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COMBINATION OF MCL AND ICP METHODS FOR
ACCURATE INDOOR LOCALIZATION

SUMMARY

With the developing technology, mobile robots are being used more frequently. The
use of mobile robots is needed, especially since the aim is to make the production of
the industry more efficient.

Nowadays, mobile robots that are widely used in the industry are moving on pre-
planned paths. These paths are prepared using wires, magnetic tapes or any other
methods that allow the robot to follow the path. However, using these paths restricts
the movement of the robot. This is because when it is necessary to change the target
locations of the robot in the factory, the paths have to be prepared from the very
beginning in accordance with the new task of the robot. Doing this will cause extra
cost and time loss. For these reasons, mobile robots used in the industry need to
reach the target without any help, instead of moving on predetermined paths as they
go to the target position. In order to do this, they need to know their current pose.

In this thesis, the localization study for indoor mobile robots that are used in the
industry is performed in the simulation environment. MATLAB program and Gazebo
simulation platform are used for this study. Codes written in MATLAB have been
implemented in Gazebo using the MATLAB Robotics System Toolbox. The data
required to perform robot localization was obtained with the laser sensor of the robot.

A two-stage method has been used for the localization of indoor mobile robots that
are used for industrial purposes. In the first stage of the localization method, the pose
of the robot was roughly found and then its pose was roughly tracked. In the second
stage, the instantaneous pose of the robot was precisely estimated when it was close
to a predetermined target point.

In the first stage, the Monte Carlo localization algorithm has been used. This method
estimates the pose of the robot using the map of the environment when the pose of
the robot is unknown. In order to implement the Monte Carlo localization method,
functions that are available in the MATLAB Robotics System Toolbox have been
used.

In the second stage, the PLICP algorithm has been used to increase the precision of
pose estimates that have been found by Monte Carlo Localization algorithm. PLICP
is an algorithm that aligns two given scans. In order to estimate the pose with PLICP,
the translation vector and rotation matrix that have been generated with PLICP has
been used.

In this thesis, an indoor environment has been prepared in the Gazebo platform to
implement the two-stage localization method. In this environment, the robot has been
given the task of shuttling between predetermined positions.

XXI



In the experiments, the robot did not know its pose at first. In the first stage of
localization, robot found and tracked itself in the environment using the Monte Carlo
localization method. Later, when the robot was approaching the target, the pose of
the robot was estimated precisely using PLICP method. In order to apply this
method, model scans were taken with the laser sensor in the target positions before
the experiments. During the experiment, the robot computed the translational and
rotational movements between the instantaneously taken laser scans and pre-acquired
model scans using the PLICP algorithm when it was close to target. Since the
position and direction of the robot were known at the time of receiving the model
scans, the translation vector and the rotation matrix were used to compute the current
location of the robot. The task of shuttling between the two targets of the robot was
repeated at the specified number.
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KESIN iC ORTAM LOKALIZASYONU iCiN
MCL VE ICP YONTEMLERININ BIRLESTIRILMESI

OZET

Gelisen teknoloji ile birlikte mobil robotlar daha sik kullanilmaya baglanmustir.
Ozellikle endiistride {iretimin daha efektif bir sekilde yapilabilmesi hedeflendiginden
mobil robotlarin kullanimina ihtiya¢ duyulmaktadir.

Glinitimiizde endiistride yaygin olarak kullanilan mobil robotlar dnceden planlanmis
yollar iizerinde hareket etmektedirler. Bu yollar kablolar, manyetik bantlar veya
robotun yolu takip etmesini saglayan herhangi bir isaret yontemi kullanilarak
olusturulmaktadir. Ancak bu yollar1 kullanmak robotun hareketini kisitlamaktadir.
Ciinkii robotun fabrika ig¢inde gorev yaptigi konumlarin degistirilmesi gerektigi
takdirde bu yollarin en bastan robotun yeni goérevine uygun sekilde hazirlanmasi
gerekir. Bunu yapmak ise ekstra maliyete ve zaman kaybina sebep olur. Bu
sebeplerden dolay1 endiistride kullanilan mobil robotlarin hedef konuma giderken
onceden belirlenmis yollar {izerinde hareket etmeleri yerine herhangi bir yardim
almadan hedefe ulasmalar1 gerekmektedir. Bunu yapabilmeleri icinse kendi
konumlarini anlik olarak bilmeleri gerekir.

Bu tez calismasinda endiistride kullanilan i¢ ortam mobil robotlarinin simiilasyon
ortaminda lokalizasyonu caligsmasi yapilmistir. Bunun icin MATLAB programi ve
Gazebo simiilasyon platformu kullanilmigtir. MATLAB iizerinde yazilan kodlar,
MATLAB Robotics System Toolbox kullanilarak Gazebo’da uygulanmistir.

Robotun lokalizasyonunu yapmak i¢in gereken veriler, robotun iizerindeki lazer
sensOrii 1le elde edilmistir. Kullanilan lazer sensorii robotun 6n tarafina dogru
bakmakta olup yiiz seksen derecelik lazer taramas1 yapmaktadir.

Endiistriyel amacl kullanilan i¢ ortam mobil robotlarinin lokalizasyonunda iki
asamali bir yontem kullanilmistir. Lokalizasyon yoOnteminin birinci asamasinda
verilen bir haritada robotun konumu ve yonii kabaca bulunmus ve daha sonra
robotun konumu ve yonii kabaca takip edilmistir. Ikinci asamada ise &nceden
belirlenmis bir hedef noktaya yaklastigi zaman robotun konumu ve yonii hassas bir
sekilde hesaplanmistir.

Birinci asama i¢in Monte Carlo Lokalizasyon algoritmasi kullanilmistir. Bu yontem
robotun konumu ve yonii bilinmedigi zamanlarda ortamin haritasin1 kullanarak
robotun konumu ve yoniinii bulmaktadir. Monte Carlo Lokalizasyon algoritmasi
robotun muhtemel konumu ve yoniinii temsil etmek i¢in pargaciklar kullanmaktadir.
Robotun konumu ve yoniindeki degisimleri, uzaklik sensoriinden gelen verileri ve
ortamin haritasin1 kullanarak zamanla bu pargaciklar robotun gergek konumu
etrafinda yogunlasmaktadir. Monte Carlo Lokalizasyon yontemini uygulamak i¢in
MATLAB Robotics System Toolbox biinyesindeki hazir fonksiyonlar kullanilmistir.

Ikinci asamada, Yinelemeli En Yakin Nokta (ICP) algoritmasmin bir tiirii olan
Noktadan Dogruya Metrik Yinelemeli En Yakin nokta (PLICP) yontemi
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kullanilmistir. ICP algoritmalar1 verilen 2 veya 3 boyutlu iki tane sekli birbirleriyle
hizalarlar. Bu iki sekildeki her bir noktanin diger sekildeki hangi noktaya karsi
geldigi bilinmedigi i¢in ICP algoritmas1 oncelikle birinci sekildeki her bir nokta i¢in
ikinci sekildeki en yakin noktayr bulur. Daha sonra eslestirilen noktalarin arasindaki
uzakligi minimize edecek Gteleme vektoriinii ve rotasyon matrisini hesaplar. Son
adimda ise hesapladig: 6teleme vektoriinii ve rotasyon matrisini birinci sekle uygular.
Bu adimlar belirlenen kistaslar saglanincaya kadar tekrarlanir. Bu kistaslar bu tez
caligmasinda ortalama karesel hatanin degisiminin belirlenen degerden az olmasi,
ortalama karesel hatanin yeterince kii¢iik olmas1 ve belirlenen maksimum yineleme
sayisina ulasilmasi olarak belirlenmistir.

ICP algoritmasinda eslestirilen noktalarin arasindaki uzakligi minimize etmek igin
noktadan noktaya metrik uygulanir. Bu tezde, noktadan noktaya metrigi minimize
etmek i¢in tekil deger ayrisimi (SVD) tabanli bir yontem kullanilmastir.

ICP algoritmasi, birinci sekil ile ikinci seklin tamamen Ortiisen sekiller oldugunu
varsaymaktadir. Fakat bu her durumda gegerli olmayabilir. Ornegin, birinci sekildeki
her noktanin ikinci sekilde karsiligi olmayabilir. ICP algoritmasi iki sekildeki her
noktay1 eslestirecegi i¢in, gercekte ikinci sekilde karsiligi olmayan birinci sekil
noktalarin1 da eslestirecektir. Bu da hatay1 arttiracaktir. Bu sorunu agmak igin
Kirpilmis Yinelemeli En Yakin Nokta (TrICP) yontemi kullanilmastir.

TrICP algoritmasi, en uygun Oteleme ve rotasyonu hesaplarken biitiin noktalari
hesaba katmak yerine sadece belirlenmis noktalar1 hesaba katar. Bunu yaparken de
birinci sekildeki noktalar ile onlara en yakin ikinci sekil noktalarinin arasindaki
uzakliklar1 hesaplar. Daha sonra bu uzakliklar1 kiigiikten biiylige dogru siralar ve
belirlenmis sayida en kiigiik uzakliga sahip ¢iftleri seger. Se¢ilmeyen noktalar ise
aykir1 deger olarak kabul edilir ve minimize etme adiminda kullanilmaz. Dolayisiyla
minimize etme adiminda belirlenmis sayidaki en kiiciik uzaklikli nokta ¢iftleri i¢in en
uygun Oteleme ve rotasyon degerleri hesaplanir. Buradaki amag¢ fonksiyonu da ICP
algoritmasindaki gibi noktadan noktaya metrik yapisinda oldugu i¢in, ICP
algoritmasinda uygulanan ayn1 yontem ile minimize edilebilir. Bu tezde tekil deger
ayrisimi tabanli bir yontem kullanilmistir. Minimize etme adiminda en iyi 6teleme
vektoril ve en iyi rotasyon matrisi bulunduktan sonra bulunan bu Steleme ve rotasyon
hareketleri birinci sekle uygulanir. Bu adimdan sonra algoritma yine basa doner.
Algoritma belirlenen kistaslar saglanincaya kadar tekrarlanir. Bu kistaslar ICP
algoritmasinda uygulanan kistaslara ¢ok benzerdir. ICP algoritmasindaki gibi tiim
noktalar1 hesaba katarak hesaplanan ortalama karesel hata yerine sadece eleme
asamasini ge¢mis noktalar i¢in ortalama karesel hata hesaplanir. Bulunan ortalama
karesel hata, ICP algoritmasinda bahsedilen kistaslar saglanincaya kadar yukarida
anlatilan adimlar tekrarlanir.

Noktadan Dogruya Metrik Yinelemeli En Yakin Nokta (PLICP) algoritmasi ise
yukarida anlatilan iki algoritmaya benzemektedir. PLICP algoritmasinin ICP ve
TrICP algoritmalarindan farki noktadan dogruya metrik kullanmasidir. Bu yiizden
birinci ve ikinci sekillerdeki en yakin noktalar eslestirilirken buna ek olarak birinci
sekildeki her bir noktaya ikinci en yakin ikinci sekil noktalar1 da bulunur. Yani ICP
algoritmasinda yapildig1 gibi en yakin noktalar arasindaki uzaklhigi en aza
indirgemeye calismak yerine, birinci sekildeki noktalardan ikinci sekilde bulunan ve
birinci sekildeki ilgili noktaya en yakin iki nokta arasindaki dogruya olan uzaklik
minimize edilmeye ¢alisilir. Eslestirmeler yapildiktan sonra TrICP algoritmasindaki
eleme yoOntemi uygulanir yani belirlenmis sayidaki en kiiglik uzakliga sahip
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eslesmeler hesaba katilir ve diger noktalar disarida birakilir. Bu adimdan sonra
elemeyi gegmis noktalar i¢in noktadan dogruya metrik minimize edilir. Noktadan
dogruya metrigin yapisi noktadan noktaya metrigin yapisindan farkli oldugu icin bu
adimda ICP ve TrICP’de yapilandan daha farkli bir yontem kullanilir. Bir sonraki
adimda ise minimize etme islemi sirasinda bulunan en uygun o6teleme vektorii ve
rotasyon matrisi birinci sekle uygulanir. Bu adimdan sonra algoritma yine birinci
adima doner. Bu tezde PLICP algoritmasini sonlandirmak i¢in TrICP algoritmasini
sonlandirmada kullanilan ayni1 kistaslar kullanilmagtir.

Bu tezde iki asamal1 lokalizasyon yontemini uygulamak i¢in Gazebo platformunda
bir i¢ ortam hazirlanmigtir. Burada robota Onceden belirlenmis noktalar arasinda
gidip gelme gorevi verilmistir. Bunun gerceklestirilebilmesi i¢in, hazirlanan
lokalizasyon algoritmalarmma ek olarak MATLAB Robotics System Toolbox
blinyesindeki harita ¢ikarma, yol planlama ve yol takip fonksiyonlarindan
yararlanilmistir.

Yapilan deney calismalarinda robot baslangicta kendi konumu ve yoniinii
bilmemektedir. Ilk asamada Monte Carlo Lokalizasyon yontemini kullanarak
konumu ve yoniinii kabaca bulmakta ve takip etmektedir. Daha sonra hedef noktalara
belirlenen uzaklik kadar yaklastiginda PLICP algoritmasi kullanilarak robotun
konumu ve yonii hassas bir sekilde bulunmustur. Bu yontemin uygulanabilmesi i¢in
deneylerden once hedef konumlarda lazer sensorii ile model taramalar alinmistir.
Deney sirasinda robot hedefe yeteri kadar yaklastiginda PLICP algoritmasim
kullanarak anlik olarak aldig1 lazer taramalarinin ve onceden alinmis model
taramalarmin arasindaki Oteleme ve rotasyon hareketini hesaplamaktadir. Model
taramalariin alindigr esnada robotun konumu ve yonii bilindigi ig¢in, bulunan
Oteleme vektorii ve rotasyon matrisi kullanilarak robotun tam o anda nerede oldugu
hesaplanmistir. Robotun iki hedef arasinda gidip gelme gorevi belirlenen sayida
tekrarlanmistir.
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1. INTRODUCTION

Localization is an important subject in mobile robotics. In order to fulfill its assigned
tasks, the robot must know its position and orientation. Inaccurate position and
orientation estimations might cause the robot to miss its target location and fail to
complete its task.

Depending on the robot’s task and its operating environment, the localization
methods and the sensors to be used may vary. For example, in indoor environments,
sometimes robots must pass from narrow paths to reach its destination. In such
places, high accuracy in pose estimation is needed, for this reason, the localization
method and the type of sensor must be chosen to give precise pose estimation results
with priority. However, need of more precise results increases the cost of sensors and
other components. Therefore, if the operating environment of robot is wide and if the
task of the robot does not need too much precision then the sensors with lower
precision and cost may be preferred. The same is valid for the localization methods.
Since the way of different localization methods to estimate the pose of the robot
vary, the properties of the environment is important when choosing localization
method. Each localization method has different advantages in different types of
environment. In addition to this, their accuracy and speed to estimate the pose of the
robot may vary even though they are similar type of methods. In this case, they
should be chosen according to the task of the robot. For example, if the primary
requirement of the task is high accuracy and if the computation time of the
localization algorithm is not main concern then the localization method with higher

accuracy should be chosen.

For these reasons, it is better to determine the localization method and sensors to be
used according to the conditions of the environment and the task of the robot. In this
thesis, the localization study is performed in indoor and for industrial applications.



1.1 Problem Statement

In industrial applications, materials are commonly transported with forklifts driven
by human operators or AGVs (Automated Guided Vehicle). Because of the human
factor, forklifts are not efficient enough to satisfy the needs of new automated
production techniques. Conventional AGVs are also not efficient because they can
only operate on predetermined paths. To reach its destination, an AGV should follow
a path of wires, magnetic tapes or markers. For this reason, in order to use AGVs, the
factories or warehouses must be modified. Modifying the environment for AGVs

increases the costs of production and wastes the time that can be used for production.

Consequently, usage of AGVs with designated paths are restricted and they are not
suitable for new production techniques. For this reason, a more efficient way than
using designated paths is needed to use mobile robots in industry. In this thesis, an
industrial localization study is performed to estimate the pose of the robot precisely
in order to use mobile robots for industrial applications without restricting the

efficiency of production.

1.2 Hypothesis

In industry, the aim is optimizing the efficiency of production. For this reason, the
mobile robots should complete their tasks with high speed, high precision and low

cost.

In industrial applications, high precision in pose estimation is needed, for example,
when the robot is approaching its target in order to place or pick a material.
However, when the robot carries load between two locations, the speed of the robot
is also important to complete its task earlier. In such cases, relatively low pose
estimation accuracy will be enough to maintain the task. By doing so, the
computational load and therefore computation time can be decreased when there is
no need high accuracy. In addition to these, completing the same task with lower cost
is another important subject for the mobile robots that are used in industry.

In this thesis, in order to accurately localize the industrial mobile robots when the
high accuracy is needed, the combined localization method in [1] has been used. In
[1], the position of the robot is estimated with an accuracy of few millimeters when
the robot is approaching predesignated targets for instance in order to pick or place

2



an object. In this case a scan matching algorithm is used to estimate the pose of the
robot accurately. At the time when there is no need such a high accuracy, a global
localization method is used instead of scan matching method to track the position of
the robot. By using this combined localization method, the position of the robot is

estimated accurately at predetermined locations.






2. ROBOTICS MIDDLEWARE AND SOFTWARE TOOLS

In this thesis, ROS and MATLAB Robotics System Toolbox is used to communicate
with the simulated TurtleBot robot that is available in Gazebo simulator. The
technical details of TurtleBot are available in Appendix A. Also, some of the built in
functions that are available in MATLAB Robotics System Toolbox is used in this

study.

2.1 Robot Operating System

ROS (Robot Operating System) has a modular structure and consists of nodes that
are communicating with each other. Each of these nodes has different tasks. For
example, one node might control a camera, one node might publish laser sensor data
and another node might perform localization by using this sensor data. In this way
different parts of the robot perform its own task and communicate with each other

when it is necessary.

Communication between the nodes is unmediated, however, each node should
register with the ROS master and advertise its network address to be reachable by
other nodes. There is only one ROS master in a ROS network and all of the nodes in

the network are connected to that master [2].

Figure 2.1 shows the communication structure of a ROS network with three nodes.
Each node registers with the master and declares its own network address. When a
node wants to communicate with another node, each node gets the other node’s
address from the master, then these two nodes communicate directly among

themselves [2].

Nodes communicate by sending messages. Each message has a message type that
describes its data structure. Message type name consists of package name and type
name. Figure 2.2 shows a message of type geometry msgs/Twist where

geometry_msgs is the package name and Twist is the type name [3].
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Figure 2.1: ROS communication structure.

Message Type Name

geometry msgs/Twist
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Figure 2.2: Example of a message type.

In ROS, there are two main communication methods. These are topics and services.
Topics are used for defining the contents of messages. This means in each topic only
one type of message is transmitted. To send messages to topics nodes use the
publishers and to receive messages from topics nodes use the subscribers. In a topic
there might be multiple publishers and multiple subscribers. Many nodes may send



messages to a topic and many nodes may receive these messages. However, it is not
possible for subscribers to request data at a specific time. Publishers send their
messages to the subscribers whenever new data is ready. To request data at a specific
time services are used. Figure 2.3 shows a topic with 1 publisher and 2 subscribers.
In this figure, node 1 sends messages of type sensor_msgs/LaserScan to the /scan
topic with its publisher then node 2 and node 3 receive these messages by using their

subscribers to the /scan topic [4].

Topic: /scan

Message Type: sensor msgs/LaserScan

Figure 2.3: Communication by using topics.

As it is explained earlier, services allow requesting data at a specific time. Each
service consists of two message structures. These are request and response messages.
A service client sends request message to a service server. Then the service server
processes the information in the request and replies this request by sending response
message to the service client. In services, only one to one communication is possible.

Figure 2.4 illustrates the service based communication [5].

Request

Response

Figure 2.4: Communication by using services.



2.2 MATLAB Robotics System Toolbox

MATLAB Robotics System Toolbox allows to implement robotics algorithms by
using MATLAB and Simulink. The toolbox connects MATLAB and Simulink to
ROS. With this connection it is possible to develop robotics applications in
MATLAB environment and implement them on robot simulators or robots that are

using ROS. Figure 2.5 illustrates this connection.

Robotics System
Toolbox

Figure 2.5: Diagram of the connection that is provided by Robotics System Toolbox.

Robotics System Toolbox could be used to connect to an external ROS master or it
could launch the ROS master inside the MATLAB. The second method allows to use
Robotics System Toolbox when there is no robot or robot simulator to work on. In
either events, MATLAB communicates rest of the ROS network by creating its own
ROS node called MATLAB global node. This node is registered with the ROS
master like the other ROS nodes. Creating the global node and launching the ROS
master inside the MATLAB is done by calling rosinit function without passing
arguments. However, if the Robotics System Toolbox is used to connect to an
external ROS master, then the address of the master should be specified when calling

the rosinit function [6].



3. PATH PLANNING

In mobile robotics, to drive the robot from an initial position to a goal position a path
planning algorithm is needed. Path planning algorithms enable to robot reach its
target destination without colliding with obstacles and walls. For example, consider
an industrial mobile robot that carries load between two locations. In order to reach
its destination, it should not collide with obstacles. Also it should follow the shortest
path between these locations since the time and energy loss are not desired in many
applications especially in industrial applications. For this reason, a path planning
algorithm is essential to reach the target location as soon as possible while avoiding

the obstacles.

As it is stated in Chapter 1, the main purpose of this thesis is performing accurate
localization for industrial applications. Therefore, for the path planning, Probabilistic
Roadmap (PRM) [7] algorithm that is available in MATLAB Robotics System
Toolbox was used. It uses the map of the environment to determine the path. For this
reason, before explaining the path planner, mapping of the environment was

explained.

3.1 Creating the Map of an Environment

In mobile robotics, maps of the environments are used for various purposes. In this
thesis study, map of the environment was required for path planning and localization.
For these reasons, an occupancy grid map of the environment with 20 cells per meter
resolution is created by following the steps in [8] and using the
robotics.OccupancyGrid class of MATLAB Robotics System Toolbox. This map is
shown in Figure 3.1. As it can be seen from the figure, the colors of some locations
are black, some locations are white and some locations are grey. These colors
indicate the probability values of cells. In occupancy grid maps each cell has a
probability value between 0 and 1 depending on the possible presence of an obstacle
at that cell. The probability value is higher for a cell when it is more likely to be
occupied by an obstacle. On the other hand, in Figure 3.1, the darkness of a cell



increases when its probability value increases. Which means darker locations are

more likely to be occupied by an obstacle [9].
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Figure 3.1: Occupancy grid map of the environment.
3.2 Probabilistic Roadmap Path Planner

In this study, PRM algorithm [7] was used in order to shuttle between predetermined
locations without colliding with obstacles. It produces nodes randomly in free places
of the environment. After the nodes are produced, it links these nodes to find a
suitable path for the robot to reach its destination. PRM algorithm uses the map of
the environment and determine which locations are obstacle free when producing and
connecting nodes. Therefore, it does not produce nodes in the locations that are
occupied by obstacles and it does not link two nodes if there is an obstacle between
these nodes. As it is stated earlier, for the path planning part of this study,
robotics.PRM class of MATLAB Robotics System Toolbox was used. This class
allows to create PRM [7] path planner. In addition to this, Robotics System
Toolbox’s inflate command was used to inflate the map with the robot’s dimension

since the PRM path planner algorithm does not consider the robot’s dimension [10].

For the path planning, same map in Chapter 3.1 is used. The inflated version of this

map is shown in Figure 3.2.
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Figure 3.2: Inflated occupancy grid map of the environment.

After the map is inflated with robot’s dimension, the number of nodes and longest
allowed distance between two linked nodes must be determined. Increasing the
number of nodes also increases the possibility of finding a path. On the other hand, it
also increases the computation time. Likewise, increasing the longest allowed
distance increases the possibility of finding a path in exchange for increased
computation time [10]. An example for probabilistic roadmap that is created by using
robotics.PRM class is shown in Figure 3.3. In this figure, a path is shown between
two locations. For this example, 75 nodes are used. Also, the longest allowed
distance between two nodes to connect with each other is 5 meters.

_Probabilistic Roadmap
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Figure 3.3: Probabilistic Roadmap between two locations.

11



12



4. TWO-STEP INDOOR LOCALIZATION

Localization is an important topic in mobile robotics because in order to follow a
path a robot needs to know its pose which enables robot to determine whether its
following the path correctly or not. Loss of information about its pose or incorrect
pose estimations might cause robot to deviate from its path which may end up with
missing the goal positions or even worse colliding with a human or an obstacle. For
these reasons it is very important to localize the robot accurately. Accuracy in
localization becomes even more important for industrial applications since even a
minor mistake may interrupt the production in a factory because of the problems due

to inaccurate localization that described above.

In order to localize the robot precisely, the combined localization technique in [1] is
performed in this thesis study. In [1] Rowekdmper et al. have combined the Monte
Carlo Localization [11] with KLD sampling [12] and ICP variant with point-to-line
metric [13] for the localization part of their works. They used Monte Carlo
Localization (MCL) for global localization and position tracking, and used ICP
variant with point-to-line metric (PLICP) to improve the pose estimates of MCL at
goal positions. In order to apply PLICP, they have taken reference laser scans at goal
positions. When the distance between the robot’s MCL estimated position and the
reference scan’s position is decreased to 25 cm they used PLICP to improve the
precision of pose estimates. In this way, they have localized the robot with a

precision of few millimeters at predefined positions.

For this reason, in this thesis study, localization is divided into two parts. In the first
part, global localization and position tracking by using Monte Carlo Localization
algorithm is explained. In the second part, precise localization by using Iterative

Closest Point algorithm and its variants is explained.

4.1 Monte Carlo Localization

In this study, Monte Carlo Localization [11] was used to localize the robot globally
and track its pose continuously. As it is stated earlier, the purpose of this thesis study
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is improving the precision of localization by using ICP and its variants. For this
reason, the Monte Carlo Localization algorithm that is available in MATLAB

Robotics System Toolbox was used in this study.

Monte Carlo Localization was introduced in [11] and it is a widely used method to
estimate and track the robot’s pose by using the map of the environment when there
is no preliminary knowledge about the pose of the robot. It uses particles to indicate
possible poses of the robot. At the beginning, it distributes particles randomly and
uniformly to the everywhere in the map if there is no preliminary knowledge about
the robot’s pose. When robot moves, the particles are sampled depending upon
robot’s motion. When robot senses the environment, the algorithm assigns weights to
particles based on the measurement. After this, the particles are resampled
proportionally to their weights. By repeating these steps, the particles are

concentrated on the position of the robot [14].

In order to apply the Monte Carlo Localization algorithm in MATLAB,
robotics.MonteCarloLocalization object of the Robotics System Toolbox was used.
The object uses the KLD sampling [12] method to improve the performance. KLD
sampling method changes the number of particles during the process. Therefore, the
more particles are used when there is more uncertainty about the robot’s pose, and

less particles are used when the uncertainty about the robot’s pose is decreased.

4.2 Localization with ICP

In this study, it is aimed to estimate the position of the robot at specified goal
locations with error less than 1 centimeter which is necessary in some cases when
using the mobile robots in industrial applications. However, as it is experimentally
shown below, it is not possible to reach this precision always by using the Monte

Carlo Localization algorithm alone.

Figure 4.1 shows a PRM [7] to make the robot reach its target from its current
position. In this figure, map is the occupancy grid map of the environment with 20
cells per meter. Occupancy grid map is created by using robotics.OccupancyGrid
class and Probabilistic Roadmap is constructed using robotics.PRM class of the
MATLAB Robotics System Toolbox. In order to construct the PRM, 500 nodes are
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used. Also, in order to count the robot’s dimension in PRM, map is inflated with the

robot’s dimension by using inflate command.

In the figure below, robot’s starting position is (x,y) = (10, 10) and the coordinates
of the goal location is (x,y) = (14.50, 15.40). The objective of the robot is stopping

at the goal location with a maximum distance of 1 cm from the goal location.

Probabilistic Roadmap
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Figure 4.1: Probabilistic Roadmap of the robot.

By following the path that is shown above, it is aimed to stop the robot at the target
location within a maximum distance of 1 cm from the target by using the pose
estimations of MCL. In Figure 4.2, the real path of the robot is shown. This path is
generated by obtaining the real positions of the robot from the simulator during the

experiment.

In Figure 4.3, the zoomed version of the Figure 4.2 around the goal location is
shown. As it can be seen, the robot is drawing circles around the target location
because the MCL estimated positions are not enough accurate (less accurate than
stopping condition which is 1 cm as stated above) and they misdirect the controller

of the robot with this relatively inaccurate position values.
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Figure 4.2: Real positions of the robot.
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Figure 4.3: Real positions of the robot around the goal location.

In addition to this, the estimated positions are not enough accurate the check the
stopping condition (the stopping condition is, stopping at a location within a
maximum distance of 1 cm from the target) of the robot correctly. This causes the
robot to stop in a wrong location. As it can be seen in Figure 4.4, the location where

the robot stopped is 13.92 cm away from the goal location which is quite higher than

the threshold of 1 cm.

16



Goal Location
+ The Real Location where the Robot Stopped
— — Real Positions of the Robot
vt T
15.5 Vo / r
| A / Y
A A\ /
5 A / /
~ \ / N
Y 'J"\. l‘}".- — / 7
- o N R
& 1545 P T T 3
£ >, M K
W P 4 / ,
£ h S At \
= /! -
SN T N P
- 7 SN s LA - \\
] T Ny N i
15.4 / s #~ , \ /\' h
Ir e # * /"I ‘\""‘ [ \
',9"// - R I |
I 7 <, b \
W o g \\ \\\ o0
- hY
15.35 f;{ e p N oo
/ / f/ NN /
> P Wb
\' T T T 3 (-1 T Jll
14.5 14.55 14.6 14.65
X [meters]

Figure 4.4: The difference between the goal location and the real location where the

However, the robot does not know the fact that it stopped in wrong location because
it checks the stopping condition by using its estimated position values. According to

these position values it stopped 7.5 mm far away from the target location which is

robot stopped.

lower than the threshold. This can be seen in Figure 4.5.
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location where the robot stopped.
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As it is experimentally shown above, achieving a sub centimeter precision with
Monte Carlo Localization (MCL) is not possible, for this reason the combined
localization technique in [1] is applied in this study. By following the steps of [1], the
ICP with point-to-line metric (PLICP) algorithm is used to improve the position
estimates of Monte Carlo Localization algorithm. To do this, when the robot gets
close enough to goal location, the robot’s pose is started to be estimated by using
PLICP. To estimate the position, the transformation matrices that are generated with
PLICP used because PLICP [13] computes the transformation that aligns two given
scans. In this study, these scans are 2D point sets that are obtained by using the laser
scanner of the robot. As it is explained in [1], the model scans that have been taken
previously at the determined goal locations and scans that are taken at the robot’s
current position during the experiments are aligned by using PLICP. Then the
resultant transformation matrix from the PLICP and the coordinates of the goal
locations where the model scans were taken are used to estimate the position of the

robot.

The PLICP [13] is a variant of Iterative Closest Point algorithm [15]. It uses point-to-
line metric instead of point-to-point metric of original ICP [15]. In this chapter, in
order to explain the PLICP more clearly, the original version of ICP and the trimmed

ICP is explained firstly.

4.2.1 The Iterative Closest Point Algorithm

The ICP algorithm was developed by Besl and McKay [15] to iteratively align two
3D shapes. Consider 3D data point set F and model point set G. Since it is not known
at the beginning that which point in F corresponds to which point in G, the algorithm
matches the closest points in these two sets to each other. Then the transformation
that minimizes the distance between matched closest points in F and G is computed.
At the last step, this transformation is applied to F. These three steps are iterated.
After each iteration, these two point sets get closer to each other and overlaps at the
end of the algorithm [15].

These three steps can be shown as below:
1 - Match each point of F with the closest point in G.

2 - Compute the transformation that minimizes the distances between the matched

points.
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3 - Apply the transformation to F.
These three steps are iterated until converging to an optimal transformation.

In the first step of the algorithm a correspondence search procedure is applied. Let
Ny and N; are the number of points in F and G respectively. Then the data set F is

formed as:

F={fu.f2 f5 ---afNF} (4.1)

and the model set G is formed as:

G :{gl’gZ’g3’ (] gNG} (42)

The Euclidean distance between a point f; in data set and a point g; in model set is:

d(f..95) = Ifi — g/ (4.3)

The distance between a data point f; and the model set G is:
d(f;, 6G) = argmind(f;, 9) (4.4)

Solving the equation 4.4 gives the closest point in G that has the minimum distance
between the point f; . Let h be the closest point in G. In this situation the equation

4.4 can be written as follows:

d(fi,h) = d(f;, 6) (4.5)

where h € G. By denoting Corr as the correspondence operator which pairs the
closest points of F and G as explained above, the set of closest points H can be

shown as follows [15]:
H = Corr(F,G) (4.6)

In the second step, the transformation that minimizes the distance between the closest
points is computed. Classical ICP [15] uses point-to-point distance metric that sums
squared distances between corresponding data and model points to compute rotation
matrix R and translation vector t which minimize the distance between corresponding

points. This distance function can be shown as follows:

JR,t) = %5 Ik — Rf; — tll? (4.7)

where h; is the closest point in model point set that corresponds to the point f; in data

point set. In this thesis, to find the R and t that minimizes the point-to-point metric a
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Singular Value Decomposition (SVD) based method [16] is used. This minimization
method can be found in Appendix B.

In the third step of the ICP algorithm, the rotation matrix R and translation vector t

which are computed in the second step of the ICP, are applied to data point set F.
F=RF+t (4.8)

After the step three, algorithm returns the step 1. These three steps are repeated until
change of mean square error is smaller than designated value [15].

In this thesis, the stopping conditions that are described in [17] are used:

e change of mean square error (MSE) is smaller than designated value
e the designated number for maximum iterations has been reached.
e MSE is small enough to terminate the iterations.

For the stopping conditions MSE is found as follows:
_ 1 yNF 2
MSE = =251 — fil (4.9)

which is the mean of squared distances between data point f; and its corresponding
model point h; (closest point to f; in model point set). In [15] Besl and McKay have
proved that ICP algorithm always converges monotonically to a local minimum in

terms of mean square error. This proof is shown in Appendix C.

In addition to ICP steps described above there might be need of an initial registration
to align F and G before applying the ICP algorithm. The algorithm only guarantees
the converging to a local minimum, hence, to converge to a global minimum good
initial states are necessary as it is stated in [15]. In Chapter 6, how the initial
registration has been done in this study will be explained.

Since the ICP steps were described in details, now the ICP algorithm can be stated.
Let k denote the iteration number of the ICP algorithm. In this situation, H; denotes
the set of closest points and F; denotes the data point set at the k th iteration of the
algorithm. Also R, and t; are the rotation matrix and translation vector that applied
to data point set at the k th iteration. Then the ICP algorithm is as shown below [15]:

Initial registration: F; = RyF, + t, where Fy = F

Initialize the iteration: k = 1
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1. Match each point of F with the closest point in G.
Hy, = Corr(Fy, G)
2. Compute the transformation that minimizes the sum of the squared

distances between the matched points.

Np
(Rg, ty) = min z”hi,k — Rfir — tk”Z
i=1

3. Apply the transformation to F.
Fiy1 = RyFy + ty
4. If one of the stopping conditions described before are satisfied terminate
the iteration; otherwise return to step 1 and increase the iteration number
kby ‘1.
4.2.2 The Trimmed Iterative Closest Point Algorithm

The classical ICP [15] described above assumes that the data point set F and model
point set G fully overlap, however, for example when working with laser scan data
which is the case in this thesis, this assumption will no longer be true since the two
scans might be taken from different locations which means they are not fully overlap
with each other [18]. An example for this situation is shown in Figure 4.6 below.

Model Point Set and Data Point Set

7r * model points
* data points

%

H
T

X Axis in Robot Coordinate Frame
w

C

3 2 1 0 -1 -2
Y Axis in Robot Coordinate Frame

Figure 4.6: Example for partially overlapping point sets.
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As it can be seen in above figure, some data points have no correspondences in
model point set and using the classical ICP will give incorrect results because it will
also match these data points with model points even though these model points are
not the true correspondences of the outlying data points. In addition, in the presence
of measurement noise the number of these incorrect matchups will increase and

therefore accuracy of results will decrease more.

Since the classical ICP algorithm does not consider outliers as explained above,
Chetverikov et al. [19] proposed a new algorithm called the Trimmed ICP (TrICP) to
increase the robustness. The difference between the ICP and TrICP is that the TrICP
computes the optimal transformation for the determined number of data points
instead of considering all of the data points. The number of data points that are used
in minimization step is determined according to minimum overlap rate of data points.
Minimum overlap rate is the least known rate of data points that have true
correspondences in model set. Let m,,. be the minimum overlap rate. In that case, the

number of data points that are going to be used in minimization is [19]:
Npy = Npmyg, (4.10)

As it is stated in [19], the value of minimum overlap rate can be determined by
repeating the same experiment with different m,, values and selecting the m,,
which gives the best result. Also a method for automatically determining the m,, is
given in [19]. In this thesis study, m,, is determined according to the experiment

results.

After deciding the how many data points have true correspondences in model points,
which data points and their corresponding model points are used in minimization
step is decided. This selection is done by sorting the squared distances between each
data point f; and its corresponding model point h; in ascending order and selecting
the N, number of matchups with smallest squared distances. This means Np — Ngy,
number of data points are considered as outliers. These outliers and their
corresponding model points are discarded and is not going to be used in

minimization step [19].

In the minimization step, objective function is very similar to the objective function
that is used in classical ICP. However, this time the objective function consists of
remaining data and model points after the outliers are discarded. Also, it must be
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noted that the point indexes are changed after elimination of the outliers. By

considering these differences, the objective function is:

JR,O) = I¥M|\n = Rf, — ¢ (4.11)

where j is the new index after the elimination. Same minimization technique that is
used in original ICP can be applied to this objective function because both of the

objective functions are in point-to-point metric form [19].

After the minimization step, the rotation matrix R and translation vector t which are

computed in equation 4.11, are applied to data point set F.
F=RF+t (4.12)

After this step, algorithm returns the first step. These steps are repeated until one of

the designated stopping conditions are satisfied as it is described in [19]:

e the trimmed MSE is small enough to terminate the iterations.

e the trimmed MSE difference between consecutive iterations are small enough
to terminate the iterations.

e the designated number for maximum iterations has been reached.

where

trimmed MSE = ﬁz’vm”hj — 5l (4.13)

j=1
In [19] it is stated that the TrICP algorithm always converges monotonically to a

local minimum in terms of trimmed mean square error.

Since the steps of the TrICP algorithm has been described the algorithm can be stated
as shown below [19]:
Initial registration: F; = RyF, + t, where Fy = F
Initialize the iteration: k = 1
1. Match each point of F with the closest point in G.
H, = Corr(Fy, G)
2. Sort the squared distances between each data point f;, and its

corresponding model point h;; in ascending order and select the Ngy,

number of matchups with smallest squared distances.
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3. Compute the transformation that minimizes the sum of the squared
distances between the remaining matched points.

Nrm

(Rk, tk) = min Z ”h],k - ka}',k - tk”Z
j=1

J = index after eliminating the outliers
4. Apply the transformation to F.
Fr+1 = RiFy + t
5. If one of the stopping conditions described before are satisfied terminate
the iteration; otherwise return to step 1 and increase the iteration number
kby ‘1°.
4.2.3 The Iterative Closest Point Algorithm with Point-to-Line Metric

ICP with Point-to-Line Metric (PLICP) is a variant of ICP which uses point-to-line
metric instead of point-to-point metric that is used in classical ICP. PLICP is stated
by Censi [13] and according to the experimental results in [13], it is more accurate
and need less iterations. It uses the trimming process [19] described in Chapter 4.2.2
to eliminate outliers. However as it is stated in [13], the ICP is more robust than
PLICP when the rotational displacement between the two scans are large. The steps
below describe the PLICP by comparing it with ICP.

The differences between PLICP and ICP come from their objective functions. As it is
stated before, ICP uses point-to-point metric, however, PLICP uses point-to-line
metric. Consider the data point f; in point-to-point metric, the distance error for each
point is the distance between data point f; and its corresponding closest point in the
model point set G. On the other hand in point-to-line metric, the distance error for
each point is the distance between data point f; and the line which lies between f;’s
closest point correspondence and f;’s second closest point correspondence in the
model point set G. As it was stated earlier, h; is the f;’s corresponding closest point
in model point set and H is the set of the closest points. In that case, let z; be the f;’s
second closest point correspondence in model point set and Z be the set of second
closest points. Also, by taking into consideration that Corr was denoted as
correspondence operator, the set of closest points H and the set of second closest

points Z can be written as follows [13]:

(H,Z) = Corr(F,G) (4.14)
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In order to find the optimal transformation, the point-to-line metric objective
function is given as follows [13]:

JRR,t) = T[T (h; — Rfi — D)]? (4.15)

where n; is the normal to the line that lies between h; and z;. To find the R and t that
minimizes the point-to-line metric an exact closed form solution is stated in [13].

This solution is given in Appendix D.

Since the other steps of PLICP is same as the steps of TrICP, the algorithm of PLICP
can be shown as [13]:

Initial registration: F; = RyF, + t, where Fy = F
Initialize the iteration: k = 1

1. Match each point of F with the closest and second closest points in G.
(Hy,Zy) = Corr(Fy, G)

2. Sort the squared distances between each data point f;, and its
corresponding model point h;, in ascending order and select the Npy,
number of matchups with smallest squared distances.

3. Compute the transformation that minimizes the sum of the squared

distances between the point f; , and the line that lies between points h; ;

and z;
Npm

Rit) = D [ (e = Rifiie = )]
j=1

J = index after eliminating the outliers

4. Apply the transformation to F.
Fv1 = RiFye + t

5. If one of the stopping conditions described before are satisfied terminate
the iteration; otherwise return to step 1 and increase the iteration number
k by “1°.
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5. SIMULATION STUDIES

In this chapter, simulation studies are performed for the two-step indoor localization
method this is explained in Chapter 4. As it is stated earlier, the purpose of this
localization method is estimating the pose of the robot accurately at predefined target
locations. However, in order to travel between these target locations, the robot needs
a path planner and a path following controller. For this reason, a path planning
algorithm was explained in Chapter 3. Also, in the following chapter a path
following controller that enables the robot travel between target locations is

explained.

5.1 Pure Pursuit Path Following Controller

In Chapter 3, a path planning algorithm has been described. The output of that path
planning algorithm is an array of waypoints where the first waypoint is robot’s
current position and the last waypoint is robot’s goal position. In order to reach its
goal position, the robot must follow that waypoints. Following the path that consists
of these waypoints enable robot to reach its goal position while avoiding the
obstacles in the environment. In order to follow the path, the speed and direction of
the robot must be adjusted accordingly. For this reason, a controller is needed to
continuously adjust the robot’s linear and angular velocities. In this study, the Pure
Pursuit path tracking algorithm [20] that is available in MATLAB Robotics System

Toolbox was used.

The Pure Pursuit controller [20] allows the robot to follow the path by driving the
robot from its current position to a target point on the path by adjusting the steering
angle of the robot. When the robot moves, the target point also moves, so there is a
distance between the robot and the target point. This distance is called look ahead
distance. Look ahead distance is the only parameter in the controller. For this reason,
it is very important to determining a proper value for look ahead distance. Choosing
a short look ahead distance might cause more overshoots on the path however it

enables robot to retrieve the path sooner if the robot is not following the path
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accurately at that time. On the other hand, longer look ahead distance enables
smoother path following but the robot will retrieve the path slower if it has missed
the path already [21].

In order to apply the controller, robotics.PurePursuit object of MATLAB Robotics
System Toolbox was used.

5.2 Simulation Environment

In this study, simulations were performed on Gazebo Simulator. The connection
between the Gazebo and the MATLAB was made by using MATLAB Robotics
System Toolbox.

For the experiments, an environment which is shown in Figure 5.1 and Figure 5.2

was designed in Gazebo.

Figure 5.2: The side view of environment that is used for simulations.

28



The occupancy grid map of the environment can be seen in Figure 5.3. It is created
by using robotics.OccupancyGrid class of the MATLAB Robotics System Toolbox.

27 - o |

S , , b0
1] 5 10 15 20
X [meters)

Figure 5.3: Occupancy grid map of the environment.

The TurtleBot that is shown in Figure 5.4 was chosen as the robot to perform given

tasks in simulation environment. Technical details of TurtleBot can be found in

Appendix A.

Figure 5.4: The TurtleBot.
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5.3 Case Study

In this chapter, a case study was performed in the environment that is described in
Chapter 5.2. In this case study, the robot traveled between Target Location 1 and
Target Location 2. It has been assigned with the task of visiting each location 100
times and stopping at each target location with a maximum distance of 1 cm from the
target point. Also in order to make the simulations more realistic, noise which has
normal distribution was applied on laser scans. The noise has zero mean and 0.003

standard deviation. It was applied both of the x and y coordinate values of each point.

At the beginning, the robot started its journey from the middle of the map. However,
it was unaware of its pose. By using the Monte Carlo Localization algorithm [11] it
has found its pose in the environment and then started to travel between Target

Location 1 and Target Location 2.
The coordinates of the Target Location 1 are:

(x1,v1) = (14.50,16.00) (5.1)
The coordinates of the Target Location 2 are:

(x2,v,) = (16.00, 6.00) (5.2)

The target locations can be seen in Figure 5.5.
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Figure 5.5: Target locations.
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In order to apply the PLICP [13] algorithm to estimate the pose of the robot, the steps
that are described in [1] were applied. By following these steps, firstly, model laser
scans had been taken at the target locations before the experiments. This was done by
sending the robot to each target location and scanning the environment by rotating
the robot. In this thesis study, each model scan was taken by rotating the robot 5°
with respect to its previous position. This value was determined experimentally. At
the time the first scan was taken the robot’s angle had been set to 0° and at the time
the last scan was taken the robot’s angle had been set to 180° with respect to world

coordinate frame. For this reason, there were 37 model scans saved at each target.

Figure 5.6 and Figure 5.7 shows two example model scans taken at the Target
Location 1. In Figure 5.6, the robot’s angle is 45.3152° and in Figure 5.7 the robot’s
angle is 90°. The laser data are shown in robot coordinate frame. The image data are
shown in order to visualize the robot coordinate frame more clearly. The selection of
which model scan is to be used in PLICP was done by using MCL’s orientation
estimations about robot’s angle at that time. This is because the Monte Carlo
Localization algorithm’s position and orientation estimations are used as initial guess
in PLICP. For this reason, the conditions of in which cases the PLICP is used to

estimate the robot’s pose are determined by MCL estimations [1].

Laser Scan Data
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55T ] Image Data
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Figure 5.6: Laser and image data when the robot’s angle is 45.3152°.
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Figure 5.7: Laser and image data when the robot’s angle is 90°.

In this thesis study, in order to obtain the robot’s pose from PLICP, the method that is
proposed in [22] was applied. Since the laser sensor is mounted on the robot, the
coordinate values of points in laser scans are with respect to the robot’s coordinate
frame. Also, since the PLICP was used to generate the translation vector and rotation
matrix between the laser scans, then the robot’s pose in world coordinate frame can
be found by transforming the translation and rotation values from robot’s coordinate

frame to world coordinate frame [22].

5.4 Simulation Results

As it is stated earlier, the robot’s task was 100 times shuttling between Target
Location 1 and Target Location 2. Also it must have stopped itself at each target with
a maximum distance of 1 cm from the target point. The robot’s instantaneous
positions during the experiment can be seen in Figure 5.8. The robot’s starting

position which is the middle of the map can also be seen in this figure.
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Figure 5.8: The robot’s instantaneous positions during the experiment.

In Figure 5.9, the robot’s average and maximum X, y position estimation errors are
shown for Target Location 1 and Target Location 2. For the Target 1, the average x
axis position estimation error is 4.2 mm and the average y axis position estimation
error is 1.9 mm. Also, the maximum x axis position estimation error is 13.9 mm and
the maximum y axis position estimation error is 10.6 mm. For the Target 2, the
average X axis position estimation error is 4.8 mm, the average y axis position
estimation error is 3.3 mm. On the other hand, maximum x axis position estimation
error is 17.6 mm and the maximum y axis position estimation error is 12.5 mm.
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Figure 5.9: The x and y axes position estimation errors.
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In Figure 5.10, the robot’s average and maximum angular estimation errors are
shown for Target Location 1 and Target Location 2. For the Target 1, the average
angular error is 1.75° whereas the maximum angular error is 3.1907°. For the Target

2, the average angular error is 1.6975° and the maximum angular error is 2.8999°.

Average and Maximum Angular Errors
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051

theta 1 theta &

Figure 5.10: The angular estimation errors.

In Figure 5.11 and Figure 5.12, the points where the robot stopped at Target Location
1 and Target Location 2 are shown respectively. The magenta colored circle has a
radius of 1 cm. Being inside of that circle means the robot’s positioning error is less
than 1 cm. Since the robot was given a task of stopping with a maximum distance of
1 cm from each target point, sometimes it has stopped outside the circles even though
its position estimation error is less than 1 cm. For example, consider that the robot is
1.5 cm away from the target point, in this situation a position estimation error with

0.6 cm makes the robot believes that it is 0.1 cm inside of the circle.

In Figure 5.11, the farthermost point corresponds to the failure of the PLICP
algorithm. When it failed, the result of PLICP was discarded and the MCL estimation
at that time was used automatically for the pose estimation. Since the precision of the
MCL is lower than PLICP, a much higher error in contrast to PLICP estimations was

occurred. In order to prevent such failings, sensor redundancy may be considered.
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Figure 5.11: The points where the robot stopped at Target Location 1.
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Figure 5.12: The points where the robot stopped at Target Location 2.
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6. CONCLUSION

In this thesis, a study for accurate localization of indoor mobile robots was
performed. The localization accuracy is very important in industrial applications
because in these applications, mobile robots must perform tasks that require
positioning accuracy of sub-centimeter. In order to achieve a sub-centimeter
positioning accuracy, a localization method that estimates the pose of the robot with
same accuracy is needed. However, at the times when there is no need sub-
centimeter accuracy, a less accurate localization method can be used to decrease the
computational load. For this reason, a two-step indoor localization method was
applied in this thesis. In this method, the robot is globally localized and then its pose
Is tracked coarsely in a known environment by using the MCL algorithm. When the
robot approaches the predetermined locations to perform accuracy needed tasks, the

PLICP algorithm is used for estimate the pose of the robot accurately.

The simulation studies performed in this thesis show that by using the two-step
localization method the position of the robot can be estimated at predefined target

locations with sub-centimeter accuracy.

The simulations were performed on static environment. However, by using a proper
obstacle avoidance algorithm that allows the robot to avoid obstacles in dynamic
environment, the two-step indoor localization method can also be tested in dynamic

environments.

Also, it is a well-known problem that the ICP based algorithms might be trapped in
local minimum. In this thesis, in order to avoid local minimum in PLICP, the MCL
estimations were used to choose the model scans that are closest to given data scans.
Even though, this method reduces the possibility of getting trapped in local minimum
it is possible to obtain better results with an algorithm that guarantees global

minimum.

Finally, in order to increase the robustness of the localization method, a second laser
sensor can be used. This allows to perform two independent PLICP, compare their

results and detect possible failures.
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Appendix A The TurtleBot

In this study, TurtleBot was used to perform docking tasks and compare different
localization algorithms in the simulation environment.

In Table A.1 external dimensions, weight of the robot, diameter of wheels and
ground clearance are shown [23].

Table A.1: Size and weight.

External dimensions Weight Wheels Ground
(LxW x H) (Diameter) clearance
354 x 354 x 420 mm 6.3 kg 76 mm 15 mm

As it is seen in Table A.2, TurtleBot has a maximum speed of 0.65 m/s. Also it could
carry loads up to 5 kg [23].

Table A.2: Speed and performance.

Maximum Maximum Maximum
payload speed rotational speed
5 kg 0.65 m/s 180 °/S

TurtleBot has a 2200 mAh lithium ion standard battery. To have more execution
time, larger battery with 4400 mAh may also be used. Battery and power system of
the TurtleBot are shown in Table A.3 [23].

Table A.3: Battery and power system.

Standard battery Extended battery User power
2200 mAnh lithium 4400 mAh lithium 5V and 19V (1 A),
ion battery ion battery 12V (1.5Aand5A)
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Appendix B Minimization of Point-to-Point Metric

Consider the following objective function in [15] :
JR,t) = XA |h; — Rf; — t]]? (B2.1)
where h; is the closest point in model point set that corresponds to the point f; in data

point set.

In this thesis, to find the R and t that minimizes the objective function a Singular
Value Decomposition (SVD) based algorithm is used [16]. By following the steps in
[16], first define the centroids of F and H as follows:

f=a50 f (B 2.2)

h

A (B23)

Consider that the centroids of data point set F and closest point set H should overlap
when F and H are aligned correctly. For this reason, the translation vector t is chosen
to move rotated data point set centroid to closest point set centroid. By doing so, the
translation vector will be eliminated from the equation B 2.1 and the objective
function will be minimized with respect to R matrix only. After that, the translation
vector will be computed from the optimal rotation matrix. Let cf; be the i th point in
centered set of F and ch; the i th point in centered set of H as shown below:

cfi=fi—f (B 2.4)

Now, write f; in terms of cf; and f then write h; in terms of ch; and h. The new
form of equation B 2.1 is shown as below:

JR,t) = YV ||ch; + B — Rcf, — Rf — ¢|” (B 2.6)

As explained earlier, translation vector that minimizes objective function is chosen to
move rotated data point set centroid to closest point set centroid.
t=h—Rf (B 2.7)

Put the equation B 2.7 into equation B 2.6. Then the new objective function will be
shown as follows:

J(R) = %5 llch; — Ref;I? (B 2.8)

Since the translation vector was eliminated from the objective function, R that
minimizes the equation B 2.8 should be found. After finding the optimal R the
translation vector will be found from the equation B 2.7.

45



To compute the optimal R, expand the equation B 2.8 as shown below:
J = X5 (chi = Ref)" (chy = Refy) (B29)
J =YV (chi" chy — chy" Ref; — cf,"RTch; + cf,"RTRcf;) (B 2.10)
J = X0 (chy" chy — 2ch" Ref; + cf;" cf)) (B 2.11)

In order to minimize the objective function, let

L =Y ch! Ref; (B 2.12)

Then minimizing the objective function is equal to maximizing the L.

L= Zﬁvjl ch! Ref; = Trace(Z?’:”chﬁchiT) (B 2.13)
L = Trace(RA) (B 2.14)

where
A= % cf; ch] (B 2.15)

Now, the SVD of A is considered [16]:

A=UAVT (B 2.16)
Then the optimal rotation matrix R that maximizes the L and therefore minimizes the
objective function is:

R=vU" (B 2.17)
In some cases, determinant of VUT might be equal to -1. In this situation R is a

reflection rather than a rotation. To fix this, the sign of the third column of the V is
changed as follows:

V, = [171,172,-173] (B 218)
where vy, v,, v3 are the first, second and third columns of V respectively.
R=V'UT (B 2.19)

Since the optimal rotation matrix R is found the optimal translation vector t is found
as described earlier:

t=h—Rf (B 2.20)
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Appendix C Convergence Theorem of ICP

It is stated and proved in [15] that the ICP algorithm always converges
monotonically to a local minimum in terms of mean square error. This theorem is
based on two ideas. The first one is that average distance between the data points and
their corresponding closest points in the model set is decreasing with each iteration
because of the least squares registration. The other idea is that the distance for each
point is decreasing separately in the correspondence search procedure which also
yields a smaller average distance between data points and model points [15].

Consider the ICP [15] steps explained in Chapter 4.2.1. Let k be the iteration number
of the ICP algorithm. In this case, F), denotes the data point set and H; denotes the
set of closest points at the k th iteration of the algorithm. Then, the MSE at k th
iteration can be written as follows:

By = 5= o = fiell” (€3.)

Let R, and t; be the rotation matrix and translation vector that applied to data point
set at the k th iteration. When the R, and t, are applied to Fx the MSE after the
transformation will be as follows:

E, = NiFZ’ilellhi,k — Ryfix — tk”2 (C3.2)

B = 5= 200 o = foaenn (€33)

where f; .11 = Rifix + ti asitis explained in Chapter 4.2.1.

It is clear that the error after the transformation is always smaller than the error
before the transformation due to least squares minimization. Hence:

Ei < Ej (C3.4)

Each time after the transformation, a new set of closest points H,; will be generated
in corresponding point search process. In this case MSE is shown as below:

Eisr = -2 hogn = frgenl (C35)

Note that the distance will be reduced for each point after the closest point search:

| hiers — fi,,m||2 < ||hix — ;fl-,,€+1||2 foreach i =1,2,..,N;  (C3.6)
Hence:
2 Rigerr = foenal” < 5 Z R = forenal) (€C37)

This is equal to:
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Exi1 < Ep (C3.8)

In equation C 3.4, it is shown that E,, < E; . Combining the equations C 3.4 and C
3.8 results:

Exiq1 < Ep < E (C3.9

By generalizing the equation C 3.9 for each iteration the inequality shown below is

obtained.
0 < Epyq <Epy1 < Ep < Ejforeachk (C 3.10)
As it is shown in equation C 3.10, the MSE of the algorithm is non-increasing. In this

case, it can be said that ICP algorithm always converges monotonically to a local
minimum in terms of MSE [15].

48



Appendix D Minimization of Point-to-Line Metric

Consider the following objective function [13]:

JR,t) = T[] (Rf; + ¢t = h)P? (D 4.1)
In this equation n; is the normal to the line that lies between h; and z; where h; is the
closest point and z; is the second closest point in model point set to the point f; in
data point set. To find the rotation matrix R and translation vector t that minimizes
the objective function in equation D 4.1 an exact closed form solution is introduced

by Censi in [13]. By following the steps of [13], the equation D 4.1 can be written as
follows:

JR,E) = XEIRS + t — hyll, (D 4.2)

where
IRfi +t — hillg, = (Rf; + t — R)TBi(Rf; + t — hy) (D 4.3)
In equation D 4.3, B; is defined as shown below:

Bi = Wl-nl-niT (D 44)

where w; is defined as weight. The rotation matrix R and translation vector t are as
shown below:

cosf —sinf
R = D 4.
[sin 60 cosO ( 5)

t=[g] (D 4.6)

The aim is to find optimal values of 6, t, and t,,. Then it can be said that the solution
will be in the form (¢,, t,, 8). By using the below relation between sin 8 and cos 6:

(sin@)? + (cos9)? =1 (D 4.7)

The solution can be expressed as follows:
a = (a,a,as,ay) = (ty, ty,cos 6, sinb) (D 4.8)

subjectto a2 +a3 =1 (D 4.9)

Express the x and y coordinates of data point f; as shown below:

fi = [fxi fyi] (D 4.10)

Now constitute the matrix P; as shown below:
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1 0 f _fy-l
| = ' ‘ D4.11
! [0 L fu (B4
Then the objective function in equation D 4.2 can be written as follows:
J(a) = 3, (Pia — k)T B;(Pia — k) (D 4.12)
J(@) = ¥V, (a” PTB;Pia + kY B;h; — 2h7 B;P;a) (D 4.13)

Since it is a minimization problem with respect to a, the constant terms can be
ignored:

J(a) = a" (ZNE, PTBP)a + (X1, —2hTB; P,)a (D 4.14)

To simplify the equation D 4.14, N and v are defined as follows:
N = YN PIB;P, (D 4.15)

vT =Y —2hTB; P, (D 4.16)

Therefore, the equation D 4.14 can be shown as below:
J(a) =a’Na+v'a (D 4.17)

Also the constraint defined in equation D 4.9 can be written as below:

a’Qa=1 (D 4.18)
where
0 0 0 O
1o o 0 o0
Q= 00 1 0 (D 4.19)
0 0 0 1

Now the objective function and its constraint are as shown below [13]:
J(a) =a’Na+v'a (D 4.20)

subjectto a’Qa =1 (D 4.21)

Since the objective function given above is subjected to an equality constraint, the
Lagrange multipliers method can be used. Then the Lagrange function for the above
optimization problem is:

L(a) =a"Na+vTa+ A(a"Qa—1) (D 4.22)

The equations below show the necessary conditions for optimal solution:

2 =2a"N +v" +22a7Q = 0" (D 4.23)

a’Qa =1 (D 4.24)
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To combine the equation D 4.23 and equation D 4.24 rewrite the equation D 4.23 as
follows:

a=—N +210) v (D 4.25)

Then the equation D 4.25 and equation D 4.24 are combined as shown below:

(—vT(2N + 22Q)™HQ(-(2N + 2AQ)"Tv) =1 (D 4.26)
vT (2N 4+ 22Q)71Q(2N + 2AQ) Tv =1 (D 4.27)

Let
C = (2N + 22Q) (D 4.28)

Hence, the equation D 4.27 can be written as follows:
vICQC v =1 (D 4.29)

The C matrix can also be written in following form:

Z Y

C:[YT G + 27l

(D 4.30)
As it can be seen in equation D 4.19, the Q matrix is a sparse matrix. For this reason,

in equation D 4.29 there is no need to compute the columns of C~1 except the last
column:

-1 _[* —=Z7yK!
C1= [* P ] (D 4.31)
In this equation K equals to:
K=(G-YTZ7Y +2AI) (D 4.32)

Now, the equation D 4.29 can be written as follows:
o7 Z7YWYK k- TyTz-T —771yKk-1K-T

In equation D 4.32 write K as follows:
K=M+2al (D 4.34)
where
M=G-YTZY (D 4.35)
Then K~ in equation D 4.33 can be shown as below:
K1 = (M + 241yt = S0OMT 22 (D 4.36)

det(M+2A1)

In equation D 4.36, the denominator of K~ is a polynomial. Let q(1) denote that
polynomial:

q(A) = det(M + 2AI) (D 4.37)
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Also denote the det(M) M~1 in equation D 4.36 as follows:
U = det(M) M1 (D 4.38)

Now K~1K~T in equation D 4.33 equals to:

_ (U+2ADU+2ADT

KK T = T (D 4.39)
1 UUT +4AU+4221
K lK r == T (D 440)

By using these relations in equation D 4.33, the following equation is obtained:

Z7lyy?z T 77y Z7lyuyT™z T —-Z7'vu
2 _ 92 T T
q()" = 24w [ (symm) I ]v+l4v [ (symm) U vt
Zlyutuy™z "t -z 'yuTu
T
v [ (symm) utu ]v (D 4.41)

In equation D 4.41, a closed form solution can be found for A. Then by putting the 4
in equation D 4.25, the a is found [13].
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