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FUZZY-PSO CONTROL OF LINEAR AND NONLINEAR SYSTEMS

SUMMARY

The goal of the thesis is to introduce a new global optimization method called
particle swarm optimization that is implemented via MATLAB to use to find the
optimal parameters for PID coefficients and Takagi-Sugeno rule base’s crisp values
in order to control linear and nonlinear systems within specified operating
conditions. The most important advantages of particle swarm optimization algorithm
is that it requires less number of iterations and it enables us to deal with a few lines
of computer codes in a cheapest manner rather than other optimization methods such
as genetic algorithm. It requires only primitive mathematical operators in terms of
both necessity of more available memory and speed. Particle swarm optimization
method has been successfully applied to the design of coupled tanks system control
with meaningful time domain criteria.

Since the coupled tank system to be controlled is nonlinear and time varying
charecteristic, it is almost not possible to find one set of parameters that satisfy for all
operating conditions. Therefore some predetermined operating points have been
chosen and find out the optimal control parameters’ values for the operating points
while keeping Takagi-Sugeno crisps values constant for all operating points within
the different ranges. Different functions are calculated for each controller parameters
within different operating points based on the referenced height of tank two as an
input value to the coupled tank system by using the predetermined points and least
curve-fitting algorithm. It has been observed that these functions, which derive fuzzy
controller parameters, have achieved very satisfactorly systems responses.

This thesis is mainly composed of three parts. First part is to introduce the classical
tuning methods, fuzzy control structure and particle swarm optimization algorithm.
Ziegler Nichols, Set Point Weighting, Cohen Coon and lastly Internal Model Control
methods have been reviewed as classical tuning methods. The focus in this thesis is
to control linear and nonlinear system within specified operating conditions by fuzzy
PID controller with particle swarm optimization technique as an optimization tool.
The evaluation of particle swarm optimization algortihm is also reviewed and new
proposed method, which is called improved particle swarm optimization, has been
tested on different benchmark functions. At the end of testing of the benchmark
functions, it is decided to use improved particle swarm optimization method due to
its performance on the convergence rate and convergence precision compared to
standard particle swarm optimization. The integration of fuzzy system to PID
controller has been also studied and complete architecture of fuzzy PID controller
has been designed to engage with improved particle swarm optimization as an
optimization tool.

Second part of this thesis is a preliminary study for the third part of the study. The
aim is to implement improved particle swarm optimization technique as an
optimization tool with fuzzy structured PID controller on different type of the

XiX



systems such as first order plus dead time system, second order plus dead time
system and finally second order plus dead time oscilattory process model. The
parameters of PID and the crisp values of the Takagi-Sugeno rule have been tuned
offline for minimizing the performance criteria given as integral absolute error. The
performance results in terms of maximum overshoot, settling time and rise time of
the proposed approach have been depicted. By the guidance of the work on those
systems and motivated by the good performances achieved, it is decided to
implement the proposed method on nonlinear couple tank system to understand the
applicability of the proposed study to control the water level on tank two which is the
complete focus on the third part of the study.

In the third part of the study, fuzzy PID controller with particle swarm optimization
technique as an optimization tool has been applied to nonlinear and time varying
characteristics of the coupled tank water system since nonlinear and time varying
systems have been encountered almost all areas especially in process industries. The
water levels between different ranges are chosen respectively as a three typical
operating regions of second tank and input space is divided into three fuzzy
subspaces based on operating regions. Fuzzy PID parameters have been calculated
online by proposed method despite of the fact that Takagi Sugeno crisp values have
been calculated offline and stored before calculating PID parameters for the three
operating regions. We can generalize that Takagi-Sugeno crisp values, which are
structural parameters, are determined offline design while the tuning parameters are
calculated during online adjustment of fuzzy PID controller to enhance the process
performance, as well as to accommodate the adaptive capability to system
uncertainty and process disturbances. The proposed architecture is also tested in case
of process disturbance and systems faults. Simulation results showed that the couple
tank system was successfully controlled with acceptable performance criterions in
both cases.
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DOGRUSAL VE DOGRUSAL OLMAYAN SISTEMLERDE BULANIK SURU
PARCACIGI OPTIMIZASYONU YAKLASIMI iLE KONTROL

OZET

Bu tezin amaci, yeni optimizasyon ydntemi olan parcacik siirii optimizasyon
algoritmasiit MATLAB’e uygulayarak bulanik PID kontrolorii katsayilari ve
Takagi-Sugeno kural tabanindaki keskin degerleri cevrimdist optimize ederek
dogrusal ve dogrusal olmayan sistemlerin belirli ¢alisma kosullar altinda kontroliinii
saglamaktir. Parcacik siirii optimizasyonunun diger optimizasyon ydntemlerinden,
ornek olarak verilmesi gerekirse genetik algoritmadan, en Onemli avantaji
optimizasyon sirasinda az sayida iterasyon igermesi, kolay anlasilabilir olmasi ve
bize kompleks olmayan az sayida yazilmis bilgisayar kodlar ile kolay ve ucuz bir
sekilde ugrasmamizi saglamasidir. Genetik algoritma ile olan benzerlikleri ise her
ikiside populasyon tabanli olup, tek set degerden diger set degerlere gegerken
deterministik ve olas1 kurallar1 kullanmalar1 sayilabilir. Son yapilan caligmalara
istinaden pargacik siirii optimizasyon yontemi en az genetik algoritma kadar biiyiik
oranda dogrusal olmayan yapilarin ¢oziilmesinde, yakinsama orani ve yakinsama
hassasiyeti bazinda ayni sonuglar1 vermektedir. Ayrica basit kodlar igermesinden
dolay1 hem bilgisayar hafizasindan hem de zamandan tasarruf ettirip sonuclara en
hizli ve verimli sekilde ulasmamiza yardimci olmaktadir. Pargacik siirli optimizasyon
yontemi dogrusal olmayan ve zamanla degisen karakteristige sahip olan ikili tank
sisteminde belirli calisma araliklar1 igerisinde bulanik PID kontrolor tasariminda
kolayca ve basarili bir sekilde uygulanabilmistir.

Yukarida bahsedildigi gibi ikili tank sisteminin dogrusal olmayan ve zamanla
degisen yapisindan dolay1, kontrolor tasariminda tek set parametrelerin bulunmasi ve
kontrol sirasinda her bolge icin ayni parametrelerin  kullanilmasi neredeyse
imkansizdir. Bu yiizden daha Onceden belirlenmis g¢alisma araliklar1 igerisinde,
Takagi-Sugeno kural tabanindaki parcacik siirlii optimizasyon yontemi ile optimize
edilmis katsayilar her bolge igin sabit tutularak, degisik bolgeler igin degisik optimal
kontol parametreleri bulunup kontrol sirasinda ¢evrimici olarak PID katsayilar
hesaplanmistir. Bulanik PID kontrolor parametreleri ayni zamanda ikili tank
sisteminin ikinci tankindaki sivi seviyesini giris set degeri alarak farkli ¢aligma
araliklarinda dogrusal regresyon yontemi ile bulunan degisik kontrolor parametre
fonksiyonlar1 ile esnek bir yapiya donistirilip farkli giris degerleri, Sistem
giriiltillerini hatta sistem hatalarin1 kompanze edecek duruma getirilimistir.
Boylelikle belirlenen calisma bolgelerinde istenilen kontrol sartlarini saglayan,
degisik senaryolara sahip sistem hatalar1 ve sistem giiriiltiilerini bastiran adaptif
yapiya sahip dogrusal olmayan bir sistemin gelistirilmis pargacik siirli optimizasyonu
yontemi ve bulanik PID kontrolorii ile kontrolii saglanmistir.

Bu tez calismasi ii¢ yapiya boliinmiistiir. Ik yapida, kontroldr katsayilarinm
ayarlanmasinda literatiire ge¢cmis olan klasik yontemler agiklanmis ek olarak bulanik

mantik yapis1 ve parcacik siirli optimizasyonu ile integrasyonunun nasil saglandigi
aciklanmistir. Klasik yontemler olarak, Ziegler Nichols, Set Point Weighting, Cohen
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Coon ve son olarak Internal Model Kontrol yontemleri incelenmistir ve uygulanis
prensipleri anlatilmistir. Bu tezin amaci, dogrusal ve dogrusal olmayan sistemlerin
daha oOnceden belirlenmis c¢alisma araliklart igerisindeki bulanik kontrolor
parametrelerinin ve Takagi-Sugeno kural tabanindaki keskin degerlerinin pargacik
stirii optimizasyon yotemi ile optimize edilerek sistem kontroliiniin saglanmasidir.
Optimizasyon aracit olarak secilen pargacik siirii optimizaSyon algoritmasinin
gecmiste ortaya ¢ikmasindaki sebepleri, diger optimizaSyon araglari ile arasindaki
farklari, gelisme siiregleri ve algoritmanin temel prensipleri anlatilip MATLAB
fonksiyon yapisim1 kullanarak parcacik siirii optimizasyon algoritmasi yazilmistir.
Yazilan bu algoritma SIMULINK’te kontrol edilecek sisteme erigim saglamasi
bakimindan esnek ve disaridan ulasilabilir hale getirilmistir. Standart siirii pargacigi
optimizasyon yontemine kiyasla daha verimli hale getirilen gelistirilmis pargacik
stiri optimizasyon yontemi, degisik kiyaslama fonksiyonlar1 (Sphere fonksiyonu,
Rosenbrock fonksiyonu, Rastrigin fonksiyonu ve Greiwank fonksiyonu) tizerinde test
edilmistir. Gelistirilmis pargacik siirii optimizayonu ile kiyaslama fonksiyonlari
tizerindeki test isleminin sonunda, yakinsama orani ve yakinsama hassasiyeti diger
standart pargacik siirii optimizasyon yonteminden daha iyi sonuglar vermesi {izerine,
gelistirilmis parcacik siirli optimizasyon yontemi bundan sonraki g¢aligsmalarda
optimizasyon araci olarak se¢ilmesine karar verilmistir. iki farkli optimizasyon
algoritmalarinin test sonuglarida Matlab’de uygulanip sonuglari tartisilmistir.

Bulanik mantik yontemi, degisken kosullara ¢abuk ve kolay uyum saglayabilme
ozelliginden ve daha Onceden belirlenen belirsizlikler altinda karmasik iglerle basa
cikabilme Ozelliginden dolayr bu calismada kontrol algoritmasinda kullanilmustir.
Bulanik 6nermedeki sonug¢ ifadesinin yapisina gore bulanik kural tabani Takagi-
Sugeno tipi bulanik kurallardan olusturulup tekli yapiya dontistliriilmustiir. Takagi-
Sugeno bulanik modelinin sonug¢ kisminda, bir belirgin (kesin) fonksiyon mevcuttur.
Dolayisiyla bu model hem matematiksel, hem de dilsel ifadelerle olusturulan bir
model olarak gortilebilir. Bu calismada tasarlanan bulamik PID, ifade kolaylhig:
acisindan ¢oklu giris tekli ¢ikis bicimindedir. Bulandiric1 olarak tekli bulandirict
secilmesinin sebebi ise gergek sistemler lizerinde yapilan uygulamalarda hesap
kolaylig1 saglamasindandir.

Tekli bulandirict giris degerleri olarak hata ve hatanin tiirevi islem kolayligi
olmasindan dolay1 segilmistir. Tasarim ti¢iingli bir degisken olan hatanin integralini
de alacak sekilde esnek bir yapiya sahiptir. PID kontrol dongili yontemi, basit yapilar
ve tasarim kolayliklar1 nedeniyle yaygin olarak endiistriyel kontrol sistemlerinde
kullanilmasindan dolay1 bu tezde de dogrusal olmayan ve zamanla karakteristigi
degisen ikili tank sisteminin kontroliinde uygulanmigtir. Proses kontrol
uygulamalarinin ¢ogu PI ve ozellikle PID denetleyiciler ile yapilmaktadir. Zaman
icinde ¢ok sayida denetleyici algoritmalart gelistirilse de, endiistride 6zellikle yliksek
performans gerektirmeyen sistemler i¢in yaygin kullanimi devam etmektedir. Gergek
sistemlerdeki dogrusal olmayan yap1 ve olugsan parameter degisiklikleri nedeniyle,
teoride uygulanan yontemlerin uygulanmasinda giicliikler yasanmaktadir.

Tezin ikinci kismi, tiglincli kismiin baglangici niteligindedir. Bu kisimda degisik
kiyaslama fonksiyonlari (Sphere fonksiyonu, Rosenbrock fonksiyonu, Rastrigin
fonksiyonu ve Greiwank fonksiyonu) iizerinde test edilip, performansinin
yeterliliginden dolayr kullanilmasinda karar kilinan gelistirilmis siirii parcacik
optimizasyon modeli, bulanik yapiya sahip PID kontroloriindeki optimal katsayi
degerlerinin elde edilmesinde kullanilarak, birinci dereceden Olii zamali sistem,
ikinci dereceden Olii zamanli sistem ve son olarak ikinci dereceden 6lii zamanh
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integral etkili sistem {izerinde uygulanip, benzetimleri MATLAB’de yapilarak
sonuclar irdelenmistir. Kullanilan bu sistemlerde elde edilen bulanik PID katsayilari
ve Takagi-Sugeno kural tabani keskin degerleri ¢evrimdisi olarak bulunmus ve
optimizasyon kriteri olarak IAE (integral etkili mutlak hata) segilmistir. Ayrica ikinci
dereceden Olii zamanli sistem degisik optimizasyon kriterlerine gore optimize
edilerek benzetim sonuglarmin  kiyaslanmasi sonucu optimizayon kriteri
belirlenmistir. Karar verilen optimizasyon kriteri ¢alismanin geri kalaninda tiim
benzetimlerde kullanilmistir. Bahsedilen sistemler iizerinde kolayca uygulanisi ve
vermis oldugu sonuglarin kabul edilebilirligi, tasarlanmis olan yapiy1, dogrusal
olmayan ve zamanla karakteristigi degisen ikili tank sistemi {izerinde uygulanmasina
karar verilmistir. Boylelikle tasarlamis oldugumuz yapinin dogrusal olmayan bir
sistem olan ikili tank sisteminin kontroliinde uygulanabilirligi test edilmis olacaktir.
Bu ¢alisma ise tezin iigiincii kismini olusturmaktadir.

Tezin tgilincii kisminda, optimizasyon araci olarak segilen gelistirilmis pargacik siirii
optimizasyonu, bulanik PID (oransal, integral etkili, tiirev etkili) kontroldriine
entegre edilerek, bu tiir problemlerde iyi bilinen dogrusal olmayan ve zamanla
karakteristigi degisen ikili tank sistemine uygulanmistir. Sistem, ayni boyutlu iki
silindirik s1v1 tankinin bir baglanti borusuyla birlestirilmesiyle olusturulur. Sistem,
elektrikli pompa ile beslenirken, ¢ikis olarak ikinci tankin su seviyesi alinmustir.
Tekli tank sistemi ile dogrusal olmayan matematiksel denklemlerle ifade edilen yap1
ikili tank sisteminin matematiksel denklemlerinin ¢ikariminda ve anlasilmasidan
kolaylik olmasi bakimdan ele alinmistir. Kiitle-denge ve enerji denklemlerine gore
matematiksel denklemleri ¢ikarilan yap1 sistem kontroliinde kullanilmak tizere hazir
hale getirilmistir. Dogrusal olmayan ve zamanla karakteristigi degisen sistemlerin
proses endustrisinde yaygin olarak karsilagilmasindan dolayi, tasarlanan yontemin
ikili tank sistemine uygulanmasina karar verilmistir. Dogrusal olmayan sistemlerinin
kontroloriiniin zor olmasi1 klasik yontemlerden farkli olarak diger kontrol
yontemlerini, kullanmaya tesvik etmistir.

Tasarlanan g¢alismada ilk Once, li¢ degisik calisma bolgesi igerisinde tanimlanan
ikinci tanktaki su seviyesi sirasiyla giris set degeri olarak secilmistir. Secilmis olan
lic bolge icin sirasiyla arasinda kalan her nokta i¢in, gelistirilmis parcacik siirii
optimizayon yontemi kullanilarak, bulanik PID optimal katsayilar1 ve Takagi-Sugeno
keskin degerleri bulunmustur. Her bolge icin degisik girislere gore kapali ¢evrim
bulunan katsayilar igerisinde uyguluk fonksiyonlarmin en az olan parametreler
secilip bolge basina tanimlanmis ve parametreler o bolgeler i¢in dondurulmustur. Bu
parametreler sistemin yapisal parametreleri olup ¢evrimi¢i uygulamalarda sabit
tutulmustur. Sonug olarak her bolge i¢in ili¢ set parametre degerleri elde edilmistir.
Ug bélge igerisinde tanimli olan kapali ¢evrim ile bulunan, bulanik PID katsayilari
daha sonra sistemin adaptif yap1 kazanabilmesi igin, sistemin giris set degerlerine
gore dogrusal regresyon yontemi kullanilarak her bolge icin ayr1 dordiincii dereceden
PID katsay1 fonksiyonlarina doniistiiriilmiistiir. Boylelikle ¢evrimici otomatik olarak
ayarlanan bulanik PID katsayilar1 proses performansi i¢in yararli hale getirilmis ayni
zamanda sistem bilinmezlikleri ve proses giiriiltiilerini kompanze edecek adaptif
0zellik kazandirilmistir.

Tasarlanan yap1, degisik genlikte ve yiikseklikteki sistem girislerine uygulanarak
alinan sonuglarin tatmin edici oldugu goriilmiistiir. Onerilen tasarim ayn1 zamanda
degisik hata senaryolarina sahip ikili tank sistemine MATLAB/SIMULINK yardimi
ile uygulanip sonuglar irdelenmistir. Olasi sistem ariza veya hatalardan bazilari,
pompada farkli eyleyici hatalari, Tank 1’in tabaninda belli yarigaph daire bigiminde
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bir delik, Tank 2’nin tabaninda belli yarigapli daire bigiminde delik ya da her iki
tankin tabaninda belli yarigapli daire bi¢ciminde delik olarak alinmistir. Simiilasyon
sonuglari, degisik hata senaryolarina sahip ve sensor tizerinde griltiisii olan ikili
tank sisteminde kabul edilebilir sonuglar verip sistemin tasarlanan yontemle kontrol
edilebilirligini gostermistir. Yotenmin basarimi, ¢ift tankli sivi seviye kontrol
sisteminin hatali durumlarin1 iceren benzetim Ornekleri ile gosterilmistir.
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1. INTRODUCTION

The PID (Proportional Integral Derivative) controller has been utilized as the
workhorse of the process control industry. It is accepted universally amongst
researchers and practitioners within the control community. The main advantage is
its simplicity that no such simple structure that is more effective, robust and
comparable in its dynamics. The parameters of the PID controller is another research
area that attaracts researchers. Various methods have been proposed to search the
parameters of PID controllers such as Ziegler Nicholas, Set Point Weightining,
Cohen Coon and Internal Model Control methods (M.Zuang, 1993). The methods are
often not applied in practice due to the necessity of control personnel to learn new
techniques that are complicated and often time consuming. Besides that, the
performances of the methods are not good enough due to the presence of multiple
numbers of local optima in the system. Recently, as an alternative to the classical
mathematical approaches, modern heuristic optimization techniques have been given
much attention by many researchers because of their ability to find global optimal
solutions and getting rid of the necessity of control operator within the process.
Particle Swarm Optimization method whose mechanics is inspired by swarming and
collaborative behavior of biological populations (Kenndy, J. and Eberhart, R., 1995)
has been presented recently as a new evolutionary computational technique in
various application fields. There has been much attention in terms of implementation
of PSO in control theory. In addition, there are some comparison of effectiveness
between PSO and other heurictic algorithm has been discussed thorugh some areas
(Hassan, R., Cohanim, B. 2004). It is found out that PSO has the same effectiveness
as other heuristic methods but significantly better computational efficiency on

implementing some benchmark systems.

1.1 Purpose of Thesis

In this study, implementation of improved particle swarm optimization technique

with fuzzy PID controller on different type of systems has been presented. The



parameters of PID and the crisp values of the rule base of fuzzy controller have been
tuned offline to minimize some predetermined performance criterias. The
performance results of the proposed approach have been depicted and it is seen that
particle swarm optimization has been successfully implemented to the systems with
better performance in terms of maximum overshoot, settling time and rise time. The
proposed algorithm has been applied to nonlinear and time varying characteristics of
the coupled tank system. The purpose is to control the height of tank 2 by fuzzy PID
controller optimized by particle swarm optimization technique. Different liquid level
ranges for tank two are chosen respectively as typical working points and input space
Is divided into three fuzzy subspaces based on working points. Even if the learning
process is offline for the rule base, the fuzzy PID parameters are tuned online which

make the parameters adjust in such a way that good performance will be ensured.

In this study, improved particle swarm optimization has been applied with linear
changes on inertia weight for velocity and positioning update rather than
exponentional changes (Wang, D. 2009). It is observed that improved particle
optimization is able to converge to optimal solutions as well by using linear changes
approach. There have been different studies on choosing the objective fuction in
particle optimization tuning methods (Gao, F. and Tong, H. Q., 2006). It is seen that
the performance of the system would be better as well when applying typical fitness
function as IAE. There are different aspects for the adjustment of rule base in
literature such as modification of shema in fuzzy controllers. Due to the observed
information being related to a past instant and this delay information causes
unsatisfactory results, rule base shifting method can be applied on different systems
(Yesil, E., Guzelkaya, M. 2008). This study has flexibility to implement those
approaches as well in terms of shifting the rule base when considering time delays on
coupled tanks systems. Another approach has been explained on coupled tank system
IS a neuro-fuzzy-sliding mode controller using sliding surface. Developing a
nonlinear sliding surface and fixed boundary layer in order to compensate chattering
that means high frequency oscillations of the controller output. Inside the boundary
layer, fuzzy logic can ben applied as well as on the outside of the layer the sliding
mode control can be applied (Boubakir, A, 2009).



2. PID CONTROL

The PID controller has been widely used in process industries, energy production,
and transportation as well as in manufacturing. It is the most fundamental control
strategy in the control area. PID controller is generally preferred for control actions
because of its simple algorithm, ability to adapt to wide range of applications where
it can ensure excellent control performances. PID controllers have survived from
many changes in technology from mechanics and pneumatics to microprocessors.
Especially, improvement of microprocessors has given a highlighted importance for
the evaluation of the PID controllers. These improvements on the microprocessors
have provided additional features on PID controllers such as automatic tuning, gain

scheduling and continuous adaptation [1].

PID controllers can also be used in control systems where the precise mathematical
model of the systems is not available and hence analytical design methods or
conventional design methods cannot be used. Recent research has indicated that even
though PID controllers may not provide optimal control, it provides satisfactory

control [1].

The design and analysis of PID controller requires three parameters. K,,, proportional

gain, T;, integral time constant, T;, derivative time constant.

u(t) e(t) v(t)
PLANT >

C
W
K

Figure 2.1 : Basic block diagram of PID controller.

PID control law is stated in equation (2.1).



u(t) = Kp [e(t) + Td% + Tiif e(T)dT] (2.1)

e(t) = yop(t) —y(t)

Where u(t) is control input, e(t) is error which is difference between system output
and set value. Equation (2.1) can be rewritten as a combination of the three terms :

u(t) = Kpe(t) + Kd % + Ki [ e(t)dt (2.2)

The P term is proportional to the error, the I term, which is proportional to the
integral of the error, and D term refers to the derivative of the error. The controller
parameters K,, T; and T, are called proportional gain, integral time and derivative
time respectively. These terms can be interpreted as past, present and future in

control actions [2].

2.1 Tuning Rules for PID Controllers

As shown in Figure 2.2, for a PID controller, the tuning of the parameters indicated
in the controller block can be very challenging. If the mathematical model of a plant
can be derived, then

we can conclude that it is most likely to implement various design strategies called as
a fixed parameter tuning methods, to find out the parameters of the controller that
will meet steady state and transient specifications. Nevertheless, if the mathematical
model is not known or hard to derive then fixed parameter tuning methods can be
applied just for only starting point and necessity of trial and error approach will be
required without ensuring good performance. Therefore, we should go through
heuristics approaches for tuning the PID parameters, which this study has given a
focus on. In this chapter, some of the fixed parameter tuning methods are briefly
reviewed. Those are Ziegler — Nichols method, Set —point Weighting method, Cohen
— Coon method and finally Internal Model Control method [2].

Ep(1+ = +Ty5) PLANT

Figure 2.2 : PID control of a plant.
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2.1.1 Ziegler — Nichols method

Controller tuning means selecting the controller parameters that will meet given
performance spesifications. Ziegler — Nichols (ZN) is a tuning rule that proposes
tuning strategy in terms of finding a set value forK,, T; and T, based on
experimental responses or based on the value of K,,. This method is implemented
when mathematical model of a system cannot be derived. It needs to be noticed that
Ziegler Nichols (ZN) method cannot guarantee minimum overshoot in the step
response. This method provides only the starting point for obtaining the optimal PID

parameters. We need a sequence of fine tunings until an acceptable result is obtained.

Ziegler — Nichols method offers two ways of implementing the tuning rules. In the
first method, the step response of the plant is obtained experimentally. If the plant
does not involve either integrators or dominant complex conjugates poles, the
response will be seen as S shaped curve given in the Figure 2.3. The S shape curve is
defined by two constants; delay time L and time constant T, which are derived by

drawing a tangent line at inflection point of the curve [1].

w & . . . :
yw Tangent line at inflection point

S

Figure 2.3 : S-shaped response curve.
The intersection of tangent line and coordinate axes give the parameters a, L. ZN

method gives PID parameters directly as functions of o and L stated in Table 2.1.

Table 2.1 : PID controller parameter obtained from ZN first method.

Controller K Ti Td
P T/L 0 0
PI 09T/, L/ 3 0
PID 127/, 2L 0.5L




In the second version of the Ziegler Nichols method, the plant controller parameters
T; and T; are set to oo and zero respectively, which make the controller as
proportional controller. When settings are done, K, needs to be increased from zero
to K., (ultimate gain) at which the output first start to oscillate. It needs to be noticed
that if the output is not oscillatory for any gain value then this method cannot be
implemented to the system. After finding the ultimate gain and ultimate period, the

controller parameters can be calculated from Table 2.2 below.

Table 2.2 : PID controller parameter obtained from ZN second method.

Controller K Ti Td

P 0.5Kcr 0 0

PI 0.45Ker 1/, per 0
PID 0.6Kcr 0.5Pcr 0.125Pcr

2.1.2 Set-point Weighting method

Although Ziegler-Nichols method has the ability to reject disturbances, the
compensated system response to a step input may result in high overshoot or the
computed control signal can be high which may lead to saturation of actuators. In
order to compensate for these situations, set point for the proportional action can be

weighted as below.
e(t) = b.ys(t) —y(t) (2.3)

The advantage of the set point weighting is to reduce overshoots in the closed loop
set-point step response. With the above equation, the general controller equation

becomes:

u(t) = Kp (b.ys, () — y(t)) + Kd % + Ki [ e(r)dr (2.4)

—E— Grr

PLANT

G )

1 e

Figure 2.4 : Two degrees of freedom scheme of PID controller.
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1
G, = Kp(l + S_Tl + sT,) (2.6)

The value b is very important because of the fact that closed loop response is
sometimes very sensitive to the weights. A small change in the value of b can result
in completely different response of the system. In order to be in accordance with the
set point changes, it is necessary to follow a procedure to determine b. Astrom and
Hagglund mentioned the dominant pole design method in [3]. In this method, the
closed loop system will take two complex conjugate poles and one pole on the real

axis as -p, with the set point weighting the closed loop system has zero at

S==2zy= b_Tl (2.7)

By choosing b so that z, = p,, we make sure that the set point does not excite the
mode corresponding to the pole in—p,. This will work and will give good transient
responses for the systems where the dominant poles are well damped (¢ = 0.7). For
the systems where the poles are not well damped, the choice z, = 2p, yields a

system with less overshoot [3].
The suitable parameter b can be calculated as:

( 0.5

poT;
b <O.5+2.5(cf—0.5) F05<c<07
= ,if05<c¢<o.
poT; (2.8)

05 if ¢> 0.7
—,1 .
\ PoT;

Lif €< 0.5

2.1.3 Cohen-Coon method

The Cohen-Coon tuning method is based on the first order plus dead time delay
process model with main design specification as quarter amplitude decay ratio in

response to load disturbance.

Gy = e~ (2.9)



The main design objectives are to maximize the gain and minimize the steady-state
error for P and PD controller. For Pl and PID control, the integral gain is maximized.
This corresponds to minimization of integrated error, the integral error due to a unit
step load disturbance. For PID controllers three closed loop poles are assigned; two
poles are complex and the third pole is located at the same distance from the origin

as the other poles.
K,L L :
The parameters a = /T and Tt = /L yorare used in Table 2.3. If the system can

be defined by K,, L and T, then it is possible to give tuning formulas with the help of
Table 2.3.

Table 2.3 : Controller parameters for Cohen-Coon method.

ke=0s K Ti Td
s+ 1
P L7035
k (0 -35)
Pl 09 7 +0.92 3.3t + 0.36
k (6 92) T+ 2.20
T(5+O'13) 7+ 0.136
0.371
135 7 2.57 4+ 0.50 ——F7aa?
PID (= o 7+ 0.196
k (0 +0.18) T+ 0.610 0

It may be difficult to choose desired closed-loop poles for higher order systems. If t
is small, controller parameters are close to others that are obtained by Ziegler

Nichols tuning rules [3].

2.1.4 Internal Model Control method

Internal Model Control (IMC) described by Morari and Zafiriou (1989) is a general
design procedure for obtaining controllers that meet requirements for stability,
performance and robustness of the control systems. A block diagram of such a

system is shown in Figure 2.5.
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Figure 2.5 : Closed loop system with controller based on the IM principle.

If the model of the system Gy, (s) matches G, (s) and load disturbance is not present,
the output of the model cancels the output of the process. In that case, the process
turns to control in open loop. If there is a model mismatch and load disturbance is
Z(s), then there will be feedback signal and feedback control will be applied. The
first step in internal model control is to factor the transfer function modeling the

process,

Gy (s) = Gar ()G () (2.10)

where Gy (s) is an inverse of G;;(s) which contains only the left half plane poles and
zeros and G (s) contains all the time delays and rigt half plane zeros. The controller

C(s) is defined as below,

C(s) = (Gu ()™ Gp(s) 2.11)

where Ggr(s) is a low pass filter which guarantees that the controller C(s) is
realizable. The usual form of the filter is below.

1

Gr(s) = A+ T5)" (2.12)

As indicated in the figure, the relation between a conventional feedback controller

Gr(s) and internal model controller C(s) expressed with

C(s)
1—C(5)Gy(s) (2.13)

Gr(s) =

or inversely:



Gr(s)
1+ Gr(5)Gy(s) (2.14)

C(s) =

The FOPDT model can be used in the internal model control, but the part of the

transfer function modeling dead time has to be evaluated with Pade approximations.

First order Pade approximation of the dead time is:

e—sTt zl (215)

and it leads an IMC PI controller with the following parameters:

Ky =27 T1=T (2.16)

The recommended value for the filter time constant should satisfy T > 1.7T¢;.
The first order Pade approximation:

e 1= 5Tu/2
1+ 5T,y /2 (2.17)

The FOPDT model and IMC design lead to a PID controller with parameters:

_ 2T+ Ty
P K QTp + Te) (2.18)
Tt
T =T+~ (2.19)
T1Ty
Tp =Ty +
DT T, 4T, (2.20)

and the recommended value for the filter time constant is Tr > 0.8T;.

IMC tuning rules are expressed in terms of process model parameters and can ben

implemented after the identification of the process model [4].
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3. FUZZY CONTROL

Contrary to conventional control approaches where control techniques requires
mathematical models of the system and by using the mathematical models of the
system to design a controller depicted into differential equations, fuzzy control is
based on fuzzy logic mathematical system that processes crisp values in terms of
logical variables that take on continuous values between O and 1. In a way,
differential equations are the languages of conventional control while heuristics and
rules about how to control the system are the languages of fuzzy control. Fuzzy
control methodology can provide the representation or reflection for manipulating
and implementing an operator’s heuristic knowledge about how to control a system.
Fuzzy control provides an efficient structure to convert linguistic information from

human experts into numerical information.

Lotfi Zadeh from University of California, Berkley, introduced the concept of fuzzy
logic as a way of processing data by allowing partial set membership rather than
crisp set membership. This approach was not implemented in control theories until

mid 70’s because of lack of sufficient capability of the computers.

In conventional control, even if the design of the system can be possible or the
mathematical model of the complicated systems can be achievable, the model may be
too complex to use in controller design. Especially, some conventional techniques for
construction of controllers require some assumptions while linearizing a nonlinear
system. Hence, fuzzy control has been developed to find some alternative control
techniques for control theory rather than struggling with failure modes on

conventional control techniques [5].

In terms of performance objectives and design constraints, there is no difference
between conventional control and fuzzy control since purpose is still to meet same
type of closed loop specifications like minimum overshoot, minimum settling time,
low steady state error etc... Fuzzy systems have been used in a wide range of

applications in science, medicine, engineering, business etc... Fuzzy control has been
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successfully used in aircrafts, automobiles, manufacturing systems, process control

and robotics. Advantages of the fuzzy control can be summarized below
e An explicit model of the plant or process is not required
e Human experience, expertise and qualitative knowledge can be incorporated

e Incomplete, imprecise, general and approximate knowledge may be

incorporated.
e Explicit optimization is not needed

e Suitable for large-scale and complex systems where analytical modeling is
difficult.

3.1 Internal Structure of Fuzzy Controllers

The fuzzy controller is mainly composed of four main components. First part is the
“fuzzification” which converts controller inputs into information that inference
mechanism can easily perceive to activate and implement rules. Second part is the
“rule base” where the knowledge is kept in the form of fuzzy logic sets of rules.
There are different kinds of rule bases, such as Mamdani type of rule base, Singleton
type of rule base, Takagi-Sugeno type of rule base and Tsukamoto type of rule base.
In this study, Takagi-Sugeno type of rule base is used with particle swarm
optimization technique. Third part is the “inference mechanism” which evaluates the
expert’s decision making in interpreting and deciding what the control input to the
plant should be given. Last part of the fuzzy controller is the “defuzzification
interference” which converts fuzzy outputs decided by the inference mechanism into

the crisp input to the plant [6].

Fuzzy controller

Inference
| mechanism |

|

Rule-base

Reference input
Tl
EEEE—

Inputs Outputs

vit)
> Process -

u(r)

Fuzzification
Defuzzification

Figure 3.1 : Internal structure of fuzzy controller in closed loop control system.
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3.1.1 Fuzzification

Fuzzification is the first step of fuzzy inference process that decomposes crisp inputs
measured by sensors to fuzzy sets. The crisp inputs such as height, temperature,
pressure or velocities are evaluated by inference engine as fuzzy inputs. Each crisp
input has their own group of membership functions or sets that are to be processed by
the fuzzy inference unit. Different fuzzy sets can be defined linguistically for
different systems. It will be discussed in further chapters that, in this study, in order
to decompose crips inputs of e and de/dt for fuzzy inference engine, three triangular
membership functions have been defined between [-1, 1] as Negative, Zero and
Pozitif as illustrated below.

i i e
= -

-1 -0.5 0 0.5 1 Xy -1 -0.5 0 0.5 1 Xo
Figure 3.2 : Membership functions for e, x; and de, x,.

These sets cover the other sets partially, hence some crisp inputs are members of
different fuzzy sets. However, each input has different degrees of membership in

different fuzzy sets. These membership degrees are utilized in controller processes.

3.1.2 Rule Base

Fuzzy rules are linguistic IF-THEN constructions which have the general form of “if
A then B” where A and B are condition and conclusion respectively. The controller
can be applied to either multi-input-multi-output (MIMO) problems or single-input-
single-output problems. The controller needs normally three different crisp inputs
that are the error, the change of error and the integrated error. In principle, the third
variable, the integral of error is hard to define by the operators and engineers.

Therefore, it is generally preferred to use two inputs, the error and the change of the
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error. To simplify, the control objective is to regulate some process output around a
prescribed set point or reference.

A linguistic controller contains rules in the IF-THEN format such as,

1. If error is negative and change in the error is negative then output is negative
big.
2. If error is negative and change in the error is zero then output is negative

medium.
3. [If error is negative and change in the error is pozitif then output is zero.

4. If error is zero and change in the error is negative then output is negative

medium etc...
3.1.3 Inference Mechanism

The inference mechanism has two main tasks; the first task is to determine the firing
strength of each rule. Crisp inputs that passed through the fuzzification and became
fuzzy inputs are evaluated for each rule in the rule base. Depending on the defined

membership functions of the inputs, some of the rules will be fired.

The other task is to combine the outputs of fired rules to obtain a fuzzy set as the
overall output of the inference mechanism. This output will be the input of the

defuzification stage where it is converted to a crisp value.
3.1.4 Defuzzification

The output of the inference engine is the input of the defuzzification stage. The fuzzy
set, which is the output of the inference mechanism, is converted to a crisp value by
using defuzzification methods in order to get a scalar value as the control input to the
system. There are various methods for defuzzifications. The centroid method is the
most popular one in which the centre of the mass of the result gives the crisp value.
Another approach is the height approach, which takes the value of the biggest

contributor.
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3.2 PID Tuning Method Using Fuzzy Logic

Different structures of fuzzy controllers have been studied and developed recently. A
simple way of constructing a fuzzy PID controller is to combine a fuzzy PD
controller with an integrator and to add a summation unit at the output as depicted

below;

e E
— K, P a
) . Fuzzy U u
e E Controller .
—» K, —» Bj

Figure 3.3 : Fuzzy PID controller.

The design of the fuzzy PID controller above has less number of rules and scaling

factors compared to other fuzzy PID structures [6].

Fuzzy rules and

' reasoning
Control
Input Signal Output
# PID Controller ———— | Process -
+

¥ 7

Figure 3.4 : Block diagram of fuzzy tuning PID controlled system.

In this study, fuzzy logic controller parameters are tuned in terms of an optimization
of the parameters with particle swarm optimization. Error and change in error are the
inputs of defuzzification, as analog inputs, which will then be processed in terms of
linguistic variables in order to make inference engine analyze the information. While
processing of inference engine, from the standpoint of optimization approach, some
predetermined fitness functions can be used to minimize the error by adjusting values

of inference engine or parameters of fuzzy controller.
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4. PARTICAL SWARM OPTIMIZATION

Particle swarm optimization is a recently proposed heuristic search method for
optimization of continuous nonlinear functions, inspired by the swarm methodology.
The method was derived through simulation of simplified social models such as bird
flocking, fish schooling and swarming theory in particular. Kennedy and Eberhart
invented partical swarm optimization in the mid 1990°s while trying to simulate the
choreographed, graceful motions of swarms of birds. Particle swarm optimization
has two roots. One of them is to tie to artificial life. It is also related to evolutionary
computation such as genetic algorithms and evolutionary programming. The ability
of flocks of birds, schools of fish and herds of animals to adapt to their environment,
to avoid predators and to find rich sources of foods by implementing an “information
sharing” approach intrigued the inventors of the methodology. Among other heuristic
search methods, it can be easily implemented in a few lines of computer code in the
cheapest manner. It requires only primitive mathematical operators, which makes it
advantageous in terms of both availability of larger memory and higher speed.
Particle swarm optimization has successfully been applied to a wide variety of
problems such as neural networks, structural optimization, share topology

optimization and fuzzy systems.

4.1 The Evolution of Paradigms of Particle Swarm Optimization

Reynold, Heppner and Grenander firstly presented bird flocking with simulations
(Reynolds, C., 1987). Reynold was interested in the choreography of bird flocking,
nevertheless Heppner and Grenander were interested in the main logic underlying
how birds flock synchronously, changing their direction suddenly. Both of these
scientists had the idea that local pressures make the graceful motions of swarms of
birds. The intent which underlyies bird flocking is the manipulation of inter-
individual distances which means being a function of birds’ effort to maintain an

optimum distance between themselves and their neighbors [7].
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4.2 The Etiology of Particle Swarm Optimization

In order to easily understand the concept of particle swarm optimization, it would be
better to explain its conceptual development. The algorithm began as a simulation of
simplified social milieu. Particles were assumed collision-proof birds and the original
intent was to simulate the unpredictable group dynamics of bird flocking behavior.
As sociobiologist, E.O Wilson has written in reference to fish schooling, “In theory
at least, individual members of the school can profit from the discoveries and
previous experience of all other members of the school during the search for food.
This advantage can become decisive, outweighing the disadvantages of competition
for food items, whenever the resource is unpredictably distributed in patches”

(Wilson, 1975).

4.2.1 Simulating a social behaviour

A number of scientists have created computer simulations of various interpretations
of the movement of organisms in a bird flock or fish schooling. Both model relied
heavily on manipulation of inter-individual distances; that is, the synchrony of
flocking was thought to be a function of birds’ efforts to maintain an optimum
distance between themselves and their neigbors. Reynolds proposed a behavior
model in which each agent follows three rules [7].

e Seperation: Each agent tries to move away from its neighbors if they are too
close.

e Alignment: Each agent steers towards the average heading of its neighbors.

e Collision: Each agent tries to go towards the average position of its

neighbors.

The following models are given in the following figure respectively for illustration of

the simple concept.
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Figure 4.1 : Seperation, alignment and collosion (Reynold, 1987).
4.2.2 Nearest neighbor velocity matching and craziness

The first attempt for simulation was to write a computer code based on nearest
neighbor velocity matching and craziness. A population of particles were randomly

located on a torus pixel grid and with velocities in x and y directions.

105 0 5 10 10 5 0 5 10
Figure 4.2 : Particles on a torus pixel with velocities (Reynold, 1987).

At each iteration for each particle, a loop in the program decides which other agent is
its nearest neighbor and assign that particles” X and Y velocities to the agent in
focus. This adjustment of each individual’s velocities and positions according to

agent in focus makes a synchrony of movement [7].

To give the simulation lifelike appearance, a stochastic variable called “craziness”
was added to randomly chosen X and Y velocities. In birds’ flocking or fish
schooling, a bird or a fish often changes direction suddenly. This is described by

using a “craziness” factor.
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4.2.3 Roost and the cornfield vector

A new feature called “roost” which is introduced as a dynamic force factor was
presented in Heppner’s simulations. The roost attracted them until they finally landed
there. This eliminated the need for a variable like craziness. In this simulation, the
particles knew the position of the roost but in real life, great number of birds will find
a roost even though they had no previous knowledge of its location. So each agent
shared information with its neighbors, originally all other agents, about its closest

location to the roost [7].

Kennedy and Eberhart, inventors of particle swarm optimization, included a roost in

Heppner-like simulation given in the following figure, so that:
e Each particle was attracted towards the location of the roost.
e Each particle remembered where it was closer to the roost.

e Each particle shared information with its closest location to the roost.
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Figure 4.3 : Roost used in Heppner-like simulations to attaract the particles.

Instead of a known position, the authors defined a cornfield vector and each particle
was programmed to evaluate its present position. If the point (100,100) represents the
cornfield, the function value is zero at that point and the proposed function is

expressed as (4.1).

f(x,y) = 4/(x—100)2 + /(y — 100)2 (4.1)

The proposed velocity and the position update of the particles are given such that

each particle remembers the best value p,es; and the best position pyesex and ppesty -

Its X and Y velocities are updated in a simple manner as shown below:
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present, > pbest, then vy, ; = v — rand * Pipcrement (4.2)

present, < pbest, then vy, ; = vi + rand * Pipcrement (4.3)

Each particle knows the globally best position of one member of flock has

found gpestx: Gpesty SO far and its value is gpest = [Gpestxr Gpesty]- Again X and Y

velocities are updated as expressed below:

present, > gbest, then vy,; = vi —rand * gincrement (4.4)
— (4.5)
present, < gbest, then vy,; = vi + rand * gincrement
The new position is calculated as below:
(4.6)

Xg+1 = Xk T Vit

Deduction of the nearest velocity matching makes the optimization slightly faster and
changes the visual effect more likely to swarm from flock. If gincremen: @nd
Pincrement are Set relatively high, the flock seems to rapidly converge into the
cornfield. If gincrement @A Dincrement S€t 10w, the flock swirls around the goal and
approaches it realistically and finally lands onto the target. If pincremen: 1S Set
relatively higher than gicremene, 1t results in the excessive wandering of isolated
individuals through the problem space while the reverse results in the flock rushing
prematurely towards local minima. Approximately equal values of two increments

seem to result in the most effective search of problem domain.

4.2.4 Modifications of the proposed method

Some experimentation revealed that instead of adjusting the velocities on a crude
inequality test like “if presentx > bestx, make it smaller”, “if present < bestx, make it
bigger”, it would be better to revise the algorithm to make it easier to understand and
to improve its performance. Therefore, the velocity was adjusted according to
difference of current velocity and best velocity of an individual achieved so far. The
necessity of removing the increments was soon realized because there is no way to

guess which one should be larger in order to yield good performance. Therefore,
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these two terms were also removed out of the algorithm. The current simplified
particle swarm optimization now adjusts the velocities more swarm like than any

other paradigms.

It became more obvious that the behavior of the population of agents is nhow more
like a swarm rather than a flock. Swarm Intelligence systems are typically made up
of a population of simple agents interacting locally with one another and with their
environment. The agents follow very simple rules, and although there is no
centralized control structure dictating how individual agents should behave, local
interactions between such agents lead to the emergence of complex global behavior.
Natural examples of swarm intelligence include ant colonies, bird flocking, animal
herding, bacterial growth and fish schooling. Millonas proposed five basic principles

of swarm intelligence [7].

e Proximity principle: The population should be able to carry out simple space

and time computations.

e Quality principle: The population should be able to respond to quality factors

in the environment.

e Principle of diverse response: The population should not commit its activities

along accessively narrow channels.

e Principle of stability: The population should not change its mode of behavior

every time the enviroment changes.

e Principle of adaptability: The population must be able to change behavior

mode when it is worth to computational price.

4.3 General Particle Swarm Optimization Algorithm

As mentioned in previous section, particle swarm optimization belongs to the
category of swarm intelligence methods related to evolutionary computation
techniques motivated by biological genetics and natural selection. Particle swarm
optimization shares many similarities with genetic algorithm as an evolutionary
computation technique. One important similarity is that both are initialized with a
population of random solutions and searches for optima by updating generations. The

dynamics of population in particle swarm optimization is similar to the collective
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behavior and self-organization of socially intelligent organisms. All single
individuals in the population capitalize information between the other’s and benefit

from their discoveries while exploring the local minima.

The basic particle swarm optimization algorithm consists of three steps; generating
particles’ positions and velocities, velocity update and position update. In this
algorithm, a particle, which can be represented as a point in design space, tends to

change its position from one move to another move based on velocity updates.

At first, the positions x. and velocities v. of the initial swarm of particles are
randomly generated using upper and lower bounds on the design variables values

Xmin @Nd X4, @S Shown in equations (4.7) and (4.8).
4.7

i _
X0 = Xmin + rand(xmax — Xmin

Xmin + 7aNd (Xpagx — Xmin)  POSition
At "~ time

vl = (4.8)

The second step is to update the velocities of all particles at time k+1 by using the
particles fitness values which are functions of the particles current positions in the
design space at time k. The fitness function value is used to decide which particle has

the best global value in the current swarm, p,f and determines the best position of

each particle over time, p*. The velocity update formulation uses this information for
each particle in the swarm. The velocity update formulation also includes some
random parameters, which are represented by uniformly distributed variables, to
ensure good coverage of the design space and avoid getting captured in local optima.
The update formula for velocities is given in equation (4.9).

i i (pi B xllc)
Viy1 = WV + cirand ——+ c,ra

g _ i
na P %) (@9
At

At
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where v/, is the velocity of particle i at time k+1, w is the inertia weight ranging
between 0.4 to 1.4, ¢, is self confidence factor ranging between 1.5 to 2, ¢, is swarm
confidence factor chosen between 2 to 2.5. It can be easily said that velocity update
formulation is made up of a combination of current motion, particle memory

influence and swarm influence. v is limited by a max velocity V.. as below [8].

Vij o if |Vij| < Vinax
Vij =1 —Vax » if Vij < —Vnax
Vmax ’ if Vij > Vmax (4-10)

The last step is to update the positions of all particles at time k+1. The position of
each particle is updated using its velocity vector as shown in equation (4.11) and

depicted in Figure 4.4.

i i i (4.11)
Xj+1 = Xt Vgy1At
x’
Tkl
o’
g
p .
k .» Vi L swarm influence
- k+1
particle memory
influence
v?
. current motion
x’ influence
k
Figure 4.4 : Depiction of the velocity and position updated in PSO.
Sometimes x%, , can be modified as [9]:
X1 = Xk + VVpaAt (4.12)
where y is constriction factor, normally y = 1.

(4.13)

— 2k
- /|2—®—\/®2—4®|
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with @ = c; + ¢, and k = 1. A complete theoretical analysis of the derivation of

(4.13) can be found in [22, 23]. The complete flow diagram of particle swarm

optimization algorithm depicted in Figure 4.5.
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Figure 4.5 : Flow diagram of a particle swarm optimization.
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4.4 An Improved Particle Swarm Optimization Algorithm

The particle swarm optimization is a stochastic optimization technique for finding
optimal regions of nonlinear continuous functions through the interaction of
individuals in the swarm. An improved particle swarm optimization algorithm is
used in this study in all applications since it ensures better performance and faster
convergence compared to classical particle swarm optimization. The new algorithm
is applied to some benchmark problems; the numerical experiments show that
improved particle swarm optimization algorithm has better performance than the
standart particle swarm optimization and partical swarm optimization with inertia

weight.

While PSO runs, the inertia weight w decreases either linearly or exponentially

depending on the value of constant k.

w=w-—k(ws —w,)/T (4.14)

In most application of the algorithm w; takes the value of 0.95 and w, takes 0.4. As
mentioned above particle swarm optimization is able to search more globally at the
begining of the algorithm because of the large inertia weight. But, when the number
of iterations increase, inertia weight decreases and algorithm looses the ability of
searching globally to searching more locally. But it has now high efficiency in
convergence due to the small inertia weight. The new proposed velocity update based

on improved algorithm can be modified as [9]

(pi - xllc) (P/}q B xllc) (4.15)
A

+c,(1 —w/2)rand AL

v,i(+1 = WU,i( + c;rand
New social weight is brought to the existing velocity update formula. The intention is
to make social weight increased while inertia weight decreasies. In this case small
social weight makes the global best position p,f have minor impact on the velocity
updating. At the end of the run, the large social weight ensures the best particles
information make a great influence on the swarm search behavior. According to the
above proposed method, the structure of the algorithm isn’t changed except adding

the small social weight.

26



4.4.1 Experimental results and discussion

In order to show the performances of the improved algorithm, the numerical
experiments are conducted on various benchmark functions such as Sphere function,

Rosenbrock function, Rastrigin function and Greiwank function.

Sphere function

n

i) =) 22 (4.16)

=1

Rosenbrock function

100

£2(0) = ) (100Geiss = %)% + (¢ — 1) (4.17)

Rastrigrin function

f:(x) = Z(xf — 10 cos(2mx;) + 10) (4.18)

Greiwank function

fi(x) = ﬁi x? — 1_[1;1 cos (%) +1 (4.19)

For the above four functions, the dimension which treated as population size, search
range and the optimal value are listed in Table 4.1. All the fuctions will be evaluated
within the specific set values in order to ensure consistency. The purpose of the
comparison is to check the performance of the improved particle optimization on
different benchmark functions to understand if it is worth to use such approach for

getting better performance in further studies.
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Table 4.1 : The parameters used in benchmark functions.

Function Name

Dimensin n

Range

[xmin' xmax]

Optimal Value

Sphere 30 [-100, 100] 0
Rosenbrock 30 [-2.048, 2.048] 0
Rastrigrin 30 [-5.12,5.12] 0
Griewank 30 [-600, 600] 0

These numerical experiments are used to compare three particle swarm optimization
algorithms including SWPSO as improved PSO, WPSO as standart PSO and
SWPSO-Random as randomly changing inertia weight improved PSO. The

population size is set to 30 and maximum number of iteration is set to 5000 in all

simulation. The self confidence factor c¢; and the swarm confidence factor c, are set

to 2. The inertia weight w decreases linearly from 0.95 to 0.4 with constant k = 1.

The fitness evolutionary curves of four benchmark functions for all three algorithm

are depicted below.
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iteration

Figure 4.6 : The fitness evolutionary curve of sphere function.
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Figure 4.7 : The fitness evolutionary curve of rosenbrock function.
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Figure 4.8 : The fitness evolutionary curve of rastrigin function.
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Griewank Function
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Figure 4.9 : The fitness evolutionary curve of griewank function.

As an interpretation of the figures, we can conclude that SWPSO-Random has the
best performance on the convergence rate and convergence precision compared to
the standart WPSO and SWPSO. We can also conclude that SWPSO has better
performance with respect to standart PSO. Therefore, in the remaing part of the
study, SWPSO-Random will be used for evolution for other simulations for further
topics. The status of the 30 particles as the simulations run are depicted in Figure
4.10. According to this figure, it can be easily understood that while the algorithm
runs, particles tends to attain optimum values to ensure global optimum of the fitness
function. For example, when the algorithm runs to approximate the sphere function,

all the particles are set to 0 finally which makes the fitness function converge to 0.
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Figure 4.10 : The particle placement while algorithm run.
4.4.2 Partical Swarm Optimization and Genetic Algorithm

Particle swarm optimization is similar to the genetic algorithm in such a way that
both of these evolutionary algorithms are based on population search methods.
Particle swarm optimization and genetic algorithm move from a set of points to
another set by using a combination of deterministic and probabilistic rules. The
genetic algorithm has the ability to solve optimization problems for highly nonlinear
systems and used in today’s academia and industries. In spite of its ability for solving
such complex systems, it has a drawback of being expensive in computational cost

and it needs more memory for execution. According to recent researches, particle
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swarm optimization has the same effectiveness in finding the global optimal solution
as genetic algorithm but exhibits significantly better computational efficiency and
performance. Particle swarm optimization and genetic algorithm are able to arrive at
solutions with the same quality but particle swarm optimization is less
computational-expensive and needs small memory than the genetic algorithm in
general. Particle swarm optimization offers more computational savings for
unconstrained nonlinear problems with continuous design variables as well. In all the
applications for the rest of this study, improved particle swarm optimization is used.
Parameters of the particle swarm optimization algorithm can be varied with respect

to implementation on simulations [8].
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5. OPTIMAL PARAMETERS OF THE FUZZY-PID CONTROLLER

As mentioned earlier PSO is able to generate high-quality solutions within shorter
computation time and has more stable convergence characteristics than other
stochastic optimization methods. In this study, PSO is used for tuning the
proportional integral derivative controller gains and the crips values of Takagi-
Sugeno rule base for a fuzzy PID controller and the results are presented. While the
crips values of the rule base of the Takagi-Sugeno model are optimized using particle
swarm optimization technique, fuzzy inference mechanism is used for specifying the
consequent values of the controller output. The performance of the fuzzy PID
autotuner has been well achieved by the use of the particle swarm optimization for
optimizing the crisp values of the rulebase on different systems. In this chapter, first
order plus dead time (FOPDT), second order plus dead time (SOPDT) and finally
second order oscilattory process model have been in simulations and the results of

using particle swarm optimization for parameter tuning process are given.

5.1 Automatic Tuning : A Fuzzy — PSO Approach

PID controller has been the most commonly used controller for the applications of
process control. These controllers have solved most of the control problems in
process control. PID controller has survived during the course of time even though
the control technology developed more sophisticated methods. The most important
effects of PID controllers in process controls are elimination of steady state error and

generation of adequate corrective signals through the derivative action.

PID controller captured much attention when the concept of automatic control first
emerged. Nevertheless, unfortunately for a long time, researchers paid little attention
to it because of the difficulty of tuning the three controller parameters by trial and
error. Parallel to the increasing usage of the microprocessors, there has been a
resurgence of interest in PID control. From then on, autotuning became a feature,
which has been extensively used in PID controllers. Autotuners have much more

advantages than others have since automatic tuning is faster than manual tuning and
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it decreases the commissioning time for installation of new processes. In addition to
manual tuning of the three parameters, step response and Ziegler — Nichols can also

be used.

The autotuners that have the ability of self-tuning have many techniques for
increasing the performance of control process. In this thesis, the fuzzy inference
mechanism is based on the Takagi-Sugeno model and the rule base is derived with
the help of particle swarm optimization algorithm based on error criterias such as
IAE, ISE and ITSE. The advantage of the proposed method is that it is less sensitive
to the knowledge of process experts as mentioned earlier. The parameters of PID and
crisp values of Takagi Sugeno that are to be optimized have been obtained offline by
the help of the implementation of fuzzy controller and particle swarm optimization
technique together. This approach has been applied to FOPDT, SOPDT, and SOPDT

oscillatory systems based on predetermined error criterias [10].

5.2 The Fuzzy PID Controller

The PID control law is generally of the form

t

u(t) = Kp.e(t) + Kij e(t)dt + Kd%e(t)

0 (5.1)

where; e is the system error between desired and actual outputs, u is the control
force, K, is the proportional gain, K; is the integral gain and K, is the derivative
gain. In conventional usage of the PID, K, will have the effect of reducing the rise
time but not eliminating the steady state error, K; will have the effect of eliminating
steady-state error while making transient response worse and finally K; will have the
effect of increasing the stability of the system. The purpose of using the fuzzy-PID
controller is to design a set of PID gains with rulebase and inference mechanism such
that the system output response satisfies certain spesifications. In this thesis, the
parameters of the PID and the crisp values of the rulebase of Takagi-Sugeno have
been optimized by using improved particle swam optimization technique. Even
though the proposed rule base is valid for all kinds of fuzzy logic controllers, in this
study PID type of fuzzy logic controller will be used for various practical real time

processes.
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The error e and the change in error de have been used as the inputs of the fuzzy PID
controller and the control signal (u) as the output of the PID type of fuzzy logic

controller as illustrated in Figure 5.1.
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Figure 5.1 : An overall architecture of the fuzzy PID controller.

In order to be able to access the parameters of fuzzy-PID and the crisp values of
Takagi-Sugeno rule base by using particle swarm optimization technique, it is a
necessity to design the controller in such way that all the tuning parameters must be
reachable from anywhere in the system. The number of necessary fuzzy sets and
their ranges are designed based upon the study in [10]. The inputs of the fuzzy logic
controller are the error e and the change in error de whereas the output variable is the
control signal u after defuzzification to the system. The universe of discourse for the
input variables is divided into three regions using the following linguistic variables
as Negative (N), Zero (2Z) and Positif (P). Triangular membership functions are used
in the controller design. The universe of discourse of the output variables is assigned
crisp values since a Takagi-Sugeno rule base is implemented. Input variables are
defined on the normalized domain of [-1, 1] whereas output variables have no any
boundaries since they affect the inference mechanism of the controller. The heights
of the membership functions are one. The membership functions of inputs are
illustrated in Figure 5.2. According to the figure x; refers to input of e and x, refers

to input of de.
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Figure 5.2 : Membership functions for e, x; and de, x,.

During the design of the fuzzy controller, normalized process variables are fuzzified
by fuzzification process and sent to fuzzy inference engine. The crisp output value,
which is derived from fuzzy inference mechanism by weighted average method, is
multiplied with K; and K,, parameters to compute the control signal to the contolled

systems. The fuzzy inference mechanism is illustrated in Figure 5.3 [12].
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Figure 5.3 : Fuzzy inference mechanism.
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The fuzzy rule base is in the form of fuzzy conditional statement as given below;
R; = If"e" A; and "de" B; then "u" C;.

It is composed of the antecedent (if-clause) and the consequence (then-clause). In
this study, Takagi-Sugeno type of fuzzy rule base is used and the lookup table is

derived as shown in Table 5.1.

Table 5.1 : Crisp values for rule base.

e,de N Z P
N k, k, Kk,
Z K, Ks kg
P Kk, Kg Kq

During the control process, normalized process variables e and de are fuzzified into
fuzzy variables in order to compile through the fuzzy inference mechanism. The rule
base is based on Takagi-Sugeno type model. According to Takagi-Sugeno modeling,
even if A and B ancedent values are fuzzy values, the consequents should be crisp
values. The control signal before multiplying the parameter of K; and K, will be
crisps values as well. The proper rule base structure is very important from controller
design point of view. In this study, particle swarm optimization tool is used for
optimizing the 3x3 crisp values and the parameter of the PID controller K,, K;

and K;. Cumulative number of optimized parameters will be 12 [10].

5.2.1 Structure of the Takagi Sugeno rule base model

Fuzzification and defuzzification of the fuzzy controller are carried out differently
for different values of normalized e and de. Four possible cases for the derivation of

the fuzzy inference mechanism and the rule base are summarized below.
First Case: e,de € [-1,0],
The singleton values in the lookup table when process variables are between [-1, 0]

are N-N (k;), N-Z (k,), Z-N (k,) and Z-Z (ks).

Table 5.2 : Fired crisp values according to first scenario.

e,de N Z P
N k, k, ks
Z Kk, ke ke
P Kk, Kg Kq
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Fuzzy rule base is a combination of optimized control rules. Takagi Sugeno’s
minimum operation rule is used as fuzzy implication function. Weighted average
method is used to defuzzify the inferred output as shown in (5.2). Inferred output will
be multiplied with K; andK,, to compute the control signal.

s = ky(—x)(=x2) + kp(—x1)(xz + 1) + kg (—x2) (g + 1) + ks (g + D(xz + 1)
(—x)(=x2) + (—x) G2+ D+ (—x2)(xy + D + (g + D(xp + 1) (5.2)

Second Case: e€[—1,0]and de € [0,1],

The singleton values in the lookup table when e is between [-1, 0] and de is between
[0, 1] are N-Z (k3), N-P (k3), Z-Z (ks) and Z-P (k).

Table 5.3 : Fired crisp values according to second scenario.

e,de N Z P
N k, k, ks
Z K, ks K
P Kk, Kg Kq

Usign the same minimum operation rule and weighted average defuzzification
method, the output of the inference mechanism is computed as:

7= ks (—x1)(x2) + ke(x2)(x1 + 1) + ko (—x1)(1 — x3) + ks (1 — x3)(x1 + 1)
(—x)(x2) + () (g + 1) + (—x)) (1 —x3) + (1 — x3)(x1 + 1)

(5.3)
Third Case: e € [0,1]and de € [-1,0],

The singleton values in the lookup table when e is between [0, 1] and de is between
[-1, 0] are Z-N (k,), Z-Z (ks), P-N (k) and P-Z (k).

Table 5.4 : Fired crisp values according to third scenario.

e,de N Z P
N k, k, &
Z K, ke K
P Kk, Kg Kq

The output of the inference mechanism is computed as:

;= k7 () (—x2) + kg(x)(xz + 1) + kg (—x2) (1 — xq) + ks (1 — x1)(x; + 1) (5.4)
() (=x2) + (x))( + D+ (—x) (1 —x) + (T —x)(x, + 1)
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Fourth Case: e€[0,1]and de €[0,1],

The singleton values in the lookup table when process variables are between [0, 1]
are Z-Z (ks), Z-P (kg), P-Z (kg) and P-P (k).

Table 5.5 : Fired crisp values according to fourth scenario.

e,de N Z P
N k, k, Kk,
Z Kk, ke Ke
P Kk, Kg Ko

The output of the inference mechasim is computed as:

_ ko (1) (x2) + kg(x)(1 — x3) + k(1 — x1)(x2) + ks (1 — x2)(1 — x4)
() () + ()X —x2) + (1 —x7) () + (1 —x2)(1 — x9) (5.5)

5.2.2 Implementation of Particle Swarm Optimization

In Chapter 4, the efficiency of the improved particle optimization technique was
proved on some benchmark problems. In this study, improved particle swarm
optimization will be used for all the simulations due to its effectiveness in
optimization. Particle swarm optimization starts with the initialization of individuals
similar to other artificial intelligence based heuristic optimization techniques. In a
physical n-dimensional search space, the velocity and the position of individual i are
represented as the vectors X; = (x;q, ..., xin) and V; = (vj, ..., Vi) in the PSO
algorithm. Pbest; = (xF2¢t, ..., xFPet) and Gbest; = (x5P, ..., x5Pest) are the
best position of individuals and their neighbours’ best position, respectively. The
velocity of individual i is derived under the following equation in PSO algorithm
(5.6).
VIt = w.Vf + ¢ rand, x(Pbestf — XF)
+ ¢, (1 — w/2).rand,x(GbestF — X}) (5.6)

where; V/ is the velocity of individual i at iteration k, X/ is the position of individual
I at iteration k, w is the inertia weight, c;,c, is the weight factors, rand,,rand,
denotes random numbers between 0 and 1, Pbest¥ is the best position of individual i

until iteration k, and best position of the group until iteration k is denoted as Gbest¥.
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Each individual moves from the current position to the next one by modified velocity
using the following position update equation (5.7).

Xkt = xk 4 phk+t (5.7)

During updating of velocity and position, the parameters of w, c¢;,c, should be

determined from the following equation.

Wiax — Wmin .
W= Wpax ———————— X lter (5,8)
itehmax

where, wy,q., Wimin are initial and final inertia weights, iter denotes current iteration
number while running the simulation, iter;,,, IS the maximum iteration number.
c1, Cc, are the confidence factors and are always set to the same number to give
particle memory influence and swarm influence equal weight. V;,,,, and -V;,,,,will be
used to limit the velocities of the particles. The PSO algorithm is summarized as

follows:

Step 1: Initialization of each individual.

Step 2: Setting of weights.

Step 3: Update of velocity, position and iterator.
Step 4: Update of Pbest and Gbest,

Step 5: Go to step two until stopping criteria as max iter or error goal has been

satisfied

5.3 Simulation Results

The proposed algorithm for tuning the paramenters of a fuzzy - PID controllers have
been applied to a number of process models. Simulations are performed for the first-
order dead-time process model (FOPDT), the second-order dead-time process model
(SOPDT) and at the end, second-order oscillatory process model to test the proposed
algorithm. In order to evaluate the models presented here on the same basis or
criterias regarding particle swarm optimization, parameters of the algorithm are taken
as listed in Table 5.6 for all models [10].
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Table 5.6 : Particle swarm optimization algorithm parameters.

Swarm Size Number of particles 20
Iterations Maximum iterations 250
Error Goal Termination point 1e-10
Dimension Coordinates of particles 12
cl, c2 Self , swarm confidence 2
w,_start Velocige ;\:ﬁ:ggt at the 0.95
w_end Velocity weight at the 0.40
end
Vmax Maximum velocity 10
Chi Constriction factor 1
Objective Function - IAE | Integral Absolute Error fle(t)l dt
Objective Function - ISE Integral Square Error f e?(t) dt
Objectl\I/_ergllEmctlon Integrggﬂg:;rréerrr;?ltlply f te?(t) dt

5.3.1 First order plus dead time model

A fuzzy PID controller is designed for a linear first order plus dead time (FOPDT)
system. The parameters of the fuzzy PID controller and the crisp values of the
Takagi—Sugeno rule base are tuned by improved particle swarm optimization

technique. The transfer function for the FOPDT system is given by:

e—BS

T(s) = s+1 9

For this FOPDT model, simulation results are shown for § = 0.2 s and z =1.0 s. The
sampling time is taken as 0.01 s. The nine crisp values of the rule base are calculated
by the proposed particle swarm optimization technique implemented using matlab,

the values are given below:

Table 5.7 : Crisp values for FOPDT — IAE.

e,de N Z P
N 9.2954 4.0313 4.8648
z -0.0062 0 -1.4033
P 0.0561 -6.7924 20.0207
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Overall structure of the FOPDT model is illustrated at Figure 5.4. According to the
system, the parameters of PID and the crisp values of the rule base have been tuned
offline to minimize the performance criteria given as integral absolute error (I1AE).
The fitness evaluation curve for integral absolute error while searching the optimum
values is illustrated in Figure 5.5. According to the figure, the final value of the
fitness function derived via particle swarm optimization is 0.3001 at the end of the
250 iterations. Total funtions evaluated is 5020 since algorithm runs 20 particles’
fitness functions per one iteration. A change in the fitness value during search is
shown in Table 5.8 with iteration number. Ensured tuned parameters are given to the
simulink as parameters after optimization since offline tuning has been applied to
find the optimum values. Observed system response, error and control signal can be
seen in Figures 5.6, Figure 5.7 and Figure 5.8 respectively. The saturation block in
the system is used for limiting the process error e and change of error de between [-1,
1]. The parameters of the PID which are derived from the optimization are K; =
0.2667, K, = -0.73804 and K; = -0.73821. A linearly decreasing inertia weight is
used for particle swarm optimization algorithm since this is the most efficient way to
get rid of the local minimas according to the researches. For further studies, this
model would be taken as reference for examining the efficiency of the program with
changing the necessary values in terms of PSO parameters. Another version of the
improved particle optimization algorithm can be applied to the program since the
program has the flexibility for further studies. The simulation results are shown in
the graphs of system response for FOPDT. The proposed parameter tuning method
was successfully achived in terms of rise time, and settling time.lIt is to be stressed
that reductions in rise time and peak deviation or overshoot are the primarly concerns
for improved performance. However, actual reduction in IAE would also be based on

the values of 9, z and T as well.
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Table 5.8 : Fitness functions of IAE during execution.

Figure 5.6 : System response of FOPDT-IAE.
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Iterations | fGBest | fevals | Iterations | fGBest | fevals
10 3,2801 | 220 130 0,4 | 2620
20 3,2801 | 420 140 0,383 | 2820
30 2,938 | 620 150 0,354 | 3020
40 2,938 | 820 160 0,346 | 3220
50 1,99 | 1020 170 0,331 | 3420
60 1,99 | 1220 180 0,324 | 3620
70 1,99 | 1420 190 0,303 | 3820
80 1,7633 | 1620 200 0,303 | 4020
90 0,81003 | 1820 210 0,302 | 4220
100 0,40878 | 2020 220 0,301 | 4420
110 ]0,40878| 2220 230 0,301 | 4620
120 0,40584 | 2420 240 0,301 | 4820
130 ]0,39982| 2620 250 0,300 | 5020
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Figure 5.8 : Error and derivative of error for FOPDT — IAE.
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5.3.2 Second order plus dead time model

A fuzzy PID controller is designed for a linear second order plus dead time (SOPDT)
system specified by equation (5.10). The parameters of the fuzzy PID controller and
the crisp values of the Takagi—Sugeno rule base are tuned by improved particle
swarm optimization technique. The proposed algorithm is implemented using
integral absolute error (IAE), integral square error (ISE) and finally integral of time
multiply square error (ITSE) in this simulation study. At the end, assessments for the
performances with different fitness functions evaluation and the impact on system

response, error and control signal has been discussed [10,13,14].

e—es

T = s T Ds + D)

(5.10)

where, 8 = 0.3 sve 1; = 0.4 s and t, = 0.5 s. Sampling time is 0.01 sec. The 3x3,
9 crisp values of the rule base have been calculated based on three different objective
functions with the proposed methods indicated below by using Matlab and particle

swarm optimization technique.

Table 5.9 : Crisp values for SOPDT — IAE.

e,de N 4 P
N 6.3178 -0.0471 3.3345
Z 0.0885 -0.0002 1.2814
P -2.7073 6.7767 5.4759

Table 5.10 : Crisp values for SOPDT — ISE.

e,de N 4 P
N -6.31924 -0.22271 -12.8071
z -0.89102 0.065926 -0.26551
P 1.938938 -9.43175 8.051075

Table 5.11 : Crisp values for SOPDT — ITSE.

e,de N Z P
N -9.64815 -0.55859 -6.9098
z -0.60387 0.00236 -1.68627
P 8.824716 -13.2785 7.550065
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Since the structure of the algorithm is heuristic, it is understandable to see the
different values in the Takagi-Sugeno rule base with respect to different performance
criteria. Overall structure of the model is illustrated at Figure 5.10 with difference
based on performance indexes. The structures of the three different objective
functions are depicted below at Figure 5.9. According to the sytem, the parameters
of PID and the crisp values of the rule base have been tuned offline for minimizing
the performance criteria given as integral absolute error, integral square error and
integral time multiplied by square error. The fitness evaluation curves for integral
absolute error, integral square error and integral time multiplied by square error
while searching the proper values are illustrated in Figure 5.11. It is observed that,
among the performance criterias, ITSE is the most successful criteria to find the
minimum fitness function by offline tuning. Computed tuned values are given to the
system after optimization. The saturation block in the system is used for limiting the
process variables between [-1, 1].

Table 5.12 : Kp, Ki, Kd and Min values.

Obijective . Min
Function Kp K Kd Fitness Funct
SOPDT-IAE | 0.523805 0.570019 2.212371 0.5859
SOPDT-ISE -0.59097 -0.38646 -5.11098 0.4705
SOPDT- | 038068 | -0.23244 | 3557233 | O-11954
ITSE
(Ul | ;— P IAE
Abs Integrator Saturation To Workspace
Integral Absolute Error
—3 x » 1 > » ITSE
CI_)_,_’Pmdua Integratort Saturation1 To Workspace1
Hork Integral time multipky Square Emor
Li % g % > | ISE
Product1 Integrator2 Saturation2 To Workspace2
Integral Square Ermor

Figure 5.9 : Performance indexes.
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Figure 5.10 : The structure of SOPDT-IAE,ISE,ITSE.
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Figure 5.11 : The fitness evolutionary curves of 1AE, ISE, ITSE.
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Optimized parameters and the related fitness functions for three different
performance criteria are listed in Table 5.12. Linearly decreasing inertia weight is
used for particle swarm optimization algorithm since this is the powerfull method
among other improved models. Particle placements as the algorithm runs are shown

below with respect to different performance criterion.

Distributution of 12 particle in 3D ( # of iterations as 251 ) Distribution of 12 particle in 3D-ISE (# of iterations as 251)

k3

k1

Figure 5.12 : Particle placement for SOPDT-IAE,ISE,ITSE.

As it can bee seen above from particle placement for second order plus dead time
system with different fitness criterion, all 20 particles are getting grouping partially.
The 3 dimensions of the cubic are k4, k, and k5 of the first 3 crisp values in Takagi —
Sugeno rule base. In very few iterations, the entire 20 individuals are seen to be
clustered within the tiny circle surrounding the goal and finally landing on the target.
The performance of ITSE fitness criteria can also be seen better in particle
placement. The step responses of the three different performance indexes are

depicted below.
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System Responses of a SOPDT process model
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Figure 5.13 : Response of a SOPDT process model.

In Table 4.13, the comparison of performance with the SOPDT monotone process
model is shown. Different error criterias are chosen and it has been observed that in
all cases the proposed technique produces better results than conventional control
methods. Among the different performance indexes, IAE model produces better

result than the others since maximum overshoot M, (%) = 5.5, settling time
ts =6s,t. =0.8s.

Table 5.13 : Performance analysis for the monotone SOPDT.

Objective 0 Min
Function Mp (%) t5(s) () Fitness Funct
SOPDT-IAE 4.25 6 0.8 0.5859
SOPDT-ISE 22 10 0.6 0.4705
SOPDT- 0.11954
ITSE 15 8.7 0.6

The control signals computed for second order monotone dead time system based on

different performance indexes are shown below.
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Control Signals
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Figure 5.14 : Control signal for a SOPDT process model.
5.3.3 The second order oscillatory process model

A fuzzy PID controller is designed for a second order oscillatory process model with
considerable dead time. This process model has been chosen becasuse this type of
the process is hardly to control due to the inherent oscillatory nature. A linear second
order plus dead time system (SOPDT2) is considered and the parameters of the fuzzy
PID controller and the crisp values of the Takagi—Sugeno rule base are tuned by
improved particle swarm optimization technique. The proposed algorithm is applied
to the following system (5.11) [10,13,14].

—0s

where, 8 = 0.4.. Sampling time is 0.01 sec. The 3x3 crisp values of the rule base
have been derived from the proposed methods indicated below by using Matlab and
particle swarm optimization toolbox. Overall structure of the model is illustrated at
Figure 5.15. According to the sytem, the parameters of PID and the crisp values of
the rule base have been tuned offline to minimize the performance criteria given as
integral absolute error (IAE). Computed values have been entered to the system after
optimization and system response, error and change in error are observed. The

saturation block in the system is used for limiting the process variables between [-1,
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1]. The parameters of the PID which derived from the optimization are K; = -1.6032,
K, =-0.865 and K; = -0.0343. Linearly decreasing inertia weight is used for particle
swarm optimization algorithm since this is the most efficient way to get rid of the
local minimas according to the researches. The observed variables can be seen from
Figure 5.16, Figure 5.17 and Figure 5.18 respectively.

Table 5.14 : Crisp values for SOPDT2 - IAE

e,de N Z P
N 2.0041 45428 -5.0768
Z 0.5766 0.047 -2.7698
P 2.5991 -5.3052 -7.4069
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Figure 5.15 : The structure of SOPDT2-1AE.
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System response of oscillatory process model
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Figure 5.16 : System response of SOPDT2-1AE.

Control signal for SOPDT2-|AE System

Control Signal

I [P ———"

ittt vt i Satatatindiatially Fodiatidiatbaiindty Dulindintiadintiatid ciatiatintiatdind! Fddt

T, g -

o - o] - o - o o—

- - -

3fF--}--

3| B I
1_--.--.
0f—L--4¢

|eubig joljuo)

sz

200 300 400 500 600 700 800 900 1000

100

Time in seconds

Figure 5.17 : Control signal for SOPDT2-IAE.
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Figure 5.18 : Error and derivative of error for SOPDT2-1AE.
5.4 Conclusion

In this study, tuning the paramaters of a fuzzy controller, which was investigated
using particle swarm optimization technique. Standart tuning techniques such as
Zeigler - Nichols, Cohen-Coon, Set point weighting method used in optimization
toolbox of MATLAB failed to provide good solution because of the presence of a
number of local optima. Presented approach has been followed which utilized
evolutionary computation for optimization of 12 floating-point elements. By using
different performance indexes, proposed method has been applied to different
systems to see the performance. It can be observed that same different performance
indexes on identical systems yield different system responses and it can be concluded
that in optimization, performance criterions are important to specify the parameters
of fuzzy PID and crips values of the rule base. The algorithm is flexible to generalize
in the sense that all of the parameters that have been tuned offline can be optimized
online but it will take too time to finalize the simulation. It is expected that it would
perform better in all types of applications especially in non-linear process systems

where disturbances are likely to occur frequently.
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6. COUPLED TANK PROCESS CONTROL BY FUZZY PID

The control of liquid level and flow rate between tanks has frequently been
encountered in the process industries. The process industries often require the liquids
to be pumped, stored or pumped to another tank. The purpose of the control in the
process industries especially in tank systems is to control the level of fluid in the
tanks as well as to regulate the flow between tanks. Level and flow control in tank
systems are the most common practice in all chemical engineering systems. Petro-
chemicals industries, paper making industries and water treatment industries are
some vital industries where liquid level and flow control are implemented. The
proposed approach in this study is to design a fuzzy PID controller for a nonlinear-
coupled tank process system. In this approach, the design is based on minimizing the
performance index by tuning the Takagi-Sugeno rule base values as well as PID
parameters with particle swarm optimization algorithm to ensure robust control with
minimum settling time and overshoot within specified operation conditions. The
efficiency of this method is demosttrated on a coupled tank system where the

connection between the tanks and flow in each tank are taken into account.

Industial processes are generally nonlinear systems. Classical control methods are
being used to control the nonlinear systems by linearizing the model around a steady
state point. The PID paramters are then determined for a chosen set point using
frequency response method or using pole placement. Because of inheritance of the
nonlinearty of the process systems, it is an inevitable need to monitor and adjust the
loops due to parameter variations and operating conditions changes. If the process
system is updated online, the controller should be effective over a wider range of
operating conditions. This control strategy provides the basis for the self-tuning
approach to adaptive control of nonlinear systems. Another control strategy for
nonlinear system control is using an empirical model that is developed from
experimental data. The most attracted strategy for developing nonlinear dynamic
models from input/output date is artificial neural networks. It has been also widely

used in process control applications.
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6.1 Modeling The Nonlinear Coupled Tank System

It is crucial to understand the background of how the coupled tanks system works.
This is the system modeling and it is very important part of control system analysis.
To begin with look at a single tanks system in Figure 6.1 to understand how to derive

the coupled tank system [15,19].

Tank
| (Cross Sectional
Qi

Area A)

Pump OQ

Valve
Qo
Figure 6.1 : A single tank fluid level system.

The system model is determined by the flow Q; into the tank and the flow Q, leaving
through the valve at the tank bottom. Using a balance of flows, the equation of the

tank can be expressed as:

dH

Qi=CQo=A—— (6.1)

where, A is the cross-sectional area of the tank and H is the height of the fluid in the
tank. If the valve behaves like an ideal sharp edged orifice, then the flow through the
valve is related to the fluid level in the tank, H by the expression

Qo = Cqay/2gH (6.2)

where, a is the cross sectional area of the orifice. C; is called the discharge
coefficient of the valve. This coefficient stands for fluid charecteristics, irregularities

and losses in the system. g stands for gravitational constant, which is equal to
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980cm/sec?. When the above equations are combined, we obtain the mathematical

model that describes the system behavior of nonlinear single tanks system.

dH
A—+ Cqayf2gH = Q, (6.3

In the tank level problem the nonlinearty is important to solve in order to ensure
robust control. The nonlinearity is smooth and can be made linear at a particular
operating level H by using the slope of the nonlinearity at H. The system dynamics
will change as the normal operating level varies. The tank level controller does not
perceive the parameter changes in the model.When the two tanks are joined the

coupled tank system shown in Figure 6.2 is obtained [15].

1)

qy(1)
N
‘l tank 2
C il
(1)
hy(t) hy(1)
Yl (5r—»>
— L AS / (} Ply 3 AS lV'S -

-~ e ~—— q»(1)
tank 1 | l_ (1)

Figure 6.2 : A coupled tank fluid level system.

In particular, a coupled tank fluid level system is a well know benchmark problem
for nonlinear control. It deals with a labarotory process using two tanks with fluid
flow. In the simulation of fuzzy control with particle swarm optimization, two tanks
are identical and cylindrical in shape, with a cross section of A, = 0.0154 m?. The
cross section of the connection pipes is S, = 3,6.107>m? and the liquid levels in the
two tanks are denoted by h,(t)and h,(t) respectively. The supplying flow rates
coming from pump to tank 1 are denoted by u;(t). There is an outflow from tank 2.

By using balance equation and Toricelli’s rule, following rule can be obtained.
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hi(t) = (=Kp1sign(hy(t) — ha())V 2911 (8) — ha (D] + q1(8))/As (6.4)

ho () = (Kpysign(hy(t) — hy(t)) \/29|h1(t) — hy ()]
- KpZ\/ Zghz (t))/As

where, K1 = a1S,; and Ky, = a,S,, for outflow coefficients and g considered as

(6.5)

gravity acceleration. For simplicity, a; and a, taken are 1. The overall parameters

of the nonlinear-coupled tank system are listed in Table 6.1 [15].

Table 6.1 : System parameters of coupled tank.

Cross section areas of the tanks [m?] A; = 0.0154
The cross sections of connection Sp1,Sp2 = 3,6.107°
pipes[m?]
Gravity acceleration [m?/s] 9.81
Height of the water [m] hi, h,
Flow rate from pump to tank1 [m3/s] q.(t)
Flow rate from tank2 [m3/s] q,(t)
Outflow coefficients Kp1, Kp2
Height of the tanks [m] H=0.6

Voltage of the pump is also limited between 0 and 10 V. System input is the voltage

of the electrical pump, which is, u; (t) and it produces the entrance flow as below.
7,(0) = Ky (1 + vy () (6) (6.6)

where K,, = 8.8x107°m3/Vs coefficient of transition and v, (t) is transition error.

The true entrance flow rate is written below.

q:1(t) = q,(®) + (1 — Kp)q, () (6.7)
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where, K¢ is coefficient of error. The only measuring device for the output signal is

the pressure sensor under the tank 2 that transfers the water height of the second tank

h, (t) to voltage of output u, (t).

Uy () = Kn(1 + v2(0)hy(¢) (6.8)

where, K, = 16.667 V/m coefficient of height to voltage. v,(t) is the transition
error. The upper limits of the errors are, v; = v, = 0.03 . When the dynamical
equations are derived with the defined values, the nonlinear-coupled tank system

mathematical model is obtained as given below [14].

hy(t) = —1.035454x10 2sign(hy (t) — hy ()Y 1h (t) — ho (D)

6.9
+ 1.143x10 3y, (t) ©9)

hy (t) = 1.035454x10 2sign(hy (t) — hy(£) )4/ |y () — hy ()]

6.10
— 1.035454x1072,/h, () (6.10)

The transition of the mathematical model into simulink is in Figure 6.3.

Sign1_\_> X —bb—‘_’
f = 1 h1 J
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—»
; m D[R

= p— h2
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Add2 Sign X

Product Gsin
el [u| [ sart
Abs Math sqrt
Function
Math Gain1
Function1

Figure 6.3 : Simulink presentation of mathematical model.
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6.2 Implemeting Particle Swarm Tuning Methodology

The derived nonlinear model of coupled tank sytem has been used as a benchmark
model for implementing fuzzy PID control with particle swarm optimization to tune
the crisp values of Takagi-Sugeno values and PID coefficients for getting robust
nonlinear control. In this study, the same particle swarm optimization technique that
has been used so far was used to find the crisp values and coefficient of the fuzzy
PID controller. Due to the nonlinearity of the process, set value has been limited
between 0 and 0.3 and divided into 3 regions. The purpose of limiting the control
trajectory is due to the limitation that the heights of the tanks are between 0 and 0.6m
in the mathematical model. PSO optimization technique has been implemented in
three regions separately with respect to desired input as shown below in order to

capture all the transition values. The different regions are depicted in Figure 6.4.
l. h,:0.00 - 0.15 ( first region)
Il. h,:0.15 - 0.20 ( second region)

M. h,:0.20 - 0.30 ( third region)

o IFI’2 [t:]
0.3 e e v r o = e e e L i  —n — o — . —
* * i Y " Y * * v " o S M - N . NN b
'\-l\I '|l| '|l| '\-‘ '\.‘ '\.l| '\-l| '\.‘ l\'u‘ h) b h ] ‘~ ,\\ \1 .\II‘ l\',' .\Il‘ \l' " N N
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§oor
0.15 LA A S S
I.Region
0.0 =

t

Figure 6.4 : Different control regions for transitions.

When we run the PSO algorithm for different regions with different inputs between
specific intervals, all the crisp values and fuzzy PID parameters are computed offline
to control the system in specific regions. It can enable us to switch smoothly between
different controls trajectories. The regions have been evaluated with the control
signals depicted Figure 6.5, 6.6 and 6.7 and the ensured crisp values are shown in
Table 6.2 for different regions [16,17].

60



|.Region

|||||||||||||||||||||||||

||||||||||||||||||||

||||||

|||||||||||||||||||||||||||

|||||||||||||||||

0.15

(yn

600 800 1000 1200 1400 1600 1800 2000
t(sec)
|.Region

400

200

T T
Sy ' {
= : H
= ' H
- &= . '
: H
1 . '
: . H
- || PR —— o - =]
1 ' .
1 : Hs ¥
dncees oo S B2 1 % 3
lll- T
H H
: H
. H
G ———" - e T T S _—
0 H
. H
. H
' H
H H
. H
. H
' H
H H
. 3
e ] | Lo St 2=
H H
H H
. H
' H
' H
H H
: ' N ]
—
e e e e g e ]
H H
' H
' H
i H H
H H
' H
' H
. H
. H
T < L I I —1
0 v
' H
' H
: H
———— .
v
. H
' H
H H L
ooy spenescron g s v R e e e v e W e, oS
] b
H H
' . P ——
P et Tlalag dall
+ =
] H
S . P .
........................ —
. H
_ . H
. H
' H
IIIIIIIII
. *
H H
' H
‘ H —
lcsermiyemiyg NSRS o = |
H H
' H
. . (" —
: JR P 5 TP
. s
. H
. H
' H
| 3 R - _
1 ¥
H H
' H
. H
" " P e o,
' H
. H
' H
| |
Lo g Lo (=)
% = <,
o (=]

Y

400 600 800 1000 1200 1400 1600 1800 2000
t(sec)

200

|.Region

1 T T
— — . :
—— = : :
= v N '
R — e - H
H
1 H .
1 :
- NS C o P, - S | - .« -
1 . H
1 H
H
lllllllll ISR LS
b
(P
Lud
H '
e e S SLETLEL U PP N
H =
gL g ) 1 V7 - =P

H
e

' '
B it LT

—mlmcaaw

b S P R RS

2y’ Ly

.. . .
H : H
..#l: ' ]
.........................
: : 0
. : .
—----- A L - e
: : ; :
: :
. vz
: Vol
: i
H L3 H
R — " IIIIIIIIII (e LS} e ana ns. lll"
: : H
: : .
: ; :
: H
H H
: H
: :
| | | |
o -t o o~ A >l (]
L) L) - o o

400 600 600 1000 1200 1400 1600 1600 2000
t(sec)

200

Figure 6.5 : 0.00-0.15 u(t) and h1(t), h2(t) for first region.
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Table 6.2 : Takagi-Sugeno crisp values on nonlinear-coupled tank system.

Crisp Values for Fuzzy IPD | k1 k2 k3 k4 k5 | k6 k7 k8 k9 fxmin
0.00-0.15 ( I. Region ) -19,4| 13,07| 8,51|21,80|0,00| -8,43| -15,6| -26,7 | -32,6| 8,87
0.15-0.20 ( Il. Region) 44,66| -10,5|24,48| -10,4| 0,00 11,53| 5,83| 9,35| -11,9|16,71
0.20-0.30 ( Ill. Region ) -0,53| 23,64 | -0,57| 27,73| 0,00| -31,8| 27,82 | -11,3| 11,01 | 24,07
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It is well known that the mathematical model of a coupled tank system is nonlinear.
This nonlinearity characteristic feature of the tank model makes it impossible to
derive only one set of PID parameters between regions that would be valid for all
operating points. In other words, optimal controller parameter values obtained for a
particular operating point will not be optimal for another point. Therefore, optimal
PID controller parameters are figured out by implementing least square fitting for
some predetermined height conditions of the coupled tank. For this purpose, a set of
functions for various operating conditions are calculated using least square fitting
method for the controller parameters depending on the ensured constant Takagi-
Sugeno values. The optimum PID parameters for specific regions can be calculated

as below:

For 1% region;

K, = (=7.1907 u® + 4.7879 u* — 0.5777 u — 0.0547)x 103

K, = (1.2661 u® — 0.3805 u? + 0.0371 u — 0.0016)x 10* (6.11)
K; = (—753.8554 u3 + 266.7015 u? + 268.3418 u + 6.3814)

For 2" region;

K, = (—4.6655 u® + 2.4571 u® — 0.4064 u + 0.0251)x 10*

K; = (—2.7268 u® — 1.4185 u? — 0.2449 u — 0.0141)x 10° (6.12)
K; = (—4.3872u3 + 2.2802 u? — 0.3932 u + 0.0226) x 10°

For 3" region;

K, = (5.1245 u3 — 3.3422 u?® + 0.8109 u — 0.0493)x 103

K; = (3.6542 u3 — 2.7966 u? + 0.7105 u — 0.0607)x 10* (6.13)
K; = (—6.0174 u3 + 4.1898 u? — 0.9584 u + 0.0710) x 10°

where, u is the set values of the coupled tanks sytems. Complete structure of the

simulated coupled tanks system can be seen in Figure 6.8.
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Figure 6.8 : Simulink representation of coupled tank system.

6.3 Simulation Results

Coupled tank system with fuzzy PID was simulated using MATLAB/SIMULINK.
The parameters of fuzzy PID are given in the figures for each input. The control
parameters were calculated online during the simulations and simulation results are

shown on the following pages.

System Response for first input
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Figure 6.9 : System response for first input signal.

65



o
- o o
o o
— — — : _ _ =
— e, S ' : ;
= N ' 3 H w ' :
ol ' 5 H arndbmy H
3 2 ' : . 3
1 3 ! : ; ;
1 : :
[ : F ' : -
- 1 Hi Y| ep——"r (e o o PEATerTes 2 L1717 S e P
. " ; i ” “ 2
' . i :
M. ' '
4 LT LY e H
desassssanannen pessssasennnnn qeeeent POy 7 '
' T )
' $ ! :

1600

1400

1200

1000
t(sec)

h1(t) and h2(t)

Control signal
A

800

'
! sesessscsnes bareannenne 222000

0% ' '
.y
ivssnavhes 1
Al bl aE
H ]

i
600

Figure 6.10 : Changes on h,(t) and h,(t).

400

200

—_

ney 'y

1200 1400 1600 1800 2000

1000
t(sec)

600 800
Figure 6.11 : Control signal c(t).
66

400

200



Error

2000
10000
10000

1800
9500
9500

1600
[
r
i
9000
[

i
9000
T
¥
i

1400
[

8500
[
v
i

8500
T
i

1200
!
L
|

8000
!
|

8000
!

l

1000
t(sec)

T

I
7500
t(sec)

T

I
7500
t(sec)

I

I R ul

800
7000
!

i
7000
|

Figure 6.12 : Error e(t).

600
6500
6500

T
6000

T

}\Jfr
6000

[

400

I

i
5500

I

i
5500

|

200

8000 8500 9000 9500 10000

7500

t(sec)
t(sec)
67

7000

6500
Figure 6.13 : Changes on K,,, K; and K.

6000

5500

0

0

s e e P i e B R i S
5\ | INRRRERRN . SUNEIY NRUS. SRRV | SRORRNISTS] RUSIRTSIRUN: SUSISRORNL, | NSRS, SUSORREIREN BRI [N | PRI
5000
500
5000
2000

02
L T Tt TERTERRES SRS

PX

S e D D e e
L A e



System Response for second input
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Figure 6.23 : Changes on K, K; and K.
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System response with band limited white noise
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Figure 6.24 : System response with band limited white noise on sensor.
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Figure 6.25 : Changes on h,(t) and h,(t) considering white noise.
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Figure 6.28 : Changes on Ky, K;, and K, with white noise.

It needs to be noticed that above simulations have been derived with the assumption
that there are no any faults in the system. The second part of the simulations are

performed assuming there are faults in the system [21].
The fault classes under consideration are defined as follows;

e Pump actuator fault; the equation given in (6.7) is the true entrance rate
which includes K € [0,1]. It is considered that if Kr = 0.2 then the pump has

20% actuator fault and if K, = 0.5 then the pump has 50% fault in the
actuator. When the simulations are performed with this type of fault in the

pump, the below result are obtained.
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System response with fault 0%, 20% and 50%
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Figure 6.30 : Changes on heights with 0%, 20% and 50% fault on the actuator.
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Control signal for 0%, 20% and 50%
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Figure 6.31 : Control signal with 0%, 20% and 50% fault on actuator.
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Figure 6.32 : Error with 0%, 20% and 50% fault on actuator.
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Figure 6.33 : Changes on K, K; and K, with 0%, 20%, 50% fault on actuator.

e Leakage in Tank 1; We assume that the leak is circular in shape and of

known radius r; . The outflow rate of the leak in tank 1 is given by:

qr1(t) = aymriy2ghy (t) (6.14)

e Leakage in Tank 2; We assume that the leak is circular in shape and of

known radius r, . The outflow rate of the leak in tank 2 is given by:

qr2(t) = a;mry?y/2ghy (b) (6.15)

The following simulation results have been obtained assuming there is a %20 fault
on pump actuate and leakages on both tanks 1 and 2 of 7 mm radius. As it can be
seen, fuzzy PID with particle swarm optimization has good performance against the

system faults in terms of overshoot, rise time etc..
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System response
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Figure 6.34 : System response, 0% fault, 20% actuator fault, 7mm dia. holes.
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Control signal for 0% fault and 20%+7mm fault
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Figure 6.36 : Control signals, 0% fault and 20% actuator fault, 7mm dia. holes.
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Figure 6.37 : Errors, 0% fault,20% actuator fault, 7mm dia. holes.
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Figure 6.38 : K, K;, K;,, 0% fault, 20% actuator fault, 7mm dia. holes.
6.4 Conclusion

In this study, a new global optimization method called particle swarm optimization
was implemented via matlab to use in control of linear and non-linear systems. The
most important advantage of particle swarm optimization algorithm is that it requires
less number of iterations and it enables us to deal with a few lines of computer code
in a cheapest manner. It requires only primitive mathematical operators in terms of
both necessity of more available memory and speed. Then particle swarm
optimization method has been successfully applied to the design of coupled tanks

system control with meaningfull time domain criteria.

Since the system to be controlled is non-linear, it is not possible to find a single set of
parameters for all operating conditions. Therefore, some predetermined operating
points have been chosen and the optimum control parameter values for the operating
points are evaluated while keeping the Takagi-Sugeno crisp values constant for all
operating points within the different ranges. Then, different functions are identified
for each controller paramenter (K,,,K;, K;) for different operating points and regions
based on the reference height of tank 2 by using the predetermined points and least
squares curve fitting algorithm. It has been observed that these functions, which
derive fuzzy controller parameters, have achieved very satisfactorly systems

responses.
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7. CONCLUSIONS, DISCUSSIONS AND RECOMMENDATIONS

This study is mainly composed of three parts; first part introduces the classical tuning
methods, fuzzy control structure and PSO algorithm. Our focus is to control linear
and non-linear systems by fuzzy-PID controller tuned with PSO technique. After
studying the evolution of the PSO technique, there was a requirement of revising
standard PSO into improved particle swarm optimization in order to ensure robust
control on systems and find best performance index. Some simulations on
benchmark problems have been performed and it is decided to use the improved PSO
for the rest of the studies because of the efficiency of the improved method in terms
of ensuring the performance index much more accurate and ensuring less
computational time. It is observed that improved PSO has the best performance on

the convergence rate and convergence precision compared to standart PSO.

The second part of this thesis is a preliminary study for the third part of the study.
The aim is to implement improved PSO technique with fuzzy PID controller on
different types of systems such as linear first order plus dead time system, second
order plus dead time system and finally second order oscillatory process model.
According to the systems that have been taken into account in the analysis, the
parameters of PID and the crisp values of the rule base have been tuned offline for
minimizing the performance criteria given as IAE integral absolute error. The
performance results of the proposed approach have been depicted and it is seen that
PSO has been successfully applied to the systems with good performance in terms of
maximum over shoot, settling time and rise time. The algorithm is flexible to
generalize in the sense that all of the parameters that have been tuned offline can be
optimized with online opearation. By the guidance of the work on these systems and
motivated by the good performances achieved, it is decided to implement the
proposed method on nonlinear-coupled tanks system to understand the applicability
of the proposed study to control of the height of the water in second tank, which is
the structure of the third part of the study.
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In the third part of the study, fuzzy PID controller with PSO technique has been
applied to the control of non-linear and time varying characteristics of the coupled
tank water system. The water level of h, is taken as input variable. The water levels
between 0-0.15, 0.15-0.20 and 0.20-0.30 are chosen respectively as 3 typical
operating regions of h, and input space is divided into three fuzzy subspaces based
on operating regions. Then, the PID parameters are calculated by the proposed
approach. Under the simulation tool of Simulink, the control effects of fuzzy PID
with PSO algorithm are simulated for different ranges of water level as different
operating points. After finding Takagi-Sugeno crisp values for each region by
improved PSO technique with offline application, a Matlab function block, which
includes functions of PID parameters, has been used to combine different crisp
values for different ranges, which makes the fuzzy PID adaptable for possible
operating conditions. Different set values of Takagi Sugeno in the Matlab function
block are activated according to the height conditions. Also proper fuzzy PID
parameters are set automatically during run with online. As a conclusion, the
structural parameters are determined during offline design while the tuning
parameters are calculated during online adjustment of fuzzy PID controller to
enhance the process performance, as well as to accommodate the adaptive capability
to system uncertainty and process disturbances. It is important to indicate that in this
study, learning process for crisp values is offline and in order to find the proper crisp
values with respect to different inputs in terms of height of tank 2, different
algorithm runs have been required. Fuzzy PID with PSO algorithm is implemented in
this study, which combines fuzzy PID, PSO technique, fuzzy control and PID control
to arrange PID parameters and crisp values according to dynamics of controlled plant
to achieve fast transient response, high steady state accuracy, good robustness and
self-adaptation. The proposed architecture is also tested in the case of sensor noise
and systems faults, simulation results showed that the coupled tank systems was
successfully controlled with acceptable performance in both cases. The proposed
algorithm is generalized in the sense that it tunes all the parameters of the PID
controller online and it is expected that better performance is achieved in almost all
type of applications especially in processes where disturbances are frequently

encountered.
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APPENDIX A

function [fxmin, xmin, Swarm, history,iw] = pso(psoOptions)
global SwarmSize;
$Initializations
if nargin ==

psoOptions = get psoOptions;
end
$For Displaying
if psoOptions.Flags.ShowViz

global vizAxes; %Use the specified axes if using GUI or
create a new global if called from command window

vizAxes = plot (0,0, '.");

axis ([-1000 1000 -1000 1000 -1000 10001); $Initially set to
a cube of this size

axis square;

grid off;

set (vizAxes, '"EraseMode', "xor', "MarkerSize',15); $%$Set it to
show particles.

pause (1) ;
end
$End Display initialization

o)

% Initializing variables

success = 0; % Success Flag
iter = 0; % Iterations' counter
fevals = 0; % Function evaluations' counter

o°

Using params—--
Determine the value of weight change

o°

w_start = psoOptions.SParams.w start; $Initial inertia weight's
value
w_end = psoOptions.SParams.w end; %Final inertia weight

w_varyfor =

floor (psoOptions.SParams.w varyfor*psoOptions.Vars.Iterations);
$Weight change step. Defines total number of iterations for which
weight is changed.

w_now = w_start;

inertdec = (w_start-w end)/w varyfor; %Inertia weight's change
per iteration

% Initialize Swarm and Velocity

SwarmSize = psoOptions.Vars.SwarmSize;

Swarm = rand(SwarmSize, psoOptions.Vars.Dim)* (psoOptions.Obj.ub-
psoOptions.Obj.1b) + psoOptions.Obj.lb;% there might be a wrong
it need a dot before *

VStep = rand(SwarmSize, psoOptions.Vars.Dim);

f2eval = psoOptions.Obj.f2eval; %$The objective function to
optimize.

%$Find initial function values.
fSwarm = feval (f2eval, Swarm);
fevals = fevals + SwarmSize;

% Initializing the Best positions matrix and

% the corresponding function wvalues
PBest = Swarm;
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fPBest = fSwarm;

% Finding best particle in initial population

[fGBest, g] = min (fSwarm);
lastbpf = fGBest; % last best point function (holding islemi
goruyor)
Best = Swarm(g, :); %Used to keep track of the Best particle ever
fBest = fGBest;% 27?7
history = [0, fGBest];
iw = [w_start, w_now];
if psoOptions.Disp.Interval & (rem(iter,
psoOptions.Disp.Interval) == 0)

disp(sprintf ('Iterations\t\tfGBest\t\t\tfevals'));
end
%% THE PSO LOOP %%
5555555555 %%5%5%55%%5%5%555%%5%5555%555555%%55%55%%%55%5%%%5%555%%%%%
while( (success == 0) & (iter <= psoOptions.Vars.Iterations) )

iter = iter+1;

% Update the value of the inertia weight w ilk iterasyon 0.95
le

% basliyor sonra 2. iterasyondan sonra degisme vuku buluyor.

if (iter<=w varyfor) & (iter > 1)

w now = w_now — inertdec; %Change inertia weight

end

% The PLAIN PSO %

% Set GBest

A = repmat (Swarm (g, :), SwarmSize, 1); %A = GBest. repmat (X,
m, n) repeats the matrix X in m rows by n columns.

B = A; %B will be nBest (best neighbor) matrix

% Generate Random Numbers (Notice normally R1 and R2 must be
a number between 0 and 1)

Rl = rand(SwarmSize, psoOptions.Vars.Dim);

R2 = rand(SwarmSize, psoOptions.Vars.Dim);

% Calculate Velocity

$SWPSO-Random

VStep = w_now*VStep + psoOptions.SParams.cl*R1l.* (PBest-Swarm)
+ psoOptions.SParams.c2* (1-w now/2)*R2.* (A-Swarm) ;

FSWPSO

$VStep = w_now*VStep + psoOptions.SParams.cl*R1l.* (PBest-
Swarm) + psoOptions.SParams.c2* (l1-w_now/2)* (A-Swarm) ;

SWPSO

$VStep = w_now*VStep + psoOptions.SParams.cl*R1l.* (PBest-
Swarm) + psoOptions.SParams.c2*R2.* (A-Swarm) ;

% Apply Vmax Operator for v > Vmax
changeRows = VStep > psoOptions.SParams.Vmax;
VStep (find (changeRows)) = psoOptions.SParams.Vmax;
% Apply Vmax Operator for v < -Vmax
changeRows = VStep < -psoOptions.SParams.Vmax;
VStep (find (changeRows)) = -psoOptions.SParams.Vmax;
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% ::UPDATE POSITIONS OF PARTICLES::
Swarm = Swarm + psoOptions.SParams.Chi * VStep; % Evaluate
new Swarm

fSwarm = feval (f2eval, Swarm);
fevals fevals + SwarmSize;

o)

% Updating the best position for each particle
changeRows = fSwarm < fPBest;

fPBest (find (changeRows)) = fSwarm(find (changeRows)
PBest (find (changeRows), :) = Swarm(find(changeRows

) ;
), i)

lastbpart = PBest (g, :);

% Updating index g
[fGBest, g] = min (fPBest);

%Update Best. Only if fitness has improved.
if fGBest < lastbpf

[fBest, b] = min (fPBest);
Best = PBest (b, :);
end
$%OUTPUTS%S
history((size (history,1)+1), :) = [fGBest];
iw((size(iw,1)+1), :) = [w_now];

if psoOptions.Disp.Interval & (rem(iter,
psoOptions.Disp.Interval) == 0)
disp (sprintf ('%$4d\t\t\t%.5g\t\t\t%5d', iter, fGBest,
fevals));
end

if psoOptions.Flags.ShowViz
[fworst, worst] = max (fGBest) ;
DrawSwarm (Swarm, SwarmSize, iter, psoOptions.Vars.Dim,
Swarm(g, :), vizAxes);
end

$$STERMINATIONSS
if abs (fGBest-psoOptions.0Obj.GM) <= psoOptions.Vars.ErrGoal
%GBest
success = 1;
elseif abs (fBest-psoOptions.Obj.GM)<=psoOptions.Vars.ErrGoal
%Best

success = 1
else
lastbpf = fGBest; %To be used to find Best zamansingoto
zamazingo to zamazingo to zamazingo to
end
end
history;
[fxmin, b] = min (fPBest);
xmin = PBest (b, :);

history = history(:,1);
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1)

iw (

iw

’

figure

’

plot (history)

figure

’

’

plot (iw)
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VISULATION OF PARTICLES

$DrawSwarm >> Internal function.

To draw a visual display of the Swarm.

Purpose:

%
%

Generation, Dimensions,

SwarmSize,

function DrawSwarm (Swarm,

vizAxes)
Swarm

GBest,
X

’

=3

if Dimensions >

'ZData’',

r i)y

X (2

), 'YData',

set (vizAxes, 'XData',X (1,

2

elseif Dimensions

X(2,

), 'YData',

set (vizAxes, 'XData',X (1,

end

100;
GBest (1)

yAx = GBest (2)

GenDiv
xXAX

’

’

’

GBest (2)

zAX

$zoom factor

100 * 50/Generation;

zf =

0

GenDiv)
axis ([xAx-zf xAx+100 yAx-zf yAx+zf zAx-zf zAx+zf])

if rem(Generation,

’

end

’

title (Generation)

drawnow

’
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INITIAL VALUES DEFINED IN TERMS of Structure Algorithm
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A structure type of function which is going

for setting the necessary values from
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None

Arguments

oo

psoOptions

Return Values

o
o

get psoOptions ()

function psoOptions

struct ('ShowViz', 1), ...

struct ('Flags',

psoOptions

'Vars',
struct ('SwarmSize',15, 'Iterations', 250, '"ExrrGoal', le-

10, 'Dim', 3),

'SParams',struct('cl',2,'c2',2,'w start',0.95,'w end',0.4,'w vary

for',1, 'Vmax',50,'Chi', 1), ..
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'Obj',struct('f2eval', 'costl','GM',0, "1b"', -
100, 'ub',100), ...
'Terminate', struct('Iters',1l,'Erx',1), ...

'Disp',struct('Interval',10, 'Header',1, 'Progress', 1, 'Footer',1), .
'Save',struct ('File', 'Results', 'IncludeFnName',1, 'IncludeDim',1,"

IncludeSwarmSize',1l, 'Interval',10, '"Header',1, 'Footer',1) ...

) 7

% Flags = It is used for visulation of the particles while
running ( it

% takes either 1 or 2 to activate visulation )

% Vars = Particle Swarm Optimization variables

% SwarmSize----- >Number of the paricles defined in swarm
% Iterations---->Maximum iterations used for stopping
criteria

% ErrGoal-—------ >It is used for terminating the algorithm
% Dim---—-—-————-—- >Dimension of the particle which is the
coordinates

% of the individual particle

% SParameters = Strategic parameters for PSO

% cl = self confidence factor, cognitive acceleration
range in [1.5-2]

% usually takes 2

% c2 = swarm confidence factor, Social acceleration range
in [2-2.5]

% usually takes 2 as well

% w_start = value of velocity weight at the begining

% usually takes 0.95

% w_end = value of velocity weight at the end of the pso
algorithm

% usually takes 0.4

% w_varyfor = The fraction of maximum iterations, for
which w is linearly varied

% usually takes 1 or 0.7

% Vmax = Maximum velocity step used for limiting the
velocity of

% the particle, it is used like as below

% vij, if |Vij <= Vmax

% Vij= -Vmax, if Vij<-Vmax REF F. Gao and
H.Q.Tong 2006

% Vmax, if Vij>Vmax

% Chi = Constriction Factor used for evaluating the
positions of

% the particles and formulated below

% Chi = 2k/|2-@-sqrt(@"2-4*@) | where k=1, @=cl+c2 so
that

% usually takes Chi=1

% Obj = Objective Function Options
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o°

o\

f2eval = Function or system to be optimized ie

Benchmark

% functions as a function or Systems embedded in
Simulink

% GM = value of the global minima which is used for
stopping

o)

criteria as well.

1lb = Lower bound of initialization of the swarm
coordinates

% ub = Upper bound of initialization of the swarm
coordinates

o\

o\

899090000000000000000000000000000000000000000000

%% COMMUNICAT SIMULINK & PSO ALGORITHM %%
5555%5%%%5%555%%%5%555%5%%5%5%55%5%%%5%5555%%5%55555%%5%5555%5%%5%55555%%5555553%%

for i=1:SwarmSize
kl=x(i,1);
k2=x(1i,2);
k3=x(1i,3);
kd=x(i,4);
k5=x(1i,5);
ko=x(i,0);
k7=x(1,7);

k8=x (i, 8);

k9=x (i, 9);
Kp=x(1i,10);
Ki=x(i,11);
Kd=x(i,12);
sim('tolgakaya071212");
A=[A IAE (2001)1;
end

z=A";

o~~~ o~~~ o~~~ —~
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