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COMBINATION OF MCL AND ICP METHODS FOR                   

ACCURATE  INDOOR LOCALIZATION 

SUMMARY 

With the developing technology, mobile robots are being used more frequently. The 

use of mobile robots is needed, especially since the aim is to make the production of 

the industry more efficient. 

Nowadays, mobile robots that are widely used in the industry are moving on pre-

planned paths. These paths are prepared using wires, magnetic tapes or any other 

methods that allow the robot to follow the path. However, using these paths restricts 

the movement of the robot. This is because when it is necessary to change the target 

locations of the robot in the factory, the paths have to be prepared from the very 

beginning in accordance with the new task of the robot. Doing this will cause extra 

cost and time loss. For these reasons, mobile robots used in the industry need to 

reach the target without any help, instead of moving on predetermined paths as they 

go to the target position. In order to do this, they need to know their current pose. 

In this thesis, the localization study for indoor mobile robots that are used in the 

industry is performed in the simulation environment. MATLAB program and Gazebo 

simulation platform are used for this study. Codes written in MATLAB have been 

implemented in Gazebo using the MATLAB Robotics System Toolbox. The data 

required to perform robot localization was obtained with the laser sensor of the robot. 

A two-stage method has been used for the localization of indoor mobile robots that 

are used for industrial purposes. In the first stage of the localization method, the pose 

of the robot was roughly found and then its pose was roughly tracked. In the second 

stage, the instantaneous pose of the robot was precisely estimated when it was close 

to a predetermined target point. 

In the first stage, the Monte Carlo localization algorithm has been used. This method 

estimates the pose of the robot using the map of the environment when the pose of 

the robot is unknown. In order to implement the Monte Carlo localization method, 

functions that are available in the MATLAB Robotics System Toolbox have been 

used. 

In the second stage, the PLICP algorithm has been used to increase the precision of 

pose estimates that have been found by Monte Carlo Localization algorithm. PLICP 

is an algorithm that aligns two given scans. In order to estimate the pose with PLICP, 

the translation vector and rotation matrix that have been generated with PLICP has 

been used.  

In this thesis, an indoor environment has been prepared in the Gazebo platform to 

implement the two-stage localization method. In this environment, the robot has been 

given the task of shuttling between predetermined positions. 
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In the experiments, the robot did not know its pose at first. In the first stage of 

localization, robot found and tracked itself in the environment using the Monte Carlo 

localization method. Later, when the robot was approaching the target, the pose of 

the robot was estimated precisely using PLICP method. In order to apply this 

method, model scans were taken with the laser sensor in the target positions before 

the experiments. During the experiment, the robot computed the translational and 

rotational movements between the instantaneously taken laser scans and pre-acquired 

model scans using the PLICP algorithm when it was close to target. Since the 

position and direction of the robot were known at the time of receiving the model 

scans, the translation vector and the rotation matrix were used to compute the current 

location of the robot. The task of shuttling between the two targets of the robot was 

repeated at the specified number. 
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KESİN İÇ ORTAM LOKALİZASYONU İÇİN                                               

MCL VE ICP YÖNTEMLERİNİN BİRLEŞTİRİLMESİ 

ÖZET 

Gelişen teknoloji ile birlikte mobil robotlar daha sık kullanılmaya başlanmıştır. 

Özellikle endüstride üretimin daha efektif bir şekilde yapılabilmesi hedeflendiğinden 

mobil robotların kullanımına ihtiyaç duyulmaktadır.  

Günümüzde endüstride yaygın olarak kullanılan mobil robotlar önceden planlanmış 

yollar üzerinde hareket etmektedirler. Bu yollar kablolar, manyetik bantlar veya 

robotun yolu takip etmesini sağlayan herhangi bir işaret yöntemi kullanılarak 

oluşturulmaktadır. Ancak bu yolları kullanmak robotun hareketini kısıtlamaktadır. 

Çünkü robotun fabrika içinde görev yaptığı konumların değiştirilmesi gerektiği 

takdirde bu yolların en baştan robotun yeni görevine uygun şekilde hazırlanması 

gerekir. Bunu yapmak ise ekstra maliyete ve zaman kaybına sebep olur. Bu 

sebeplerden dolayı endüstride kullanılan mobil robotların hedef konuma giderken 

önceden belirlenmiş yollar üzerinde hareket etmeleri yerine herhangi bir yardım 

almadan hedefe ulaşmaları gerekmektedir. Bunu yapabilmeleri içinse kendi 

konumlarını anlık olarak bilmeleri gerekir. 

Bu tez çalışmasında endüstride kullanılan iç ortam mobil robotlarının simülasyon 

ortamında lokalizasyonu çalışması yapılmıştır. Bunun için MATLAB programı ve 

Gazebo simülasyon platformu kullanılmıştır. MATLAB üzerinde yazılan kodlar, 

MATLAB Robotics System Toolbox kullanılarak Gazebo’da uygulanmıştır. 

Robotun lokalizasyonunu yapmak için gereken veriler, robotun üzerindeki lazer 

sensörü ile elde edilmiştir. Kullanılan lazer sensörü robotun ön tarafına doğru 

bakmakta olup yüz seksen derecelik lazer taraması yapmaktadır.  

Endüstriyel amaçlı kullanılan iç ortam mobil robotlarının lokalizasyonunda iki 

aşamalı bir yöntem kullanılmıştır. Lokalizasyon yönteminin birinci aşamasında 

verilen bir haritada robotun konumu ve yönü kabaca bulunmuş ve daha sonra 

robotun konumu ve yönü kabaca takip edilmiştir. İkinci aşamada ise önceden 

belirlenmiş bir hedef noktaya yaklaştığı zaman robotun konumu ve yönü hassas bir 

şekilde hesaplanmıştır.  

Birinci aşama için Monte Carlo Lokalizasyon algoritması kullanılmıştır. Bu yöntem 

robotun konumu ve yönü bilinmediği zamanlarda ortamın haritasını kullanarak 

robotun konumu ve yönünü bulmaktadır. Monte Carlo Lokalizasyon algoritması 

robotun muhtemel konumu ve yönünü temsil etmek için parçacıklar kullanmaktadır. 

Robotun konumu ve yönündeki değişimleri, uzaklık sensöründen gelen verileri ve 

ortamın haritasını kullanarak zamanla bu parçacıklar robotun gerçek konumu 

etrafında yoğunlaşmaktadır. Monte Carlo Lokalizasyon yöntemini uygulamak için 

MATLAB Robotics System Toolbox bünyesindeki hazır fonksiyonlar kullanılmıştır. 

İkinci aşamada, Yinelemeli En Yakın Nokta (ICP) algoritmasının bir türü olan 

Noktadan Doğruya Metrik Yinelemeli En Yakın nokta (PLICP) yöntemi 
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kullanılmıştır. ICP algoritmaları verilen 2 veya 3 boyutlu iki tane şekli birbirleriyle 

hizalarlar. Bu iki şekildeki her bir noktanın diğer şekildeki hangi noktaya karşı 

geldiği bilinmediği için ICP algoritması öncelikle birinci şekildeki her bir nokta için 

ikinci şekildeki en yakın noktayı bulur. Daha sonra eşleştirilen noktaların arasındaki 

uzaklığı minimize edecek öteleme vektörünü ve rotasyon matrisini hesaplar. Son 

adımda ise hesapladığı öteleme vektörünü ve rotasyon matrisini birinci şekle uygular. 

Bu adımlar belirlenen kıstaslar sağlanıncaya kadar tekrarlanır. Bu kıstaslar bu tez 

çalışmasında ortalama karesel hatanın değişiminin belirlenen değerden az olması, 

ortalama karesel hatanın yeterince küçük olması ve belirlenen maksimum yineleme 

sayısına ulaşılması olarak belirlenmiştir.  

ICP algoritmasında eşleştirilen noktaların arasındaki uzaklığı minimize etmek için 

noktadan noktaya metrik uygulanır. Bu tezde, noktadan noktaya metriği minimize 

etmek için tekil değer ayrışımı (SVD) tabanlı bir yöntem kullanılmıştır. 

ICP algoritması, birinci şekil ile ikinci şeklin tamamen örtüşen şekiller olduğunu 

varsaymaktadır. Fakat bu her durumda geçerli olmayabilir. Örneğin, birinci şekildeki 

her noktanın ikinci şekilde karşılığı olmayabilir. ICP algoritması iki şekildeki her 

noktayı eşleştireceği için, gerçekte ikinci şekilde karşılığı olmayan birinci şekil 

noktalarını da eşleştirecektir. Bu da hatayı arttıracaktır. Bu sorunu aşmak için 

Kırpılmış Yinelemeli En Yakın Nokta (TrICP) yöntemi kullanılmıştır. 

TrICP algoritması, en uygun öteleme ve rotasyonu hesaplarken bütün noktaları 

hesaba katmak yerine sadece belirlenmiş noktaları hesaba katar. Bunu yaparken de 

birinci şekildeki noktalar ile onlara en yakın ikinci şekil noktalarının arasındaki 

uzaklıkları hesaplar. Daha sonra bu uzaklıkları küçükten büyüğe doğru sıralar ve 

belirlenmiş sayıda en küçük uzaklığa sahip çiftleri seçer. Seçilmeyen noktalar ise 

aykırı değer olarak kabul edilir ve minimize etme adımında kullanılmaz. Dolayısıyla 

minimize etme adımında belirlenmiş sayıdaki en küçük uzaklıklı nokta çiftleri için en 

uygun öteleme ve rotasyon değerleri hesaplanır. Buradaki amaç fonksiyonu da ICP 

algoritmasındaki gibi noktadan noktaya metrik yapısında olduğu için, ICP 

algoritmasında uygulanan aynı yöntem ile minimize edilebilir. Bu tezde tekil değer 

ayrışımı tabanlı bir yöntem kullanılmıştır. Minimize etme adımında en iyi öteleme 

vektörü ve en iyi rotasyon matrisi bulunduktan sonra bulunan bu öteleme ve rotasyon 

hareketleri birinci şekle uygulanır. Bu adımdan sonra algoritma yine başa döner. 

Algoritma belirlenen kıstaslar sağlanıncaya kadar tekrarlanır. Bu kıstaslar ICP 

algoritmasında uygulanan kıstaslara çok benzerdir. ICP algoritmasındaki gibi tüm 

noktaları hesaba katarak hesaplanan ortalama karesel hata yerine sadece eleme 

aşamasını geçmiş noktalar için ortalama karesel hata hesaplanır. Bulunan ortalama 

karesel hata, ICP algoritmasında bahsedilen kıstaslar sağlanıncaya kadar yukarıda 

anlatılan adımlar tekrarlanır. 

Noktadan Doğruya Metrik Yinelemeli En Yakın Nokta (PLICP) algoritması ise 

yukarıda anlatılan iki algoritmaya benzemektedir. PLICP algoritmasının ICP ve 

TrICP algoritmalarından farkı noktadan doğruya metrik kullanmasıdır. Bu yüzden 

birinci ve ikinci şekillerdeki en yakın noktalar eşleştirilirken buna ek olarak birinci 

şekildeki her bir noktaya ikinci en yakın ikinci şekil noktaları da bulunur. Yani ICP 

algoritmasında yapıldığı gibi en yakın noktalar arasındaki uzaklığı en aza 

indirgemeye çalışmak yerine, birinci şekildeki noktalardan ikinci şekilde bulunan ve 

birinci şekildeki ilgili noktaya en yakın iki nokta arasındaki doğruya olan uzaklık 

minimize edilmeye çalışılır. Eşleştirmeler yapıldıktan sonra TrICP algoritmasındaki 

eleme yöntemi uygulanır yani belirlenmiş sayıdaki en küçük uzaklığa sahip 
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eşleşmeler hesaba katılır ve diğer noktalar dışarıda bırakılır. Bu adımdan sonra 

elemeyi geçmiş noktalar için noktadan doğruya metrik minimize edilir. Noktadan 

doğruya metriğin yapısı noktadan noktaya metriğin yapısından farklı olduğu için bu 

adımda ICP ve TrICP’de yapılandan daha farklı bir yöntem kullanılır. Bir sonraki 

adımda ise minimize etme işlemi sırasında bulunan en uygun öteleme vektörü ve 

rotasyon matrisi birinci şekle uygulanır. Bu adımdan sonra algoritma yine birinci 

adıma döner. Bu tezde PLICP algoritmasını sonlandırmak için TrICP algoritmasını 

sonlandırmada kullanılan aynı kıstaslar kullanılmıştır. 

Bu tezde iki aşamalı lokalizasyon yöntemini uygulamak için Gazebo platformunda 

bir iç ortam hazırlanmıştır. Burada robota önceden belirlenmiş noktalar arasında 

gidip gelme görevi verilmiştir. Bunun gerçekleştirilebilmesi için, hazırlanan 

lokalizasyon algoritmalarına ek olarak MATLAB Robotics System Toolbox 

bünyesindeki harita çıkarma, yol planlama ve yol takip fonksiyonlarından 

yararlanılmıştır. 

Yapılan deney çalışmalarında robot başlangıçta kendi konumu ve yönünü 

bilmemektedir. İlk aşamada Monte Carlo Lokalizasyon yöntemini kullanarak 

konumu ve yönünü kabaca bulmakta ve takip etmektedir. Daha sonra hedef noktalara 

belirlenen uzaklık kadar yaklaştığında PLICP algoritması kullanılarak robotun 

konumu ve yönü hassas bir şekilde bulunmuştur. Bu yöntemin uygulanabilmesi için 

deneylerden önce hedef konumlarda lazer sensörü ile model taramalar alınmıştır. 

Deney sırasında robot hedefe yeteri kadar yaklaştığında PLICP algoritmasını 

kullanarak anlık olarak aldığı lazer taramalarının ve önceden alınmış model 

taramalarının arasındaki öteleme ve rotasyon hareketini hesaplamaktadır. Model 

taramalarının alındığı esnada robotun konumu ve yönü bilindiği için, bulunan 

öteleme vektörü ve rotasyon matrisi kullanılarak robotun tam o anda nerede olduğu 

hesaplanmıştır. Robotun iki hedef arasında gidip gelme görevi belirlenen sayıda 

tekrarlanmıştır.  
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1. INTRODUCTION 

Localization is an important subject in mobile robotics. In order to fulfill its assigned 

tasks, the robot must know its position and orientation. Inaccurate position and 

orientation estimations might cause the robot to miss its target location and fail to 

complete its task.  

Depending on the robot’s task and its operating environment, the localization 

methods and the sensors to be used may vary. For example, in indoor environments, 

sometimes robots must pass from narrow paths to reach its destination. In such 

places, high accuracy in pose estimation is needed, for this reason, the localization 

method and the type of sensor must be chosen to give precise pose estimation results 

with priority. However, need of more precise results increases the cost of sensors and 

other components. Therefore, if the operating environment of robot is wide and if the 

task of the robot does not need too much precision then the sensors with lower 

precision and cost may be preferred. The same is valid for the localization methods. 

Since the way of different localization methods to estimate the pose of the robot 

vary, the properties of the environment is important when choosing localization 

method. Each localization method has different advantages in different types of 

environment. In addition to this, their accuracy and speed to estimate the pose of the 

robot may vary even though they are similar type of methods. In this case, they 

should be chosen according to the task of the robot. For example, if the primary 

requirement of the task is high accuracy and if the computation time of the 

localization algorithm is not main concern then the localization method with higher 

accuracy should be chosen. 

For these reasons, it is better to determine the localization method and sensors to be 

used according to the conditions of the environment and the task of the robot. In this 

thesis, the localization study is performed in indoor and for industrial applications. 
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1.1 Problem Statement   

In industrial applications, materials are commonly transported with forklifts driven 

by human operators or AGVs (Automated Guided Vehicle). Because of the human 

factor, forklifts are not efficient enough to satisfy the needs of new automated 

production techniques. Conventional AGVs are also not efficient because they can 

only operate on predetermined paths. To reach its destination, an AGV should follow 

a path of wires, magnetic tapes or markers. For this reason, in order to use AGVs, the 

factories or warehouses must be modified. Modifying the environment for AGVs 

increases the costs of production and wastes the time that can be used for production.  

Consequently, usage of AGVs with designated paths are restricted and they are not 

suitable for new production techniques. For this reason, a more efficient way than 

using designated paths is needed to use mobile robots in industry. In this thesis, an 

industrial localization study is performed to estimate the pose of the robot precisely 

in order to use mobile robots for industrial applications without restricting the 

efficiency of production. 

1.2 Hypothesis 

In industry, the aim is optimizing the efficiency of production. For this reason, the 

mobile robots should complete their tasks with high speed, high precision and low 

cost.  

In industrial applications, high precision in pose estimation is needed, for example, 

when the robot is approaching its target in order to place or pick a material. 

However, when the robot carries load between two locations, the speed of the robot 

is also important to complete its task earlier. In such cases, relatively low pose 

estimation accuracy will be enough to maintain the task. By doing so, the 

computational load and therefore computation time can be decreased when there is 

no need high accuracy. In addition to these, completing the same task with lower cost 

is another important subject for the mobile robots that are used in industry.    

In this thesis, in order to accurately localize the industrial mobile robots when the 

high accuracy is needed, the combined localization method in [1] has been used. In 

[1], the position of the robot is estimated with an accuracy of few millimeters when 

the robot is approaching predesignated targets for instance in order to pick or place 
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an object. In this case a scan matching algorithm is used to estimate the pose of the 

robot accurately. At the time when there is no need such a high accuracy, a global 

localization method is used instead of scan matching method to track the position of 

the robot. By using this combined localization method, the position of the robot is 

estimated accurately at predetermined locations.  
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2. ROBOTICS MIDDLEWARE AND SOFTWARE TOOLS 

In this thesis, ROS and MATLAB Robotics System Toolbox is used to communicate 

with the simulated TurtleBot robot that is available in Gazebo simulator. The 

technical details of TurtleBot are available in Appendix A. Also, some of the built in 

functions that are available in MATLAB Robotics System Toolbox is used in this 

study.  

2.1 Robot Operating System 

ROS (Robot Operating System) has a modular structure and consists of nodes that 

are communicating with each other. Each of these nodes has different tasks. For 

example, one node might control a camera, one node might publish laser sensor data 

and another node might perform localization by using this sensor data. In this way 

different parts of the robot perform its own task and communicate with each other 

when it is necessary.  

Communication between the nodes is unmediated, however, each node should 

register with the ROS master and advertise its network address to be reachable by 

other nodes. There is only one ROS master in a ROS network and all of the nodes in 

the network are connected to that master [2].  

Figure 2.1 shows the communication structure of a ROS network with three nodes. 

Each node registers with the master and declares its own network address. When a 

node wants to communicate with another node, each node gets the other node’s 

address from the master, then these two nodes communicate directly among 

themselves [2]. 

Nodes communicate by sending messages. Each message has a message type that 

describes its data structure. Message type name consists of package name and type 

name. Figure 2.2 shows a message of type geometry_msgs/Twist where 

geometry_msgs is the package name and Twist is the type name [3]. 
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Figure 2.1: ROS communication structure. 

Figure 2.2: Example of a message type. 

In ROS, there are two main communication methods. These are topics and services. 

Topics are used for defining the contents of messages. This means in each topic only 

one type of message is transmitted. To send messages to topics nodes use the 

publishers and to receive messages from topics nodes use the subscribers. In a topic 

there might be multiple publishers and multiple subscribers. Many nodes may send 
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messages to a topic and many nodes may receive these messages. However, it is not 

possible for subscribers to request data at a specific time. Publishers send their 

messages to the subscribers whenever new data is ready. To request data at a specific 

time services are used. Figure 2.3 shows a topic with 1 publisher and 2 subscribers. 

In this figure, node 1 sends messages of type sensor_msgs/LaserScan to the /scan 

topic with its publisher then node 2 and node 3 receive these messages by using their 

subscribers to the /scan topic [4]. 

Figure 2.3: Communication by using topics. 

As it is explained earlier, services allow requesting data at a specific time. Each 

service consists of two message structures. These are request and response messages. 

A service client sends request message to a service server. Then the service server 

processes the information in the request and replies this request by sending response 

message to the service client. In services, only one to one communication is possible. 

Figure 2.4 illustrates the service based communication [5].  

Figure 2.4: Communication by using services. 
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2.2 MATLAB Robotics System Toolbox 

MATLAB Robotics System Toolbox allows to implement robotics algorithms by 

using MATLAB and Simulink. The toolbox connects MATLAB and Simulink to 

ROS. With this connection it is possible to develop robotics applications in 

MATLAB environment and implement them on robot simulators or robots that are 

using ROS. Figure 2.5 illustrates this connection. 

Figure 2.5: Diagram of the connection that is provided by Robotics System Toolbox. 

Robotics System Toolbox could be used to connect to an external ROS master or it 

could launch the ROS master inside the MATLAB. The second method allows to use 

Robotics System Toolbox when there is no robot or robot simulator to work on. In 

either events, MATLAB communicates rest of the ROS network by creating its own 

ROS node called MATLAB global node. This node is registered with the ROS 

master like the other ROS nodes. Creating the global node and launching the ROS 

master inside the MATLAB is done by calling rosinit function without passing 

arguments. However, if the Robotics System Toolbox is used to connect to an 

external ROS master, then the address of the master should be specified when calling 

the rosinit function [6].  

 

 



9 
 

 

 

 

3. PATH PLANNING 

In mobile robotics, to drive the robot from an initial position to a goal position a path 

planning algorithm is needed. Path planning algorithms enable to robot reach its 

target destination without colliding with obstacles and walls. For example, consider 

an industrial mobile robot that carries load between two locations. In order to reach 

its destination, it should not collide with obstacles. Also it should follow the shortest 

path between these locations since the time and energy loss are not desired in many 

applications especially in industrial applications. For this reason, a path planning 

algorithm is essential to reach the target location as soon as possible while avoiding 

the obstacles.  

As it is stated in Chapter 1, the main purpose of this thesis is performing accurate 

localization for industrial applications. Therefore, for the path planning, Probabilistic 

Roadmap (PRM) [7] algorithm that is available in MATLAB Robotics System 

Toolbox was used. It uses the map of the environment to determine the path. For this 

reason, before explaining the path planner, mapping of the environment was 

explained.  

3.1 Creating the Map of an Environment 

In mobile robotics, maps of the environments are used for various purposes. In this 

thesis study, map of the environment was required for path planning and localization. 

For these reasons, an occupancy grid map of the environment with 20 cells per meter 

resolution is created by following the steps in [8] and using the 

robotics.OccupancyGrid class of MATLAB Robotics System Toolbox. This map is 

shown in Figure 3.1. As it can be seen from the figure, the colors of some locations 

are black, some locations are white and some locations are grey. These colors 

indicate the probability values of cells. In occupancy grid maps each cell has a 

probability value between 0 and 1 depending on the possible presence of an obstacle 

at that cell. The probability value is higher for a cell when it is more likely to be 

occupied by an obstacle. On the other hand, in Figure 3.1, the darkness of a cell 
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increases when its probability value increases. Which means darker locations are 

more likely to be occupied by an obstacle [9]. 

Figure 3.1: Occupancy grid map of the environment. 

3.2 Probabilistic Roadmap Path Planner 

In this study, PRM algorithm [7] was used in order to shuttle between predetermined 

locations without colliding with obstacles. It produces nodes randomly in free places 

of the environment. After the nodes are produced, it links these nodes to find a 

suitable path for the robot to reach its destination. PRM algorithm uses the map of 

the environment and determine which locations are obstacle free when producing and 

connecting nodes. Therefore, it does not produce nodes in the locations that are 

occupied by obstacles and it does not link two nodes if there is an obstacle between 

these nodes. As it is stated earlier, for the path planning part of this study, 

robotics.PRM class of MATLAB Robotics System Toolbox was used. This class 

allows to create PRM [7] path planner. In addition to this, Robotics System 

Toolbox’s inflate command was used to inflate the map with the robot’s dimension 

since the PRM path planner algorithm does not consider the robot’s dimension [10].  

For the path planning, same map in Chapter 3.1 is used. The inflated version of this 

map is shown in Figure 3.2. 
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Figure 3.2: Inflated occupancy grid map of the environment. 

After the map is inflated with robot’s dimension, the number of nodes and longest 

allowed distance between two linked nodes must be determined. Increasing the 

number of nodes also increases the possibility of finding a path. On the other hand, it 

also increases the computation time. Likewise, increasing the longest allowed 

distance increases the possibility of finding a path in exchange for increased 

computation time [10]. An example for probabilistic roadmap that is created by using 

robotics.PRM class is shown in Figure 3.3. In this figure, a path is shown between 

two locations. For this example, 75 nodes are used. Also, the longest allowed 

distance between two nodes to connect with each other is 5 meters.  

                        
Figure 3.3: Probabilistic Roadmap between two locations. 
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4. TWO-STEP INDOOR LOCALIZATION 

Localization is an important topic in mobile robotics because in order to follow a 

path a robot needs to know its pose which enables robot to determine whether its 

following the path correctly or not. Loss of information about its pose or incorrect 

pose estimations might cause robot to deviate from its path which may end up with 

missing the goal positions or even worse colliding with a human or an obstacle. For 

these reasons it is very important to localize the robot accurately. Accuracy in 

localization becomes even more important for industrial applications since even a 

minor mistake may interrupt the production in a factory because of the problems due 

to inaccurate localization that described above.   

In order to localize the robot precisely, the combined localization technique in [1] is 

performed in this thesis study. In [1] Röwekämper et al. have combined the Monte 

Carlo Localization [11] with KLD sampling [12] and ICP variant with point-to-line 

metric [13] for the localization part of their works. They used Monte Carlo 

Localization (MCL) for global localization and position tracking, and used ICP 

variant with point-to-line metric (PLICP) to improve the pose estimates of MCL at 

goal positions. In order to apply PLICP, they have taken reference laser scans at goal 

positions. When the distance between the robot’s MCL estimated position and the 

reference scan’s position is decreased to 25 cm they used PLICP to improve the 

precision of pose estimates. In this way, they have localized the robot with a 

precision of few millimeters at predefined positions.  

For this reason, in this thesis study, localization is divided into two parts. In the first 

part, global localization and position tracking by using Monte Carlo Localization 

algorithm is explained. In the second part, precise localization by using Iterative 

Closest Point algorithm and its variants is explained.  

4.1 Monte Carlo Localization 

In this study, Monte Carlo Localization [11] was used to localize the robot globally 

and track its pose continuously. As it is stated earlier, the purpose of this thesis study 
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is improving the precision of localization by using ICP and its variants. For this 

reason, the Monte Carlo Localization algorithm that is available in MATLAB 

Robotics System Toolbox was used in this study. 

Monte Carlo Localization was introduced in [11] and it is a widely used method to 

estimate and track the robot’s pose by using the map of the environment when there 

is no preliminary knowledge about the pose of the robot. It uses particles to indicate 

possible poses of the robot. At the beginning, it distributes particles randomly and 

uniformly to the everywhere in the map if there is no preliminary knowledge about 

the robot’s pose. When robot moves, the particles are sampled depending upon 

robot’s motion. When robot senses the environment, the algorithm assigns weights to 

particles based on the measurement. After this, the particles are resampled 

proportionally to their weights. By repeating these steps, the particles are 

concentrated on the position of the robot [14]. 

In order to apply the Monte Carlo Localization algorithm in MATLAB, 

robotics.MonteCarloLocalization object of the Robotics System Toolbox was used. 

The object uses the KLD sampling [12] method to improve the performance. KLD 

sampling method changes the number of particles during the process. Therefore, the 

more particles are used when there is more uncertainty about the robot’s pose, and 

less particles are used when the uncertainty about the robot’s pose is decreased.  

4.2 Localization with ICP 

In this study, it is aimed to estimate the position of the robot at specified goal 

locations with error less than 1 centimeter which is necessary in some cases when 

using the mobile robots in industrial applications. However, as it is experimentally 

shown below, it is not possible to reach this precision always by using the Monte 

Carlo Localization algorithm alone. 

Figure 4.1 shows a PRM [7] to make the robot reach its target from its current 

position. In this figure, map is the occupancy grid map of the environment with 20 

cells per meter. Occupancy grid map is created by using robotics.OccupancyGrid 

class and Probabilistic Roadmap is constructed using robotics.PRM class of the 

MATLAB Robotics System Toolbox. In order to construct the PRM, 500 nodes are 
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used. Also, in order to count the robot’s dimension in PRM, map is inflated with the 

robot’s dimension by using inflate command.  

In the figure below, robot’s starting position is (𝑥, 𝑦) = (10, 10) and the coordinates 

of the goal location is (𝑥, 𝑦) = (14.50, 15.40). The objective of the robot is stopping 

at the goal location with a maximum distance of 1 cm from the goal location.   

             
Figure 4.1: Probabilistic Roadmap of the robot. 

By following the path that is shown above, it is aimed to stop the robot at the target 

location within a maximum distance of 1 cm from the target by using the pose 

estimations of MCL. In Figure 4.2, the real path of the robot is shown. This path is 

generated by obtaining the real positions of the robot from the simulator during the 

experiment. 

In Figure 4.3, the zoomed version of the Figure 4.2 around the goal location is 

shown. As it can be seen, the robot is drawing circles around the target location 

because the MCL estimated positions are not enough accurate (less accurate than 

stopping condition which is 1 cm as stated above) and they misdirect the controller 

of the robot with this relatively inaccurate position values.  
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Figure 4.2: Real positions of the robot. 

          
Figure 4.3: Real positions of the robot around the goal location. 

In addition to this, the estimated positions are not enough accurate the check the 

stopping condition (the stopping condition is, stopping at a location within a 

maximum distance of 1 cm from the target) of the robot correctly. This causes the 

robot to stop in a wrong location. As it can be seen in Figure 4.4, the location where 

the robot stopped is 13.92 cm away from the goal location which is quite higher than 

the threshold of 1 cm. 



17 
 

        
Figure 4.4: The difference between the goal location and the real location where the 

robot stopped. 

However, the robot does not know the fact that it stopped in wrong location because 

it checks the stopping condition by using its estimated position values. According to 

these position values it stopped 7.5 mm far away from the target location which is 

lower than the threshold. This can be seen in Figure 4.5. 

           
Figure 4.5: The difference between the goal location and the MCL estimated 

location where the robot stopped. 



18 
 

As it is experimentally shown above, achieving a sub centimeter precision with 

Monte Carlo Localization (MCL) is not possible, for this reason the combined 

localization technique in [1] is applied in this study. By following the steps of [1], the 

ICP with point-to-line metric (PLICP) algorithm is used to improve the position 

estimates of Monte Carlo Localization algorithm. To do this, when the robot gets 

close enough to goal location, the robot’s pose is started to be estimated by using 

PLICP. To estimate the position, the transformation matrices that are generated with 

PLICP used because PLICP [13] computes the transformation that aligns two given 

scans. In this study, these scans are 2D point sets that are obtained by using the laser 

scanner of the robot. As it is explained in [1], the model scans that have been taken 

previously at the determined goal locations and scans that are taken at the robot’s 

current position during the experiments are aligned by using PLICP. Then the 

resultant transformation matrix from the PLICP and the coordinates of the goal 

locations where the model scans were taken are used to estimate the position of the 

robot. 

The PLICP [13] is a variant of Iterative Closest Point algorithm [15]. It uses point-to-

line metric instead of point-to-point metric of original ICP [15]. In this chapter, in 

order to explain the PLICP more clearly, the original version of ICP and the trimmed 

ICP is explained firstly. 

4.2.1 The Iterative Closest Point Algorithm 

The ICP algorithm was developed by Besl and McKay [15] to iteratively align two 

3D shapes. Consider 3D data point set F and model point set G. Since it is not known 

at the beginning that which point in F corresponds to which point in G, the algorithm 

matches the closest points in these two sets to each other. Then the transformation 

that minimizes the distance between matched closest points in F and G is computed. 

At the last step, this transformation is applied to F. These three steps are iterated. 

After each iteration, these two point sets get closer to each other and overlaps at the 

end of the algorithm [15]. 

These three steps can be shown as below: 

1 - Match each point of F with the closest point in G.  

2 - Compute the transformation that minimizes the distances between the matched 

points. 
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3 - Apply the transformation to F. 

These three steps are iterated until converging to an optimal transformation. 

In the first step of the algorithm a correspondence search procedure is applied. Let 

𝑁𝐹 and 𝑁𝐺  are the number of points in F and G respectively. Then the data set F is 

formed as: 

 F = {𝑓1,𝑓2, 𝑓3, …, 𝑓𝑁𝐹
} (4.1) 

and the model set G is formed as: 

  G = {𝑔1,𝑔2, 𝑔3, …, 𝑔𝑁𝐺
}                                        (4.2) 

The Euclidean distance between a point 𝑓𝑖 in data set and a point 𝑔𝑗 in model set is: 

 𝑑(𝑓𝑖 , 𝑔𝑗) = ‖𝑓𝑖 − 𝑔𝑗‖                                           (4.3) 

The distance between a data point 𝑓𝑖 and the model set G is: 

                                              𝑑(𝑓𝑖, 𝐺) = arg min
𝑔 ∈𝐺

𝑑(𝑓𝑖, 𝑔)      (4.4) 

Solving the equation 4.4 gives the closest point in G that has the minimum distance 

between the point 𝑓𝑖 . Let ℎ be the closest point in G. In this situation the equation 

4.4 can be written as follows: 

                                                     𝑑(𝑓𝑖, ℎ) = 𝑑(𝑓𝑖, 𝐺)                                              (4.5)                                         

where ℎ ∈ 𝐺. By denoting Corr as the correspondence operator which pairs the 

closest points of F and G as explained above, the set of closest points H can be 

shown as follows [15]: 

𝐻 = 𝐶𝑜𝑟𝑟(𝐹, 𝐺)                                               (4.6) 

In the second step, the transformation that minimizes the distance between the closest 

points is computed. Classical ICP [15] uses point-to-point distance metric that sums 

squared distances between corresponding data and model points to compute rotation 

matrix R and translation vector t which minimize the distance between corresponding 

points. This distance function can be shown as follows: 

𝐽(𝑅, 𝑡) =  ∑ ‖ℎ𝑖 − 𝑅𝑓𝑖 − 𝑡‖2𝑁𝐹
𝑖=1                                    (4.7) 

where ℎ𝑖 is the closest point in model point set that corresponds to the point 𝑓𝑖 in data 

point set. In this thesis, to find the R and t that minimizes the point-to-point metric a 
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Singular Value Decomposition (SVD) based method [16] is used. This minimization 

method can be found in Appendix B.  

In the third step of the ICP algorithm, the rotation matrix R and translation vector t 

which are computed in the second step of the ICP, are applied to data point set F.  

𝐹 = 𝑅𝐹 + 𝑡                                                   (4.8) 

After the step three, algorithm returns the step 1. These three steps are repeated until 

change of mean square error is smaller than designated value [15]. 

In this thesis, the stopping conditions that are described in [17] are used: 

 change of mean square error (MSE) is smaller than designated value 

 the designated number for maximum iterations has been reached. 

 MSE is small enough to terminate the iterations. 

For the stopping conditions MSE is found as follows: 

MSE =
1

𝑁𝐹
∑ ‖ℎ𝑖 − 𝑓𝑖‖2𝑁𝐹

𝑖=1                                         (4.9) 

which is the mean of squared distances between data point 𝑓𝑖 and its corresponding 

model point ℎ𝑖 (closest point to 𝑓𝑖 in model point set). In [15] Besl and McKay have 

proved that ICP algorithm always converges monotonically to a local minimum in 

terms of mean square error. This proof is shown in Appendix C. 

In addition to ICP steps described above there might be need of an initial registration 

to align F and G before applying the ICP algorithm. The algorithm only guarantees 

the converging to a local minimum, hence, to converge to a global minimum good 

initial states are necessary as it is stated in [15]. In Chapter 6, how the initial 

registration has been done in this study will be explained. 

Since the ICP steps were described in details, now the ICP algorithm can be stated. 

Let k denote the iteration number of the ICP algorithm. In this situation, 𝐻𝑘 denotes 

the set of closest points and 𝐹𝑘 denotes the data point set at the k th iteration of the 

algorithm. Also 𝑅𝑘 and 𝑡𝑘 are the rotation matrix and translation vector that applied 

to data point set at the k th iteration. Then the ICP algorithm is as shown below [15]: 

Initial registration: 𝐹1 = 𝑅0𝐹0 + 𝑡0  where 𝐹0 = 𝐹 

Initialize the iteration: 𝑘 = 1 
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1. Match each point of F with the closest point in G.  

𝐻𝑘 = 𝐶𝑜𝑟𝑟(𝐹𝑘, 𝐺) 

2. Compute the transformation that minimizes the sum of the squared 

distances between the matched points. 

(𝑅𝑘, 𝑡𝑘) = 𝑚𝑖𝑛 ∑‖ℎ𝑖,𝑘 − 𝑅𝑘𝑓𝑖,𝑘 − 𝑡𝑘‖
2

𝑁𝐹

𝑖=1

 

3. Apply the transformation to F. 

𝐹𝑘+1 = 𝑅𝑘𝐹𝑘 + 𝑡𝑘 

4. If one of the stopping conditions described before are satisfied terminate 

the iteration; otherwise return to step 1 and increase the iteration number 

k by ‘1’. 

4.2.2 The Trimmed Iterative Closest Point Algorithm 

The classical ICP [15] described above assumes that the data point set F and model 

point set G fully overlap, however, for example when working with laser scan data 

which is the case in this thesis, this assumption will no longer be true since the two 

scans might be taken from different locations which means they are not fully overlap 

with each other [18]. An example for this situation is shown in Figure 4.6 below.  

                                               
Figure 4.6: Example for partially overlapping point sets. 
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As it can be seen in above figure, some data points have no correspondences in 

model point set and using the classical ICP will give incorrect results because it will 

also match these data points with model points even though these model points are 

not the true correspondences of the outlying data points. In addition, in the presence 

of measurement noise the number of these incorrect matchups will increase and 

therefore accuracy of results will decrease more. 

Since the classical ICP algorithm does not consider outliers as explained above, 

Chetverikov et al. [19] proposed a new algorithm called the Trimmed ICP (TrICP) to 

increase the robustness. The difference between the ICP and TrICP is that the TrICP 

computes the optimal transformation for the determined number of data points 

instead of considering all of the data points. The number of data points that are used 

in minimization step is determined according to minimum overlap rate of data points. 

Minimum overlap rate is the least known rate of data points that have true 

correspondences in model set. Let 𝑚𝑜𝑟 be the minimum overlap rate. In that case, the 

number of data points that are going to be used in minimization is [19]: 

𝑁𝐹𝑀 = 𝑁𝐹𝑚𝑜𝑟                                                (4.10) 

As it is stated in [19], the value of minimum overlap rate can be determined by 

repeating the same experiment with different 𝑚𝑜𝑟 values and selecting the 𝑚𝑜𝑟 

which gives the best result. Also a method for automatically determining the 𝑚𝑜𝑟 is 

given in [19]. In this thesis study, 𝑚𝑜𝑟 is determined according to the experiment 

results. 

After deciding the how many data points have true correspondences in model points, 

which data points and their corresponding model points are used in minimization 

step is decided. This selection is done by sorting the squared distances between each 

data point 𝑓𝑖 and its corresponding model point ℎ𝑖 in ascending order and selecting 

the 𝑁𝐹𝑀 number of matchups with smallest squared distances. This means 𝑁𝐹 − 𝑁𝐹𝑀 

number of data points are considered as outliers. These outliers and their 

corresponding model points are discarded and is not going to be used in 

minimization step [19]. 

In the minimization step, objective function is very similar to the objective function 

that is used in classical ICP. However, this time the objective function consists of 

remaining data and model points after the outliers are discarded. Also, it must be 
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noted that the point indexes are changed after elimination of the outliers. By 

considering these differences, the objective function is: 

𝐽(𝑅, 𝑡) =  ∑ ‖ℎ𝑗 − 𝑅𝑓𝑗 − 𝑡‖
2𝑁𝐹𝑀

𝑗=1                                  (4.11) 

where j is the new index after the elimination. Same minimization technique that is 

used in original ICP can be applied to this objective function because both of the 

objective functions are in point-to-point metric form [19]. 

After the minimization step, the rotation matrix R and translation vector t which are 

computed in equation 4.11, are applied to data point set F.  

𝐹 = 𝑅𝐹 + 𝑡                                                 (4.12) 

After this step, algorithm returns the first step. These steps are repeated until one of 

the designated stopping conditions are satisfied as it is described in [19]: 

 the trimmed MSE is small enough to terminate the iterations. 

 the trimmed MSE difference between consecutive iterations are small enough 

to terminate the iterations. 

 the designated number for maximum iterations has been reached. 

where 

trimmed MSE =
1

𝑁𝐹𝑀
∑ ‖ℎ𝑗 − 𝑓𝑗‖

2𝑁𝐹𝑀
𝑗=1                             (4.13) 

In [19] it is stated that the TrICP algorithm always converges monotonically to a 

local minimum in terms of trimmed mean square error. 

Since the steps of the TrICP algorithm has been described the algorithm can be stated 

as shown below [19]: 

Initial registration: 𝐹1 = 𝑅0𝐹0 + 𝑡0  where 𝐹0 = 𝐹 

Initialize the iteration: 𝑘 = 1 

1. Match each point of F with the closest point in G.  

𝐻𝑘 = 𝐶𝑜𝑟𝑟(𝐹𝑘, 𝐺) 

2. Sort the squared distances between each data point 𝑓𝑖,𝑘 and its 

corresponding model point ℎ𝑖,𝑘 in ascending order and select the 𝑁𝐹𝑀 

number of matchups with smallest squared distances. 
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3. Compute the transformation that minimizes the sum of the squared 

distances between the remaining matched points. 

(𝑅𝑘, 𝑡𝑘) = 𝑚𝑖𝑛 ∑‖ℎ𝑗,𝑘 − 𝑅𝑘𝑓𝑗,𝑘 − 𝑡𝑘‖
2

𝑁𝐹𝑀

𝑗=1

 

 j = index after eliminating the outliers 

4. Apply the transformation to F. 

𝐹𝑘+1 = 𝑅𝑘𝐹𝑘 + 𝑡𝑘 

5. If one of the stopping conditions described before are satisfied terminate 

the iteration; otherwise return to step 1 and increase the iteration number 

k by ‘1’. 

4.2.3 The Iterative Closest Point Algorithm with Point-to-Line Metric 

ICP with Point-to-Line Metric (PLICP) is a variant of ICP which uses point-to-line 

metric instead of point-to-point metric that is used in classical ICP. PLICP is stated 

by Censi [13] and according to the experimental results in [13], it is more accurate 

and need less iterations. It uses the trimming process [19] described in Chapter 4.2.2 

to eliminate outliers. However as it is stated in [13], the ICP is more robust than 

PLICP when the rotational displacement between the two scans are large. The steps 

below describe the PLICP by comparing it with ICP. 

The differences between PLICP and ICP come from their objective functions. As it is 

stated before, ICP uses point-to-point metric, however, PLICP uses point-to-line 

metric. Consider the data point 𝑓𝑖 in point-to-point metric, the distance error for each 

point is the distance between data point 𝑓𝑖 and its corresponding closest point in the 

model point set G. On the other hand in point-to-line metric, the distance error for 

each point is the distance between data point 𝑓𝑖 and the line which lies between 𝑓𝑖’s 

closest point correspondence and 𝑓𝑖’s second closest point correspondence in the 

model point set G. As it was stated earlier, ℎ𝑖 is the 𝑓𝑖’s corresponding closest point 

in model point set and H is the set of the closest points. In that case, let 𝑧𝑖 be the 𝑓𝑖’s 

second closest point correspondence in model point set and Z be the set of second 

closest points. Also, by taking into consideration that Corr was denoted as 

correspondence operator, the set of closest points H and the set of second closest 

points Z can be written as follows [13]: 

(𝐻, 𝑍) = 𝐶𝑜𝑟𝑟(𝐹, 𝐺)                                          (4.14) 
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In order to find the optimal transformation, the point-to-line metric objective 

function is given as follows [13]: 

𝐽(𝑅, 𝑡) =  ∑ [𝑛𝑖
𝑇(ℎ𝑖 − 𝑅𝑓𝑖 − 𝑡)]2𝑁𝐹

𝑖=1                               (4.15) 

where 𝑛𝑖 is the normal to the line that lies between ℎ𝑖 and 𝑧𝑖. To find the R and t that 

minimizes the point-to-line metric an exact closed form solution is stated in [13]. 

This solution is given in Appendix D.  

Since the other steps of PLICP is same as the steps of TrICP, the algorithm of PLICP 

can be shown as [13]:  

Initial registration: 𝐹1 = 𝑅0𝐹0 + 𝑡0  where 𝐹0 = 𝐹 

Initialize the iteration: 𝑘 = 1 

1. Match each point of F with the closest and second closest points in G.  

(𝐻𝑘, 𝑍𝑘) = 𝐶𝑜𝑟𝑟(𝐹𝑘 , 𝐺) 

2. Sort the squared distances between each data point 𝑓𝑖,𝑘 and its 

corresponding model point ℎ𝑖,𝑘 in ascending order and select the 𝑁𝐹𝑀 

number of matchups with smallest squared distances. 

3. Compute the transformation that minimizes the sum of the squared 

distances between the point 𝑓𝑗,𝑘 and the line that lies between points ℎ𝑗,𝑘 

and 𝑧𝑗,𝑘 

(𝑅𝑘, 𝑡𝑘) =  ∑[𝑛𝑗
𝑇(ℎ𝑗,𝑘 − 𝑅𝑘𝑓𝑗,𝑘 − 𝑡𝑘)]2

𝑁𝐹𝑀

𝑗=1

 

 j = index after eliminating the outliers 

4. Apply the transformation to F. 

𝐹𝑘+1 = 𝑅𝑘𝐹𝑘 + 𝑡𝑘 

5. If one of the stopping conditions described before are satisfied terminate 

the iteration; otherwise return to step 1 and increase the iteration number 

k by ‘1’. 
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5. SIMULATION STUDIES  

In this chapter, simulation studies are performed for the two-step indoor localization 

method this is explained in Chapter 4. As it is stated earlier, the purpose of this 

localization method is estimating the pose of the robot accurately at predefined target 

locations. However, in order to travel between these target locations, the robot needs 

a path planner and a path following controller. For this reason, a path planning 

algorithm was explained in Chapter 3. Also, in the following chapter a path 

following controller that enables the robot travel between target locations is 

explained. 

5.1 Pure Pursuit Path Following Controller 

In Chapter 3, a path planning algorithm has been described. The output of that path 

planning algorithm is an array of waypoints where the first waypoint is robot’s 

current position and the last waypoint is robot’s goal position. In order to reach its 

goal position, the robot must follow that waypoints. Following the path that consists 

of these waypoints enable robot to reach its goal position while avoiding the 

obstacles in the environment. In order to follow the path, the speed and direction of 

the robot must be adjusted accordingly. For this reason, a controller is needed to 

continuously adjust the robot’s linear and angular velocities. In this study, the Pure 

Pursuit path tracking algorithm [20] that is available in MATLAB Robotics System 

Toolbox was used. 

The Pure Pursuit controller [20] allows the robot to follow the path by driving the 

robot from its current position to a target point on the path by adjusting the steering 

angle of the robot. When the robot moves, the target point also moves, so there is a 

distance between the robot and the target point. This distance is called look ahead 

distance. Look ahead distance is the only parameter in the controller. For this reason, 

it is very important to determining a proper value for look ahead distance. Choosing 

a short look ahead distance might cause more overshoots on the path however it 

enables robot to retrieve the path sooner if the robot is not following the path 
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accurately at that time. On the other hand, longer look ahead distance enables 

smoother path following but the robot will retrieve the path slower if it has missed 

the path already [21]. 

In order to apply the controller, robotics.PurePursuit object of MATLAB Robotics 

System Toolbox was used.  

5.2 Simulation Environment 

In this study, simulations were performed on Gazebo Simulator. The connection 

between the Gazebo and the MATLAB was made by using MATLAB Robotics 

System Toolbox.  

For the experiments, an environment which is shown in Figure 5.1 and Figure 5.2 

was designed in Gazebo.  

                 
Figure 5.1: The front view of environment that is used for simulations. 

                  
Figure 5.2: The side view of environment that is used for simulations. 
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The occupancy grid map of the environment can be seen in Figure 5.3. It is created 

by using robotics.OccupancyGrid class of the MATLAB Robotics System Toolbox.  

Figure 5.3: Occupancy grid map of the environment. 

The TurtleBot that is shown in Figure 5.4 was chosen as the robot to perform given 

tasks in simulation environment. Technical details of TurtleBot can be found in 

Appendix A. 

Figure 5.4: The TurtleBot. 
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5.3 Case Study 

In this chapter, a case study was performed in the environment that is described in 

Chapter 5.2. In this case study, the robot traveled between Target Location 1 and 

Target Location 2. It has been assigned with the task of visiting each location 100 

times and stopping at each target location with a maximum distance of 1 cm from the 

target point. Also in order to make the simulations more realistic, noise which has 

normal distribution was applied on laser scans. The noise has zero mean and 0.003 

standard deviation. It was applied both of the x and y coordinate values of each point. 

At the beginning, the robot started its journey from the middle of the map. However, 

it was unaware of its pose. By using the Monte Carlo Localization algorithm [11] it 

has found its pose in the environment and then started to travel between Target 

Location 1 and Target Location 2. 

The coordinates of the Target Location 1 are: 

(𝑥1, 𝑦1) = (14.50, 16.00)                                        (5.1) 

The coordinates of the Target Location 2 are: 

(𝑥2, 𝑦2) = (16.00, 6.00)                                         (5.2) 

The target locations can be seen in Figure 5.5.  

      
Figure 5.5: Target locations. 
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In order to apply the PLICP [13] algorithm to estimate the pose of the robot, the steps 

that are described in [1] were applied. By following these steps, firstly, model laser 

scans had been taken at the target locations before the experiments. This was done by 

sending the robot to each target location and scanning the environment by rotating 

the robot. In this thesis study, each model scan was taken by rotating the robot 5° 

with respect to its previous position. This value was determined experimentally. At 

the time the first scan was taken the robot’s angle had been set to 0° and at the time 

the last scan was taken the robot’s angle had been set to 180° with respect to world 

coordinate frame. For this reason, there were 37 model scans saved at each target.  

Figure 5.6 and Figure 5.7 shows two example model scans taken at the Target 

Location 1. In Figure 5.6, the robot’s angle is 45.3152° and in Figure 5.7 the robot’s 

angle is 90°. The laser data are shown in robot coordinate frame. The image data are 

shown in order to visualize the robot coordinate frame more clearly. The selection of 

which model scan is to be used in PLICP was done by using MCL’s orientation 

estimations about robot’s angle at that time. This is because the Monte Carlo 

Localization algorithm’s position and orientation estimations are used as initial guess 

in PLICP. For this reason, the conditions of in which cases the PLICP is used to 

estimate the robot’s pose are determined by MCL estimations [1].  

Figure 5.6: Laser and image data when the robot’s angle is 45.3152°. 
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Figure 5.7: Laser and image data when the robot’s angle is 90°. 

In this thesis study, in order to obtain the robot’s pose from PLICP, the method that is 

proposed in [22] was applied. Since the laser sensor is mounted on the robot, the 

coordinate values of points in laser scans are with respect to the robot’s coordinate 

frame. Also, since the PLICP was used to generate the translation vector and rotation 

matrix between the laser scans, then the robot’s pose in world coordinate frame can 

be found by transforming the translation and rotation values from robot’s coordinate 

frame to world coordinate frame [22].  

5.4 Simulation Results 

As it is stated earlier, the robot’s task was 100 times shuttling between Target 

Location 1 and Target Location 2. Also it must have stopped itself at each target with 

a maximum distance of 1 cm from the target point. The robot’s instantaneous 

positions during the experiment can be seen in Figure 5.8. The robot’s starting 

position which is the middle of the map can also be seen in this figure. 
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Figure 5.8: The robot’s instantaneous positions during the experiment. 

In Figure 5.9, the robot’s average and maximum x, y position estimation errors are 

shown for Target Location 1 and Target Location 2. For the Target 1, the average x 

axis position estimation error is 4.2 mm and the average y axis position estimation 

error is 1.9 mm. Also, the maximum x axis position estimation error is 13.9 mm and 

the maximum y axis position estimation error is 10.6 mm. For the Target 2, the 

average x axis position estimation error is 4.8 mm, the average y axis position 

estimation error is 3.3 mm. On the other hand, maximum x axis position estimation 

error is 17.6 mm and the maximum y axis position estimation error is 12.5 mm. 

                        
Figure 5.9: The x and y axes position estimation errors. 
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In Figure 5.10, the robot’s average and maximum angular estimation errors are 

shown for Target Location 1 and Target Location 2. For the Target 1, the average 

angular error is 1.75° whereas the maximum angular error is 3.1907°. For the Target 

2, the average angular error is 1.6975° and the maximum angular error is 2.8999°. 

    
Figure 5.10: The angular estimation errors. 

In Figure 5.11 and Figure 5.12, the points where the robot stopped at Target Location 

1 and Target Location 2 are shown respectively. The magenta colored circle has a 

radius of 1 cm. Being inside of that circle means the robot’s positioning error is less 

than 1 cm. Since the robot was given a task of stopping with a maximum distance of 

1 cm from each target point, sometimes it has stopped outside the circles even though 

its position estimation error is less than 1 cm. For example, consider that the robot is 

1.5 cm away from the target point, in this situation a position estimation error with 

0.6 cm makes the robot believes that it is 0.1 cm inside of the circle. 

In Figure 5.11, the farthermost point corresponds to the failure of the PLICP 

algorithm. When it failed, the result of PLICP was discarded and the MCL estimation 

at that time was used automatically for the pose estimation. Since the precision of the 

MCL is lower than PLICP, a much higher error in contrast to PLICP estimations was 

occurred. In order to prevent such failings, sensor redundancy may be considered. 
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Figure 5.11: The points where the robot stopped at Target Location 1. 

Figure 5.12: The points where the robot stopped at Target Location 2. 
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6. CONCLUSION 

In this thesis, a study for accurate localization of indoor mobile robots was 

performed. The localization accuracy is very important in industrial applications 

because in these applications, mobile robots must perform tasks that require 

positioning accuracy of sub-centimeter. In order to achieve a sub-centimeter 

positioning accuracy, a localization method that estimates the pose of the robot with 

same accuracy is needed. However, at the times when there is no need sub-

centimeter accuracy, a less accurate localization method can be used to decrease the 

computational load. For this reason, a two-step indoor localization method was 

applied in this thesis. In this method, the robot is globally localized and then its pose 

is tracked coarsely in a known environment by using the MCL algorithm. When the 

robot approaches the predetermined locations to perform accuracy needed tasks, the 

PLICP algorithm is used for estimate the pose of the robot accurately.  

The simulation studies performed in this thesis show that by using the two-step 

localization method the position of the robot can be estimated at predefined target 

locations with sub-centimeter accuracy.  

The simulations were performed on static environment. However, by using a proper 

obstacle avoidance algorithm that allows the robot to avoid obstacles in dynamic 

environment, the two-step indoor localization method can also be tested in dynamic 

environments.  

Also, it is a well-known problem that the ICP based algorithms might be trapped in 

local minimum. In this thesis, in order to avoid local minimum in PLICP, the MCL 

estimations were used to choose the model scans that are closest to given data scans. 

Even though, this method reduces the possibility of getting trapped in local minimum 

it is possible to obtain better results with an algorithm that guarantees global 

minimum. 

Finally, in order to increase the robustness of the localization method, a second laser 

sensor can be used. This allows to perform two independent PLICP, compare their 

results and detect possible failures. 
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Appendix A The TurtleBot 

In this study, TurtleBot was used to perform docking tasks and compare different 

localization algorithms in the simulation environment.  

In Table A.1 external dimensions, weight of the robot, diameter of wheels and 

ground clearance are shown [23]. 

Table A.1: Size and weight. 

External dimensions 

(L x W x H) 
Weight Wheels 

(Diameter) 
Ground 

clearance 

354 x 354 x 420 mm 6.3 kg 76 mm 15 mm 

As it is seen in Table A.2, TurtleBot has a maximum speed of 0.65 m/s. Also it could 

carry loads up to 5 kg [23].  

Table A.2: Speed and performance. 

Maximum  

payload 
Maximum 

speed 
Maximum 

rotational speed 

5 kg 0.65 m/s 180 °/S 

TurtleBot has a 2200 mAh lithium ion standard battery. To have more execution 

time, larger battery with 4400 mAh may also be used. Battery and power system of 

the TurtleBot are shown in Table A.3 [23]. 

Table A.3: Battery and power system. 

Standard battery Extended battery User power 

2200 mAh lithium 

ion battery 

 4400 mAh lithium 

ion battery 

5 V and 19 V (1 A), 

12 V (1.5 A and 5 A) 
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Appendix B Minimization of Point-to-Point Metric 

Consider the following objective function in [15] : 

𝐽(𝑅, 𝑡) =  ∑ ‖ℎ𝑖 − 𝑅𝑓𝑖 − 𝑡‖2𝑁𝐹
𝑖=1                                 (B 2.1) 

where ℎ𝑖 is the closest point in model point set that corresponds to the point 𝑓𝑖 in data 

point set. 

In this thesis, to find the R and t that minimizes the objective function a Singular 

Value Decomposition (SVD) based algorithm is used [16]. By following the steps in 

[16], first define the centroids of F and H as follows: 

𝑓̅ =
1

𝑁𝐹
∑ 𝑓𝑖

𝑁𝐹
𝑖=1                                               (B 2.2) 

ℎ̅ =
1

𝑁𝐹
∑ ℎ𝑖

𝑁𝐹
𝑖=1                                              (B 2.3) 

Consider that the centroids of data point set F and closest point set H should overlap 

when F and H are aligned correctly. For this reason, the translation vector t is chosen 

to move rotated data point set centroid to closest point set centroid. By doing so, the 

translation vector will be eliminated from the equation B 2.1 and the objective 

function will be minimized with respect to R matrix only. After that, the translation 

vector will be computed from the optimal rotation matrix. Let 𝑐𝑓𝑖 be the i th point in 

centered set of F and 𝑐ℎ𝑖 the i th point in centered set of H as shown below: 

𝑐𝑓𝑖 = 𝑓𝑖 − 𝑓 ̅                                              (B 2.4) 

𝑐ℎ𝑖 = ℎ𝑖 − ℎ̅                                              (B 2.5) 

Now, write 𝑓𝑖 in terms of 𝑐𝑓𝑖 and 𝑓 ̅ then write ℎ𝑖 in terms of 𝑐ℎ𝑖 and ℎ̅. The new 

form of equation B 2.1 is shown as below: 

𝐽(𝑅, 𝑡) =  ∑ ‖𝑐ℎ𝑖 + ℎ̅ − 𝑅𝑐𝑓𝑖 − 𝑅𝑓̅ − 𝑡‖
2𝑁𝐹

𝑖=1                      (B 2.6) 

As explained earlier, translation vector that minimizes objective function is chosen to 

move rotated data point set centroid to closest point set centroid. 

𝑡 = ℎ̅ − 𝑅𝑓 ̅                                               (B 2.7) 

Put the equation B 2.7 into equation B 2.6. Then the new objective function will be 

shown as follows: 

𝐽(𝑅) =  ∑ ‖𝑐ℎ𝑖 − 𝑅𝑐𝑓𝑖‖
2𝑁𝐹

𝑖=1                                    (B 2.8) 

Since the translation vector was eliminated from the objective function, R that 

minimizes the equation B 2.8 should be found. After finding the optimal R the 

translation vector will be found from the equation B 2.7. 
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To compute the optimal R, expand the equation B 2.8 as shown below: 

𝐽 = ∑ (𝑐ℎ𝑖 − 𝑅𝑐𝑓𝑖)
𝑇(𝑐ℎ𝑖 − 𝑅𝑐𝑓𝑖)𝑁𝐹

𝑖=1                             (B 2.9) 

𝐽 = ∑ (𝑐ℎ𝑖
𝑇𝑁𝐹

𝑖=1 𝑐ℎ𝑖 − 𝑐ℎ𝑖
𝑇𝑅𝑐𝑓𝑖 − 𝑐𝑓𝑖

𝑇𝑅𝑇𝑐ℎ𝑖 + 𝑐𝑓𝑖
𝑇𝑅𝑇𝑅𝑐𝑓𝑖)       (B 2.10) 

𝐽 = ∑ (𝑐ℎ𝑖
𝑇𝑁𝐹

𝑖=1 𝑐ℎ𝑖 − 2𝑐ℎ𝑖
𝑇𝑅𝑐𝑓𝑖 + 𝑐𝑓𝑖

𝑇𝑐𝑓𝑖)                     (B 2.11) 

In order to minimize the objective function, let 

𝐿 = ∑ 𝑐ℎ𝑖
𝑇𝑁𝐹

𝑖=1 𝑅𝑐𝑓𝑖                                        (B 2.12) 

Then minimizing the objective function is equal to maximizing the L. 

𝐿 = ∑ 𝑐ℎ𝑖
𝑇𝑁𝐹

𝑖=1 𝑅𝑐𝑓𝑖 = 𝑇𝑟𝑎𝑐𝑒(∑ 𝑅𝑐𝑓𝑖𝑐ℎ𝑖
𝑇𝑁𝐹

𝑖=1 )                    (B 2.13) 

𝐿 = 𝑇𝑟𝑎𝑐𝑒(𝑅𝐴)                                          (B 2.14) 

where 

𝐴 = ∑ 𝑐𝑓𝑖
𝑁𝐹
𝑖=1 𝑐ℎ𝑖

𝑇                                          (B 2.15) 

Now, the SVD of A is considered [16]: 

𝐴 = 𝑈𝛬𝑉𝑇                                              (B 2.16) 

Then the optimal rotation matrix R that maximizes the L and therefore minimizes the 

objective function is: 

𝑅 = 𝑉𝑈𝑇                                                (B 2.17) 

In some cases, determinant of  𝑉𝑈𝑇 might be equal to -1. In this situation R is a 

reflection rather than a rotation. To fix this, the sign of the third column of the V is 

changed as follows: 

𝑉′ = [𝑣1,𝑣2,-𝑣3]                                         (B 2.18) 

where  𝑣1, 𝑣2, 𝑣3 are the first, second and third columns of V respectively. 

𝑅 = 𝑉′𝑈𝑇                                              (B 2.19) 

Since the optimal rotation matrix R is found the optimal translation vector t is found 

as described earlier: 

𝑡 = ℎ̅ − 𝑅𝑓 ̅                                             (B 2.20) 

 

 

 

 



47 
 

 

 

 

Appendix C Convergence Theorem of ICP 

It is stated and proved in [15] that the ICP algorithm always converges 

monotonically to a local minimum in terms of mean square error. This theorem is 

based on two ideas. The first one is that average distance between the data points and 

their corresponding closest points in the model set is decreasing with each iteration 

because of the least squares registration. The other idea is that the distance for each 

point is decreasing separately in the correspondence search procedure which also 

yields a smaller average distance between data points and model points [15]. 

Consider the ICP [15] steps explained in Chapter 4.2.1. Let k be the iteration number 

of the ICP algorithm. In this case, 𝐹𝑘 denotes the data point set and 𝐻𝑘 denotes the 

set of closest points at the k th iteration of the algorithm. Then, the MSE at k th 

iteration can be written as follows: 

𝐸𝑘 =
1

𝑁𝐹
∑ ‖ℎ𝑖,𝑘 − 𝑓𝑖,𝑘‖

2𝑁𝐹
𝑖=1                                    (C 3.1) 

Let 𝑅𝑘 and 𝑡𝑘 be the rotation matrix and translation vector that applied to data point 

set at the k th iteration. When the 𝑅𝑘 and 𝑡𝑘 are applied to 𝐹𝐾 the MSE after the 

transformation will be as follows: 

𝐸𝑘
′ =

1

𝑁𝐹
∑ ‖ℎ𝑖,𝑘 − 𝑅𝑘𝑓𝑖,𝑘 − 𝑡𝑘‖

2𝑁𝐹
𝑖=1                              (C 3.2) 

𝐸𝑘
′ =

1

𝑁𝐹
∑ ‖ℎ𝑖,𝑘 − 𝑓𝑖,𝑘+1‖

2𝑁𝐹
𝑖=1                                  (C 3.3) 

where 𝑓𝑖,𝑘+1 = 𝑅𝑘𝑓𝑖,𝑘 + 𝑡𝑘 as it is explained in Chapter 4.2.1. 

It is clear that the error after the transformation is always smaller than the error 

before the transformation due to least squares minimization. Hence: 

𝐸𝑘
′ ≤  𝐸𝑘                                                  (C 3.4) 

Each time after the transformation, a new set of closest points 𝐻𝑘+1 will be generated 

in corresponding point search process. In this case MSE is shown as below: 

𝐸𝑘+1 =
1

𝑁𝐹
∑ ‖ℎ𝑖,𝑘+1 − 𝑓𝑖,𝑘+1‖

2𝑁𝐹
𝑖=1                               (C 3.5) 

Note that the distance will be reduced for each point after the closest point search: 

‖ℎ𝑖,𝑘+1 − 𝑓𝑖,𝑘+1‖
2

 ≤  ‖ℎ𝑖,𝑘 − 𝑓𝑖,𝑘+1‖
2
 for each  𝑖 = 1, 2, … , 𝑁𝐹      (C 3.6) 

Hence: 

1

𝑁𝐹
∑ ‖ℎ𝑖,𝑘+1 − 𝑓𝑖,𝑘+1‖

2𝑁𝐹
𝑖=1  ≤  

1

𝑁𝐹
∑ ‖ℎ𝑖,𝑘 − 𝑓𝑖,𝑘+1‖

2𝑁𝐹
𝑖=1               (C 3.7) 

This is equal to: 
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𝐸𝑘+1  ≤  𝐸𝑘
′                                                 (C 3.8) 

In equation C 3.4, it is shown that 𝐸𝑘
′ ≤  𝐸𝑘 . Combining the equations C 3.4 and C 

3.8 results: 

𝐸𝑘+1  ≤  𝐸𝑘
′  ≤  𝐸𝑘                                          (C 3.9) 

By generalizing the equation C 3.9 for each iteration the inequality shown below is 

obtained. 

0 ≤  𝐸𝑘+1
′  ≤ 𝐸𝑘+1  ≤  𝐸𝑘

′  ≤  𝐸𝑘 for each k                    (C 3.10) 

As it is shown in equation C 3.10, the MSE of the algorithm is non-increasing. In this 

case, it can be said that ICP algorithm always converges monotonically to a local 

minimum in terms of MSE [15]. 
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Appendix D Minimization of Point-to-Line Metric 

Consider the following objective function [13]: 

𝐽(𝑅, 𝑡) =  ∑ [𝑛𝑖
𝑇(𝑅𝑓𝑖 + 𝑡 − ℎ𝑖)]2𝑁𝐹

𝑖=1                             (D 4.1) 

In this equation 𝑛𝑖 is the normal to the line that lies between ℎ𝑖 and 𝑧𝑖 where ℎ𝑖 is the 

closest point and 𝑧𝑖 is the second closest point in model point set to the point 𝑓𝑖 in 

data point set. To find the rotation matrix R and translation vector t that minimizes 

the objective function in equation D 4.1 an exact closed form solution is introduced 

by Censi in [13]. By following the steps of [13], the equation D 4.1 can be written as 

follows: 

𝐽(𝑅, 𝑡) = ∑ ‖𝑅𝑓𝑖 + 𝑡 − ℎ𝑖‖𝐵𝑖

2𝑁𝐹
𝑖=1                                (D 4.2) 

where 

‖𝑅𝑓𝑖 + 𝑡 − ℎ𝑖‖𝐵𝑖

2 = (𝑅𝑓𝑖 + 𝑡 − ℎ𝑖)𝑇𝐵𝑖(𝑅𝑓𝑖 + 𝑡 − ℎ𝑖)               (D 4.3) 

In equation D 4.3, 𝐵𝑖 is defined as shown below: 

𝐵𝑖 = 𝑤𝑖𝑛𝑖𝑛𝑖
𝑇                                              (D 4.4) 

where 𝑤𝑖 is defined as weight. The rotation matrix R and translation vector t are as 

shown below: 

𝑅 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]                                       (D 4.5) 

𝑡 = [
𝑡𝑥

𝑡𝑦
]                                                  (D 4.6) 

The aim is to find optimal values of 𝜃, 𝑡𝑥 and 𝑡𝑦. Then it can be said that the solution 

will be in the form (𝑡𝑥, 𝑡𝑦, 𝜃). By using the below relation between sin 𝜃 and cos 𝜃: 

(sin 𝜃)2 + (cos 𝜃)2 = 1                                     (D 4.7) 

The solution can be expressed as follows: 

𝑎 = (𝑎1,𝑎2, 𝑎3, 𝑎4) = (𝑡𝑥, 𝑡𝑦, cos 𝜃, sin 𝜃)                       (D 4.8) 

subject to    𝑎3
2 + 𝑎4

2 = 1                                     (D 4.9) 

Express the x and y coordinates of data point 𝑓𝑖 as shown below: 

𝑓𝑖 = [𝑓𝑥𝑖
𝑓𝑦𝑖]                                           (D 4.10) 

Now constitute the matrix 𝑃𝑖  as shown below: 
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𝑃𝑖 = [
1 0 𝑓𝑥𝑖

−𝑓𝑦𝑖

0 1 𝑓𝑦𝑖
𝑓𝑥𝑖

]                                   (D 4.11) 

Then the objective function in equation D 4.2 can be written as follows: 

𝐽(𝑎) = ∑ (𝑃𝑖𝑎 − ℎ𝑖)𝑇𝐵𝑖(𝑃𝑖𝑎 − ℎ𝑖)
𝑁𝐹
𝑖=1                          (D 4.12) 

𝐽(𝑎) = ∑ (𝑎𝑇𝑁𝐹
𝑖=1 𝑃𝑖

𝑇𝐵𝑖𝑃𝑖𝑎 + ℎ𝑖
𝑇𝐵𝑖ℎ𝑖 − 2ℎ𝑖

𝑇𝐵𝑖𝑃𝑖a)                (D 4.13) 

Since it is a minimization problem with respect to a, the constant terms can be 

ignored: 

𝐽(𝑎) = 𝑎𝑇(∑ 𝑃𝑖
𝑇𝐵𝑖𝑃𝑖

𝑁𝐹
𝑖=1 )𝑎 + (∑ −2ℎ𝑖

𝑇𝐵𝑖
𝑁𝐹
𝑖=1 𝑃𝑖)𝑎               (D 4.14) 

To simplify the equation D 4.14, N and v are defined as follows: 

𝑁 = ∑ 𝑃𝑖
𝑇𝐵𝑖𝑃𝑖

𝑁𝐹
𝑖=1                                          (D 4.15) 

𝑣𝑇 = ∑ −2ℎ𝑖
𝑇𝐵𝑖

𝑁𝐹
𝑖=1 𝑃𝑖                                     (D 4.16) 

Therefore, the equation D 4.14 can be shown as below: 

𝐽(𝑎) = 𝑎𝑇𝑁𝑎 + 𝑣𝑇𝑎                                      (D 4.17) 

Also the constraint defined in equation D 4.9 can be written as below: 

𝑎𝑇𝑄𝑎 = 1                                               (D 4.18) 

where 

𝑄 = [

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

]                                      (D 4.19) 

Now the objective function and its constraint are as shown below [13]: 

𝐽(𝑎) = 𝑎𝑇𝑁𝑎 + 𝑣𝑇𝑎                                      (D 4.20) 

subject to   𝑎𝑇𝑄𝑎 = 1                                     (D 4.21) 

Since the objective function given above is subjected to an equality constraint, the 

Lagrange multipliers method can be used. Then the Lagrange function for the above 

optimization problem is: 

𝐿(𝑎) = 𝑎𝑇𝑁𝑎 + 𝑣𝑇𝑎 + 𝜆(𝑎𝑇𝑄𝑎 − 1)                         (D 4.22) 

The equations below show the necessary conditions for optimal solution: 

𝜕𝐿

𝜕𝑎
= 2𝑎𝑇𝑁 + 𝑣𝑇 + 2𝜆𝑎𝑇𝑄 = 0𝑇                            (D 4.23) 

𝑎𝑇𝑄𝑎 = 1                                              (D 4.24) 
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To combine the equation D 4.23 and equation D 4.24 rewrite the equation D 4.23 as 

follows: 

𝑎 = −(2𝑁 + 2𝜆𝑄)−𝑇𝑣                                    (D 4.25)    

Then the equation D 4.25 and equation D 4.24 are combined as shown below: 

(−𝑣𝑇(2𝑁 + 2𝜆𝑄)−1)𝑄(-(2𝑁 + 2𝜆𝑄)−𝑇𝑣) = 1                 (D 4.26) 

𝑣𝑇(2𝑁 + 2𝜆𝑄)−1𝑄(2𝑁 + 2𝜆𝑄)−𝑇𝑣 = 1                      (D 4.27) 

Let 

𝐶 = (2𝑁 + 2𝜆𝑄)                                         (D 4.28) 

Hence, the equation D 4.27 can be written as follows: 

𝑣𝑇𝐶−1𝑄𝐶−𝑇𝑣 = 1                                        (D 4.29) 

The C matrix can also be written in following form: 

𝐶 = [
𝑍 𝑌

𝑌𝑇 𝐺 + 2𝜆𝐼
]                                       (D 4.30) 

As it can be seen in equation D 4.19, the Q matrix is a sparse matrix. For this reason, 

in equation D 4.29 there is no need to compute the columns of 𝐶−1 except the last 

column: 

𝐶−1 = [∗ −𝑍−1𝑌𝐾−1

∗ 𝐾−1 ]                                   (D 4.31) 

In this equation K equals to: 

𝐾 = (𝐺 − 𝑌𝑇𝑍−1𝑌 + 2𝜆𝐼)                                 (D 4.32) 

Now, the equation D 4.29 can be written as follows: 

𝑣𝑇 [
𝑍−1𝑌𝐾−1𝐾−𝑇𝑌𝑇𝑍−𝑇 −𝑍−1𝑌𝐾−1𝐾−𝑇

(𝑠𝑦𝑚𝑚) 𝐾−1𝐾−𝑇 ] 𝑣 = 1             (D 4.33) 

In equation D 4.32 write K as follows: 

𝐾 = 𝑀 + 2𝜆𝐼                                            (D 4.34) 

where 

𝑀 = 𝐺 − 𝑌𝑇𝑍−1𝑌                                        (D 4.35) 

Then 𝐾−1 in equation D 4.33 can be shown as below: 

𝐾−1 = (𝑀 + 2𝜆𝐼)−1 =
det(𝑀)𝑀−1+2𝜆𝐼

det (𝑀+2𝜆𝐼)
                         (D 4.36) 

In equation D 4.36, the denominator of 𝐾−1 is a polynomial. Let 𝑞(𝜆) denote that 

polynomial: 

𝑞(𝜆) = det (𝑀 + 2𝜆𝐼)                                   (D 4.37) 
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Also denote the det(𝑀) 𝑀−1 in equation D 4.36 as follows: 

𝑈 = det(𝑀) 𝑀−1                                         (D 4.38) 

Now 𝐾−1𝐾−𝑇 in equation D 4.33 equals to: 

𝐾−1𝐾−𝑇 =
(𝑈+2𝜆𝐼)(𝑈+2𝜆𝐼)𝑇

𝑞(𝜆)2                                  (D 4.39) 

𝐾−1𝐾−𝑇 =
𝑈𝑈𝑇+4𝜆𝑈+4𝜆2𝐼

𝑞(𝜆)2                                    (D 4.40) 

By using these relations in equation D 4.33, the following equation is obtained: 

𝑞(𝜆)2 = 𝜆24𝑣𝑇 [
𝑍−1𝑌𝑌𝑇𝑍−𝑇 −𝑍−1𝑌

(𝑠𝑦𝑚𝑚) 𝐼
] 𝑣 + 𝜆4𝑣𝑇 [

𝑍−1𝑌𝑈𝑌𝑇𝑍−𝑇 −𝑍−1𝑌𝑈
(𝑠𝑦𝑚𝑚) 𝑈

] 𝑣 +

                                    𝑣𝑇 [
𝑍−1𝑌𝑈𝑇𝑈𝑌𝑇𝑍−𝑇 −𝑍−1𝑌𝑈𝑇𝑈

(𝑠𝑦𝑚𝑚) 𝑈𝑇𝑈
] 𝑣                      (D 4.41) 

In equation D 4.41, a closed form solution can be found for λ. Then by putting the λ 

in equation D 4.25, the a is found [13]. 
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