands for not determined, and n.s. 

denotes not significant. 
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3.  RESULTS 

Macrophages undergo specific differentiation depending on the local tissue 

environment. Two distinct states of polarized activation for macrophages have been 

defined: the classically activated (M1) macrophage phenotype and the alternatively 

activated (M2) macrophage phenotype (Gordon and Taylor 2005; Mantovani et al. 

2002). Cell markers alone do not fully define the many subpopulations of macrophages 

therefore; macrophages should be defined based on their specific functional activities 

(Biswas & Mantovani 2010 and Geissmann et al. 2010). Functions of polarized 

macrophage subsets and their cytokine profile have been summarized in Table 3.1.  

Table 3.1 : Inducers, produced cytokines and functions of macrophage subtypes. 

 M1 M2a M2b M2c 

 
Activation 

IFN-γ 
TNF-α 

LPS 

 
IL-4/IL-13 

ICs 
LPS 

TLR/IL-1R 

IL-10 
TGF-β 

GCs 

 
Produced 
cytokines 

 
TNF-α 
IL-1β 
IL-6 

IL-12/IL-23 
NO 

IL-10 
TGF-β 
IL-1ra 

IL-1β 
TNF-α 
IL-10 
IL-6 

IL-10 
TGF-β 

 
Enzyme 

 
iNOS    

Function Pro-
inflammatory Pro-fibrotic Immune 

regulation 

 
Anti-

inflammatory, 
Tissue repair 

and 
regeneration 

3.1 Isolation of Bone Marrow- Derived Macrophages 

In order to obtain bone marrow- derived macrophages; first of all, mouse bone marrow 

cells were extracted from leg bones of C57BL/6 mice, and incubated in complete 

macrophage growth medium for 7 days (Mat. & Met. Part, 2.2.6). Following 

incubation, bone marrow- derived macrophages were harvested and labelled with 

APC-coupled CD11b and F4/80 antibodies, and compared to unstained control. Flow 
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cytometer analysis was performed for the quantitative analysis of stained cells. 

Representative images of the CD11b+ and F4/80+ bone marrow- derived macrophages 

were shown in Figure 3.1.a and histogram plots were shown in Figure 3.1.b. Besides, 

the percentages of positivity of four independent experiments and their averages were 

given in Figure 3.1.c.  

 
    c. 

 

Figure 3.1 : Purity of differentiated bone marrow- derived macrophages. a. 
Approximately 5x104 cells were stained with a specific 
macrophage marker, CD11b and F4/80 (APC-coupled anti-
CD11b antibody and APC-coupled anti-F4/80 antibody) (right) 
or left as unstained control (left). Representative contour plots 
were shown above for all experiments. b. Representative 
histograms were shown above for all experiments. c. 
Independent percentages and average percentage values are 
expressed as bar graph. Images were prepared using GraphPad 
Prism program. 

According to figure 3.1, bone marrow- derived macrophages were 95% CD11b+ and 

similarly 94,7% F4/80+. After all isolation processes, purities were checked by flow 
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cytometry. Since, both CD11b and F4/80 positivity were parallel to each other, in the 

following experiments cells were stained only with F4/80 antibody. As a result, bone 

marrow- derived macrophages differentiation was established with more than 90 %. 

Experiments 1,2 and 3 were used to identify the activation status via CD40, CD80, and 

CD86 surface marker expressions and to determine the correalation between activation 

status (CD86 surface marker expression) and polarization status, which was 

investigated via CD11c (for M1 type) and CD206 (for M2 type) surface marker 

expressions. Furthermore, experiments 4,5,6, and 7 were used to identify the cytokine 

profiles of activated macrophages. 

3.2 Isolation of Peritoneal Macrophages 

In order to obtain peritoneal macrophages, firstly, prepared thioglycollate medium 

(Mat. & Met. part, 2.5.4.) was injected into peritoneal cavity of C57BL/6. After 4-5 

days, mice were sacrificed and peritoneal cells are harvested and incubated in cell 

culture conditions for 24 hours. 5-10 million peritoneal cavity cells can be obtained 

from an unmanipulated mice and among them, only ~30% (about 1-2 million cells) 

peritoneal macrophages (Zhang, Goncalves, & Mosser, 2008). However, this number 

was not enough for the experiment sets. So, the peritoneal macrophages were induced 

with thioglycollate medium, which enriches their numbers up to 15-20 million of 

peritoneal macrophages. Peritoneal cell population consists of two types of cells: B1 

cells which are suspension in nature and peritoneal macrophages which are adherent 

in nature. Therefore, after incubation of peritoneal cells, peritoneal macrophages were 

attached to plate bottom and harvested (Mat. & Met. part, 2.2.7). After harvesting, 

peritoneal macrophages were labelled with APC-coupled CD11b and F4/80 

antibodies, and compared to unstained control. Representative contour plots of 

CD11b+ and F4/80+ peritoneal macrophages purity was shown in Figure 3.2.a. 

Representative histogram plots of CD11b+ and F4/80+ peritoneal macrophages were 

shown in Figure 3.2.b. and purities of three individual experiments and their average 

was given in Figure 3.2.c. Since, both CD11b and F4/80 positivity were parallel to 

each other, following experiments were stained only with F4/80 antibody. 

According to figure 3.2, peritoneal macrophages were 91% CD11b+ and 97% F4/80+. 

After all isolation processes, purities were checked by flow cytometry. Since, both 

CD11b and F4/80 positivity were parallel to each other, following experiments were 
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stained only with F4/80 antibody. Therefore, according to average, peritoneal 

macrophages isolated more than 94% purity compared to the unstained group. 

In order to investigate the effect of H. felis on both bone marrow- derived and 

peritoneal macrophages, they were treated with 10 µg/ml H. felis sonicate and 100 

ng/ml LPS. In a study conducted in vitro using E. coli showed that LPS induces a 

typical M1 profile through TLR4 recognition (Liang et al., 2005; Pinheiro de Silva et 

al., 2007). For that reason, LPS was used such as an internal M1 phenotype control, 

and also used in comparison with H. felis results. Then, polarization status was 

examined according to their surface receptor expressions and cytokine profiles.  

 
   c. 

 

Figure 3.2 : Purity of isolated peritoneal macrophages. a.  Approximately 5x104 cells 
were stained with a specific macrophage marker, APC-coupled 
anti-CD11b antibody and APC-coupled anti-F4/80 antibody 
(right) or left as unstained control (left). Representative contour 
plots and representative histograms (b.) were shown above for 
all experiments. c. Independent percentages and average 
percentage values are expressed as bar graph. Images were 
prepared using GraphPad Prism program. 
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3.3 Identifying the Activation Status of Macrophages Through Analysis of CD40 

and CD80 Surface Markers 

CD40 is a co-stimulatory protein, which is encoded by this gene is a member of the 

TNF- receptor superfamily, found on antigen presenting cells and is required for their 

activation and cell-to-cell contact with T cells. CD80 (B7-1) protein found on activated 

B cells and monocytes that provides a co-stimulatory signal necessary for T cell 

activation and survival. They are considered as important activation markers on 

macrophages. As a result of activation, the macrophage expresses more CD40 and 

CD80 on its surface which helps increase the level of activation. 

For the activation investigation of macrophages, LPS and H. felis sonicate- treated 

bone marrow-derived macrophages and peritoneal macrophages were stained with 

APC or FITC-conjugated F4/80, PE-conjugated CD40 and APC-conjugated CD80 

antibodies. CD40 and CD80 positivity among F4/80+ gated cells were compared to 

unstained control and untreated group. Flow cytometer analysis was performed for the 

quantitative analysis of stained cells. Representative contour plots, histograms and 

averages of four independent experiments of CD40+ were shown in figure 3.3.  and 

CD80+ bone marrow- derived macrophages were shown in figure 3.4.  

 

Figure 3.3 : CD40 positivity of differentiated F4/80+ bone marrow- derived 
macrophages. 
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    b. 

 

Figure 3.3 (cont’d.) : CD40 positivity of differentiated F4/80+ bone marrow- derived 
macrophages. a. Approximately 5x104 cells were stained with 
APC-coupled anti-F4/80 antibody and PE-coupled CD40 or 
were left as unstained control. Representative contour plots and 
histograms were shown above for all experiments. b. 
Independent percentages are expressed as bar graph. Images 
were prepared using GraphPad Prism program. 

As a result, according to Figure 3.3 and 3.4, untreated bone marrow- derived 

macrophages expressed approximately 80% CD40 and 70% CD80. This percentage 

increased to above 90% for both markers in LPS- and H. felis sonicate- treated cells. 

When compared to untreated group, there was activation in LPS and H. felis sonicate- 

treated bone marrow- derived macrophages. However, CD40 and CD80 expression 

between LPS- and H. felis sonicate- treated cells were not different than each other. 

Therefore, CD40 and CD80 stainings were not performed on peritoneal macrophages. 

 

Figure 3.4 : CD80 positivity of differentiated F4/80+ bone marrow- derived 
macrophages. 
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b. 

 

Figure 3.4 (cont’d.) : CD80 positivity of differentiated F4/80+ bone marrow- derived 
macrophages. a. Approximately 5x104 cells were stained with 
FITC-coupled anti-F4/80 antibody and APC-coupled CD80 or 
were left as unstained control. Representative contour plots and 
histograms were shown above for all experiments. b. 
Independent percentages are expressed as bar graph. Images 
were prepared using GraphPad Prism program. 

3.4 Identifying the Correlation Between Activation and Polarization Status of 

Bone Marrow- Derived and Peritoneal Macrophages  

CD86 (B7-2) protein, as CD40 and CD80(B7-1), found on activated B cells and 

monocytes that provide a co-stimulatory signal necessary for T cell activation and 

survival. CD86 works in tandem with CD80 to prime T cells. As a result of activation, 

the macrophage expresses more CD86 on its surface which helps determine the level 

of activation. Recently, M1 type macrophages were identified by F4/80, CD11b, and 

CD11c+ surface marker expressions (Lumeng et al., 2007; Fujisaka et al., 2009) and 

M2 macrophages were shown to express high levels of mannose receptor (MR or 

CD206) (Verreck et al., 2006). However, there was no definite information about the 

effect of H. felis on macrophage polarization. Also, it has been shown that CD86 

surface marker was expressed on M1 type and M2b type macrophages (Mantovani et 

al., 2004). 

Therefore, we aimed to characterize the activation status of H. felis sonicate- treated 

bone marrow- derived macrophages and peritoneal macrophages via analysis of CD86 

surface marker expression, polarization status via analysis of CD11c and CD206 

surface marker expressions and determine whether there is a correlation between 

activation and polarization status of H. felis sonicate- treated bone marrow- derived 

macrophages and peritoneal macrophages. Representative flow cytometry analysis 

image and histogram plots of F4/80+CD86+, F4/80+CD11c+ and F4/80+CD206+ bone 
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marrow- derived macrophages were shown in Figure 3.5.a and 3.5.c, respectively, and 

positivities of three independent experiments were given in Figure 3.5.b. Also, 

representative flow cytometry analysis contour plot and histogram plots of 

F4/80+CD86+, F4/80+CD11c+ and F4/80+CD206+ peritoneal macrophages were shown 

in Figure 3.6.a and 3.6.c, respectively, and positivities of three independent 

experiments were given in Figure 3.6.b. 

a. Experiment 1 

 
Experiment 2 

 

Figure 3.5: CD86, CD11c and CD206 positivity of differentiated F4/80+ bone 
marrow- derived macrophages. 
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Experiment 3 

 
b. Experiment 1 

 
Experiment 2 

 

Figure 3.5 (cont’d.) : CD86, CD11c and CD206 positivity of differentiated F4/80+ 
bone marrow- derived macrophages. 
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Experiment 3 

 
c. 

 

Figure 3.5 (cont’d.) : CD86, CD11c and CD206 positivity of differentiated F4/80+ 
bone marrow- derived macrophages. a. Approximately 5x104 
cells were stained with FITC or APC-coupled anti-F4/80 
antibody and PE-coupled CD86, APC-coupled CD11c and 
CD206 or were left as unstained control. Contour plots (a.) and 
histogram plots (b.) were shown above for all experiments. c. 
Independent percentages are expressed as bar graph. Image was 
prepared using GraphPad Prism program. 

According to Figure 3.5, in experiment 1 and 2, CD86 positivity patterns of LPS- and 

H. felis sonicate- treated BM-derived macrophages were similar. Meaning that, LPS- 

treated BM-derived macrophages were expressed approximately 2 times higher levels 

of CD86 than H. felis sonicate- treated group, indicating that LPS- treated BM-derived 

macrophages were more activated than H. felis sonicate- treated cells. When 

expression of CD11c surface marker (for M1 type) and CD206 surface marker (for M2 

type) were examined, it has been seen that, in both experiment 1 and 2, LPS- treated 

BM-derived macrophages expressed approximately 2 times higher levels of CD11c 

untre
at

ed LPS

H. fe
lis

untre
at

ed LPS

H. fe
lis

untre
at

ed LPS

H. fe
lis

untre
at

ed LPS

H. fe
lis

untre
at

ed LPS

H. fe
lis

untre
at

ed LPS

H. fe
lis

untre
at

ed LPS

H. fe
lis

untre
at

ed LPS

H. fe
lis

untre
at

ed LPS

H. fe
lis

0

10

20

30

30
40
50
60

%
P

er
ce

nt
ag

es
 o

f C
D

86
+ 

C
D

11
c+ 

C
D

20
6+

B
on

e 
M

ar
ro

w
- D

er
iv

ed
 M

ac
ro

ph
ag

es

CD86+ CD86+ CD86+CD11c+ CD11c+ CD11c+CD206+ CD206+ CD206+

Experiment 1 Experiment 2 Experiment 3



59 

and 2 times lower levels of CD206 than H. felis sonicate- treated group, which were 

similar to untreated group. Higher expression of CD206 seen in untreated bone 

marrow-derived macrophages was a result of M-CSF directed differentiation (Jaguin 

et al., 2013). Therefore, LPS- treated BM-derived macrophages were categorized as 

M1 type macrophages with the high CD11c (Liang et al., 2005 and Pinheiro de Silva 

et al., 2007) and low CD206 expression. Also, H. felis sonicate- treated BM-derived 

macrophages were categorized as M2 type macrophages with the high CD206 and low 

CD11c expression. However, in experiment 3, CD86 surface marker expression levels 

of H. felis sonicate- treated BM- derived macrophages were approximately 2-times 

higher than LPS- treated cells, unlike experiment 1 and 2. Nevertheless, CD11c and 

CD206 surface marker expression results of experiment 3 were the same as experiment 

1 and 2. As a result, regardless of activation status, examined via CD86 surface marker 

analysis, LPS- treated BM-derived macrophages were categorized as M1 type 

macrophages with the high CD11c and low CD206 expression, and H. felis sonicate- 

treated BM-derived macrophages were categorized as M2 type macrophages with the 

high CD206 and low CD11c expression. As a result, whether, H. felis sonicate treated 

BM- derived macrophages were more or less activated than LPS- treated BM- derived 

macrophages, polarization status was not affected by activation status. Also, since both 

M1 type and M2b type macrophages expressed CD86 (Mantovani et al., 2004), CD86 

could not gave any information about the polarization status, whether M1 or M2b,  

according to the surface marker expression results. 

a. Experiment 1 

 

Figure 3.6 : CD86, CD11c and CD206 positivity of differentiated F4/80+ peritoneal 
macrophages. 
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Experiment 2 

 
Experiment 3 

 
b. Experiment 1 

 

Figure 3.6  (cont’d.) : CD86, CD11c and CD206 positivity of differentiated F4/80+ 
peritoneal macrophages. 
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Experiment 2 

 
Experiment 3 

 
c.  

 

Figure 3.6 (cont’d.) : CD86, CD11c and CD206 positivity of differentiated F4/80+ 
peritoneal macrophages. 
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Figure 3.6 (cont’d.) : CD86, CD11c and CD206 positivity of differentiated F4/80+ 
peritoneal macrophages. a. Approximately 5x104 cells were 
stained with FITC or APC-coupled anti-F4/80 antibody and PE-
coupled CD86, APC-coupled CD11c and CD206 or were left as 
unstained control. Contour plots (a.) and histogram plots (b.) 
were shown above for all experiments. c. Independent 
percentages are expressed as bar graph. Image was prepared 
using GraphPad Prism program.   

According to Figure 3.6 showing peritoneal macrophages’ anti-F4/80 and anti-CD86 

double staining results demonstrated approximately 80% CD86+ LPS- treated 

peritoneal macrophages, in all three experiments. This percentage decreased to 35% 

in H. felis sonicate- treated peritoneal macrophages in experiment 1, and in experiment 

2 and 3, percentage was even lower at approximately 15%. Therefore, it seemed that 

LPS activates the peritoneal macrophages more than H. felis sonicate. Also, in all 

experiments, activation of H. felis sonicate- treated peritoneal macrophages was 

similar to untreated group of cells. Furthermore, when M1 type polarization was 

examined, it has been shown that, untreated, LPS- and H. felis sonicate- treated 

peritoneal macrophages, expressed more than 70% CD11c surface marker. Therefore, 

it is suggested that the LPS- treated BM- derived and peritoneal macrophages were 

polarized to M1 type, as it was showed in the study conducted by Liang et al., 2005 

and Pinheiro de Silva et al., 2007. The reason for high CD11c expression in peritoneal 

macrophages was suggested that thioglycollate injected and isolated peritoneal 

macrophages are M1 type macrophages since thioglycollate media primes peritoneal 

macrophages because mostly it is contaminated with LPS endotoxin. In other words, 

thioglycollate induced peritoneal macrophages behaves as if they were treated with 

IFN-γ which polarize them into M1 type macrophages (Zhang, Goncalves & Mosser, 

2008). Also, for the investigation of M2 type polarization, CD206 surface marker was 

analyzed in peritoneal macrophages. In all experiments, H. felis sonicate- treated 

peritoneal macrophages expressed approximately 2 times higher levels of CD206 

surface marker when compared to LPS- treated peritoneal macrophages. As a result, 

despite the high levels of CD11c expression, there was higher CD206 expression 

among H. felis sonicate- treated peritoneal macrophages. Also, according to the surface 

marker analysis, there seems to be no correlation between the activation status and 

polarization status of peritoneal macrophages. 
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3.5 Cytokine Profiles of Activated Bone Marrow- Derived and Peritoneal 

Macrophages 

Surface markers alone are not sufficient to determine the polarization status of 

macrophages, which changes according to stimuli and the local microenvironment, 

allowing them to shape the local inflammatory status to adapt to outside stimuli by 

producing different cytokines and having different functions (Table 3.1.) (Mosser & 

Edwards, 2008). In this study, four new independent experiments were conducted in 

order to examine the cytokine profiles to identify the different polarization types and 

subtypes of activated macrophages. For this purpose, firstly activation status of four 

independent experiments (experiments 4,5,6, and 7) were assessed via the examination 

of CD86 surface marker expression. After that, cytokine profiles were investigated. 

3.5.1 Identification of activation status for cytokine profiling via CD86 surface 

marker analysis 

For the activation investigation of macrophages, LPS- and H. felis treated- bone 

marrow- derived macrophages and peritoneal macrophages were stained with APC-

conjugated F4/80 and PE-conjugated CD86 antibodies. CD86 positivity among F4/80+ 

gated cells were compared to unstained control and untreated group. Flow cytometer 

analysis was performed for the quantitative analysis of stained cells. Flow cytometer 

analysis images and individual percentages of four independent experiments of CD86+ 

bone marrow- derived macrophages and of three independent experiments of 

peritoneal macrophages were shown in Figure 3.7.a, and 3.7.b respectively. 

According to anti-F4/80 and anti-CD86 double staining results of BM- derived 

macrophages indicated in the figure 3.7.a., in experiment 4,5 and 7, LPS- treated bone 

marrow- derived macrophages expressed approximately 2 times higher CD86 than H. 

felis sonicate- treated BM- derived macrophages. It seemed that LPS activates these 

macrophages more than H. felis sonicate. However, in experiment 6, activation of LPS- 

and H. felis sonicate- treated BM-derived macrophages were similar. When compared 

to untreated group, LPS- and H. felis sonicate- treated BM- derived macrophages were 

activated in all experiments (Figure 3.7.a). Furthermore, peritoneal macrophages anti-

F4/80 and anti-CD86 double staining results demonstrated approximately 75% CD86+ 

LPS treated peritoneal macrophages in all experiments. This percentage dropped to 

20% in H. felis sonicate- treated peritoneal macrophages (Figure 3.7.b.). As a result, it 
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seemed that LPS activates the peritoneal macrophages more than H. felis sonicate. 

Also, when compared to untreated group, activation of H. felis sonicate- treated 

peritoneal macrophages were similar.  

a. Bone Marrow- Derived Macrophages 

 

 

 

Figure 3.7 : CD86 positivity of differentiated F4/80+ bone marrow- derived and 
isolated peritoneal macrophages. 

untre
at

ed LPS

H. fe
lis

untre
at

ed LPS

H. fe
lis

untre
at

ed LPS

H. fe
lis

untre
at

ed LPS

H. fe
lis

0

10

20

30

40

F4
/8

0+  
C

D
86

+  
pe

rc
en

ta
ge

s
of

 B
on

e 
M

ar
ro

w
- D

er
iv

ed
 M

ac
ro

ph
ag

es

Experiment 4 Experiment 5 Experiment 6 Experiment 7



65 

b. Peritoneal Macrophages 

 

 

 

Figure 3.7 (cont’d.) : CD86 positivity of F4/80+ differentiated bone marrow- derived 
and isolated peritoneal macrophages. Approximately 5x104 

cells were stained with APC-coupled anti-F4/80 antibody and 
PE-coupled CD86 antibody or were left as unstained control. 
Contour plots were shown above for all experiments of BM- 
derived macrophages (a.) and peritoneal macrophages (b.). 
Independent percentages and expressed as bar graph for BM- 
derived macrophages and peritoneal macrophages. Images were 
prepared using GraphPad Prism program. 
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3.5.2 IL-12 / IL-23 (p40) cytokine analysis in activated macrophages 

IL-12 is the key pro-inflammatory cytokine in determining the polarization status of 

macrophages and it is mostly secreted from M1 type macrophages. In order to 

determine the level of IL-12/IL-23 (p40) cytokine in both mRNA and protein level, 

bone marrow cells were differentiated to bone marrow- derived macrophages in 

presence of M-CSF derived from L929 cell line and peritoneal macrophages were 

collected from peritoneal cavity of thioglycollate induced C56BL/6 mice. After 

determining the percentage of differentiation and purity of isolation, cells were treated 

with LPS (100 ng/ml), H. felis sonicate (10 µg/ml), or left untreated as an internal 

control for 24 hours. After that, cells were harvested, their supernatants were collected 

for ELISA to measure IL-12/IL-23 (p40) secretion level and their pellets were 

collected for Real-time PCR for IL-12/IL-23 (p40) relative expression level. Figure 

3.8.a and 3.8.b indicates the IL-12/IL-23 (p40) cytokine analysis results of bone 

marrow- derived macrophages and peritoneal macrophages, respectively.  

a. Bone Marrow- Derived Macrophages 
a.1 ELISA                                           a.2 Real-time PCR 

  
b. Peritoneal Macrophages 
b.1 ELISA                                                      b.2 Real-time PCR 

    

Figure 3.8 : IL-12/IL-23 (p40) cytokine analysis of bone marrow- derived and 
peritoneal macrophages. LPS treated cells (light gray bar) and H. felis 
sonicate treated (dark gray bar) compared to untreated control cells and 
to each other. Bar graph was drawn with GraphPad Prism program. (a.) 
indicates bone marrow- derived macrophages ELISA (a.1) and Real 
time PCR (a.2) results. (b.) indicates peritoneal macrophages ELISA 
(b.1) and Real-time PCR (b.2) results. 
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IL-12/IL-23 (p40) ELISA results indicated that, LPS- and H. felis sonicate- treated 

bone marrow- derived and peritoneal macrophages secreted significantly higher levels 

of IL-12/IL-23 (p40) when compared to untreated control cells since there was no IL-

12/IL-23 (p40) secretion from them (Figure 3.8.a & 3.8.b). Also, both BM-derived and 

peritoneal macrophages showed de novo expression of IL-12/IL-23 (p40). 

Furthermore, even though LPS- treated BM- derived and peritoneal macrophages were 

more activated than H. felis sonicate treated macrophages (Figure 3.7); H. felis 

sonicate- treated bone marrow- derived macrophages had similar levels of IL-12/IL-

23 (p40) secretion when compared to LPS- treated cells. However, LPS treated- 

peritoneal macrophages secreted significantly higher levels of IL-12/IL-23 (p40) than 

H. felis sonicate treated peritoneal macrophages (Figure 3.8.b.1); but the expression of 

IL-12/IL-23 (p40) was similar. Therefore, these results suggest that H. felis may drive 

the bone marrow- derived and peritoneal macrophages into M1-like phenotype. 

3.5.3 TNF-α cytokine analysis in activated macrophages 

TNF-α is a pro-inflammatory cytokine and one of the key cytokines in determining 

the polarization status of macrophages. It is mostly secreted from M1 type 

macrophages. However recent data suggest that TNF-α is present by the M2b type 

macrophages (Mantovani et al., 2004).  

In order to determine the level of TNF-α cytokine in both mRNA and protein level, 

bone marrow cells differentiated to bone marrow- derived macrophages in presence of 

M-CSF derived from L929 cell line and peritoneal macrophages were collected from 

peritoneal cavity of thioglycollate induced C56BL/6 mice. After determining the 

percentage of differentiation and purity of isolation, cells were treated with LPS (100 

ng/ml), H. felis sonicate (10 µg/ml), or left untreated for internal control for 24 hours. 

After that, cells were harvested, their supernatants were collected for performing TNF-

α ELISA to analyze their secretion level and their pellets were collected for Real-time 

PCR to analyze TNF-α relative expression level. Figure 3.9.a and 3.9.b indicates the 

TNF-α cytokine analysis results of bone marrow- derived macrophages and peritoneal 

macrophages, respectively. 

TNF-α cytokine results shown in the Figure 3.9 indicated that, LPS- and H. felis 

sonicate- treated bone marrow- derived and peritoneal macrophages secreted 

significantly higher levels of TNF-α when compared to untreated control cells since 
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there was no TNF-α secretion from them (Figure 3.9.a & 3.9.b). Also, both BM-

derived and peritoneal macrophages showed de novo expression of TNF-α cytokine. 

Moreover, even though LPS- treated BM- derived and peritoneal macrophages were 

more activated than H. felis sonicate treated macrophages (Figure 3.7), TNF-α 

secretion from BM- derived and peritoneal macrophages were similar. De novo 

expression of TNF-α from H. felis sonicate- treated BM- derived macrophages were 

higher than LPS- treated BM- derived macrophages. However, the same result was 

similar in the case of peritoneal macrophages. In experiment 6 of BM-derived 

macrophages, despite TNF-α secretion was present, TNF-α expression was not 

detected. The reason for this setback could not be detected. Hence, both relative 

expression data and ELISA data suggests that H. felis may drive the BM- derived and 

peritoneal macrophages into M1-like and/or M2b-like phenotype. 

a. Bone Marrow- Derived Macrophages 
a.1 ELISA                                            a.2 Real-time PCR 

  
b. Peritoneal Macrophages 

b.1 ELISA                                                      b.2 Real-time PCR 

  

Figure 3.9 : TNF-α cytokine analysis of bone marrow- derived and peritoneal 
macrophages. LPS treated cells (light gray bar) and H. felis sonicate 
treated (dark gray bar) compared to untreated control cells and to each 
other. Bar graph was drawn with GraphPad Prism program. (a.) 
indicates bone marrow- derived macrophages ELISA (a.1) and Real-
time PCR (a.2) results. (b.) indicates peritoneal macrophages ELISA 
(b.1) and Real-time PCR (b.2) results. 

 

untre
ate

d
LPS

H.
fel
is

untre
ate

d
LPS

H.
fel
is

untre
ate

d
LPS

H.
fel
is

untre
ate

d
LPS

H.
fel
is

0

500

1000

1500

2000

2500

TN
F-
α

 (p
g/

m
l)

Experiment 4 Experiment 5 Experiment 6 Experiment 7

p=0,0186 p=0,0232

p=0,0089 n.s.

untre
at

ed LPS

H.
fel
is

untre
at

ed LPS

H.
fel
is

untre
at

ed LPS

H.
fel
is

untre
at

ed LPS

H.
fel
is

1

2

3

4

5

6

TN
F-
α

 / 
18

S
 r

R
N

A
(r

el
at

iv
e 

ex
pr

es
si

on
)

Experiment 4 Experiment 5 Experiment 6 Experiment 7

p=0,0044

p=0,0008
p=0,0188

ko
ntro

l
LPS

H.
fel
is

ko
ntro

l
LPS

H.
fel
is

ko
ntro

l
LPS

H.
fel
is

0

500

1000

1500

2000

2500

TN
F-
α

 (p
g/

m
l)

Experiment 1 Experiment 2 Experiment 3

n.s. n.s. n.s.

untre
at

ed LPS

H.
fel
is

untre
at

ed LPS

H.
fel
is

untre
at

ed LPS

H.
fel
is

1

2

3

4

TN
F-
α

 / 
18

S
 r

R
N

A
(r

el
at

iv
e 

ex
pr

es
si

on
)

Experiment 1 Experiment 2 Experiment 3

p=0,0044

p=0,0112

n.s.



69 

3.5.4 IL-1β cytokine analysis in activated macrophages 

IL-1β is a pro-inflammatory cytokine and one of the key cytokines in determining the 

polarization status of macrophages. It is mostly secreted from M1 type macrophages. 

However recent data suggest that IL-1β is secreted by the M2b type macrophages 

(Mantovani et al, 2004; Mosser, 2003).  

Aside from other secreted cytokines, IL-1β secretion depends on the cleaving of 

expressed pro- IL-1β by caspase-1 by inflammazome NLRP3 activation via silica 

crystals or ATP (Netea et al., 2008; Peeters et al., 2013). Therefore, determining the 

secreted IL-1β requires secondary activation through silica crystals or ATP. 

 In order to determine the level of IL-1β cytokine in both mRNA and protein level, 

bone marrow cells were differentiated to bone marrow- derived macrophages in 

presence of M-CSF derived from L929 cell line and peritoneal macrophages were 

collected from peritoneal cavity of thioglycollate induced C56BL/6 mice. After 

determining the percentage of differentiation and purity of isolation, cells were treated 

with LPS (100 ng/ml), H. felis sonicate (10 µg/ml), or left untreated for internal control 

for 4 hours. Then, silica treatment in different doses (25 µg/cm2, 10 µg/cm2, 5 µg/cm2) 

was done which is necessary for IL-1β secretion and incubated in cell culture 

conditions for 8 hours. After that, cells were harvested, their supernatants were 

collected for ELISA to measure IL-1β secretion level and their pellets were collected 

for Real-time PCR for IL-1β relative expression level. Figure 3.10.a and 3.10.b 

indicates the IL-1β cytokine analysis results of bone marrow- derived macrophages 

and peritoneal macrophages, respectively. 

a. Bone Marrow- Derived Macrophages 
a.1 Real-time PCR                              a.2 ELISA 

  

Figure 3.10 : IL-1β cytokine analysis of bone marrow- derived and peritoneal 
macrophages. 
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b. Peritoneal Macrophages 

    Real-time PCR 

 

Figure 3.10 (cont’d.) : IL-1β cytokine analysis of bone marrow- derived and 
peritoneal macrophages. LPS treated cells (light gray bar) 
and H. felis sonicate treated (dark gray bar) compared to 
untreated control cells and to each other. Bar graph was 
drawn with GraphPad Prism program. (a.) indicates bone 
marrow- derived macrophages Real-time PCR (a.1) and 
ELISA (a.2) results. (b.) indicates peritoneal macrophages 
Real-time PCR results. 

As it is represented in Figure 3.10, LPS- treated and H. felis sonicate- treated bone 

marrow- derived and peritoneal macrophages expressed higher levels of IL-1β. H. felis 

sonicate- treated BM- derived macrophages expressed higher levels of IL-1β 

compared to LPS- treated BM-derived macrophages, while H. felis sonicate- treated 

peritoneal macrophages expressed lower levels of IL-1β compared to LPS treated 

peritoneal macrophages. Also, since IL-1β secretion requires secondary activation via 

silica crystals or ATP, in order to cleave expressed pro-IL-1β by caspase-1 by 

inflammazome NLRP3 activation (Netea et al., 2008; Peeters et al., 2013), different 

concentrations of silica treatments were examined on untreated, LPS- treated and H. 

felis sonicate- treated bone marrow- derived macrophages, and secretion levels were 

investigated via ELISA. Results indicated in Figure 3.10.a.2 showed that, untreated, 

LPS- and H. felis sonicate- treated BM-derived macrophages did not secrete IL-1β 

without silica treatment. However, when silica was added to the environment, there 

was high levels of IL-1β secretion from LPS- and H. felis sonicate- treated BM- 

derived macrophages, but not from untreated group of cells. Also, 25 µg/cm2, 10 

µg/cm2 and 5 µg/cm2 of silica, triggered similar amounts of IL-1β secretion from both 

LPS- and H. felis sonicate- treated BM- derived macrophages; even though LPS- 

treated BM- derived were more activated than H. felis sonicate treated macrophages 

(Figure 3.7). As a result, both ELISA and relative expression data suggests that H. felis 
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may drive the bone marrow- derived and peritoneal macrophages into M1-like and/or 

M2b-like phenotype.  

3.5.5 iNOS analysis in activated macrophages 

Inducible nitric oxide synthase (iNOS) enzyme must be expressed by macrophages in 

order to truly characterize the macrophages as M1 type. iNOS enzyme activity is 

increased as a result of anti-microbial effects of macrophages, this enzymatic reaction 

causes nitric oxide (NO) production (MacMicking et al, 1997). In order to elucidate 

the role of nitric oxide (NO), mRNA expression of inducible nitric oxide synthase 

(iNOS), and production of NO were determined in bone marrow- derived 

macrophages. The most suitable way to investigate NO production, is to measure 

nitrite production, which is a stable degradation product of NO, from supernatants of 

bone marrow derived macrophages. Basically, griess reagent protocol is a chemical 

reaction between sulfanilic acid (phosphoric acid) and N- (1-naphthyl) 

ethylenediamine. As a result, spectrophotometrically measureable azo dye is formed 

(Mat. & Met. Part, 2.2.13). Supernatants of LPS- and H. felis sonicate- treated bone 

marrow- derived macrophages were collected to determine NO production level via 

griess reagent. After determining the percentage of differentiation, BM- macrophages 

were treated with LPS (100 ng/ml), H. felis sonicate (10 µg/ml), or left untreated for 

internal control for 24 hours. After that, cells were harvested, their supernatants were 

collected for griess reagent protocol to measure NO production and cell pellets were 

collected for Real-time PCR for determining the mRNA expression of iNOS. The 

griess reagent protocol results and iNOS expression results of bone marrow- derived 

macrophages and peritoneal macrophages were shown in Figure 3.11.a and 3.11.b, 

respectively. 

a. Bone Marrow- Derived Macrophages 

a.1 Griess Reagent Protocol                         a.2 Real-time PCR 

 

Figure 3.11 : NO production and iNOS analysis of bone marrow- derived and 
peritoneal macrophages. 
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b. Peritoneal Macrophages 

b.1 Griess Reagent Protocol                        b.2 Real-time PCR 

 

Figure 3.11 (cont’d.) : NO production and iNOS analysis of bone marrow- derived 
and peritoneal macrophages. LPS treated cells (light gray bar) 
and H. felis sonicate treated (dark gray bar) compared to 
untreated control cells and to each other. Bar graph was drawn 
with GraphPad Prism program. (a.) indicates bone marrow- 
derived macrophages griess reagent protocol (a.1) and Real-
time PCR (a.2) results. (b.) indicates peritoneal macrophages 
griess reagent protocol (b.1) and Real-time PCR (b.2) results. 

According to the griess reagent protocol results showed in Figure 3.11, significantly 

higher levels of nitrite was detected from LPS- treated bone marrow- derived and 

peritoneal macrophages when compared to the untreated and H. felis sonicate- treated 

macrophages. Since nitrite was the indication of NO production caused by iNOS 

activity, our results proved that the LPS- treated bone marrow- derived macrophages 

had high iNOS activity; therefore, concordant with common literature knowledge; 

these cells were categorized as M1 type macrophages. And since nitrite presence was 

not detected from H. felis sonicate- treated bone marrow- derived and peritoneal 

macrophages, these results suggest that H. felis sonicate treatment may polarize the 

BM- derived and peritoneal macrophages into M2-like phenotype. Also, relative iNOS 

expression of LPS- treated BM- derived and peritoneal macrophages were higher than 

H. felis sonicate- treated and untreated cells. However, increase in relative iNOS 

expression was detected on H. felis sonicate- treated BM- derived and peritoneal 

macrophages when compared to untreated cells. However, according to griess reagent 

protocol results, NO production from H. felis sonicate- treated macrophages were at 

the same level as untreated cells, indicating that there was no iNOS activity (Figure 

3.11.a.1 & 3.11.b.1). Therefore, these data suggested that, although iNOS enzyme was 

detected to be inactive on H. felis sonicate- treated macrophages, there was little 

amount of iNOS enzyme expression present. Since, macrophages are a plastic 

population, they polarize from one type to another in certain environments, expression 
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of some enzymes and cytokines are not lost in one type or another. In other words, H. 

felis sonicate- treated BM-derived and peritoneal macrophages were polarized to M2-

like phenotype, however, iNOS expression was not lost entirely in order to adapt 

quickly to any changing environment. 

3.5.6 IL-10 cytokine analysis in activated macrophages 

IL-10 is one of the key cytokines in determining the polarization status of macrophages 

and it is mostly secreted from M2 type macrophages. In order to determine the level 

of IL-10 cytokine in both mRNA and protein level, bone marrow cells differentiated 

to bone marrow derived macrophages in presence of M-CSF derived from L929 cell 

line and peritoneal macrophages were collected from peritoneal cavity of 

thioglycollate induced C56BL/6 mice. After determining the percentage of 

differentiation and purity of isolation, cells were treated with LPS (100 ng/ml), H. felis 

sonicate (10 µg/ml), or left untreated for internal control for 24 hours. After that, cells 

were harvested, their supernatants were collected for performing IL-10 ELISA to 

analyze their secretion level and their pellets were collected for Real-time PCR to 

analyze IL-10 relative expression level. Figure 3.12.a and 3.12.b indicates the IL-10 

cytokine analysis results of bone marrow- derived macrophages and peritoneal 

macrophages, respectively. 

IL-10 cytokine analysis results of bone marrow- derived macrophages indicated that, 

H. felis sonicate- treated cells secreted and expressed higher levels of IL-10, 

approximately 2 times higher, compared to untreated control cells (Figure 3.12.a). 

However, in experiment 6, despite IL-10 secretion was present, IL-10 expression was 

not detected. The reason for this setback could not be detected. These results indicated 

that H. felis sonicate- treated bone marrow- derived macrophages were polarized to 

M2 phenotype. Furthermore, IL-10 secretion and expression from LPS- treated bone 

marrow- derived macrophages was significantly higher when compared to H. felis 

sonicate- treated and untreated cells. This data was in concordance with the literature 

knowledge about LPS triggering IL-10 secretion (Duluc et al, 2007; Hao et al, 2012). 

And also, M2 cells protect mice against LPS toxicity because of IL-10 secretion 

(Mosser et al., 1999). 

However, IL-10 ELISA results of peritoneal macrophages, showed in the Figure 

3.12.b.1, showed that, there was no measurable IL-10 secretion in untreated and H. 
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felis sonicate- treated peritoneal macrophages. IL-10 secretion from LPS- treated 

peritoneal macrophages was observed only in experiment 1. This result couldn’t have 

replicated in other two experiments. Also, in concordance with IL-10 ELISA results, 

there was no IL-10 expression from H. felis sonicate- treated peritoneal macrophages 

either. Since IL-10 secretion or expression in H. felis sonicate- treated peritoneal 

macrophages was not measured, it has been showed that peritoneal macrophages, 

which were collected by thioglycollate injection, are polarized to M1 type regardless 

of the environment. 

a. Bone Marrow- Derived Macrophages 

a.1 ELISA                                           a.2 Real-time PCR 

 

b. Peritoneal Macrophages 

b.1 ELISA                                                      b.2 Real-time PCR 

 

Figure 3.12 : IL-10 cytokine analysis of bone marrow- derived and peritoneal 
macrophages. LPS treated cells (light gray bar) and H. felis sonicate 
treated (dark gray bar) compared to untreated control cells and to each 
other. Bar graph was drawn with GraphPad Prism program. (a.) 
indicates bone marrow- derived macrophages ELISA (a.1) and Real-
time PCR (a.2) results. (b.) indicates peritoneal macrophages ELISA 
(b.1) and Real-time PCR (b.2) results. 

3.5.7 IL-6 cytokine analysis in activated macrophages 

IL-6 is one of the key cytokines in determining the polarization status of macrophages 

and it is mostly expressed from M1 type macrophages. However, recent studies 

suggest that M2 type macrophages subtype M2b type macrophages also express IL-6 
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cytokine, and it is also a unique cytokine in determining the M2b subtype. Because, 

among the M2 phenotype macrophages, only M2b uniquely express IL-6 (Duluc et al, 

2007; Hao et al, 2012, Murry & Wynn, 2011). 

In order to determine the level of IL-6 cytokine in mRNA level, bone marrow cells 

differentiated to bone marrow derived macrophages in presence of M-CSF derived 

from L929 cell line and peritoneal macrophages were collected from peritoneal cavity 

of thioglycollate induced C56BL/6 mice. After determining the percentage of 

differentiation and purity of isolation, cells were treated with LPS (100 ng/ml), H. felis 

sonicate (10 µg/ml), or left untreated for internal control for 24 hours. After that, cells 

were harvested and their pellets were collected for Real-time PCR for IL-6 relative 

expression level in order to examine the M2b type polarization. Cell pellets were used 

to isolate RNA and then convert to cDNA. IL-6 expression levels were determined 

with Real - time PCR via IL-16 specific primers (Table 2.12) and normalized to 18s 

rRNA which was used as an endogenous control. Figure 3.13.a. and 3.13.b. shows the 

IL-6 Real-time PCR results of bone marrow- derived macrophages and peritoneal 

macrophages, respectively. 

a. Bone Marrow- Derived Macrophages        b. Peritoneal Macrophages 

 

Figure 3.13 : IL-6 cytokine gene expression analysis of bone marrow- derived and 
peritoneal macrophages. LPS treated cells (light gray bar) and H. felis 
sonicate treated (dark gray bar) compared to untreated control cells and 
to each other. Bar graph was drawn with GraphPad Prism program. (a.) 
indicates bone marrow- derived macrophages results. (b.) indicates 
peritoneal macrophages results. 

As it is represented in Figure 3.13, LPS- treated and H. felis sonicate- treated bone 

marrow- derived and peritoneal macrophages expressed higher levels of IL-6 when 

compared to untreated control cells. Also, H. felis sonicate- treated macrophages 

expressed higher levels of IL-6 when compared to LPS treated cells. Therefore, this 

data suggests that while LPS drives the bone marrow- derived and peritoneal 
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macrophages into M1 phenotype, H. felis drives the bone marrow macrophages into 

M1 and/or M2b-like phenotype.  
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4.  DISCUSSION AND CONCLUSION 

Helicobacter pylori (H. pylori) has been identified and classified as type I carcinogen 

for gastric malignancies (Blaser & Atherton, 2004) such as chronic gastritis, peptic 

ulcer and gastric adenocarcinoma. Even though more than half of the world’s 

population is infected with the H. pylori, only a minority develops gastric 

complications and/or remains asymptomatic.  

Helicobacter felis (H. felis) is the more immunogenic on mice and zoonotic species of 

Helicobacter. Hence, it is widely used in murine Helicobacter studies because it causes 

similar pathogenic effect on mice as H. pylori on humans (Court et al., 2002; Schmitz 

et al., 2011).  

Innate immune response to H. pylori is mediated by pro-inflammatory neutrophils 

(Amedei et al., 2006), dendritic cells (DCs) (Zavros et al., 2002) and macrophages 

(Gobert et al., 2004). Macrophages are plastic and heterogenic group of cells, which 

can polarize to different types under different stimuli. Polarization status of 

macrophages changes according to stimuli and the local microenvironment, allowing 

them to shape the local inflammatory status to adapt to outside stimuli (Mosser & 

Edwards, 2008). There are two distinct states of polarized activation for macrophages: 

the classically activated (M1) macrophages and the alternatively activated (M2) 

macrophage subsets (Murray & Wynn, 2011). Cell markers alone do not fully define 

the many subpopulations of macrophages (Geissmann et al., 2010a). Therefore, 

macrophages should be defined based on their specific functional activities which can 

be determined by their produced cytokine profiles and enzymes (Biswas and 

Mantovani 2010).  

In the literature, there are some studies on the H. pylori effecting macrophages. In early 

studies, H. pylori was shown to induce the expression of inducible NO synthetase 

(iNOS) from macrophages (Kuwahara et al., 2000) along with pro- inflammatory 

cytokines such as IL-6, IL-8, TNF-α, IL-1-β (Lindholm et al., 1998). However, recent 

studies conducted with human gastric biopsy speciments from H. pylori positive 



78 

individuals, showed that CD163+ (alternatively activated; M2) macrophages were 

detected (Fehlings et al., 2012). Moreover, human monocytes secreted IL-1β, IL-6, IL-

10, and IL-12p40 (partially secreted as IL-23) but not IL-12p70, upon H. pylori 

infection, suggesting that, M2 macrophages were up-regulated and secreted IL-10 but 

produced less of the pro-inflammatory cytokines than M1 macrophages (Fehlings et 

al., 2012).  

Above information shows that there are some infromation about H. pylori effect on 

macrophages but not definite chracterization of H. pylori or H. felis on murine studies. 

Therefore, in this study, we investigated the effect of H. felis on polarization of two 

types of macrophages: bone marrow- derived macrophages (BM- derived 

macrophages) and peritoneal macrophages to show the polarization status and their 

differences of both types of macrophages according to their surface receptor 

expressions and cytokine profiles. 

In order to investigate the effect of H. felis on both BM- derived and peritoneal 

macrophages, H. felis sonicate was used in our study. Also, LPS (derived from E. coli) 

was used as an internal M1 phenotype control. Because, in a study conducted in vitro 

using E. coli showed that LPS induces a typical M1 profile through TLR4 recognition 

(Liang et al., 2005; Pinheiro de Silva et al., 2007; Jaguin et al., 2013). 

BM- derived macrophages were differentiated by M-CSF obtained from L929 cell line 

and peritoneal macrophages were isolated via thioglycollate induction from C56BL/6 

mice. BM- derived macrophages differentiation (Figure 3.1) and peritoneal 

macrophages isolation (Figure 3.2) was established with more then 90 % purity, which 

was determined with CD11b and F4/80 antibody surface staninigs. 

Examination of surface marker expression of CD40 and CD80 (B7.1) co-stimulatory 

molecules, which indicates activation, on LPS- and H. felis sonicate- treated BM- 

derived macrophages revealed that either with or without treatment, BM- derived 

macrophages expressed 90% for both markers (Figure 3.3 and Figure 3.4). Hence, 

CD40 and CD80 expressions did not indicate the activation difference between LPS 

and H. felis sonicate- treated cells. 

Furthermore, for determining the activation and whether activation and polarization 

status have correlation between them; CD86 (B7.2) co-stimulatory molecule was 

identified, along with the CD11c and CD206 surface marker expressions for 
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characterization of polarization status of activated BM- derived and peritoneal 

macrophages. M1 type macrophages were identified by F4/80, CD11b, and CD11c+ 

surface marker expressions (Lumeng et al., 2007; Fujisaka et al., 2009) and M2 

macrophages were shown to express high levels of mannose receptor (MR or CD206) 

(Verreck et al., 2006). For this purpose, three different experiments were conducted.  

In experiment 1 and 2 of BM- derived macrophages, LPS- treated BM-derived 

macrophages were expressed approximately 2 times higher levels of CD86 than H. 

felis sonicate- treated group, indicating that LPS treated BM-derived macrophages 

were more activated than H. felis sonicate- treated cells (Figure 3.5). Also, LPS- 

treated BM-derived macrophages expressed approximately 2 times higher levels of 

CD11c and 2 times lower levels of CD206 than H. felis sonicate- treated group, which 

were similar to untreated group (Figure 3.5). Higher expression of CD206 seen in 

untreated BM- derived macrophages was a result of M-CSF directed differentiation 

(Jaguin et al., 2013). Since, CD11c was considered as M1 type macrophage and 

CD206 was considered as M2 type macrophage indicator, LPS- treated BM-derived 

macrophages were categorized as M1 type macrophages with the high CD11c (Liang 

et al., 2005 and Pinheiro de Silva et al., 2007) and low CD206 expression. 

Furthermore, H. felis sonicate- treated BM-derived macrophages were categorized as 

M2 type macrophages with the high CD206 and low CD11c expression. Although, in 

experiment 3, CD86 expression levels of H. felis sonicate- treated BM- derived 

macrophages were approximately 2-times higher than LPS treated cells; CD11c and 

CD206 expression results were the same as experiment 1 and 2 (Figure 3.5). Therefore, 

LPS- treated BM-derived macrophages were categorized as M1 type macrophages 

with the high CD11c and low CD206 expression, and H. felis sonicate- treated BM-

derived macrophages were categorized as M2 type macrophages with the high CD206 

and low CD11c expression in all experiments. It can be concluded that the activation 

status did not affect the polarization status. 

Moreover, LPS treated peritoneal macrophages were approximately 80% CD86+ in all 

three experiments. CD86 expression levels decreased to 35% in H. felis sonicate- 

treated peritoneal macrophages in experiment 1 and to 15% in experiment 2 and 3 

(Figure 3.6). Hence, it seemed that LPS- activates the peritoneal macrophages more 

than H. felis sonicate. When M1 type polarization was examined; untreated, LPS- and 

H. felis sonicate- treated peritoneal macrophages expressed more than 70% CD11c 
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surface marker. Therefore, it is suggested that the LPS- treated peritoneal macrophages 

were polarized to M1 type (Liang et al., 2005 and Pinheiro de Silva et al., 2007) (Figure 

3.6). The reason for high CD11c expression in peritoneal macrophages was caused 

from thioglycollate injection in order to isolate peritoneal macrophages. Because, 

thioglycollate media primes peritoneal macrophages; since, it is mostly contaminated 

with LPS endotoxin. Hence, thioglycollate induced peritoneal macrophages behaves 

as if they were treated with IFN-γ which polarize them into M1 type macrophages 

(Zhang, Goncalves & Mosser, 2008). Also, for the investigation of M2 type 

polarization, in all experiments, H. felis sonicate- treated peritoneal macrophages 

expressed approximately 2 times higher levels of CD206 surface marker when 

compared to LPS- treated peritoneal macrophages (Figure 3.6). Hence, despite the high 

levels of CD11c expression, there was higher CD206 expression among H. felis 

sonicate treated peritoneal macrophages. As a result, according to the surface marker 

analysis, there seems to be no correlation between the activation status and polarization 

status of peritoneal macrophages (Figure 3.5 and 3.6). 

Surface marker expressions of CD11c (for M1 type polarization) and CD206 (for M2 

type polarization) gave us some idea about the polarization status of BM- derived and 

peritoneal macrophages, as it was indicated before, it was not sufficient. Therefore, 

after confirming that CD86 surface marker expression could not give any ideas about 

the polarization status about of macrophages, it can only identify the activation status; 

we decided to further characterize the BM- derived and peritoneal macrophages 

through their cytokine profiles in both mRNA and protein level. For this purpose, 

firstly activation status of four independent experiments (experiments 4,5,6, and 7) 

were assessed via the examination of CD86 surface marker expression. After that, 

cytokine profiles were investigated. 

In experiments 4,5 and 7, LPS- treated BM- derived macrophages expressed 

approximately 2 times higher CD86 than H. felis sonicate- treated BM- derived 

macrophages. It seemed that LPS activates these macrophages more than H. felis 

sonicate. However, in experiment 6, activation of LPS- and H. felis sonicate- treated 

BM-derived macrophages were similar, around 20% CD86 expression. Therefore, 

when compared to untreated BM- derived macrophages, LPS and H. felis sonicate- 

treated BM- derived macrophages were activated in all experiments (Figure 3.7.a). 

Furthermore, peritoneal macrophages demonstrated approximately 75% CD86+ in 
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LPS- treated peritoneal macrophages in all experiments. This percentage decreased to 

20% in H. felis sonicate- treated peritoneal macrophages (Figure 3.7.b.). Hence, it 

seemed that LPS activates the peritoneal macrophages more than H. felis sonicate. 

Also, when compared to untreated group, activation of H. felis sonicate- treated 

peritoneal macrophages were similar. Therefore, in BM- derived macrophages H. felis 

sonicate- treated cells were activated; however, in peritoneal macrophages, H. felis 

sonicate- treated cells were not activated when compared to untreated groups of BM-

derived and peritoneal macrophages. 

After determination of activation status, cytokine profiles of activated macrophages 

were assessed. IL-12/IL-23 (p40) cytokine was examined to investigate the M1 type 

polarization since it is the key pro-inflammatory cytokine secreted from M1 type 

macrophages (Fairweather & Cihakova, 2009; Sindrilaru, Peters & Wieschalka et al., 

2011). Investigation of IL-12/IL-23 (p40) in both mRNA and protein level results 

indicated that, LPS- and H. felis sonicate- treated BM- derived and peritoneal 

macrophages secreted high levels of IL-12/IL-23 (p40). Also, they showed de novo 

expression of IL-12/IL-23 (p40) (Figure 3.8.a & 3.8.b). High secretion and expression 

of IL-12/IL-23 (p40) from LPS- treated macrophages is parallel with literature 

knowledge. Even though LPS- treated BM- derived and peritoneal macrophages were 

more activated than H. felis sonicate- treated macrophages (Figure 3.7), this activation 

status was not seemed to affect the IL-12/IL-23 (p40) cytokine secretion or expression. 

Therefore, these results suggest that H. felis may drive the BM- derived and peritoneal 

macrophages into M1-like phenotype. 

Furthermore, TNF-α cytokine was examined. It is mostly secreted from M1 type 

macrophages. However recent data suggest that TNF-α is secreted by the M2b type 

macrophages (Mantovani et al, 2004). Since, H. felis sonicate- treated macrophages 

showed high levels of CD206 (mannose receptor) expression, the question was that 

maybe H. felis drive macrophages into M2b type, which is an immune-regulatory 

functioning phenotype and very similar cytokine profile to M1 phenotype. LPS and H. 

felis sonicate- treated BM- derived and peritoneal macrophages secreted significantly 

higher levels of TNF-α when compared to untreated control cells since there was no 

TNF-α secretion from them (Figure 3.9.a & 3.9.b). Also, both BM-derived and 

peritoneal macrophages showed de novo expression of TNF-α cytokine. Hence, both 

relative expression data and ELISA data suggests that H. felis may drive the BM- 
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derived and peritoneal macrophages into M1 and/or M2b phenotype. Also, similar to 

IL-12/IL-23 (p40) results, activation status, examined by CD86 surface marker 

expression, did not seemed to have any correlation to the  TNF-α cytokine secretion 

or expression. 

Similar results were obtained in the examination of IL-1β cytokine profile in both 

mRNA and protein level. As TNF-α, IL-1β is also expressed by both M1 type and 

M2b type macrophages (Mantovani et al., 2004; Mosser, 2003). Since, IL-1β secretion 

depends on the cleaving of expressed pro- IL-1β by caspase-1 by inflammazome 

NLRP3 activation via, silica crystals or ATP (Netea et al., 2008; Peeters et al., 2013), 

different doses of silica treatments were investigated in BM- derived macrophages. 

There was high levels of IL-1β secretion from LPS- and H. felis sonicate- treated BM- 

derived macrophages, but not from untreated group of cells (Figure 3.10.a.2). Different 

doses of silica triggered similar amounts of IL-1β secretion from both LPS- and H. 

felis sonicate- treated BM- derived macrophages (Figure 3.10.a.2); even though LPS- 

treated BM- derived macrophages were more activated than H. felis sonicate- treated 

BM- derived macrophages (Figure 3.7). Furthermore, IL-1β expression was 

determined from LPS- treated and H. felis sonicate- treated BM- derived and 

peritoneal macrophages (Figure 3.10.a.1 and 3.10.b). When compared to each other, 

H. felis sonicate- treated BM- derived macrophages expressed higher levels of IL-1β 

compared to LPS- treated BM-derived macrophages (Figure 3.10.a.1); while H. felis 

sonicate- treated peritoneal macrophages expressed lower levels of IL-1β compared to 

LPS- treated peritoneal macrophages (Figure 3.10.b). As a result, it can be concluded 

that H. felis may drive BM- derived and peritoneal macrophages into M1-like and/or 

M2b-like phenotype. 

Inducible nitric oxide synthase (iNOS) enzyme must be expressed by macrophages in 

order to truly and uniquely characterize the macrophages as M1 type. Macrophages 

exert their anti-microbial functions through nitric oxide (NO) synthesis, which is the 

end product of enzymatic reaction of iNOS. For that reason, we examined both BM- 

derived and peritoneal macrophages for NO production and iNOS gene expression. 

NO production was examined via griess reagent protocol (Mat. & Met. Part, 2.2.13). 

As a result, higher levels of NO production were seen from LPS- treated BM- derived 

and peritoneal macrophages. Hence, concordant with common literature knowledge, 
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these cells were categorized as M1 type macrophages (Figure 3.11). However, nitrite 

presence, which is the indicative of NO production as a result of griess protocol, was 

not detected from H. felis sonicate- treated BM-derived and peritoneal macrophages. 

Therefore, these results suggest that H. felis polarize the BM- derived macrophages 

into M2-like phenotype (Figure 3.11). Similar results were obtained from the relative 

gene expression results of iNOS. LPS- treated both BM- derived and peritoneal 

macrophages, expressed higher levels of iNOS, as the indicative of M1 type 

polarization (Figure 3.11). However, in H. felis sonicate- treated BM-derived and 

peritoneal macrophages showed higher iNOS expression than untreated group of cells. 

However, there was no NO production. Therefore, we can conclude that iNOS enzyme 

was detected to be inactive on H. felis sonicate- treated macrophages, there was little 

amount of iNOS enzyme expression present. The reason is that since, macrophages 

polarize from one type to another in certain environments, expression of some 

enzymes and cytokines are not fully lost in one type or another. In other words, H. felis 

sonicate- treated macrophages were polarized to M2-like phenotype, however, iNOS 

expression was not lost entirely in order to adapt quickly to any changing environment. 

For further categorization of effect of H. felis on macrophage polarization, we 

examined IL-10 cytokine, which is the anti-inflammatory cytokine secreted from M2 

type macrophages. IL-10 ELISA and real-time PCR results of BM- derived 

macrophages indicated that, H. felis sonicate- treated cells secreted and expressed 

significantly higher levels of IL-10, when compared to untreated control cells (Figure 

3.12.a.). Hence, we concluded that H. felis sonicate- treated BM- derived macrophages 

were polarized to M2 phenotype. Furthermore, IL-10 secretion from LPS treated BM- 

derived macrophages was approximately 3 times higher when compared to H. felis 

sonicate- treated and untreated cells. This data was in concordance with the literature 

knowledge about LPS triggering IL-10 secretion (Duluc et al, 2007; Hao et al, 2012). 

And also, M2 cells protect mice against LPS toxicity because of IL-10 secretion 

(Mosser et al., 1999). However, IL-10 ELISA and real-time PCR results of peritoneal 

macrophages, showed in the Figure 3.12.b., showed that, there was no measurable IL-

10 secretion in untreated and H. felis sonicate- treated peritoneal macrophages. Also, 

in one experiment only, IL-10 secretion of LPS treated peritoneal macrophages was 

observed. This result couldn’t be replicated in other two experiments. Therefore, we 

concluded that, even though IL-10 secretion in H. felis sonicate- treated peritoneal 
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macrophages was not measured, they did not produce NO (Figure 3.11) and there were 

very low amounts of iNOS expression (Figure3.11). Thus, we can conclude that 

peritoneal macrophages, which were collected by thioglycollate injection, are 

polarized to M2-like type phenotype. They cannot completely show M2 phenotype, 

probably because of the thioglycollate injection (Zhang, Goncalves & Mosser, 2008) 

So far, we understood that H. felis drove BM- derived and peritoneal macrophages into 

mostly M2-like phenotype with the high expression of CD206 surface marker, low 

expression of CD11c surface marker, no production of NO, and production of an anti-

inflammatory cytokine IL-10. However, these macrophages also produce, IL-12/IL23 

(p40), IL-1β, and TNF-α cytokines. Since we know that M2 type macrophages further 

categorized into 3 different subtypes (Figure 1.9), we examined whether they have a 

unique property to help us categorize H. felis sonicate- treated BM- derived and 

peritoneal macrophages. Hence, we have found that M2 type macrophages subtype 

M2b type macrophages express IL-6 cytokine, and it is also a unique cytokine in 

determining the M2b subtype. Because, among the M2 phenotype macrophages, only 

M2b-type uniquely express IL-6 (Duluc et al, 2007; Hao et al, 2012, Murry & Wynn, 

2011). As it is represented in Figure 3.13, LPS- treated and H. felis sonicate- treated 

BM- derived and peritoneal macrophages expressed high levels of IL-6 when 

compared to untreated control cells. Also, IL-6 expression from H. felis sonicate-

treated macrophages was approximately 2 times higher than LPS- treated 

macrophages. Therefore, we concluded that H. felis sonicate- treated BM- derived and 

peritoneal macrophages were polarized to M2b phenotype (Table 4.1). 

In the light of the above findings, we finally categorized our BM-derived and 

peritoneal macrophages as M2b phenotype with the high CD40 and CD80, moderate 

CD86, high CD206 and low CD11c expression, also, anti-inflammatory IL-10 

secretion along with TNF-α, IL-1β, and IL-6 production. Also, we have found that 

there was no correlation between the activation and polarization status. However, 

production of pro-inflammatory IL-12/IL23 (p40) cytokine lead us to the conclusion 

that H. felis does not drive macrophages to polarize into only one phenotype of M2, 

but there is probably M1-like type macrophages mixed in the population (Figure 4.1).  
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Figure 4.1: Proposed model of the effect of LPS and Helicobacter felis on 
macrophage polarization. 

Significance of this research lies in its contribution to the understanding of the effect 

of H. felis on macrophage polarization for the first time. However, for the 

characterization of M1 and M2 type macrophages, we examined only one enzyme 

which was iNOS activated in M1 type macrophages. Also, for future perspective, 

arginase enzyme, which becomes active in M2 type macrophages instead of iNOS 

(Odegaard & Chawla, 2008) should be further investigated. 

These results contribute just to the one side of the question that we need to give 

answers to. Macrophages are the gateways between innate and adaptive immunity. 

Recent findings revealed that regulatory B cell (Breg) involvement in the murine H. 

felis infection. They proved that IL-10 producing regulatory B cells restrain excessive 

Th1-type pro-inflammatory immune response and gastric immunopathology of 

C57BL/6 mice via suppression of CD4+ effector T cells (Sayi et al., 2011). From that 

point, since macrophages function as effector cells and to help to shape the adaptive 

immune response, possible interactions between Bregs and macrophages should be 

investigated in order to be able to understand the H. felis infection consequences and 

try to find some therapeutic approaches to the problem. 

In conclusion, this study has contributed to the literature through providing definitive 

characterization of H. felis infected bone marrow- derived and peritoneal macrophages 

polarization, describing the surface marker and cytokine profiles for the first time. 
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