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COMPARISON OF SHELFLIFE OF PACKED FOODSTUFFS IN USE OF 

POLYETHYLENE AND POLYETHYLENE NANOCOMPOSITES FILMS 

SUMMARY 

In this study, it was aimed to enhance shelf lives of foodstuffs by using special packaging 

materials. For this purpose, firstly the penetration of the oxygen should be prevented by 

packaging. Secondly, the ethylene gas released by the foodstuff must be kept in the material. 

Within the scope of work, the special film samples used for this purpose were prepared by 

melt mixing of polyethylene with nanoclay as oxygen barrier and ethylene absorber additives. 

For this purpose, low density polyethylene (LDPE) nanocomposite masterbatches were 

prepared by using LDPE, nanoclay, compatibilizer with/without ethylene absorber with 

determined proportions by melt compounding in a counter-rotating twin screw extruder, 

firstly. Nanocomposites pellets were prepared by mixing of 25% the named masterbatch with 

75% LDPE and these nanocomposites were used in cast-film line to obtain thin films having 

100 micron thickness. The final compositions of these films were defined as 85% LDPE, 10% 

compatibilizer, and 5% nanoclay or 82.5% LDPE, 9% compatibilizer, 4.5 % nanoclay, and 

4% ethylene absorber. 2 kinds of nanoclay and 2 kinds of ethylene absorber were used in this 

study. 100% LDPE film and 4% both types of ethylene absorber containing films were also 

prepared for the comparison purposes. 

It must be pointed here that this study consists of two parts: one of them is production and 

characterization of film samples, the other one is food application of these film samples. 

The characterization of these seven different films were performed by using Fourier 

Transform Infrared (FTIR), X-Ray Diffraction (XRD), Differential Scanning Calorimeter 

(DSC), Thermogravimetric Analysis (TGA), Polarized Optical Microscopy (POM), oxygen 

(O2) and carbondioxite (CO2) gas permeability test, Melt Flow Index (MFI) apparatus with 

mechanical analysis and colour measurements tests. FTIR peaks were used to see 

characteristic peaks of additives in polymer matrix. According to XRD graphs, 

exfoliation/intercalated morphological structure was obtained in nanocomposites with 

organoclay. Melting temperature was increased as crystallization increases for all 
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nanocomposite samples. It was observed that contribution of these additives to polymer 

matrix, starting temperature of degradation was decreased from the TGA graphs. TGA results 

of all samples were obtained. It was found that the inorganic contents of samples were 

consistent with the assigned initial values. POM images showed that the achievement of  

homogenous dispersion of additives in polymer matrix was provided in all samples. MFI 

values were measured and the normalized values were calculated of the nanocomposite 

samples The addition of DK4 nanoclay increased the processability, while I44 nanoclay 

decreased since their different intercalation structure in polymer matrix since their different 

chemistry and modification method. These results were confirmed on the Samples No.2; 3 

and 6; 7 (See the formulation table 4.2 given below). Tensile tests measurements of film 

samples from main and cross directions were made by using universal testing machine. 

Mechanical properties of the nanocomposite (Sample no 2,3,6 and 7) and composite (4 and 5) 

films were better than those of standart polyethylene. The 3% secant modulus of 

nanocomposite films increased with increasing the strain at break. Colour measurement 

showed that, polymer nanocomposite films take the colour of additives depending on their 

percentage. On the other hand, opacities of films increased while transparencies decreased.  

Table 4.2: Sample number and their compositions. 

SAMPLE NO FINAL FORMULA 

1 LDPE 

2 85% LDPE + 10% PE-g-MA + 5% I44 

3 85% LDPE + 10% PE-g-MA + 5% DK4 

4 92% LDPE + 8% N10774 

5 92% LDPE + 8% N10776 

6 82.5% LDPE + 9% PE-g-MA + 4.5 % I44 + 4% N10774 

7 82.5% LDPE + 9% PE-g-MA + 4.5 % DK4 + 4% N10774 

The prepared films were used in foodstuff tests. 15x25 nanocomposite films were handled as 

packages to store strawberry, parsley and iceberg lettuce. 4-6 parallel studies were started. 

Every two days, one of parallel series consisting of six different nanocomposite packages and 

one LDPE control packages were opened and weight loose, sugar amount, pH changes, 

texture, taste, colour tests were conducted. 

Strawberry, parsley and iceberg lettuce were chosen for the foodstuffs experiments, due to 

their low respiration. The changes of concentration of ethylene, oxygen and carbon dioxide 
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gases in packages were measured everyday. The acidity changes, sugar amount changes (only 

for strawberry), weight lost changes, taste evaluations, appearance changes and texture were 

also determined in every two days. The odour, taste, texture and general quality of foods were 

determined over the storage time by a 4 membered of panel. The foodstuffs stored in PNC 

film were compared with foodstuffs stored in standard polyethylene film.   

It was observed that organoclay even at low level had significant effect on barrier properties 

of the nanocomposites. On the other hand, using ethylene absorber compositions, ethylene 

amount in the package ambient was decreased demonstrably. The nanocomposite packaging 

film which include both nanoclay and ethylene absorber showed better results. The gas 

changes effects on perishability of foodstuffs could be clearly seen. High amount of oxygen 

and ethylene gas allow fast spoilage. 

Weight loose of foodstuffs are crucial, due to every loss in weight being translated into an 

economical loss. During respiration, strawberries lose water so much. Ten days later, weight 

loose in LDPE packages reached to 6,41% while in the other packages around 1-2%. 

Especially in the sample no 6 and 7 (which have both barrier and ethylene absorber additive), 

the weight loose was around 0,400-0,100%. 

pH changes and sugar amount changes did not give an idea to monitor spoilage. Because 

these two parameters are directly related to maturity of product and choosing the products 

having same maturity and same properties is difficult. Besides, changes in brix percentage 

does not changes dramatically like weight loose.  

Taste and general quality changes were enrolled. According to results; after 5 days, 

strawberries stored in LDPE decreased down to acceptable limit while the other all packages 

are fresh and eatable. In parsleys, after 12 days parsleys stored in LDPE started to turn yellow, 

the other all packages are still green. At the end of the storage period (10 days for 

strawberries, 17 days for parsleys and 22 days for iceberg lettuces), the foods in standard 

polyethylene film were not proper even to eat and taste, while the foods in polymer 

nanocomposite films were tasteful, eatable and buyable. 

Every two days also photographies of 2 standard series were taken and all period were 

observed on these series. In this way, the conducted study was proved with photographs. 



 
xxiv 

As a result of this study, it was obtained that, there is big difference between LDPE films and 

LDPE composite films used in packaging from the point of shelf-life analysis. The packages 

including both barrier (nanoclay) and ethylene absorber additives were best packages since 

these additives provide desired gas configuration in packages. 
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POLİETİLEN VE POLİETİLEN NANOKOMPOZİT FİLMLERDE 

AMBALAJLANAN GIDALARIN RAF ÖMRÜNÜN KARŞILAŞTIRILMASI 

ÖZET 

Bu çalışmada, özel ambalaj malzemeleri kullanılarak, gıdaların raf ömrünün uzatılması 

amaçlanmıştır. Bu kapsamda ilk olarak, oksijenin ambalaj içine girişinin ambalaj tarafından 

engellenmesi gerekir. İkinci olarak, gıda tarafından salınan etilen gazı, ambalaj malzemesi 

tarafından tutulmalıdır. Çalışma kapsamında, bunları sağlamak için hazırlanan özel ambalaj 

numuneleri, oksijen bariyeri özelliğine sahip olan nanokilin, polietilen ve etilen absorban 

katkı ile karıştırılması ile hazırlanır. 

Bu amaçla önce alçak yoğunluklu polietilen (LDPE) nanokompozit “masterbatch”ler belli 

miktarlarda LDPE, nanokil, uyumlaştırıcı, etilen absorbanla beraber ya da ayrı, ters-dönüşlü 

çift vidalı ekstrüderde karıştırılarak hazırlanmıştır. Nanokompozit granüller, %25 oranında 

“masterbatch”in %75 LDPE ile karıştırılmasıyla hazırlanmış ve bu nanokompozitler 100 

mikron kalınlığına sahip filmlerin elde edilmesi için “cast film” hattında kullanılmıştır. Bu 

filmlerin nihai bileşimi, %85 LDPE, %10 uyumlaştırıcı ve %5 nanokil veya %82,5 LDPE, %9 

uyumlaştırıcı, %4,5 nanokil ve %4 etilen absorban olarak belirlenmiştir. Bu çalışmada 2 tip 

nanokil ve 2 tip etilen absorban kullanılmıştır. Karşılaştırma amaçlı ayrıca %100 LDPE film 

ve %4 oranında 2 etilen absorban tipini içeren filmler hazırlanmıştır. 

Bu çalışma iki kısımdan oluşmuştur. Bunlardan ilki film numunelerinin üretimi ve 

karakterizasyonu, diğeri ise gıda saklama uygulama kısmıdır. 

Bu yedi farklı film numunelerinin karakterizasyonları; Fourier Dönüşümlü Infrared (FTIR), X 

Işınları Kırınımı (XRD), Diferansiyel Kalorimetre Taraması (DSC), Termogravimetrik analiz 

(TGA), Polarize Optik Mikroskop (POM), oksijen ve karbondioksit gaz geçirgenlik testi, 

Eriyik Akış İndeksi (MFI) teçhizatlarının yanı sıra mekanik analiz, renk ölçüm testleri ile 

yapılmıştır. FTIR pikleri, polimer matriks içerisinde bulunan katkının karakteristik piklerini 

görmek amaçlı kullanılmıştır. XRD grafiklerine göre, kil içeren nanokompozitlerde 
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“exfoliated/intercalated” morfolojik yapısı gözlenmiştir. DSC grafiklerinden, bu katkıların 

polimer matrikse eklenmesiyle başlangıç bozunma sıcaklığının düşürüldüğü gözlemiştir. 

Erime sıcaklığı, tüm nanokompozit örneklerinde kristalizasyon arttıkça artmıştır. Tüm 

numunelerin TGA sonuçları alınmıştır. Numunelerin inorganik içeriğinin, belirtilen başlangıç 

değerleriyle tutarlı olduğu gözlenmiştir. POM resimleri, polimer matriks içerisinde katkının 

homojen dağılımının başarıldığını göstermiştir. Numunelerin MFI değerleri ölçülmüş ve 

nanokompozit örneklerin normalize edilmiş MFI değerleri hesaplanmıştır. Farklı kimyaları ve 

modifikasyon metodlarından ötürü, DK4 kilinin polimer matrise eklenmesi polimerin 

işlenebilirliğini artırırken, I44 nanokil azaltmıştır. Bu sonuçlar, numune 2;3 ve 6;7 üzerinde 

onaylandı (Aşağıda verilen formülasyon tablosu 4.2`yı inceleyiniz). Tüm örneklerin, ana ve 

çapraz eksenlerden çekme test analizleri yapılmıştır. Nanokompozit (Numune no 2, 3, 6 ve 7) 

ve kompozit (4 ve 5) filmlerin mekanik özellikleri, naturel LDPE‟ye göre daha iyi çıkmıştır. 

Nanokompozit filmlerin %3 secant modülüs değerleri, kopmada uzama oranıyla birlikte 

artmıştır. Renk ölçümleri, polimer nanokompozitlerin içerdikleri katkıların yüzdesine bağlı 

olarak, katkıların rengini aldığını göstermiştir. Diğer taraftan filmlerin opasiteleri artırılırken, 

geçirgenlikleri azaltılmıştır. 

Tablo 4.2: Numune numarası ve bileşimi. 

NUMUNE NO NİHAİ FORMÜL 

1 LDPE 

2 85% LDPE + 10% PE-g-MA + 5% I44 

3 85% LDPE + 10% PE-g-MA + 5% DK4 

4 92% LDPE + 8% N10774 

5 92% LDPE + 8% N10776 

6 82.5% LDPE + 9% PE-g-MA + 4.5 % I44 + 4% N10774 

7 82.5% LDPE + 9% PE-g-MA + 4.5 % DK4 + 4% N10774 

 

Hazırlanan filmler, gıda testlerinde kullanılmıştır. Çilek, maydanoz ve göbek marul 

ambalajlamak üzere, 15x25 nanokompozit filmler hazırlanmış ve 4-6 paralel çalışma 

başlatılmıştır. İki günde bir, altı nanokompozit ve bir LDPE kontrol ambalajdan oluşan 

paralellerden biri açılmış ve ağırlık kaybı, şeker miktarı, pH değişimi, doku, tat, renk testleri 

yapılmıştır.  

Çilek, maydanoz ve göbek marul, düşük solunum hızına sahip oldukları için gıda 

denemelerinde kullanılmak üzere seçilmiştir. Etilen, oksijen ve karbondioksit gaz 
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konsatrasyonları hergün ölçülmüştür. Ayrıca asitlik değişimi, şeker miktarı değişimi (sadece 

çilek için), ağırlık kaybı değişimi, tat değerlendirmesi, görünüm değişimi ve doku değişimi iki 

günde bir incelenmiştir. Koku, tat, doku ve genel kalite bakımından, açılmış ambalajdaki 

gıdalar, 4 kişiden oluşan duyusal analiz grubu tarafından yapılmıştır. PNC içerisinde 

ambalajlanan gıdalar, normal polietilen ambalajlarda bulunan gıdalarla karşılaştırılmıştır. 

Düşük miktarlardaki organokil ilavesinin bile, nanokompozitlerde önemli derecede bariyer 

etkisi sağladığı gözlenmiştir. Diğer taraftan, etilen absorban bileşimlerini kullanarak, ambalaj 

içerisindeki etilen miktarı, bariz bir biçimde azaltılmıştır. Nanokil ve etilen absorban içeren 

nanokompozit ambalaj filmleri, daha iyi sonuçlar vermiştir. Gıdaların bozunmasına gaz 

değişiminin etkisi açıkça görülmüştür. Yüksek miktarlardaki oksijen ve etilen gazı, gıdaların 

hızlı boznumasına sebep olmaktadır. 

Gıdaların ağırlık kaybı, her ağırlık kaybının ekonomik bir kayıba dönüşmesinden ötürü çok 

önemlidir. Solunum sırasında, çilekler çok fazla su kaybeder. 10 gün sonra, LDPE 

ambalajlarda ağırlık kaybı %6.41‟e ulaşırken, diğer ambalajlarda %1-2 arasındaydı. Özellikle 

6 ve 7 numaralı ambalajlarda (bariyer ve etilen absorban katkıların ikisini de içeren) kütle 

kaybı %0.40-0.10 civarındaydı. 

Ürünlerdeki pH ve şeker miktarı değişimi, bozunma ile ilgili olmasına rağmen, çalışmada açık 

bir ayrım ortaya koymamıştır. Bu iki parametre direkt olarak ürünün olgunluk derecesiyle 

alakalı olup, olgunluğa bağlı olarak çilekten çileğe değişim gösterebilmektedir. Bunun yanı 

sıra brix değeri, kütle kaybı gibi büyük değişimler göstermemektedir. 

Çalışmada, tat ve genel kalite değişimleri de incelenmiştir. Sonuçlara göre; 5 gün sonra 

standart bir LDPE ambalaj içerisinde saklanan çilekler kabul edilebilir limitin altına düşerken, 

diğer bütün ambalajlardaki çilekler hala taze ve yenilebilir durumda kalmışlardır. 

Maydanozlarda, 12 gün sonra, LDPE ambalaj içerisindeki ambalajlardaki maydanozlar sarıya 

dönerken, aynı sürede diğer tüm ambalajlardaki maydanozlar iyi durumdaydı. Göbek 

marullarda ise, 18 gün sonra ambalaj içerisinde su miktarının artmasının etkisiyle, LDPE film 

ambalajlardaki göbek marullar, yumuşamaya ve kabul edilebilir limitin altına düşmüştür. 

Saklama sürecinin sonunda (çilekler için 10 gün, maydanozlar için 17 gün, göbek marullar 

için 22 gün), naturel LDPE filmlerdeki gıdalar tatmak ve yemek için uygun değil iken, 

polimer nanokompozit ambalajlardaki gıdalar hala taze ve satın alınabilir durumdaydı. 

İki günde bir, iki standart serinin fotoğrafları alınmış ve tüm periyot, bu seriler üzerinden 

gözlemlenmiştir. Böylelikle yapılan çalışmalar, fotoğraflarla kanıtlanmıştır. 

Bu çalışmanın sonucu olarak, LDPE ve LDPE nanokompozit ambalajlar arasında raf ömrü 

analizi bakımından büyük bir farklılık olduğu gözlenmiştir. Bariyer katkı (nanokil) ve etilen 
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absorban katkıların ikisini de içeren ambalajlar, ambalajın içerisinde istenilen gaz bileşimini 

sağladığı için en iyi bileşim olarak belirlenmiştir. Ambalajların hem mekanik özellikleri hem 

de raf ömrü analizleri göz önünde bulunduruldugunda, en iyi ambalaj katkı formulasyonunun 

I44 nanokil ve N10774 etilen absorbanı içeren 6 numune numaralı ambalaj ile sağlanmış 

olduğu görülmektedir. 
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 1. INTRODUCTION 

Polymers have become one of the most important materials in our daily life. Increasing 

demand for using them forced the scientists to improve their properties. Therefore, in recent 

years, inorganic nanoparticle filled polymer composites have received increasing research 

interest, mainly due to their ability to improve properties of polymers. 

In general, when composites are formed two or more physically and chemically distinct 

phases (usually polymer matrix and reinforcing element) are joined and the properties of the 

resulting product differ from and are superior to those of the individual components. The 

structures and properties of the composite materials are greatly influenced by the component 

phase morphologies and interfacial properties. 

Nanocomposites are based on the same principle and are formed when phase mixing occurs at 

a nanometer dimensional scale. As a result, nanocomposites show superior properties over 

their micro counterparts or conventionally filled polymers. 

Polyethylene has the biggest portion in polymer nanocomposite area and especially in 

packaging. There are a lot of packaging system to preserve foods properly and keep longer 

time fresh. Among the chemical, biological and physical methods of preservation, physical 

methods are the most convenient due to causing least change in the properties of produce. 

This complies with the recent studies in food science which aimed to minimize the processing 

so that the food resembles its natural features to the maximum extent. In this aspect, for food 

processing modified atmosphere and controlled atmosphere storage and packaging gain 

importance for fresh produce. 

But in this study, it was aimed to solve the problems which cannot be solved by current 

preservation techniques like “controlled atmosphere storage” and “active packaging system”. 

Most schemes for improving polyolefins gas barrier property involve either addition of higher 

barrier plastics via multilayer structure or high barrier surface coatings, however, these 

approaches are not cost effective. The properties supplied by additives to the packaging 

materials were investigated by using nanoclays and ethylene absorbers especially from the 

point of increased shelf-life.  

In order to preserve foods properly and increase their shelf-lives, firstly the degradation 

mechanisms of foods must be understood clearly. As we know, after harvesting, fresh fruits 
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and vegetables keep their respiration process. In this process, the sugar existing in the bodies 

of food products is broken through oxygen and afterwards some gases like carbon dioxide, 

water vapour, aromatic materials, and ethylene gas are released. Presence of oxygen and 

ethylene gases accelerates the respiration and maturation process. So, we must prevent 

oxygen entrance to the packaging ambient and ethylene gas which is produced by foodstuffs 

must be absorbed. 

For this purpose, in the first stage, masterbatches containing nanoclay with/without 

organoclay were prepared in twin screw extruder. In the second stage, by adding these 

masterbatches to the Low Density Polyethylene (LDPE) in different proportions, films of 100 

microns thickness on the cast-film line. The physical and chemical properties of these films 

were determined by FTIR, XRD, DSC, TGA, MFI, oxygen and carbondioxide gas 

permeabilities, visual analysis and tensile test of the films were evaluated. Afterwards, these 

films were used for food packaging and effects on food quality were discussed. With this 

purpose; oxygen, carbon dioxide and ethylene amount in packaging were measured everyday, 

pH values of foodstuffs, sugar amount, weight loose, taste evaluations, external appearance, 

texture and shelf-life analysis were performed on these film. Here, our reference was the 

standart polyethylene packaging films which are used in our daily lives. 

As a result of these tests and evaluations, it was proved that by using the nanocomposite films 

having nanoparticle, the shelf life of foodstuffs could be increased effectively. 
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2. THEORETICAL PART 

In this study, LDPE Nanocomposite (NC) films were prepared and these films were used to 

package foodstuffs. So, theoretical part consist of two main subjects: Nanocomposites and 

polyolefin nanocomposites packaging application. 

2.1. Nanocomposites 

The benefits of using nanomaterials, which always existed in nature, have been widely studied 

since the early 1990‟s with the Toyota‟s first use of clay/nylon-6 nanocomposite in production 

of timing belt covers [1]. The nanoscale should be defined by the “nano” term that refers to a 

size scale measured in nanometers (nm), which is 10
-9

 m. Nanocomposites are a subset of 

nanotechnology with filler loading often less than 5% by weight as compared to 20-40% 

loading of conventional materials [2]. To be defined as a nanocomposite, the loaded fillers 

must have at least one dimension at the range of 1-100 nm. Nanotechnology has wide effects 

in many industrial sectors, including; packaging, wire and cable, automotive, pipes and tubing 

and construction [3]. 

In recent years, inorganic nanoparticle filled polymer composites have received increasing 

research interest, since they exhibit larger filler/matrix interface and small interparticle 

distance which affect the composites‟ properties to a much greater extent at rather low filler 

concentration as compared to conventional micro-particulate composites [2,4]. For example, 

tensile strengths of the nanocomposites of PE are higher than that of neat polymer. This is 

different from what is observed in conventional micrometer particles/polymer composites, 

i.e., tensile strength of the composites remarkably decreases with the addition of the 

particulate fillers due to the poor bonding at the interface [5,6]. 

2.1.1 Polymer Nanocomposite Components 

The polymer nanocomposites, which have been prepared by mixing with nano fillers, consist 

of three main components. These are; polymer that is the main matrix part, nano-sized 

additive and compatibilizers which provide interface interaction between polymer phase and 

nanofiller or increase these interactions. The interface interactions and compatibility within 
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the polymer nanocomposite components are directly related to forming and performances of 

these materials. The interactions between “polymer-nanofiller”, “polymer-compatibilizer”, 

“compatibilizer-nanofiller” and “nanofiller-nanofiller” carry importance since total 

interactions determine the micro structure of polymer nanocomposites. 

2.1.1.1. Polymer  

Many of polymers belonging to thermoset and thermoplastic classes are possible to use for 

preparing polymer nanocomposites. In the literature, there are a lot of studies in this area and 

the features of nanocomposites have been investigated by preparing these with different 

proportions of various nanofiller. Especially, it has been studied about nanocomposite 

preparation by mixing polymers having polar groups on the main chain or side chain with 

various nanoclays and investigation of physical properties. The polymers used in these 

studies; polyamides (PA) [7-11], polystyrene (PS) [12-16], polymethyl metacrylate (PMMA) 

[17-19], epoxy resins [20-22], various polyesters ( polyethylene terephthalate (PET) [23-27], 

polyethylene naphthalate (PEN) [28, 29], polybuthylene terephthalate (PBT) [30-32], vs.), 

polyethylene oxide (PEO) [33-35], biodegradable polymers like polylactide and polylactic 

acid (PLA) [36-38], polyvinyl chloride (PVC) [39, 40], polyvinyl alcohol (PVA) [41, 42], 

ethylene-vinyl acetate copolymers (EVA) [43-45], ethylene-vinyl alcohol copolymers 

(EVOH) [46-48], thermoplastic polyurethanes (PU) [49, 50], polyimides (PI) [51-53], 

different type rubbers [54-56], polyaniline [57], polyvinyl pyrolidon (PVP) [58] and 

copolymers. There are limited studies about preparation of nanocomposites of polymers 

which does not have any polar groups compared to polymers having polar groups. Although 

challenges in the preparation of polyolefin nanocomposites; the consumption ratio in total 

plastic consumption (approximately 45-50%) and need for polyolefin nanocomposites having 

superior physical properties trigger development of these nanocomposites. 

Polyethylene 

Polyethylene (PE), being the major group of polyolefins, is the most popular plastic in the 

world. As well as being so versatile, it has the simplest structure among all commercial 

plastics. Schematic drawing of polymerization of polyethylene from ethylene monomer is 

given in Figure 2.1.  

Polyethylene is popular since it is inexpensive, light, flexible and resistant to most solvents 

and has good toughness at low temperatures. Since the processing temperatures for many 

additives are limited to temperatures below 200°C, the use of polyethylene is preferable over 
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many other thermoplastics due to its lower melting point. It is mostly used in films, moulding, 

insulation, cable and pipe. 

 

Figure 2.1: Schematic drawing of polymerization of polyethylene [59]. 

 

Polyethylene is classified into several different categories based mostly on its density and 

branching. Its simple basic structure, of ethylene monomers, can be linear as in high-density 

(HDPE) and ultrahigh-molecular-weight polyethylenes (UHMWPE); or branched to a greater 

or lesser degree as in low-density (LDPE), linear low-density (LLDPE) and medium density 

polyethylenes (MDPE) as shown in general form Figure 2.2. 

 

Figure 2.2: Molecules of LDPE, LLDPE and HDPE. 

 

The branched polyethylenes have similar structural characteristics, properties and uses such as 

low crystalline content, high flexibility and use in packaging film, plastic bags, insulation, 

squeeze bottles, toys, and house wares. HDPE has a dense, highly crystalline structure of high 

strength and moderate stiffness; uses include bottles, boxes, barrels, and luggage. UHMWPE 

is made in molecular weights above 2 x 10
6
 [60]. 
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The most common types of polyethylene, their densities and branching properties are listed in 

Table 2.1. These different types are produced at high pressures and temperatures in the 

presence of any of several catalysts, depending on the desired properties for the finished 

product. The mechanical properties of polyethylene significantly depend on variables such as 

the extent and type of branching, the crystal structure, and the molecular weight. 

Table 2.1: Types of polyethylene [61-62]. 

Name 

Density 

Range 

(g/cm3) 

Degree of Branching 

Low Density PE (LDPE) 0.910-0.940 
high degree of short and 

long chain 

Linear Low Density PE 

(LLDPE) 
0.915-0.925 

significant numbers of 

short branches 

Medium Density PE (MDPE) 0.926-0.940 relatively low branching 

High Density PE (HDPE) >0.940 no branching 

 

Low Density Polyethylene (LDPE) is defined by a density range of 0.910 - 0.940 g/cm3. 

LDPE has a high degree of short and long chain branching, which means that the chains do 

not pack into the crystal structure as well. This results in a lower tensile strength and 

increased ductility. LDPE is produced by free radical polymerization. The high degree of 

branches with long chains gives molten LDPE unique and desirable flow properties. LDPE is 

used for both rigid containers and plastic film applications such as plastic bags and film wrap 

[63]. 

LDPE is produced by a free-radical initiated reaction using oxygen or other free radical 

initiators such as organic peroxides or azo compounds. Synthesis conditions are usually 250–

300 °C outlet temperature, 81-276 MPa pressure. Heat of polymerization is about 800 

KCal/g.m, which must be removed during the short residence time available. Only a small 

part of this heat can be removed through the reactor walls because of their comparatively 

limited area and necessary thickness. In addition, the polymer tends to deposit on cool 

surfaces. In practice, heat is removed by recirculating excess cool monomer and the system 

operates essentially adiabatically. Therefore, production rates vary directly with the ethylene 

recirculation rate and the allowable temperature rises through the reactor. Heat balance limits 

conversion to 15– 20% on each pass. Reactors are of two general types, autoclaves and high 
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pressure tubes. Each of these types produces slightly different polymers, primarily because of 

differing temperature profiles through the reactors [63-65]. 

2.1.1.2. Nanoclay 

Nanoclays are nanoparticles of layered mineral silicates. Depending on chemical composition 

and nanoparticle morphology, nanoclays are organized into several classes such as 

montmorillonite, bentonite, kaolinite, hectorite, and halloysite. Organically-modified 

nanoclays (organoclays) are an attractive class of hybrid organic-inorganic nanomaterials with 

potential uses in polymer nanocomposites, as rheological modifiers, gas absorbents and drug 

delivery carriers.  

There are 4 types of clay minerals which are classified by their chemical formula; caolinite, 

smectide, illite and clorite. 

Caolinit group contains caolinit, dicit and nacrit. The general formula of the caolinit group is 

Al2O3·2SiO2·2H2O. There is no pure caolinit source in nature and generally they contain iron 

oxide, silica, silica types components. They are used as filler in ceramics paint, plastics and 

rubber and they are widely used in paper industry to product bright paper. 

Illit groups differ from smectite group clays by including potassium and can called as mica 

group. They are water included microscobic muscovit minerals and they are formation 

minerals which can be seperated to layers. The general formula of illit group is (K, H) Al2 (Si, 

Al)4 O10 (OH)2·xH2O. The stucture of this group is the same with slicate layered 

montmorillonite group. It can be used as filler material and in driling mud.  

 

Clorit group clays have slim grain structure and green colour. This group clay includes a great 

deal of magnesium, Fe (II), Fe (III) and alumina. Clorit group minerals are generally known 

as fillosilicate group and they are not acceppted as one of clay group. This group has got a lot 

of members like amesite, nimite, dafnite, panantite and peninite. General formula of Clorit 

group is X4·6 Y4O10 (OH, O)8. In this formula, X shows Al, Fe, Li, Mg, Mn, Ni, Zn and rarely 

Cr elements, and Y shows Al, Si, B, Fe elements. They are not used in industry [66,67]. 

The smectite minerals are classified according to the nature of the octahedral sheet 

(dioctahedral versus trioctahedral), by the chemistry of the layer and by the site of the charge 

(tetrahedral versus octahedral). The smectite minerals are very complex group, frequently 

having both octahedral and tetrahedral substitutions each contributing to the overall layer 

charge. 
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Montmorillonite structure 

General formula of montmorillonite (MMT) is Na0,2Ca0,1Al2Si4O10(OH)2(H2O)10. 

Montmorillonite is a fine powder which has monoclinic-pyrismatic crystal structure (Figure 

2.3), a colour from white to brown-green and yellow, average density of 2.35 g/cm
3
, 

molecular weight of 549.07 g/mol and hardness of 1.5–2. Single montmorillonite crystals are 

quite fine, granulated and they got random outher lines. In general a montmorillonite crystal 

consists of 15–20 silicate units. This property is so useful for engineering projects. There are 

two different swelling types of montmorillonite according to expansion size of the basal space 

as crystallized and osmotic swelling. Crystillized swelling occurs when the water molecules 

enter in to the unit layers. First layer of the water molecules which are adsorbed occurs when 

they bind with hydrogen bonds to hexagonal oxygen atoms. Montmorillonites whose cations 

are exchangable hydrates as Na
+
, Li

+
 can swell to 30–40 Å. Moreover, sometimes this 

swelling level increases up to hundred. This type distance is called as osmotic swelling. 

Montmorillonites do not swell much when they got high valanced cations as exchangable 

cations [68-72]. 

 

Figure 2.3: Shematic represantation of structure of montmorillonite being a 2:1 clay 

     mineral. 

The reason of this situation is that gravitational forces between silicate and cation layers are 

higher than ion hidration thurst force [73]. Montmorillonites enable polar or ionic organic 

molecules to penetrate between the layers. Adsorption of organical mixtures causes to 

formation of organo-complex montmorillonites. Penetrating of big molecules into layers of 

clay mineral could be determined by using XRD measurements. Montmorillonites have 2:1 
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type layered structure. Crystal-like structure of the montmorillonite occures from, silicon-

oxygen (Si-O) tetrahedral layer with (Al-OOH) octahedral layer which is between two Si-O 

layers. Silicon atoms are bonded with 4 oxygen atoms in (Si-O) layers. Oxygen atoms are 

placed regularly as one in centre of silicon atom and the other 4 atoms are on the corners of 

the tetrahedron (Figure 2.4). Layers are divided between every thirth neighbour tehrahedral 

layer structure from 4 oxygen atoms of tetrahedron layer. All of the fourth oxygen atom of the 

tetrahedron has condition as oriented to lower side of structure which can be seen in Figure 

2.4 and they are at the same plane with the -OH groups of alumina octahedral layers [74,75]. 

 

Figure 2.4: Structure of 2:1 phyllosilicates. 

Properties of montmorillonite 

The essential nanoclay raw material is montmorillonite, a 2:1 layered smectite clay mineral 

with a plateled structure. Individual platelet thicknesses are just one nanometer (one-billionth 

of a meter), but surface dimensions are generally 300 to more than 600 nanometers, resulting 

in an unusually high aspect ratio. Naturally occurring montmorillonite is hydrophilic. Since 

polymers are generally organophilic, unmodified nanoclay disperses in polymers with great 

difficulty. Through clay surface modification, montmorillonite can be made organophilic and, 

therefore, compatible with conventional organic polymers. Surface compatibilization is also 

known as “intercalation”. Compatibilized nanoclays disperse readily in polymers. 

2.1.1.3. Compatibilizer  

Compatibilizer is a polymeric additive that bonds the two phases to each other more tightly 

and modifies their interphases. It is used to increase the toughness of engineering plastics and 

http://www.nanocor.com/glos_pop.htm#mont
http://www.nanocor.com/glos_pop.htm#nanometer
http://www.nanocor.com/glos_pop.htm#hydrophilic
http://www.nanocor.com/glos_pop.htm#organo
http://www.nanocor.com/glos_pop.htm#compat
http://www.nanocor.com/glos_pop.htm#intercalation
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compatibility of the fillers. A strong filler-matrix adhesion leads to enhanced strength of 

particulate composites and this can be provided by a suitable compatibilizer.  

Since polyolefins are widely used economical thermoplastic polymers, it is beneficial to 

upgrade the properties of polyolefins by using some additives. However, because of their 

hydrophobic nonpolar structures, polyolefins are not able to make strong connections with 

polar hydrophilic fillers. In such cases, surface modification of the filler increases the 

miscibility, but the modification process requires the usage of some solvents which are not so 

advantageous economically and for the environment. Using compatibilizer shows the same 

effect as surface modification, without the disadvantages of using solvents. 

Maleic anhydrite (MAH) is non-corrosive, highly polar, active group and has a decreasing 

effect on crystallinity and also has excellent heat stability allowing high processing 

temperatures. Copolymerization with MAH improves the physicochemical properties of 

polymers by providing increased polarity, rigidity, Tg and functionality. MAH based 

functionality promotes hydrophilicity, adhesion, compatibility and provides a reactive group 

for possible reactions. 

MAH increases adhesion to polar substrates and allows the creation of chemical bonds by 

introducing reactivity with -NH2, -OH and epoxy groups of the polymer, substrate or filler. 

The cyclic structure of MAH is given in Figure 2.5.  

 

Figure 2.5: The chemical structure of MAH monomer. 

2.1.1.4. The other additives 

It is useful at this point to consider the definition of an additive as given by the European 

Commission: an additive is a substance which is incorporated into plastics to achieve a 

technical effect in the finished product, and is intended to be an essential part of the finished 

article. Some examples of additives are antioxidants, antistatic agents, antifogging agents, 

emulsifiers, fillers, impact modifiers, lubricants, plasticisers, release agents, solvents, 
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stabilisers, thickeners, UV absorbers and ethylene absorbers. Additives may be either organic 

(e.g. alkyl phenols, hydroxybenzophenones), inorganic (e.g. oxides, salts, fillers) or 

organometallic (e.g. metallocarboxylates, Ni complexes, Zn accelerators) [76]. 

Since the very early stages of the development of the polymer industry it was realised that 

useful materials could only be obtained if certain additives were incorporated into the polymer 

matrix, in a process normally known as „compounding‟. Additives confer on plastics 

significant extensions of properties in one or more directions, such as general durability, 

stiffness and strength, impact resistance, thermal resistance, resistance to flexure and wear, 

acoustic isolation, etc. The steady increase in demand for plastic products by industry and 

consumers shows that plastic materials are becoming more performing and are capturing the 

classical fields of other materials. This evolution is also reflected in higher service 

temperature, dynamic and mechanical strength, stronger resistance against chemicals or 

radiation, and odourless formulations. Consequently, a modern plastic part often represents a 

high technology product of material science with the material‟s properties being not in the 

least part attributable to additives. Additives (and fillers), in the broadest sense, are essential 

ingredients of a manufactured polymeric material. An additive can be a primary ingredient 

that forms an integral part of the end product‟s basic characteristics, or a secondary ingredient 

which functions to improve performance and/or durability. Polypropylene is an outstanding 

example showing how polymer additives can change a vulnerable and unstable 

macromolecular material into a high-volume market product. The expansion of polyolefin 

applications into various areas of industrial and every-day use was in most cases achieved due 

to the employment of such speciality chemicals. 

Additives are needed not only to make resins processable and to improve the properties of the 

moulded product during use. As the scope of plastics has increased, so has the range of 

additives: for better mechanical properties, resistance to heat, light and weathering, flame 

retardancy, electrical conductivity, etc. The demands of packaging have produced additive 

systems to aid the efficient production of film, and have developed the general need for 

additives which are safe for use in packaging and other applications where there is direct 

contact with food or drink. Especially in foodstuff applications, improvement of ethylene 

absorption and oxygen barrier properties of packaging films gained much more importance 

than before [77]. 

 

 



 
12 

Ethylene Absorber 

Ethylene gas (CH2=CH2) is a harmless odourless, colourless, gas that is produced from both 

natural and man-made sources, and that has a profound effect on the freshness of produce. 

It was discovered that fruits and vegetables actually produce ethylene as they ripen. The 

ethylene acts as a signal to other plants to synchronize ripening to maximize their appeal to 

their seed disseminators (e.g. birds), thus assuring the dispersal of their seeds. Scientists have 

since studied the effects of ethylene on produce and found that the effects are widespread. 

Other plant tissues can produce this gas, as well. Even after harvest, fruits, vegetables and 

flowers are still alive, continuing their biochemical processes, including ripening and the 

generation of ethylene. Bruising or cutting some fruits and vegetables can even cause them to 

increase their ethylene production. 

Since the discovery of the relationship between ethylene gas and the ripening process, 

industry has developed technology to manage the amount of ethylene gas in order to 

accelerate or slow down ripening and spoilage. Commercial warehouses, ships and trucks are 

nearly all fitted either with ethylene absorption technology or ethylene generation machines. 

However, when you buy fruits and vegetables and bring them home they sit on your counter 

or in your refrigerator where ethylene gas accumulates and accelerates the ripening process. 

In this study, two kinds of ethylene absorber types were used. These absorbers absorb 

ethylene gas which is the main catalyst gas in the ripening process of foodstuffs. By 

controlling ethylene amount in packaging ambient we are able to slow down the ripening 

process and so shelf life is able to be increased. 

2.1.2. Polymer Nanocomposites Production 

There are four general approaches for the synthesis of layered silicate/polymer 

nanocomposites as listed below. Each polymer system requires a special set of processing 

conditions to be formed, based on the processing efficiency and desired product properties as 

seen in Table 2.2. 

Solution approach 

This is based on a solvent system in which the polymer or pre-polymer is soluble and the 

silicate layers are swellable. The layered silicate is first swollen in a solvent, such as water, 

chloroform, or toluene. When the polymer and layered silicate solutions are mixed, the 

polymer chains intercalate and displace the solvent within the interlayer of the silicate. Upon 
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solvent removal, the intercalated structure remains, resulting in layered silicate/polymer 

nanocomposite, as shown in Figure 2.6 [78]. 

 

Figure 2.6: Flowchart of solution approach to synthesis nanocomposites 

In-situ polymerization 

The in-situ polymerization approach was the first strategy used to synthesize polymer-silicate 

nanocomposites and it is a convenient method for layered silicate/thermoset nanocomposites. 

This method is capable of producing well-exfoliated nanocomposites and has been applied to 

a wide range of polymer systems [79]. Once the organosilicate has been swollen in the liquid 

monomer or a monomer solution, the curing agent is added to the system, as shown in Figure 

2.7. Upon polymerization, the silicate nanolayers are forced apart and no longer interact 

through the surfactant chains. Thus, highly exfoliated nanocomposites are formed [80]. 

 

Figure 2.7: Flowchart of in-situ polymerization method to prepare nanocomposite 

         [81]. 

Melt intercalation 

The melt blending process involves mixing the layered silicate under shear, with the polymer 

while heating the mixture above the softening point of the polymer as shown in Figure 2.8 

[82]. During this process, the polymer chains diffuse from the bulk polymer melt into the 

galleries between the silicate layers.  

In some cases the polymer–silicate mixture can be extruded by using (a) static melt 

intercalation: by mixing and grinding dried powders of polymer and organic silicate in a 

pestle and mortar and then heating the mixture in vacuum, and (b) extrusion melt 
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intercalation: by extruding the mixture with twin screw extruder to produce a polymer 

nanocomposite from the polymer and modified clay. 

 

Figure 2.8. Flowchart of melt intercalation method to synthesis nanocomposite. 

Sol-gel technology 

It consists in a direct crystallization of the silicates by hydrothermal treatment of a gel 

containing organics and organometallics, including polymer. As the precursor for the silicate 

silica sol, magnesium hydroxide sol and lithium fluoride are used. This method has the 

potential of promoting the high dispersion of the silicate layers in a one-step process, without 

the presence of the onium ions [83]. 

2.1.3. Polymer Nanocomposites Features 

Nanocomposites consisting of a polymer and layered silicate (modified or not) frequently 

exhibit remarkably improved mechanical and materials properties as compared to those of 

pristine polymers containing a small amount (<5 wt.%) of layered silicate. Improvements 

include a higher modulus, increased strength and heat resistance, decreased gas permeability 

and flammability, and increased biodegradability of biodegradable polymers [84]. The main 

reason for these improved properties in nanocomposites is the stronger interfacial interaction 

between the matrix and layered silicate, as compared with conventional filler-reinforced 

systems. 

2.1.3.1. Micro structure 

It is not always possible to end with a nanocomposite when the organoclay is mixed with a 

polymer. Unseparated montmorillonite layers are called as tactoids after they are introduced 

into the polymer [85]. The dispersion of the inorganic compound must be at the nanometer 

level that is down to elementary clay platelet [86]. The layer thickness of the layered silicates 

is on the order of 1 nm and they have a very high aspect ratio (10-10000). Compared to 

conventional composites, a few weight percent of layered silicates create much higher surface 

area for polymer-filler interaction [87]. Three types of nanocomposites that are called 
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intercalated, exfoliated and flocculated can be obtained depending on the nature of the 

components used and the method of preparation [88]. The types of polymer-layered silicate 

nanocomposites are given in Figure 2.3. 

Table 2.2: Processing techniques for layered silicate/polymer nanocomposites. 

Processing Drive Force Advantages Disadvantages Examples 

In-situ 
polymerization 

Interaction 
strength 
between 

monomer and 
silicate surface: 

entalphy 
evolvement 
during the 
interlayer 

polymerization. 

Suitable for low 
or non-soluble 

polymers: a 
conventional 
process for 
thermoset 

nanocomposites. 

Silicate exfoliation 
depends on the 
exyent of silicate 

swelling and 
diffusion rate of 

monomers in the 
gallery: oligomer 
may be formed 

upon incompletely 
polymerization. 

Nylon 6, 
epoxy, 

polyurethan, 
polystyrene, 
polyethylene 

oxide, 
unsaturated 
polyesters, 

polyethylene 
terephthalate. 

Solution 
Approach 

Entropy gained 
by desorption 

of solvent, 
which 

compensates 
for the 

decrease in 
conformational 

entropy of 
intercalated 
polymers. 

Prefer to water-
soluble polymers. 

Compatible 
polymer-silicate 

solvent system is 
not always 

available; use of 
large quantities of 

solvent; co-
intercalation may 
occur for solvent 

and polymer. 

Epoxy, 
polyimide, 

polyethylene, 
polymethyl 
metacrylate 

Melt 
Intercalation 

Enthalpic 
contribution of 
the polymer-

organosilicate 
interactions. 

Environmental 
benigb approach: 

no solvent 
required. 

Slow penetration of 
polymer within the 
confined gallery. 

Nylon 6, 
polystyrene, 
polyethylene 
terephthalate 

 

Intercalated nanocomposites 

In intercalated nanocomposites, the insertion of a polymer matrix into the layered silicate 

structure occurs in a crystallographically regular fashion, regardless of the clay to polymer 

ratio. Intercalated nanocomposites are normally interlayer by a few molecular layers of 

polymer. Properties of the composites typically resemble those of ceramic materials [87].  

 Flocculated nanocomposites 

Conceptually this is same as intercalated nanocomposites. However, silicate layers are 

sometimes flocculated due to hydroxylated edge–edge interaction of the silicate layers [87]. 
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Exfoliated nanocomposites 

In an exfoliated nanocomposite, the individual clay layers are separated in a continuous 

polymer matrix by an average distances that depends on clay loading. Usually, the clay 

content of an exfoliated nanocomposite is much lower than that of an intercalated 

nanocomposite. 

 

Figure 2.9: Schematically illustration of three different types of thermodynamically 

     achievable polymer/layered silicate nanocomposites. Reproduced 

     from Sinha Ray, Okamoto and Okamoto by permission of American 

     Chemical Society, USA [89]. 

2.1.3.2. Mechanical properties 

Mechanical properties are critical as barrier properties for a packaging material. Along the 

travel of the packaged food, packaging must be durable and free from minor defects to ensure 

the safety of food. Sufficient mechanical strength of packaging material is critical in terms of 

preventing food to be effected from physical impacts and also to satisfy the barrier properties 

required [90]. 

The potential of polymeric layered silicate nanocomposites in materials science was first 

evidenced by the effective reinforcing capability of exfoliated layered silicate nanoclays in 

polymer matrix. Improvements in mechanical properties of polymers could be achieved in a 

larger extend by employing nanocomposites compared to conventional composites prepared 

by using micro size fillers. As in the case of barrier improvements of layered silicate 
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nanocomposites, several factors were proposed for the performance of LSNC (Layered 

Silicate Nanocomposites). These factors can be sum up in two headings; factors that can be 

explained by composite theory and nano-effects occurred in polymer structure due to efficient 

distribution of nanofillers in the polymer matrix [92, 95].  

Reinforcing mechanism of fillers such as fibers can be put in use to understand the effect of 

LSNC on mechanical properties. High moduli rigid fillers within the relatively soft polymer 

matrix create a mechanically restrained area of polymer, particularly adjacent to filler. 

Reinforcing mechanism of fillers was given in the Figure 2.10 below. As long as adequate 

bonding between polymer and filler phases exists, the structure would tend to act as a stronger 

material than the pristine polymer. At this point, the enormous surface area (characterized in 

several hundred meter squares) benefited due to effective distribution of layered silicate 

platelets can be used to explain the more expressed improvements in a LSNC than a 

conventional composite [91-93]. 

 

Figure 2.10: Reinforcement mechanism in composite materials [91]. 

Several reviews and studies discussed the successful stiffening of polymers by LSNC with 

less filler content compared to conventional composites to achieve the same degree of 

improvement. Paul and Robeson (2008) reviewed comparison of PE/MMT nanocomposites 

with PE/Talc composites and Nylon6/MMT nanocomposites with Nylon6/glass fiber 

composites. The required amount of MMT to double elastic modulus of neat polymers was 

reported to be 4 and 3 times lower than talc and glass fibers; indicating a significant weight 

reduction for the same performance [92]. Petersson and Oksman (2006) studied PLA 

nanocomposites prepared by bentonite LS and PLA microcomposites prepared by 

microcrystalline cellulose. Concentration of both fillers was 1 wt% with respect to polymer. 

Authors reported 50% increase in elastic modulus and yield strength for LSNC of PLA while 
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cellulose composites slightly reduced the modulus of films without significantly improving 

the yield strength. 

Beside improvements in stiffness, the addition of LSNC increased the maximum tensile 

strength of polymers. While elastic modulus increase in LSNC was mainly attributed to 

existence of stiffer layered silicates platelets, improvements in tensile strength of LSNC were 

attributed to degree of bonding between nanoclay and polymer matrix [91, 93]. Dean and 

coworkers (2008) improved the tensile strength of PVOH/Starch blends by using MMT. 

Higher increase in tensile strength in PVOH blends compared to single starch films were 

attributed to enhanced bonding between PVOH and MMT as evidenced by FTIR. Many 

reviews concerning the mechanical properties of LSNC reported that tensile strength 

improvements in LSNC are more sensitive to nanoclay content than modulus changes due to 

level of interactions between nanofiller and polymer [91, 94, 95]. Maximum elongation of 

polymeric films under tensile load is another important mechanical aspect of nanocomposites. 

It is well known that polymeric composites improve modulus and tensile strength at the 

expense of flexibility of the material. Decreased flexibility is generally observed in 

nanocomposites as well. Nanocomposites are thought to alter flexibility of polymers in lesser 

extend than conventional composite systems that results in better interactions between filler 

and polymer matrix due to higher surface area available for bonding [92-94]. 

2.1.3.3. Gas barrier properties 

Among several interesting properties of polymer layered silicate nanocomposites (LSNC), the 

most attractive one from food packaging aspect is the availability of nanocomposites for 

unique improvements in gas and water vapour barrier of packaging films. Composting 

inorganic fillers with polymers is a common application in the industry to improve barrier 

properties of packaging materials. Micro size filler content required for adequate 

improvements is generally high, and may lead to deteriorations in mechanical strength and 

optical properties of produced films [96]. Besides, possible problems such as higher 

processing temperature and poor melt rheology may occur. In the case of nanocomposites, 

level of barrier improvement is higher and such adverse effects are less likely to occur. 

Improvements in barrier properties by the introduction of fillers in the polymer matrix are 

primarily attributed to the tortuous path formed for the permeating molecules. A diffusing 

molecule tends to travel in the path where it will face with least resistance. Any source of 

resistance, such as crystalline domains within the structure or irregularities in the sequence of 

the polymer molecules results in longer path that a permanent must travel reducing the 



 
19 

permeability as discussed in the previous chapters. Tortuosity concept where the inorganic 

fillers are assumed to be impermeable for gas and liquid molecules is analogous to above 

mentioned transport properties of molecules [97]. 

Basically, nanocomposites also improve barrier of polymers by creating more tortuous path 

for diffusing molecules due to incomparably higher aspect (length to width) ratio of 

nanofillers. While conventional composites are accepted to improve the barrier properties of 

polymers due to increased tortuosity; several additional factors were also proposed for 

nanocomposites. Small particle size and enormous surface area offered by layered silicates 

(LS) reported to alter matrix structure and change the permeation properties. Restrained 

polymer chain mobility resulted in decrease of free volume fraction of rubber/hectorite 

nanocomposites due to interactions in LS-polymer matrix and decrease in gas permeability 

[98]. Nanoscale dimensions of nanocomposites may act as seeds for the creation of crystalline 

domains in the structure. MMT exfoliation within Nylon 6 increased matrix crystallinity and 

improved barrier properties [93]. 

LSNCs offer unique improvements in barrier properties of polymers due to their special 

geometry and properties. Polymer chains can be inserted between the LS stackings by several 

preparation methods and LS surface can be modified to enhance compatibility with the 

polymer matrix. Fine distribution of LS platelets, defined as exfoliation, may give aspect 

ratios in the range of several hundreds [95, 99, 100]. Schematic explanation of more effective 

tortuous path formation in LSNC in comparison to conventional composites was given in 

Figure 2.11. 

 

Figure 2.11: Schematic illustration of formation of highly tortuous path in 

       nanocomposite. Conventional filler reinforced composites at left 

       and, polymer/layered silicate nanocomposites at right. 

Petersson and Oksman (2006) compared bentonite/PLA LSNC and microcrystalline cellulose 

(MCC)/PLA microcomposite by fixing the weight percent of filler. Results showed very 

significant differences in oxygen permeability values approving the effect of aspect ratio. 



 
20 

Oxygen permeability of bentonite LSNC decreased while MCC composites destructed 

polymer structure and resulted in high permeability to O2; even three times higher than the 

value for neat PLA. The most important feature of LSNC is the availability to achieve the 

same level of barrier improvement with small concentrations of nanofiller around 1-5 wt% 

without altering the mechanical strength of polymeric films due to high length to width ratio 

of LS compared to conventional fillers. 

In the literature, barrier property improvements obtained by LSNC were mostly interpreted by 

the extensive tortuosity formed due to exfoliation of LS. Changes in polymer structure such as 

crystallinity, directed by LS platelets are hard to follow, and some polymer classes such as 

protein based biopolymers are amorphous. Several models based on tortuosity exist in the 

literature proposed to explain the effect of dispersed LS within the polymer matrix. Most of 

the permeability models applicable to LS systems were generally constructed by ignoring any 

possible structure change in the polymer as a result of nanocomposite formation [91, 93, 96]. 

2.1.3.4. Thermal stability 

Since processing of most polymer-clay nanocomposites need high temperatures irrespective 

of the fabrication route, thermal stability of organoclay has a significant role on the 

performance and application of nanocomposites. In general, nanoclay layers possess 

substantial barrier properties (including thermal and mass transport) that protect the polymer 

from fire and make it difficult for the degraded products to leave. Molecular dynamics 

simulation of thermal degradation of nano-confined polyethylene also supports this 

mechanistic hypothesis [101]. The presence of alkyl ammonium cations on the clay surface 

(organoclay) may result in decomposition following Hofmann's elimination reaction that 

depends on the basicity of the anion, the steric environment around the ammonium, 

temperature, and its product, in addition to clay itself, which can catalyze the degradation of 

the polymer matrix [102,103]. The multiple pathways are attributed to a fraction of excess 

(un-exchanged) surfactant and the chemically heterogeneous morphology of the layered 

silicate. This will reduce the thermal stability of the polymer-clay nanocomposites. It has been 

shown that with the addition of low fractions of nano-clay that is well-dispersed into fine 

layers in the polymer, the barrier effect is predominant. But with increasing clay loading, the 

catalyzing effect rapidly increases so that the thermal stability of the nanocomposites 

decreases [104]. 

In contrast, many previous studies also showed that organoclay filled polymer 

nanocomposites could enhance thermal stability compared to the pristine polymer. The 
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improved thermal stability observed in these nanocomposites was generally attributed to the 

hindered diffusion of volatile decomposition products (such as small cyclic siloxanes for 

polydimethylsiloxane decomposition) as a direct result of their decreased permeability. 

Hence, the improvement in thermal stability is related to barrier properties and the radical-

trapping effect of clay platelets. Clays can act as free radical scavengers and traps by reacting 

with the propagating or initiating radicals [105]. 

In summary, the role of clay in the nanocomposite structure and the type of surfactant used 

may be the main reasons responsible for the difference in thermal stability of different 

polymer-clay nanocomposite systems. Clay can act as a heat barrier (that enhances the overall 

thermal stability of the system) and to assist the char formation after thermal decomposition. 

That is, in the initial stages of thermal decomposition, clay would shift the decomposition to 

higher temperature. After that, this heat barrier effect would result in a reverse thermal 

stability. Therefore, the stacked silicate layers could hold up the accumulated heat that might 

be used as a heat source to accelerate the decomposition process, in concert with the heat flow 

supplied by the outside heat source [106]. In addition, the variation of the surface polarity of 

clay and host polymer at their interface owing to the use of different compatibilizers and the 

radical-trapping effect of clay platelets also affect the thermal stability of polymer-layered 

silicate nanocomposites. 

2.1.3.5. Optical and surface properties of packaging films 

Food packaging has also communication aspect additional to barrier and mechanical 

properties required to ensure the quality of food until final consumer use. In terms of 

marketing purposes, the appearance and design of the packaging is very important. The name, 

properties or trademark of the product must always be printed on the packaging. In some 

cases, food packaging is better to be transparent in order to directly present the food inside. 

Surface properties of the films, surface energy or surface tension are critical for food 

packaging films. Surface energy of the films depends on variations on the homogeneity and 

roughness of the surface as well as composition and crystal orientation of the packaging 

material [107]. Surface energy of the films cannot be measured directly. Surface energy 

parameters are obtained from contact angle analysis of several probe liquids such as water. 

Contact angle measurements can give an idea about the surface characteristics such as 

hydrophobicity. Level of surface hydrophobicity is important since interactions with other 

layers such as printing ink applied on packaging films or coatings require compatibility with 
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the surface for good adhesion. Besides, surface characteristics are also important in 

production processes such as blending or co-extrusion applications. 

Another feature of packaging films is their optical properties. Transparency, ability of a 

material to let light through a film is important. Transparency of packaging films are required 

in applications which product visibility from outside is desired. Consumer surveys showed 

better acceptance of products are obtained by transparent packaging of fresh vegetables and 

fruits and also for snacks [108]. Most of the synthetic polymers like PET, PP, PE are well 

known transparent materials. Beside transparency, appearance of the films is important. Haze; 

simply scattering of light which results into cloudy appearance, is not desired in food 

packaging [109]. Colour of the films is also important since details of the product may 

deteriorate when deviances to more yellow or green colours exists in packaging. Colour of the 

pristine film is also important in terms of printing applications. 

2.2. Polyolefin Nanocomposites Packaging Application 

2.2.1. Need For Packaging 

Most food is consumed far removed in time and space from the point of its production and 

hence proper packaging is a necessary aid for the storage and distribution of the food. There 

serve as a material handling tool and a processing aid as well as a convenience item for the 

consumer and marketing. Further, when properly used they are cost saving devices [110]. A 

food product is packaged for prevention of possible kinds of degradation that may render it 

unsuitable for consumption or impart a lower sensorial value [111]. In this aspect, it is 

important that the food should be fresh, intact and suitable for being packaged. That is, a 

package can function to preserve an existing quality at the state of wrapping. 

In the economical aspect of packaging instead of maximum protections against all sources of 

degradations, it is proposed that the packaging material should only possess protection 

efficiency in relation with the chosen shelf life.  

2.2.2. Packaging Materials 

There are various types  of packaging materials according to the need as; metals,  metal foils,  

paper,  plastic films,  wood,  edible films and some combinations of them. In choosing a 

packaging material to protect a food product during the storage,   primarily the physical and 

chemical properties of the packaged food are considered [111]. 

Plastic films have become the mostly used material for packaging during the last century due 

to their advantages and the resulting wide application areas. There are various polymeric 
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materials with densities in the range 900 to 1400 kg/m
3
 for most of them. The ability of a 

plastic to provide lightweight packages, which is an important parameter for consumer 

convenience and a way for processors to reduce shipping costs, is one of the largest driving 

forces behind the well acceptance of plastics in the market for food containers that were once 

the exclusive province of metal and glass. 

The necessity that nearly all packages must be closed in some way, to protect its contents 

from environmental factors renders plastics an advantage as vast majority of such materials 

can be closed by heat sealing. Polymer coatings and adhesives are universally used to perform 

this function. No other packaging material can match the ability of plastics to create strong, 

hermetic sealed at low temperatures (35-125 °C). Many plastic film substrates can be heat 

sealed to them without an additional adhesive coating. This greatly increases the productivity 

of the machines since mechanisms for adhesives can be eliminated.  

All common plastic can readily convert into thin, strong and clear films. This means that for 

thousands of flexible packaging applications metal and glass cannot be used and only paper, 

glassine and cellophane can compete. In addition, plastics are unsurpassed in the ease with 

which special shapes can be readily created particularly important for rigid containers. 

Unmodified plastic films and sheets in appearance from crystal clear to hazy. Pigments or 

soluble dyes can be added to produce total opacity in virtually any colour or to produce 

transparent coloured films and sheets. For example, if the food being packaged is sensitive to 

light catalyzed oxidation, as many foods are, pigmentation or metallization can be used to 

screen out light. No other packaging material offers the package designer such a wide range 

of choices. 

Tear and puncture resistance gives plastics a major edge over paper, cellophane and 

aluminium foil in flexible packages. 

Many food products are sensitive to attack by water vapour and oxygen. Glass, metal and 

pinhole-free aluminium foils are totally impermeable to these two gases which damage so 

many food products. Plastics rank well below these materials but they are far more 

impermeable than uncoated paper. Even simple uncoated, homo-polymer plastics such as 

polyethylene exhibit sufficient barrier to moisture for many applications. Although all-plastic 

packages will never have the infinite oxygen barrier provided by metal and gas they are now 

close to providing enough oxygen barriers in order to compete for all food packaging 

applications. 
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The finite permeability of plastics to gases becomes a positive attribute in the design of 

packages for products such as fresh produce which continue to respire after being harvested.  

2.2.3. Production of Packaging Films  

In the industry, several methods have been used for the manufacture of polymer films. Most 

thin sheets and films are made by calendaring or extrusion. 

In extrusion, the compounded material in the feed hopper is heated and forced into the die 

area by a screw conveyor. By the combination of the choker bar and die opening, the 

thickness of the sheet is controlled. After extrusion the sheet passes through oil or water 

cooled chromium-plated rolls before being cut to size [112]. 

In calendaring, the material composed of resin, plasticizer, filler and colour pigments is first 

compounded and heated before being fed into the calendar. The thickness of the sheet 

produced depends upon the clearance between the rollers the squeezing process and the speed 

of the finishing rollers which stretch the plastic. Before the film is wound it passes through 

water cooled rolls. 

In manufacturing laminated products, the resin material is dissolved by a solvent to convert it 

into a liquid.  Rolls of paper or fabric are then passed through a bath for impregnation. This is 

a continuous operation and as the sheet leaves the resin bath, is goes through a drier which 

evaporates the solvent, leaving a fairly stiff sheet impregnated with the plastic material. 

2.2.4. Active Packaging Technologies 

Active packaging is the term used when the packaging performs some role other than 

providing an inert barrier to external conditions [113]. 

Active packaging has developed as a series of responses to unrelated problems in maintenance 

of the quality and safety of foods. Accordingly, a range of types of active packaging has been 

developed. 

In one sense active packaging is considered as a means of maintaining the optimum 

conditions to which a food was exposed at the immediately preceding step in its handling or 

processing. Passive packaging has been used in an effort to minimize the deleterious effects of 

a limited number of external variables such as oxygen, water, light, dust microorganisms, 

rodents and to some extent heat. Hence, active packaging has the potential to continue some 

aspects of the processing operation or to maintain chosen variables at particular levels. 
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Modified atmosphere packaging is the alteration of the gaseous environment produced as a 

result of respirations or by the addition or removal of gases from small sized food packages to 

manipulate the levels of O2, CO2, N2, and C2H4 in order to extend storage life of the fresh 

produce. 

Fresh produce continue to actively metabolize during postharvest phases. After a short period 

of adjustment, steady-state conditions will be established inside an intact polymeric film 

package once the appropriate relationship among produce and package variables is achieved. 

Oxygen inside the package is consumed by the produce as it respires and an approximately 

equal amount of CO2 is produced. The reduction in O2 concentration and increase in CO2 

concentration create a gradient causing O2 to enter and CO2 to exit the package. Initially, 

however, the gradient is small and the flux across the package is not sufficient to replace the 

O2 that was consumed or do drive out all of the CO2 that war generated.  Thus, inside the 

package, O2 content decreases and CO2 content increases. As this modified atmosphere is 

created inside the package, respiration rates start to fall in response to those new atmosphere 

concentrations. Thus, eventually new equilibrium concentrations of the gases surrounding the 

fruit are established. At this state, O2 consumption equals O2 diffusion in the package and CO2 

production equals CO2 diffusion out of the package [114].  

By this way a beneficial modified atmosphere can be passively created within a package. 

In order to avoid uncontrolled levels of O2, CO2, and C2H4 that can be deteriorative active 

modification can be applied in a number of ways. It can be done by creating slight vacuum 

and then replacing the package atmosphere with the desired gas mixture. This mixture can be 

further adjusted through the use of absorbers or absorbers in the package to scavenge these 

gases. 

Selection of a film that will result in a favourable modified atmosphere should be based on the 

expected respiration rate of the commodity at the transit and storage temperature to be used 

and the known optimum O2 and CO2 concentrations for the commodity. 

Control of oxygen amount in a package 

Fresh fruit and vegetables keep to be alive after harvesting. In this period, they takes oxygen 

gas from the ambient and release carbon dioxite gas to the ambient. To slower respiration of 

foodstuffs, the oxygen entrance to packaging environment must be prevented. Lowering the 

O2 level around fresh fruits and vegetables reduces their respiration rate I proportion with the 

O2 concentration. Removal of oxygen also protects the loss of any vitamins that are oxidation 
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sensitive. The most appropriate method of removal of oxygen from a food package depends 

on the nature of the food, its processing history and the packaging machinery and the way its 

distributed. 

One major way to directly control oxygen levels in a package is the use of an oxygen 

scavenger system. The simplest scavenger is reduced iron and iron containing sachet that is 

directly put into the package. If the oxidation rate of the food and the film oxygen 

permeability are known, the almost of iron required for the desired shelf life can be 

calculated. Other chemical scavenger systems include reactive dyes, ascorbic acid and 

oxidizing enzymes namely glucose oxidase and alcohol oxidase. The problem is the diffusion 

of the reaction products from the enzymes, since if too slow, the enzyme activity will 

decrease. Other approaches are incorporating an organic chelator that binds oxygen into the 

packaging material and incorporating free radical scavengers that react with oxygen [115]. 

Sachets merely inserted into the food package constitute most of the present systems in 

commerce. Alternatively, the scavenger can be hot-melt bonded to the inner wall of the 

package or sachets are inserted in the form of cards, sheets or layers coated onto the inner 

wall of the package [113]. 

Control of carbon dioxide amount in a package  

Carbon dioxide gas is released as a product of respiration. Increase in carbon dioxide gas 

allow the microbial spoilage in foodstuffs through anaerobic respiration process. A carbon 

dioxide generating or scavenging system is incorporated into the film or added as a sachet. 

Since, high CO2 levels are desirable for some foods and plastic films are generally 3-5 times 

more permeable to CO2 than O2 a generator will be needed for some applications. On the 

other hand, high CO2 levels cause fruits to enter anaerobic glycolysis which is undesirable. 

One commercial application is a mixed iron powder-calcium hydroxide sachet which both O2 

and CO2 are scavenged [115]. 

Control of ethylene amount in a package  

Ethylene has diverse and profound effects on the physiology of plants, but has been 

recognized as a problem in postharvest handling of horticultural products. This must be 

removed from the headspace otherwise the product quickly matures and shortens shelf life 

[115]. 

Most commonly used ethylene removal agents are potassium permanganate (KMnO4) based 

scavengers. Typically, such products contain 4-6% KMnO4 on an inert substrate such as 
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perlite, alumina, silica gel, vermiculate, activated carbon or celite. These products are 

available in sachet for packages and on blankets that can be placed in produce-holding rooms. 

Potassium permanganate is not contacted with food because of its toxicity.  

Various metal catalysts on activated carbon will effectively remove ethylene from air passing 

over the bed of carbon. Activated charcoal impregnated with palladium catalyst and bromine-

type inorganic chemicals are some examples. 

In the past several years a number of packaging products have appeared based on the putative 

ability on certain finely dispersed minerals to absorb ethylene. Typically, these minerals are 

local kinds of clay that are embedded in polyethylene bags which are then used to package 

fresh produce. 

There are many other similar bags being sold throughout the world offering improved 

postharvest life of fresh commodities due to the adsorption of ethylene by the minerals 

dispersed within the film. The evidence offered in support of this claim is generally based on 

the shelf life experiments comparing common polyethylene bags with mineralized bags. Such 

evidence generally shows an extension of shelf life and/or reduction of headspace ethylene 

but yet are unconvincing. Although the finely divided minerals may absorb ethylene, they will 

also open pores within the plastic bag and alter the gas-exchange properties of the bag. 

Because ethylene will diffuse much more rapidly through open pore spaces within the plastic 

than through the plastic itself, one would expect ethylene to diffuse out of these bags faster 

than through pure polyethylene bags. However, by the same phenomena exchange of CO2 and 

O2 with the ambient shall be taking place more readily than is the case for a normal 

polyethylene bag. These effects can improve shelf life and reduce headspace ethylene 

concentrations independent of any ethylene adsorption. In fact almost any powdered mineral 

can confer such effect without relying on expensive Oya stone or other speciality minerals 

[116]. 

Although the minerals in question may have ethylene adsorption capacity, the data supporting 

the commercial products incorporating these minerals fail to demonstrate such capacity. Even 

if they do have ethylene adsorbing capacity, it is possible that they will lack significant 

capacity while embedded in plastic films. The ethylene would have to diffuse through the 

plastic matrix before contact with the dispersed mineral, thus greatly slowing any process of 

adsorption. Once the ethylene has diffused half-way through the plastic film, venting to the 

outside may be nearly as fast and effective as adsorption on embedded minerals. 
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2.2.5. Ethylene Removing Packaging  

Ethylene is a chemically simple, ubiquitous chemical that has diverse and profound effects on 

the physiology of plants. Ethylene has so many different effect on plants, is effective in such 

low concentrations, and its effects are so dose-dependent, that is has been identified as a plant 

hormone. Though many of the effects of ethylene on plants are economically positive, such as 

induction of flowering in pineapple, de-greening of citrus and ripening of tomatoes, often 

ethylene has been seen to be detrimental to the quality and longevity of many horticultural 

environments and in suppressing its effects. 

Some of the diverse ways in which to absorb, adsorb, counteract or chemically alter ethylene 

have led to products designed to reduce its deleterious effects. This study will briefly review 

the chemistry, physiology and agricultural effects of ethylene preparatory to describing the 

research and commercial effort undertaken to incorporate ethylene control agents in packages 

for horticultural products. Some of this effort has met with commercial success, but much has 

not. However, with the rapid growth of packaging of fresh fruits and vegetables, particularly 

fresh cut salad and fruits, opportunities for such products are bound to increase. Therefore, it 

is timely to review the basis and activities relating to these products to better elucidate the 

possible forms that they can and will take and to point our some of the advantages and 

disadvantages of the various approaches likely to emerge.  

2.2.5.1. The chemistry of ethylene 

The ethylene molecule is of the alkene type, being simply two carbons linked by a double 

bond with two hydrogen atoms on each carbon. Such a simple molecule can be synthesized 

through several different pathways and is subject to many kinds of chemical reaction. 

2.2.5.2. Synthesis of ethylene 

Ethylene can be synthesized both biologically and non-biologically. It is a common 

component of smoke and can be found as a product of aerobic combustion of almost any 

hydrocarbon. It is thus a common air pollutant, its chief source being automobile engines. 

Biological sources of ethylene include higher plant tissues, several species of bacteria and 

fungi, some algae, and some liverworts and mosses. The biosynthetic pathways for ethylene 

are diverse among these different organisms. The pathway of synthesis from methionine has 

been described in detail for higher plants [117]. The pathways for synthesis in bacteria appear 

to be diverse since any of several carbon sources other than methionine will serve as 
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precursors [118]. Nitrogen fixing bacteria can reduce acetylene to ethylene [119]. 

Appropriately 25-30% of fungal species tested produce ethylene on appropriate media [120]. 

The pathways of plant and fungal ethylene synthesis appear to be distinct, as the inhibitor 

rhizobitoxin blocks synthesis in plants but not in the fungus Penicillium digitatum [121]. The 

pathway of ethylene synthesis in non-vascular plants may be different from that in vascular 

plants [122]. 

The important point is that environmental ethylene can be biologically produced by a wide 

range of organisms, both visible and invisible, and such sources ought to be considered when 

devising strategies to reduce ambient ethylene. 

2.2.5.3. Adsorption and absorption 

In addition to chemical cleavage and modification, ethylene can be absorbed or adsorbed by a 

number of substances including activated charcoal, molecular sieves of crystalline 

aluminosilicates, Kieselguhr, bentonite, Fuller‟s earth, brick dust, silica gel [123] and 

aluminium oxide [124]. A number of clay materials have been reported to have ethylene 

adsorbing capacity. Examples include cristobalite (>87% SO2, >AlO2, >1% Fe2O3) [124], 

Ohya-ishi (Oya stone) and zeolite [125]. Oya stone is mined from the Oya cave in Tochigi 

Prefecture in Japan. The cave has been used to store fresh produce and is reputed to confer 

added storage life. The salutary properties of the cave are thought to reside in the largely 

zeolitic stone interior. To improve its ethylene adsorptive capacity, the Oya stone is first 

finely ground with a small amount of metal oxide. The mixture is then kneaded and heated to 

200-900 ºC, then oxidized with ozone or electromagnetic radiation [126]. Some regenerable 

adsorbents have been shown to have ethylene adsorbing capacity and have the benefit of 

being reusable after purging. Examples of such adsorbents include propylene glycol, hexylene 

glycol [127], squalene, Apiezon M, phenylmethylsilicone, polyethylene and polystyrene 

[128]. Some adsorbents have been combined with catalysts or chemical agents that modify or 

destroy the ethylene after adsorption. For example, activated charcoal has been used adsorb 

ethylene. In some cases, the activated charcoal has been impregnated with bromine or with 

15% KBrO3 and 0.5M H2SO4 to eliminate the activity of the ethylene [129]. A number of 

catalytic oxidizers have been combined with adsorbents to remove ethylene from air. 

Examples include potassium dichromate, KMnO4, iodine pentoxide, and silver nitrate, each 

respectively on silica gel [130]. 

Electron-deficient dienes or trienes, such as benzenes, pyridines, diazines, triazines and 

tetrazines, having electron-withdrawing substituents such as fluorinated alkyl groups, 
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sulphones and aster (especially dicarboxyoctyl, dicarboxydecyl and dicarboxymethyl ester 

groups), will react rapidly and irreversibly with ethylene at room temperature and remove 

ethylene from the atmosphere. Such compounds can be embedded in permeable plastic bags 

or printing inks to remove ethylene from packages of plant produce [131]. 

Metal catalysts immobilized on absorbents, such as platinized asbestos, cupric oxide-ferric 

oxide pellets and powdered cupric oxide, will effectively oxidize ethylene, but in many cases 

the reactions require high temperatures (>180 ºC). Clearly such systems would be 

inappropriate for food packaging applications. 

2.2.5.4. Deleterious effects of ethylene  

Ethylene has long been recognized as a problem in postharvest handling of horticultural 

products. Since the discovery in 1924 that ethylene can accelerate ripening in fruit [132]. It 

has become clear that ethylene can be the cause of undesirable ripening of fruits and 

vegetables. It is now recognized that ethylene, in very low amounts, can be responsible for a 

wide array of undesirable effect in plants and plant parts. The physiological effects of 

ethylene are so important, so diverse, and are induced by such small amounts of ethylene that 

is considered a plant hormone. The diverse physiological effects of ethylene have been 

extensively reviewed elsewhere [133] so only those effects that are deleterious to packaged 

plant produce will be discussed here. 

Respiration 

Perishability of produce generally is well correlated with respiration rate. Commodities such 

as asparagus, broccoli and mushrooms that have very high respiration rates are very 

perishable, having postharvest lives measured in days. Those commodities such as nuts, dates, 

dried fruits, potatoes and onions that have very low respiration rates have postharvest lives 

measured in [134]. Reduction of respiration rat increases postharvest life and elevation of 

respiration rate generally decreases it. This is one of the reasons why low temperature is so 

important in postharvest management. Reducing the temperature rapidly reduces the 

respiration rate of the product. 

Ethylene accelerates the respiration of fruits, vegetables and ornamental plants. In the case of 

climacteric fruit, ethylene can induce a rapid and irreversible elevation in respiration leading 

directly to maturity and senescence. In non-climacteric plant organs, ethylene induces a 

reversible increase in respiration in most cases, exposure to a few parts per million (ppm) of 

ethylene leads to increased respiration and increased perishability.  
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Fruit ripening and softening 

Ethylene has been referred to as a „ripening‟ hormone because it can accelerate softening and 

ripening of many kinds of fruit. Exposure of mature fruit to ethylene leads to increased 

respiration, increased production of endogenous ethylene, and softening of fruit tissues [133] 

this is achieved through the direct or indirect stimulation of synthesis and activity of many 

ripening enzymes by ethylene. 

Some fruits, such as bananas and tomatoes, are often deliberately exposed to high 

concentrations of ethylene (~ 100 ppm) to induce rapid ripening. In most cases, for packaged 

fruits it would be desirable to prevent exposure to ethylene and thereby prevent rapid 

ripening. 

Ethylene can be responsible for number of specific postharvest disorders of fruits and 

vegetables. Examples include russet spot (small oval brown spots, primarily on the midrib) of 

crisphead lettuce, formation of bitter-tasting isocoumarins in carrots, sprouting of potatoes, 

and toughening of asparagus [135]. 

Commercial applications in packaging  

Various technologies have been incorporated into packaging materials that are either 

commercially available or are likely to become available in the near future. As is common in 

the commercial sector, some of the claims for ethylene ad-/absorbing capacity for these 

packaging materials have been poorly documented and thus the efficacy of the materials is 

difficult to substantiate. 

Most substances designed to remove ethylene from packages are delivered either as sachets 

that go inside the package or are integrated into the packaging material, usually a plastic 

polymer film or the ink used to print on the package. 

2.2.5.5. New and novel approaches to ethylene-removing packaging 

There are some new and unusual approaches to developing ethylene-removing packaging that 

deserve mention. 

Perhaps the most promising new development in ethylene-removing packaging is the use of 

electron-deficient dienes or trienes incorporated in ethylene-permeable packaging. The 

preferred diene or triene is a tetrazine. However, since tetrazine is unstable in the presence of 

water, it must be embedded in a hydrophobic, ethylene-permeable plastic film that does not 



 
32 

contain hydroxyl groups [131]. Appropriate films would include silicone polycarbonates, 

polystyrenes, polyethylenes and polypropylenes. Approximately 0.01-1.0 M dicarboxyoctyl 

ester of tetrazine incorporated in such a film was able to effect a 10-fold reduction in ethylene 

in sealed jars within 24 hours and a 100-fold reduction within 48 hours [131]. The tetrazine 

film has a characteristic pink colour when it is new and turns brown when it becomes 

saturated with ethylene so it is possible to know when it needs replacing. 

A new product called Frisspack has been developed in Hungary for use in storage of fresh 

fruits and vegetables. The product consists of a chemisorbing of small particle size dispersed 

among the fibers in the early phase of paper production. The result is a paper sheet with 

putative ethylene-adsorbing capacity. The nature of the chemisorbing and data supporting the 

claim of ethylene adsorption are not available. No response was received from the vendor 

following the author‟s request for information. 

Although there are many packaging products claiming ethylene-removing capabilities, few of 

the claims are backed up with reliable data. Standardized procedures for demonstrating 

efficacy would aid the development of this growing industry. In addition, a thorough 

understanding of the physiological effects of ethylene and its importance in sealed permeable 

packages should precede any use of these products. In many cases, the elevated carbon 

dioxide levels common in modified atmosphere packages may obviate the need for ethylene 

removal. In other cases, with very sensitive commodities such as kiwifruit and carnations, 

ethylene-adsorbing capability may be crucial in the maintenance of shelf-life and commercial 

quality. 
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3. EXPERIMENTAL 

3.1. Chemicals Used 

3.1.1. Low Density Polyethylene (LDPE) 

The matrix polymer used in this study was the low density polyethylene with the commercial 

name of PETILEN F2-12 which is a product of PETKIM Petrokimya Holding A.S., Izmir, 

Turkey. Some properties of the used LDPE; PETILEN F2-12 is given in Table 4.1. 

 

Table 4.1 Properties of PETILEN F2-12 LDPE. 

 

3.1.2. Nanoclay 

In this study two different organically modified montmorillonites were used as nanoclay. 

These organoclays whose trade names are DK4 and I44 were modified by different 

manufacturers with a quaternary ammonium salts. 

NanolinTM DK4 organoclay (white coloured, purity: 95–98%, and interlayer spacing: d001 = 

3.56 nm), modified with octadecylammonium salt, was produced from Zhejiang Fenghong 

Clay Chemicals, Co. Ltd, China. 

I44 named nanoclay which is based on quaternary ammonium salt was obtained from 

Nanocor
®
, Inc. 

PROPERTY UNIT VALUE TEST METHOD 

Melt Flow Rate (MFR) (2160 g, 190 
o
C) 

g/10 

min 
2.0-3.5 ASTM D-1238 

Density, 23 
o
C g/cm

3
 

0,918-

0,922 
ASTM D-1505 

Film Quality - A ALKATHENE 36 

TYPICAL VALUES    

Ash % wt 0,14 ALKT-509 

Haze % 6,3 ASTM D-1003 

Gloss - 70 ASTM D-2457 
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These two nanoclays are different in terms of their chemistry and modification method. 

3.1.3. Maleic Anhydride Grafted Polyethylene (PE-g-MA) 

The used compatibilizer is 1% maleic anhydride containing polyethylene grafted maleic 

anhydride (PE-g-MA) which was supplied from Clariant A.S., Istanbul, Turkey. (MFI=23 

g/10 min.).  

Chemical structure of the used compatibilizer is given in Figure 4.1. 

 

Figure 4.1: The chemical structure of PE-g-MA. 

3.1.4. Ethylene Absorber 

In this study, two different ethylene absorbers were used. These ethylene absorbers encoded 

N-10774 and N-10776 which are commercial products were obtained from Aksoy Plastik 

A.S.  N10774 and N10776 are different only in terms of their hydrophilicity. 

3.2. Instruments and Characterization Methods for Nanocomposite Materials 

3.2.1. Extrusion and Twin Screw Extruder 

Polymer melt intercalation is a promising method due to its high productivity, relatively lower 

cost and compatibility with current polymer processing techniques such as extrusion and 

injection molding. During extrusion in the processing device, the clay agglomerates are 

broken up by the external forces and the diffusion of macromolecules into the clay galleries 

[136].  

The extrusion process is not difficult to visualize. A meat grinder is a best model for screw 

extrusion which is used for plastic processing. The grinder takes a large lump of meat and 

reduces its size by the screw, mix it all up and then extrude the result through the die. This is a 

simple example for extrusion process, but in fact there are several process variables that make 

it harder to optimize [137]. 

Commonly used continuous screw extruders can be classified in two groups: Single screw and 

twin screw extruders. The former is the most basic form of extruder that simply melts and 

forms the material. In contrast, twin screw extruders provide excellent melt mixing and are 
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widely used for polymer nanocomposite manufacturing with different types shown in Figure 

4.4 [137, 138]. 

In addition to this, twin screw extruders are more flexible due to their modular design of 

screw and barrel and they have better feeding, melting, mixing and degassing properties 

compared to single screw extruders [138]. 

Twin-screw extruders are used extensively in polymer blending and also in many applications 

such as processing of food, essential oils, paints, and many other highly viscous materials 

[139, 140]. They provide high shear rate and good mixing of compounding materials at a 

relatively short residence time. And also temperature profile is considerably broad and can 

reach even up to 500 
o
C temperature levels depending on the melting point of polymer. 

Twin screw extruders have the superior property that their screw configuration and processing 

conditions are exchangeable however it is not so easy to control the parameters. The main 

problem is obtaining the optimum screw configuration and processing conditions in terms of 

mixing and kneading. When the mixing function of the mixing elements is limited, it can be 

improved by placing some kneading elements along the screw. These mixing and kneading 

mechanisms changes various physical properties, such as, flow rate, pressure and shear rate 

distributions [141]. However, as mentioned before it is hard to measure and control these 

properties at desired points due to the complicated geometry of screws. 

In thiss study the used extruder was Werner&Pfleider trademarked GmbH. Z SK 25 model 

(Diameter=25 mm, L/D=48) counter-rotating twin screw extruder. The temperature was 

adjusted between 190-210 
o
C depending on channel zone. 

Low density polyethylene (LDPE) nanocomposite masterbatches were prepared by using 

LDPE, nanoclay, compatibilizer with/without ethylene absorber with determined proportions 

by melt compounding in a counter-rotating twin screw extruder. Nanocomposites pellets were 

prepared by mixing of 25% the named masterbatch with 75% LDPE. 

The temperature zones and screw speeds of extruder were set in suitable conditions. Final 

nanocomposite compositions were designated as 85% LDPE, 10% compatibilizer, and 5% 

nanoclay or 82.5% LDPE, 9% compatibilizer, 4.5 % nanoclay, and 4% ethylene absorber. 2 

kinds of nanoclay and 2 kinds of ethylene absorber were used in this study to prepare 4 

different nanocomposite samples. 2 kinds of  ethylene absorber containing 2 composite 

samples were also prepared by melt mixing. 
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3.2.2. Cast Film Line 

In this study, nanocomposite films were produced by using Scientific trademarked LCR-175 

Co-Ex Chill Roll model cast film line with the screw speed of 50 rpm and drawing ratio of 2.5 

m/min. Thickness of final film samples were adjusted as 100-110 micron. 

Film casting is an important industrial method for film production. In film casting, a polymer 

melt is extruded through an approximately flat die and stretched in the region between the die 

and a chill roll. This stretching induces some orientation in the film and causes a decrease in 

the width (neck-in) and the thickness of the film in the region between the die and the chill 

roll. 

An important process parameter is the draw ratio, which is the ratio of the velocity at the chill 

roll to the velocity at the die exit [142]. Increasing the draw ratio increases the amount of 

neck-in between the die and the chill roll and also leads to a decrease in the thickness of the 

film. The distance between the die and the chill roll (airgap) also affects film formation since 

changing the air-gap length changes the flow geometry (increasing the neck-in) and the strain 

rate experienced by the polymer in the web. This results in variations in the width, the 

temperature profiles and the polymer orientation for any particular set of process conditions. 

In addition to the process parameters, the characteristics of the material being processed 

influence the film properties. Changes in the polymer type, polymer molecular weight, and 

the shear and the extensional viscosity of the polymer will also affect both the film formation 

in the gap between the die and the chill roll and the final properties of the film. 

Some problems typically encountered experimentally in film casting are edge-bead formation 

and draw resonance [143]. Edge-bead formation results in the edges of the final film being 

thicker than the central portions of the film. The film edges are usually trimmed off before 

further processing of the film and the material is recycled. Draw resonance is an instability 

whereby there is a periodic variation in the film neck-in. This occurs at high draw ratios and 

places a limit on the draw ratio for a particular film casting operation. The draw ratio at which 

this instability sets in depends on the polymer material. 

Nanocomposite films were produced by using cast film line with the screw speed of 50 rpm 

and drawing ratio of 2.5 m/min. Thickness of final film samples were adjusted as 100-110 

micron. 4 nanocomposite, 2 composite and 1 standart LDPE films were prepared to be used in 

experiments. 
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3.2.3. XRD Analysis 

After incorporation of nanosized layered silicates into the polymer matrix, extend of 

nanofiller dispersion in the nanocomposite structure can be followed by XRD analysis by 

monitoring the position, shape, and intensity of the basal reflections from the distributed 

silicate layers [144]. 

The dispersion of silicate layers in the polymer matrix generally resulted in increased gallery 

height or d-spacing. The changes in the d-spacing can be investigated quantitatively by using 

the Bragg‟s law (Equation 3.1) where λ corresponds to the wavelength of the X-ray source 

used, θ is the diffraction angle measured and d is the spacing between diffractional lattice 

planes. 

λ= 2d sinθ                                                                                                                              (3.1) 

As interlayer spacing between planes increases, the characteristic peak of the clay in the XRD 

chromatogram shifts to lower angles. Intercalated structures are identified by broader and 

smaller diffraction peaks in XRD. This is reflected in 2θ values observed in lower angles, 

since the d001-spacing of silicate layers are also expected to increase. In the case of 

intercalation with flocculation; the new arrangement of silicate layers may lead to appearance 

of new basal reflections at lower angles. 

As extend of intercalation increases and exfoliation of silicate layers occurs within the 

polymer matrix, it can be expected that all reflections disappear and the obtained XRD 

analysis (crystallography) of the nanocomposites is observed just like a noise. Disappearance 

of peaks was attributed to large gallery height; beyond the maximum d-spacing value can be 

determined by XRD [144]. Also exfoliation results in disordered dispersion of layered silicate 

stacks in several directions and lose their ordered structure that enables them to be detected 

[145]. 

In this study, the XRD measurements were conducted by using ARL trademarked 9400 

Model XRD used and scattering region was 2.0000-19.9800 deg. 

3.2.4. FTIR Analysis 

Fourier transform infrared (FTIR) spectroscopy is a measurement technique that allows one to 

record infrared spectra of many chemicals. 

FTIR measurements of film samples were conducted on a Spectrum 100 FTIR spectrometer to 

characterize the structures of polyethylene and polyethylene nanocomposites. Results gives an 

idea about the components of sample measured [146]. 

 

http://en.wikipedia.org/wiki/Fourier_transform
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3.2.5. Thermal Analysis with DSC 

Differential scanning calorimetry (DSC) is a thermo-analytical technique in which the 

difference in the amount of heat required to increase the temperature of a sample and 

reference are measured as a function of temperature [147]. 

When the sample undergoes a physical transformation such as phase transitions, more (or 

less) heat will be transferred to it, than the reference to maintain both at the same temperature. 

During the experiment, the instrument detects differences in the heat flow between the sample 

and reference and this information is sent to an output device, mostly a computer. The basic 

principle underlying this technique is that, this information is expressed in a plot of the 

differential heat flow between the reference and sample cell as a function of temperature 

[148].  

In this study, Perkin Elmer 4000 DSC instrument was used for DSC analysis. The samples 

were heated at 5 
o
C/min. and were cooled at 5 

o
C/min in the range of 20-180 

o
C under 

nitrogen gas. 

3.2.6. Thermal Gravimetric Analysis (TGA) 

Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a type of testing 

performed on samples that determines changes in weight in relation to change in temperature.  

TGA is commonly employed in research and testing to determine characteristics of polymers, 

to determine degradation temperatures, absorbed moisture content of materials, the level of 

inorganic and organic components in materials, decomposition points of explosives, and 

solvent residues. It is also often used to estimate the corrosion kinetics in high temperature 

oxidation. 

In this study, the used TGA instrument was Perkin Elmer TGA 4000. Samples were heated 

starting from the ambient temperature to 950 
o
C in the presence of nitrogen gas. 

3.2.7. Melt Viscosity Measurement with MFI 

The melt flow rate is a measure of the ability of the material's melt to flow under pressure and 

it is inversely proportional to the viscosity of the melt at the conditions of the test. The 

schematic drawing of MFI is given in Figure 4.2. 

To investigate the effect of clay structure on polyethylene nanocomposites and the interaction 

between clay and bulk PE, the „control‟ polymer matrix effect should be excluded. Therefore, 

in this study, a normalized MFI (n-MFI) was calculated as shown below and was then 

compared to n-MFI of polyethylene nanocomposites. 

http://en.wikipedia.org/wiki/Polymers
http://en.wikipedia.org/wiki/Explosives
http://en.wikipedia.org/wiki/Solvent
http://en.wikipedia.org/wiki/Corrosion
http://en.wikipedia.org/wiki/Chemical_kinetics
http://en.wikipedia.org/w/index.php?title=High_temperature_oxidation&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=High_temperature_oxidation&action=edit&redlink=1
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Figure 4.2: Schematic drawing of a melt flow indexer [149]. 

                                                            (3.2) 

The test temperature was set to 190°C and a dead weight load of 2.16 kg was applied as usual 

for polyethylenes [150]. For each composite sample, the final results were the averages of 

three sets of measurements.  

In this study, HAAKE Melt Flow MT is used to measure MFI and n-MFI values of sample. 

3.2.8. Polarized Microscopy Method (POM) 

To obtain dispersion of nanoclay and ethylene absorber additives in the low density 

polyethylene polymer matrix, Leica DM LM.(Germany) trademarked 020-520-714 DM 

model polarized microscopy was used. The images were obtained at x50 zoom. 

3.2.9. Mechanical Analysis 

The measurement of mechanical properties is concerned with load-deformation or stress-

strain relationships. The results of these tests are important to classify the polymeric material. 

In this study, for evaluation of mechanical properties, tensile test method was used. 

Tensile test is a measure of the withstanding ability of material to the force of pulling and 

shows the stretching amount of material until breaking. The tensile profile of the sample is 

expressed in terms of a curve showing the reaction of the material against applied pulling 

force. Figure 4.3 shows a typical tensile test curve. 
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Figure 4.3: Typical tensile test curve [151]. 

For most tensile testing of materials, in the initial portion of the test, the relation between 

applied force, or load, and the elongation of the specimen is linear. The constant slope of this 

linear region is called as “Young's modulus” or “tensile modulus”. 

                                                                                   (3.3) 

where stress is the force applied per unit area. 

Stress(σ)=F/A0                                                                                                                       (3.4) 

and strain is defined as the amount of deformation that the sample shows under stress. It is 

expressed as the ratio of the elongation to the original gage length. 

Strain (ε) = ΔL / L0                                                                                                                                        (3.5) 

Tensile strength is the force divided by the cross-sectional area of the specimen and expressed 

in terms of MPa. 

 

                                                                    (3.6) 

                    

In this study, to obtain mechanical properties of polymer nanocomposites, mechanical tests 

were made by using Zwick/Roell Z0.5 TH universal testing machine. Pre-load was 1 MPa, 

grip to grip seperation at the start position was 100 mm and test speed was 50 mm/min. 

3.2.10. Colour Measurements of Nanocomposite Films 

In the Hunter system, color is represented as a position in a three-dimensional sphere, where 

the vertical axis “L” indicates the lightness (ranging from black to white), and the horizontal 

axes, indicated by a and b, are the chromatic coordinates (ranging from “a”: greenness to 

redness and “b”: blueness to yellowness). Hunter L, a, and b values were averaged from five 
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readings across for each coating replicate. The total color difference (ΔE) can be calculated by 

the following equation; 

   

                                                                                        (3.7)            

In this study, for each film, at least five measurements on different positions of film surface 

were made. The results were expressed as ΔE values, with the substrate standart LDPE film as 

reference. 

3.2.11. Oxygen and Carbon Dioxide Gas Permeability Analysis 

Permeability is the steady-state rate of transport of a permeant molecule through a polymer of 

unit area per unit thickness as a result of combined effects of diffusion and solubility. 

Characterizing the relations between permeability of solute and polymer structure is crucial in 

terms of designing barrier films in food packaging. 

The principle of this measuring method which is called as equal pressure is on one side testing 

gas (oxygen or carbondioxide) flows and on the other side dry case (nitrogen) flows. Pressure 

of the two sides is equal but oxygen partial pressure is different. Oxygen transmits through the 

film and carried to the sensor by nitrogen. Sensor measures the oxygen permeance in nitrogen 

carrier gas and provides the oxygen and carbon dioxide transmission rate. Unit of this method 

is cc/m2.24h. 

In this study, Extrasolution Multiperm oxygen-carbondioxide permeability instrument was 

used to determine oxygen and carbon dioxide permeability of polyethlene and polyethylene 

nanocomposite film samples used for food packaging. 

The measurement temperature was 25 ⁰C, relative humidity was 90%, surface area 50 cm
2
. 

3.3. Instrument and Characterization Method for Food Application 

In order to evaluate the quality of products, there are some criterias depening on product type. 

With this purpose, we chose some available testing methods and presented below. 

3.3.1. Storage Conditions 

A known weight of strawberry (around 120 g corresponding to four pieces), parsley (around 

20 g) and iceberg lettuce (around 35g) which were bought from a supermarket as fresh were 

packaged in 10 cm×15 cm (S = 0,03 m
2
) flexible pouches and stored at 0 

◦
C (which is 

optimum storage temperature for these used foodstuffs) typical retail conditions for nearly 15 

days. Six type of polyethylene nanocomposite packaging film and standart polyethylene 

packaging film (as control sample) were used to store foodstuffs. In order to use in 
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intermediate steps, 4-6 parallel samples (depending on durability of used foodstuffs) were 

initiated and for every step one of each samples were used for analysis. 

3.3.2. Oxygen, Carbon Dioxide, Ethylene Changes In Package Versus Time 

Oxygen, carbon dioxide and ethylene gas concentrations in packages are crucial regarding the 

shelf life determination.  

The concentration of oxygen and carbon dioxide inside the packages were monitored using an 

OxyBaby (WITT-GASETECHNICK type) (Figure 4.4). Analyses were performed by 

inserting the test probe through a rubber seal (Toray Engineering Co. Ltd., Osaka, Japan) 

attached to the outside of the packaging. The instrument was calibrated towards air. 

Measurements were performed everyday.  

The concentration of ethylene gas in package was monitored by using ICA 56 instrument 

(Figure 4.5). This analyser is a simple hand held instrument with a built in pump that provides 

a direct reading of the ethylene concentration within a produce storage or ripening area. 

 

Figure 4.4: OxyBABY oxygen and carbon dioxide analyser instrument.    

 

Figure 4.5: ICA56 Smart Fresh ethylene analyser instrument. 

3.3.3. Weight Lose Analysis 

Weight lose in fruits and vegetables arises from water lose. Water loses starting after harvest 

occurs properly according to futures of produces and environmental conditions. Product loses 

water afterwards creases because of decrease in turgor pressure. All samples were weighted 

before packaged and saved. During two weeks, once in two days weight lose values were 
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saved as percentages. Weight lose percentages of foodstuffs packed in films with different 

compositions were monitored. The results were given as weight loss percentage.  The 

percentage weight loss was determined according to the following expression: 

                                                                                               (3.8) 

where %WL(t) is the percentage weight loss at time t, Wo is the initial sample weight and 

W(t) is the sample weight at time t. At each sampling time, three replicates were made. The 

weights of foodstuffs were measured by Sartorious   isoCAL 211S  model weighter. 

3.3.4. pH Analysis 

The pH values of the strawberry, parsley and bean homogenates were analysed by a Thermo 

Orion trademarked 3-Star model pH meter (Figure 4.6) in duplicate measurements on every 

two days. Results were given as graph of pH changes versus time. 

 

Figure 4.6: Orion 3-star pH meter instrument. 

3.3.5. Taste and General Quality Evaluation 

A quantitative descriptive analysis was used to evaluate the sensory properties of each 

samples. The analyses were carried out on every two days for each type of product and were 

performed by a panel consisting of 4 people. The panel members were trained to evaluate 

smell, flavour, taste, texture attributes and appearance as well as overall quality of the 

foodstuffs. A number of sensory attributes were developed and described in numbers by 

comparing foodstuffs that had large differences in sensory quality. In the training, a reference 

sample of fresh strawberries was used. 

A four point scoring scale was employed: 

4: very good / 3: good / 2: acceptable / 1: unacceptable. 

Scores below two for any of attributes assessed were considered as an indicator of the end of 

the acceptable quality. The results were given as graph of general quality changes versus time. 
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3.3.6. Sugar Amount Analysis 

The samples opened were homogenised by a mixer for 15 seconds seperately each other. The 

homogenate was used for analysing sugar. The Brix value of the homogenate was measured 

by a refractometer (Brix Co. Ltd., Tokyo, Japan) (Figure 4.7). Five measurements were made 

on each sample on every two days and sugar amount changes versus time were given as 

graph. 

 

Figure 4.7: Brix refractometer. 
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4. RESULTS AND DISCUSSION 

Six different low density polyethylene (LDPE) nanocomposite masterbatches were prepared 

by using LDPE, nanoclay, compatibilizer with/without ethylene absorber. Two of them 

contain only nanoclay, 2 of them contain only ethylene absorber and the other contain both of 

nanoclay and ethylene absorber. LDPE film was used as standart for comparison. These 

nanocomposite formulations used for strawberry, parsley and iceberg lettuce packaging and 

their shelflife analysis. 

In this study, low density polyethylene nanocomposites which contain nanoclay, 

compatibilizer were produced with different compositions in counter rotating twin screw 

extruder. Ethylene absorber was added to some compositions. Using these nanocomposites, 

polyethylene nanocomposite films were prepared and these films were used as packaging 

materials. Pre-works were done in order to determine the optimum extrusion conditions and 

best compositions. In this study, in order to see the effects of ethylene absorber and nanoclay 

on film properties and food packaging, the obtained best results were given and discussed 

here.  

In this study two kind of nanoclay and ethylene absorber were used. Compatibilizer (PE-g-

MA) was added the compositions including nanoclay. Firstly, a masterbatches including clay 

were formed by mixing 20% F2-12 LDPE with 60% PE-g-MA and 20% nanoclay in the 

Werner&Pfleider GmbH. Trademarked Z SK 25 model (Diameter=25 mm, L/D=48) counter-

rotating twin screw extruder. The other masterbatches including ethylene absorber were 

formed by mixing 50% wt LDPE with 50% wt active ingredient of ethylene absorber additive 

in the twin screw extruder.  LDPE nanocomposite masterbatches were prepared by using 

LDPE, nanoclay, compatibilizer with/without ethylene absorber with determined proportions 

by melt compounding in a counter-rotating twin screw extruder. Nanocomposites pellets were 

prepared by mixing of 25% the named masterbatch with 75% LDPE. The final compositions 

of these films were defined as 85% LDPE, 10% compatibilizer, and 5% nanoclay or 82.5% 

LDPE, 9% compatibilizer, 4.5 % nanoclay, and 4% ethylene absorber. 2 kinds of nanoclay 
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and 2 kinds of ethylene absorber were used in this study. 100% LDPE film and 4% both of 

ethylene absorber types containing films. 

Sample number and their compositions were listed below in Table 4.2. 

Table 4.2: Sample number and their compositions. 

SAMPLE NO FINAL FORMULA 

1 LDPE 

2 85% LDPE + 10% PE-g-MA + 5% I44 

3 85% LDPE + 10% PE-g-MA + 5% DK4 

4 92% LDPE + 8% N10774 

5 92% LDPE + 8% N10776 

6 82.5% LDPE + 9% PE-g-MA + 4.5 % I44 + 4% N10774 

7 82.5% LDPE + 9% PE-g-MA + 4.5 % DK4 + 4% N10774 

 

The results of these tests were given as 2 basic parts: characterization of film samples and 

food application. 

4.1. Characterization Results 

In order to evaluate the characteristic properties of film samples, some characterization 

methods were used and results were discussed. 

4.1.1. XRD Analysis Results 

The results of the XRD measurements of some samples are given in Appendices as Figure 

A.1, A.2, A.3, A.4, A.5 and A.6.  

In 5% DK4 nanoclay containing low density polyethylene nanocomposite sample (No:3) 

(Table A.4.), it can be clearly seen that, addition of 5% organoclay (with 15% compatibilizer) 

is really effective to increase the interlayer spacing. Also with addition of organoclay to 

matrix, some peaks of DK4 nanoclay shifts to left while some peaks are lost. It can be judged 

that the organoclay has an exfoliated/intercalated morphological structure in low density 

polyethylene matrix. 

Active ingredient of ethylene absorber shows four peaks (Figure A.3) which are 2 θ= 7,4; 

10,4; 12,6; 16,7. These peaks can be seen in XRD graphs of 4.5% I44 nanoclay + 4% N10774 

ethylene absorber containing LDPE  (No:6) and 4.5% DK4 nanoclay + 4% N10774 ethylene 

absorber containing LDPE (No:7). 
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4.1.2. FTIR Test Results 

FTIR spectrums of all film samples were obtained and given in Appendices part as A.7, A.8, 

A.9, A.10, A.11, A.12, A.13. The peaks of six nanocomposites samples were compared with 

peaks of low density polyethylene film without additive. 

1075,83 cm
-1

 and 1044,98 cm
-1

 peaks which belongs to 5% I44 nanoclay LDPE (No:2) and 

1091 cm
-1

 and 1032 cm
-1

 peaks which belongs to 5% DK4 nanoclay LDPE (No:3) are 

identified as absorption of the silicate groups. The peaks between 847-918 cm
-1

 are identified 

as AlMg(Fe2Al3)OH peak and these peaks are present in both of two spectrums. And also 

between 600-400 cm
-1

 Si-O-Si and Si-O-Al bending peaks are observed in both spectrums. 

These nanoclays having familiar structures resemble each other in terms of FTIR graphs. 

As I mention before, 4% N10774 (No:4) and 4% N10776 (No:5) ethylene absorbers have 

same structure but different pore diameter. So, FTIR spectrums are almost same. Around 950-

1150 cm
-1

, vibration bands of Si-O bonds are observed and No:4 and No:5 have a this kind of 

group in their structures. And also between 600-400 cm
-1

 Si-O-Si and Si-O-Al bending peaks 

are observed in both spectrums. 

In spectrums of nanocomposites including nanoclay and ethylene absorber (No:6 and No:7), 

peaks belonging to both of organoclay and ethylene absorber can be clearly seen. 

4.1.3. DSC Test Results 

Differential Scanning Calorimeter analysis results of samples were given in Table 4.3 and 

DSC graphs are added to Appendices as A.14, A.15, A.16, A.17, A.18, A.19, A.20. 

Since glass transition temperature (Tg) of LDPE is around -120 ⁰C, we did not obtain Tg 

changes in nanocomposite samples.  

where Tm is melting temperature, Tmp is the peak point of melting temperature, ΔHm is 

enthalpy of melting, Tc is crystallization temperature, Tcp is is the peak point of crystallization 

temperature, ΔHc is enthalpy of crystallization and X% is crystallinity percentage. 

It is shown in Table 4.2 that both of ethylene absorbers do not have an effective role on the 

melting point and crystallization point. 

However, it was observed that melting point (Tm) increased a little with the clay addition 

when compared to pristine LDPE materials while ΔHm decreased. This can be explained in 

two ways. One of the suggestions is that the prevention of motions of polymer chains by the 

presence of nanoclay layers causes the increasement in melting point and decrease in 

crystallization content and also in ΔHm. The other suggestion is the nucleating behaviour of 

nanoclay layers. Nanoclay layers are dispersed in the polymer matrix as small crystal parts 

and this increases the melting point and decreases the crystallization content and ΔHm. 
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Table 4.3: DSC test results of samples. 

 SAMPLE     

      NO 

HEATING COOLING 

Tm (⁰C) Tmp (⁰C) ΔHm (J/g) Tc (⁰C) Tcp (⁰C) ΔHc (J/g) X% 

1 98.6 110.3 82.8 101.6 98.2 72.1 28.0 

2 103.9 122.6 72.1 111.1 108.6 64.5 25.8 

3 101.9 113.8 68.9 105.0 101.1 66.2 24.7 

4 98.5 109.7 71.8 101.6 98.7 66.3 25.5 

5 100.3 110.3 69.2 101.6 98.3 69.1 24.5 

6 104.2 122.0 64.1 111.5 109.1 63.9 23.8 

7 100.7 113.2 62.2 105.1 101.8 61.2 23.2 

 

4.1.4. TGA Test Results 

Thermal gravimetric analysis results of samples and pure additives were given in Table 4.4 

and TGA graphs are added to Appendices part as A.21, A.22, A.23, A.24, A.25, A.26, A.27, 

A.28, A.29, A.30. 

Three degradation temperatures exist for each nanocomposite sample which are beginning 

point of degradation ((Tdeg)start), finishing point of degradation ((Tdeg)finish) and midpoint of 

degradation ((Tdeg)mid). 

Degradation temperature is decreased by addition of inorganic additives. Since inorganic 

materials increase in polyethylene matrix, residue amount increses propotionally with 

percentage of additives.  

4.1.5. MFI Results 

The influences to the processability of nanoclays to the polymer nanocomposites were 

observed by melt index measurements. MFI and n-MFI values of PPNC samples were 

given in Table 4.5. 

MFI is a pressure-imposed, capillary flow experiment and was used to study the relationship 

between low strain rate shear flow properties and clay structure in nanocomposites and the 

interaction between clay and matrix of LDPE nanocomposite samples. 

In the interaction between clay and bulk LDPE, the “control” polymer matrix effect should be 

excluded to investigate the effect of clay on LDPE nanocomposite samples. For this purpose, 
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normalized MFI (n-MFI) values were calculated and then the results were compared. The 

corresponding control units contained matrix LDPE and the compatibilizer. 

Control unit for first 5 samples were prepared in the extruder, with 10% w/w compatibilizer 

without containing any organoclay. The other control unit for sample 6 and 7 include ethylene 

absorber besides of compatibilizer and matrix LDPE. 

As it can be understood from the MFI and n-MFI values of samples. The addition of DK4 

nanoclay increased the processability, while I44 nanoclay decreased. This results were 

confirmed on the Samples No.2; 3 and 6; 7.   

Table 4.4: TGA Analysis results of film samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5: MFI and n-MFI Results of LDPE samples. 

 

 

 

 

 

 

 

 

 

 

Sample No (Tdeg)start (Tdeg)finish (Tdeg)mid 

1 390.1 508.9 489.1 

2 264.4 583.2 493.1 

3 221.8 577.2 494.1 

4 160.4 529.7 488.1 

5 132.7 602.0 474.3 

6 155.4 657.4 501.0 

7 136.6 654.5 496.0 

I44 nanoclay 170.4 407.0 891.3 

DK4 nanoclay 131.3 332.3 879.8 

Active ingredient 

of N10774 
30.3 833.3 158.6 

Sample No MFI (g/10 min.) n-MFI 

1 2.1 - 

2 3.3 0.8 

3 8.3 1.9 

4 2.2 - 

5 2.1 - 

6 2.6 0.5 

7 7.0 1.3 
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4.1.6. POM Analysis Results 

To see the effects of addition of additives on dispersion in LDPE matrix, polarized 

microscopy images were investigated. The images of most important 5 sample were given in 

Appendices as A.31, A.32, A.33, A.34, A.35. 

5% I44 and DK4 nanoclay have good dispersion in LDPE matrix. Since ethylene absorber has 

bigger particle size, it is clearly seen from the Figure 23, 24 and 25 as intense images. These 

three images are darker comparing to the other images of samples with nanoclay. 

4.1.7. Mechanical Analysis 

Tensile test was applied to LDPE nanocomposite samples by using Zwick universal testing 

machine and results were given in Table 4.6. Stress at break, strain at break and 3% secant 

modulus of samples were obtained as average value of 3 parallel samples. Samples had 2 cm 

diameter and 15 cm length. Tensile test were performed on film samples on the main direction 

(orientation way) and cross direction. 

It is clear that, strength of samples on main direction is higher comparing to cross direction 

due to molecular orientation. %5 I44 LDPE and 5% I44 + 4% N10774 samples have the best 

strength values. Even at 700% strain value, there was no break, so the strength values of these 

samples were not be able to obtained.  

Addition of 5% DK4 nanoclay to polymer matrix, strength of nanocomposite film sample 

decreases almost by 50% but increases elongation by 55%.  Since ethylene absorber has 

nearly no effect on strength and 3% secant modulus, the same situation for DK4 was obtained 

in 5% DK4 + 4% N10774 sample. 

4.1.8. Colour Measurement of Nanocomposite Films 

This colour model was selected based on its documented adequacy for theoretically 

quantifying colour changes in film samples and for its matching of sensitivity of human eyes 

L
*
 is the luminance or lightness and ranges from 0 to 100, a

*
 (from green to red) and b

*
 (from 

blue to yellow) are the two chromatic components and range from −120 to +120. As values of 

L
*
, a

*
 and b

*
 were preferred in this work to describe colour changes, since they represent a 

kind of standardisation. Here the values (DL, Da, Db) were given as compared with standart 

value of LDPE film, and this equation was used : ΔX
*
 = Xt

*
+ Xo

*
. 

Also opacity and transparency changes were listed to compare with standart LDPE film 

sample in Table 4.7. 
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Table 4.6: Mechanical analysis test results. 

MAIN DIRECTION CROSS DIRECTION 

SAMPLE 

NO 

Strength 

at break 

(MPa) 

Strain at 

break 

(MPa) 

3% 

Secant 

Modulu

s 

Strengt

h at 

break 

(MPa) 

Strain 

at break 

(MPa) 

3% 

Secant 

Modulus 

1 20.9 165 187.3 10.2 190 186.7 

2 22 1010 306.7 20 1006.7 292 

3 14 403.3 300.3 10.9 42.5 244.3 

4 21.9 170 191.3 9.1 156.7 202.3 

5 19.5 186.7 185.2 12 420 195.2 

6 21 825 303 18.6 865 359.3 

7 14.1 273.3 271.4 8.3 29 288.3 

 

Table 4.7: Colour, opacity and transparency measurements of LDPE film samples. 

Sample No DL* Da* Db* Opacity/Transparency 

1 -0.28 -0.03 -0.03 18.84/80.38 

2 -4.47 +0.38 7.72 19.64/76.08 

3 -2.18 -0.38 +3.88 19.11/78.48 

4 -0.25 -0.22 -0.11 18.29/80.85 

5 -1.00 -0.85 +4,27 18.85/79.80 

6 -5.35 +0.66 +10.30 23.34/71.80 

7 -2.47 -0.38 +5.35 23.04/75.10 
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Addition of 4% N10774 to LDPE matrix has almost no effect in terms of ligtness but 4% 

N10776 decrease the ligthness. 5% I44 nanoclay addition decrease the lightness of standart 

film sample, increase the redness a bit and yellowness so much. So, opacity of film sample is 

increased while transparency is decreased. This effect can be clearly seen in Sample no 6. 

5% DK4 nanoclay addition decrease the ligthness, inrease greenness and blueness. So, opacity 

of film sample is increased, transparency is decreased. 

As a result of these evaluations, addition of additive such as nanoclay, ethylene absorber, 

generally transparency of film samples is decreased and opacity is increased. By colour of 

additive, the film samples gets a colour. 

4.1.9. Oxygen and Carbon Dioxide Gas Permeability Test Results 

Oxygen and carbon dioxide gas permeability tests were applied to LDPE and LDPE 

nanocomposite samples and results were given in Table 4.8. 

Table 4.8: Oxygen and Carbondioxide permeability test results. 

 

Film Sample (100-110 µ) 
Oxygen  permeability 

(cc/m
2
.24h) 

Carbon dioxide 

permeability 

(cc/m
2
.24h) 

1 1995.5 6159.7 

2 1333.0 4136.6 

3 1374.7 4234.8 

4 1451.1 6490.5 

5 2001.5 6212.7 

6 1268.5 4048.6 

7 1261.5 4753.6 

As it can be seen from the table, oxygen and carbon dioxite gas permeability were decreased 

by 35% through addition of 5% I44 nanoclay. Ethylene absorber effect is too low. But 

addition of both of ethylene absorber and nanoclay lowered the permeability amount greatly. 

4.2. Analysis Results For Food Packaging  

The prepared nanocomposite films were used to pack starwberry and parsley. The analysis 

performed on these foodstuffs will be given seperately each other. 
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4.2.1. Analysis Results of Strawberry  

A known weight of strawberries (around 120 g corresponding to four pieces) were packed in 7 

different pouches and stored at 0°C. 4 parallel study was initiated because of short shelf life of 

strawberry. For evaluation of changes occuring in strawberry samples, some criterias were 

determined and tests were performed. 

4.2.1.1. Gas composition changes  

Two series of samples were used to monitore gas changes. The results were given as avarage 

of these two series. The graphs of C2H4, O2 and CO2 gas changes of samples versus time were 

given in Appendice as Figure A.36, A.37, A.38, A.39, A.40, A.41, A.42. 

According to these graphs, it is clear that LDPE packages without additive have high ethylene 

concentration and high amount of oxygen gas (at the same time CO2 gas amount is increasing 

so fast in package) amount allow to fast spoilage. Respiration rate of strawberry in LDPE 

package is so fast therefore spoilage is accelerated. 

By addition of nanoclay to polymer matrix, oxygen permeability is decreased, so respiration 

rates of strawberries are lowered. 

By addition of ethylene absorber, ethylene concentration is lowered by 50% comparing to 

LDPE control package, acceleration effect of ethylene gas was eliminated. Among two kind 

of ethylene absorber additives which are N10774 and N10776, N10774 one was more 

effective and had more ethylene absorption capacity regarding previous pre-studies. 

Therefore, it was preffered to use N10774 encoded ethylene absorber in packages including 

nanoclay and ethylene absorber. 

In the packages including both barrier additive and ethylene absorber additive, it was 

managed to decrease oxygen and ethylene amount in headspace of packages.  

It was determined that, the nanocomposite materials are much better than LDPE packages in 

terms of gas changes results. 

But, more effective packages were sample 6 and 7 which have nanoclay and ethylene 

absorber to increase shelf-life since oxygen and ethylene amount is decreased to desired 

value.  

4.2.1.2. Weight lose analysis 

This parameter was crucial, due to every loss in weight being translated into an economical 

loss. Weight lose is important parameter to monitor spoilage rate. Because during respiration, 

strawberries lose water so much. In this study, at the end of the 10 days storage of 

strawberries, weight lose difference becomes more obvious. The weight lose graphs were 
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given in Appendice as Figure A.43. Ten days later, weight lose in LDPE packages reached to 

6,41% while in the other packages around 1-2%. Especially in the sample no 6 and 7 (which 

have both barrier and ethylene absorber additive), the weight lose was around 0,40-0,10%. 

This was an expected result because of lowered respiration rate and controlled gas 

configuration. 

4.2.1.3. pH changes  

During storage of strawberries, organic nutrition materials within the foodstuff are broken 

down to come up carboxyl acid materials. But acidity of these groups are not so high. So 

during 10 days storage, acidity does not change exceedingly. Acidity changes of strawberries 

during 10 days storage versus time was given in Appendice as Figure A.44. 

4.2.1.4. Sugar amount analysis 

As it is known, because of the broken of starch within strawberry, increase in sugar amount is 

an expected result. But sugar amount can not be understood previously, it is related to 

maturity of product. Therefore sugar amount changes were floating. Brix changes of 

strawberries during 10 days storage versus time was given in Appendices part as Figure A.45. 

4.2.1.5. Taste and general quality evaluation results of strawberry 

The graph of general quality changes of strawberries during 10 days storage versus time was 

given in Appendice as Figure A.46. According to results; after 5 days, strawberries stored in 

LDPE decreased down to acceptable limit while the other all packages are fresh and eatable. 

But at 8
th

 day, strawberries stored in the sample no 2, 3, 4 and 5 packages becomes spoiled 

while strawberries stored the sample no 6 and 7 was still above acceptable limit. At the end of 

10 days, according to trainers estimation, the strawberries stored the sample no 6 and 7 was 

still eatable. 

4.2.1.6. Shelf life analysis results of strawberry 

Every two days also photographies of 2 standard series were taken and all period were 

observed on these series. In this way, the conducted study was proved with photographs. The 

pictures of starwberries stored in sample no 1, 2, 3, 4, 5, 6 and 7 at 3
th

, 5
th

,8
th

, 10
th

 were given 

in Appendices part as Figure A.47, A.48, A.49, A.50, A.51, A.52 and A.53. By using 

nanocomposites packages, controlling the headspace gas concentration it can be achieved to 

increase shelflife of foodstuffs. All these tests conducted periodically confirm the pictures and 

shelflife analysis. 

 



 
55 

4.2.2. Analysis Results of Parsley  

A known weight of parsley (around 20 g) were packed in 7 different pouches and stored at 

0°C. 6 parallel study was initiated because of longer shleflife comparing to strawberry. For 

evaluation of changes occuring in parsley samples, some criterias were determined and tests 

were performed. 

4.2.2.1 Gas composition changes 

Two series of samples were used to monitore gas changes. The results were given as avarage 

of these two series. The graphs of C2H4, O2 and CO2 gas changes of samples versus time were 

given in Appendices part as Figure A.54, A.55, A.56, A.57, A.58, A.59, A.60. 

According to these graphs, it is clear that LDPE packages without additive have high ethylene 

concentration and high amount of oxygen gas (at the same time CO2 gas amount is increasing 

so fast in package) amount allow to fast spoilage. Respiration rate of parsley in LDPE 

package is so fast therefore spoilage is accelerated. But comparing to parsley, respiration rate 

of parsley is lower and shelflife is longer. 

By addition of nanoclay to polymer matrix, oxygen permeability is decreased, so respiration 

rates of parsleys are lowered. 

By addition of ethylene absorber, ethylene concentration is lowered by 50% comparing to 

LDPE control package, acceleration effect of ethylene gas was eliminated. Therefore, it was 

preffered to use N10774 encoded ethylene absorber in packages including nanoclay and 

ethylene absorber. 

In the packages including both barrier additive and ethylene absorber additive, it was 

managed to decrease oxygen and ethylene amount in headspace of packages.  

It was determined that, the nanocomposite materials are much better than LDPE packages in 

terms of gas changes results. 

But, more effective packages were sample 6 and 7 which have nanoclay and ethylene 

absorber to increase shelf-life since oxygen and ethylene amount is decreased to desired 

value. 

4.2.2.2. Weight lose analysis 

At the end of the 17 days storage of parsleys, weight lose difference becomes more obvious. 

The weight lose graphs were given in Appendices part as Figure A.61. 17 days later, weight 

lose in LDPE packages reached to 10,328% while in the other packages around 4-6%. 

Especially in the sample no 6 and 7 (which have both barrier and ethylene absorber additive), 



 
56 

the weight lose was around 2,3-2,5%. This was an expected result because of lowered 

respiration rate and controlled gas configuration. 

4.2.2.3. pH changes results 

During storage of parsleys, organic nutrition materials within the foodstuff are broken down 

to come up carboxyl acid materials. But acidity of these groups are not so high. So during 17 

days storage, acidity does not change exceedingly. Acidity changes of parsleys during 17 days 

storage versus time was given in Appendices part as Figure A.62. 

4.2.2.4. Taste and general quality evaluation results 

The graph of general quality changes of parsleys during 17 days storage versus time was 

given in Appendices part as Figure A.63. According to results; after 12 days, parsleys stored 

in LDPE started to turn yellow while the other all packages are fresh, green and eatable. But 

at 15
th

 day, parsleys stored in the sample no 2, 3, 4 and 5 packages turns yellow while 

parsleys stored the sample no 6 and 7 was still above acceptable limit. At the end of 17 days, 

according to trainers estimations, the parsleys stored the sample no 6 and 7 was still green and 

eatable. 

4.2.2.5. Shelf life analysis 

Every two days also photographies of 2 standard series were taken and all period were 

observed on these series. In this way, the conducted study was proved with photographs. The 

pictures of parsleys stored in sample no 1, 2, 3, 4, 5, 6 and 7 at 5
th

, 12
th

,15
th

, 17
th

 were given in 

Appendices part as Figure A.64, A.65, A.66, A.67, A.68, A.69 and A.70. By using 

nanocomposites packages, controlling the headspace gas concentration it can be achieved to 

increase shelflife of foodstuffs. All these tests conducted periodically confirm the pictures and 

shelflife analysis. 

4.2.3. Analysis Results of Iceberg Lettuce  

A known weight of iceberg lettuce (around 35 g) were packed in 7 different pouches and 

stored at 0°C. 6 parallel study was initiated because of longer shelflife comparing to 

strawberry. For evaluation of changes occuring in iceberg lettuce samples, some criterias were 

determined and tests were performed. 

4.2.3.1. Gas composition changes 

Two series of samples were used to monitore gas changes. The results were given as avarage 

of these two series. The graphs of C2H4, O2 and CO2 gas changes of samples versus time were 

given in Appendices as Figure A.71, A.72, A.73, A.74, A.75, A.76, A.77. 
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According to these graphs, it is clear that in the LDPE packages containing ethylene absorber, 

ethylene amount did not increase since absorbtion mechanism of ethylene gas works 

perfectly. 

Because of so low respiration rate of iceberg lettuces, oxygen and carbon dioxite gas 

concentration changes did not give an idea. Only because of their visual difference, it was 

approved to be used in this work. 

4.2.3.2. Weight lose analysis 

At the end of the 22 days storage of iceberg lettuces, weight lose difference becomes more 

obvious. The weight lose graphs were given in Appendices as Figure A.78. 22 days later, 

weight lose in LDPE packages reached to 15.45% while in the other packages around 8-9%. 

Especially in the sample no 6 and 7 (which have both barrier and ethylene absorber additive), 

the weight lose was around 6%. This was an expected result because of lowered respiration 

rate and controlled gas configuration. 

4.2.3.3. pH changes results 

During storage of iceberg lettuces, organic nutrition materials within the foodstuff are broken 

down to come up carboxyl acid materials. But acidity of these groups are not so high. So 

during 22 days storage, acidity does not change exceedingly. Acidity changes of iceberg 

lettuces during 22 days storage versus time was given in Appendices as Figure A.79. 

4.2.3.4. Taste and general quality evaluation results 

The graph of general quality changes of iceberg lettuces during 22 days storage versus time 

was given in Appendices as Figure A.80. According to results; after 15 days, iceberg lettuces 

stored in LDPE started to get wet much more than the other packages. This caused to 

accelerate the spoilage of iceberg lettuces. Iceberg lettuces packed in the LDPE film got softer 

after 18 days and quality droped dramatically while iceberg lettuces packed in the other 

packages were eatable and buyable. 

4.2.3.5. Shelf life analysis 

Every two days also photographies of 2 standard series were taken and all period were 

observed on these series. In this way, the conducted study was proved with photographs. The 

pictures of iceberg lettuces stored in sample no 1, 2, 3, 4, 5, 6 and 7 at 7
th

, 9
th

,18
th

, 22
th

 were 

given in Appendices as Figure A.81, A.82, A.83, A.84, A.85 A.86 and A.87. By using 

nanocomposites packages, controlling the headspace gas concentration it can be achieved to 

increase shelflife of foodstuffs. All these tests conducted periodically confirm the pictures and 

shelflife analysis. 
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5. CONCLUSION 

 
The destructive effect of the high oxygen and ethylene concentration in package should be 

eliminated and it was fulfilled by packaging material instead of using modified atmosphere 

technology. 

Firstly, the LDPE nanocomposite films having 100 micron thickness were prepared by using 

oxygen barrier and ethylene absorber additives. Two kind of organically modified nanoclays 

were used as oxygen barrier additive. N10774 and N10776 encoded additives obtained from 

Aksoy Plastic A.S. were used ethylene absorbers. 6 kind of LDPE nanocomposite films were 

prepared with different proportions. LDPE nanocomposite masterbatches were prepared by 

using counter-rotating twin screw extruder. Then, by using cast film line, film samples to be 

used in food packaging were prepared. 

The prepared 6 LDPE nanocomposite and 1 LDPE films were investigated structurally by 

XRD, POM and FTIR; mechanically by universal testing machine; thermally by DSC and 

TGA; process ability by MFI measurements points of view. 

According to XRD results, in nanocomposite materials which include nanoclay, 

exfoliated/intercalated mixture of morphology was obtained. This result is enough to obtain 

barrier property. 

FTIR results give the characteristic peaks belonging to nanoclay and ethylene absorber 

separately.  

By using DSC analysis, Tm and Tc points were determined of samples. It was obtained that 

addition of nanoclay and ethylene absorber to LDPE matrix increase Tm and Tc while ΔHm 

and ΔHc decrease. 

Degradation temperatures were obtained from TGA graphs and addition of additives decrease 

the degradation temperature and all of nanocomposite samples start to decompose at earlier 

temperatures.  

POM images help to see the dispersion of additives in polymer matrix. 
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Process abilities of LDPE nanocomposite samples were measured by MFI measurement 

technique and n-MFI values were calculated. By addition of DK4 nanoclay, melt flow was 

increased by 300%. I44 nanoclay does not have an effect on melt flow of LDPE. 

Mechanical properties of the LDPE nanocomposite samples were investigated from the main 

and cross direction of film samples separately and strength at break, strain at break and 3% 

secant modulus values were calculated. Addition of clay increase elongation of samples while 

decrease strength of material comparing to pristine LDPE film. Ethylene absorbers do not 

have an effect on mechanical properties of samples. 

Colour measurements of samples were measured in terms of their lightness, redness-

greenness, yellowness-blueness and opacity-transparency. Depending on the colour of 

additive, the film samples gain a colour a bit. Generally by addition of nanoclay and ethylene 

absorber, transparency was decreased and opacity is increased. 

Afterwards these investigations, strawberry, parsley and iceberg lettuce were stored in these 

different 7 packaging materials. One of these packaging materials is LDPE without additive 

and used as a standard. O2, CO2, C2H4 gas changes, weight loose, sugar amount changes, pH 

changes, general quality changes versus time were evaluated. 

As a result of overall these tests, the best packages were determined as sample no 6 and 7 

which have both of nanoclay and ethylene absorber additive. The desired gas values were 

obtained, weight loose was lower comparing to the other packaging materials. pH and sugar 

amounts did not give significant results for comparison. Taste and quality changes were 

monitored versus time and the result confirmed all of the other results. 

As a result of this study, it was obtained that, there is a big difference between LDPE 

packages and LDPE composite packages from the point of the taste and quality. Removing 

the gases which are playing crucial role on shelf life period of products increases shelf life of 

foodstuffs. Therefore, the packages including both barrier and ethylene absorber additives 

were best packages since these additives provide desired gas configuration in packages. 
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APPENDICES 

 

Figure A.1: XRD result of I44 nanoclay. 

 

 

Figure A.2: XRD result of DK4 nanoclay. 
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Figure A.3: XRD result of active ingredient of N10774. 

 

 

Figure A.4: XRD result of 5% DK4 nanoclay containing LDPE (Sample no:3). 

 

Figure A.5: XRD result of 4.5% I44 nanoclay+ 4% N10774 ethylene absorber 

containing LDPE (Sample no:6). 
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Figure A.6: XRD result of 4.5% DK4 nanoclay+ 4% N10774 ethylene absorber 

containing LDPE (Sample no:7). 

 

Figure A.7: FTIR spectrum of LDPE (Sample no:1). 

 

Figure A.8: FTIR spectrum of 5% I44 nanoclay LDPE (Sample no:2). 
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Figure A.9: FTIR spectrum of 5% DK4 nanoclay LDPE (Sample no:3). 

 

Figure A.10: FTIR spectrum of 4% N10774 LDPE (Sample no:4). 

 

Figure A.11: FTIR spectrum of 4% N10776 LDPE (Sample no:5). 
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Figure A.12: FTIR spectrum of 4.5% I44 nanoclay + 4% N10774 LDPE 

(Sample no:6). 

 

 

Figure A.13: FTIR spectrum of 4.5% DK4 nanoclay + 4% N10774 LDPE 

Sample no:7). 
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Figure A.14: DSC graphs of LDPE ( (a) heating and (b) cooling relatively) (Sample no:1). 

 

 

 

 

 

 

 

 

(a) 

(b) 
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Figure A.15: DSC graph of 5% I44 nanoclay LDPE ( (a) heating and (b) cooling 

relatively) (Sample no:2). 
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Figure A.16: DSC graph of 5% DK4 nanoclay LDPE ( (a) heating and (b) 

cooling relatively) (Sample no:3). 
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Figure A.17: DSC graph of 4% N10774 LDPE ( (a) heating and (b) cooling 

relatively) (Sample no:4). 
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Figure A.18: DSC graph of 4% N10776 LDPE ( (a) heating and (b) cooling 

relatively) (Sample no:5). 
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Figure A.19: DSC graph of 4.5% I44 nanoclay + 4% N10774 LDPE 

( (a) heating and (b) cooling relatively) (Sample no:6). 
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(b) 
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Figure A.20: DSC graph of 4.5% DK4 nanoclay + 4% N10774 LDPE ( (a) heatingand (b) 

cooling relatively) (Sample no:7). 

 

 

Figure A.21: TGA graph of I44 nanoclay. 

 

(a) 

(b) 
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Figure A.22: TGA graph of DK4 nanoclay. 

 

 

Figure A.23: TGA graph of active ingredient of N10774 ethylene absorber. 

 

 

Figure A.24: TGA graph of LDPE (Sample no:1). 
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Figure A.25: TGA graph of 5% I44 nanoclay LDPE (Sample no:2). 

 

 

Figure A.26: TGA graph of 5% DK4 nanoclay LDPE (Sample no:3). 

 

 

Figure A.27: TGA graph of 4% N10774 LDPE (Sample no:4). 
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Figure A.28: TGA graph of 4% N10776 LDPE (Sample no:5) 

 

Figure A.29: TGA graph of 4.5% I44 nanoclay + 4% N10774 LDPE (Sample no:6). 

 

 

Figure A.30: TGA graph of 4.5% DK4 nanoclay + 4% N10774 LDPE (Sample 

no:7). 



 
76 

 

Figure A.31: POM image of 5% I44 nanoclay LDPE film (Sample no:2). 

 

 

Figure A.32: POM image of 5% DK4 nanoclay LDPE film (Sample no:3). 

 

Figure A.33: POM image of 4% N10774 LDPE film (Sample no:4). 
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Figure A.34: POM image of 4.5% I44 nanoclay + 4% N10774 LDPE (Sample no:6). 

 

Figure A.35: POM image of 4.5% DK4 nanoclay + 4% N10774 LDPE 

(Sample no:7). 

 

 

Figure A.36: C2H4, O2 and CO2 gas changes versus time of LDPE package for 

   strawberry (Sample no:1). 
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Figure A.37: C2H4, O2 and CO2 gas changes versus time of 5% I44 nanoclay LDPE 

package for strawberry (Sample no:2). 

 

Figure A.38: C2H4, O2 and CO2 gas changes versus time of 5% DK4 nanoclay 

LDPE package for strawberry (Sample no:3). 

 

Figure A.39: C2H4, O2 and CO2 gas changes versus time of 4% N10774 LDPE 

package for strawberry (Sample no:4). 
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Figure A.40: C2H4, O2 and CO2 gas changes versus time of 4% N10776 package for 

strawberry (Sample no:5). 

 

Figure A.41: C2H4, O2 and CO2 gas changes versus time of 4.5% I44 nanoclay + 

4% N10774 package for strawberry (Sample no:6). 

 

Figure A.42: C2H4, O2 and CO2 gas changes versus time of 4.5% DK4 nanoclay + 

4% N10774 LDPE package for strawberry (Sample no:7). 
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Figure A.43: The graph of weight lose changes of strawberries during 10 days 

storage versus time. 

 

 

Figure A.44: The graph of pH changes of strawberries during 10 days storage 

versus time. 

 

 

Figure A.45: The graph of brix changes of strawberries during 10 days storage 

versus time. 
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Figure A.46: The graph of general quality changes of strawberries during 10 days 

storage versus time. 

 

    

Figure A.47: The strawberry pictures stored in LDPE packages at 3
th

, 5
th

,8
th

, 10
th

 

days (Sample no:1). 

 

    

Figure A.48: The strawberry pictures stored in 5% I44 LDPE packages at 3
th

, 

5
th

,8
th

, 10
th

 days (Sample no:2). 
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Figure A.49: The strawberry pictures stored in 5% DK4 LDPE packages at 3
th

, 

5
th

,8
th

, 10
th

 days (Sample no:3). 

 

    

Figure A.50: The strawberry pictures stored in 4% N10774 LDPE packages at 3
th

, 

5
th

,8
th

, 10
th

 days (Sample no:4). 

    

Figure A.51: The strawberry pictures stored in 4% N10776 LDPE packages at 3
th

, 

5
th

,8
th

, 10
th

 days (Sample no:5). 

 

    

Figure A.52: The strawberry pictures stored in 5% I44 + 4% N10774 LDPE 

packages at 3
th

, 5
th

,8
th

, 10
th

 days (Sample no:6). 
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Figure A.53: The strawberry pictures stored in 5% DK4 + 4% N10774 LDPE 

packages at 3
th

, 5
th

,8
th

, 10
th

 days (Sample no:7). 

 

Figure A.54: C2H4, O2 and CO2 gas changes versus time of LDPE package for 

parsley (Sample no:1). 

 

 

Figure A.55: C2H4, O2 and CO2 gas changes versus time of 5% I44 LDPE package 

for parsley (Sample no:2). 
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Figure A.56: C2H4, O2 and CO2 gas changes versus time of 5% DK4 LDPE package 

for parsley (Sample no:3). 

 

Figure A.57: C2H4, O2 and CO2 gas changes versus time of 4% N10774 LDPE 

package for parsley (Sample no:4). 

 

 

Figure A.58: C2H4, O2 and CO2 gas changes versus time of 4% N10776 LDPE 

package for parsley (Sample no:5). 
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Figure A.59: C2H4, O2 and CO2 gas changes versus time of 4.5% I44 + 4% N10774 

LDPE package for parsley (Sample no:6). 

 

Figure A.60: C2H4, O2 and CO2 gas changes versus time of 4.5% DK4 + 4% 

N10774 LDPE package for parsley (Sample no:7). 

 

 

Figure A.61: The graph of weight lose changes of parsley during 17 days storage 

versus time. 
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Figure A.62: The graph of pH changes of parsley during 17 days storage versus 

time. 

 

 

Figure A.63: The graph of general quality changes of parsley during 17 days 

storage versus time. 

    

Figure A.64: The parsley pictures stored in LDPE packages at 5
th

, 12
th

,15
th

, 17
th

 

days (Sample no:1). 
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Figure A.65: The parsley pictures stored in 5% I44 LDPE packages at 5
th

, 12
th

,15
th

, 

17
th

 days (Sample no:2). 

    

Figure A.66: The parsley pictures stored in 5% DK4 LDPE packages at 5
th

, 

12
th

,15
th

, 17
th

 days (Sample no:3). 

 

    

Figure A.67: The parsley pictures stored in 4% N10774 LDPE packages at 5
th

, 

12
th

,15
th

, 17
th

 days (Sample no:4). 

 

    

Figure A.68: The parsley pictures stored in 4% N10776 LDPE packages at 5
th

, 

12
th

,15
th

, 17
th

 days (Sample no:5). 
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Figure A.69: The parsley pictures stored in 4.5% I44 + 4% N10774 LDPE packages 

at 5
th

, 12
th

,15
th

, 17
th

 days (Sample no:6). 

    

Figure A.70: The parsley pictures stored in 4.5% DK4 + 4% N10774 LDPE 

packages at 5
th

, 12
th

,15
th

, 17
th

 days (Sample no:7). 

 
Figure A.71: C2H4, O2 and CO2 gas changes versus time of LDPE package for 

iceberg lettuce (Sample no:1). 
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Figure A.72: C2H4, O2 and CO2 gas changes versus time of 5% I44 LDPE package 

for iceberg lettuce (Sample no:2). 

 

Figure A.73: C2H4, O2 and CO2 gas changes versus time of 5% DK4 LDPE package 

for iceberg lettuce (Sample no:3). 

 

Figure A.74: C2H4, O2 and CO2 gas changes versus time of 4% N10774 LDPE 

package for iceberg lettuce (Sample no:4). 
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Figure A.75: C2H4, O2 and CO2 gas changes versus time of 4% N10776 LDPE 

package for iceberg lettuce (Sample no:5). 

 

 

Figure A.76: C2H4, O2 and CO2 gas changes versus time of 4.5% I44 + 4% N10774 

       LDPE package for iceberg lettuce (Sample no:6). 

 

 

Figure A.77: C2H4, O2 and CO2 gas changes versus time of 4.5% DK4 + 4% 

N10774 LDPE package for iceberg lettuce (Sample no:7). 
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Figure A.78: The graph of weight lose changes of iceberg lettuce during 22 days 

storage versus time. 

 

 

Figure A.79: The graph of pH changes of iceberg lettuce during 22 days storage 

versus time. 

 

Figure A.80: The graph of general quality changes of iceberg lettuce during 22 days 

storage versus time. 
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Figure A.81: The iceberg lettuce pictures stored in LDPE packages at 7
th

, 9
th

,18
th

, 

22
th

 days (Sample no:1). 

    

Figure A.82: The iceberg lettuce pictures stored in 5% I44 LDPE packages at 7
th

, 

9
th

,18
th

, 22
th

 days (Sample no:2). 

    

Figure A.83: The iceberg lettuce pictures stored in 5% DK4 LDPE packages at 7
th

, 

9
th

,18
th

, 22
th

 days (Sample no:3). 

    

Figure A.84: The iceberg lettuce pictures stored in 4% N10774 LDPE packages at 

7
th

, 9
th

,18
th

, 22
th

 days (Sample no:4). 
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Figure A.85: The iceberg lettuce pictures stored in 4% N10776 LDPE packages at 

7
th

, 9
th

,18
th

, 22
th

 days (Sample no:5). 

    

Figure A.86: The iceberg lettuce pictures stored in 4.5% I44 + 4% N10774 LDPE 

packages at 7
th

, 9
th

,18
th

, 22
th

 days (Sample no:6). 

 

 

Figure A.87: The iceberg lettuce pictures stored in 4.5% DK4 + 4% N10774 LDPE 

packages at 7
th

, 9
th

,18
th

, 22
th

 days (Sample no:7). 
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