21906

ISTANBUL TEKNIiK UNIVERSITESI * FEN BiLIMLERI ENSTITUSU

DAR BIR KANAL ICINDE ISI URETEN DIKDORTGEN BLOKLAR.
ETRAFINDA LAMINER AKISIN SAYISAL BENZESIMI

DOKTORA TEZI

Yiik. Mith. Ibrahim OZKOL

Ana Bilim Dali : UCAK MUHENDISLIGI
Programi : UCAK MUHENDISLIGI

MART 1992



ISTANBUL TECHNICAL UNIVERSITY % INSTITUTE OF SCIENCE AND TECHNOLOGY

NUMERICAL SIMULATION OF 2-D LAMINAR FLOW, HEAT GENERATION AND
FORCED CONVECTION FROM RECTANGULAR BLOCKS INA NARROW CHANNEL

Phd. THESIS
ibrahim OZKOL, M.Sc.

Date of Submission : 26 November 1991
Date of Approval  : 24 March 1992

Examination Committee

Supervisor : Assoc. Prof. Dr. C. Ruhi KAYKAYOGLU
Member : Prof. Dr. Oguz BORAT
Member : Assoc. Prof. Dr. Osmap ISJKAN
ve KURUMY
DORUMANTASON MERKEZE

MARCH 1892



ACKNOWLEDGEMENTS

Before doing ordinary statements about the valuable persons who have helped
me in the way of completing this thesis as well as in the way of life, I would really

like to say my deepest thankfullness to my supervisor, Assoc. Prof. Dr. C.Ruhi

Kaykayoglu for his encouragement and unfinished support at each step of this study

To get such a reward and have a triumph, someone must have the help of a
person who has the magic word in his finger tips, it is Dr.Kaykayoglu. Whatever he

touches he reveals its holiest secret; liberates it from enhancement and restores it to

its pristine loveliness.

I would also like to thank to my dear friend Metin.0.Kaya for his moral
support and valuable criticism. And I would not pass to the next word without

mentioning about Kerim Can Bayar, for his unforgetable help in preparing the color

graphics programs and his fair behavior in ordering.

I would like to thank to my colleagues, Salih Bozkurt, Hakan Erdun and

Orhan G6kcol for their help in printing my thesis.

And, last my thanks goes to the Computing Center of Istanbul Technical

University which enabled the computational facilities for my research.



CONTENTS

ACKNOWLEDGEMENTS ............ e e ettt e, ii
LIST OF SYMBOLS ...... e e ettt S vi
1] NS LY 25V 4 ix
0 7/ 1 PO X
CHAPTER 1

N T RO D U CTION it it it it e e a e e e e e taeeeaananacnones l
1.1 Experimental Models of The Flow in a Narrow Channel With Obstacles ..... 3

1.2 Computational Models of The Flow in a Narrow Channel With Obstacles ... 5

CHAPTER 2

2. FUNDAMENTAL EQUATIONS . ittt ittt iiie e ieeeens 9
2.1 Flow Field oo i i et e i e 9
2.1.1 Clasical Primative Function Variables Equation Form of The Navier-Stokes
Equations .....c.iieiuiiiiiii i e e e 14
2.1.1 Vortcity-Stream Function Variables Equation Form of The Navier-Stokes Equa-
170+ S P Y. . TP 16
2.2 Thermal Field . ....oronii i e st ie e necaanaeaanss 18
2.2.1 Energy Equation For Fluid Domain ....... ... i, 19
2.2.2 Energy equation For Solid Domain ............oooviiiiiiiiiiiiiiaa.. 20
2.2.3 Solid-Fluid Interaction and Conjugate Solution ...............evveuee.... 20

CHAPTER 3

3. A REVIEW OF FINITE DIFFERENCE TECHNIQUES ................... 22
3.1 General Ideas and Short History Review ............coiiiiiiiiiiiiiia.., 22
3.2 A Finite Difference Formulation ......... .. ..ol 23
3.2.1 Taylor Series APProach . ...uvnuiieintii it irer et asneeiannn., 25
3.2.2 Polyonomial Approach ....oiuiiviiiiiiiii it i e 27
3.2.3 Integral Method Approach .......cooiniiiiiiniiiiiin i, 27
3.2.4 Control Volume Approach ......ooiiiiiiiiiiiiii i, 28

CHAPTER 4

4. PYHSICAL PROBLEM L. e e aae 34
Ao MOdels o e e e e 34

iii



4.1.0 Phisyeal Model .o e e i 34

412 Flow Model ..o i i i et e r et 37
4.1.3 Thermal Model ... i 37
4.1.4 The Implicit Numerical Solution Method ...............c..ociiiiiiit 37
4.1.4.1 Governing Equations For Flow Field .................ooocoiiii, 41
4.1.4.2 Governing Equations For Thermal Field ...........c.coooiiiiiiiiat. 42
4.2 Boundary Conditions ...........cooiiiiiiiiiiiiii e 43
4.2.1 Boundary Conditions For Fluid and Heat Transfer Equations ............ 45
4.3 Directional Implicit Finite Difference Formulation and Solution ............ 48
4.3.1 Flow EQuations ........coiininiiiiiinir e iiiinenennerenearaeeaenenns 592
4.3.2 Energy Equation .......oouiiiniiiiiiininiiniiirii e 60
4.3.3 Solution Procedure .........coiiiiiiiiiiii e 63
CHAPTER 5

5. NUMERICAL APPROXIMATION OF BOUNDARY CONDITIONS ....... 66
5.1 Boundary Conditions of Flow Field .......coooiiiiiiiiiiiiiiiiiiiniinn.. 66
5.2 Boundary Conditions of Thermal Field ............o oottt 792
5.2.1 Prescribed Temperature Boundary Condition ...........ocoiiiiiiiiae. 79
5.2.2 Prescribed Heat Flux Boundary Condition ..........cciiieiiiniininnen.. 74
5.2.3 Convection Boundary Condition ........ccoviiiiiiiiiiiiiiieneneenenenannn 79
5.3 Numerical Treatment of The Critical Points .........cccoviiiiiiieininn. .. 82

CHAPTER 6
6. FLOW FIELD ..o i it it 88

CHAPTER 7

7. THERMAL FIELD ittt ittt et e i eei e anrianeenaans 119
7.1 One-Step Thermal Field ... ..o i et 121
7.2 Two-Step Thermal Field .......o it 121
7.3 Three-Step Thermal Field .........cc i i 122
7.4 Iso Temperature Counters ......oueeiirtrinieien it etannrensennannns 122

CHAPTER R
HEAT TRANSFER CHARACTERISTICS ... 164

iv



CHAPTER 9

COLOR GRAPHIC PRESENTATIONS ... . i, 173
CHAPTER 10

RECOMMENDATIONS AND FUTURE ASPECTS «...ooviiviiiiie. o 189
REFERENCES ot i et 191
APPENDIX A L e e 192
CURRICULUM VITAE . i e e et 199



LIST OF SYMBOLS

By,
By

e

-,

m

: Coefficient

: Area

: Block height

: Block length in flow direction

: Block length in transverse direction
: Specific heat

: Specific heat at constant pressure
: Specific heat at constant volume
: Externally added heat

: Heat addition by conduction

: Heat addition by friction

: Material derivative

: Eckert number

: Channel entrance length

: Body forces

: Function

: Gravitational acceleration constant
: Channel height

: Grid point in x direction

: Grid point in y direction

: Thermal conductivity

: Thermal conductivity of block

: Thermal conductivity of fluid

: Thermal conductivity of substrate
: Length

: Subscript

vi



n : Superscript

: Surface normal

Sy

Nu : Nusselt number
p : Presssure
Pr : Prandntl number
g : Generated heat
g : Heat flux
¢} : Heat source
@"” : Nondimensionalized heat source
Re : Reynolds number
Si; + Stress tensor
S1, : Distance between two blocks in flow direction
St : Length between two blocks in transverse direction
t* : Nondimensionalized time
T : Temperature
T;n : Inlet temperature
T,, : Wall temperature
T : Channel outer wall temperature
T : Channel lower wall temperature
T : Channel upper wall temperature
T : Temperature of the ambient fluid
, u™ : Nondimensioanlized velocity components
Us : Free stream velocity
¥ : Vector of Vorticity
Vo Velocity vector
u,v.w : Velocity components
zo. Yo : Considered point coordinates

x.y.z : Spatial coordinate components in rectangular coordinate system

vii



Ay :

AG
AV

4 e o =%

: Finite difference length in x direction between two grids

Finite difference length in y direction between two grids

: Elementary weight

: Elementary volume

: Small enough quantity

: Nondimensionalized temperature
: Nondimensionalized temperature of the ambient air
: Viscosity

: Kinematic viscosity

: Density

: Nondimensionalized density

: Dissipation

: Stream function

: Operator

viii



SUMMARY

In this study, a directional-implicit Computational Fluid Dynamics (CFD)
finite difference code is developed so as to simulate the direct and indirect heat
removal through conduction and convection processes from the rectangular blocks
attached to the lower surface of a narrow channel geometry.

Two dimensional, unsteady, incompressible, laminar form of the Navier -
Stokes (N-S) equations are considered. Using the stream function-vorticity approach,
they are discretized via finite difference technique, under the assumption of the
Taylor series expansions. The discretized equations than reduced to a three-banded
form of a matrix equality ready to be used conjugate solution formulation. In the
same manner, two dimensional unsteady energy equation discretized with the source
term included into three-banded matrix form.

Two field equations are solved numerically for various channel-rectangular
block geometries so as to study the steady-state heat transfer characteristics inside
channel with possible heat generation inside the blocks. It is shown that the nu-
merical model is capable of simulating the main features of the flow field. Detailed
benchmarks of the present numerical model is attempted so as to validate the de-
voloped algorithm. The streamvise extension of the recirculation zone behind the
rectangular block which is a function of the Reynolds number is very well simulated.
Furthermore, it was shown that the heat transfer characteristics of the zone agrees
well with the experimental and theoretical observations in the literature. Prepared
algorihm is a highly stable algorithm but showing slow convergence to a steady
state value. Conjugate solution property of the present approach enables one to
study complex thermal characteristics of fluid~solid and solid-solid interactions.

Beside the classical boundary conditions of the thermal field, the problem
domain is further complicated by the presence of discrete heat sources in the rect-
angular blocks in form of the infinite small heat generating sheet. Heat generated
at various transfer positions are convected by the fluid downstream. The near wall
flow temperature and the Nusselt number distributions over the surface depict the
most features of the complex fluid-solid interaction. The steady-state temperature
inside the blocks and in the substrate are found to be functions of the flow Reynolds
number, Prandt] number, heat source position and substrate bottom surface tem-
perature. Due to the heat generation the flow is heated well above its inlet value.
This causes continous heat flow from fluid to the lower plate in the recirculating
regions of the rectangular blocks and in the cavities where there are more than one
obstacle. The present model can simulate the chip cooling problems for integrated
circuit components, i.e, chips, on a horizontal printed curcuit board which is contain-
ing heat generating rectangular blocks attached to a single layer substrate. Results
consistency with other studies, which are reported in literature, is discussed.



OZET

DAR BIR KANAL ICINDE DIKDORTGEN BLOKLAR ETRAFINDA LAMINER
AKIS, ISI CRETIMI VE ZORLANMIS TASIMANIN 2 BOYUTLU BENZESIMI

Bu calismada dar bir kanal icine yerlestirilmis dikdortgen bloklar iizerinde
viskoz, laminer, 2-Boyutlu akis cesitli Reynolds sayilarinda modellenmistir. Ayrnca
bloklar icinde iiretilen yapay isimn tasimin yoluyla akiskana ve iletim yolu ile alt
takaba gecisi birlesik ¢6ziim yontemi ile modellenmistir. Problem blok ve alt tabaka
malzemesi olarak degisik iletim ve 1s1 kaynaklari gerektirmektedir. Ayrica akiskan ile
etkilesim nedeniyle kat: ve akiskan bélgelerinin ortak c6ziimiiniin yapilmas: gerek-
mektedir. Bu nedenle calismada biitiin bélge bir anda ¢dziime alinarak ortak ¢6ziim
elde edilmistir. Bu cdziim yOntemi birlesik ¢Oziim olarak bilinmektedir. Asagida
problem coziiminde kullanilan denklemler &zetlendikten sonra calismada izlenen
yontem tamtilmustir.

Akiskanlar mekaniginin temel denklemleri, korunum yasalar kullamlarak
cikarilmistir. Kitlenin korunumu kullandarak siireklilik denklemi, momentum ko-
runumu kullanilarak vektdr formundaki momentum denklemi ve enerjinin korunumun-
dan ise enerji denklemi elde edilir. Momentum denklemi viskoz akis alami icin
Navier-Stokes denklemleri ile ifade edilmektedir. En genelde bu denklemler iki
boyutlu sikistirilamaz viskoz ve daimi olmayan akis alani icin asagidaki gibidir.

Sireklilik Denklemi

vV=0 (1)
Momentum Denklemi
DV 1~ .
Enerji Denklemi
DT T 9T



Alkis alaninin ¢bziimi icin bu calismada 2-Boyutlu girdaphlik akim fonksiy-
onu tercih edilmistir. Cahsmada kullamlan girdaphlik akim fonksiyonlar: yontemi
once girdaphilik denkleminin tamimiyla baslatilmistir. Sonra hiz alaninin bilesenleri
akim fonksiyonu cinsinden ifade edilmistir. Bu bilesenlerin girdaplihk denklemine
tasinmasiyla, kismu diferensiyel denklem formundaki eliptik Poisson denklemi elde
edilmistir. Aym sekilde girdaplilk taniminin, momentum denklemine tasinmasi ve
gerekli diizenlemelerin yapilmas: ile iki boyutlu parabolik girdaphbk tasimm denk-
lemi elde edilmektedir.

Bu denklemler sirasiyla,

Ik: boyutlu Girdaplilik alaninin tammi;
W= 7= — = (4)

Hiz alanmnin akim fonksiyonu cinsinden tanimi;

0 _ oy .
7 = 5y V=— (3)

Poisson denklemi;
Vi = —w (6)

Girdaphlik tasimim denklemi boyutsuz degerler cinsinden;
(D00 0800 B
Jydr Ozdy Ot

—_
-~
) —

seklinde ifade edilir.

Akis alanimi denklemlerinden sonra sicaklik alanina ait enerji denklemi ifade
edilmistir.

En genel haldeki enerji denklemi,

, DT 0*T 0T
PCPE‘ = (—0? + Ey—z—+) +up® (8)



seklinde tanimlanir,

Bu denklemde,

aU\* (av\? (ov  ou\?
"’-2[(%) () (%)
Bu denklem boyutsuz degiskenler cinsinden cdziime uygun sekilde asagida tanimlan-

mustir,

Akis alam icin enerji denklemi

00 0v00 0vod Ec 1 020 820]
LA YR 2 — |22 127 1
ot + Oyodzx 0x0y Re + RePr [8:1:2 dy? (10)
Kati cisim icin enerji denklemi ise
08 1 _,
- 7 1
0t  PrRe Vii+a (1)

seklinde ifade edilir. 11 denkleminde ¢ kat: cisim icinde birim hacimde dretilen is1
kaynagini gostermektedir. Ayrik 151 kaynagi dikdértgen bloklar icinde cesitli konum-
larda bulunmaktadir.

Kismi diferensiyel denklemleri ¢6zme yontemlerinden biri de Sonlu Fark-
lar Yontemidir (SFY). Sonlu Farklar Yontemini; stireklilik gosteren ve fiziksel olayi
modelleyen denklemleri, siireklilik bolgesi icinde, verilen belirli bir noktadan baslaya-
rak cok kiiciik artimlarla aynk noktalarda bu siireklilik bélgesi icinde verilen belirli
baslangic kosullart ve simir sartlan ile cozmek olarak tamimlayabiliriz. Sonlu farklar
yontemi; Taylor serisi yaklasimi, Polinom yaklasimi, Integral yontem yaklasimi ve
Kontrol hacmi yaklasimindan birini ya da aym anda bir kacini, ayni problemde, mo-
dellenmesini gerekmektedir. Bunlardan integral yéntem ve Taylor serisi yontemindeki
kabul, verilen kismi diferensiyel denklemin verilis formunun dogru oldugu ve bu for-
munda fiziksel olaymn gerceklendigi konservativ form oldugu kabul edilip denklem
cebrik denklemler formuna sadece matematiksel teknikler kullanilarak indirgenmek-
tedir. Ozellikle sinirlarda, kontrol hacmi yaklasimi daha hasas ¢oziimler vermekte-
dir, ancak uygulamada smirlarda alan biiyiikliiklerinin her biri sinirt gectigi yerde
bu biiyiiklik cinsinden yazilmis denge denkleminden elde edilmektedir. Eger Taylor
serisi ve Kontrol Hacmi yaklasimi arasinda bir karsilastirma yapmak istersek; Taylor
serisi yaklasimi kullandigimizda verilen kismi diferensiyel denklemi tamamen mo-
dellemek miimkiin oldugu gibi degisik Taylor serisi modellemeleri kullanarak bun-
larin kombinasyonundan yeni modellemeler cikarmak miimkiindiir. Fakat Kontrol

’
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Hacmi yaklasiminda konservatif form gerektiginden bunu sadece alan degiskeninin
tiirevi olmasi halinde yapmak miimkiin olmayabilir. Bundan dolayi. sinirlar boyunca
alinmus tiirevler icin gereken sonlu farklar modelinin nasil olacagina karar vermemiz
zorlasacaktir. Yani kontrol hacmi yaklasiminda kullanacagimiz sonlu farklar mo-
delinin konservatif 6zellik tasimasi zorunlu hale gelmistir.

Cok sayida 6rnek olmadan hangi sonlu farklar indirgeme metodun ya da
yaklasimin daha uygun sonucu verecegini s6ylemek zordur. Fakat bircok basit du-
rumda farkll doért yontemin ayni sonucu vermesi miimkiin olabilir. Gelistirilen sonlu
farklar modelinin sayisal olarak kararli olmamas: halinde ise hangi yontem ya da
yaklasim kullamlmis olursa olsun sonu¢ anlamsizdir.

Bu calismada agirlikhi olarak Taylor serisi yaklasimi kullanilmistir. Birinci
derece tiirevler icin ileri farklar, geri farklar ve merkezi farklar formilleri de ikin-
ci dereceden tiirevler icin merkezi farklar modelleri problem fizigine uygun olarak
verilmistir.

Sekil 1 bu cahismada kullanilan geometrinin 6nemli 6zelliklerini géstermekte-
dir. Problemin uygulama alan1 daha cok elektronik baskili devre kartlar iizerindeki
yongalarin sogutulmasi olarak literaturden gozlenebilir. Ancak bu calismada yaklasim
daha genel ve fiziksel parametrelerin arastirilmasi olarak secilmistir.

Modelin fiziksel 6zellikleri gercekte varolan fiziksel modelinkine yakin alinmistir.
Burada modellenen bigisayar yongasidir (chip) ve yongalar dikd6rtgen bloklar olarak
modellenmislerdir. Denklemlerin akis alam ve sicaklik alam icin yazilmasindan ve
gerekli sonlu farklar modellerinin gelistirilmesinden sonra yaptigimiz sayisal mo-
dellemeye uygun bir fiziksel model olarak HaCohen [1] tarafindan yapilan deneysel
calismada kullanilan geometri benzeri geometriler sayisal olarak modellenmistir.

Bu modellemede uzunluklar kanalin yiiksekligi ile boyutsuzlastirilmis olup,
aninda degistirilebilir durumda tutulmustur. Akim modeli olarak, dar bir kanala
impulsiv olarak gonderilen akiskanin durumu g6z 6niine alinmistir. Sicaklik alaninin
modellenmesi ise; akiskan sifir boyutsuz sicaklig) ile gonderilirken kat: yiizeylerinde
kati—sivi iletisim dengesi yazilmistir. Bloklar icinde belirli giicte 1s1 lireten kaynaklar
ahnmis ve kanalin alt iist duvarlar sabit sicaklikta tutulmustur.
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Sekil 1b) Fiziksel modelin geometrisi icin kullamlan numerik model

Bu durumu modelleyen diferensiyel denklemler olarak siireklilik ve girdaphlik
denklemi secilen paremetrelerle boyutsuz hale getirilip 2 boyutlu hal icin uygun
sekilde yazlarak akim alani modellenmistir. Aym sekilde enerji denkleminin 2
boyutlu hal icin boyutsuz durumu disipasyon terimi ve kaynak teriminin eklen-
mesiyle verilmistir.



Bilindigi tizere bir fiziksel olayin modellenmesinde kullamlan denklemler
onemli oldugu gibi bu denklemlerin ¢6ziimiinde kullanilan simir kosullarinin da dnemi
biiyiiktiir. Bunlarn fiziksel olaya uygun bir sekilde gercekci olarak verilmesi gerekir.

Goz oniine alinan kanalin icinde dikdértgen bloklar birbiri arkasina seri
halde belirli mesafelerde konumlandirlmistir. Giriste sadece akima paralel yoén
olarak secilen z ekseninde hiz vardir; dik yonde ise hiz sifirdir (U = Us,V = 0
dir). Yine giriste girdaplilik icin alinan deger w = 0, fakat akim fonksiyonunu ise
hiz alanina uygun birinci dereceden bir fonksiyon ile tanimlanmstir.

Alkis alani icinde duvarlarda kaymama kosuluna uygun olarak kati yiizeylerde
hiz vektdri sifirdir yani V' = U = 0. Akim fonksiyonun degeri sabit olup 0 olarak
alimist. Girdaphlik icin kullanilan sinir sartlan olarak duvarlarda girdaplihik den-
kleminin seri acihmindan elde edilen degerler kullanilmaktadir giriste ise sabit 0
olarak alinmaktadir.

Sicaklik alami icin kullamlan simr sartlarinda, akiskan § = 0 boyutsuz
sicakhg: ile dar bir kanala girmektedir. Akis alam icinde tasimm denklemi; kat:
icinde ise iletim denklemi c6ziilmektedir. Kati ile sivinm birlestigi yerlerde bir or-
tamdan diger ortama gecen 1silarin esitligi yazilmaktadir. Fakat secilen sinir sartina
bagh olarak duvarlarn izole edilmis olmas: s6z konusu olabilecegi gibi sabit sicaklikta
tutulmas: da s6z konusu olabilir.

Biitiin alan biiyiikliikleri, akis alaninin ve sicaklik alanin, goz oniine alinan
geometrinin sonunda, akis alanina parelel eksen boyunca degismiyen tiirevlere sahip
biyiiklikler olarak kabul edilmislerdir. Denklemlerin secilen fiziksel geometri icin
uygun durumnu verildikten sonra, geometriye uygun sinir kosullari verilmistir. “Akis
alanina paralel eksen boyunca degismeyen tiirevlerdir” demekle anlatilmak istenen
sudur:

Simdi bu denklemlerin ayriklastirilmas: yapilmalidir. Birinci mertebe tiirev-
lerde akima paralel yonde geri farklar kullanilirken dik yonde merkezi farklar kullanil-
mis; zamanda ise geri farklar ahnmistir. Ikinci mertebe tiirevler merkezi farklara
gore acilmistir. Ayriklastirma denklemlerinin diizenlenmesinden sonra akima para-
lel yondeki alan biiyiikliikleri merkezi terimi hari¢ diger terimler bir zaman adimi
geriden alinmistir ve zaman adim kiiciik tutulmustur. Secilen zaman adimi CFL
sartini saglamaktadir. Bu degerlerin bir zaman adimi geriden alinmasinin faydas
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su sekilde aciklanabilir. Ayriklastirilmis denklemlerin olusturdugu cebrik denklem-
lerin matris formunda yazilmasi karsimiza 5 bandl bir matris cikarmaktadir. Bunun
bellek gereksinimi, eger bu 3 bandhh matris olarak saklamirsa daha az olacaktir ve
kullanacag: bilgisayar zamanida azalacaktir. Bundan dolay: bir zaman adimi geri-
den alinan degerler bize bu durumu saglamaktadir. Bdylece daha fazla noktada daha
kisa zamanda ¢6ziim yapilabilmektedir. Bunun yaninda 6denen diyet ise secilen cok
kiiciik zaman adimi ile daimi kosula yakimsamadaki iterasyon sayist cok yiiksek
sayilara ulasmaktadir. Bilgisayar programinin yapim nedeni ile bu pek sorun yarat-
mamaktadur.

Ana denklemlerin istenilen sekilde ayriklastinlmasindan sonra simr sartlari-
nin uygun bir durumda ayriklastirilmas: gerekmektedir. Akis alanina ait biyiikliiklerin
ayniklastirilmasinda uygun goriilen yerlerde polinom yaklasimi kullanilmistir. Aym
sekilde sicaklik alanin ¢6ziimiinde kullamlan siir sartlari detayh bir sekilde tezde
anlatilmistir. Akis alani ve sicaklhik alani icinde yer alan kritik noktalardaki c6ziimler-
de ozel yaklasimlar kullamlarak bu noktalardaki biiyiikliiklerin degerlerinin hassas
hesaplanmasi yapilmistir. Bu hesaplarin nasil yapildig: sekillerle iyice aciklanmis ve
ayriklastirma noktalar: iizerinde gosterilmistir.

Buraya kadar yapilan aciklamalarin 15181 altinda yazilan bilgisayar progra-
minda yukarida anlatilan yéntemler ve yaklasimlar kullanilarak coziimler yapilmistir.

Elde edilen sonuclar, akim alani ve sicakhk alani icin, grafiklerle verilmis
bu grafiklerin yorumlan yapilmistir sicaklik alaninin anlatimasinda, iic farkl ge-
ometri icin iic farkll kaynak yerlestirme durumunda sicakhk dagihmlar cikartilmis
ve bunlarin birbirlerine gére karsilastirilmal yorumlart yapilmistir.

Bu sonuclardan hareketle en iyi sogutmanin, benzer geometriler icin ve
yapilan kabuller dahilinde nasil olabilecegi hakkinda yorum getirilmis ve oneriler
yapilmustir.

xvi



CHAPTER 1

INTRODUCTION

Increasing demand in high speeed computer technology makes us to realize
an immediate engineering approach to the problems which are dealing with combined
fluid—heat transfer engineering. The need for an immediate solution is playing an
increasingly important role in the advancement of electronic technology. Removing
of heat from the large scale computer chips is becoming among the major technical

problems which need to be solved to achieve higher data processing speeds.

From small scales to large ones, there are many vehicles having electronic
devices which will confront a multitude of heat transfer problems that will affect
their reliability. Furthermore, attention must be taken on that the heat transfer
problems in electronic equipment are strongly coupled with considerations of elec-

tronic performance [1].

From the deep search one understands that in most devices the geometry
of heat conduction paths and coolant paths are dictated by the arrangement of the

electronic circuits. Finally, for one there arises an increasing need to the under-



standing of heat transfer processes within the equipment. In addition to that, the
majority of heat transfer problems have not as yet been solved to a satisfactory

degree due to the interrelationship of the many geometrical operative parameters.

An increase in speed of data processing needs a new model system on the
basis of the types of cooling systems. These include the kind of coolant, the candidate
schemes of enhancement measures for heat transfer at the package and board levels,
and the schemes of coolant circulation at the board and system levels [2]. From above
explanation one sees that the geometric and operative parameters, such as the size
of the cooling device and the flow rate of the coolant, should fall in certain ranges
of permissible values considering the design criteria and the constraints imposed by
the bounds on the electrical connection distances, and also performing approximate
heat transfer analyses, the ranges of parameter values can be delineated for each

canditate scheme.

Since development of the first electronic digital computers, heat removal
has played an important role in maintaining reliable operation. An important trend
that initially alleviated, and subsequently exacerbated, the heat removal problem
involved the integration of monolithic circuits on a silicon chip and the development
of very large scales of circuit integration [3]. From the large-scale integration (LSI)
technologies of the 1970s, which involved up to 1000 gates per chip, to the very
large-scale integration (VLSI) of the 1980s, which involved up to 100.000 gates per
chip, there has been a steady increase in heat dissipation at the chip, module and
system levels. Such increases have made the role of heat transfer and termal design

more important than ever, and the development of future large-scale, high speed



circuits may well be limited by the inability to maintain effective cooling [3].

Similar to the chip cooling problem, transfer of heat from walls to the fluid
flow occurs in various engineering application. The heat generated from obstacles
inside channels are convected downstream to the rest of the fluid and also to the
recirculation zone behind the block. If there happens to be more than one block
there is a possibility of having cavity type flow and heat transfer becomes very

important.

An understanding of the basic features of the heat and momentum transfer
inside the narrow channels having obstacles attached to the lower surface is still
an intergoing challenge to the predictor in the numerical simulation area. In this
research work, author attempts to generate a practical but highly accurate numerical
prediction algorithm so as to study complex heat transfer characteristics inside the

narrow channel.

1.1 Experimental Models of The Flow in A Narrow Channel With Obstacles

Due to the geometric dimension of the narrow channels which are in oper-
ation in the practical it is desirable to do detailed, accurate and effective measure-
ments by using highly sophisticated experimental techniques. Therefore extensive
experimental studies are usually made on prototype models of prespective designs

to verify that the required board and component temperatures are maintained.



Flow and thermal field distributions in channels formed by stacked PCBs
containing heated components are usually quite difficult to obtain without the use of
sophisticated test equipment, i.e hot wire and hot film anemometry or laser doppler
anemometry, and experienced personel. Furthermore, preparation of the test rig
for the experiments require sensitive mechanical operations. Small dimensions of
the components make diffculty for one who wants to take data on the velocity
and thermal fields without disturbing the local fields themselves [4]. Flow field
visualization can be accomplished by use of smoke or trace materials injected into
the fluid streams [4-7]. Prediction of component surface convective coefficients and
finally the component temperatures can be done indirectly, i.e by evaporation of

naphthalene-constructed components [8].

Prediction of the the amount of heat generation in a component through
electrical measurments, embedding thermocouples and measuring freee-stream or
inlet temperature is needed to compute the average convective heat transfer coeffi-
cient on the surface of a component in the channel. In general, as the coml;onents

become smaller, the experimental predictions begin to fail due to practical reasons.

It is worth noting that although it is customary to speak about the exper-
imental results reliability, unfortunately in this field, there does not exist extensive
data to make comparisons with numerical prediction due to the above practical

reasons.



1.2 Computational Models of The Flow In a Narrow Channel With Obstacles

The variation in the geometric parameters and measurement difficulties
brought about by the small physical size of the component array under consid-
eration lead one to investigate various means of experimental studies by using other
prediction techniques. Then attentions turn on the searching the possibility of using
numerical experimentation. In all areas of engineering, Computational Fluid Dy-
namics (CFD) is becoming an increasingly powerful tools. The use of the CFD in
the aeronautics industry is well known and documented by Bradly [9]. On the other

hand the use of CFD in more practical engineering areas are just starting.

A comparison between experimental and numerical studies yields the fol-

lowing important advantageous points for the numerical approach.

a) The ability to see implications of design changes within short time intervals to
increase design flexibilty.

b) Getting out the detailed information on all field variables through out the domain.
¢) Elimination of external disturbance effect on the field variables which may have
occured during measurements.

d) Simulation ability of severe operating conditions

e) Least expensive time values and material costs [4].



The capability of finite difference or finite element CFD codes to provide
design and packing engineers with an easily usuable tool to visualize complex flow
fields and evaluate the thermal performance using various cooling situations illus-
trated by many investigaters [10-15]. In the present computational model finite
difference technique will be used to discretize field equations. All the boundary con-
ditions, will be given later in all details, suitably fitted into finite difference form
considering physical significancies as well as their geometric positions on the physical

model.

Before describing the approach in this study, it will be usefull to review

similar studies in this field.

Mahaney, Incropera and Ramadhyani [16] investigated mixed convection
heat transfer from a four-row, in line array 12, square heat sources which are flush
mounted to the lower wall of a horizontal rectangular channel was investigated.
The variation of the row-average Nusselt number with Reynolds number exhibits a
minimum, suggesting, that due to the buoyancy-induced flow, heat transfer may be

enhanced,

J. T. Lin, B. F. Armaly and T. S. Chen [17] show that the influence of the
buoyancy force on the velocity distribution. To study the effects that the buoyancy
has on the heat transfer in laminar flow inside a vertical duct with a backward-facing
step. The buoyancy force changes significantly the shape of the main recirculation
region behind step it causes the reattachment length to decrease as its magnitude

increases. This study show that bouncy effects should be consider in simulation



-~

model if one studies the vertical duct problem with a backward facing step.

Fluid flow and heat transfer in a two dimensional finned passages were
analyzed for constant property laminar flow conduction by Kelkar and Patankar
[18]. In this study, the temperature of the plate was kept constant and the cross-
sectional area of the channel was varied periodically. This causes the flow and the
temperature fields to be periodic after a certain streamwise length. Computations
were performed for different values of the Reynolds number, the Prandtl number,
geometric ratios and the material thermal conductance. The placement of the fins
in the channel changes the heat transfer significantly since it changes the velocity

significantly as well.

Hsieh and Huang [19] solved two-dimensional Navier-Stokes equations by
applying different numerical schemes for the convective term discretization. Partic-
ularly, they applied various numerical shcemes to analyze numerical errors for the
predictor of the laminar recirculation zone. As the conclusions of their study, the
Quadratic Upstream Weighted Schemes (QUDS) or the Hybrid Central/Skew Up-
wind Schemes (CSUDS) are shown to be more accurate than the standart upwind

scheme or the schemes.

Ghia, Osswald and Ghia [20] formulated the unsteady incompressible Navier—
Stokes equation in terms of vorticity and streamfunction. The numerical method
developed solves the conservative form of the vorticity transport equation using
the Alternating Direction Implicit method, whereas the streamfunction equation is

solved by Direct Block Gaussion elimination. The results are in good agreement,



in the entire laminar range for the back step channel problem, with the available

experimental data.

Pereira and Durst [21] studied steady-state laminar flow characteristics
over surface-mounted ribs by using the finite-difference numerical scheme with uni-
form /nonuniform grid systems to examine grid dependence. In addition the variation

of Reynolds number effects on the drag were examined

Two—dimensional time dependent Navier-Stokes equations are formulated
into stream function vorticity equations by Cheng and Huang [22]. The conser-
vative form of the vorticity transport equation is solved by using the Alternating
Direction Implicit Method, whereas stream function equation is solved by Direct
Block Gaussian Elimination. This method is applied to a model problem of flow
over a back step in a doubly infinite channel with suitable grid distribution in the
separation and reattchment regions, as well as in the inflow and outflow regions. In
order to avoid artifical viscosity in the discretization of the problem, central differ-
ences for the spatial derivatives are used. They observed the shedding of vortices at
the corner of the step, the formation of additional separation bubbles at the lower

wall and the occurrence of the upper wall separation bubbles.



CHAPTER 2

FUNDAMENTAL EQUATIONS

2.1 Flow Field

In this chapter, governing equations for the fluid motion and the tempera-
ture field will be presented. There will be no detailed derivation of the fundamental
equations, since it is readily available in most of the texts written on the subject
[23]. The classical form of the flow equations, which will be used primarily for

computational purposes are reviewed in the following lines.

The fundamental equations of fluid flow are based on the following universal

laws of conservation;

a) Conservation of mass.
b) Conservation of momentum.

c¢) Conservation of energy.



10

Very short presentation of above the conservation equations will be pre-

sented below for the sake of the countinuty in the presentation.

a) Conservation of mass

When the conservation of mass law applied to a fluid passing through an

infinitesimal volume, the following continuity equation is obtained, [24];

2P (V) =0 (2.1)

with the assumption of incompressible flow hence,

Equation (2.1) reduces to V.V = 0. For 3-D flows, in differential form, this takes

the following form;

oUu v oW
N + 'é“y“ + P 0 (2.3)
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where,

V=Ui+Vj+Wk (2.4)

b) Conservation of momentum

When Newton’s second law is applied to a fluid passing through an in-
finitesimal, fixed control volume, momentum conservation is obtained in the follow-
ing form;

d

5;(pf') +V.pVV = pf + V.5, (2.5)

Making use of the continuity equation, the momentum equation reduces to
— =pf+V.5; (2.6)

The first term on the right hand-side of equation (2.6), f, is the body force vector
per unit volume. The second term on the right-hand side of equation (2.6), 5; ;, rep-
resents the surface forces per unit volume. These forces are created by the external
streses on the fluid element boundary. The stresses consist of normal and shearing
stresses and are represented by the components of the stress tensor 5;;. After insert-
ing each component of the stress tensor S;; which were obtained through series of
assumptions known as Stokes assumptions, Navier-Stokes equations are obtained. In
addition, with the assumptions of incompressibility and constant viscosity coeficient

final form of equation 2.5. will be

DV . 1 ,
T f- ;Vp+vV2V (2.7)
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b) Couservation of energy

Generally, for an incompressible fluid the energy balance is determined by
the internal energy, the conduction of heat, the convection of heat with the stream
and generation of heat through friction. In a compressible fluid there is an additional
term due the work of volume changing. In all cases radiation may also be present,
but its contribution is small at moderate temperatures, and it is neglected com-
pletely. In the present thesis based on the first law of thermodynamics, considering

on elementray volume AV of weight,
AG =AV.pyg (2.8)

Writing a balance between externally added heat dQ, internal energy and expansion

work;

dQ = AG.C,.dT + p.d(AV) (2.9)

The quantity of heat dQ consists of two terms:

1) Heat d@). added through conduction

2) Heat d@) s added through friction

With Fourier’s law help one can calculate the quantity of heat added through con-

duction
dQ. & oT

= -k— 2.1
A.dt 1 on (2.10)

g=Heat flux: Crossing an area A of heat per unit area and time

Using this law to calculate conduction part, and using shear stresses and
normal stresses on the element to calculate friction, calculate the work by means
of expansion or compression. Put these terms into a balance, with the addition of

dissipation, one finally derives the energy equation;
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DT Dp 0 (, 0T d (,0T\ 0 (,0T
ngp_D?— Dt 8z (k31)+3y (k:‘);)+82 (kaz)+#¢ (2.10)

Assuming the independency of C,, and k from temperature ,energy equation

becomes;

2 2 2
DT _ Dp ,(aT PT OT)_H@ 2.12)

R il TRl Rl w Rl v

For incompressible fluid the work of compression, DP/DT, vanishes and

Cp = C, = C Final form of the energy equation,

2 2 2
DT_k(aT 9°T 0T)+M, (2.13)

PCor =Mlaz t oz T o2

Where

+

aUN?  [ov\?t [fow\?
«»:2[(5;) +(3) + (%)

(?X+O_I{)2 aW’+8_VK)2_g(?E+_a_V_+a_W_ : (214)
dz Oy dy Oz 3\ 0z  Jy Oz )
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2.1.1 Classical Primative Function Variables Equation Form of The Navier-Stokes

Equations

The vorticity-stream function approach, which will be mentioned in the
next section losses its attractiveness when applied to a three-dimensional flow field
because a single scalar stream function does not exist in this case. Consequently, the
incompressible N-S equations are normally solved in their primative variable form
(U,V,W, P) for a three dimensional problem. The incompressible Navier-Stokes
equations in nondimensional, primative variable form for a cartesian coordinate

system are given as follows [23];

Continuity:

ou*  v: oW
ot =

5 T 3t 5 =0 (2.15)

X-Momentum:

ou* ou

- T » D277 27w 277 =
v - gu= .OU* 9P 1 9 9t 9

y* = - 2.16
+W 0z dz* + R.p ' dz? + Jy~? * 32*2) (2.16)

V*
= + ay*
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Y-momentum

ov™ ov- liA% oV opP- 1, 8%v+ 9%V Qv
]‘ * » E— P ) -

Z-momentum

[7A% oW~ A owW* opP" 1 ,0°W"  9*W"  9*Ww-
= * 7™ = —
ot +0 oz~ ¢ day* TN 0z 9 T ReL( dz% | ay~? i :

(2.18)

where above equations are nondimensionalized using the following defini-

tions;
u- — U zn —_ 3 *® p v! — V o —_ }:
- Uoo’ - L? P - poo’ - Uoo’ y - Lv
x tUOO . W . Z _ UoQL
t" = ——L'—, W= Uoo, zZ = L, ReL = l/ (219)

These equations are written in an Eulerian frame of reference, i.e. in a
space-fixed reference frame through which the fluid flows. The boundary conditions
for primitive variables U, V and W along a no-slip wall are just U = 0, V = 0 and
W = 0 for all the time. This is evidently a great advantage for the use of the implicit

methods, since no iteration is required for the boundary conditions. However, there

#*
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is an impediment to the succesful application of implicit methods to the primitive
equations, due to a nonlinear instability of the pressure term during the solution
procedure {25]. One of the early techniques for solving the incompressible N-S in
primitive-variable form is the artifical compressibility method. In this method, the
continuity equation is modified to include an artifical compressibility term which
vanishes when the steady-state solution is reached. With the addition of this term
to the continuity equation and the resulting N-S equations are mixed to form set of
hyperbolic-parobolic equations which can be solved using a standart time dependent
approach. The artifical compressibility method, is one of the techniques for solving
the incompressible N-S equations in primative variable form. This method uses a
Poisson equation formulation for the pressure in place of continuity equation. This
is done to separate the majority of the pressure effects into a single equation so that

the elliptic nature of the flow can be suitably modelled.

2.1.2 Vorticity-Stream Function Variables Equation Form of The Navier—Stokes

Equation

The vorticity-stream function approach is one of the most popular methods
for solving 2-D incomressible N-S equations [23,26]. This approach, introduces the
vorticity component (w) and the stream function (). The vorticity vector (&) is
defined as;

G=VxV (2.20)

where the magnitude of the vorticity vector will be

8] =w =]V x V| (2.21)



17

For a 2-D flow field Eq. 2.21 can be written explicitly as;

w=2_22 (2.22)

In 2-D cartesian coordinate system, the stream function 1 is defined in the usual

way as follows

L
U=3 =5 (2.23)

Using these new dependent variables and also eliminating the pressure term in
both equations vorticity transport equation is obtained. The two-dimensional, un-
steady flow of an incompressible Newtonian fluid formulated in terms of the stream
function() and the vorticity(w) values take the following forms, in terms of nondi-

mensional values [23].

Definition of vorticity;

Vi = —w (2.24)

Vorticity transport equation;

Opow Mpow Ow

2, _ - r= —_
Viw =Rl g 52 sy ot (2.25)
or,
dw ow ow 1 _,
UtV = gV (2.26)
or,
Do _ 1, (2.27)
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This is a parobolic Partial Differential Equation having of marching type.

On the other hand, stream function equation, so called Poisson equation,

has an elliptic character having a jury type solution.

2.2 Thermal Field

Generally, for an incompressible fluid the energy balance is determined by
the rate of change of internal energy in the field with the conduction of heat with in
the flow field and the generation of heat through viscous friction. For compressible
fluids, there is an additional term due the work of volume change. In all cases radi-
ation heat transfer may also present in the physics of the problem. Its contribution
is small at moderate temperatures, and we shall neglect it completely in the present

work.

The first of law of thermodynamics constitutes the balance of the various
work terms in the flow field with the input of heat transfer. Hence the energy

equation is {27],

DT _Dp, @ (,0T\ @ (,8T\ 9 (,0T
pCp—D—t-—Dt+a—z(k6—z)+ay<kay)+~a—z(kaz)+u‘1’+42 (2.28)

Assuming the constant C and k energy equation becomes;

DT _Dp (8T 6T  0°T
pcﬁ_ﬁ+k(6$2 +6y2 + 322)+#¢+Q (2:30)

For incompressible fluid flow the work of compression, Dp/Dt, vanishes. The final

form of the energy equation which will be used through out the computations will
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be
pC

DT 0*T 9T 9°T
—ﬁ?—k<8x2+8y2 + 6z2)+'u(p+Q (2.30)

where, the dissipation term is represented as follows
AN C AN A%
p=2 [(‘52) +(a) +(5) |+

v dU\? [OW  owW\?
(F+%) + (5 %) (231

2.2.1 The Energy Equation for Fluid Domain

Before presenting the governing equations, for the fluid domain, it is nec-
essary to introduce some dimensionless quantities which will be used for the nondi-

mensionalization of energy equation. These are as follows;

U v X Y wW T_T,
U= — = —— = - = — = X §= i .32
A AUl AR A Al iy AL Al e S G

Above nondimensional terms are introduced into equation 2.29 to obtain the follow-

ing form,
Dy 1 2 Ec "
Dt = RePr) (T RStV (2.33)
where,
Uso L 124 U002
= —— P = — = — .
Re —, Pr P Ee T =T (2.34)
Eq. 2.33 written in cartesian coordinate system will be as follows
00 06 08 Ec 1 0% 9%
- il V— - = == i " .
ot + Uc’)x + 3y+ Re<I> + RePr [6:1:2 + 6y2+] +Q (2.35)
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2.2.2 Energy Equation for Solid Domain

Consider the time dependent conduction energy equation for the solid do-

main [27],
oT

pCp vy = EVET + Q" (2.36)

Introducing the nondimensional quantaties of Eq.2.31, the following form yileds

0 k1 L _y
¢ 1 L 2.
5 szc,,UmV 8+ Q (2.37)

now multiply the numerator and denominator of the right hand side by v

99 k

il 2 n
3~ oC, LU i, V0t Q (2.38)

now regrouping the right side terms and use the definition of Pr and Re then

08 kluv20_11

M9 _ k1 29 L Q" 2.39
8t pCpv LUs PrEc 0 1@ (2:39)

Hence, the energy equation for the solid domain becomes

00 1
Y vt (2.40)

2.2.3 Solid-Fluid Interaction and Conjugate Solution

Solution of the combined thermal field in the fluid and solid domain requires
conjugate solution techniquies since the boundary condititon at the interface changes

during the solution. In the problem domain, heat convects in the fluid and conducts

*
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in the solid domain part. On the boundaries conduction and convection processes

should be in balance.

Take energy equation into consideration again in nondimensional form,

0 89 80 1 _, . Ec "
itV Vo, = im0t g2t (2.41)

This equation was written for a media which contained fluid-solid together must be
valid everywhere in such kind of media. Let’s make an assumption that we were
moving with a fluid particle, if we had velocity in three-dimension different from
zero, the temperature around us would be given by this complete energy equation.
If we had zero velocity in three- dimension this would mean U = V = W = 0 then

energy equation would become;

06 1 2
— = 2.4
ot PrReV h+@Q (2.42)

That is the equation which is valid for only the solid madia. The equation which is
written in general sense modified itself conveniently where the physical phenomenon

takes place. Therefore no additional efforts required to check its correctness.



CHAPTER 3

A REVIEW ON FINITE DIFFERENCE TECHNIQUES

3.1 General Ideas and Short Historical Review

The devolopment of the high-speed digital computers hag had a great
impact on the way in which principles for the sciences of fluid mechanics and heat
transfer which are applied to problems of design in modern engineering practice.
Problems can now be solved at a very little cost in few seconds of computer time
which would have taken years to work out with the analytical methods and the
first generation computers available twenty years ago. The ready availability of

previously unimaginable computing power has stimulated many changes [23].

Traditionally, both experimental and theoretical methods have been used
to develop new designs for equipment and vehicles involving fluid flow and heat
transfer problem. With the advents of the digital computer, a third method, the
numerical approach, has become available {23]. Below short review of the finite

difference techniques will be presented.
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The rise of a new methodology of attacking the complex problems in fluid
mechanics and heat transfer which is known as Computational Fluid Dynamics
(CFD) involves the solution of continuity, momentum and energy equations. The
equations which correspond to physical phenomena of interest are solved numeri-
cally. The evaluation of numerical methods, particularly finite difference methods
for solving ordinary and partial differential equations have began at about the turn

of the century.

3.2 A Finite Difference Formulation

In many text books and research papers it is possible to find general remarks
for Finite Difference Method (FDM). For this reason, a brief explanation for the
purpose of general understanding will be considered in this section. One of the first
step to be taken in establishing a finite—difference procedure for solving a PDE is to
replace the continuous problem domain by a finite-difference procedure by solving a
Partial Difference Equations (PDE) for which f(z,y) is the dependent variable. In
the square domain 0 <z <1, 0<y <1 discrete point representation replaces the
continuous field variable f(z,y) by f(iAz,jAy). Points can be located according
to the values of ¢ and j difference equations which are written in terms of general

points (¢,7) and its neighbouring points. This labeling is illustrated in Figure 3.1.

() .
y

x(1)
Figure 3.1) Finite difference grid.
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If f(zo,yo) replaces f(i,7), then the following definitions can be deduced;

fE+1,7) = f(zo + Az, yo) f(@,3+1) = f(zo,y0+ Ay)
f(@—=1,7) = f(zo — Az, yo) f(&,7—1) = f(zo,y0 — Ay)

Often in the solution of the time dependent marching problems, the vari-
ation of the marching coordinate is indicated by a superscript, such as f**1(4,7).
Many different finite—difference representations are possible for any given PDE and
it is usually impossible to establish a best form on absolute basis. The accuracy of a
finite difference scheme may depend on the exact form of the equation and the prob-
lem being solved. And secondly, on the selection of a best “scheme” which will be
influenced by the aspect of the procedure which are being optimized, i.e. accuracy,

economy, programing simplicity.

The idea of a finite—difference representation for a derivative can be intro-

duced by recalling the definition of derivative for the function f(z,y) at z = zo,

Y = Yo, i'e°7

af(zay) 1 f(@‘o-i‘Aﬂl',yO)—f(zo,yo)
9z A]-;:IEO Az (3-1)

Here, if f is continous, it is expected that [ f(zo + Az, yo) — f(2o, Yo)/Az

will be a ’reasonable’ approximate to 0f/0z for a “sufficiently” small but finite
Az. But the main value theorem assures that the difference representation is exact
for some points within a Az interval. There are various ways of generating finite

difference approximations [23]. These approaches are;
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a) Taylor series approach
b) Polynomial approach
¢) Integral method approach

d) Control volume approach

Using these four different approaches it is possible to obtain exactly the

same finite-difference representation. These techniques are briefly reviewed in the

following sections.
3.2.1 Taylor Series Approach

A Taylor series expansion approach to develop a difference approximation
for df /dz(i,j) having a truncation error of O(dz)? will be described in this section
by using at most values f(i—2,75), f(i—1,7) and f(4,5). It would be logical to write
Taylor series expressions for the point f(i — 2,7) and f(i — 1,) expanding about
the point (4,j) and attempt to solve for df /dz(%, ) from the resulting equations in

such a way as to obtain a truncation error of O(dz)?. Hence,

U1 B ?j| (A2 Ff| (-Azp
f("lvf)‘f("1)+8z (.-,j)( A:':)4-6:4:“-' o) 2 +6z3 w3 o

(3.2)
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. N e oo, Of o f (24az)?  03f (—2Az)3
fi=2,5) = f(i.5)+ oz |G (-2A2) + 0z? |6y 2! + 0z3 |y 3! +
(3.3)
Using the above expansions, it is possible to get the value of —g{; "
43
Hence,
of| _ 9*f fE—-2,5) | f(5,5) 2
Bo |on = 525" T T oms ¥ oAz T O(As) 34)

writing more expilicitly and using the definition for g—;{- which will be given later

hence,

Of | _ fli=2.)~4f(i~ L) +3f(d)
9z i) (2A7) +0(Az?) (3.5)

A careful check on the details of the above derivation reveals that it was really
. . * 3 3 . » *
necessary to include terms involving g-xé , in the Taylor-series expansions in order
i.3)
to determine whether or not these terms would cancel in the algebraic operations

and reduce the truncation error even further to O(dz®).
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3.2.2 Polynomial Approach

Using polynomial approach, it is also possible to devolop a finite difference
formulation in fluid mechanics and heat transfer problem. It is easy to notice that
arbitrary decisions are need to be made in the process of polynomial fitting which
will influence the form truncation error of the result. Particularly, these decisions
influence the choice of points in the finite difference expressions. It is also possible to
see that there is nothing unique about the procedure of polynomial approach which
guaranties that the difference approximation for the PDE is the best in any sense

or that numerical scheme is stable [23].

3.2.3 Integral Method Approach

Integral method approach is one of the other ways of producing a differ-
ence approximation to PDE’s. The use of this approach will be illustrated with an

example below.

Consider the equation,

o _ 0

ot~ “Ba? (3.6)

The strategy is to develop an algebraic relationship among the f’s at neighboring
grid points by integrating above equation with respect to the independent variables
t and z over the local neighborhood of point (m,n). The point (m,n) will also be
identified as a point (%,,2,). Grid points are spaced at intervals of Az and At.
An arbitrary integration on both side of the equation (3.6) over the interval ¢, to

1o + At and z, - Az/2 to to+ At/2 would lead to an inherently unstable difference
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equation.

Hence, it is not obvious which of the above choices for the integration inter-
val would be the right for the efficient stability of the solution method. Using the

advantage of exact differantials the following formulation is obtained.

To+Az[2 to+At to+AL To+AZ/2 92
/ ( / 6—f-dt) iz =a / / Slusae @)
Zo—Az/[2 te ot to To—Az/[2 Oz

Further using the Mean-Value Theorem [23] simplify the equation within the inter-

vals of integration;

[f(to + Aty zo) — f(ta, zo)] Az =

af af
a [%(t° +At,zo + Az [2) - B_z(t° + At 2o — A:c/?)] At (3.8)
Hence;
of o fto + At 2o+ Az) — f(to + At, z,)
Bz (to + At,zo + Az [2) = 5 (3.9)

after doing necessary rearrangings and using n for time, m for space variables one

obtains the following form;

A i
At

= (agp Ut - 25 + 171 (3.10)

3.2.4 Control Volume Approach

For Integral Methods and Taylor-Series expansions the assumptions made
that the PDE as the correct and appropriate form of the conservation principle
governing the physical problem and only turned the mathematical tools to develop

algebraic approximations to derivatives. One never considered again the physical
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law represented by the proceed in a rather formal, mechanical way operation on the

PDE.

The discrete nature of a finite difference model must be recognized at the
outset. Now, one proceeds to work out a mathematical statement of the physical
conservation principle. The following steps somewhat reminiscent of procedure used
some to derive PDE’s from physical laws except that one should not take the limit
of shrinking to control volume to a point. After putting PDE’s into a divergence

form one can use this process by employing the Gauss divergence theorem.

Practically, control volume approach brings out more accurate solution,
especially on the boundaries. However, in the control volume approach one is forced
to observe that there is some material associated with the boundary. The field
variable balance on the control volume would account for possible transfer accross

all boundaries.

Therefore, one would not know how to respond to a request to devolop
a difference representation of the derivatives along the boundaries. The discrete
nature of the problem is always taken into account in the control volume approach
which implies that the physical law satisfied over a finite region rather than only at

a point as the mesh dimensions approach zero.
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As it is seen clearly that the difference equations developed by the control

volume approach would almost certainly have the conservative property.

Now, if one tries to put out a comparison between Taylor-series :.r  and
control volume approach, one should note that the Taylor-series method readily pro-
vided difference approximations to derivatives and the representation for the com-
plete PDE was made up from the addition of several such representations. However,
the control volume approach employs the conservation statement or physical law rep-
resented by the entire PDE and appear insufficient of providing a finite difference

representation just to a derivative alone.

Without having a large number of examples in hand, it is difficult to say
which method or approach is the best to get out subtle differences. Probably for
many simple cases the resulting difference equation derived from four different ap-
proaches can be identical. Shortly, no guarantee that difference equations developed

by any of the methods will be numerically stable.

After these critical but brief review on finite difference formulae, Taylor
series expansion method will be utilized on this work. The difference approximation
can be put on a formal basis through the use of either a Taylor-Serious expansion

or Taylor’s formula with remainder.
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Developing a Taylor series expansion for f(z¢+ Az, yo) about (zg, yo) gives:

_ of 2| (Asp 4 (Azp
f(zo + Az, 30) = f(zo,%0) + ﬁzo-m) Az + axzkzo'yo) 2! + 3z3kzo,yo) 3! *
oy @t oy
3.11
+az"—lkzo»vo) (n— 1) aznkhyo) n! ( )
zg < ¢ < (zp+ Az) (3.12)

In the expansion the last term can be identified as the remainder. Thus

”forward” difference form can be formed by rearranging general expansion.

off  _ fmo+Az,y0) - f(zo,30) _ 0*f| Az
0% 29,30 Az amzk-‘ro.yo) 2!

Changing the notation (z¢,yo) into (i,j) for the sake of generality, the

following form is obtained;

aff  _ fli+1.5) = f(i,5)
oz 5,3) - Az

+ Truncation error (3.14)
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The truncation error is the difference-between the partial derivative and its
finite difference represantation. One can characterize the limiting behaviour of the

truncation error (T.E) by using the order of (O) notation. Hence;

_ af ?f| (A} 8f]  (Az)®
f(l‘o - Az, yo) - f(zO, yO) - azLﬂ:yo) Az + aiﬂzkxo,yo) 2! - axal"”y") 3! +
(3.16)
and obtain the "backward” difference represantation
off  _ SN =SG-13) | oAy (3.17)

aziii Az

Take difference between the forward and the backward, one gets central

difference formulae

af|  _ fli+1,5)— -
dzii g - 2Az

L) + 0(Az)? (3.18)
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In the same manner adding the forward difference expansion to the back-

ward difference expansion, second order derivative is presented,

%l _ fE+1,5)-2f(i,0) + f(i - 1,5)
83:2](.;,; - A.’E2 .

+ O(Az)? (3.19)



CHAPTER 4

PHYSICAL PROBLEM

4.1 Models

4.1.1 Physical Model

So far we have developed flow field and thermal field to solve them individ-
ually or together for a conjugate problem in which fluid and solid were considered
simultaneously. If we turn our attention to literature whether or not we find out a
real physical system in which our approached and developed formulas can easily be
applied. So, we have chosen the physical model and the physical system which were

used for the experimental study by HaCohen [1].

In this exprimental study the physical model was 4x4 array of heated alu-
minium blocks mounted or embedded in a wood base. The dimensions of the blocks
were 34X 34 square with varying, but equal array heights. The spacing between the
array components was 14 both in the longitidunal and transversal directions. The

channel heigth was allowed to vary. It is understood that if it is used a compu-
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tational model, in a nondimensionalized form it would be able to keep immediately

all changibility in a real given physical model.

The geometry and the materials, which are used in this physical system,

can be depicted in Figure 4.1a and 4.1b

Bt By

L

EL SL

Figure 4.1a) Side view of used geometry

We solved the flow field making all dimensions as a ratio of channel height.
Some ratios are important in the pyhsical behavior of the flow field. The ratio of
channel height to component height, H/Bj, characterizes the friction of the total
flow around a component which affects the heat transfer. Sy /By characterizes the
flow disturbance due to the interaction of: outer flow with cavity flow between two
neighbouring components. S; /By is dealing with the separation reattachment and
redevelopment of boundary layer flows on individual components. The ratio St/Br
explains the amount of channelization which occurs between colums of components

and therefore the three-dimensionality of the flow. Above given parameters in the

range
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Ua @

-

By St

Figure 4.1b) Front view of the used geometry

02 < B,/H < 1
025 < Sy/B,y < 12
0083 < Sy /B < 0

These ranges are the common ones which cover most of the actual board
component packing densities currently in use. In most of the studies and experiments
substrates can be made of ceramic coper or playwood. Chips mostly can be made
of aliminum or silicon and some alloys of both. As a criteria in the design stage the
upper ceilling of the populated chips for the junction temperature is set from failure
rate data taken in the field and from high temperature acceleration testing. For the
new chip design or a package, the experience in field operation produces a learning
factor which enhances the predictability of physical effects of using materials for

having the succesful construction are becoming more important.
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4.1.2 Flow Model

The considered channel is populated with obstacles and posing a cooling
fluid on them. And it is narrow enough when its height is compared to its length
and obstacles’ geometries are regular in squares or ractangles and top of the channel
is closed which means we are dealing with internal flow. At the entrance flow sent

into the channel impulsively.

4.1.3 Thermal Model

The computer code developed for internal flows mentioned above is also
capable to solve entire thermal field for such geometries with various boundary
conditions. At the entrance flow sent into obstacle-populated channel with the
nondimensional temperature which is equal to zero. The heat sources which are
placed into obstacles at various height from the substrate. The top and bottom of

the channel walls are held at constant temperatures.

4.1.4 The Implicit Numerical Solution Method

Some form of an iteration procedure has to be used in order to solve the
set of linear finite difference algebric equations that results from the discretization
of Navier-Stokes equations and the energy equation [28]. These are :

a) the point iteration / explicit methods.

b) the line iteration / implicit methods.
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The goal of the present study is to set up an iterative solution procedure
which be classified under the category of general implicit methods for solving the
algebraic equations arising from the stream function -vorticity w formulation of

Navier Stokes equations and the energy equation.

Generally implicit methods appear to be much more stable and faster than
the explicit methods. Implicit methods are line methods. The field variables in the
implicit methods are solved implicitly along lines. Alternating Direction Implicit
(ADI) techniques involve rows and columns operation while the Modified Strongly
Implicit (MSI) methods involve diagonal lines. These lines are named as "implicit
lines” [29]. The field variables are solved in a coupled manner along the implicit line.
Hence, the effect of boundary conditions are felt immediately in the field. Implicit
line runs between two boundary points and all the equations along this line are
coupled. Implicit methods are formulated by defining spatial ordering among the
grid points in physical domain. This ordering creates the structure of the implicit
lines and finally the system of equations to be solved. The final system of equations
can be solved by efficient block tri-diaganal or penta-diagonal solvers such as the

generalized Thomas algorithm [23].

Lin [29] discusses the nature of general implicit lines. Furthermore he com-
ments on the optimization of general implicit lines by choosing cut-off points as the
grid points where the convection is much smaller than the diffusion. In most of the
cases, the grid points near a solid boundary are the cut-off points of the general

implicit lines.

The application of implicit methods for the solution of boundary layer like

-
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flows involves general implicit lines which are normal to the flow direction. Hence,
general implicit procedure resembles marching technique for a boundary layer. Fig-
ure 4.2a shows a boundary layer like flow. Usually such kind of flows are solved by
marching techniques along x in which u and v velocities are solved implicitly along
the transverse direction y. Figure 4.2b shows the computational domain with the
essentials of grid points. Implicit lines are drawn by joining the point (%, ) with one
of the next points (¢,7 + 1), (i,7 — 1), (i, — 1) or (4,5 + 1). Finally, Figure 4.2¢
shows the structure of the implicit lines which represent the basics of the standart

marching procedure.

Depending on the nature of the flow physics it is possible to arrange various
other optimum general implicit lines [29]. Lin has made a survey on various implicit
line structure for many fluid problems including the flow over a backward facing

step [29].

In the present study, general implicit line method which involves implicit
line construction similar to Figure 4.2c was employed. The resulting finite diffrence

algebraic equations are solved by a fast Thomas algorithm.

In this section, the discretization of the governing equations will be pre-
sented. First, the final form of the governing momentum equations of flow and
thermal field will be reviewed. The boundary and initial condition will be described
in details next. Finally, the solution method will be presented ready to be imple-

mented as a solution algorithm.



4.2a A boundary-layer - like flow

Vo OO Ireaddd

4.2b Computational domain for the
boundary-layer flow

) } )
l 1 —~—— grid points
I ;7% 3
7 777 T

4.72c Generation of implicit line algorithm.
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4.1.4.1 Governing Equations for Flow Field

An impulsively generated flow of an incompressible, laminar, 2-D flow de-
velops between parallel plates of a channel with and without rectangular blocks over

the lower plate. Steady state flow field is the primary interest of the modelling.

The differential equations which govern unsteady, incompressible, viscous

two-dimensional flow field are stated in their non-dimensional form as;

Vi = -w (4.1)

ow Ow p V(’?w 1 0w Ww

T + 2z P = E(E?+ 5?;5-) (4.2)

where non-dimensional quantities are represented by

Uxo2H U Vv
Re = v s U—E, V—(—Io—o', r =

-
= (43

Equations 4.1 and 4.2 will be solved simultaneously under the boundary

conditions which will be described in the next section.
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4.1.4.2 Governing Equations for Thermal Filed

Physical domain which was described at the opening section of this chapter
involves generation of heat in rectangular blocks. This heat is conducted in the solid
portion and then convected through the walls to the flow. Energy equation for the

flow domain in a non-dimensional form will be

0o 00 00 1 0% 6%, E.
— — V== +=)+— .
ot +U8z+ dy RePr(6z2+6y2)+ ReqH_Q (4.4)
Where,
® = Nondimensioanlized Viscous heat dissipation term.
@ =Nondimensionlized Uniform heat source term.
(T - Tin)
0= ——— 4.5a
(Tw,u - Tin) ( )
Pr=afv (4.5b)
2
Ec Voo (4.5¢)

Ty — Tim)
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4.2 Boundary Conditions

In this section detailed boundary conditionsvwhich complete the definition
of the flow and thermal field variables in the physical domain will be presented.
Physical domain is presented in Figure 4.3. Geometry of the problem consists of
two separate regions; fluid and solid. Moreover solid domain has two different solid
regions with different thermal properties. Bottom part, substrate, has a low thermal
conductivity in comparison with the block material where heat sources are embed-
ded at various optional elevations from the substrate top surface in the form of an

infinitesimal sheets with no thickness.

In many analytical and numerical studies of the past, usually the heat trans-
fer problem was solved by considerations of only the fluid region and by specifying
the boundary conditions directly at the solid-fluid interface. Although finite, thin
and high thermal conductivity allows to the such kind of a procedure, this is not
correct for low thermal conductivity walls. This implies that, the temperature dis-
tribution in the wall and the fluid must be solved simultaneously. This analysis is
called conjugate formulation and the problem is called a conjugate problem. Luikov
et.al [30] and Mari et.al [31] applied this technique to solve heat transfer to flow in
circular tubes. More recently Bayazitoglu [32] and F. P. Incropera at.al [33] applied
this approach to study the heat transfer between paralell plates similar approach is

utilized in the present study.
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Due to the nature of the problem two different kinds of boundary conditions
will be considered; Dirichlet type boundary conditions and the Neuman type bound-
ary conditions. Flow field boundary condition will be a classical condition over the
solid surfaces, thus involving no slip properties. Exit and inlet flow conditions will
be the conditions of the fully developed and uniform flow conditions respectively.
Thermal field involves either prescribed or flux conditions. Although there involves
other options only the results for a limited amount of conditions will be presented
in this study. However, it is worth noting that the solution algorithm is capable of
modeling various thermal boundary options which can be chosen interactively by

the user.

e — = o]

X
*3 X4 Xg Xg 7

® bwew
~

(0.0) Xy

Figure 4.3) Geometry of the flow between parallel plates with rectangular obstacles at-
tached to the lower wall.
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4.2.1 Boundary Conditions for Fluid and Heat Transfer

Equations

In this section, boundary conditions for both thle flow field and thermal field

will be presented. Problem variables are ¢, w and 8

Inlet conditions;

z=0
T =2
r = T2

Similar type of boundary contition will be applied for the z-stations at

0<ys<p,U=V=w=0=0 v=0

Nn<y<y,U=1LV=w=0=0 % = Ay constant.

wall conditions;

Nn<y<p, U=vV=0,w= fi(¥) % =constant
00 a6
— k., SO, .
13z~ M5 iy

fi function will be described in chapter 5.

N<yY<yp, U=V=0,w= fo(v) t=constant,
00 00
k5o = <kvg  (46D)

f> function will be described in chapter 5.

T3, T4, s, T respectively.
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Boundary conditions at constant transverse locations will be described be-

low;

y=0
0<z<z7; U=V=w=1Y=0,60=constant
Y=Hhn
0<z<zy U=0=V,w= fo(¥),¥ =constant
a6 il
—kSa—y = —-kfé.; (4.70,)
z2<z<z3 U=V=0,w= fo(¢), ¥ =constant,
a6
—k,a—y = —-kfb-g (4.7b)
2n<e<zy U=V=w=9y=0,
—-k.,@ = —kb?—g (4.7¢)

oy dy

y=1y2 T1<z<zy U=V =0, =constant, w = fo(¢)

09 a9
—1%5-3; = —kfé?y‘ (4.7d)

y=y3 0<z<z7; U=V=0,%=constant, w = f3(¢), 0 =46,

Similar types of boundary conditions will be applied for the other z-station

in the channel.

Exit conditions;

T =2z7 0<y$y1,U=V=w=¢=0,—g-g=0 (4.8a)
auU oV  odw 08
T=z7 y1<y<y3,%-~é;—a—x—3;—0 (4.8b)

Solution algorithm involves various other boundary conditions for the tem-

perature field. Since only the results for the pure convective heat transfer cases



will be presented in this work, other possible thermal conditions will be discussed
very briefly are of these possible conditions which involves the definition of insulated
lower channel walls at y = y; for 0 < z < z, and z; < z < z3. Secondly, during the
initial phases of the solution code validation, prescribed wall temperature condition

was also considered.

Initial conditions;

a) For flow field:

at the entry plane

¥ = Ay x constant

w=0

at the exit plane %g— =97 =

<
iy
!

b) For thermal field;

at the entry plane 6 = &m%; =0
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at the exit plane g—g—: 0

4.3 Directional Implicit Finite Difference Formulation and The Solution

Steady state flow field of the problem under investigation involves four basic

flow regimes;

a) flow over forward facing steps

b) flow over backward facing blocks

c) cavity type flow between the blocks

d) boundary layer like flow both near the top channel wall and over the

block surfaces.

Figure 4.4 shows four possible types of flow structure involved in a flow field

in a channel with rectangular block and their governing equations

The basic essentials of these four types of flow to be predicted by the present
finite difference algorithm. There is a vast amount of literature in all of these types
of flows [34-39]. It is well known that flows over forward and backward facing steps
are very sensitive to the proposed finite difference algorithms [21]. The goal of the

present work is to generate a common algorithm so as to simulate all of these basic

*
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regimes. So a reader should judge the efficiency of the proposed method of solution

with some reservations. Results will be compared with the available data.

Equations that will be solved simultaneously are presented below;

Vi = —w (4.9)
Dw 1 _,
T ReV w (4.10)
or more explicitly,
%y 0%
FI%] + 5 (4.11)

2 2
%?—+UQ-‘?-+V?—€ 1 0%w 0w

5z TV oy = Re'gaz T 557 (4.12)

Equation (4.12) involves convective and diffusion terms. These terms will be
discretized in time and spatial coordinates. Equations will be directly approximated
in the physical plane so there is no need to the successive plane transformation.

Due to the nature of the boundaries it is relatively easy to generate a grid network.
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dy = (1/48) hence dz/dy = 1.5 conbination yields the best stable steady results
ready to the compared with the available literature data. Total domain consist of
NX xNY = 353 29 = 10273 zrid points. Discretized field equations involve the
variables at time ¢ and t + At where the expressions ()® and ()**! denote the value
of variables at t and ¢ + At respectively. Unsteady term was be approximated by an

upwind formulation.
4.3.1 Flow Equations

Second order accurate central differencing applied to the terms of Eq. 4.8

yields the following approximate equation;

_ ¥4 L) - 2G5 + 9t - 1)

2
v (az)?

P, 7+ 1) = 29" (4, 5) + 9"t (6,5 - 1)
(Ayy?

—w"(,5) (4.13a)

Although the stream function values are implicit in time, the right hand
side of the equation (4.10a) involves explicit variables for the vorticity value at the

grids. The discretization of the vorticity transport equation term will be as follows;
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unsteady term;

Ow _ w(4,7) — w(4, 1)
5 = = (4.13b)

Convective terms are linearized in time. Streamwise convective term will be
approximated by a backward differencing. On the other hand transverse convective
term will be approximated by central differencing which is a second order accurate
discretization. Lin [29] discussed various approaches for the approximations of these

linearized terms.

Final form for the convective terms will be as follows;

Bw o [w(5,5) — (i — 1,5)
U@x =y [ Az ] (4.14)
Ow o [w™ (4,5 +1) — w45~ 1)]

V@y = [ Ay : (4.15)

Terms representing the diffusion of the vorticity are approximated by a

second-order central differencing formula as follows;
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Final form for the viscous terms will be as follows:

_1_62_..:__L[.u"“(i+l.j)—2.a"+‘(i.j)+w"“(i—1,1') (1.16)
Re 3z ~ Re (Az)? .

_1_@_25__1_[¢"+'(i.j+1)-'w+‘(i,j)+u"+‘li,j——1)] (4.17)
Re 3y2 ~ Re (Ay)? 4

Now, by combining equations 4.10 through 4.14 one approximaties the equa-

tion 4.9. The relation between the values of w of t and t + At will be;

w(i,j) = "“(f+1,j>[‘iiatz—)=]+

At u" At At At
ndles 1 A - n+les o - -
Wi 1.1){ Re(Azf Az ] +w" (1, l)[ Ry 2Ay]+

At " At 2A¢ 25¢ u™ At

ntl, . - _ L0 3 W
“ ("””[ Reagr T 2_xy]+“’ (w)[” Re(az) T Reagr | 2_\:]
(4.18)

thus

Wi j) = A" i+ 1)+ Bu™t (i-1,j) + Cu™t (i j - 1)
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+Dw™ (4,5 + 1) + Ew™ (4, 7) (4.19)
where
[ n
A= A 5ol At utAt]
Re(Az)? | Re(Az)? Az |
At v AL [ At v At]
¢= [“ Re(Ay)? 2Ay] D= " Re(ayy t 25y |
B iy 28t 2w
- Re(Az)?2  Re(Ay)?  2Az

An implicit finite difference procedure where the channel is discretized into
N XN rectangular grids is used here to solve the equation. U”, V", ™, w", 8* and
grtl yntl gpntl e+l grtl gre assumed to be the values of the variables at
the t" and #"*! respectively. There exist several numerical solution techniques for
solving two—dimensional elliptic vorticity—stream function equations. Generally, the
values of w™*1(i,j) are calculated by using the n th time step values. An implicit
form of the nonlinear vorticity equa,tion uses Central Differencing Scheme for the
convective terms. Thoman and Szewezyk [40] used this method to investigate the
unsteady fluid motion around a circular cylinder. This method is known as the
Directional Difference Expilicit Method (DDE). Gauss—Seidel iteration (GSI) is re-
quired to compute the stream functions iteratively. On the other hand, Strongly
Implicit Procedure (SIP) proposed by Stone [41] uses a technique of matrix factor-
izationed elimination. The Alternating Directional Implicit (ADI) methods use half
time implicit finite difference formulation in the direction of independent spatial co-
ordinates [42]. Similarly to the DDE, method, the values of %(i,j) at the n th time
step are used to calculate the values of w(i,j) at n+1 th time step with Successive

Over-Relaxation (SOR) method. In all of the above techniques, the procedures
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were repeated for the successive time-steps until steady state solutions were reached.
Normally, with the above formulation a five point stencil forms and equations are
solved by fully implicit methods. Hence, coefficients of equation 4.13a forms a five
banded matrix as final algebraic equations. The solution of equation 4.13a coupled
with the described version of equation 4.9 is known as a Strongly Implicit Solution
Method SISM. SISM involves pentadiagonal matrix solvers which need large mem-
ory and CPU time [29,30]. The coefficents form five diogonal banded matrix. It is
more practical to convert this matrix into a three banded tridiagonal matrix where

there are very fast solution procedures.

Five banded matrix can be turned out into three-banded or tridiagonal
matrix by choosing a small time step for integration and also by replacing nth
values of any field variable on the coordinates i+ 1 and ¢ — 1 into the n+ 1 th values
of the same field variable. This substitution reduces the order of the matrix and it
can be solved much more faster than the strongly implicit form. Hence, the final

form of the flow field equations will become;

PP+ 1,5) = 2914, 5) + 976 - 1,J')+
(Az)?
PP, + 1) = 296 ) + G - L
(Ay)2 = —w (z’]) (420)

Since the values of ¥™(i 4+ 1,j) and %"(¢ — 1, j) become constant at a given
time step, no longer one can consider them as variables. These terms are considered

as knowns for the implicit solution. Hence, it becomes,



0 6) = 84 1) | — 9= 1.9 ) (4.210)

Hence,
AP, 5) + Byt (4,5 + 1) + CymHi(4,5 - 1) =
—w"(i,5) — DY"(i + 1,5) — E¥"(i — 1,5) (4.21b)

where,

S ycoalco) L e

°=lmp] 2=l

1
E=}|—=
[(Az)"’]
Vorticity transport equation takes the following finite difference form after employing

the new discretization approach explained above;

n+1 . . _ ne{: - n+l . . _ n{.: -
[53) (1,]it w (27]) +u"(i,j) I:w (zajl)kz w (%.7)] +
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n+1 . e - nee - - - nee -
v"(i,j) [w (29.7 + 1) e ("’J — 1)] = __I_[w ("+ 1’])— 2wn+1(7’1])+w (Z - 1’J)+

2Ay Re (Az)?

n+lys 2 _ S W ndlf; » _
WG 1) - 2 ) WM 1)] (4.22)
(Ay)?
or it can be expressed in the following form
A1 wt(ig) 2 1 1 ] .. [v"(i,j) 1 ]
ntl 2wy 4 _* n+l 1
w0 )[At el At vrhd e Rl CEAR eyl o)

. . 1 . . 1 un(i,j)]
" oA | Feti- 4.23
w (z+1’])[Re(Az)2] +w™(i 1’])[Re(Az)2 Az (4.23a)
Hence,
A" (4, )+ Bu™ (6,5 + 1) + Cw™ (4,5 — 1) =

Dw(i,§) + Ew™(i + 1,5) + Fw™(i — 1,7) (4.23b)



where,
L w2, 1 1
A= [At_ Az Re((Az)2+(Ay)2)]

b= [v;(Aly] '+ Re(lAyV] €= [" v;(;y] r Re(lAy)z]

F= [Re(zlk:c)? ung;j)]

Right hand side of the equation is taken as constant at each time step.

Central differencing is applied for all the terms except for the convective
term in the streamwise direction. The first order backward diffrencing which allows
marching type solutions in the streamwise direction requires very fine mesh distribu-
tion in the x-direction. Boundary layer like flow structure of the present problem in
various domains of the geometry will certainly involve marching like solutions with

the information coming from backward differencing,.
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4.3.2 Energy Equation

By using the approach of section 4.3.1 the energy equation will be discretized

in this section. The governing equation for the thermal field was;

oT oT oT 1 8T 0T E.
5t T Y%, T PrRe\asz T a7 TR TY

ORI R

Similar types of discretization scheme yields;

(4.24)

where,

Tn+l(i’j)— T'n(z,]) ne: 2 Tn+l(i’j)—Tn(£— la.])
At + u (l,]) [ Az +

. [T+ 1) - T (5,5 — 1

L [T+ 1,) = 2T™65) + TG - L))
PrRe (Az)?

1 [T"“(z‘,j +1) = 2T™1(6, §) + T+ (6,5 — 1)

E ...
PrRe (Ay)? ] + ‘R?;‘I’ (1,7)+Q (4.26)
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or by collecting the similar terms the following forms can be obtained;

T, j) [*gt *Ta: P PrReGBey t (Ay)’)]+

ntlp; s v(i,5) 1 nttg: |2t ) 1 -
T (”J“)[ 20y~ BrEeagy) Tl IV 5A, T BrReag)) =

(i, ) [Zl't'} T =1, 7) ["ng;j ) 4 5 Rel( Az)Z} +TG+1,5) [m] +

Z287(,1) +Q (+.27)

Hence;
AT (G, )Y+ BT (4,5 - )+ CT™ (4,5 - 1) =

DT™(i,j)+ ET"(i - 1,5) + FT™(i + 1,5) + G¥"(i, 1) + HQ"(i,j)  (4.28a)

CC.= DT"(i, )+ ET"(i— 1,5)+ FT"(i+1,5)+ G #"(i,j) + H Q"(i, ) (4.28b)
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This equation can be cast into matrix form hence,

B C 0 0 0 0 O [T, ( CC, )
A B CO --- 0 0 0 T, CcC,
0 A B C ---0 0 0 T3 CCs
. N I (4.28¢)
0 0 0 O A B C
0 0 0 O 0 B C : :
_ [lmw] L cea

Again the right hand side of the energy equation is treated as a completly

constant term. The viscous dissipation term is approximated as;

o) = 2 { [(un(i’j) _Au:(i - 1,j))2 . (vn(i,]'+ 1)2;;11(2’,]' - 1))2]

s [(vn(i,j) —::(i - 1J)) . (un(z‘,j + 1)2 ;;“(é,j - 1))]2} (4.29)

@ is a nondimensionalized source term representing the heat generation
inside the rectangular block. During solution, source term ¢ was introduced into
discretized thermal equations as a constant value at the special node points where
the source is embedded. Similar to vorticity transport equation energy equation is

represented by a tridiagonal matrix and solved by Thomas algorithm [23].
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Boundary conditions are also discretized and combined to the main field
equation for a conjugate solution. Numerical details of the boundary condition

discretization will be discussed in details in Chapter 5.

4.3.3 Solution Procedure

After accomplishing finite difference approach to governing flow and thermal
equations by means of of Taylor series expansion of first and second order derivatives,
solution procedure will be presented in this section. The technique is well known
and explained by Roache [25] in details for flow field approximation. This technique

adopted and modelled with the energy equation

The steps of the solution procedure are given below.

1. Specify initial values for w and % at time t=0.

2. Solve the vorticity transport equation for w at each interior grid point at each

time interval (Eq 4.18).

3. Iterate for new o values at all points by solving the Poisson equation using

new w’s at the interior points (Eq 4.21).

oy

4. Compute the velocity field components from U = 3_y and V = ~ %

5. Determine values of w on the boundaries using 1 and w values at interior

points.

6. Solve the energy equation and obtain the values of 4 (Eq 4.27)
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7. Return to step 2 if the solution is not converged. If the flow field is converged

return to step 6 and perform iterations until energy field converges.

After completing the above steps with the prerequired accuracy, the solution
is assumed to be converged and final data is presented. Solution procedure is given

with a small chart below.
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Solution procedure steps

Determine velocity profiles on flow

Boundary condition for ¢

Guess or specify w values

Solve f

Vi = —w

Boundary condition for w

Solve

Energy Equation

P

Solution




CHAPTER 5

NUMERICAL APPROXIMATION OF BOUNDARY CONDITIONS

In this chapter, the details of the boundary conditions will be presented.
Particularly, the attention will focus on the numerical approximation of the bound-
ary conditions. Due to the nature of the problem considered, special core is needed

at various grid locations in the process of discretization.

5.1 Boundary Conditions of Flow Field

The equations which govern the flow field, without making any assumptions,
have elliptic character. In order for the elliptic problems to be well posed one must
specify either the prescribed values (Direchlet condition) or the normal derivatives
(Neumann Condition) of the stream function. Implicit procedure include boundary
conditions during the solution process [21]. On the other hand, vorticity is always
difficult to be set along boundaries. Implicit vorticity conditions are very difficult
to be treat by numerical algorithms since it is very costly. For this reason, explicit
method of considering this condition is preferred [21]. In this study this way of

formulation consists the current value of a vorticity on the boundary is approximated



by using the previous set of values by making a time dependency in the devolopment

of the vorticity.

In order to solve equations 4.1 and 4.2, boundary conditions of stream func-

tion ¥ and vorticity, w should be described. The relevant boundaries are shown in

Figure 5.1 Below, details of these conditions are presented along each section of the

boundary. Hence

Along AB: w™(i,7) = ¥™(i,7) = 0 j=1,myl

Along BC: U =1 V=0

_9_ % _ .
U—ay-—l, 52 V=0
then;
¢=/Udy+Co
Y=y+Co
Hence;

Y(i,j)=dyx j+Co j=myl,my

5.1

(5.2)

(5.3)

(5.4)

(5.5)
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For the vorticity boundary condition

Along AB:
ov Ou
W= -a-; - —6-5 =90 (56)
Hence;
w(i, ) =0 j=myl,my (5.7)
Along BD: U=V =0, then
P(i,myl) =0 (5.8)

Along wall BD, the definition of vorticity requires detailed modelling. Vor-
ticity w, distribution will be determined by using the expansion of the stream func-

tion ¢ near the wall point (i,j) between B and D. Figure 5.2 shows the direction of

expansion.
y l r
4
1 ‘f qu.
l b J’g’
i ‘r Je2
1 ¢J,1
8 (, D X

Figure 5.2) Expansion of stream function near wall,



Figure 5.2 expansion of stream function near wall for to be prediction of

vorticity condition.

Then;
o 3(0d) o LOM(d)
(i +1) = 9(60) + —5 =AY+ =5 7oAV + (5.9)
it is known that
6¢L ..
i =U(:,7)=0 5.10
0y s (9) (5.10)

from no-slip boundary condition. However, the second derivative of 9 is not zero.

Hence;

(5.11)

ko = 3
[ ORI ] T8
rear wall [v] << |u| (basic boundary layer assumption). If one neglects the variation
of v along flow direction then by using the definition of vorticity one gets the following

definition

o fOv 0w\ %
w(i, j) = (55 - 5}}) = _a_gﬂ!“,,) (5.17)

By expanding the second derivatives by an upwind approximation, first

order vorticity definition is obtained. Hence;

otinj) = 2 (HEAZHRIHDY 4 oggy) (5.13)




Similarly along the boundary ED.

(i) = 2 (LI LI 4 o) (5.14)

Along the boundary CS;

i) =2 (PRI 4 oy (5.15)

The exit plane is selected well downstream so that flow becomes parallel to the

channel walls and can be considered fully developed. Hence;

oU oV ow
T =0, e 0, o 0 (5.16)
hence
U(i,j) = Ui - 1,5) V(i,5)=V(i-1,5) w(i,j) = w(i—1,7) (5.17)

or being more precise, one can approximate Eq. 5.12 as 3 point approximations as

3U(i,j)-4U(i-1,7)+ U(: —2,5) =0 (5.18)
3V(i,j)-4V(Ei-1,)+ V(i-2,7)=0 (5.19)
3w(i,j) = 4w(i—1,7)+w(i—2,5)=0 (5.20)

Equations 5.16 through 5.18 are considered implicit with the fundemantal equations

during the solution procedure.



5.2 Boundary Conditions for Thermal Field

5.2.1 Prescribed Temperature Boundary Condition

_ (T-T.)

= Tt (5.21)

6:Dimensionless Temperature
Tin:Inlet Temperature

Tw,:Upper wall Temperature

Along AB and AC temperature, 8, is chosen to be constant and this constant

was set to zero.

In this study three kinds of boundary conditions were considered. General-
ized characters of more common ones will be described first. When the temperature
varies with the space variables, the energy equation involves a second derivative in
space. If only the conduction equation would be necessarily solved, two boundary
conditions were needded in addition to the initial condition. The boundary condi-
tions specify the thermal conditions imposed on the boundary surfaces of the solid.
For example, at a given surface one may specify either the temperature or the heat

flux or convection into the media in which the temperature specified.



Y

T(L,t)

Vs
T{0,t)

s

T

Figure 5.3) Prescribed temperature boundary condition.

Above figure shows the application of the prescribed temperature boundary
condition for a solid domain. The front and back surfaces are kept at constant
temperature. Depending on the relative magnitudes of these conduction a thermal

energy flows from one surface to another.

There are numerous applications in which the temperature of the bound-
ary surface is considered to be known. When the value of the temperature at the
boundary surface is specified, for it said to be prescribed. In the present model

temperature prescribed in domain which means that is known everywhere.



5.2.2 Prescribed Heat Flux Boundary Condition

There are situations in which the rate at which heat is supplied to or removed
from a boundary surface is known. For example, at an electrically heated surface, the
rate of heat flow entering the solid known; at a thermally insulated surface, the heat
flux is zero; at a surface subjected to a solar radiation, the rate of energy absorbed
can be estimated, and hence the heat flux is as regarded as known. Also, there are
situations in which the surface heat flux may vary with time. When the magnitude
of the heat flux at a boundary surface is specified, the boundary condition is said to

be prescribed heat flux boundary condition.

Y“
y
g \
q - il TN
./W
3\\
L L
0 x 0

Figure 5.4) Prescribed heat flux boundary condition.

L OT(z,t)l' _ BT(:x,t)L
q= k———-———az B q= +k—_3:l: . (5.22)
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A numerical approximation of heat flux condition needs the finite difference
form of these equation considering energy blance on boundaires. Suppose the heat

flux entering the plane wall through the boundary surface at z = 0, is prescribed

Figure 5.5) Prescribed heat flux on the boundary.

To develop an additional finite difference equation for the node at z = 0, we
write energy balance equation for a volume element of thickness dz/2 at the node i,

as illustrated above.

Rate of heat rate of heat Rate of
entering through 3 +{ entering by 3 + energy =0 (5.23)
boundary surface conduction generation



If on area A is considered, the mathematical expression for each of these

three terms in the brackets can be written as follows.

g4 + kallz A'le) + 2‘:‘; =0 (5.24)
g: Generated heat in area
if g is zero, thus
T, —
k(_ﬁzf_‘) +g=0 (5.25)

In the present problems, applications commonly there are two different materials,

and also interface between solid and fluid. This case is depicted in figure 5.5.

Fluid
i
C / D
kf ———t= "—-.kz Solid 2 —_— ) —————
k
A s 7!
L Solid 1 ~ ‘I

Figure 5.6) The balance of heat flux in Y direction for two different materials boundary.

The income heat flux must be equal to outcome heat flux namely at the

considered point (i,j)
aoT 3TL
%)

—ky—| = -k—=— 5.26
zd'yL,n Yoy (526)
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and expanding them into Taylor series,

aT|  _ —3T(i,j) +4T(i,j +1) — T(i,j +2)
ki 2Ay

(5.27)

hence;

ka[—3T (i, §)+4T (i, j+1)~T(i, j+2)] = k1[-3T (i, )+4T (i, j-1)~T(i,i~2)] (5.28)

T (i, 5)[3(k1 —k2)]+ T (6, 5+ 1)[4ke] + T (3, 5= 1)[-4k1] = T (3, j+2)[k2]+ T (i, 5+ 2) [ k]
(5.29)

right hand side’s terms are taken as knowns at each time step. The same balance
will be written in the connectory boundary between fluid and solid. Again consider

the same geometry shown in figure 5.7.

Fluid

?q

[ XX N N2

Solid 2

Iq/
J
A (1,9 B

9 §solig 1 _

Figure 5.7) The balance of heat flux in X direction for two different materials boundary.
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To treat the same boundary condition in z direction heat transfer balance

should be written. Hence;

oT oT
_kzézLa) - —kq?;lm‘) (5.30)

ka[—3T (i, j)+4T (i+1, )~T(i+2,5)] = kf[-3T (3, /)+4T(i-1,5)-T(i-2,5)] (5.31)
rearrange the equality,

T (5, 5)[3(ks —k2)]+T (3, j+1)[4ka]+T (3, j—1)[~4ky] = T(i, j+2)[k2]+T(4, j+2) [ ks]
(5.32)

on the point (¢,7) an equation for T(z, j) becomes;

{TG + 1,3)[=4ks] + T( = 1, )dks] + TG + 2,9)lka] + TG = 2,9)[~k7])
3(ky — k2)

T(i,j5) =
(5.33)
The case of zero flux condition considers isolated solid body in given direction. it is

shown in figure 5.8’

D
.—-—-—’q
(1,1 x
Ay
A " B c
[ (1,9)

Figure 5.8) Isolated boundary in considered direction.
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If ¢, = 0 then ¢, = —k,0T/0y =0

Now, already driven equation (5.32) becomes,

oT =3T(4,7) +4T(, 7+ 1) - T(4,7+ 2)

oL - =0 5.34

0Y (i) 2Ay ( )
then

In the z direction same equation becomes,

oT =37, ) +4TGE+1,5) -T(i + 2,7)

—_— = = 5.36

0z {5 2Azx 0 ( )
Hence;

. N T4 9. i

3

5.2.3 Convection Boundary Condition

In this section, details of the application of convective heat transfer bound-

ary conditions will be presented.
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Suppose the solid boundary surface at z = 0 is subjected to a convective
heatloss with a heat transfer convective coefficient s, into an ambient at tempera-
ture To,. Furthermore assumed that a heat source of q is generated per unit area in

the solid domain.

X=0
|
|
Fluid l'
Too |
i
hco l
|
|
|
]
ln non
]
X

Figure 5.9) Convective heat transfer for a solid region.

By considering an energy balance for a volume element of thickness Az /2

at the node ¢ = 1 near the solid surface, the following balance can be observed,

ate of he
R . f heat rate of heat Rate of
entering through ;
+{ entering by } + energy =0 (5.38)
the surface . ;
conduction generation

by convection
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Considering arbirtarilay chosen area A, the mathematical expression can be

written as
(T2 -Th) + Az

hooA(Too = Th) + kA2 >

Aq (5.39)

¢:Generated heat per unit area
hoo:Natural or convective heat tranfer coefficient k: Thermal conductivity of the

solid

With the assumption of no heat generation above equation becomes

h iy,
2T, — (24 2A:c—7:3)T1 + 2Azh°o)7 = (5.40)

Finally, very brief outline of the exit boundary condition is given below.
At the exit plane, a fully devoloped flow condition approximates the temperature

profile.

Hence;

O _ _3T(ii)+4T(+1,4)-T(+2.4) _

oz 2Az

(5.41)

or after simplification, condition at the exit boundary SR becomes;
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5.3 Numerical Treatment of The Critical Points

During the calculations of the field variables such as ¥,w, for flow field, and
8, for temperature field, one faces up same difficulties on the corners where field
variables become discontinues. On these such points one gets value of litle infinite

or highly irregular values from the neighbouring points.

These kinds of points must be treated separately and continously controlled
by their time dependent values whether they become stable or unstable. They
must behave timely convergent as well as become consistent with its neighbours.
The approximations of the boundary conditions will be presented in this section.
Thermal field involves many critical surfaces and points. Figure 5.9 shows these
loctions. These treatments introduced below were succesfully used for flow field and

thermal field under considerations.

. P
D /[ &
m

L

Figure 5.10) Critical points for therma) field consideration.
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Case A)

Generation of heat at an interior grid point and energy blance. Rectangular
blocks carries infinitly thin heat source layer embedded at various elevations. Steady

state energy balance at a point, for example at P yields the following balance inside

a typical block.

(110 )
:—-——-4»--—! a
| P )
! ! _Ii_
(1-1,J)§ (] i(M,J)
]
I SR >
<
(1 |19 4

Figure 5.11) The energy Wlance for an interior point P.

Case Al)

without heat source;

6(i,j)+0(i,5+1)+6(i - 1,7) + 6(:,5 — 1) - 46(i,5) = 0 (5.43)

by the assumption that Ar = Ay
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Case A2)

with heat source; If there is a source on the point (i,j) then equation becomes

(i +1,7) +6(i,j + 1) + 6(i,5 — 1) — 46(i, 5) = ¢(i, J) (5.44)

q(i,j) is the amount of heat generate per unit area

Case B)

Heat transfer from a solid surface having heat sources embeded at an interior

point. Heat generated in rectangular blocks will be transferred to the ambaient fluid

through convection.

{el, Jof

Ay

o}
(i 14.J

Oy

141, -1

Ax Dx

Figure 5.12) Convective heat transfer from a solid surface with heat generation near the
surface.



Hence the energy balance will yield;

P g 4 300~ 1,3) + 00,5+ 1)+ 85— 1)) = (222 1) 06,5) = o(6)

(5.45)

Case C) Extrior corner such as D or E with convection boundary

(1-1,3) E
1.J

dy

1,31

Figure 5.13) Convection boundary condition for an exterior corner.

The energy balance at a point (i,j) yields the following formulae, Figure 5.13

a(i,d) = 22500, 1 0= 1,5) + 8.5 - ) - (2222 42) 86) (540

Case D) Interior corner such as C or F with convection boundary
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The energy balance at a point (i,j) yields the following formulae; Figure 5.14

Az

(i, §) = 2hoo——000 + 20(i — 1,7) + 28(3,5 + 1) + 8(i +1,5)+

k

(3,5 — 1) -2(3 + hw%})f)(i,j)

Case E) Insulated boundary

The energy balance at (i,j) yields the following formulae;

q(i,§) = 8(i,j + 1) + 6(i,j — 1) + 28(i — 1, 5) — 46(3, 5)

R

! [e1,d

Oy

I-1

IRERIE

e n

Figure 5.14

-1 Jof n

oy 1

Oy

1-1

J.1

WLLHTRARSSN

) Convection boundary condition for an interior corner.

[, 1t

(1,9

K

Figure 5.15) Boundary condition for an insulated surface.

(5.47)

(5.48)



CHAPTER 6

FLOW FIELD

This section presents the approximate flow field solutions of the Directional
Implicit Finite Difference Algorithm to the problem under consideration. In order to
test the computer code that was prepared two cases of a starting flow between two
parallel plates will be considered first. Due to the vast experimental and analytical
litarature available for such a flow condition, the efficiency of the computer code
was tested for this particular geometry. The length of the channel plates are chosen
to be long enough to allow a fully developed flow conditions at the exit plane. The
geometry of the test problem with essential feature is presented in Figure 6.1. Figure
6.2a and 6.2b presents the numerical solution precision and correctness. The axial

velocity profile at the exit plane (Figure 6.2a) compared with the analytical solution

given by [27].

Second test case involves flow between parallel plates but with an obstacle
attached to the lower plate. As it is depicted aggrement seem to be excelent. Reat-
tachment length variation behind the step is presented in Figure 6.2b for ranges of
Reynolds numbers. This length is almost a linear function of the Reynolds num-

ber. Similar observation are also made by [20]. The variation of the reattachment
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length is compared with with the exprimental works in Figure 6.2c. The agreement

is satisfactory.

Figure 6.3 shows centerline velocity development along the flow direction
for various Reynolds numbers. These development trends are tested with the results
given by Arpaci [43]. It is expected that as the Reynolds number increases, centerline

velocity reaches its steady state value in relatively small streamwise distances.

Figure 6.4 shows the model geometries for which computations will be car-
ried out. The geometric dimensions were taken from a physical real system which
can be considered as the printed circuit board system with chips attached to the
lower plate. Similar geometries and dimensions have been given in references [4].
The computer code developed here suitably simulates the geometric dimensions and

the nondimensionalized numbers of practical interest.

Figure 6.5 and 6.6 and 6.7 are the schematic representations of the geome-
tries for the flow field and temperature field equations which will be solved in this
thesis. At each figure several windows are selected to visualize the flow and tem-
perature fields. These windows cover the whole flow domain and labeled in these

figures.

Figure 6.8 shows the velocity field distribution for a one-step channel case.
For this velocity field the stream function distribution is depicted in figure 6.9a and

6.9b. The vorticity distribution for the same velocity field is shown in Figure 6.10.
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Boundary layer development and also bubble formation behind the block are
well captured. For the velocity field and its stream function, vorticity distributions

for two and three step channel case are shown through Figure 6.11 and 6.16.

In order to show the computer code’s efficiency for the flow as well as the
heat field, channel case run profiles are shown in progressive regions. At the entrance,
rectangular uniform velocity enters impulsively into a channel. After the region three
profiles slightly change. Before region nine no change in profiles is observed. Then,
quite smooth profiles are observed. These developing profiles are shown in Figure

6.17a and 6.17D.

Figure 6.18a and 6.18b show the profiles at various sections for three-step

channel case. On the steps profiles reached the maximum at about 3.
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Over the steps, channel width reduces to half of its entrance height and
for the channel case devoloped profile maximum velocity is about 1.5. Therefore,
consequently, on the steps maximum velocity reaches at about 3. In region 4 and
7 flow has the cavity type, there its profiles have the negative velocities. Similar
negative values can be seen for the region 10, which is the recirculation region

behind the step.
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Figure 6.1 Test geometry for the validation of the computer algorithm.

_L/H=20 Nx=(Number of grid points in X direction)=320 My=(Number of
grid points in Y direction)=24
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Figure 6.2a) Comparasion of present numerical solution to the analytical exact solution for
the channel case.
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94

*slaqunu

sploudey snourea Ioy uonoal[p mop oYy Suore 1uauzdojorap £3120[04 dulIua)) ¢°g aunSiy

n/(Lxn

(e4Y)/xZ=X
G0'0 ¥a'0 £0°0 20’0 10°0 00°0
_l_____r___r_hp_—hlr__thh..__-_.___~L_F_d__FhFh____ 00°1
o1t
021
0e°18
0¥1

0G°'1




95

‘widysks redishid ayy se soulPwWoal Ppow ay ], g andiy

ol

€5

N

 —

¢q

H.

VAP AW A A AV AV AV A i 4 A A AN GV iV AV AV GV AV 4V A AV Al v SV 4V AV 4 Sy e v

L. -l
| ] L
| 1§] _
2= HI?Y
L= HET
€= HAT H
L= H/h 7 a.
. VAV AV AP VAVl il A Al A AW 4 AW AU &5 AN SV AW A 4N S B A S 4 P4
[ €9 -1
) i
o1}
0= H/ Y .
Zi= HI/E r_b
€= H/LT | M
L =H/ N &

VAV AN AV VAN AV AV AV AN S A AV Sl SV i AV v AV A i v (i GV AV GV v e

]

1

1l



96

‘s1ojaurel
-ed pozi[eUOISTSWIPUOU Yjim dsed [puueyd dojs-auo ioj A13ow0e8 Ppowr o], g'g ainSiyg

991r0= H/9

2 0L= Eq/ly
g-0L =047y
L > 771 x> 190 G20 = Y/tH £0= Ad
1903 /%> 0€0 S0= Y/ ooz = Hlay
o£0> 1/ x>0 £80= Y/ly §0=H/ U
X - 3 o4 |
9 € )
T R G R = e
H “ : —x m4_ _
£ i z 1 \
U | ST | S J
.
I -
Cx
Ex
] ]




97

*819)

-dwalred pozI[RUOISUSWIIPUOY Y3iM 35ed [euueys doys-omy 10} A199w0ad Ppouwt oy ], 9°9 oInSry

991'0 = H/ q
201 =Bty
g0L =ty I s1/M™> 100
Lo= 9 620= u/by tLo > 18> 190
ooz =Heay $0= W/ 70 >11% > €20
SO0=H/Y €80 = yslH €20 >11xs 0
Lf
_ _ . N i B
v e o Pl ]
1 ‘ T
_ { |
! V4 | X 4 l
_rlll A e
by
Cx
tx
I #x
1

Ei



98

*819)
-oweled pez{euoisuamwIpuou Y3m [puueyo deis-saryy Joj A1jomosd [Ppow oy, ;'g amnSig

t> 1/ X> 080 9910 = H/q
080> /%> €90 201 =40/ by
£9°0 > 1 \.Nxv 160 n..O— uNx\ 5_
150> 1/8 > 90 520 = yty L0 = id
7€'0> 1> L0 g0 = Y/ 94 00z = Hiay
o> ik s o €80 = Y/ IH G0 = HIY
———— o T e P
] i HE SR N R W
i _ ........ | AL 4 .. .
] ] -}
“ s |l v e 1l oz |l
m { 1
L
{x
€x
7%
Sx

9x




oH”fH"h

AR AR E RS i,

..-zrﬂn”n'nh!e... ..
..,-ﬂﬁmm’hm‘.. ..
ettt
ottt ]
et "nnnntr?!r--... .

.rtﬁﬂmmh.-......
,rzmefrm.A.,,,,
At
gtm% i
erTT} ’Thf' v |
!fﬂ: 'J‘h!rn .......
A
A1

A
.rﬁ)

...........

\;L;T”T
<
=
=3
poadiian

Figure 6.8 The velocity field for one-step channel case.
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Figure 6.18b) The velocity profiles at various sections for the three-atepe channel case.



CHAPTER 7

THERMAL FIELD

The computer code is validated with some known analytical results which
are the exz;ct solutions of the Navier-Stokes and energy equation. First check was
conducted inside a narrow channel with constant wall temperature. Flow starts
impulsively and develops inside the channel. Corresponding Reynolds number is
Re = 200 and and Prandt]l number is Pr = 0.7. The upper wall is at temperature,
Tyuw = 1. and the lower wall is at 17 ,, = 3. Figure 7.1la shows the resultant steady
Nusselt number, Nu, distribution. Steady state solution for a constant upper and
lower wall temperature case supplied from Arpaci [43] shows that mean averaged
Nusselt number is Nu = 3.77. For the same geometry and boundary conditions,
the bulk temperature distribution is depicted in Figure 7.1b. Its distribution shows
rather smooth development with channel length. In Figure 7.1c at the exit plane,
the computer solution is checked against the analytical solution. Computed results
show an excelent agreement near the walls although some numerical errors occur

near the centerline.
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Figure 7.2 shows the variation of temperature along the channel axial station
where solid—fluid interaction is simulated by using a conjugate solution technique.
Relevant parameters and temperature boundary conditions are shown on the first
sketch of Figure 7.2. At the entrance, temperature profile in the fluid domain shows
a curvilinear change whereas in the solid domain profiles are linear with linear incre-
ments from the bottom wall temperature, T, = 6, to the lower wall temperature
Tw,i = 3. Near the exit the fluid temperature distribution nearly keeps its property
with the sign of the fully developed conditions. Changes in the middle domains are
naturally expected sjnce the fluid starts impulsively with the nondimensionalized
temperature of zero. This is clearly seen in region one. In the progressing regions
fluid temperatures increase since the heat conducted from the solid portion is being
convected into the fluid. The rate of heat transfer becomes steady after region five.

This is also due to the conduction in fully developed flow conditions.

In Figure 7.3, steady—state temperature profiles are shown at various regions
of a one-step channel with heat sources which are located at the upper level of the
step (H'/H = 5/6). Heat source presence is shown, clearly in all regions of the
channel. Therefore profiles change their slops in the region where heat sources are

located. Maximum temperature reaches a nondimensional value of 4.

Figure 7.4 shows additional various temperature profiles for a one-step chan-
nel case. Sources located upper part of the step as it was in Figure 7.3. In order
to understand the effect of the source magnitude, for a comparison, two other cases

with higher source magnitute are considered. Practically, one says that increasing
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source magnitude results in increasing maximum temperature at the fluid and solid

domain while the fluid properties are kept the same.

7.1 One—-Step Thermal Field

Figure 7.4, 7.6, and 7.7 show one—step channel profiles for three different
source location positions. In the region one, for three different source location posi-
tions profiles are almost the same. In the region two, profiles become quite different,
particularly around the center of the channel. Higher the location source in the
step higher the maximum tempera,ture-in the domain but thinner the temperature
layer which is around the maximum. One sees same thing in the region four and
the region five where profiles show same trend but different maximum temperature
values. When the source location is at the lowest position, maximum temperature
distribution captures comparatively thick part in the solid domain, but the maxi-
mum temperature is comparatively low. When the location of the source position is
highest, the maximum temperature distribution captures thinner part in the solid

and it becomes the highest one of three cases considered.

7.2 Two—Steps Thermal Field

In Figure 7.8, two step channel temperature profiles are shown. Sources are
located at the higher position in the step. Profiles on the steps are similar and these
profiles are the maximum temperature profiles. It is important to note that in the
fluid portions the maximum temperature profile is seen in region seven. However in

the region eight, the temperature profile shows higher values than the temperature
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profile in the region four.

7.3 Three-Steps Thermal Field

Figure 7.9 shows various profiles of temperatures in three—step chanmnel.
Sources are located at higher position in the steps. The maximum temperature
profiles are seen on the steps as in two—step channel case. Profiles on the steps
show comparatively slight changing to the cavity profiles, region 4 and 5, naturally
having increased values in the flow direction. One sees that in the recirculation zone
(Region 10) profile values are higher than ones in the cavity zones. In the cavity
region velocities are not high and fluid moves slowly. This causes effective loses of

heat by the conduction into the cooled substrate.

7.4 Iso Temperature Contours

In Figure 7.10a and 7.10b wall temperature distributions are shown. Cor-
responding Re is 200 and Pr is 0.7. On the steps, for each different step cases, wall
temperatures are maximum. This is quite natural since sources are located in the
steps. It can be seen that critical temperature values can be reached on the steps.
For each case the general trend is the same except maximum values of the considered

case.
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Figure 7.10c and 7.10d show one-step channel temperature contours with
the source at the higher position. One sees here that higher temperature contours
show themselves in a thin solid part, but are enough to reach critical temperature
of the structure. Figure 7.10e shows some detailed contours of these cfitical ones

indicating that critical values take place in a thin solid part.

Figure 7.10f and 7.10g show temperature contours for the case of one—step
channel with the source position at the middle. Careful inspiration tells one that,
comparatively low temperature contours are shown, but these temperature contours
take place thicker part in the solid than the case in which sources are located at
the higher position. Above explanations become more clear in Figure 7.10c where
temperature contours are depicted in one step—channel with the source location at
the lower position. Maximum temperature contours take place in more thicker solid
part than two other cases, but with lower values. In this case maximum temperature

is three times lower than the case with the higher source location position.

Figure 7.11a and 7.11b show temperature contours in two—step channel with
the source location at the higher position. Naturally, higher temperature contours
take place at the upper part of the step therefore high temperature contours extend
far enough away from the solid parts. In the cavity region, top and bottom walls

contours do not make a contact.

Figure 7.11c, 7.11d and 7.11e show the temperature contours for the middle
position of two-step channel case. Again higher temperature contours take more

thicker solid part than one, where sources placed in higher position. At this case in
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the cavity, upper and lower walls temperature contours make a contact. In Figure
7.11f and 7.11g heat sources are located the lower position in the solid part. Tem-
perature contours at the higher value, take more thicker place than the other two
cases. But the maximum temperature comparatively qiute low. This can be esily

seen from Figure 7.11g which is the detailed from of the Figure 7.11f.

Figures 7.12a, b, c, d, e show temperature contours in three step channel
with source location at he higher position, Figures 7.12f, g, h, k, 1, show temperature
contours in three step channel with source location at the middle position and Fig-
ures 7.12m, n, o, show temperature contours for the same geometry with the source
location at the lower position. For step one,two and three geometries, the general
trend in temperature contours and the contours at the higher value are the same.
When the step number increase in the channel, the temperature values in the cavity
regions become higher along the flow direction and more heat carried away by the

fluid.
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Figure 7.10b) Wall temperature distribut

for various source locations.(Re=200, Pt=0.7)
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Figure 7.12a) Temperature contours in three-step channel with . source location a

5/6, (Re=200, Pr=0.7).
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CHAPTER 8

HEAT TRANSFER CHARACTERISTICS

In this section important heat transfer properties of the model problem are

given. These properties are,

1) Figure 8.1a shows the fluid temperature variation along the flow direction
in the case of Re=200, Pr=0.7, along the flow direction fluid temperature naturally
increases, though a sharp decrease on the step portion occured. However, with same
boundary conditions and nondimensionalized coefficients, Nu number continously
decreases along the flow direction. In Figure 8.1b, heat carried by convection along
the X direction decreases. At the forward step and backward step portions, Nu

number decreases since heat conduction becomes dominant.

2) In Figure 8.1c, the fluid temperature distributions are shown against
various Prandtl sumbers for Re=200. Decrease in Prandtl number results in in-
crease in fluid temperature distribution along the flow direction. Since decrea,sing_
Pr number results in increasing moleculer diffusivity of heat, this results in increase

in temperature.
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3) Figure 8.1d shows Nusselt number distribution at various Prandtl num-
bers. Increase in convection heat transfer is occured in case of increasing molecular

difusivity. General trend for each case along the flow direction is same.

4) Figure 8.2 shows Nusselt number distributions for channels having one,
two and three steps. On the steps Nusselt number is positive. The detailed expla-

nation will be made for Figure 8.3.

5) Figure 8.3 shows Nusselt number distributions for channels having one,
two and three steps. On the steps, for each case, Nusselt number is positive. Since
convection heat transfer becomes dominant and velocities are comparatively high.
On the other hand, in the cavity region, flow makes circulation and velocities contin-
uously change their directions. Any fluid particles observed must be passed the same
points where it was a while ago. If this period goes to zero, fluid particles likely stop,
and the heat transfer by conduction becomes dominant. This mechanism results in
negative Nusselt number in the cavity regions. The pick value of Nusselt number
distributions is seen in this cavity regions where flow leaves the cavity wall, that is

forward face of the next step of the bottom part.

6) Figure 8.4a shows the percantage of (Tner — Tw,u) temperature values
in the step. When the Prandtl number increases, percentage of (Tmaz — Tw,s) dis-
tribution decreases. Higher the molecular diffusivity, higher the heat transfer. The
temperatures, around the maximum, become dominant in the block but their values

are comparatively lower than the temperature in case of high Prandtl number.
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7) Figure 8.4b shows three-step channel fluid temperature distribution trend
in case where the heat sources are located in the higher positions of the steps. But

the general trends for each cases are the same except only the maximum temperature

values.

8) Figure 8.5 shows bulk temperature distributions along the one; two, and
three step channel cases with the source location at the higher position. General
trend is the same along the flow direction: bulk temperature increases and makes
out some pecks, on the step bulk temperature steadily increases. However, on the
cavities walls, from upper part to the bottom part, it is possible to see the maximum
and the minimum of the peeks, since, from the wall of the cavity, heat lost into the

cooled substrate by conduction.

9) Figure 8.6 shows bulk temperature distribution along the one, two and
three step channel case with heat sources at various locations. The location of the
sources results in different maximum temperature values on the domain, though
general trends are the same for each cases. Physical interperation of these figures

can be done, as it is for Figure 8.4.
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CHAPTER 9

COLOR GRAPHICS PRESENTATIONS

In this chapter the flow field and thermal field solutions are presented for
one, two and three—step channel cases. The source locations for three cases, shown

individually by full color graphics.
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CHAPTER 10

RECOMMENDATION AND FUTURE ASPECTS

An investigation of conjugate problem which makes complex fluid—solid and
solid—solid interaction is presented in this thesis. Author believes there are ample

rooms for future developments. These are listed below :

1) Developed computer code has been applied for relatively low Reynolds
number flows. This was mainly due to the computer limitations. Since high Reynolds
number flows require more grid points near the solid surface, one has to have a high
speed computer. Preliminary runs show that the code is capable of simulating
Reynolds number of 1000-4000 value. The Reynolds number is defined with respect

to twice the channel width.

2) The investigation was conducted for 2-D geometry and flow field. Further
studies should be done to evaluate the flow field in channels with obstacles, using
the turbulence and 3-D models. Adding turbulence and 3-D model will slightly

change the results which are evaluated from 2-D models.
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3) From the numerical experiments on the thermal field, the best cooling
scenerous can be given out, choosing the source location as close as to cooled sub-
strate. Quite high percentage of heat loses in to the cooled substrate by means of
conduction. Thin substrate accelerates conduction process and drops critical tem-
perature in the domain. Shortly one has to choose thin substrate with lowest source
position in the block. Or, even, if it is possible, block must be cooled bu means of

direct conduction process, surrounded by thin solids.
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APPENDIX A
A) Nusselt Number Calculation
Using the wall heat flux equivalence to the lost by means of convection.

Hence,

oT
do =i~ T i ‘k(ﬁ)w

Take the characteristic length, say 2H, for considered geometry in this study,

T
2hH _ o)
k T —To

The definition of Nusselt number,
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where,
h is heat transfer coefficient, k and 2H are the thermal conductivity and

characteristic length of the fluid.

B) Bulk Temperature Calculation

When the geometry of fluid is finite T, is conveniently replaced by mean

temperature for fluid. Say the bulk temperture for incompressible flow thus,

1

T
ST

/4 u(z,y)T'(z,y)dA

A: Transversal area to the motion.

U,: Transversally averaged velocity

g = Jq wlz, y)dA
-2 fAdA

Bulk Temperature becomes,

1 Jyu(z, y)T(z,y)dA
A [, ulew)da

AdA

T, =




199

CURRICULUM VITAE

Ibrahim OZKOL was borned in izmir, TURKEY on January 1, 1962. He
completed high school in 1979. He got his B.Sc. degree from Istanbul Technical
University (ITU), Faculty of Aeronautics and Astronautics, Department of Aero-
nautical Engineering in 1985. He obtained his M.Sc. degree from ITU Institute
of Science and Technology, Aeronautics and Astronautics Engineering Program in
1988. He has been working as a research assistant in the Faculty of Aeronautics and

Astronautics of ITU since 1987.

| Vol
YORSEROGREISM KURULY




