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      FUZZY-PSO CONTROL OF LINEAR AND NONLINEAR SYSTEMS 

SUMMARY 

The goal of the thesis is to introduce a new global optimization method called 

particle swarm optimization that is implemented via MATLAB to use to find the 

optimal parameters for PID coefficients and Takagi-Sugeno rule base’s crisp values 

in order to control linear and nonlinear systems within specified operating 

conditions. The most important advantages of particle swarm optimization algorithm 

is that it requires less number of iterations and it enables us to deal with a few lines 

of computer codes in a cheapest manner rather than other optimization methods such 

as genetic algorithm. It requires only primitive mathematical operators in terms of 

both necessity of more available memory and speed. Particle swarm optimization 

method has been successfully applied to the design of coupled tanks system control 

with meaningful time domain criteria. 

Since the coupled tank system to be controlled is nonlinear and time varying 

charecteristic, it is almost not possible to find one set of parameters that satisfy for all 

operating conditions. Therefore some predetermined operating points have been 

chosen and find out the optimal control parameters’ values for the operating points 

while keeping Takagi-Sugeno crisps values constant for all operating points within 

the different ranges. Different functions are calculated for each controller parameters 

within different operating points based on the referenced height of tank two as an 

input value to the coupled tank system by using the predetermined points and least 

curve-fitting algorithm. It has been observed that these functions, which derive fuzzy 

controller parameters, have achieved very satisfactorly systems responses. 

This thesis is mainly composed of three parts. First part is to introduce the classical 

tuning methods, fuzzy control structure and particle swarm optimization algorithm. 

Ziegler Nichols, Set Point Weighting, Cohen Coon and lastly Internal Model Control 

methods have been reviewed as classical tuning methods. The focus in this thesis is 

to control linear and nonlinear system within specified operating conditions by fuzzy 

PID controller with particle swarm optimization technique as an optimization tool. 

The evaluation of particle swarm optimization algortihm is also reviewed and new 

proposed method, which is called improved particle swarm optimization, has been 

tested on different benchmark functions. At the end of testing of the benchmark 

functions, it is decided to use improved particle swarm optimization method due to 

its performance on the convergence rate and convergence precision compared to 

standard particle swarm optimization. The integration of fuzzy system to PID 

controller has been also studied and complete architecture of fuzzy PID controller 

has been designed to engage with improved particle swarm optimization as an 

optimization tool. 

Second part of this thesis is a preliminary study for the third part of the study. The 

aim is to implement improved particle swarm optimization technique as an 

optimization tool with fuzzy structured PID controller on different type of the 
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systems such as first order plus dead time system, second order plus dead time 

system and finally second order plus dead time oscilattory process model. The 

parameters of PID and the crisp values of the Takagi-Sugeno rule have been tuned 

offline for minimizing the performance criteria given as integral absolute error. The 

performance results in terms of maximum overshoot, settling time and rise time of 

the proposed approach have been depicted. By the guidance of the work on those 

systems and motivated by the good performances achieved, it is decided to 

implement the proposed method on nonlinear couple tank system to understand the 

applicability of the proposed study to control the water level on tank two which is the 

complete focus on the third part of the study. 

In the third part of the study, fuzzy PID controller with particle swarm optimization 

technique as an optimization tool has been applied to nonlinear and time varying 

characteristics of the coupled tank water system since nonlinear and time varying 

systems have been encountered almost all areas especially in process industries. The 

water levels between different ranges are chosen respectively as a three typical 

operating regions of second tank and input space is divided into three fuzzy 

subspaces based on operating regions. Fuzzy PID parameters have been calculated 

online by proposed method despite of the fact that Takagi Sugeno crisp values have 

been calculated offline and stored before calculating PID parameters for the three 

operating regions. We can generalize that Takagi-Sugeno crisp values, which are 

structural parameters, are determined offline design while the tuning parameters are 

calculated during online adjustment of fuzzy PID controller to enhance the process 

performance, as well as to accommodate the adaptive capability to system 

uncertainty and process disturbances. The proposed architecture is also tested in case 

of process disturbance and systems faults. Simulation results showed that the couple 

tank system was successfully controlled with acceptable performance criterions in 

both cases. 
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DOĞRUSAL VE DOĞRUSAL OLMAYAN SİSTEMLERDE BULANIK SÜRÜ       

PARÇACIĞI OPTİMİZASYONU YAKLASIMI İLE KONTROL 

ÖZET 

Bu tezin amacı, yeni optimizasyon yöntemi olan parçacık sürü optimizasyon 

algoritmasını MATLAB’e uygulayarak bulanık PID kontrolörü katsayıları ve 

Takagi-Sugeno kural tabanındaki keskin değerleri cevrimdışı optimize ederek 

doğrusal ve doğrusal olmayan sistemlerin belirli çalışma koşulları altında kontrolünü 

sağlamaktır. Parçacık sürü optimizasyonunun diğer optimizasyon yöntemlerinden, 

örnek olarak verilmesi gerekirse genetik algoritmadan, en önemli avantajı 

optimizasyon sırasında az sayıda iterasyon içermesi, kolay anlaşılabilir olması ve 

bize kompleks olmayan az sayıda yazılmış bilgisayar kodları ile kolay ve ucuz bir 

şekilde uğraşmamızı sağlamasıdır. Genetik algoritma ile olan benzerlikleri ise her 

ikiside populasyon tabanlı olup, tek set değerden diğer set değerlere geçerken 

deterministik ve olası kuralları kullanmaları sayılabilir. Son yapılan çalışmalara 

istinaden parçacık sürü optimizasyon yöntemi en az genetik algoritma kadar büyük 

oranda doğrusal olmayan yapıların çözülmesinde, yakınsama oranı ve yakınsama 

hassasiyeti bazında aynı sonuçları vermektedir. Ayrıca basit kodlar içermesinden 

dolayı hem bilgisayar hafızasından hem de zamandan tasarruf ettirip sonuclara en 

hızlı ve verimli şekilde ulaşmamıza yardımcı olmaktadır. Parçacık sürü optimizasyon 

yöntemi doğrusal olmayan ve zamanla değişen karakteristiğe sahip olan ikili tank 

sisteminde belirli çalışma aralıkları içerisinde bulanık PID kontrolör tasarımında 

kolayca ve başarılı bir şekilde uygulanabilmiştir. 

Yukarıda bahsedildiği gibi ikili tank sisteminin doğrusal olmayan ve zamanla 

değişen yapısından dolayı, kontrolör tasarımında tek set parametrelerin bulunması ve 

kontrol sırasında her bölge için aynı parametrelerin kullanılması neredeyse 

imkansızdır. Bu yüzden daha önceden belirlenmiş çalışma aralıkları içerisinde, 

Takagi-Sugeno kural tabanındaki parçacık sürü optimizasyon yöntemi ile optimize 

edilmiş katsayılar her bölge için sabit tutularak, değişik bölgeler için değişik optimal 

kontol parametreleri bulunup kontrol sırasında çevrimiçi olarak PID katsayılar 

hesaplanmıştır. Bulanık PID kontrolör parametreleri aynı zamanda ikili tank 

sisteminin ikinci tankındaki sıvı seviyesini giriş set değeri alarak farklı çalışma 

aralıklarında doğrusal regresyon yöntemi ile bulunan değişik kontrolör parametre 

fonksiyonları ile esnek bir yapıya dönüştürülüp farklı giriş değerleri, sistem 

gürültülerini hatta sistem hatalarını kompanze edecek duruma getirilimiştir. 

Böylelikle belirlenen çalışma bölgelerinde istenilen kontrol şartlarını sağlayan, 

değişik senaryolara sahip sistem hataları ve sistem gürültülerini bastıran adaptif 

yapıya sahip doğrusal olmayan bir sistemin geliştirilmiş parçacık sürü optimizasyonu 

yöntemi ve bulanık PID kontrolörü ile kontrolü sağlanmıştır. 

Bu tez çalışması üç yapıya bölünmüştür. İlk yapıda, kontrolör katsayılarının 

ayarlanmasında literatüre geçmiş olan klasik yöntemler açıklanmış ek olarak bulanık 

mantık yapısı ve parçacık sürü optimizasyonu ile integrasyonunun nasıl sağlandığı 

açıklanmıştır. Klasik yöntemler olarak, Ziegler Nichols, Set Point Weighting, Cohen 
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Coon ve son olarak Internal Model Kontrol yöntemleri incelenmiştir ve uygulanış 

prensipleri anlatılmıştır. Bu tezin amacı, doğrusal ve doğrusal olmayan sistemlerin 

daha önceden belirlenmiş çalışma aralıkları içerisindeki bulanık kontrolör 

parametrelerinin ve Takagi-Sugeno kural tabanındaki keskin değerlerinin parçacık 

sürü optimizasyon yötemi ile optimize edilerek sistem kontrolünün sağlanmasıdır. 

Optimizasyon aracı olarak seçilen parçacık sürü optimizasyon algoritmasının 

geçmişte ortaya çıkmasındaki sebepleri, diğer optimizasyon araçları ile arasındaki 

farkları, gelişme süreçleri ve algoritmanın temel prensipleri anlatılıp MATLAB 

fonksiyon yapısını kullanarak parçacık sürü optimizasyon algoritması yazılmıştır. 

Yazılan bu algoritma SIMULINK’te kontrol edilecek sisteme erişim sağlaması 

bakımından esnek ve dışarıdan ulaşılabilir hale getirilmiştir. Standart sürü parçacığı 

optimizasyon yöntemine kıyasla daha verimli hale getirilen geliştirilmiş parçacık 

sürü optimizasyon yöntemi, değişik kıyaslama fonksiyonları (Sphere fonksiyonu, 

Rosenbrock fonksiyonu, Rastrigin fonksiyonu ve Greiwank fonksiyonu) üzerinde test 

edilmiştir. Geliştirilmiş parçacık sürü optimizayonu ile kıyaslama fonksiyonları 

üzerindeki test işleminin sonunda, yakınsama oranı ve yakınsama hassasiyeti diğer 

standart parçacık sürü optimizasyon yönteminden daha iyi sonuçlar vermesi üzerine, 

geliştirilmiş parçacık sürü optimizasyon yöntemi bundan sonraki çalışmalarda 

optimizasyon aracı olarak seçilmesine karar verilmiştir. İki farklı optimizasyon 

algoritmalarının test sonuçlarıda Matlab’de uygulanıp sonuçları tartışılmıştır. 

Bulanık mantık yöntemi, değişken koşullara çabuk ve kolay uyum sağlayabilme 

özelliğinden ve daha önceden belirlenen belirsizlikler altında karmaşık işlerle başa 

çıkabilme özelliğinden dolayı bu çalışmada kontrol algoritmasında kullanılmıştır. 

Bulanık önermedeki sonuç ifadesinin yapısına göre bulanık kural tabanı Takagi-

Sugeno tipi bulanık kurallardan oluşturulup tekli yapıya dönüştürülmüştür. Takagi-

Sugeno bulanık modelinin sonuç kısmında, bir belirgin (kesin) fonksiyon mevcuttur. 

Dolayısıyla bu model hem matematiksel, hem de dilsel ifadelerle oluşturulan bir 

model olarak görülebilir. Bu çalışmada tasarlanan bulanık PID, ifade kolaylığı 

açısından çoklu giriş tekli çıkış biçimindedir. Bulandırıcı olarak tekli bulandırıcı 

seçilmesinin sebebi ise gerçek sistemler üzerinde yapılan uygulamalarda hesap 

kolaylığı sağlamasındandır.  

Tekli bulandırıcı giriş değerleri olarak hata ve hatanın türevi işlem kolaylığı 

olmasından dolayı şeçilmiştir. Tasarım üçünçü bir değişken olan hatanın integralini 

de alacak şekilde esnek bir yapıya sahiptir. PID kontrol döngü yöntemi, basit yapıları 

ve tasarım kolaylıkları nedeniyle yaygın olarak endüstriyel kontrol sistemlerinde 

kullanılmasından dolayı bu tezde de doğrusal olmayan ve zamanla karakteristiği 

değişen ikili tank sisteminin kontrolünde uygulanmıştır. Proses kontrol 

uygulamalarının çoğu PI ve özellikle PID denetleyiciler ile yapılmaktadır. Zaman 

içinde çok sayıda denetleyici algoritmaları geliştirilse de, endüstride özellikle yüksek 

performans gerektirmeyen sistemler için yaygın kullanımı devam etmektedir. Gerçek 

sistemlerdeki doğrusal olmayan yapı ve oluşan parameter değişiklikleri nedeniyle, 

teoride uygulanan yöntemlerin uygulanmasında güçlükler yaşanmaktadır.  

Tezin ikinci kısmı, üçüncü kısmının başlangıcı niteliğindedir. Bu kısımda değişik 

kıyaslama fonksiyonları (Sphere fonksiyonu, Rosenbrock fonksiyonu, Rastrigin 

fonksiyonu ve Greiwank fonksiyonu) üzerinde test edilip, performansının 

yeterliliğinden dolayı kullanılmasında karar kılınan geliştirilmiş sürü parçacık 

optimizasyon modeli, bulanık yapıya sahip PID kontrolöründeki optimal katsayı 

değerlerinin elde edilmesinde kullanılarak, birinci dereceden ölü zamalı sistem, 

ikinci dereceden ölü zamanlı sistem ve son olarak ikinci dereceden ölü zamanlı 
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integral etkili sistem üzerinde uygulanıp, benzetimleri MATLAB’de yapılarak 

sonuçlar irdelenmiştir. Kullanılan bu sistemlerde elde edilen bulanık PID katsayıları 

ve Takagi-Sugeno kural tabanı keskin değerleri çevrimdışı olarak bulunmuş ve 

optimizasyon kriteri olarak IAE (integral etkili mutlak hata) seçilmiştir. Ayrıca ikinci 

dereceden ölü zamanlı sistem değişik optimizasyon kriterlerine göre optimize 

edilerek benzetim sonuçlarının kıyaslanması sonucu optimizayon kriteri 

belirlenmiştir. Karar verilen optimizasyon kriteri çalışmanın geri kalanında tüm 

benzetimlerde kullanılmıştır. Bahsedilen sistemler üzerinde kolayca uygulanışı ve 

vermiş olduğu sonuçların kabul edilebilirliği, tasarlanmış olan yapıyı, doğrusal 

olmayan ve zamanla karakteristiği değişen ikili tank sistemi üzerinde uygulanmasına 

karar verilmiştir. Böylelikle tasarlamış olduğumuz yapının doğrusal olmayan bir 

sistem olan ikili tank sisteminin kontrolünde uygulanabilirliği test edilmiş olacaktır. 

Bu çalışma ise tezin üçüncü kısmını oluşturmaktadır. 

Tezin üçüncü kısmında, optimizasyon aracı olarak seçilen geliştirilmiş parçacık sürü 

optimizasyonu, bulanık PID (oransal, integral etkili, türev etkili) kontrolörüne 

entegre edilerek, bu tür problemlerde iyi bilinen doğrusal olmayan ve zamanla 

karakteristiği değişen ikili tank sistemine uygulanmıştır. Sistem, aynı boyutlu iki 

silindirik sıvı tankının bir bağlantı borusuyla birleştirilmesiyle oluşturulur. Sistem, 

elektrikli pompa ile beslenirken, çıkış olarak ikinci tankın su seviyesi alınmıştır. 

Tekli tank sistemi ile doğrusal olmayan matematiksel denklemlerle ifade edilen yapı 

ikili tank sisteminin matematiksel denklemlerinin çıkarımında ve anlaşılmasıdan 

kolaylık olması bakımdan ele alınmıştır. Kütle-denge ve enerji denklemlerine göre 

matematiksel denklemleri çıkarılan yapı sistem kontrolünde kullanılmak üzere hazır 

hale getirilmiştir. Doğrusal olmayan ve zamanla karakteristiği değişen sistemlerin 

proses endustrisinde yaygın olarak karşılaşılmasından dolayı, tasarlanan yöntemin 

ikili tank sistemine uygulanmasına karar verilmiştir. Doğrusal olmayan sistemlerinin 

kontrolörünün zor olması klasik yöntemlerden farklı olarak diğer kontrol 

yöntemlerini, kullanmaya teşvik etmiştir.  

Tasarlanan çalışmada ilk önce, üç değişik çalışma bölgesi içerisinde tanımlanan 

ikinci tanktaki su seviyesi sırasıyla giriş set değeri olarak seçilmiştir. Seçilmiş olan 

üç bölge için sırasıyla arasında kalan her nokta için, geliştirilmiş parçacık sürü 

optimizayon yöntemi kullanılarak, bulanık PID optimal katsayıları ve Takagi-Sugeno 

keskin değerleri bulunmuştur. Her bölge için değişik girişlere göre kapalı çevrim 

bulunan katsayılar içerisinde uyguluk fonksiyonlarının en az olan parametreler 

seçilip bölge başına tanımlanmış ve parametreler o bölgeler için dondurulmuştur. Bu 

parametreler sistemin yapısal parametreleri olup çevrimiçi uygulamalarda sabit 

tutulmuştur. Sonuç olarak her bölge için üç set parametre değerleri elde edilmiştir. 

Üç bölge içerisinde tanımlı olan kapalı çevrim ile bulunan, bulanık PID katsayıları 

daha sonra sistemin adaptif yapı kazanabilmesi için, sistemin giriş set değerlerine 

göre doğrusal regresyon yöntemi kullanılarak her bölge için ayrı dördüncü dereceden 

PID katsayı fonksiyonlarına dönüştürülmüştür. Böylelikle çevrimiçi otomatik olarak 

ayarlanan bulanık PID katsayıları proses performansı için yararlı hale getirilmiş aynı 

zamanda sistem bilinmezlikleri ve proses gürültülerini kompanze edecek adaptif 

özellik kazandırılmıştır.  

Tasarlanan yapı, değişik genlikte ve yükseklikteki sistem girişlerine uygulanarak 

alınan sonuçların tatmin edici olduğu görülmüştür. Önerilen tasarım aynı zamanda 

değişik hata senaryolarına sahip ikili tank sistemine MATLAB/SIMULINK yardımı 

ile uygulanıp sonuçlar irdelenmiştir. Olası sistem arıza veya hatalardan bazıları, 

pompada farklı eyleyici hataları, Tank 1’in tabanında belli yarıçaplı daire biçiminde 
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bir delik, Tank 2’nin tabanında belli yarıçaplı daire biçiminde delik ya da her iki 

tankın tabanında belli yarıçaplı daire biçiminde delik olarak alınmıştır. Simülasyon 

sonuçları, değişik hata senaryolarına sahip ve sensor üzerinde gürültüsü olan ikili 

tank sisteminde kabul edilebilir sonuçlar verip sistemin tasarlanan yöntemle kontrol 

edilebilirliğini göstermiştir. Yötenmin başarımı, çift tanklı sıvı seviye kontrol 

sisteminin hatalı durumlarını içeren benzetim örnekleri ile gösterilmiştir.
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1.  INTRODUCTION 

The PID (Proportional Integral Derivative) controller has been utilized as the 

workhorse of the process control industry. It is accepted universally amongst 

researchers and practitioners within the control community. The main advantage is 

its simplicity that no such simple structure that is more effective, robust and 

comparable in its dynamics. The parameters of the PID controller is another research 

area that attaracts researchers. Various methods have been proposed to search the 

parameters of PID controllers such as Ziegler Nicholas, Set Point Weightining, 

Cohen Coon and Internal Model Control methods (M.Zuang, 1993). The methods are 

often not applied in practice due to the necessity of control personnel to learn new 

techniques that are complicated and often time consuming. Besides that, the 

performances of the methods are not good enough due to the presence of multiple 

numbers of local optima in the system.  Recently, as an alternative to the classical 

mathematical approaches, modern heuristic optimization techniques have been given 

much attention by many researchers because of their ability to find global optimal 

solutions and getting rid of the necessity of control operator within the process. 

Particle Swarm Optimization method whose mechanics is inspired by swarming and 

collaborative behavior of biological populations (Kenndy, J. and Eberhart, R., 1995) 

has been presented recently as a new evolutionary computational technique in 

various application fields. There has been much attention in terms of implementation 

of PSO in control theory. In addition, there are some comparison of effectiveness 

between PSO and other heurictic algorithm has been discussed thorugh some areas 

(Hassan, R., Cohanim, B. 2004). It is found out that PSO has the same effectiveness 

as other heuristic methods but significantly better computational efficiency on 

implementing some benchmark systems. 

1.1 Purpose of Thesis 

In this study, implementation of improved particle swarm optimization technique 

with fuzzy PID controller on different type of systems has been presented. The 
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parameters of PID and the crisp values of the rule base of fuzzy controller have been 

tuned offline to minimize some predetermined performance criterias. The 

performance results of the proposed approach have been depicted and it is seen that 

particle swarm optimization has been successfully implemented to the systems with 

better performance in terms of maximum overshoot, settling time and rise time. The 

proposed algorithm has been applied to nonlinear and time varying characteristics of 

the coupled tank system. The purpose is to control the height of tank 2 by fuzzy PID 

controller optimized by particle swarm optimization technique. Different liquid level 

ranges for tank two are chosen respectively as typical working points and input space 

is divided into three fuzzy subspaces based on working points. Even if the learning 

process is offline for the rule base, the fuzzy PID parameters are tuned online which 

make the parameters adjust in such a way that good performance will be ensured. 

In this study, improved particle swarm optimization has been applied with linear 

changes on inertia weight for velocity and positioning update rather than 

exponentional changes (Wang, D. 2009). It is observed that improved particle 

optimization is able to converge to optimal solutions as well by using linear changes 

approach. There have been different studies on choosing the objective fuction in 

particle optimization tuning methods (Gao, F. and Tong, H. Q., 2006). It is seen that 

the performance of the system would be better as well when applying typical fitness 

function as IAE. There are different aspects for the adjustment of rule base in 

literature such as modification of shema in fuzzy controllers. Due to the observed 

information being related to a past instant and this delay information causes 

unsatisfactory results, rule base shifting method can be applied on different systems 

(Yesil, E., Guzelkaya, M. 2008). This study has flexibility to implement those 

approaches as well in terms of shifting the rule base when considering time delays on 

coupled tanks systems. Another approach has been explained on coupled tank system 

is a neuro-fuzzy-sliding mode controller using sliding surface. Developing a 

nonlinear sliding surface and fixed boundary layer in order to compensate chattering 

that means high frequency oscillations of the controller output. Inside the boundary 

layer, fuzzy logic can ben applied as well as on the outside of the layer the sliding 

mode control can be applied (Boubakir, A, 2009). 



3 

 

2.  PID CONTROL 

The PID controller has been widely used in process industries, energy production, 

and transportation as well as in manufacturing. It is the most fundamental control 

strategy in the control area. PID controller is generally preferred for control actions 

because of its simple algorithm, ability to adapt to wide range of applications where 

it can ensure excellent control performances. PID controllers have survived from 

many changes in technology from mechanics and pneumatics to microprocessors. 

Especially, improvement of microprocessors has given a highlighted importance for 

the evaluation of the PID controllers. These improvements on the microprocessors 

have provided additional features on PID controllers such as automatic tuning, gain 

scheduling and continuous adaptation [1]. 

PID controllers can also be used in control systems where the precise mathematical 

model of the systems is not available and hence analytical design methods or 

conventional design methods cannot be used. Recent research has indicated that even 

though PID controllers may not provide optimal control, it provides satisfactory 

control [1]. 

The design and analysis of PID controller requires three parameters.   , proportional 

gain,   , integral time constant,   , derivative time constant. 

  

Figure 2.1 : Basic block diagram of PID controller. 

PID control law is stated in equation (2.1). 
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 ( )    [ ( )    
  

  
 

 

  
∫  ( )  ]     (2.1) 

 ( )      ( )   ( )     

Where u(t) is control input, e(t) is error which is difference between system output 

and set value. Equation (2.1) can be rewritten as a combination of the three terms : 

 ( )      ( )     
  

  
   ∫  ( )       (2.2) 

The P term is proportional to the error, the I term, which is proportional to the 

integral of the error, and D term refers to the derivative of the error. The controller 

parameters   ,    and    are called proportional gain, integral time and derivative 

time respectively. These terms can be interpreted as past, present and future in 

control actions [2]. 

2.1 Tuning Rules for PID Controllers 

As shown in Figure 2.2, for a PID controller, the tuning of the parameters indicated 

in the controller block can be very challenging. If the mathematical model of a plant 

can be derived, then  

we can conclude that it is most likely to implement various design strategies called as 

a fixed parameter tuning methods, to find out the parameters of the controller that 

will meet steady state and transient specifications. Nevertheless, if the mathematical 

model is not known or hard to derive then fixed parameter tuning methods can be 

applied just for only starting point and necessity of trial and error approach will be 

required without ensuring good performance. Therefore, we should go through 

heuristics approaches for tuning the PID parameters, which this study has given a 

focus on. In this chapter, some of the fixed parameter tuning methods are briefly 

reviewed. Those are Ziegler – Nichols method, Set –point Weighting method, Cohen 

– Coon method and finally Internal Model Control method [2]. 

 

Figure 2.2 : PID control of a plant. 
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2.1.1 Ziegler – Nichols method 

Controller tuning means selecting the controller parameters that will meet given 

performance spesifications. Ziegler – Nichols (ZN) is a tuning rule that proposes 

tuning strategy in terms of finding a set value for   ,    and    based on 

experimental responses or based on the value of   . This method is implemented 

when mathematical model of a system cannot be derived. It needs to be noticed that 

Ziegler Nichols (ZN) method cannot guarantee minimum overshoot in the step 

response. This method provides only the starting point for obtaining the optimal PID 

parameters. We need a sequence of fine tunings until an acceptable result is obtained. 

Ziegler – Nichols method offers two ways of implementing the tuning rules. In the 

first method, the step response of the plant is obtained experimentally. If the plant 

does not involve either integrators or dominant complex conjugates poles, the 

response will be seen as S shaped curve given in the Figure 2.3. The S shape curve is 

defined by two constants; delay time L and time constant T, which are derived by 

drawing a tangent line at inflection point of the curve [1]. 

 

Figure 2.3 : S-shaped response curve. 

The intersection of tangent line and coordinate axes give the parameters α, L. ZN 

method gives PID parameters directly as functions of α and L stated in Table 2.1. 

Table 2.1 : PID controller parameter obtained from ZN first method. 

Controller K Ti Td 

P  
 ⁄  ∞ 0 

PI      ⁄   
   ⁄  0 

PID      ⁄  2L 0.5L 
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In the second version of the Ziegler Nichols method, the plant controller parameters 

   and    are set to ∞ and zero respectively, which make the controller as 

proportional controller. When settings are done,    needs to be increased from zero 

to     (ultimate gain) at which the output first start to oscillate. It needs to be noticed 

that if the output is not oscillatory for any gain value then this method cannot be 

implemented to the system. After finding the ultimate gain and ultimate period, the 

controller parameters can be calculated from Table 2.2 below. 

Table 2.2 : PID controller parameter obtained from ZN second method. 

Controller K Ti Td 

P 0.5Kcr ∞ 0 

PI 0.45Kcr  
   ⁄     0 

PID 0.6Kcr 0.5Pcr 0.125Pcr 

2.1.2 Set-point Weighting method 

Although Ziegler-Nichols method has the ability to reject disturbances, the 

compensated system response to a step input may result in high overshoot or the 

computed control signal can be high which may lead to saturation of actuators. In 

order to compensate for these situations, set point for the proportional action can be 

weighted as below. 

 ( )       ( )   ( )     (2.3) 

The advantage of the set point weighting is to reduce overshoots in the closed loop 

set-point step response. With the above equation, the general controller equation 

becomes: 

 ( )     (     ( )   ( ))     
  

  
   ∫  ( )       (2.4) 

 

Figure 2.4 : Two degrees of freedom scheme of PID controller.  
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       (  
 

   
    )    (2.5) 

      (  
 

   
    )    (2.6) 

The value b is very important because of the fact that closed loop response is 

sometimes very sensitive to the weights. A small change in the value of b can result 

in completely different response of the system. In order to be in accordance with the 

set point changes, it is necessary to follow a procedure to determine b. Astrom and 

Hagglund mentioned the dominant pole design method in [3]. In this method, the 

closed loop system will take two complex conjugate poles and one pole on the real 

axis as -   with the set point weighting the closed loop system has zero at 

      
 

   
    (2.7) 

By choosing b so that      , we make sure that the set point does not excite the 

mode corresponding to the pole in   . This will work and will give good transient 

responses for the systems where the dominant poles are well damped (     ). For 

the systems where the poles are not well damped, the choice        yields a 

system with less overshoot [3]. 

The suitable parameter b can be calculated as:  

  

{
  
 

  
 

   

    
         

       (     )

    
             

   

    
         

    (2.8) 

2.1.3 Cohen-Coon method 

The Cohen-Coon tuning method is based on the first order plus dead time delay 

process model with main design specification as quarter amplitude decay ratio in 

response to load disturbance.  

    
  

    
        (2.9) 
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The main design objectives are to maximize the gain and minimize the steady-state 

error for P and PD controller. For PI and PID control, the integral gain is maximized. 

This corresponds to minimization of integrated error, the integral error due to a unit 

step load disturbance. For PID controllers three closed loop poles are assigned; two 

poles are complex and the third pole is located at the same distance from the origin 

as the other poles. 

The parameters   
   

 
⁄  and    

   ⁄  are used in Table 2.3. If the system can 

be defined by      and T, then it is possible to give tuning formulas with the help of 

Table 2.3. 

Table 2.3 : Controller parameters for Cohen-Coon method. 

     

    
 

K Ti Td 

P 
 

 
(
 

 
     )  

 

PI 
   

 
(
 

 
     ) 

         

      
  

 

PD 
   

 
(
 

 
     )  

           

       
  

PID 
    

 
(
 

 
     ) 

         

       
  

     

       
  

It may be difficult to choose desired closed-loop poles for higher order systems. If τ 

is small, controller parameters are close to others that are obtained by Ziegler 

Nichols tuning rules [3]. 

2.1.4 Internal Model Control method 

Internal Model Control (IMC) described by Morari and Zafiriou (1989) is a general 

design procedure for obtaining controllers that meet requirements for stability, 

performance and robustness of the control systems. A block diagram of such a 

system is shown in Figure 2.5. 
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Figure 2.5 : Closed loop system with controller based on the IM principle.  

If the model of the system   ( ) matches   ( ) and load disturbance is not present, 

the output of the model cancels the output of the process. In that case, the process 

turns to control in open loop. If there is a model mismatch and load disturbance is 

Z(s), then there will be feedback signal and feedback control will be applied. The 

first step in internal model control is to factor the transfer function modeling the 

process, 

  ( )    
 ( )  

 ( )    (2.10) 

where   
 ( ) is an inverse of   

 ( ) which contains only the left half plane poles and 

zeros and   
 ( ) contains all the time delays and rigt half plane zeros. The controller 

C(s) is defined as below, 

 ( )  (  
 ( ))

  
  ( )    (2.11) 

where   ( ) is a low pass filter which guarantees that the controller C(s) is 

realizable. The usual form of the filter is below. 

  ( )  
 

(     )
 

    (2.12) 

As indicated in the figure, the relation between a conventional feedback controller 

  ( ) and internal model controller C(s) expressed with 

  ( )  
 ( )

   ( )  ( )
    (2.13) 

or inversely: 
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 ( )  
  ( )

    ( )  ( )
    (2.14) 

The FOPDT model can be used in the internal model control, but the part of the 

transfer function modeling dead time has to be evaluated with Pade approximations. 

First order Pade approximation of the dead time is:  

      1    (2.15) 

and it leads an IMC PI controller with the following parameters: 

   
  

    
          (2.16) 

The recommended value for the filter time constant should satisfy          . 

The first order Pade approximation: 

       
        

        
    (2.17) 

The FOPDT model and IMC design lead to a PID controller with parameters: 

   
       

  (       )
    (2.18) 

      
   
 

    (2.19) 

      
     

       
    (2.20) 

and the recommended value for the filter time constant is           . 

IMC tuning rules are expressed in terms of process model parameters and can ben 

implemented after the identification of the process model [4]. 
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3.  FUZZY CONTROL 

Contrary to conventional control approaches where control techniques requires 

mathematical models of the system and by using the mathematical models of the 

system to design a controller depicted into differential equations, fuzzy control is 

based on fuzzy logic mathematical system that processes crisp values in terms of 

logical variables that take on continuous values between 0 and 1. In a way, 

differential equations are the languages of conventional control while heuristics and 

rules about how to control the system are the languages of fuzzy control. Fuzzy 

control methodology can provide the representation or reflection for manipulating 

and implementing an operator’s heuristic knowledge about how to control a system. 

Fuzzy control provides an efficient structure to convert linguistic information from 

human experts into numerical information. 

Lotfi Zadeh from University of California, Berkley, introduced the concept of fuzzy 

logic as a way of processing data by allowing partial set membership rather than 

crisp set membership. This approach was not implemented in control theories until 

mid 70’s because of lack of sufficient capability of the computers.  

In conventional control, even if the design of the system can be possible or the 

mathematical model of the complicated systems can be achievable, the model may be 

too complex to use in controller design. Especially, some conventional techniques for 

construction of controllers require some assumptions while linearizing a nonlinear 

system. Hence, fuzzy control has been developed to find some alternative control 

techniques for control theory rather than struggling with failure modes on 

conventional control techniques [5]. 

In terms of performance objectives and design constraints, there is no difference 

between conventional control and fuzzy control since purpose is still to meet same 

type of closed loop specifications like minimum overshoot, minimum settling time, 

low steady state error etc… Fuzzy systems have been used in a wide range of 

applications in science, medicine, engineering, business etc… Fuzzy control has been 
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successfully used in aircrafts, automobiles, manufacturing systems, process control 

and robotics. Advantages of the fuzzy control can be summarized below 

 An explicit model of the plant or process is not required 

 Human experience, expertise and qualitative knowledge can be incorporated 

 Incomplete, imprecise, general and approximate knowledge may be 

incorporated. 

 Explicit optimization is not needed 

 Suitable for large-scale and complex systems where analytical modeling is 

difficult. 

3.1 Internal Structure of Fuzzy Controllers 

The fuzzy controller is mainly composed of four main components. First part is the 

“fuzzification” which converts controller inputs into information that inference 

mechanism can easily perceive to activate and implement rules. Second part is the 

“rule base” where the knowledge is kept in the form of fuzzy logic sets of rules. 

There are different kinds of rule bases, such as Mamdani type of rule base, Singleton 

type of rule base, Takagi-Sugeno type of rule base and Tsukamoto type of rule base. 

In this study, Takagi-Sugeno type of rule base is used with particle swarm 

optimization technique. Third part is the “inference mechanism” which evaluates the 

expert’s decision making in interpreting and deciding what the control input to the 

plant should be given. Last part of the fuzzy controller is the “defuzzification 

interference” which converts fuzzy outputs decided by the inference mechanism into 

the crisp input to the plant [6]. 

 

Figure 3.1 : Internal structure of fuzzy controller in closed loop control system. 
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3.1.1 Fuzzification 

Fuzzification is the first step of fuzzy inference process that decomposes crisp inputs 

measured by sensors to fuzzy sets. The crisp inputs such as height, temperature, 

pressure or velocities are evaluated by inference engine as fuzzy inputs. Each crisp 

input has their own group of membership functions or sets that are to be processed by 

the fuzzy inference unit. Different fuzzy sets can be defined linguistically for 

different systems. It will be discussed in further chapters that, in this study, in order 

to decompose crips inputs of e and de/dt for fuzzy inference engine, three triangular 

membership functions have been defined between [-1, 1] as Negative, Zero and 

Pozitif as illustrated below. 

 

Figure 3.2 : Membership functions for e,    and de,   . 

These sets cover the other sets partially, hence some crisp inputs are members of 

different fuzzy sets. However, each input has different degrees of membership in 

different fuzzy sets. These membership degrees are utilized in controller processes. 

3.1.2 Rule Base 

Fuzzy rules are linguistic IF-THEN constructions which have the general form of “if 

A then B” where A and B are condition and conclusion respectively. The controller 

can be applied to either multi-input-multi-output (MIMO) problems or single-input-

single-output problems. The controller needs normally three different crisp inputs 

that are the error, the change of error and the integrated error. In principle, the third 

variable, the integral of error is hard to define by the operators and engineers. 

Therefore, it is generally preferred to use two inputs, the error and the change of the 
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error. To simplify, the control objective is to regulate some process output around a 

prescribed set point or reference. 

A linguistic controller contains rules in the IF-THEN format such as, 

1. If error is negative and change in the error is negative then output is negative 

big. 

2. If error is negative and change in the error is zero then output is negative 

medium. 

3. If error is negative and change in the error is pozitif then output is zero. 

4. If error is zero and change in the error is negative then output is negative 

medium etc… 

3.1.3 Inference Mechanism 

The inference mechanism has two main tasks; the first task is to determine the firing 

strength of each rule. Crisp inputs that passed through the fuzzification and became 

fuzzy inputs are evaluated for each rule in the rule base. Depending on the defined 

membership functions of the inputs, some of the rules will be fired. 

The other task is to combine the outputs of fired rules to obtain a fuzzy set as the 

overall output of the inference mechanism. This output will be the input of the 

defuzification stage where it is converted to a crisp value. 

3.1.4 Defuzzification 

The output of the inference engine is the input of the defuzzification stage. The fuzzy 

set, which is the output of the inference mechanism, is converted to a crisp value by 

using defuzzification methods in order to get a scalar value as the control input to the 

system. There are various methods for defuzzifications. The centroid method is the 

most popular one in which the centre of the mass of the result gives the crisp value. 

Another approach is the height approach, which takes the value of the biggest 

contributor. 
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3.2 PID Tuning Method Using Fuzzy Logic 

Different structures of fuzzy controllers have been studied and developed recently. A 

simple way of constructing a fuzzy PID controller is to combine a fuzzy PD 

controller with an integrator and to add a summation unit at the output as depicted 

below; 

 

Figure 3.3 : Fuzzy PID controller. 

The design of the fuzzy PID controller above has less number of rules and scaling 

factors compared to other fuzzy PID structures [6]. 

 

Figure 3.4 : Block diagram of fuzzy tuning PID controlled system. 

In this study, fuzzy logic controller parameters are tuned in terms of an optimization 

of the parameters with particle swarm optimization. Error and change in error are the 

inputs of defuzzification, as analog inputs, which will then be processed in terms of 

linguistic variables in order to make inference engine analyze the information. While 

processing of inference engine, from the standpoint of optimization approach, some 

predetermined fitness functions can be used to minimize the error by adjusting values 

of inference engine or parameters of fuzzy controller. 
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4.  PARTICAL SWARM OPTIMIZATION 

Particle swarm optimization is a recently proposed heuristic search method for 

optimization of continuous nonlinear functions, inspired by the swarm methodology. 

The method was derived through simulation of simplified social models such as bird 

flocking, fish schooling and swarming theory in particular. Kennedy and Eberhart 

invented partical swarm optimization in the mid 1990’s while trying to simulate the 

choreographed, graceful motions of swarms of birds. Particle swarm optimization 

has two roots. One of them is to tie to artificial life. It is also related to evolutionary 

computation such as genetic algorithms and evolutionary programming. The ability 

of flocks of birds, schools of fish and herds of animals to adapt to their environment, 

to avoid predators and to find rich sources of foods by implementing an “information 

sharing” approach intrigued the inventors of the methodology. Among other heuristic 

search methods, it can be easily implemented in a few lines of computer code in the 

cheapest manner. It requires only primitive mathematical operators, which makes it 

advantageous in terms of both availability of larger memory and higher speed. 

Particle swarm optimization has successfully been applied to a wide variety of 

problems such as neural networks, structural optimization, share topology 

optimization and fuzzy systems. 

4.1 The Evolution of Paradigms of Particle Swarm Optimization 

Reynold, Heppner and Grenander firstly presented bird flocking with simulations 

(Reynolds, C., 1987). Reynold was interested in the choreography of bird flocking, 

nevertheless Heppner and Grenander were interested in the main logic underlying 

how birds flock synchronously, changing their direction suddenly. Both of these 

scientists had the idea that local pressures make the graceful motions of swarms of 

birds. The intent which underlyies bird flocking is the manipulation of inter-

individual distances which means being a function of birds’ effort to maintain an 

optimum distance between themselves and their neighbors [7]. 
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4.2 The Etiology of Particle Swarm Optimization 

In order to easily understand the concept of particle swarm optimization, it would be 

better to explain its conceptual development. The algorithm began as a simulation of 

simplified social milieu. Particles were assumed collision-proof birds and the original 

intent was to simulate the unpredictable group dynamics of bird flocking behavior. 

As sociobiologist, E.O Wilson has written in reference to fish schooling, “In theory 

at least, individual members of the school can profit from the discoveries and 

previous experience of all other members of the school during the search for food. 

This advantage can become decisive, outweighing the disadvantages of competition 

for food items, whenever the resource is unpredictably distributed in patches” 

(Wilson, 1975). 

4.2.1 Simulating a social behaviour 

A number of scientists have created computer simulations of various interpretations 

of the movement of organisms in a bird flock or fish schooling. Both model relied 

heavily on manipulation of inter-individual distances; that is, the synchrony of 

flocking was thought to be a function of birds’ efforts to maintain an optimum 

distance between themselves and their neigbors. Reynolds proposed a behavior 

model in which each agent follows three rules [7].  

 Seperation: Each agent tries to move away from its neighbors if they are too 

close. 

 Alignment: Each agent steers towards the average heading of its neighbors. 

 Collision: Each agent tries to go towards the average position of its 

neighbors. 

The following models are given in the following figure respectively for illustration of 

the simple concept. 
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Figure 4.1 : Seperation, alignment and collosion (Reynold, 1987). 

4.2.2 Nearest neighbor velocity matching and craziness 

The first attempt for simulation was to write a computer code based on nearest 

neighbor velocity matching and craziness. A population of particles were randomly 

located on a torus pixel grid and with velocities in x and y directions.  

 

Figure 4.2 : Particles on a torus pixel with velocities (Reynold, 1987). 

At each iteration for each particle, a loop in the program decides which other agent is 

its nearest neighbor and assign that particles’ X and Y velocities to the agent in 

focus. This adjustment of each individual’s velocities and positions according to 

agent in focus makes a synchrony of movement [7].  

To give the simulation lifelike appearance, a stochastic variable called “craziness” 

was added to randomly chosen X and Y velocities. In birds’ flocking or fish 

schooling, a bird or a fish often changes direction suddenly. This is described by 

using a “craziness” factor.   
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4.2.3 Roost and the cornfield vector 

A new feature called “roost” which is introduced as a dynamic force factor was 

presented in Heppner’s simulations. The roost attracted them until they finally landed 

there. This eliminated the need for a variable like craziness. In this simulation, the 

particles knew the position of the roost but in real life, great number of birds will find 

a roost even though they had no previous knowledge of its location. So each agent 

shared information with its neighbors, originally all other agents, about its closest 

location to the roost [7]. 

Kennedy and Eberhart, inventors of particle swarm optimization, included a roost in 

Heppner-like simulation given in the following figure, so that:  

 Each particle was attracted towards the location of the roost. 

 Each particle remembered where it was closer to the roost. 

 Each particle shared information with its closest location to the roost. 

 

 

Figure 4.3 : Roost used in Heppner-like simulations to attaract the particles. 

Instead of a known position, the authors defined a cornfield vector and each particle 

was programmed to evaluate its present position. If the point (100,100) represents the 

cornfield, the function value is zero at that point and the proposed function is 

expressed as (4.1). 

 

 (   )   √(     )   √(     )  

 

(4.1) 

The proposed velocity and the position update of the particles are given such that 

each particle remembers the best value       and the best position        and       . 

Its X and Y velocities are updated in a simple manner as shown below: 
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                 then                          
   (4.2) 

 

                 then                          
   (4.3) 

Each particle knows the globally best position of one member of flock has 

found       ,        so far and its value is                      . Again X and Y 

velocities are updated as expressed below: 

 

                 then                          
   (4.4) 

 

                 then                          
   (4.5) 

 The new position is calculated as below: 

 

             
(4.6) 

Deduction of the nearest velocity matching makes the optimization slightly faster and 

changes the visual effect more likely to swarm from flock. If            and 

           are set relatively high, the flock seems to rapidly converge into the 

cornfield. If            and            set low, the flock swirls around the goal and 

approaches it realistically and finally lands onto the target. If            is set 

relatively higher than           , it results in the excessive wandering of isolated 

individuals through the problem space while the reverse results in the flock rushing 

prematurely towards local minima. Approximately equal values of two increments 

seem to result in the most effective search of problem domain. 

4.2.4 Modifications of the proposed method 

Some experimentation revealed that instead of adjusting the velocities on a crude 

inequality test like “if presentx > bestx, make it smaller”, “if present < bestx, make it 

bigger”, it would be better to revise the algorithm to make it easier to understand and 

to improve its performance. Therefore, the velocity was adjusted according to 

difference of current velocity and best velocity of an individual achieved so far. The 

necessity of removing the increments was soon realized because there is no way to 

guess which one should be larger in order to yield good performance. Therefore, 
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these two terms were also removed out of the algorithm. The current simplified 

particle swarm optimization now adjusts the velocities more swarm like than any 

other paradigms.  

It became more obvious that the behavior of the population of agents is now more 

like a swarm rather than a flock. Swarm Intelligence systems are typically made up 

of a population of simple agents interacting locally with one another and with their 

environment. The agents follow very simple rules, and although there is no 

centralized control structure dictating how individual agents should behave, local 

interactions between such agents lead to the emergence of complex global behavior. 

Natural examples of swarm intelligence include ant colonies, bird flocking, animal 

herding, bacterial growth and fish schooling. Millonas proposed five basic principles 

of swarm intelligence [7]. 

 Proximity principle: The population should be able to carry out simple space 

and time computations. 

 Quality principle: The population should be able to respond to quality factors 

in the environment.  

 Principle of diverse response: The population should not commit its activities 

along accessively narrow channels. 

 Principle of stability: The population should not change its mode of behavior 

every time the enviroment changes. 

 Principle of adaptability: The population must be able to change behavior 

mode when it is worth to computational price.  

4.3 General Particle Swarm Optimization Algorithm 

As mentioned in previous section, particle swarm optimization belongs to the 

category of swarm intelligence methods related to evolutionary computation 

techniques motivated by biological genetics and natural selection. Particle swarm 

optimization shares many similarities with genetic algorithm as an evolutionary 

computation technique. One important similarity is that both are initialized with a 

population of random solutions and searches for optima by updating generations. The 

dynamics of population in particle swarm optimization is similar to the collective 
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behavior and self-organization of socially intelligent organisms. All single 

individuals in the population capitalize information between the other’s and benefit 

from their discoveries while exploring the local minima. 

The basic particle swarm optimization algorithm consists of three steps; generating 

particles’ positions and velocities, velocity update and position update. In this 

algorithm, a particle, which can be represented as a point in design space, tends to 

change its position from one move to another move based on velocity updates.  

At first, the positions   
  and velocities   

  of the initial swarm of particles are 

randomly generated using upper and lower bounds on the design variables values 

     and     , as shown in equations (4.7) and (4.8).  

 

  
           (          

(4.7) 

 

 

  
  

         (         )

  
 
        

    
 

 

(4.8) 

The second step is to update the velocities of all particles at time k+1 by using the 

particles fitness values which are functions of the particles current positions in the 

design space at time k. The fitness function value is used to decide which particle has 

the best global value in the current swarm,   
 

 and determines the best position of 

each particle over time,   . The velocity update formulation uses this information for 

each particle in the swarm. The velocity update formulation also includes some 

random parameters, which are represented by uniformly distributed variables, to 

ensure good coverage of the design space and avoid getting captured in local optima. 

The update formula for velocities is given in equation (4.9).  
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where     
  is the velocity of particle i at time k+1, w is the inertia weight ranging 

between 0.4 to 1.4,    is self confidence factor ranging between 1.5 to 2,    is  swarm 

confidence factor chosen between 2 to 2.5. It can be easily said that velocity update 

formulation is made up of a combination of current motion, particle memory 

influence and swarm influence.   
  is limited by a max velocity      as below [8]. 

 

    {

            |   |      

                       

                     

 

 

 

   (4.10) 

 

The last step is to update the positions of all particles at time k+1. The position of 

each particle is updated using its velocity vector as shown in equation (4.11) and 

depicted in Figure 4.4.  

 

    
    

      
    

   (4.11) 

 

Figure 4.4 : Depiction of the velocity and position updated in PSO. 

 Sometimes     
  can be modified as [9]: 

    
    

       
           (4.12) 

where   is constriction factor, normally    .  

 

    
|    √     |⁄    (4.13) 
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with         and    . A complete theoretical analysis of the derivation of 

(4.13) can be found in [22, 23]. The complete flow diagram of particle swarm 

optimization algorithm depicted in Figure 4.5.  

 

Figure 4.5 : Flow diagram of a particle swarm optimization. 
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4.4 An Improved Particle Swarm Optimization Algorithm 

The particle swarm optimization is a stochastic optimization technique for finding 

optimal regions of nonlinear continuous functions through the interaction of 

individuals in the swarm. An improved particle swarm optimization algorithm is 

used in this study in all applications since it ensures better performance and faster 

convergence compared to classical particle swarm optimization. The new algorithm 

is applied to some benchmark problems; the numerical experiments show that 

improved particle swarm optimization algorithm has better performance than the 

standart particle swarm optimization and partical swarm optimization with inertia 

weight. 

While PSO runs, the inertia weight w decreases either linearly or exponentially 

depending on the value of constant k.  

     (     )          (4.14) 

In most application of the algorithm    takes the value of 0.95 and    takes 0.4. As 

mentioned above particle swarm optimization is able to search more globally at the 

begining of the algorithm because of the large inertia weight. But, when the number 

of iterations increase, inertia weight decreases and algorithm looses the ability of 

searching globally to searching more locally. But it has now high efficiency in 

convergence due to the small inertia weight. The new proposed velocity update based 

on improved algorithm can be modified as [9] 
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   (4.15) 

New social weight is brought to the existing velocity update formula. The intention is 

to make social weight increased while inertia weight decreasies. In this case small 

social weight makes the global best position   
 

 have minor impact on the velocity 

updating. At the end of the run, the large social weight ensures the best particles 

information make a great influence on the swarm search behavior. According to the 

above proposed method, the structure of the algorithm isn’t changed except adding 

the small social weight.  



27 

 

4.4.1 Experimental results and discussion 

In order to show the performances of the improved algorithm, the numerical 

experiments are conducted on various benchmark functions such as Sphere function, 

Rosenbrock function, Rastrigin function and Greiwank function.  

 

 Sphere function 
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   (4.16) 

 Rosenbrock function 
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 Rastrigrin function  
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 Greiwank function  

 

  ( )  
 

    
∑  

  ∏    (
  

√ 
)   

 

   

 

   

 

 

   (4.19) 

For the above four functions, the dimension which treated as population size, search 

range and the optimal value are listed in Table 4.1.  All the fuctions will be evaluated 

within the specific set values in order to ensure consistency. The purpose of the 

comparison is to check the performance of the improved particle optimization on 

different benchmark functions to understand if it is worth to use such approach for 

getting better performance in further studies. 
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Table 4.1 : The parameters used in benchmark functions. 

Function Name Dimensin n Range 

[         ] 

Optimal Value 

Sphere  30 [-100, 100] 0 

Rosenbrock 30 [-2.048, 2.048] 0 

Rastrigrin 30 [-5.12, 5.12] 0 

Griewank 30 [-600, 600] 0 

 

These numerical experiments are used to compare three particle swarm optimization 

algorithms including SWPSO as improved PSO, WPSO as standart PSO and 

SWPSO-Random as randomly changing inertia weight improved PSO. The 

population size is set to 30 and maximum number of iteration is set to 5000 in all 

simulation. The self confidence factor    and the swarm confidence factor    are set 

to 2. The inertia weight w decreases linearly from 0.95 to 0.4 with constant k = 1. 

The fitness evolutionary curves of four benchmark functions for all three algorithm 

are depicted below. 

 

Figure 4.6 : The fitness evolutionary curve of sphere function. 



29 

 

 

Figure 4.7 : The fitness evolutionary curve of rosenbrock function. 

 

Figure 4.8 : The fitness evolutionary curve of rastrigin function. 



30 

 

 

Figure 4.9 : The fitness evolutionary curve of griewank function. 

As an interpretation of the figures, we can conclude that SWPSO-Random has the 

best performance on the convergence rate and convergence precision compared to 

the standart WPSO and SWPSO. We can also conclude that SWPSO has better 

performance with respect to standart PSO. Therefore, in the remaing part of the 

study, SWPSO-Random  will be used for evolution for other simulations for further 

topics. The status of the 30 particles as the simulations run are depicted in Figure 

4.10. According to this figure, it can be easily understood that while the algorithm 

runs, particles tends to attain optimum values to ensure global optimum of the fitness 

function. For example, when the algorithm runs to approximate the sphere function, 

all the particles are set to 0 finally which makes the fitness function converge to 0.  
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Figure 4.10 : The particle placement while algorithm run. 

4.4.2 Partical Swarm Optimization and Genetic Algorithm 

Particle swarm optimization is similar to the genetic algorithm in such a way that 

both of these evolutionary algorithms are based on population search methods. 

Particle swarm optimization and genetic algorithm move from a set of points to 

another set by using a combination of deterministic and probabilistic rules. The 

genetic algorithm has the ability to solve optimization problems for highly nonlinear 

systems and used in today’s academia and industries. In spite of its ability for solving 

such complex systems, it has a drawback of being expensive in computational cost 

and it needs more memory for execution. According to recent researches, particle 
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swarm optimization has the same effectiveness in finding the global optimal solution 

as genetic algorithm but exhibits significantly better computational efficiency and 

performance. Particle swarm optimization and genetic algorithm are able to arrive at 

solutions with the same quality but particle swarm optimization is less 

computational-expensive and needs small memory than the genetic algorithm in 

general. Particle swarm optimization offers more computational savings for 

unconstrained nonlinear problems with continuous design variables as well. In all the 

applications for the rest of this study, improved particle swarm optimization is used. 

Parameters of the particle swarm optimization algorithm can be varied with respect 

to implementation on simulations [8]. 
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5.  OPTIMAL PARAMETERS OF THE FUZZY-PID CONTROLLER 

As mentioned earlier PSO is able to generate high-quality solutions within shorter 

computation time and has more stable convergence characteristics than other 

stochastic optimization methods. In this study, PSO is used for tuning the 

proportional integral derivative controller gains and the crips values of Takagi-

Sugeno rule base for a fuzzy PID controller and the results are presented. While the 

crips values of the rule base of the Takagi-Sugeno model are optimized using particle 

swarm optimization technique, fuzzy inference mechanism is used for specifying the 

consequent values of the controller output. The performance of the fuzzy PID 

autotuner has been well achieved by the use of the particle swarm optimization for 

optimizing the crisp values of the rulebase on different systems. In this chapter, first 

order plus dead time (FOPDT), second order plus dead time (SOPDT) and finally 

second order oscilattory process model have been in simulations and the results of 

using particle swarm optimization for parameter tuning process are given. 

5.1 Automatic Tuning : A Fuzzy – PSO Approach 

PID controller has been the most commonly used controller for the applications of 

process control. These controllers have solved most of the control problems in 

process control. PID controller has survived during the course of time even though 

the control technology developed more sophisticated methods. The most important 

effects of PID controllers in process controls are elimination of steady state error and 

generation of adequate corrective signals through the derivative action. 

PID controller captured much attention when the concept of automatic control first 

emerged. Nevertheless, unfortunately for a long time, researchers paid little attention 

to it because of the difficulty of tuning the three controller parameters by trial and 

error. Parallel to the increasing usage of the microprocessors, there has been a 

resurgence of interest in PID control. From then on, autotuning became a feature, 

which has been extensively used in PID controllers. Autotuners have much more 

advantages than others have since automatic tuning is faster than manual tuning and 
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it decreases the commissioning time for installation of new processes. In addition to 

manual tuning of the three parameters, step response and Ziegler – Nichols can also 

be used.  

The autotuners that have the ability of self-tuning have many techniques for 

increasing the performance of control process. In this thesis, the fuzzy inference 

mechanism is based on the Takagi-Sugeno model and the rule base is derived with 

the help of particle swarm optimization algorithm based on error criterias such as 

IAE, ISE and ITSE. The advantage of the proposed method is that it is less sensitive 

to the knowledge of process experts as mentioned earlier. The parameters of PID and 

crisp values of Takagi Sugeno that are to be optimized have been obtained offline by  

the help of the implementation of fuzzy controller and particle swarm optimization 

technique together. This approach has been applied to FOPDT, SOPDT, and SOPDT 

oscillatory systems based on predetermined error criterias [10]. 

5.2 The Fuzzy PID Controller 

The PID control law is generally of the form  

 ( )      ( )    ∫  ( )     
 

  
 ( )

 

 

 

 
   (5.1) 

where; e is the system error between desired and actual outputs, u is the control 

force,    is the proportional gain,    is the integral gain and    is the derivative 

gain. In conventional usage of the PID,    will have the effect of reducing the rise 

time but not eliminating the steady state error,    will have the effect of eliminating 

steady-state error while making transient response worse and finally    will have the 

effect of increasing the stability of the system. The purpose of using the fuzzy-PID 

controller is to design a set of PID gains with rulebase and inference mechanism such 

that the system output response satisfies certain spesifications.  In this thesis, the 

parameters of the PID and the crisp values of the rulebase of Takagi-Sugeno have 

been optimized by using improved particle swam optimization technique. Even 

though the proposed rule base is valid for all kinds of fuzzy logic controllers, in this 

study PID type of fuzzy logic controller will be used for various practical real time 

processes.  
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The error e and the change in error de have been used as the inputs of the fuzzy PID 

controller and the control signal (u) as the output of the PID type of fuzzy logic 

controller as illustrated in Figure 5.1.  

 

Figure 5.1 : An overall architecture of the fuzzy PID controller. 

In order to be able to access the parameters of fuzzy-PID and the crisp values of 

Takagi-Sugeno rule base by using particle swarm optimization technique, it is a 

necessity to design the controller in such way that all the tuning parameters must be 

reachable from anywhere in the system. The number of necessary fuzzy sets and 

their ranges are designed based upon the study in [10]. The inputs of the fuzzy logic 

controller are the error e and the change in error de whereas the output variable is the 

control signal u after defuzzification to the system. The universe of discourse for the 

input variables is divided into three regions using the following linguistic variables 

as Negative (N), Zero (Z) and Positif (P). Triangular membership functions are used 

in the controller design. The universe of discourse of the output variables is assigned 

crisp values since a Takagi-Sugeno rule base is implemented. Input variables are 

defined on the normalized domain of [-1, 1] whereas output variables have no any 

boundaries since they affect the inference mechanism of the controller. The heights 

of the membership functions are one. The membership functions of inputs are 

illustrated in Figure 5.2. According to the figure    refers to input of e and    refers 

to input of de. 



36 

 

Figure 5.2 : Membership functions for e,    and de,   . 

During the design of the fuzzy controller, normalized process variables are fuzzified 

by fuzzification process and sent to fuzzy inference engine. The crisp output value, 

which is derived from fuzzy inference mechanism by weighted average method, is 

multiplied with    and    parameters to compute the control signal to the contolled 

systems. The fuzzy inference mechanism is illustrated in Figure 5.3 [12]. 

 

Figure 5.3 : Fuzzy inference mechanism. 
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The fuzzy rule base is in the form of fuzzy conditional statement as given below; 

       e          de           u      

It is composed of the antecedent (if-clause) and the consequence (then-clause). In 

this study, Takagi-Sugeno type of fuzzy rule base is used and the lookup table is 

derived as shown in Table 5.1.  

Table 5.1 : Crisp values for rule base. 

e,de N Z P 

N          

Z          

P          

During the control process, normalized process variables e and de are fuzzified into 

fuzzy variables in order to compile through the fuzzy inference mechanism. The rule 

base is based on Takagi-Sugeno type model. According to Takagi-Sugeno modeling, 

even if A and B ancedent values are fuzzy values, the consequents should be crisp 

values. The control signal before multiplying the parameter of    and    will be 

crisps values as well. The proper rule base structure is very important from controller 

design point of view. In this study, particle swarm optimization tool is used for 

optimizing the 3x3 crisp values and the parameter of the PID controller   ,    

and   . Cumulative number of optimized parameters will be 12 [10]. 

5.2.1 Structure of the Takagi Sugeno rule base model 

Fuzzification and defuzzification of the fuzzy controller are carried out differently 

for different values of normalized e and de. Four possible cases for the derivation of 

the fuzzy inference mechanism and the rule base are summarized below. 

First Case:                   

The singleton values in the lookup table when process variables are between [-1, 0] 

are N-N (  ), N-Z (  ), Z-N (  ) and Z-Z (  ).  

Table 5.2 : Fired crisp values according to first scenario. 

e,de N Z P 

N          

Z          

P          
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Fuzzy rule base is a combination of optimized control rules. Takagi Sugeno’s 

minimum operation rule is used as fuzzy implication function. Weighted average 

method is used to defuzzify the inferred output as shown in (5.2). Inferred output will 

be multiplied with    and   to compute the control signal. 

 

  
  (   )(   )    (   )(    )    (   )(    )    (    )(    )

(   )(   )  (   )(    )  (   )(    )  (    )(    )
 

 

   

(5.2) 

Second Case:             and              

The singleton values in the lookup table when e is between [-1, 0] and de is between 

[0, 1] are N-Z (  ), N-P (  ), Z-Z (  ) and Z-P (  ).  

Table 5.3 : Fired crisp values according to second scenario. 

e,de N Z P 

N          

Z          

P          

Usign the same minimum operation rule and weighted average defuzzification 

method, the output of the inference mechanism is computed as: 

 

  
  (   )(  )    (  )(    )    (   )(    )    (    )(    )

(   )(  )  (  )(    )  (   )(    )  (    )(    )
 

 

   

(5.3) 

Third Case:            and               

The singleton values in the lookup table when e is between [0, 1] and de is between 

[-1, 0] are Z-N (  ), Z-Z (  ), P-N (  ) and P-Z (  ).  

Table 5.4 : Fired crisp values according to third scenario. 

e,de N Z P 

N          

Z          

P          

The output of the inference mechanism is computed as: 

 

  
  (  )(   )    (  )(    )    (   )(    )    (    )(    )

(  )(   )  (  )(    )  (   )(    )  (    )(    )
 

   

(5.4) 
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Fourth Case:            and              

The singleton values in the lookup table when process variables are between [0, 1] 

are Z-Z (  ), Z-P (  ), P-Z (  ) and P-P (  ).  

Table 5.5 : Fired crisp values according to fourth scenario. 

e,de N Z P 

N          

Z          

P          

The output of the inference mechasim is computed as: 
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(5.5) 

5.2.2 Implementation of Particle Swarm Optimization 

In Chapter 4, the efficiency of the improved particle optimization technique was 

proved on some benchmark problems. In this study, improved particle swarm 

optimization will be used for all the simulations due to its effectiveness in 

optimization. Particle swarm optimization starts with the initialization of individuals 

similar to other artificial intelligence based heuristic optimization techniques. In a 

physical n-dimensional search space, the velocity and the position of individual i are 

represented as the vectors    (         ) and    (          ) in the PSO 

algorithm.        (   
            

     ) and        (   
            

     ) are the 

best position of individuals and their neighbours’ best position, respectively. The 

velocity of individual i is derived under the following equation in PSO algorithm 

(5.6). 

  
        

           (      
    

 )

    (     )       (      
    

 ) 
 

   (5.6) 

where;   
  is the velocity of individual i at iteration k,   

  is the position of individual 

i at iteration k, w is the inertia weight,       is the weight factors,             

denotes random numbers between 0 and 1,       
  is the best position of individual i 

until iteration k, and best position of the group until iteration k is denoted as       
 . 
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Each individual moves from the current position to the next one by modified velocity 

using the following position update equation (5.7). 

  
       

     
       (5.7) 

During updating of velocity and position, the parameters of w,       should be 

determined from the following equation. 

       
         

       
           (5.8) 

where,           are initial and final inertia weights, iter denotes current iteration 

number while running the simulation,         is the maximum iteration number. 

      are the confidence factors and are always set to the same number to give 

particle memory influence and swarm influence equal weight.      and -    will be 

used to limit the velocities of the particles. The PSO algorithm is summarized as 

follows: 

Step 1: Initialization of each individual. 

Step 2: Setting of weights. 

Step 3: Update of velocity, position and iterator. 

Step 4: Update of Pbest and Gbest, 

Step 5: Go to step two until stopping criteria as max iter or error goal has been 

satisfied  

5.3 Simulation Results 

The proposed algorithm for tuning the paramenters of a fuzzy - PID controllers have 

been applied to a number of process models. Simulations are performed for the first-

order dead-time process model (FOPDT), the second-order dead-time process model 

(SOPDT) and at the end, second-order oscillatory process model to test the proposed 

algorithm. In order to evaluate the models presented here on the same basis or 

criterias regarding particle swarm optimization, parameters of the algorithm are taken 

as listed in Table 5.6 for all models [10]. 
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Table 5.6 : Particle swarm optimization algorithm parameters. 

Swarm Size Number of particles 20 

Iterations Maximum iterations 250 

Error Goal Termination point 1e-10 

Dimension Coordinates of particles 12 

c1, c2 Self , swarm confidence 2 

w_start 
Velocity weight at the 

begining 
0.95 

w_end 
Velocity weight at the 

end 
0.40 

Vmax Maximum velocity 10 

Chi Constriction factor 1 

Objective Function - IAE Integral Absolute Error ∫| ( )|    

Objective Function - ISE Integral Square Error ∫  ( )    

Objective Function - 

ITSE 

Integral of time multiply 

Square Error 
∫   ( )    

5.3.1 First order plus dead time model 

A fuzzy PID controller is designed for a linear first order plus dead time (FOPDT) 

system. The parameters of the fuzzy PID controller and the crisp values of the 

Takagi–Sugeno rule base are tuned by improved particle swarm optimization 

technique. The transfer function for the FOPDT system is given by: 

 ( )   
    

    
    (5.9) 

For this FOPDT model, simulation results are shown for θ = 0.2 s and τ =1.0 s. The 

sampling time is taken as 0.01 s. The nine crisp values of the rule base are calculated 

by the proposed particle swarm optimization technique implemented using matlab, 

the values are given below: 

Table 5.7 : Crisp values for FOPDT – IAE. 

e,de N Z P 

N 9.2954    4.0313 4.8648 

Z -0.0062 0 -1.4033 

P 0.0561 -6.7924 20.0207 
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Overall structure of the FOPDT model is illustrated at Figure 5.4.  According to the 

system, the parameters of PID and the crisp values of the rule base have been tuned 

offline to minimize the performance criteria given as integral absolute error (IAE). 

The fitness evaluation curve for integral absolute error while searching the optimum 

values is illustrated in Figure 5.5. According to the figure, the final value of the 

fitness function derived via particle swarm optimization is 0.3001 at the end of the 

250 iterations. Total funtions evaluated is 5020 since algorithm runs 20 particles’ 

fitness functions per one iteration. A change in the fitness value during search is 

shown in Table 5.8 with iteration number. Ensured tuned parameters are given to the 

simulink as parameters after optimization since offline tuning has been applied to 

find the optimum values. Observed system response, error and control signal can be 

seen in Figures 5.6, Figure 5.7 and Figure 5.8 respectively. The saturation block in 

the system is used for limiting the process error e and change of error de between [-1, 

1]. The parameters of the PID which are derived from the optimization are    = 

0.2667,    = -0.73804 and    = -0.73821. A linearly decreasing inertia weight is 

used for particle swarm optimization algorithm since this is the most efficient way to 

get rid of the local minimas according to the researches. For further studies, this 

model would be taken as reference for examining the efficiency of the program with 

changing the necessary values in terms of PSO parameters. Another version of the 

improved particle optimization algorithm can be applied to the program since the 

program has the flexibility for further studies. The simulation results are shown in 

the graphs of system response for FOPDT. The proposed parameter tuning method 

was successfully achived in terms of rise time, and settling time.It is to be stressed 

that reductions in rise time and peak deviation or overshoot are the primarly concerns 

for improved performance. However, actual reduction in IAE would also be based on 

the values of θ, τ and T as well. 
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Figure 5.4 : The structure of FOPDT-IAE. 

 

Figure 5.5 : The fitness evaluation curve of FOPDT-IAE. 
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Table 5.8 : Fitness functions of IAE during execution. 

Iterations fGBest fevals Iterations fGBest fevals 

10 3,2801 220 130 0,4 2620 

20 3,2801 420 140 0,383 2820 

30 2,938 620 150 0,354 3020 

40 2,938 820 160 0,346 3220 

50 1,99 1020 170 0,331 3420 

60 1,99 1220 180 0,324 3620 

70 1,99 1420 190 0,303 3820 

80 1,7633 1620 200 0,303 4020 

90 0,81003 1820 210 0,302 4220 

100 0,40878 2020 220 0,301 4420 

110 0,40878 2220 230 0,301 4620 

120 0,40584 2420 240 0,301 4820 

130 0,39982 2620 250 0,300 5020 

 

 

Figure 5.6 : System response of FOPDT-IAE. 
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Figure 5.7 : Control signal for FOPDT. 

 

Figure 5.8 : Error and derivative of error for FOPDT – IAE. 
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5.3.2 Second order plus dead time model 

A fuzzy PID controller is designed for a linear second order plus dead time (SOPDT) 

system specified by equation (5.10). The parameters of the fuzzy PID controller and 

the crisp values of the Takagi–Sugeno rule base are tuned by improved particle 

swarm optimization technique. The proposed algorithm is implemented using 

integral absolute error (IAE), integral square error (ISE) and finally integral of time 

multiply square error (ITSE) in this simulation study. At the end, assessments for the 

performances with different fitness functions evaluation and the impact on system 

response, error and control signal has been discussed [10,13,14]. 

 ( )  
    

(     )(     )
    (5.10) 

where,                                    Sampling time is 0.01 sec. The 3x3, 

9 crisp values of the rule base have been calculated based on three different objective 

functions with the proposed methods indicated below by using Matlab and particle 

swarm optimization technique. 

Table 5.9 : Crisp values for SOPDT – IAE. 

e,de N Z P 

N 6.3178    -0.0471 3.3345 

Z 0.0885 -0.0002 1.2814 

P -2.7073 6.7767 5.4759 

Table 5.10 : Crisp values for SOPDT – ISE. 

e,de N Z P 

N -6.31924    -0.22271 -12.8071 

Z -0.89102 0.065926 -0.26551 

P 1.938938 -9.43175 8.051075 

Table 5.11 : Crisp values for SOPDT – ITSE. 

e,de N Z P 

N -9.64815    -0.55859 -6.9098 

Z -0.60387 0.00236 -1.68627 

P 8.824716 -13.2785 7.550065 
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Since the structure of the algorithm is heuristic, it is understandable to see the 

different values in the Takagi-Sugeno rule base with respect to different performance 

criteria. Overall structure of the model is illustrated at Figure 5.10 with difference 

based on performance indexes. The structures of the three different objective 

functions are depicted below at Figure 5.9.  According to the sytem, the parameters 

of PID and the crisp values of the rule base have been tuned offline for minimizing 

the performance criteria given as integral absolute error, integral square error and 

integral time multiplied by square error. The fitness evaluation curves for integral 

absolute error, integral square error and integral time multiplied by square error 

while searching the proper values are illustrated in Figure 5.11. It is observed that, 

among the performance criterias, ITSE is the most successful criteria to find the 

minimum fitness function by offline tuning. Computed tuned values are given to the 

system after optimization. The saturation block in the system is used for limiting the 

process variables between [-1, 1].   

Table 5.12 : Kp, Ki, Kd and Min values. 

Objective 

Function 
Kp Ki Kd 

      Min   

Fitness Funct 

SOPDT-IAE 0.523805    0.570019 2.212371 0.5859 

SOPDT-ISE -0.59097 -0.38646 -5.11098 0.4705 

SOPDT-

ITSE 
-0.38068 -0.23244 3.557233 

0.11954 

 

Figure 5.9 : Performance indexes. 
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Figure 5.10 : The structure of SOPDT-IAE,ISE,ITSE. 

 

 

                           

Figure 5.11 : The fitness evolutionary curves of IAE, ISE, ITSE. 
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Optimized parameters and the related fitness functions for three different 

performance criteria are listed in Table 5.12. Linearly decreasing inertia weight is 

used for particle swarm optimization algorithm since this is the powerfull method 

among other improved models. Particle placements as the algorithm runs are shown 

below with respect to different performance criterion. 

 

 

Figure 5.12 : Particle placement for SOPDT-IAE,ISE,ITSE. 

As it can bee seen above from particle placement for second order plus dead time 

system with different fitness criterion, all 20 particles are getting grouping partially. 

The 3 dimensions of the cubic are   ,    and    of the first 3 crisp values in Takagi – 

Sugeno rule base. In very few iterations, the entire 20 individuals are seen to be 

clustered within the tiny circle surrounding the goal and finally landing on the target. 

The performance of ITSE fitness criteria can also be seen better in particle 

placement. The step responses of the three different performance indexes are 

depicted below. 
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Figure 5.13 : Response of a SOPDT process model. 

In Table 4.13, the comparison of performance with the SOPDT monotone process 

model is shown. Different error criterias are chosen and it has been observed that in 

all cases the proposed technique produces better results than conventional control 

methods. Among the different performance indexes, IAE model produces better 

result than the others since maximum overshoot   ( )     , settling time 

                 

Table 5.13 : Performance analysis for the monotone SOPDT. 

Objective 

Function 
Mp (%)   (s)   (s) 

      Min   

Fitness Funct 

SOPDT-IAE 4.25         6 0.8 0.5859 

SOPDT-ISE 22 10 0.6 0.4705 

SOPDT-

ITSE 
15 8.7 0.6 

0.11954 

The control signals computed for second order monotone dead time system based on 

different performance indexes are shown below. 
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Figure 5.14 : Control signal for a SOPDT process model. 

5.3.3 The second order oscillatory process model 

A fuzzy PID controller is designed for a second order oscillatory process model with 

considerable dead time. This process model has been chosen becasuse this type of 

the process is hardly to control due to the inherent oscillatory nature. A linear second 

order plus dead time system (SOPDT2) is considered and the parameters of the fuzzy 

PID controller and the crisp values of the Takagi–Sugeno rule base are tuned by 

improved particle swarm optimization technique. The proposed algorithm is applied 

to the following system (5.11) [10,13,14]. 

 ( )  
    

 (   )
 

 

   (5.11) 

where,       . Sampling time is 0.01 sec. The 3x3 crisp values of the rule base 

have been derived from the proposed methods indicated below by using Matlab and 

particle swarm optimization toolbox. Overall structure of the model is illustrated at 

Figure 5.15.  According to the sytem, the parameters of PID and the crisp values of 

the rule base have been tuned offline to minimize the performance criteria given as 

integral absolute error (IAE). Computed values have been entered to the system after 

optimization and system response, error and change in error are observed. The 

saturation block in the system is used for limiting the process variables between [-1, 
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1]. The parameters of the PID which derived from the optimization are    = -1.6032, 

   = -0.865 and    = -0.0343. Linearly decreasing inertia weight is used for particle 

swarm optimization algorithm since this is the most efficient way to get rid of the 

local minimas according to the researches. The observed variables can be seen from 

Figure 5.16, Figure 5.17 and Figure 5.18 respectively. 

Table 5.14 : Crisp values for SOPDT2 - IAE 

e,de N Z P 

N 2.0041    4.5428 -5.0768 

Z 0.5766 0.047 -2.7698 

P 2.5991 -5.3052 -7.4069 

 

Figure 5.15 : The structure of SOPDT2-IAE. 



53 

 

Figure 5.16 : System response of SOPDT2-IAE. 

 

Figure 5.17 : Control signal for SOPDT2-IAE. 
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Figure 5.18 : Error and derivative of error for SOPDT2-IAE. 

5.4 Conclusion 

In this study, tuning the paramaters of a fuzzy controller, which was investigated 

using particle swarm optimization technique. Standart tuning techniques such as 

Zeigler - Nichols, Cohen-Coon, Set point weighting method used in optimization 

toolbox of MATLAB failed to provide good solution because of the presence of a 

number of local optima. Presented approach has been followed which utilized 

evolutionary computation for optimization of 12 floating-point elements. By using 

different performance indexes, proposed method has been applied to different 

systems to see the performance. It can be observed that same different performance 

indexes on identical systems yield different system responses and it can be concluded 

that in optimization, performance criterions are important to specify the parameters 

of fuzzy PID and crips values of the rule base. The algorithm is flexible to generalize 

in the sense that all of the parameters that have been tuned offline can be optimized 

online but it will take too time to finalize the simulation. It is expected that it would 

perform better in all types of applications especially in non-linear process systems 

where disturbances are likely to occur frequently. 
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6.  COUPLED TANK PROCESS CONTROL BY FUZZY PID 

The control of liquid level and flow rate between tanks has frequently been 

encountered in the process industries. The process industries often require the liquids 

to be pumped, stored or pumped to another tank. The purpose of the control in the 

process industries especially in tank systems is to control the level of fluid in the 

tanks as well as to regulate the flow between tanks. Level and flow control in tank 

systems are the most common practice in all chemical engineering systems. Petro-

chemicals industries, paper making industries and water treatment industries are 

some vital industries where liquid level and flow control are implemented. The 

proposed approach in this study is to design a fuzzy PID controller for a nonlinear-

coupled tank process system. In this approach, the design is based on minimizing the 

performance index by tuning the Takagi-Sugeno rule base values as well as PID 

parameters with particle swarm optimization algorithm to ensure robust control with 

minimum settling time and overshoot within specified operation conditions. The 

efficiency of this method is demosttrated on a coupled tank system where the 

connection between the tanks and flow in each tank are taken into account. 

Industial processes are generally nonlinear systems. Classical control methods are 

being used to control the nonlinear systems by linearizing the model around a steady 

state point. The PID paramters are then determined for a chosen set point using 

frequency response method or using pole placement. Because of inheritance of the 

nonlinearty of the process systems, it is an inevitable need to monitor and adjust the 

loops due to parameter variations and operating conditions changes. If the process 

system is updated online, the controller should be effective over a wider range of 

operating conditions. This control strategy provides the basis for the self-tuning 

approach to adaptive control of nonlinear systems. Another control strategy for 

nonlinear system control is using an empirical model that is developed from 

experimental data. The most attracted strategy for developing nonlinear dynamic 

models from input/output date is artificial neural networks. It has been also widely 

used in process control applications.  
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6.1 Modeling The Nonlinear Coupled Tank System 

It is crucial to understand the background of how the coupled tanks system works. 

This is the system modeling and it is very important part of control system analysis. 

To begin with look at a single tanks system in Figure 6.1 to understand how to derive 

the coupled tank system [15,19]. 

 

Figure 6.1 : A single tank fluid level system. 

The system model is determined by the flow    into the tank and the flow    leaving 

through the valve at the tank bottom. Using a balance of flows, the equation of the 

tank can be expressed as: 

       
  

  
    (6.1) 

where, A is the cross-sectional area of the tank and H is the height of the fluid in the 

tank. If the valve behaves like an ideal sharp edged orifice, then the flow through the 

valve is related to the fluid level in the tank, H by the expression 

      √       (6.2) 

where, a is the cross sectional area of the orifice.    is called the discharge 

coefficient of the valve. This coefficient stands for fluid charecteristics, irregularities 

and losses in the system. g stands for gravitational constant, which is equal to 
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980       . When the above equations are combined, we obtain the mathematical 

model that describes the system behavior of nonlinear single tanks system. 

 
  

  
    √          (6.3) 

In the tank level problem the nonlinearty is important to solve in order to ensure 

robust control. The nonlinearity is smooth and can be made linear at a particular 

operating level H by using the slope of the nonlinearity at H. The system dynamics 

will change as the normal operating level varies. The tank level controller does not 

perceive the parameter changes in the model.When the two tanks are joined the 

coupled tank system shown in Figure 6.2 is obtained [15]. 

 

Figure 6.2 : A coupled tank fluid level system. 

In particular, a coupled tank fluid level system is a well know benchmark problem 

for nonlinear control. It deals with a labarotory process using two tanks with fluid 

flow. In the simulation of fuzzy control with particle swarm optimization, two tanks 

are identical and cylindrical in shape, with a cross section of             . The 

cross section of the connection pipes is               and the liquid levels in the 

two tanks are denoted by   ( )      ( ) respectively. The supplying flow rates 

coming from pump to tank 1 are denoted by   ( ). There is an outflow from tank 2. 

By using balance equation and Toricelli’s rule, following rule can be obtained. 
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 ̇ ( )  (        (  ( )    ( ))√  |  ( )    ( )|    ( ))       (6.4) 

 ̇ ( )  (       (  ( )    ( )) √  |  ( )    ( )|

    √    ( ))    
   (6.5) 

where,           and           for outflow coefficients and g considered as 

gravity acceleration. For simplicity,            taken are 1. The overall parameters 

of the nonlinear-coupled tank system are listed in Table 6.1 [15]. 

Table 6.1 :  System parameters of coupled tank. 

Cross section areas of the tanks [  ]           

The cross sections of connection 

pipes[  ] 

                 

Gravity acceleration [    ] 9.81 

Height of the water [m]       

Flow rate from pump to tank1          ( ) 

Flow rate from tank2      ]   ( ) 

Outflow coefficients         

Height of the tanks [m] H=0.6 

 

Voltage of the pump is also limited between 0 and 10 V. System input is the voltage 

of the electrical pump, which is,   ( ) and it produces the entrance flow as below. 

 
 
( )    (    ( ))  ( )     (6.6) 

where                  coefficient of transition and   ( ) is transition error. 

The true entrance flow rate is written below. 

  ( )   
 
( )  (    )  ( )     (6.7) 
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where,    is coefficient of error. The only measuring device for the output signal is 

the pressure sensor under the tank 2 that transfers the water height of the second tank  

  ( ) to voltage of output   ( ).  

  ( )    (    ( ))  ( )     (6.8) 

where,               coefficient of height to voltage.   ( ) is the transition 

error. The upper limits of the errors are,            . When the dynamical 

equations are derived with the defined values, the nonlinear-coupled tank system 

mathematical model is obtained as given below [14]. 

  

 ̇ ( )                    (  ( )    ( ))√|  ( )    ( )|

             ( ) 
   (6.9) 

 ̇ ( )                   (  ( )    ( ))√|  ( )    ( )|

              √  ( ) 
   (6.10) 

 

The transition of the mathematical model into simulink is in Figure 6.3. 

 

Figure 6.3 : Simulink presentation of mathematical model. 
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6.2 Implemeting Particle Swarm Tuning Methodology 

The derived nonlinear model of coupled tank sytem has been used as a benchmark 

model for implementing fuzzy PID control with particle swarm optimization to tune 

the crisp values of Takagi-Sugeno values and PID coefficients for getting robust 

nonlinear control. In this study, the same particle swarm optimization technique that 

has been used so far was used to find the crisp values and coefficient of the fuzzy 

PID controller. Due to the nonlinearity of the process, set value has been limited 

between 0 and 0.3 and divided into 3 regions. The purpose of limiting the control 

trajectory is due to the limitation that the heights of the tanks are between 0 and 0.6m 

in the mathematical model. PSO optimization technique has been implemented in 

three regions separately with respect to desired input as shown below in order to 

capture all the transition values. The different regions are depicted in Figure 6.4. 

I.     0.00 - 0.15 ( first region) 

II.     0.15 - 0.20 ( second region) 

III.     0.20 - 0.30 ( third region) 

 

Figure 6.4 : Different control regions for transitions. 

When we run the PSO algorithm for different regions with different inputs between 

specific intervals, all the crisp values and fuzzy PID parameters are computed offline 

to control the system in specific regions. It can enable us to switch smoothly between 

different controls trajectories. The regions have been evaluated with the control 

signals depicted Figure 6.5, 6.6 and 6.7 and the ensured crisp values are shown in 

Table 6.2 for different regions [16,17]. 
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Figure 6.5 : 0.00-0.15 u(t) and h1(t), h2(t) for first region. 
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Figure 6.6 : 0.15-0.20 u(t) and h1(t), h2(t) for second region. 
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Figure 6.7 : 0.20-0.30 u(t) and h1(t), h2(t) for third region. 

 

Table 6.2 : Takagi-Sugeno crisp values on nonlinear-coupled tank system. 

Crisp Values for Fuzzy IPD k1 k2 k3 k4 k5 k6 k7 k8 k9 fxmin 

0.00-0.15 ( I. Region ) -19,4 13,07 8,51 21,80 0,00 -8,43 -15,6 -26,7 -32,6 8,87 

0.15-0.20 ( II. Region ) 44,66 -10,5 24,48 -10,4 0,00 11,53 5,83 9,35 -11,9 16,71 

0.20-0.30 ( III. Region ) -0,53 23,64 -0,57 27,73 0,00 -31,8 27,82 -11,3 11,01 24,07 

 



64 

It is well known that the mathematical model of a coupled tank system is nonlinear. 

This nonlinearity characteristic feature of the tank model makes it impossible to 

derive only one set of PID parameters between regions that would be valid for all 

operating points. In other words, optimal controller parameter values obtained for a 

particular operating point will not be optimal for another point. Therefore, optimal 

PID controller parameters are figured out by implementing least square fitting for 

some predetermined height conditions of the coupled tank. For this purpose, a set of 

functions for various operating conditions are calculated using least square fitting 

method for the controller parameters depending on the ensured constant Takagi-

Sugeno values. The optimum PID parameters for specific regions can be calculated 

as below: 

For 1
st
 region; 

   (                                    )       

   (                                    )                               (6.11) 

   (                                          )  

For 2
nd

 region; 

   (                                    )       

   (                                    )                             (6.12) 

   (                                    )        

For 3
rd

 region; 

   (                                   )       

   (                                   )                                (6.13) 

   (                                    )        

where, u is the set values of the coupled tanks sytems. Complete structure of the 

simulated coupled tanks system can be seen in Figure 6.8. 
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Figure 6.8 : Simulink representation of coupled tank system. 

6.3 Simulation Results 

Coupled tank system with fuzzy PID was simulated using MATLAB/SIMULINK. 

The parameters of fuzzy PID are given in the figures for each input. The control 

parameters were calculated online during the simulations and simulation results are 

shown on the following pages. 

 

Figure 6.9 : System response for first input signal. 
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Figure 6.10 : Changes on   ( ) and   ( ). 

 

Figure 6.11 : Control signal c(t). 
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Figure 6.12 : Error e(t). 

 

Figure 6.13 : Changes on   ,    and   . 
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Figure 6.14 : System response for second input signal. 

 

Figure 6.15 : Changes on   ( ) and   ( ). 
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Figure 6.16 : Control signal c(t). 

 

Figure 6.17 : Error e(t). 
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Figure 6.18 : Changes on   ,    and   . 

 

Figure 6.19 : System response for third input. 
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Figure 6.20 : Changes on   ( ) and   ( ). 

 

Figure 6.21 : Contol signal c(t). 
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Figure 6.22 : Error e(t). 

 

Figure 6.23 : Changes on   ,    and   . 
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Figure 6.24 : System response with band limited white noise on sensor. 

 

Figure 6.25 : Changes on   ( ) and   ( ) considering white noise. 
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Figure 6.26 : Control Signal with band limited white noise c(t). 

 

Figure 6.27 : Error with band limited white noise e(t). 
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Figure 6.28 : Changes on   ,   , and    with white noise. 

It needs to be noticed that above simulations have been derived with the assumption 

that there are no any faults in the system. The second part of the simulations are 

performed assuming there are faults in the system [21]. 

The fault classes under consideration are defined as follows; 

 Pump actuator fault; the equation given in (6.7) is the true entrance rate 

which includes         . It is considered that if        then the pump has 

20% actuator fault and if        then the pump has 50% fault in the 

actuator. When the simulations are performed with this type of fault in the 

pump, the below result are obtained. 
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Figure 6.29 : System response with 0%, 20% and 50% fault on the actuator. 

 

Figure 6.30 : Changes on heights with 0%, 20% and 50% fault on the actuator. 
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Figure 6.31 : Control signal with 0%, 20% and 50% fault on actuator. 

 

Figure 6.32 : Error with 0%, 20% and 50% fault on actuator. 
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Figure 6.33 : Changes on   ,    and    with 0%, 20%, 50% fault on actuator. 

 

 Leakage in Tank 1; We assume that the  leak is circular in shape and of 

known radius    . The outflow rate of the leak in tank 1 is given by: 

   ( )       
 √    ( )    (6.14) 

 Leakage in Tank 2; We assume that the  leak is circular in shape and of 

known radius    . The outflow rate of the leak in tank 2 is given by: 

   ( )       
 √    ( )    (6.15) 

The following simulation results have been obtained assuming there is a %20 fault 

on pump actuate and leakages on both tanks 1 and 2 of 7 mm radius. As it can be 

seen, fuzzy PID with particle swarm optimization has good performance against the 

system faults in terms of overshoot, rise time etc.. 



79 

 

Figure 6.34 : System response, 0% fault, 20% actuator fault, 7mm dia. holes. 

 

Figure 6.35 : Change on heights, 0% fault, 20% actuator fault, 7mm dia. holes. 
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Figure 6.36 : Control signals, 0% fault and 20% actuator fault, 7mm dia. holes. 

 

Figure 6.37 : Errors, 0% fault,20% actuator fault, 7mm dia. holes. 
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Figure 6.38 :   ,   ,   , 0% fault, 20% actuator fault, 7mm dia. holes. 

6.4 Conclusion 

In this study, a new global optimization method called particle swarm optimization 

was implemented via matlab to use in control of linear and non-linear systems. The 

most important advantage of particle swarm optimization algorithm is that it requires 

less number of iterations and it enables us to deal with a few lines of computer code 

in a cheapest manner. It requires only primitive mathematical operators in terms of 

both necessity of more available memory and speed. Then particle swarm 

optimization method has been successfully applied to the design of coupled tanks 

system control with meaningfull time domain criteria. 

Since the system to be controlled is non-linear, it is not possible to find a single set of 

parameters for all operating conditions. Therefore, some predetermined operating 

points have been chosen and the optimum control parameter values for the operating 

points are evaluated while keeping the Takagi-Sugeno crisp values constant for all 

operating points within the different ranges. Then, different functions are identified 

for each controller paramenter (  ,     ) for different operating points and regions 

based on the reference height of tank 2 by using the predetermined points and least 

squares curve fitting algorithm. It has been observed that these functions, which 

derive fuzzy controller parameters, have achieved very satisfactorly systems 

responses.
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7.  CONCLUSIONS, DISCUSSIONS AND RECOMMENDATIONS 

This study is mainly composed of three parts; first part introduces the classical tuning 

methods, fuzzy control structure and PSO algorithm. Our focus is to control linear 

and non-linear systems by fuzzy-PID controller tuned with PSO technique. After 

studying the evolution of the PSO technique, there was a requirement of revising 

standard PSO into improved particle swarm optimization in order to ensure robust 

control on systems and find best performance index. Some simulations on 

benchmark problems have been performed and it is decided to use the improved PSO 

for the rest of the studies because of the efficiency of the improved method in terms 

of ensuring the performance index much more accurate and ensuring less 

computational time. It is observed that improved PSO has the best performance on 

the convergence rate and convergence precision compared to standart PSO.  

The second part of this thesis is a preliminary study for the third part of the study. 

The aim is to implement improved PSO technique with fuzzy PID controller on 

different types of systems such as linear first order plus dead time system, second 

order plus dead time system and finally second order oscillatory process model. 

According to the systems that have been taken into account in the analysis, the 

parameters of PID and the crisp values of the rule base have been tuned offline for 

minimizing the performance criteria given as IAE integral absolute error. The 

performance results of the proposed approach have been depicted and it is seen that 

PSO has been successfully applied to the systems with good performance in terms of 

maximum over shoot, settling time and rise time. The algorithm is flexible to 

generalize in the sense that all of the parameters that have been tuned offline can be 

optimized with online opearation. By the guidance of the work on these systems and 

motivated by the good performances achieved, it is decided to implement the 

proposed method on nonlinear-coupled tanks system to understand the applicability 

of the proposed study to control of the height of the water in second tank, which is 

the structure of the third part of the study.  
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In the third part of the study, fuzzy PID controller with PSO technique has been 

applied to the control of non-linear and time varying characteristics of the coupled 

tank water system. The water level of    is taken as input variable. The water levels 

between 0-0.15, 0.15-0.20 and 0.20-0.30 are chosen respectively as 3 typical 

operating regions of    and input space is divided into three fuzzy subspaces based 

on operating regions. Then, the PID parameters are calculated by the proposed 

approach. Under the simulation tool of Simulink, the control effects of fuzzy PID 

with PSO algorithm are simulated for different ranges of water level as different 

operating points. After finding Takagi-Sugeno crisp values for each region by 

improved PSO technique with offline application, a Matlab function block, which 

includes functions of PID parameters, has been used to combine different crisp 

values for different ranges, which makes the fuzzy PID adaptable for possible 

operating conditions. Different set values of Takagi Sugeno in the Matlab function 

block are activated according to the height conditions. Also proper fuzzy PID 

parameters are set automatically during run with online. As a conclusion, the 

structural parameters are determined during offline design while the tuning 

parameters are calculated during online adjustment of fuzzy PID controller to 

enhance the process performance, as well as to accommodate the adaptive capability 

to system uncertainty and process disturbances. It is important to indicate that in this 

study, learning process for crisp values is offline and in order to find the proper crisp 

values with respect to different inputs in terms of height of tank 2, different 

algorithm runs have been required. Fuzzy PID with PSO algorithm is implemented in 

this study, which combines fuzzy PID, PSO technique, fuzzy control and PID control 

to arrange PID parameters and crisp values according to dynamics of controlled plant 

to achieve fast transient response, high steady state accuracy, good robustness and 

self-adaptation. The proposed architecture is also tested in the case of sensor noise 

and systems faults, simulation results showed that the coupled tank systems was 

successfully controlled with acceptable performance in both cases. The proposed 

algorithm is generalized in the sense that it tunes all the parameters of the PID 

controller online and it is expected that better performance is achieved in almost all 

type of applications especially in processes where disturbances are frequently 

encountered.  
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APPENDICES 

APPENDIX A: Particle Swarm Optimization Code 
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APPENDIX A  

function [fxmin, xmin, Swarm, history,iw] = pso(psoOptions) 

global SwarmSize; 

%Initializations 

if nargin == 0 

    psoOptions = get_psoOptions; 

end 

%For Displaying  

if psoOptions.Flags.ShowViz 

    global vizAxes; %Use the specified axes if using GUI or 

create a new global if called from command window 

    vizAxes = plot(0,0, '.'); 

    axis([-1000 1000 -1000 1000 -1000 1000]);   %Initially set to 

a cube of this size 

    axis square; 

    grid off; 

    set(vizAxes,'EraseMode','xor','MarkerSize',15); %Set it to 

show particles. 

    pause(1); 

end 

%End Display initialization 

 

% Initializing variables 

success = 0; % Success Flag 

iter = 0;   % Iterations' counter 

fevals = 0; % Function evaluations' counter 

 

% Using params--- 

% Determine the value of weight change 

w_start = psoOptions.SParams.w_start;   %Initial inertia weight's 

value 

w_end = psoOptions.SParams.w_end;       %Final inertia weight 

w_varyfor = 

floor(psoOptions.SParams.w_varyfor*psoOptions.Vars.Iterations); 

%Weight change step. Defines total number of iterations for which 

weight is changed. 

w_now = w_start; 

inertdec = (w_start-w_end)/w_varyfor; %Inertia weight's change 

per iteration 

 

% Initialize Swarm and Velocity 

SwarmSize = psoOptions.Vars.SwarmSize; 

Swarm = rand(SwarmSize, psoOptions.Vars.Dim)*(psoOptions.Obj.ub-

psoOptions.Obj.lb) + psoOptions.Obj.lb;% there might be a wrong 

it need a dot before * 

VStep = rand(SwarmSize, psoOptions.Vars.Dim); 

 

f2eval = psoOptions.Obj.f2eval; %The objective function to 

optimize. 

 

%Find initial function values. 

fSwarm = feval(f2eval, Swarm); 

fevals = fevals + SwarmSize; 

 

% Initializing the Best positions matrix and 

% the corresponding function values 

PBest = Swarm; 
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fPBest = fSwarm; 

 

% Finding best particle in initial population 

[fGBest, g] = min(fSwarm); 

lastbpf = fGBest; % last best point function (holding islemi 

goruyor) 

Best = Swarm(g,:); %Used to keep track of the Best particle ever 

fBest = fGBest;% ??? 

history = [0, fGBest]; 

iw = [w_start, w_now]; 

if psoOptions.Disp.Interval & (rem(iter, 

psoOptions.Disp.Interval) == 0) 

    disp(sprintf('Iterations\t\tfGBest\t\t\tfevals')); 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%                  THE  PSO  LOOP                          %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

while( (success == 0) & (iter <= psoOptions.Vars.Iterations) ) 

    iter = iter+1; 

     

    % Update the value of the inertia weight w ilk iterasyon 0.95 

le 

    % basliyor sonra 2. iterasyondan sonra degisme vuku buluyor. 

    if (iter<=w_varyfor) & (iter > 1) 

        w_now = w_now - inertdec; %Change inertia weight 

    end 

     

     

    %%%%%%%%%%%%%%%%% 

    % The PLAIN PSO % 

     

    % Set GBest 

    A = repmat(Swarm(g,:), SwarmSize, 1); %A = GBest. repmat(X, 

m, n) repeats the matrix X in m rows by n columns. 

    B = A; %B will be nBest (best neighbor) matrix 

         

    % Generate Random Numbers (Notice normally R1 and R2 must be 

a number between 0 and 1) 

    R1 = rand(SwarmSize, psoOptions.Vars.Dim); 

    R2 = rand(SwarmSize, psoOptions.Vars.Dim); 

     

    % Calculate Velocity 

    %SWPSO-Random 

    VStep = w_now*VStep + psoOptions.SParams.c1*R1.*(PBest-Swarm) 

+ psoOptions.SParams.c2*(1-w_now/2)*R2.*(A-Swarm); 

    %SWPSO 

    %VStep = w_now*VStep + psoOptions.SParams.c1*R1.*(PBest-

Swarm) + psoOptions.SParams.c2*(1-w_now/2)*(A-Swarm); 

    %WPSO 

    %VStep = w_now*VStep + psoOptions.SParams.c1*R1.*(PBest-

Swarm) + psoOptions.SParams.c2*R2.*(A-Swarm); 

    % Apply Vmax Operator for v > Vmax 

    changeRows = VStep > psoOptions.SParams.Vmax; 

    VStep(find(changeRows)) = psoOptions.SParams.Vmax; 

    % Apply Vmax Operator for v < -Vmax 

    changeRows = VStep < -psoOptions.SParams.Vmax; 

    VStep(find(changeRows)) = -psoOptions.SParams.Vmax; 
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    % ::UPDATE POSITIONS OF PARTICLES:: 

    Swarm = Swarm + psoOptions.SParams.Chi * VStep;    % Evaluate 

new Swarm 

     

    fSwarm = feval(f2eval, Swarm); 

    fevals = fevals + SwarmSize; 

     

    % Updating the best position for each particle 

    changeRows = fSwarm < fPBest; 

    fPBest(find(changeRows)) = fSwarm(find(changeRows)); 

    PBest(find(changeRows), :) = Swarm(find(changeRows), :); 

     

    lastbpart = PBest(g, :); 

    % Updating index g 

    [fGBest, g] = min(fPBest); 

 

    %Update Best. Only if fitness has improved. 

    if fGBest < lastbpf 

        [fBest, b] = min(fPBest); 

        Best = PBest(b,:); 

    end 

     

    %%OUTPUT%% 

     

        history((size(history,1)+1), :) = [fGBest]; 

        iw((size(iw,1)+1), :) = [w_now]; 

     

    if psoOptions.Disp.Interval & (rem(iter, 

psoOptions.Disp.Interval) == 0) 

        disp(sprintf('%4d\t\t\t%.5g\t\t\t%5d', iter, fGBest, 

fevals)); 

    end 

 

    if psoOptions.Flags.ShowViz 

        [fworst, worst] = max(fGBest); 

        DrawSwarm(Swarm, SwarmSize, iter, psoOptions.Vars.Dim, 

Swarm(g,:), vizAxes); 

    end 

     

    %%TERMINATION%% 

    if abs(fGBest-psoOptions.Obj.GM) <= psoOptions.Vars.ErrGoal     

%GBest 

        success = 1; 

    elseif abs(fBest-psoOptions.Obj.GM)<=psoOptions.Vars.ErrGoal    

%Best 

        success = 1 

    else 

        lastbpf = fGBest; %To be used to find Best zamansingoto 

zamazingo to zamazingo to zamazingo to  

    end 

 

     

end 

history; 

[fxmin, b] = min(fPBest); 

xmin = PBest(b, :); 

history = history(:,1); 
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iw = iw(:,1); 

figure; 

plot(history); 

figure; 

plot(iw); 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%                  VISULATION OF PARTICLES                 %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%DrawSwarm >> Internal function. 

% Purpose: To draw a visual display of the Swarm. 

% 

function DrawSwarm(Swarm, SwarmSize, Generation, Dimensions, 

GBest, vizAxes) 

X = Swarm; 

if Dimensions >= 3 

    set(vizAxes,'XData',X(1, :),'YData', X(2,:), 'ZData', 

X(3,:)); 

elseif Dimensions == 2 

    set(vizAxes,'XData',X(1, :),'YData', X(2,:)); 

end 

 

GenDiv = 100; 

xAx = GBest(1); 

yAx = GBest(2); 

zAx = GBest(2); 

 

zf = 100 * 50/Generation; %zoom factor 

 

if rem(Generation, GenDiv) == 0 

    axis([xAx-zf xAx+100 yAx-zf yAx+zf zAx-zf zAx+zf]); 

end 

 

title(Generation); 

drawnow; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%  INITIAL VALUES DEFINED IN TERMS of Structure Algorithm  %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% get_psoOptions :   A structure type of function which is going 

to be used 

%                    for setting the necessary values from 

outside of the 

%                    PSO Algorithm. 

% 

% Usage          :   psoOptions = get_psoOptions 

% Arguments      :   None 

% Return Values  :   psoOptions 

 

function psoOptions = get_psoOptions() 

 

psoOptions = struct('Flags', struct('ShowViz',1),... 

                    'Vars',  

struct('SwarmSize',15,'Iterations',250,'ErrGoal',1e-

10,'Dim',3),... 

                    

'SParams',struct('c1',2,'c2',2,'w_start',0.95,'w_end',0.4,'w_vary

for',1,'Vmax',50,'Chi',1),... 
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                    'Obj',struct('f2eval','cost1','GM',0,'lb',-

100,'ub',100),... 

                    'Terminate',struct('Iters',1,'Err',1),... 

                    

'Disp',struct('Interval',10,'Header',1,'Progress',1,'Footer',1),.

.. 

                    

'Save',struct('File','Results','IncludeFnName',1,'IncludeDim',1,'

IncludeSwarmSize',1,'Interval',10,'Header',1,'Footer',1)... 

                    ); 

% Flags = It is used for visulation of the particles while 

running ( it 

%         takes either 1 or 2 to activate visulation ) 

% Vars  = Particle Swarm Optimization variables  

% 

%         SwarmSize----->Number of the paricles defined in swarm  

%         Iterations---->Maximum iterations used for stopping 

criteria 

%         ErrGoal------->It is used for terminating the algorithm 

%         Dim----------->Dimension of the particle which is the 

coordinates 

%                        of the individual particle 

% 

% SParameters = Strategic parameters for PSO 

% 

%         c1 = self confidence factor, cognitive acceleration 

range in [1.5-2] 

%              usually takes 2 

%         c2 = swarm confidence factor, Social acceleration range 

in [2-2.5] 

%              usually takes 2 as well 

%         w_start = value of velocity weight at the begining  

%              usually takes 0.95 

%         w_end = value of velocity weight at the end of the pso 

algorithm 

%              usually takes 0.4 

%         w_varyfor = The fraction of maximum iterations, for 

which w is linearly varied  

%              usually takes 1 or 0.7 

%         Vmax = Maximum velocity step used for limiting the 

velocity of 

%                the particle, it is used like as below 

%    

%              

%                    Vij,  if |Vij|<= Vmax 

%             Vij=  -Vmax, if Vij<-Vmax      REF F. Gao and 

H.Q.Tong 2006 

%                    Vmax, if Vij>Vmax 

% 

%         Chi = Constriction Factor used for evaluating the 

positions of 

%               the particles and formulated below  

% 

%             Chi = 2k/|2-@-sqrt(@^2-4*@)| where k=1, @=c1+c2 so 

that 

%             usually takes Chi=1 

% 

% Obj = Objective Function Options 
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%    

%         f2eval = Function or system to be optimized ie 

Benchmark 

%                  functions as a function or Systems embedded in 

Simulink 

%         GM = value of the global minima which is used for 

stopping 

%         criteria as well. 

%         lb = Lower bound of initialization of the swarm 

coordinates 

%         ub = Upper bound of initialization of the swarm 

coordinates 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%  COMMUNICATION WITH SIMULINK & PSO ALGORITHM             %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function z=cost(x) 

global SwarmSize 

global  k1 

global k2 

global  k3 

global k4 

global  k5 

global k6 

global  k7 

global k8 

global  k9 

global Kp 

global Ki 

global Kd 

A=[]; 

for i=1:SwarmSize 

k1=x(i,1); 

k2=x(i,2); 

k3=x(i,3); 

k4=x(i,4); 

k5=x(i,5); 

k6=x(i,6); 

k7=x(i,7); 

k8=x(i,8); 

k9=x(i,9); 

Kp=x(i,10); 

Ki=x(i,11); 

Kd=x(i,12); 

sim('tolgakaya071212'); 

A=[A IAE(2001)]; 

end 

z=A'; 
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