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DEVELOPMENT OF ENZYME-BASED COATING METHODS FOR THE 

PREVENTION OF BACTERIAL BIOFILM FORMATION 

SUMMARY 

A biofilm is essentially composed of microbial cells attached to a surface and 

covered completely with an extracellular polymeric matrix produced by biofilm-

forming bacteria. Biofilm formation results in significant changes in gene expression 

and these changes are related with bacterial cell-to-cell signaling, also known as 

“quorum sensing”. When these bacterial cells approach inert surfaces, they first get 

bound to these surfaces utilizing their external structures such as flagella, fimbriae or 

capsular components by weak forces. As the cells remain attached to the surface for 

some period, they start to secrete extracellular polymeric substances (EPS) in order 

to compose a biofilm matrix that embeds many layers of bacterial cells when the 

biofilm develops. Bacterial EPS are generally composed of a wide variety of 

materials like polysaccharides, proteins, nucleic acids, uronic acid and humic 

substances. The EPS has several vital functions such as providing an adhesive 

foundation, structural integrity, bacterial protection and intercellular communication.  

Due to highly enhanced resistance to antibiotics and disinfection treatments, 

uncontrollable and undesirable accumulation of cell aggregates cause serious 

problems in biomedical applications, infections in humans and corrosion and 

equipment failure in industrial settings. Studies concerning biofilm effects on human 

health are generally performed on water systems, prosthesis and implants. Biofilm 

formation and metabolic activities within may cause serious community health risks. 

Most of these health risks are nosocomial infections of gastrointestinal, eye and ear 

etc. Complex laparoscopic devices, which are very sensitive to disinfection and 

sterilization, used in minimal invasive surgery and other surgical instruments are 

common places of biofilm formation. Due to these facts, there is a growing demand 

towards developing strategies to remove and protect the surfaces against biofilm 

formation.    

Several attempts have been made to protect the surfaces of materials, instruments and 

equipments by addition of antimicrobial, biocidal and non-adhesive substances for 

coating, addition of diffusible toxic agents and changing surface roughness. In one of 

these studies, physical and chemical properties of biomaterial surface are modified 

by coating with a hydrogel. This method was effective in reducing bacterial adhesion 

but it was difficult to cover the surface uniformly. In another attempt, cuffs on 

catheters were coated with silver. The drawback of this approach was degradation of 

the cuff, which results in diffusion of silver ions and loss of antimicrobial activity. 

Antibiotics have also been coated onto surfaces but with the emergence of microbial 

resistance, this kind of applications had short-term effect. 

One of the solutions to overcome the problem with biofilm formation could be the 

replacement of biocides with non-toxic alternatives, such as enzymes. Enzymes have 

been used in several industries ranging from food industry to large scale biocatalysis 
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and can also be used for the degradation and the removal of the bacterial biofilms.  

Extracellular Polymeric Substances (EPS) in the biofilm matrix is the essential part 

of the biofilm development. The complexity and variability of biofilm polymers in 

the matrix described above could be the utility to use several enzymes like 

hydrolases and lyases, individually and/or their combinations. This could achieve a 

sufficient disintegration of the polymeric networks composing the biofilm matrix and 

detachment of the biofilm from the surface it was attached. 

The reasons for using these biocatalysts are that they are environmentally safe, non-

toxic to mammalian cells and act on their substrates specifically by retaining their 

activity for a long period if immobilized. Thus, surface immobilized enzymes could 

provide surfaces with anti-adhesive and antifouling properties. 

The main objective of the present thesis was to apply sol-gel technology and 

carbodiimide chemistry for immobilization of enzyme molecules to obtain 

antimicrobial surface. In this project we aim to inhibit formation of bacterial biofilm 

using covalently attached lysozyme either for use in industrial or medical 

applications. In order to realize the project, lysozyme molecules were immobilized 

onto hydrogel-type interlayer, poly(acrylic acid), using azide/nitrene chemistry for 

covalent attachment of the enzyme molecules. The presence of amine groups in the 

sol-gel silicate network provides functional sites for covalent bonding of poly(acrylic 

acid) via the carbodiimide reaction. Spectroscopic characterization of immobilization 

steps was performed using Atomic Force Microscopy (AFM) and Fourier Transform 

Infrared Spectroscopy (FTIR). The ability of covalently immobilized enzyme to 

prevent growth and biofilm formation of Pseudomonas aeruginosa was assessed 

using flow cell and Confocal Laser Scanning Microscopy (CLSM). Pseudomonas 

aeruginosa was used as a model for  biofilm forming microorganism. The 

development of a biofilm in a parallel plate flow cell system containing control and 

coated test materials was designed to study biofilms growing under a range of 

conditions (high and low flow rates, incubation times, different temperatures etc.) 

which facilitates non-destructive imaging of biofilms by using Confocal Laser 

Scanning Microscopy (CLSM). The activities of enzyme molecules covalently-

bound on sol-gel coated surfaces were analyzed during these characterization studies 

and the anti-biofilm efficiencies of these surfaces were visualized by using confocal 

microscopy.  
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BAKTERİYEL BİYOFİLM OLUŞUMUNU ENGELLEMEYE YÖNELİK ENZİM 

BAZLI KAPLAMA YÖNTEMLERİNİN GELİŞTİRİLMESİ 

ÖZET 

Biyofilm, canlı yada cansız herhangi bir yüzeye tutunarak mikrobik kökenli 

polimerik yapıya gömülü kalan mikroorganizma topluluğu olarak tanımlanabilir. 

Biyofilm oluşumu mikroorganizmaların yaşam alanları içindeki bir yüzeye teması ile 

başlar ve salgıladıkları çeşitli ekstrasellüler biyopolimerler sayesinde metal, plastik, 

medikal implant, hücre dokusu gibi çok farklı yüzeylere bağlanabilirler. 

Doğada var olan biyofilm yapıları genellikle farklı birçok mikroorganizma türünün 

oluşturduğu, biyopolimerler ile çevrilmiş heterojen bir yapıdır ve bu yapı biyofilmi 

oluşturan mikroorganizmalara çevresel koşullardaki değişime adaptasyon kolaylığı, 

antimikrobiyal kimyasallara karşı dayanıklılık gibi çeşitli avantajlar sağlamaktadır. 

Aynı zamanda bu katman toksik kimyasalların ve antibiyotiklerin geçişini 

engelleyerek biyofilm yapısındaki mikroorganizmalara önemli avantajlar da 

kazandırmaktadır. Hücre katmanları arasında bulunan su kanalları ise biyofilmin 

gelişmesinde hayati öneme sahiptir. Mikroorganizmalar ihtiyaç duydukları besinlere 

bu su kanalları sayesinde erişirken, atıkların uzaklaştırılması da yine su kanalları 

sayesinde  kolaylaştırılır ve mikroorganizmaların sinyal moleküller aracılığı ile 

iletişim kurabilmeleri için de kanal görevi üstlenirler. 

Biyofilm oluşumunun istenmeyen bölgelerde gerçekleşmesi insan sağlığını ve 

endüstriyel verimliliği olumsuz olarak yoğun bir şekilde etkilemektedir. Biyofilm 

kaynaklı insan sağlığı problemleri, içme suyu kalitesindeki düşüş ve enerji üretim 

verimliliği gibi birçok konuda biyofilm oluşumunun verdiği hasarların maliyeti 

milyar dolarları bulmaktadır. 

Biyofilm oluşumuna, dental yüzeyler, gıda endüstrisindeki üretim bandındaki 

kontaminasyonlar ve havalandırma sistemleri gibi birbirinden çok farklı sistemlerde 

sıklıkla karşılaşılmaktadır. Hem insan ve toplum sağlığı hem de ekonomik açıdan 

yaratmış olduğu zararlı etkileri nedeniyle, yüzey üzerinde mikrobiyal birikimi 

engelleyebilecek veya en azından büyümesini ve yayılmasını durdurabilecek 

yöntemlerin geliştirilmesine yönelik çalışmalar son yıllarda yoğun olarak 

yürütülmektedir.  

Biyofilm sistemlerinin, tehlikeli atıkların işlenmesi ve değerlendirilmesi, endüstriyel 

atık sularının filtrelenmesi, yeraltı sularının kontaminasyondan arındırılması gibi 

kullanım alanlarının bulunması ile birlikte, endüstriyel ve biyomedikal 

uygulamalarda biyofilm oluşumunun, ürün kontaminasyonu, enerji kaybı ve medikal 

enfeksiyona sebep olmak gibi birçok negatif etkisi vardır. Mikroorganizmaları 

bertaraf etmek için kullanılan geleneksel antibiyotik ve dezenfektanlar sıklıkla 

biyofilm yapısı üzerinde yeterli etkinliğe sahip olamamaktadır. Biyofilm yapısını 

bertaraf etmek için bu kimyasalların yüksek dozda kullanımı, biyomedikal 

uygulamalarda engel teşkil etmekte,  endüstriyel sistemlerde ise çevresel sorunlara 

yol açmaktadır. 
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Literatürde farklı endüstriyel ve medikal alanlarda kullanılan malzemelerin, 

cihazların ve ekipmanın yüzeyleri üzerinde biyofilm oluşumunu önlemeye yönelik 

çalışmalara rastlanılmaktadır. Bu anlamda en yakın çalışma, kateter manşetlerinin 

hidrojel ile kaplanarak mikroorganizmaların üremesini engelleyecek şekilde fiziksel 

ve kimyasal özelliklerinin değiştirilmesine yöneliktir. Bu uygulama 

mikroorganizmaların yüzeye bağlanma kabiliyetini düşürmesine rağmen, hidrojelin 

yüzeye homojen bir şekilde tatbik edilmesi oldukça zor bir işlemdir. Bu alanda bir 

diğer çalışmada ise, antimikrobik etkinliği bilinen gümüş iyonları ile kateter 

manşetleri kaplanmış, fakat gümüş iyonlarının zamanla ortama difüze olması, 

kaplamanın antimikrobik etkinliğini kaybetmesine neden olmuştur. Kaplama 

malzemesi olarak antibiyotiklerin kullanılması ise mikroorganizmaların kullanılan 

antibiyotiğe karşı direnç kazanmasına ve uygulamanın etkinliğini kaybetmesine 

neden olmaktadır. 

Yüzey üzerinde biyofilm oluşumunu engellemek için kullanılan alternatif 

yaklaşımlardan bir tanesi de enzimlerin kullanılmasıdır. Biyofilm oluşumunu 

engellemek için kullanılan toksik kimyasallar ile kıyaslandığında enzimlerin önemli 

bir üstünlüğü, enzimlerin çevreye zarar vermemesidir. Farklı tür mikroorganizmalar 

belirli bir yüzeye bağlanmak için farklı polimerler kullanmalarına rağmen yapılan 

çalışmalarda ticari olarak satılan proteazların biyofilm oluşturan 

mikroorganizmaların yüzeye bağlanma olasılığını düşürdüğü tespit edilmiştir.  

Ayrıca lizozim ve Polietilen glikolün kovalent olarak yüzeye bağlandıklarında 

yüzeyin antibakteriyel ve antiadhezif özellikler gösterdiği tespit edilmiştir.  

Çalışmada kullanılan mikroorganizma literatürde biyofilm çalışmalarında sıkça 

kullanılan mikroorganizmalardandır. Medikal cihazlar da dahil olmak üzere biyotik 

ve abiyotik birçok farklı yüzeye bağlanabilen ve biyofilm oluşturduğu bilinen gram-

negatif bir bakteri olan Pseudomonas aeruginosa fırsatçı bir insan patojenidir. Tez 

çalışmalarında, mikroorganizmaların endüstriyel ve tıbbi alanlarda sıkça kullanılan 

yüzeylere bağlanarak biyofilm oluşturmalarını engellemek hedeflenmiştir. 

Çalışmanın ilk ayağında mevcut kaplama yöntemleri göz önünde bulundurularak, 

çalışmanın amacına uygun bir kaplama stratejisi belirlenmiştir. Sol-gel yönteminin 

stabilitesi, oda şartları altında uygulunabilirliği, inert özellikte olması ve ayrıca yüzey 

üzerinde fonksiyonel grupların oluşmasını sağlayabiliyor olmasından dolayı kaplama 

aşamasında kullanılması uygun görülmüştür. Sol-gel kaplama sayesinde yüzeyde 

oluşan fonksiyonel amin grupları doğrudan enzim immobilizasyonu için kullanıldığı 

gibi alternatif bir yöntemin de geliştirilmesiyle yüzeyde oluşturulan fonksiyonel 

karboksil grupları da enzim immobilizasyonu için kullanılmıştır. Bu amaçla 

kullanılan poli-akrilik asit molekülleri yüzeye kovalent olarak bağlanmış ve bunu 

takiben enzim immobilizasyonu gerçekleştirilmiştir. Uygulanan her iki kaplama 

tekniğinin de enzimlerin yüzeye aktif biçimde bağlanmasını mümkün kılması 

karşılaştırma açısından ekstra bir avantaj sağlamaktadır. 

Çalışmalar boyunca gerçekleştirilen tüm kaplama aşamaları Fourier Transform 

Infrared Spektroskopi ve Atomik Kuvvet Mikroskobu yöntemleri kullanılarak 

karakterize edilmiştir. Sol-jel kaplanan yüzeyler üzerine kovalent olarak bağlanmış 

enzimlerin aktiviteleri, yapılan spektrofotometrik çalışmalarla test edilmiş ve anti-

biyofilm etkinlikleri konfokal taramalı lazer mikroskobu aracılığıyla yerinde 

görüntülenmiştir. Çalışmalarda kullanılan yüzeyler ise medikal cihazların yapımında 

ve endüstriyel cihaz ve malzemelerin üretiminde sıklıkla kullanılan paslanmaz çelik 

yüzeylerdir. Bu yüzeylerin hiçbir muameleye maruz kalmadığı ilk hallerinden enzim 
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kaplanmış son hallerine kadar tüm adımları karakterizasyon çalışmaları ile 

incelenmiştir. 
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1 

1.  INTRODUCTION 

1.1 Purpose of Thesis 

A biofilm is essentially composed of microbial cells attached to a surface and 

covered completely with an extracellular polymeric matrix produced by biofilm-

forming bacteria (Costerton et al., 1995). Biofilm formation results in significant 

changes in gene expression and these changes are related with bacterial cell-to-cell 

signaling, also known as “quorum sensing” (Givskov et al., 2008). When these 

bacterial cells approach inert surfaces, they first get bound to these surfaces utilizing 

their external structures such as flagella, fimbriae or capsular components by weak 

forces (Xavier et al., 2005). As the cells remain attached to the surface for some 

period, they start to secrete extracellular polymeric substances (EPS) in order to 

compose a biofilm matrix that embeds many layers of bacterial cells when the 

biofilm develops (Orgaz et al., 2006). Bacterial EPS are generally composed of a 

wide variety of materials like polysaccharides, proteins, nucleic acids, uronic acid 

and humic substances (Xavier et al., 2005; Orgaz et al., 2006). The EPS has several 

vital functions such as providing an adhesive foundation, structural integrity, 

bacterial protection and intercellular communication (Zhang et al., 2005; Ploux et al., 

2007; Leroy et al., 2008).  

Due to highly enhanced resistance to antibiotics and disinfection treatments, 

uncontrollable and undesirable accumulation of cell aggregates cause serious 

problems in biomedical applications, infections in humans and corrosion and 

equipment failure in industrial settings. Studies concerning biofilm effects on human 

health are generally performed on water systems, prosthesis and implants. Biofilm 

formation and metabolic activities within may cause serious community health risks. 

Most of these health risks are nosocomial infections of gastrointestinal, eye and ear 

etc. Complex laparoscopic devices, which are very sensitive to disinfection and 

sterilization, used in minimal invasive surgery and other surgical instruments are 

common places of biofilm formation. Due to these facts, there is a growing demand 
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towards developing strategies to remove and protect the surfaces against biofilm 

formation (Vijayaraghavan et al., 2006).    

Several attempts have been made to protect the surfaces of materials, instruments and 

equipments by addition of antimicrobial, biocidal and non-adhesive substances for 

coating, addition of diffusible toxic agents and changing surface roughness. In one of 

these studies, physical and chemical properties of biomaterial surface are modified 

by coating with a hydrogel. This method was effective in reducing bacterial adhesion 

but it was difficult to cover the surface uniformly (Bayston et al., 2005). In another 

attempt, cuffs on catheters were coated with silver (Bong et al, 2003). The drawback 

of this approach was degradation of the cuff, which results in diffusion of silver ions 

and loss of antimicrobial activity (Raad, 1998). Antibiotics have also been coated 

onto surfaces but with the emergence of microbial resistance, this kind of 

applications had short-lived effect (Raad et al., 1995; Schierholz et al., 1997; 

Lelievre et al., 1999). 

One of the solutions to overcome the problem with biofilm formation could be the 

replacement of biocides with non-toxic alternatives, such as enzymes (Kristensen et 

al., 2008). Enzymes have been used in several industries ranging from food industry 

to large scale biocatalysis and can also be used for the degradation and the removal 

of the bacterial biofilms (Orgaz et al., 2006; Kristensen et al., 2008, Leroy et al., 

2008).  Extracellular Polymeric Substances (EPS) in the biofilm matrix is the 

essential part of the biofilm development. The complexity and variability of biofilm 

polymers in the matrix described above could be the utility to use several enzymes 

like hydrolases and lyases, individually and/or their combinations. This could 

achieve a sufficient disintegration of the polymeric networks composing the biofilm 

matrix and detachment of the biofilm from the surface it was attachhed (Kristensen et 

al., 2008, Leroy et al., 2008). 

The reasons for using these biocatalysts are that they are environmentally safe, non-

toxic to mammalian cells and act on their substrates specifically by retaining their 

activity for a long period if immobilized. Thus, surface immobilized enzymes could 

provide surfaces with anti-adhesive and antifouling properties (Kristensen et al., 

2008). 
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The main objective of the present thesis was to obtain a thin film coating to serve as 

an “anti-biofilm coating” for the prevention of bacterial colonization. In order to 

obtain this antimicrobial surface coating, sol-gel technology and carbodiimide 

chemistry were applied for immobilization of enzymes. Covalent immobilization of 

the enzymes on stainless steel surfaces which was previously modified by a 

hydrogel-type layer alone and also with polyacrylic acid by using azide/nitrene 

chemistry was done. The presence of amine groups in the sol-gel silicate network 

provided functional sites for covalent attachment of other molecules containing other 

functional sites. Spectroscopic characterization of immobilization steps and 

determination of other parameters such as enzyme coating efficiency was performed 

and determined by using Atomic Force Microscopy (AFM), spectrophotometric 

assays and Fourier Transform Infrared Spectroscopy (FTIR). Finally, a biofilm study 

in a parallel plate flow cell system containing control and coated test materials was 

designed to study biofilms growing under a range of conditions (high and low flow 

rates, different temperatures etc.) which facilitates non-destructive imaging of 

biofilms by using Confocal Laser Scanning Microscopy (CLSM). Pseudomonas 

aeruginosa was chosen especially because it is a model organism for biofilm studies. 

1.2 Literature Review 

1.2.1 Bacterial biofilms 

In natural environments, bacteria alternate between planktonic and sessile states in 

response to environmental factors. The latter form is generally referred to as biofilm 

mode of growth, which appears to contribute the increased resistance to most 

antimicrobials and host defence mechanism. Therefore, biofilm can be defined as:  

Aggregated bacterial cells surrounded by an adhesive matrix excreted by the cells 

which are more tolerant to antimicrobials and bacteria are protected from attack by 

host immune cells.   

Over the last decade, the results obtained from various studies on planktonic bacteria 

have been used to explain the phenomena occurring in micro ecosystems.  The 

observation of planktonic bacteria in such systems has yielded important data, 

however the study of several environmental habitats has revealed relatively low 

numbers of planktonic cells.  In such environments, total biofilm bacterial count was 
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estimated to be approximately 1000-fold higher than the planktonic count (Costerton 

et al, 1995).  

There is a realization that microorganisms should not be studied just only as biofilms 

but also in the context of interactions with their microenvironments. The 

environment exerts an effect on the metabolism of bacteria and the biofilm research 

represents the best tool to examinate growth in natural and ecosystems of interest. 

Planktonic bacteria are highly motile, they have enormous access to nutrients and 

multiply rapidly, when compared to sessile bacteria.  

Biofilms are community of bacterial cells attached to a surface and surrounded by an 

adhesive matrix excreted (encased in an exopolymeric coat) by the cells. Bacteria can 

communicate and form biofilm nearly on all surfaces through the quorum sensing 

pathway, from cellulose to silicone and glass to steel, which are significant materials 

used for the production of medical instruments. Medical devices have been sterilized 

by the medical industry with gaseous agents for many years but the majority of the 

contamination or the corrosion process occurs after the adhesion of the 

microorganisms and their growth happen inside the human body (de Carvalho, 

2007). As it is seen, bacterial biofilm formation on medical instruments causes harsh 

treatments for human implant surgery. For example, a major number of knee 

prostheses and catheters had to be changed due to bacterial infections (Schierholz 

and Beuth, 2001). In food industry, microorganisms can attach and grow on food and 

biofouling causes important potential hazards. Not only harmless microorganisms 

but also pathogenic bacteria can form biofilms on food surface. They have the ability 

to reduce flow and heat transmission, block membrane pores or cause energy losses 

(Kumar and Anand, 1998). 

When bacterial cells contact with inert surfaces, they first attach to the surface by 

their external structures such as flagella, fimbriae and/or capsular components. When 

the cells remain attached on the surface they secrete sticky extra cellular substances 

forming a matrix gel. The matrix consists of mainly polysaccharides, besides of 

proteins, nucleic acids, lipids, mineral ions and various cellular debris. Several layers 

of cells embedded in the matrix gel and the layer of cells within the matrix is called 

biofilm (Costerton et al, 1995). 
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Figure 1.1 : Stages of biofilm formation and development (Url-1).  

The accumulation of microorganisms on the surfaces and the formation of biofilm 

depend on many factors prevailing in the system, such as temperature, humidity and 

hydraulics of the system, surface material and microbial occurrence in the water. 

Microorganisms attach on a living or non-living surface, aggregate on their self 

produced-extracellular polymeric matrix and form biofilm layer. These sessile 

communities may be any microorganism such as bacteria, fungi, protozoa and any 

other microorganisms secreting extra cellular polysaccharides. Biofilm layer, formed 

by bacterial aggregation and attachment on surface, may lead to corrosion causing 

serious damage. Thick biofilm layers and metabolic activities running inside; make 

fluid flow more difficult and cause block in water pipes. Biofilm layer also acts like a 

barrier and affects heat transfer negatively. Even though biofilm layer does not reach 

a thickness leading corrosion, it may become visible. So, biofilm formed on visible 

and available surfaces cause visual pollution and also bad odors (Pratt and Kolter, 

1999; Hall-Stoodley and Stoodley, 2002). 

In Figure 1.1, stages of the biofilm formation and development can be seen. The first 

stage of the biofilm formation is the initial reversible attachment of free swimming 

microorganisms to the surface by weak forces. The second stage is the permanent 
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chemical attachment of these microorganisms in a single layer. In this stage, slimes 

are produced and irreversible attachment takes place. The third stage is the early 

vertical development of biofilm in which Extracellular Polymeric Substances (EPS) 

are also produced. The fourth stage is the production of multiple towers with 

channels between them. In this stage, maturing of the biofilm occurs by growing, 

formation of pores and water channels for transfer. The fifth and the last stage of the 

biofilm life cycle is the detachment of the mature biofilm and the dispersion of the 

biofilm-forming free swimming microorganisms to any other surface (Url-1, 

Costerton et al., 1995). 

1.2.2 Infections and biofilm 

Biofilm formation and metabolic activities within do not only has negative effect on 

device and system performance, it also cause serious health risks in community. 

Most of these health risks are nosocomial infections of gastrointestine, eye and ear 

etc., targeting patients with weaker immune system. It is now well-known that 

biofilm formation is an important factor in many diseases like native valve 

endocarditis, osteomyelitis, dental caries, middle ear infections, medical device-

related infections, ocular implant infections, and chronic lung infections in cystic 

fibrosis patients. Bacterial infection in those implants have a potential of serious 

complications which generally ends up with premature implant removal. This 

situation is economically harmful and also might be lethal due to the nosocomial 

infections. (Gupta and Kumar, 2008). 

Since microorganisms of biofilm easily and rapidly develop resistance to any 

condition (disinfectants, antibiotics and other stress factors), such contaminations 

require continuous, complex and combined treatment methods (Jefferson, 2004).  

1.2.3 Quorum sensing 

During the evolutional process, bacteria have evolved a wall in order to protect 

themselves from their enemies. This protection is related with their lifestyle which 

can be defined as biofilms and can be illustrated as attached to a surface, forming 

colonies in macro size surrounded with polymers which they produce biologically. 

This biofilm formation is regarded as a strategy for these bacteria to survive. This 

confederation provides bacteria some advantages, like increased tolerance and 

adaptation to several responses. Also, bacteria inside the biofilm structure can 
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communicate with each other with a special way called quorum sensing. For this 

communication, bacteria produce small signal molecules, which can diffuse into their 

environment and provide a concentration-dependent  interaction with special receptor 

proteins. Quorum sensing is related with several vital processes like the control of 

expression of virulence factors, motility, protection, biofilm formation/maintenance 

etc. and is evolved to sense and monitor the population density among the bacteria 

(Bjarnsholt and Givskov, 2008). 

QS is discovered in 1970s while studying the bioluminescence in deep-sea fishes 

(Bjarnsholt and Givskov, 2008). The most intensely studied quorum sensing system 

is that of the A bioluminescent marine bacterium,  V. fischeri and its quorum sensing 

system is one of the most extensively studied system. This bacterium lives in a 

symbiotic relationship with several eukaryotic hosts. When V. fischeri cells are at a 

very high density, its host produces a special light organ. In this symbiotic 

relationship, the eukaryotic host provides V. fischeri a nutrient-rich environment for a 

living and V. fischeri provides light to its host that can be used for several specific 

purposes such as an antipredation strategy, or attracting a mate or a prey or warding 

off predators (Miller and Bassler, 2001).  

1.2.3.1 QS systems of gram-negative bacteria 

QS systems controlled by N-acyl-L-homoserine lactones (AHL), also known as 

autoinducers, are widely-studied and well-known examples. These molecules are 

widely conserved signal molecules that take place in the quorum sensing 

mechanisms of many gram-negative bacteria. The bacteria first release, then detect 

and respond to the accumulation of these signal molecules for the coordination of 

some cellular activities and synchronize the expression of some genes (Dong et al, 

2002). These QS systems are involved in several functions and processes of the 

bacteria like plasmid conjugation, antibiotic production, virulence gene expression 

and surface motility. The AHL signal molecules are variable among the bacteria and 

some bacteria can produce more than one type of AHL. Despite these differences, all 

AHL molecules are composed of an acyl chain with a variable number of carbon 

atoms. This hydrocarbon backbone might have some replacements at specific 

positions like a hydroxyl- or oxo-group at the third carbon atom which is the most 

widely seen one. The acyl backbone is conjugated to a lactonized homoserine by an 
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amide bond (Bjarnsholt and Givskov, 2008). AHL quorum-sensing molecules are 

charming and attractive molecules to be used as target for genetic and chemical 

manipulation. These molecules are highly conserved by having the same homo-

serine lactone moiety but differing in terms of the length and the structure of the acyl 

side chain. The general property of the AHL-mediated gene regulation process is a 

cell population (density)-dependent regulation named as the quorum sensing (Dong 

et al, 2002).   

 

Figure 1.2 : A quorum-sensing model based on acyl homoserine lactone 

signaling systems (Asad & Opal, 2008). 

1.2.3.2 QS systems of gram-positive bacteria 

QS systems are also available in Gram (+) bacteria but it is different in terms of 

signal molecules when compared to the systems of Gram (-) bacteria. Instead of the 

AHL molecule-based system in Gram (-) bacteria, the QS system in these bacteria 

work by using small signaling peptides, which are variable in length. These peptides 

are cleaved and processed inside the cells and then moved out by active 

transportation. These transported peptides interact with transmembrane receptors of 

two-component regulatory systems and initiate a response inside the cell. When the 

density of the bacteria increases, the concentration of the signal peptides also 

increases and this results with the expression of the QS-regulated genes. For instance 

the formation of genetic competence and sporulation in Bacillus subtilis and the 
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expression of virulence genes in Enterococcus faecalis and Staphylococcus aureus 

are controlled with this QS-based system (Bjarnsholt and Givskov, 2008) 

1.2.3.3 QS and biofilm formation 

The first evidence of the relatedness with QS system and the biofilm formation was 

identified for S. liquefaciens and Pseudomonas aeruginosa. The reason for this 

relation relies on the advantages of the biofilm structure (Bjarnsholt and Givskov, 

2008). The studies of Davies et al showed that a cell-to-cell signal is necessary for 

the development of a differentiated Pseudomonas aeruginosa biofilm which can be 

defined as the complex multicellular structures composed of individual cells. For this 

differentiation, the generation of signal molecules are vitally important because if the 

generation of these signal molecules are blocked, this becomes an obstacle for the 

differentiation causing an abnormal biofilm formation which is sensitive to outer 

effects like biocides. So, controlling the biofilm differentiation and its structural 

integrity by quorum sensing is really important regarding the effects of these 

biofilms on structures like medical devices or even in wounds or organs (Davies et 

al, 1998, Bjarnsholt and Givskov, 2008). Biofilm structure is advantageous and ideal 

for QS regulation of gene expression because the cells in biofilm structure are very 

close to each other. Bacteria in the biofilm structure have increased levels of 

tolerance towards antimicrobial agents when compared with planktonic structures. 

The biofilm structure has natural resistance to antibiotics and other biocides and 

biofilms in these environments are difficult to eradicate. So the inhibition of these 

cell-to-cell signals could be helpful in the treatment and removal of biofilm structure. 

When the QS system and regulation is blocked, biofilms are more susceptible or less 

tolerant to antibiotics, biocides and detergents. (Bjarnsholt and Givskov, 2008) 

1.2.4 Strategies for the prevention of biofilm formation 

Several methods exist to prevent biofilm formation on materials. Application of 

detergents and biocides on substrates are well known procedures and has been 

widely used. Unfortunately, these methods are not sufficient to prevent biofilm 

formation and sometimes they have detrimental effects to environment. Due to their 

hazardous effects, using of biocides in paints or coatings on metallic surfaces is 

restricted and hence, new strategies have to be considered to protect metallic surfaces 

from biofilm growth (Dafforn et al, 2011). If a biofilm structure is efficiently formed, 
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the microorganism in this biofilm structure can tolerate antimicrobial agents at very 

high concentrations, like 10 to 1000-times that needed to kill genetically equivalent 

planktonic bacteria. Besides, they are extremely resistant to phagocytosis and 

degradation, that causes biofilms to be very difficult to eradicate from living hosts 

(Jefferson, 2004) 

In order to protect surfaces against microbial attacks, functional coatings are widely 

preferred when bulk properties of substrates needed to be conserved.  A fine thin film 

coating should have resistence to corrosion, good adhesion to substrate and precise 

chemical control in order to meet the required functionality and permanence criteria. 

Sol-gel technology presents numerous advantages including high biocompatibility, 

non-toxicity, low-temperature processing and easy application to any kind of 

substrate. Moreover, sol-gel procedure is carried out in low temperature which gives 

considerable advantage for preparation of materials in industry (Gupta and Kumar, 

2008). 

1.2.4.1 Silver ions 

Silver is thought to be an ideal candidate for coating devices for the prevention of 

biofilm formation because free silver ions at defined concentrations may be 

bactericidal but silver ions are toxic to human cell cultures (Schierholz et al, 2000). 

Silver ions have a well-known antibacterial mechanism. Metallic silver is inert and 

does not react with any human or bacterial cells. Besides, silver ions bind to and 

react with proteins and enzymes, causing structural changes in the bacterial cell wall 

and membranes and resulting a cellular disintegration and death of the bacterium. 

The effects of silver on bacteria include binding with cellular DNA, inhibiting 

enzymes taking place in the respiration and reacting with sensitive thiol groups on 

bacterial proteins that eventually malfunctions the basal biological activity of the 

protein (Stobie et al, 2009). Silver ions also bind to bacterial DNA and RNA, which 

causes an inhibition for the vital processes of the bacterium, however, it has no effect 

on the human body because there is an absorbtion of the excess silver by the necrotic 

tissue or the secretion in the urine (Bjarnsholt et al, 2007; Lansdown, 2002). Silver 

has been used in the past as coatings on many polymeric materials to prevent device-

related infections (Kampf et al, 1998; Schierholz et al, 1998; Schierholz et al, 1999). 

The silver ion (Ag+) binds strongly to electron donor groups such as sulphur, 



11 

oxygen, or nitrogen in biological molecules. The silver ions can also act by 

displacing the other essential ions such as Ca++ or Zn. The antibacterial properties of 

silver coating were found to be dependent on the activity of silver ion (Ag+) and the 

rate of silver ions released, which apparently depends on the thickness of the coating. 

If the amount of silver released is too high, the coating will be cytotoxic. Moreover, 

Schierholz has reported that the minimum inhibitory concentration of silver towards 

Staphylococci can be up to 10 mg/ml (Schierholz et al, 1998). 

Several in-vitro and in-vivo studies have been performed on several silver-coated 

catheters and silver-coated vascular prostheses during the last decade and 

randomised clinical studies have shown equivocal results for such coatings. The 

variable results for silver-coated surfaces and high concentration of silver ions 

required for bacterial inhibition and the leaching of silver ions from the surface, 

which might result in adverse effects to the host environment, such as metal ions 

accumulation in other body organs, making this coating clinically impractical 

(Kampf et al, 1998; Schierholz et al, 1998). In a cellular environment containing 

albumin and halide-ions, the antibacterial activity of silver ions will be decreased due 

to the specific absorption with albumin and precipitation into insoluble silver 

chloride. Metallic silver has only slight antibacterial effects because it is chemically 

stable. Silver-coated medical devices may only be clinically effective when the 

concentration of free silver ions can be increased and when contact to albumin and 

chloride ions, and in this case possible cytotoxic effects are also minimized. Due to 

their controversial clinical efficacy, silver coated medical devices are not well 

established in clinical use (Schierholz et al, 1998). 

1.2.4.2 Enzymes 

One of the solutions to overcome the problem with biofilm formation could be the 

replacement of biocides with non-toxic alternatives, such as enzymes (Kristensen et 

al., 2008). Enzymes have been used in several industries ranging from food industry 

to large scale biocatalysis and can also be used for the degradation and the removal 

of the bacterial biofilms (Orgaz et al., 2006; Kristensen et al., 2008, Leroy et al., 

2008).  Extracellular Polymeric Substances (EPS) in the biofilm matrix is the 

essential part of the biofilm development. The complexity and variability of biofilm 

polymers in the matrix described above could be the utility to use several enzymes 
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like hydrolases and lyases, individually and/or their combinations. This could 

achieve a sufficient disintegration of the polymeric networks composing the biofilm 

matrix and detachment of the biofilm from the surface it was attachhed (Kristensen et 

al., 2008, Leroy et al., 2008). Besides these enzymes, some enzymes that specifically 

blocks the bacterial cell-to-cell communications can also disable the bacterial 

population-density-dependent attack. This is called quorum-quenching mechanism 

that can be used as a strategy in controlling bacterial pathogens and to build up a 

proactive defense barrier (Zhang, 2003). Examples to these enzymes are AHL 

Lactonase and AHL Acylase whose degradation mechanism for AHL can be seen in 

Figure 1.3. Dong and his colleagues have reported cloning of a gene named as 

aiiA240B1, which codes for a novel AHL-inactivating enzyme named as AiiA240B1 

from the gram-positive bacterium Bacillus sp. Strain 240B1. This enzyme inactivates 

the activity of AHL by hydrolyzing the lactone bond of the molecule. This gene was 

also transformed to E. carotovara strain SCG1 and successfully expressed in this 

plant pathogen to show that the enzyme produced by this gene significantly reduces 

the release of AHL signal molecules and the extracellular pectrolytic enzyme 

activities were also diminished attenuating its pathogenicity to several plants it can 

act on (Dong et al, 2000). It was also shown that transgenic plants expressing AHL 

lactonase enzyme show remarkably enhanced resistance to E. carotovara infection 

and attenuated the sypmtoms of the diseases caused by this plant pathogen (Dong et 

al, 2001). Leadbetter and Greenberg have reported that they have isolated a motile, 

rod-shaped bacterium from the soil, which was later classified as a strain of 

Variovorax paradoxus, and it had the ability to use N-(3-oxohexanoyl)-L-

homoserine lactone molecule as the sole source of energy and nitrogen. Bacteria 

which synthesize AHL molecules do not degrade them and these molecules are 

stable at neutral or acidic pH in aqueous solutions. Besides, the homoserine lactone 

ring is subject to alkaline hydrolysis. Enzymes degrading AHL molecules are 

therefore important as they could be used commercially for controlling cell-to-cell 

signaling. As these molecules are stable under acidic conditions, biological 

degradation of these molecules might be an important tool for maintenance of these 

signals at low concentrations (Leadbetter and Greenberg, 2000). Lin and his 

colleagues have reported that they have cloned and expressed a gene which encodes 

an AHL-acylase from a Ralstonia species, strain XJ12B, isolated from a biofilm 

structure composed of mixed species. The gene responsible for the signal 
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inactivation in this bacteria, named as aiiD, was cloned and expressed in Escherichia 

coli. Their studies have shown that this expressed gene has inactivated three AHL 

molecules tested by hydrolysing the AHL amide structure, releasing the homoserine 

lactone and the corresponding fatty acid structure. They have also shown that 

expression of AiiD in Pseudomonas aeruginosa has resulted in quenching of the 

quorum sensing action of this bacterium and also decreased the swarming ability, 

elastase and pyocyanin production and the nematode-paralysis action of the 

bacterium (Lin et al, 2003).  

 

Figure 1.3 : Reactions of AHL Acylase and AHL Lactonase (Zhang, 2003). 

1.2.4.3 Furanones 

Furanones act as quorum sensing inhibitors (QSI) via intracellular pathways when 

they are free on the environment or they show their activity when coated on surface. 

Azide-nitrene chemistry iz utilized for this coating process because furanones do not 

have reactive chemical substituents and they contain labile lactone ring, which is 

essential for their antibacterial effectiveness, under both acidic and alkaline 

conditions that prevent the use of selective and well known immobilization 

techniques. Azide-nitrene chemistry is compatible with all the furanone compounds 
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and does not need the existence of reactive groups in the molecular structure of 

furanone   (Al-Bataineh et al, 2006) 

Furanone molecules are a part of the chemical defense system, built up by the marine 

alga, Delisea pulchra, which prevents colonization on their surfaces through 

production of halogenated furanones, reside in vesicles on the surface of the 

organism. In previous works these compounds and their analogues have been shown 

to inhibit or prevent growth of both gram negative and gram-positive bacteria (Read 

and Kumar, 1999; Kjelleberg et al, 1999; Read et al, 2001)  

The rationale of the use of these novel molecules are environmentally safe and non-

toxic to mammalian cells (Baveja et al., 2004) and act more specifically than the 

traditional methods. 

When the biofilm-forming bacteria is treated with QSI molecules, the concentration 

of activated receptor proteins is kept at a minimum level, although the density of the 

bacterial population and signal molecule concentration increase and this prevents the 

expression of QS-regulated genes. Due to this, bacteria are kept in a harmless and 

attenuated state. These QSI molecules include synthetic halogenated furanone 

compounds (Figure 1.4a and 1.4b), penicillic acid (Figure 1.4c) and patulin (Figure 

1.4d) which is produced by certain fungi (Bjarnsholt and Givskov, 2008). 

 

 

Figure 1.4 : The principle of QS Inhibitors (Bjarnsholt & Givskov, 2008). 
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1.3 Sol-Gel Technology 

Sol-gel technology is a combination of different scientific disciplines and so it is a 

very useful improvement in science with several applications. Shortly, it can be 

defined as the process of producing doping scaffolds for several molecules like 

inorganic, organic and biomolecules by forming a glassy matrix (Gupta and Kumar, 

2008). Recently, sol-gel technology has been studied with an increased attention as a 

new method for the development of modified materials and surfaces as well as the 

fabrication of optical materials, semiconducting devices, colloidal powders for 

chromatography applications, hydrogen storage materials, biomedical device 

coatings, chemical sensors and electrochemical biosensors (Gupta and Kumar, 2008, 

Yang et al., 2003). This technology has several advantages like simplicity, 

versatility, inertness, mechanical stability and applicability of chemical or biological 

modification (Yang et al., 2003). The reasons of sol-gel technology to be used in so 

many different applications arises from the processing advantages of the technology 

(Gupta and Kumar, 2008) and also the porosity of the of the matrix (Yang et al., 

2003). The application of the technology requires low temperature and its 

biocompatible and enviromentally-friendly nature makes it ideal for producing 

bioactive materials. Also, sol-gel technology enables the manipulation and the 

control of the structure of materials at molecular level which makes it paractical for 

several applications. Another advantage of the sol-gel derived layers is that they 

provide a large and active surface area which can be utilized for functionalizing the 

surface by appropriate biomolecules. Materials obtained via sol-gel technology have 

become the useful biomaterials for several applications by getting mechanically 

stronger, biocompatible and bioactive materials like metallic implants with 

diminished corrosion (Gupta and Kumar, 2008). 

As the name implies, sol-gel methodology is the transition of a system from a liquid 

“sol” phase to a solid “gel” form. This percursor solution is mostly prepared by using 

silica-based chemicals like tetramethyl-orthosilicate (TMOS) and tetraethyl-

orthosilicate (TEOS) (Gupta and Kumar, 2008). Covalent bonding of any molecule 

to the sol-gel silicate netwotk is accomplished with this suitable functional group 

(Yang et al., 2003). The initial reaction begins by combining these metal alkoxides 

with water and a solvent, which is mostly an alcohol, in the presence of a catalyst, 

which can be either an acid or a base. Once this initial reaction is activated, 
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simultaneous hydrolysis and condensation reactions take place. Hydrolysis results 

with the formation of the silanol groups (Si-OH) whereas condensation leads to the 

production of siloxane bonds (Si-O-Si), releasing alcohol and water as the by-

products. These chemical reactions and different processes have major effects on the 

final gelated product. Thin films can be fabricated on the material by using dip, spin 

and spray coating techniques. In the transition state from sol to gel phase, the 

viscosity of the solution increases gradually to form a rigid and porous network 

structure. Following the gel formation, further processes like heating and drying 

helps to obtain dense ceramic or glass particles or matrices which can be used for the 

entrapment or immobilization of different inorganic and organic molecules, 

including biomolecules (Gupta and Kumar, 2008). 

1.4 Pseudomonas aeruginosa  

Pseudomonas aeruginosa is a gram-negative opportunistic human pathogen that 

causes disease which mostly affects the immunocompromised people, having cystic 

fibrosis or suffering from intense wound caused by burning (Reimmann et al, 2002). 

The taxonomical classification of Pseudomonas aeruginosa is given at Table 1.1. 

They are proteobacteria under the class of gamma proteobacteria. Some of these 

opportunistic conditions show up when normal mucosal barriers have been somehow 

breached or bypassed, when immunologic defense mechanisms have been weakened, 

when the protective function of the normal bacterial flora has been disrupted by 

broad-spectrum antibiotic therapy, and/or when the patient has been exposed to 

reservoirs in a hospital environment (Shirtliff et al, 2002). 

The bacterium controls its virulence by cell density via the diffusible signal 

molecules, also called as autoinducers, named as N-acylhomoserine lactone (AHL) 

molecules. It utilizes two N-acylhomoserine lactone (AHL)-dependent quorum 

sensing systems, identified as las and rhl, that controls the production of population 

density and growth-phase-dependent virulence factors. This cell-to-cell 

communication is vital for the virulence of this pathogen by controlling the 

production of extracellular virulence factors and toxic secondary metabolites through 

a complex regulatory cascade involving two autoinduction systems which is also 

known as quorum sensing (Reimmann et al., 2002). Pseudomonas aeruginosa 

produces and responds to two different AHL molecules. One of these molecules are 
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3-oxododecanoyl-homoserine lactone (3OC12HSL), which is the signal molecule of 

the las quorum-sensing system and also named as PAI. The second molecule is 

butanoyl-HSL (C4HSL), which is the signal molecule of the rhl quorum-sensing 

system and also named as PAI-2. These two quorum sensing mechanisms take role in 

the control of several physiological activities and virulence factors which are related 

with the infection of immunocompromised people and the ones suffering cystic 

fibrosis (Huang et al., 2003).  

Table 1.1 : Taxonomical classification of Pseudomonas aeruginosa (Url-2).  

 

1.5 Lysozyme  

Lysozyme (EC 3.2.1.17) is a hydrolytic enzyme that hydrolyse the β-(1,4) glycosidic 

bond between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, 

which is the major cell wall polymer of the Bacteria. Due to this hydrolytic activity, 

lysozymes are involved in bactericidal mechanisms of several organisms like fungi, 

protozoa, plants, invertebrate and vertebrate animals and even bacteriophages like T4 

(Callewaert et al, 2008; Düring et al, 1999).  

Lysozyme was discovered by Alexander Fleming in 1922 by accident. The nasal 

drippings were accidentally occurring in the petri dish with bacterial culture and 

these cells were lysed. This phenomenon was carefully investigated and the main 

acting enzyme was identified as lysozyme. Lysozyme belongs to the hydrolases (EC 

3.-.-.-) enzymatic class and within the class of hydrolases, lysozyme belongs to the 

Glycosylases family (EC 3.2.-.-).  
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Lysozyme reaction is the hydrolysis of the beta (1-4) glycosidic bond between N-

acetylglucosamine sugar (NAG) and N-acetylmuramic acid sugar (NAM) and 

therefore it is possible classify it as Glycosidases; enzymes hydrolyzing O- and S-

glycosyl (EC 3.2.1.-) with number 17 (EC 3.2.1.17) in this group (Url-3). 

 

Figure 1.5 : The substrate of lysozyme (The beta (1-4) glycosidic bond between N-

acetylglucosamine sugar (NAG) and N-acetylmuramic acid sugar 

(NAM) to be hydrolysed during the lysozyme reaction are circled) (Url-

3). 

 

Most of the Gram-negative bacteria are not affected by the action of lysozyme alone 

due to the stability of their outer membrane, which avoids the reaching of the enzyme 

to the peptidoglycan layer. Nevertheless, animals get over this problem by 

manufacturing additional antibacterial proteins to permeabilize the outer membrane 

of the bacteria. Lactoferrin is an example of this. Additionally, some of the naturally 

found lysozymes and the chemically or genetically modified hen egg white lysozyme 

have been shown to be effective against some of the Gram-negative bacteria without 

this kind of permeabilizers (Callewaert et al, 2008).Research on heat-denatured hen 

egg white lysozyme also showed an increased bactericidal effectiveness against 

Gram-negative bacteria in which the enzyme is partially unfolded, enzymatically 

inactive and in a hydrophobic dimeric form. This bactericidal activity is based on the 

insertion of the dimeric form to the membrane of the Gram-negative bacteria and a 

successive disruption of the membrane (Düring et al, 1999). 
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2.  MATERIALS AND METHOD 

 

2.1 Materials 

3-aminopropyltrimethoxysilane (APTMOS, 97%), Methyltrimethoxysilane 

(MTMOS, 98%), hydrochloric acid %37, methanol, sulfuric acid 95-97% (analytical 

grade) and potassium bichromate were purchased from Merck. 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) and poly(acrylic acid) 

solution (average Mw ~250,000, 35 wt. % in H2O) (PAA) was purchased from 

Sigma-Aldrich. 316 L stainless steel (SS) coupons (1cm in diameter, 0.2 cm in 

thickness) were purchased from Gama Metallurgy. Mica sheets (grade V-4, 1 cm in 

diameter) were purchased from SPI. Pseudomonas aeruginosa PAO1 strain (ATCC 

15692) was supplied by Arçelik A.Ş. Hygiene Research Center from ATCC, USA. 

Lysozyme from chicken egg white (specific activity 24700 U/mg) was purchased 

from Applichem. pSMC21 vector was kindly provided by George A. O’ Toole from 

Darthmouth Medical School.  

2.2 Cleaning and Pretreatment of Stainless Steel Coupons 

316L stainless steel (SS) coupons (1cm in diameter, 0.2 cm in thickness), purchased 

from Gama Metallurgy, were cleaned and pre-conditioned according to literature 

methods (Minier et al., 2005; Chovelon, 1995). The coupons were ground with SiC 

sandpaper and polished using a 6 μm diamond suspension and rinsed with ethanol, 

then ultrasonically washed 15 minutes in cyclohexane, 10 minutes in water (three 

times) then 20 minutes in acetone. They were etched by sulfochromic acid (6 gr of 

potassium bichromate, Merck, in 100 ml of sulfuric acid 95-97%, Merck) at 60°C for 

10 minutes to generate a reactive oxide/hydroxide layer (SS-SC). They were 

extensively washed with water and dried under a flow of nitrogen. 
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2.3 Preparation of Stock Sol–gel Solution and Spin Coating 

A homogeneous stock sol–gel solution was prepared for the application of spin 

coating. 20 ul of this solution was applied on the coupon, so the stock solution was 

prepared according to number of coupons to be coated. For this, 30 volumes of 

methanol (Merck), 1 volume of 10 mM HCl (Merck), 30 volumes of MTMOS 

(Merck) and 20 volumes of APTMOS (Merck) (Yang et al., 2003) was mixed in a 

tube, applied on the middle of the previously polished coupons and spin-coated at 

2000 rpm for 30 seconds at room temperature. After coating the coupons, they were 

dried at 100°C for 1 hour (SS-SC-Sol). 

Sol-gel coating studies were also performed by using different polymers for further 

surface immobilization of enzymes. These polymers were polyethylene, 

polypropylene, polyvinyl chloride and polyether polyurethane. Before sol-gel coating 

trials, a surface etching procedure called “flame etching” was performed. The 

polymer coupons were passed over the flame of a Bunsen burner, however, the 

surface of some of the coupons have melted already due to the flame. So, flame 

etching procedure were performed by passing the coupons over the flame very very 

quickly. For comparison, some of the coupons were used without performing the 

flame etching procedure. The results of the sol-gel coating was not satisfactory due 

to instability of the coating on all of the coupons. After the drying step, the thin 

coating on the polymer surfaces stood up and the coating was not performed on these 

polymers, so the further studies for enzyme immobilization were performed by using 

stainless steel coupons.   

2.4 Immobilization of Lysozyme Molecules 

Following Lysozyme from chicken egg white (specific activity 24700 U/mg) was 

purchased from Applichem. Covalent immobilized of the enzyme was carried out on 

the sol–gel coated stainless steel coupons by using the free amine groups exposed on 

the surface of the sol–gel layer by carbodiimide chemistry. The sol–gel coated 

coupons were placed in a phosphate buffer solution (0.05 M, pH 6.2) which contains 

0.015 M EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, 

Sigma-Aldrich) and 0.03 M NHS (N-Hydroxysuccinimide, Merck) for 90 minutes, 

and immediately transferred to an enzyme solution of 10 mg/ml lysozyme prepared 

in the same buffer solution for another 90 minutes. Following the coating steps, the 
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enzyme-coated coupons (SS-SC-Sol-Lys) were rinsed with phosphate buffer 

solution, pH 6.2, in order to remove the excess unbound and adsorbed enzyme. All 

the steps for enzyme immobilization experiments were carried out at room 

temperature (Yang et al., 2003). 

 

Figure 2.1 : Schematic representation of lysozyme immobilization procedure.  

2.5 Surface Characterization 

2.5.1 AFM 

AFM scanning of the samples were performed in air at room temperature using 

Ntegra Vita (NT MDT, Zelenograd, Russia). The device was operated in semi-

contact mode and images were obtained using silicon cantilever Tap300 Al-G 

(BudgetSensors) with resonance frequencies of 200-400 KHz, force constant 40N/m. 

For each sample, several AFM scans (typically 1 x 1 µm) were made to check the 

surface uniformity. 2-D Fourier transforms of the images were obtained by using 

FFT analysis software tool and the surface root –mean square roughness which 

represents the standard deviation of the heights expressed in a three dimensional map 

were calculated for all images representative of the different coating steps.   

2.5.2 FTIR 

FT-IR analyses were conducted using Perkin Elmer Spectrum One FT-IR 

spectrometer equipped with an attenuated total reflectance device. Coated steel 

surfaces and corresponding compounds for comparison were placed onto a ZnSe 



22 

crystal with a 45 mirror angle. All analyses were performed with a resolution of 8 

cm-1 using 400 scans. 

2.6 Antibacterial Activity of Immobilized Lysozyme Molecules 

Lysozyme solutions with different concentrations (0.01 mg/ml, 0.1 mg/ml, 1 mg/ml, 

5 mg/ml and 10 mg/ml) were used to obtain the optimum coating solution 

concentration with different amine-exposing coupons. The enzymatic activity of 

these lysozyme-coated stainless steel coupons was measured on Micrococcus 

lysodeikticus cells using a procedure adapted from the classical lysozyme assay 

(Shugar, 1952). Substrates coated by lysozyme were placed in separate test tubes and 

covered with 3 ml of a 0.015% (w/v) suspension of M. lysodeikticus diluted from 

lyophilized bacteria in 66 mM phosphate buffer pH 6.24 and the tubes were placed 

on a shaker. Monitoring of enzymatic activity was carried out over a period of 6 

hours (two more measurements were done at 18th and 24th hours) by taking 1 ml of 

each suspension every 15 min and the turbidity was measured at 450 nm after which 

the suspension was put back into the reactor. Two control experiments were carried 

out to measure non-enzymatic bacterial lysis (= autolysis), whereby the turbidity of a 

stirred bacterial suspension alone and in the presence of an SS-SC coupon which was 

not coated with lysozyme was monitored. 

2.7 Biofilm Studies on Flow Cell and Their Detection by Using CSLM 

2.7.1 Electroporation of Pseudomonas aeruginosa PAO1 cells 

Pseudomonas aeruginosa PAO1 cells (ATCC 15692) purchased from ATCC was 

inoculated in Tryptic soy broth medium and were grown at 37 ºC for 16 hours. 

Following overnight incubation, this culture was centrifuged at 12.000 g for 3 

minutes. The cell pellet was washed twice with 300 mM sucrose solution and the 

pellet was resuspenden in 100 µl of mM sucrose solution carefully.  This 

resuspension of cells was mixed 2 µl (approximately 500 ng) of pSMC21 vector 

(which was kindly provided by George A. O’ Toole from Darthmouth Medical 

School) and transferred into the electroporation cuvette. 1800 Volts of electricity was 

applied for the entrance of the vector DNA into the PAO1 cells and the cells were 

incubated in 1 ml of Tryptic Soy Broth at 37 ºC for 2 hours. Following the 
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incubation, the cells were diluted with different dilution rates, varying from 10
0
 to 

10
-5

,spreaded on Tryptic Soy Agar plates including 100 µg / ml ampicillin and 500 

µg / ml kanamycin antibiotics and incubated at 37 ºC for 24 hours. Following 

overnight incubation, colonies were observed on agar plates and some of the single 

colonies were picked by sterile pipette tips and transferred to 5 ml of Tryptic Soy 

Broth and incubated at 37 ºC for 24 hours. Growing culture of the cells from single 

colonies were used for plasmid DNA isolation by using “Roche High Pure Plasmid 

DNA Isolation Kit”. Isolated plasmid DNA replicates were visualized on an agaores 

gel of %1 concentration.   

2.7.2 Biofilm formation and detection studies with CSLM 

Single colonies of PAO1 cells containing the  pSMC21 vector were used for the first 

inoculation of the flow cell. 200 µl of the cells were injected inside the flow cell 

mechanism. For the first hour, no medium flow was given into the flow cells in order 

to provide the adaptation period and static growth for the cells. When the cells were 

visualized on the surface of the coupons and composed the initial attached state of 

the biofilm, they were  incubated at 37 ºC for another 24 hours with medium flow 

over the coupons. The rate of the flow was 3 ml per hour and the cells were observed 

by using confocal laser scanning microscope. 

In order to visualize the PAO1 cells and possible biofilm structures, Leica TCS-SP2 

confocal scanning laser microscope was utilized. 10X/1.4 NA dry objective lens was 

used with 488 nm Argon laser and 515-540 nm emission filters. These filters were 

appropriate for the visualization of green fluorescent protein (GFP).  

Preliminary studies were also performed for the biofilm formation on stainless steel 

coupons and to visualize it by using Confocal Scanning Laser Microscopy. For the 

detection of biofilm formation, Pseudomonas aeruginosa PAO1 cells were 

transformed by using pSMC21 vector (kindly provided by George A. O’Toole from 

Dartmouth Medical School) which contains Green Fluorescent Protein gene with 

kanamycin and ampicillin resistant genes. Following transformation, these cells were 

used for the formation of biofilm on the coupons and were visualized by CSLM. 
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2.8 Alternative Method for the Immobilization of Lysozyme on Sol-gel Coating 

As an alternative method for the immobilization of lysozyme, PAA brushes were 

utilized as a linker between the sol-gel network and lysozyme (Figure 6). Sol-gel 

coated coupons which were prepared and used for the covalent immobilization of 

lysozyme by utilizing their free amine groups on their surfaces were reacted with 0.1 

w/v% aqueous solution of PAA (average Mw ~250,000, 35 wt. % in H2O, Sigma-

Aldrich) at pH 4 in order to obtain a PAA layer on their surface. Immediately after 

immersing the coupons, 5 mg/ml of EDC was added. The sample was incubated 

overnight (16 h) at 4°C with gentle shaking. The coupons were then extensively 

rinsed with water to remove non-covalently adsorbed PAA (SS-SC-Sol-PAA). 

Remaining carboxyl groups were then utilized to immobilize lysozyme molecules. 

These stainless steel coupons with carboxyl groups were placed in a phosphate 

buffer, pH 6.2 and then 0.1 M EDC and 0.1 M NHS were added. The coupons were 

kept in this buffer for the activation reaction to take place for 30 minutes. (Cullen, 

2008). Following the activation, the coupons were rinsed and reacted in a 10 mg/mL 

lysozyme solution in phosphate buffer, pH 6.2 for 90 minutes at room temperature. 

Lastly, the coupons were again rinsed with phosphate buffer to remove excess 

unbound/adsorbed enzyme and dried under a flow of nitrogen (SS-SC-Sol-PAA-

Lys). 
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Figure 2.2 : Reaction scheme for the immobilization of lysozyme on steel surface. 

The amine groups in the sol-gel network are utilized for the addition of 

carboxyl groups and then the covalent binding of lysozyme from its 

amine-end (left) or for the direct immobilization of lysozyme from its 

carboxyl-end (right). 
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3.  RESULTS AND DISCUSSION 

 

 

3.1 Optimization of Sol-Gel Coating 

The first step before the sol-gel coating of the coupons were to clean them and polish 

them to nanometers-scale. This was performed with SiC sandpaper and polishing 

diamond suspensions. Following polishing, the coupons were rinsed and washed 

ultrasonically with different polar and non-polar solvents, including absolute ethanol, 

cyclohexane, deionized water and acetone. After cleaning the coupons, they were 

etched by sulfochromic acid solution which is a harsh reactive containing potassium 

bichromate and sulfuric acid, which initiates the formation of a reactive 

oxide/hydroxide layer. The coupons were then cleaned with water by rinsing several 

times dried under a flow of nitrogen. These pretreated coupons were coated with a 

thin layer of silane film by using sol-gel technology. For this purpose, two silane 

monomers were used in the studies; 3-(Trimethoxysilyl)-propylamine (3-

aminopropyl trimethoxysilane, APTMOS) and Trimethoxymethylsilane 

(Methyltrimethoxysilane, MTMOS). The amine (NH2) group in the first monomer 

provides region for the covalent immobilization of the enzyme (lysozyme). Several 

different trials were performed (by using different solvents, molar ratios, mixing etc.) 

for the optimization of sol-gel coating solution. An example of an experimental trial 

bu using different silane monomer ratios can be seen in Table 3.1. These stock 

solutions were applied on the previously polished coupons and spin-coated at 2000 

rpm for 60 seconds at room temperature. Following the coating, coupons were dried 

at 100°C for 1 hour. These dried coupons were checked for the stability of the thin 

films applied on the coupon surfaces. When the ratio of the MTMOS over APTMOS 

was greater than 2, the stability of the stability of the thin film failed to stay on the 

coupon surface. Thin film over these coupons were taken off the surface after drying 
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so further experiments were performed with the ratio of the MTMOS over APTMOS 

as 1.5.  

Table 3.1 : Different APTMOS:MTMOS ratios used in the optimization studies 

 1:1 1:2 1:4 1:9 1:99 1:999 

Methanol 30 µl 30 µl 30 µl 30 µl 30 µl 30 µl 

HCl (10mM) 1 µl 1 µl 1 µl 1 µl 1 µl 1 µl 

MTMOS 25 µl 33,3 µl 40 µl 45 µl 49,5 µl 49,5 µl 

APTMOS 25 µl 16,7 µl 10 µl 5 µl 0,5 µl 0,5 µl 

3.2 AFM Analysis of Stainless Steel Coupons 

AFM imaging was utilized in all the steps of the coating procedure. Pretreated 

(uncoated) coupons, sol-gel coated coupons and sol-gel-coated and then lysozyme-

coated coupons were analysed separately to observe the surface differences between 

these stainless steel coupons. As it can be seen from the figure obviously, uncoated 

stainless steel coupon has several scratches resulting from the polishing steps (Figure 

3.1). However, in Figure 3.2, it can be seen that these scratches were completely 

covered and filled with sol-gel film. This was an expected result as the polishing 

steps are harsh steps causing scrathes on the stainless steel surface. These scratches 

were formed as nanometer-scales and with the aid of AFM-imaging these scratches 

were obviously visualized. The application of the sol-gel procedure acted as a filling 

material for these scrathes and also an interface for the immobilization of other 

chemicals, here the lysozyme molecules. The application of sol-gel coating also 

changed the surface toplogy of the coupons. The average surface roughness of the 

coupon decreased from 6.7 nm to 3.2 nm after the sol-gel coating of the stainless 

steel coupons. In Figure 3.3, the AFM image of the sol-gel coated coupon, which 

was later used for lysozyme immobilization, can be seen. The AFM imaging shows 

that the surface of these coupons were totally changed after lysozyme coating step. 

Possible lysoyme molecules are visualized on the surface of the coupon as a layer of 

small dots. The physical size of the lysozyme enzyme is defined as 3.36 nm in the 
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literature (Minier et. al, 2005). Although it is difficult to obtain this datum from the 

AFM image precisely, the size of the lysozyme enzyme is in a range of 3-4 nm  

 

Figure 3.1 : Uncoated (Pre-treated) Stainless Steel Coupon. 

 

Figure 3.2 : Sol-gel coated, EDC-NHS Treated Coupon. 
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Figure 3.3 : Lysozyme-Coated Coupon. 

 

3.3 FTIR Spectroscopy Analysis 

FT-IR spectroscopy analysis was also performed on lysozyme coated coupons. The 

results of these analysis can be seen in Figures 3.4, 3.5 and 3.6 and 7. The peaks at 

1564 and 1486 from sol-gel coated coupon are slightly shifted in sol-gel plus enzyme 

coated coupons through at 1633 and 1538 and those latter peaks correspond to amide 

I and amide II bands of the enzyme. The peaks can be seen at 1000 from Si-O bands, 

and a large peak between 3500 and 2500 is due to C-H and N-H bonds of sol-gel and 

enzyme. 
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Figure 3.4 : FT-IR analysis result of the sol-gel coated stainless steel coupons. 

 

Figure 3.5 : FT-IR analysis result of the sol-gel and lysozyme coated stainless steel 

coupons. 
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Figure 3.6 : The graph obtained by overlapping the two analysis results. The red 

lines belong to the sol-gel coated coupon and the blue lines belong to 

the sol-gel and lysozyme-coated coupon. 

3.4 Analysis of the Antibacterial Activity of Immobilized Lysozyme 

Lysozyme is a hydrolytic enzyme cleaving the polysaccharidic component of the cell 

wall of most bacteria and so, inducing the lysis of the cells. The enzymatic activity of 

lysozyme is generally assayed spectrophotometrically by monitoring the decrease of 

turbidity of a cell suspension of Micrococcus lysodeikticus. To measure the 

enzymatic activity, six different coupons were immersed in a suspension of 

Micrococcus lysodeikticus and its turbidity was monitored spectrophotometrically 

during 4.5 h (Figure 3.7). The first trial was performed for the optimum 

concentration of the lysozyme enzyme solution for efficient coating of the surface. 

For this purpose, solutions prepared with different enzyme concentrations were used 

for immobilization procedure.  
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Figure 3.7 : Spectrophotometric results of different enzyme concentrations used for 

coating and the activities of the coated coupons. 

 

Table 3.2 : Absorbance values obtained by spectrophotometric assay of different 

enzyme concentrations used for coating.  

Time 
(min) 

Pure 
Culture Blank 0.01mg/ml 0.1mg/ml 1mg/ml 5mg/ml 10mg/ml 

0 0,5116 0,5184 0,5343 0,5351 0,5224 0,5198 0,5255 

30 0,5157 0,5182 0,5309 0,5353 0,5201 0,5204 0,5247 

60 0,5184 0,5453 0,5349 0,5221 0,5266 0,5313 0,5249 

90 0,5414 0,5267 0,5494 0,5174 0,5329 0,515 0,5309 

120 0,5883 0,5331 0,5288 0,4475 0,4255 0,3151 0,3861 

180 0,6589 0,6497 0,6398 0,4978 0,4953 0,2365 0,3546 

270 0,7823 0,7993 0,8069 0,5651 0,5683 0,1448 0,3596 

330 0,8694 0,9203 0,9141 0,5952 0,5804 0,1158 0,3195 

360 0,9199 0,9868 0,9824 0,6127 0,5465 0,0761 0,2838 

1080 0,9461 1,0172 1,0139 0,5626 0,5183 0,0668 0,2656 

1440 0,5255 0,6825 0,6095 0,034 -0,0132 -0,1941 -0,056 

 

In Figure 3.7, the graph of the enzyme activity with different enzyme concentrations 

can be seen. Enzymatic activity towards the bacterial cells is lower when the enzyme 

concentration is low and higher activity was obtained with higher concentrations, 

except with 5 mg/ml and 10 mg/ml enzyme concentrations. This was the expected 

case as the higher lysozyme concentration means more amount of enzymes which 

can be covalently bound to the free amine groups on the coated stainless steel 
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surfaces. The only exception was 5 mg/ml and 10 mg/ml enzyme concentrations. 

This could be explained with the inhibition of the higher amounts of lysozyme and 

the efficiency of 5 mg/ml lysozyme concentration for the best interaction with the 

sol-gel coating. 

3.5 Biofilm Formation Studies and CSLM Imaging 

Pseudomonas aeruginosa PAO1 (ATCC 15692) cells were electroporated with GFP 

containing vector to be used for the visualization of biofilm formation studies under 

confocal microscopy. After electroporation and incubation on agar plates, plasmid 

DNA was isolated from the single colonies and extracted plasmid DNAs were run on 

agarose gel. The DNA bands observed around the 5148 bp band of the marker in 

Figure 3.8 belong to the pSMC21 vector. 

 

Figure 3.8 : Agarose gel electrophoresis of the plasmid DNA isolated from single 

colonies of the electroporated PAO1 cells. Tubes 1-2-3: Plasmid DNA 

of three different colonies grown on kanamycin-containing agar plates 

after electroporation. Tubes 4-5-6: Plasmid DNA of three different 

colonies grown on ampicillin and kanamycin-containing agar plates 

after electroporation. Tube 7: λ DNA standard (bands from up to down, 

respectively); 21226 bp, 5148 bp, 4973 bp, 4268bp, 3530 bp, 2027 bp, 

1904 bp, 1584 bp, 1375 bp, 947 bp, 831 bp, 564 bp. 

pSMC21 vector is a 4.8 kb-sized vector constructed by George A. O’ Toole and his 

colleagues from Darthmouth Medical School and was kindly provided by them. The 

vector contains both the Green Fluorescent Protein (GFP) and two different 
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antibiotics resistance genes; kanamycin ve ampicillin. This vector is actually the 

same with pSMC2 vector (Figure 3.9), which was again constructed by O’ Toole and 

his colleagues; just with an addition of the kanamycin-resistance gene. So, the cells 

containing the pSMC21 vector are able to grow in both ampicillin and kanamycin-

containing media with their resistance to both of the antibiotics. 

 

 

Figure 3.9 : pSMC2 vector map (pSMC21 vector used in the studies also contain the 

kanamycin-resistance gene). 

 

Following the transformation of the PAO1 cells with the GFP-containing vector 

pSMC21, all the coating steps of the coupons were analyzed under CSLM for the 

detection of their anti-biofilm activity. The coupons were placed in the wells of the 

flow cell and inoculated with the overnight culture of Pseudomonas aeruginosa 

PAO1 cells. The first inoculation culture was left over the coupons for 24 h for the 

initial attachment and growth of the cells. After the initial attachment, growth 

medium was flown over the initially-attached cells. After 24 h incubation with PAO1 

cells, confocal microscopy images were obtained. Green structures on the whole 

surface shows the biofilm structure produced by the transformed Pseudomonas 

aeruginosa PAO1 cells (Figure 3.10). The reason of this could be due to the long 

exposure time of the coupons with the bacterial culture. The total time for the initial 

attachment and biofilm formation was 48 h and at the end of this time, there might 

not remain any active enzyme on the surface of the coupons. 
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Figure 3.10 : SS coupons after 24h incubation with PAO1 

 

3.6 FTIR Spectroscopy Analysis 

Surface modification of stainless steel (SS-SC) was analyzed by FT-IR spectroscopy 

and compared with the FT-IR spectra of bare PAA and Lys. As can be seen from 

Figure 3.11 and 3.13, SS-SC coupons were successfully coated with sol-gel. In the 

spectrum of SS-SC-Sol, the bands observed at 1092 cm
-1

 and 1008 cm
-1

 

corresponding to stretching of Si-O-C and Si-O-Si indicated that the APTMOS was 

completely absorbed onto the surface. The weak band at 935 cm
-1

 showed that there 

were some silanols in the film.  

Sol-gel coated SS Lysozyme coated SS 
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Figure 3.11 : FT-IR spectra of SS-SC-Sol, SS-SC-Sol-PAA and SS-SC-Sol-PAA-

Lys. 

 

The absorption of Si-O-C and Si-O-Si stretching decreased a bit after PAA was 

grafted onto the SS-SC-Sol surface (Figure 3.11). Also the N-H band at 1560 cm
-1

 

disappeared while new bands at 1636 (stretching of C=O) and 1562 (bending of N-

H) cm
-1

. For comparison, the FT-IR spectrum of bare PAA was shown in Figure 

3.12. As can be seen, bare PAA has C=O stretching band at 1702 cm
-1

 which is the 

characteristic band of carboxylic acids. When PAA chains were grafted onto the SS-

SC-Sol surface an amide was formed and C=O stretching shifted to 1636 cm
-1

. The 

O-H stretching of PAA (Figure 3.12) appeared between 3500-330 cm
-1

 together with 

N-H stretching as a broad band. The immobilization of lysozyme was evidenced by 

the presence of Amide I (1640 cm
-1

) and Amide II (1536 cm
-1

) bands (Figure 3.11). 

Although these amide bands were overlapped with C=O stretching and N-H bending 

formed by reaction PAA and SS-SC-Sol, the results were in accordance with FT-IR 

spectrum of bare Lys (Figure 3.12). 
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Figure 3.12 : FT-IR spectra of PAA and Lys. 

 

Figure 3.13 shows the FT-IR spectra of SS-SC-Sol and direct immobilization of 

lysozyme from its carboxyl-end on the SS-SC-Sol surface. Similar results were 

obtained compared to the covalent binding of lysozyme from its amine-end. As can 

be seen, Amide I and Amide II bands were observed at 1631 and 1550 cm
-1

 and 

absorption of Si-O-C and Si-O-Si stretching decreased a bit after lysozyme 

immobilization. 
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Figure 3.13 : FT-IR spectra of SS-SC-Sol and SS-SC-Sol-Lys. 

3.7 AFM Analysis of Coating Steps and Lysozyme-Immobilized Substrates 

AFM analysis was performed to study the alteration of the surface topography and 

the Root Mean Square (RMS) roughness values were calculated for each step of the 

immobilization process. Figure 3.14 shows the AFM height images of different 

coating steps.  

Mica sheet is an excellent support for AFM, since it has almost atomically flat 

surface and has an RMS roughness of 0,03 ± 0.01 nm over 1.00 x 1.00 µm
2
 scan area 

(data not shown). RMS roughness of MTMOS/APTMOS treated mica increased to 

0,39nm which is consistent with previous reports (Lu, 2011; Libertino et al., 2008). 

These results are in agreement with FTIR data and it can be argued that AFM results 

indicates a good sample coverage and silane coating generates a uniform layer on the 

surface of the discs (Figure 3.13A). 

Thin silane film-coated discs were further used for either covalent immobilization of 

the lysozyme or covalent attachment of PAA layer onto the surface. After grafting 

the PAA layer, RMS roughness value of the surface increased to 4 ± 0.03 nm, 

indicating that the surface underwent macroscopic modifications during PAA 
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grafting step (Al-Bataineh, 2006). The RMS roughness value and obtained AFM 

image of PAA immobilization step suggest that PAA polymer covers the entire 

surface, however due to the shrinkage of PAA polymer in dry state results in increase 

of surface roughness (Tobiesen and Michielsen, 2002).  

Surface topography of sol-gel matrix entirely changed due to immobilization of 

lysozyme while the RMS roughness became to be 0,41nm. The AFM results 

suggested good sample coverage with a monolayer of lysozyme molecules. 

After covalent attachment of lysozyme onto PAA grafted surface, the RMS 

roughness value decreased to 1.30 nm. Molecular weight of lysozyme is 14,7 kDa 

and one might compare with PAA (250 kDa) and it might be speculated that 

relatively small lysozyme molecules not only filled the gaps between polymer chains 

but also covered the entire surface of PAA chains. These results are coherent with 

calculated enzyme activity of sol-gel and PAA immobilized lysozyme.  

Lysozyme molecules are uniformly immobilized onto both sol-gel and sol-gel-PAA 

grafted surface with the appearance of peaks with the same height. The size of the 

lysozyme molecule is given as 3.2 nm by 4.5 nm in the literature (Broutin, 1997). 

Even it is difficult to get a precise datum from AFM images, it is obvious that the 

size of the immobilized lysozyme is around 3-4 nm.  
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Figure 3.14 : AFM images of stainless steel coupons (A)Mica-Sol, B)Mica-Sol-Lys, 

C)Mica-Sol-PAA, D) Mica-Sol-PAA-Lys). 

3.8 Analysis of the Antibacterial Activity of Immobilized Lysozyme 

In Figure 3.15, the enzymatic activity results for six different coated coupons can be 

seen. According to the results, physical adsorption of lysozyme on stainless steel 

coupons resulted in poor enzymatic activity (SS-SC-Ads: 0.2 ± 0.01 U, SS-SC-Sol-

Ads: 0.14 ± 0.02 U and SS-SC-Sol-PAA-Ads: 0.22 ± 0.44 U) whereas the covalent 

bonding of lysozyme on the coupons yielded a better activity. When the enzyme is 

covalently bound on the surface from its amino terminus (SS-SC-Sol-PAA-Lys: 4.2 

± 0.1 U), the activity was 7.5 times higher than that of the enzyme covalently bound 

on the surface from its carboxyl terminus (SS-SC-Sol-Lys: 0.56 ± 0.37 U). This 

could arise from the fact that the sol-gel thin film forms a single layer of amine 

groups and when the enzyme is covalently bound, it becomes very close to the steel 

surface, where the accessibility of the substrate (M. lysodeikticus cells) to the enzyme 

A B 

C D 
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becomes limited, causing a hindrance. However, when the enzyme is covalently 

bound to the carboxyl functional groups of PAA, enzyme molecules might become 

more relaxed with better accessibility to the substrate. Another reason could be the 

rigidity of the covalent linkage of lysozyme molecules. In the case of amine 

containing surfaces, covalently bound lysozyme molecules are directly linked to the 

surface with higher rigidity. In the case of covalent binding to the polyacrylic acid 

layer, the enzyme molecules could be covalently bound along the length of the 

polymer chain (Cullen, 2008).  This layer is generally called as the “polyacrylic acid 

brush” due to its brush-like structure (Cullen, 2008; Dai, 2006). These brushes are 

advantageous due to their high binding capacity which originates from their high 

density of reactive functional groups and their ability to swell in appropriate solvents. 

They do not also have cross-links between polymer chains and this could increase the 

accessability of proteins to the functional groups within films (Dai, 2006). So, this 

brush-like structure could supply more regions for binding the enzyme to the 

carboxylic acid groups resulting in a “multi-layer” enzyme formation. 

 

 

Figure 3.15 : Enzymatic activity of six different stainless steel coupons. (Ads refers 

to the adsorbed lysozyme on the coupons). 
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3.9 CSLM Imaging and Analysis of Biofilm Formation 

All the coating steps were also analyzed under CSLM for the detection of their anti-

biofilm activity. The coupons were placed in the wells of the flow cell and inoculated 

with the overnight culture of Pseudomonas aeruginosa PAO1 cells. The first 

inoculation culture was left over the coupons for 24 h for the initial attachment and 

growth of the cells. After the initial attachment, growth medium was flown over the 

initially-attached cells. After 24 h incubation with PAO1 cells, confocal microscopy 

images were obtained. There was not an obvious visual difference between the anti-

biofilm activities of enzyme-coated coupons and other coupons (Figure 3.16). The 

reason of this could be due to the long exposure time of the coupons with the 

bacterial culture. The total time for the initial attachment and biofilm formation was 

48 h and at the end of this time, there might not remain any active enzyme on the 

surface of the coupons. Previous experiments with the enzyme-coated coupons have 

showed that after 24 h., there was a dramatic change in the activity of the enzyme In 

order to understand this, the initial incubation time for the initial attachment of the 

bacteria to the surface could be shorter, like overnight culture (12 h.) but this could 

affect the initial attachment of the bacteria as this is the first and the most important 

stage of biofilm formation.  
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Figure 3.16 : SS coupons after 24h incubation with PAO1. 

After confocal microscopy imaging of coated surfaces, serial dilutions were done to 

obtain the colony forming units on these surfaces. Serial dilutions of the incubated 

cells on several different stainless steel surfaces were prepared and these dilutions 

were grown on agar plates. Colony forming units were counted on these plates and 

were compared with the confocal microscopy images. When consolidating all the 

data of AFM imaging, confocal microscopy imaging and the colony counting of 

serial dilutions for different coated and uncoated surfaces showed that sol-gel coating 

and PAA brush coating increased the surface area when compared to the bare 

stainless steel coupons. This increase in surface area also increases the possibility of 

bacterial attachment on these surfaces. That could be the reason stainless steel 

coupons have the least number of attached cells even in confocal images and also the 

colony forming units. Sol-gel coating is known to be non-toxic and inert, meaning 

that it could not have an antibacterial effect on PAO1 cells. However, enzyme coated 

surfaces have a slightly lower number of colonies when compared to PAA-coated 

surfaces even the confocal microscopy images seem to be the same. The reason of 
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this could be that PAA brush coating increased the surface area when compared to 

the bare stainless steel coupons. This increase in surface area also increases the 

possibility of bacterial attachment on these surfaces. Lysozyme coated coupons have 

an antibacterial activity towards the PAO1 cells when compared to PAA brush 

coating. This could mean that the active enzyme molecules immobilized on the 

coupons show activity towards the biofilm forming bacterial cells but even it is 

effective on bacteria, the number of cells attached on the PAA brush is much more 

higher than the sol-gel coated coupon so the number of colonies on sol-gel coated 

coupons are lower. This finding shows that the immobilized enzyme shows activity 

towards the biofilm-forming bacterial cells. It was obvious from the characterization 

studies that sol-gel coating and PAA brush coating increased the surface area when 

compared to the bare stainless steel coupons. This increase in surface area also 

increases the possibility of bacterial attachment on these surfaces as a major 

drawback. Sol-gel coating is known to be non-toxic and inert, meaning that it could 

not have an antibacterial effect on PAO1 cells. However, lysozyme coated coupons 

have an antibacterial activity towards the PAO1 cells when compared to PAA brush 

coating which can be speculated from the colony counting results. This could mean 

that the active enzyme molecules immobilized on the coupons show activity towards 

the biofilm forming bacterial cells but even it is effective on bacteria, the number of 

cells attached on the PAA brush is much more higher than the sol-gel coated coupon 

so the number of colonies on sol-gel coated coupons are lower. 

 
 

Figure 3.17 : Average CFU values of coated surfaces and control surfaces. 
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4.  CONCLUSION  

4.1 Conclusions of the Study 

The main objective of the present thesis was to provide a new route towards biofilm-

resistant materials by linking enzymes to the surface of these materials with the aid 

of sol-gel technology and carbodiimide chemistry. To accomplish this, covalent 

immobilization of the enzymes on stainless steel surfaces which was previously 

modified by a hydrogel-type layer alone and also with polyacrylic acid by using 

azide/nitrene chemistry was done. The presence of amine groups in the sol-gel 

silicate network provided functional sites for covalent attachment of enzymes which 

also have functional sites. Spectroscopic characterization of immobilization steps and 

determination of other parameters such as enzyme coating efficiency was performed 

and determined by using Atomic Force Microscopy (AFM) and Fourier Transform 

Infrared Spectroscopy (FTIR). Finally, a biofilm study in a parallel plate flow cell 

system containing control and coated test materials was designed to study biofilms 

growing under a range of conditions (high and low flow rates, different temperatures 

etc.) which facilitates non-destructive imaging of biofilms by using Confocal Laser 

Scanning Microscopy (CLSM). Pseudomonas aeruginosa was especially chosen 

because it is a model organism for biofilm studies. These studies were also combined 

with the colony counting methods by serial dilutions of these surfaces. It was shown 

with these studies that lysozyme molecules were successfully immobilized on sol-gel 

coated coupons with both of the strategies preformed while retaining its activity. 

AFM and FT-IR analysis have confirmed the immobilization of lyoszyme molecules 

on stainless steel surfaces and the enzyme activity studies have shown that the 

enzyme molecules retained their activity after immobilizing on the surface. Biofilm 

formation studies on these surfaces were important to measure the anti-biolm 

activities of these surfaces. Sol-gel techique provides a non-toxic and inert surface, 

meaning that it could not have an antibacterial effect on PAO1 cells. However, 

enzyme coated surfaces have a slightly lower number of colonies when compared to 
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PAA-coated surfaces even the confocal microscopy images seem to be the same. The 

reason of this could be that PAA brush coating increased the surface area when 

compared to the bare stainless steel coupons. This increase in surface area also 

increases the possibility of bacterial attachment on these surfaces. Lysozyme coated 

coupons have an antibacterial activity towards the PAO1 cells when compared to 

PAA brush coating. This could mean that the active enzyme molecules immobilized 

on the coupons show activity towards the biofilm forming bacterial cells but even it 

is effective on bacteria, the number of cells attached on the PAA brush is much more 

higher than the sol-gel coated coupon so the number of colonies on sol-gel coated 

coupons are lower. This finding shows that the immobilized enzyme shows activity 

towards the biofilm-forming bacterial cells. To conclude the established works 

during these studies, vector containing culture preparation for Pseudomonas 

aeruginosa biofilm imaging was performed. Development of a sol-gel coating 

platform for enzyme immobilization was achieved and also alternative methods for 

enzyme coating were established. The different surfaces obtained by using these 

enzyme coating methods were then characterized with different methods and 

instruments. As the final work, non-destructive biofilm imaging via flow-cell 

platform was utilized and the comparison of these alternative methods were 

accomplished. 



49 

REFERENCES 

Al-Bataineh, S. A., Britcher, L. G., Griesse, H. J. (2006). XPS characterization of 

the surface immobilization of bacterial furanones. Surface Science, 

600, 952-962. 

Asad, S. & Opal, S.M. (2008). Bench-to-bedside review: Quorum sensing and the 

role of cell-to-cell communication during invasive bacterial infection. 

Critical Care, 12, 236. 

Bayston, R., Path, F.R.C., Bhundia, C., Ashraf, W. (2005). Hydromer-coated 

catheters to prevent shunt infection. Journal of Neurosurgery: 

Pediatrics, 102, 207-212. 

Bjarnsholt, T., Kirketerp-Møller, K., Kristiansen, S., Phipps, R., Nielsen, A.K., 

Jensen, P.O., Hoiby, N., Givskov, M. (2007). Silver against 

Pseudomonas aeruginosa biofilms. APMIS, 115, 921–928. 

Bjarnsholt, T. & Givskov, M. (2008). Quorum Sensing Inhibitory Drugs as Next 

Generation Antimicrobials: Worth the Effort? Current Infectious 

Disease Reports, 10, 22–28. 

Bong, J.J., Kite, P., Wilco, M. H., McMahon, M.J., (2003). Prevention of catheter 

related bloodstream infection by silver iontophoretic central venous 

catheters: a randomised controlled trial. Journal of Clinical Pathology, 

56, 731-735. 

Broutin, I., Ries-Kautt, M., & Ducruix, A. (1997). Crystallographic analyses of 

lysozyme and collagenase microgravity grown crystals versus ground 

controls. Journal of Crystal Growth, 181 (1-2), 97-108.  

Callewaert, L., Aertsen, A., Deckers, D., Vanoirbeek, K. G. A., Vanderkelen, L. 

et al. (2008) A New Family of Lysozyme Inhibitors Contributing to 

Lysozyme Tolerance in Gram-Negative Bacteria. PLoS Pathog, 4 (3): 

e1000019. doi:10.1371/journal.ppat.1000019. 

Chovelon, J. M., Aarch, L. E., Charbonnier, M., Romand, M. (1995). 

Silanization of Stainless Steel Surfaces: Influence of Application 

Parameters. J. Adhes. 50, 43–58. 

Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. and Lappin-

Scott, H. M. (1995). Microbial biofilms, Annu. Rev. Microbiol. 49: 

711-745. 

Cullen, S. P., Liu, X., Mandel, I. C., Himpsel, F. J., Gopalan, P. (2008). 

Polymeric brushes as functional templates for immobilizing 

Ribonuclease A: Study of binding kinetics and activity. Langmuir, 24, 

913-920. 



50 

Dafforn, K. A., Lewis, J. A., & Johnston, E. L. (2011). Antifouling strategies: 

history and regulation, ecological impacts and mitigation. Mar Pollut 

Bull, 62 (3), 453-465. doi: 10.1016/j.marpolbul.2011.01.012. 

Dai, J., Bao, Z., Sun, L., Hong, S. U., Baker, G. L., Bruening, M. L. (2006). High-

capacity binding of proteins by poly(acrylic acid) brushes and their 

derivatives. Langmuir, 22 (9),4274-81. 

Davies, D. G, Parsek, M. R., Pearson, J. P, Iglewski B. H., Costerton, J. 

W., Greenberg, E. P. (1998). The involvement of cell-to-cell signals 

in the development of a bacterial biofilm. Science, 280, 295–298. 

de Carvalho, C. C. (2007). Biofilms: recent developments on an old battle. Recent 

Pat Biotechnol, 1 (1), 49-57. 

Dong, Y. H., Xu, J. L., Li, X. Z., Zhang, L. H. (2000). AiiA, an enzyme that 

inactivates the acylhomoserine lactone quorum-sensing signal and 

attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. 

USA, 97, 3526-3531. 

Dong, Y. H,, Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F., Zhang L. H. 

(2001). Quenching quorum-sensing-dependent bacterial infection by 

an N-acyl homoserine lactonase. Nature, 411, 813-817. 

Dong, Y. H., Gusti, A. R., Zhang, Q., Xu, J. L., Zhang, L. H. (2002). 

Identification of quorum-Quenching N-acyl homoserine lactonases 

from Bacillus species. Applied and Environmental Microbiology, 68 

(4),1754-1759. 

Düring, K., Porscha, P., Mahn, A., Brinkmann, O., Gieffers. (1999). The non-

enzymatic microbicidal activity of lysozymes. FEBS Letters, 449, 93-

100. 

Givskov, M., Rasmussen, T. B., Ren, D. & Balaban, N. (ed.). (2008). Control of 

biofilm infections by signal manipulation, p. 13-38. Springer, Berlin. 

Gupta, R. & Kumar, A. (2008). Bioactive materials for biomedical applications 

using sol-gel technology. Biomedical Materials, 3 (3), 1-15. doi: 

10.1088/1748-6041/3/3/034005. 

Hall-Stoodley, L. & Stoodley, P. (2002). Developmental regulation of microbial 

biofilms. Current Opinion in Biotechnology, 13, 228–233. 

Huang, J. J., Han, J. I., Zhang, L. H., Leadbetter, J. R. (2003) Utilization of acyl-

homoserine lactone quorum signals for growth by a soil Pseudomonad 

and Pseudomonas aeruginosa PAO1. Applied and Environmental 

Microbiology, 69 (10), 5941-5949. 

Jefferson, K. K. (2004). What drives bacteria to produce a biofilm? FEMS 

Microbiology Letters, 236, 163–173. 

Kampf, G,, Dietze, B., Grosse-Siestrup, C., Wendt, C., Martiny, H. (1998) 

Microbicidal Activity of a New Silver-Containing Polymer, SPI-

ARGENT II. Antimicrobial Agents and Chemotherapy, 42 (9), 2440-

2442. 

Kjelleberg, S., Steinberg, P.D., Holmstrom, C., Back, A. (1999). Inhibition of 

gram positive bacteria, PCT International Application PP3034. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Iglewski%20BH%5BAuthor%5D&cauthor=true&cauthor_uid=9535661
http://www.ncbi.nlm.nih.gov/pubmed/?term=Costerton%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=9535661
http://www.ncbi.nlm.nih.gov/pubmed/?term=Costerton%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=9535661
http://www.ncbi.nlm.nih.gov/pubmed/?term=Greenberg%20EP%5BAuthor%5D&cauthor=true&cauthor_uid=9535661


51 

Kristensen, J. B., Meyer, R. L., Laursen, B. S., Shipovskov, S., Besenbacher, F., 

Poulsen, C.H. (2008). Antifouling enzymes and the biochemistry of 

marine settlement, Biotechnology Advances, 26, 471–481. 

Kumar, C. G. & Anand, S. K. (1998). Significance of microbial biofilms in food 

industry: a review. International Journal of Food Microbiology, 42, 9-

27. 

Lansdown, A. B. (2002). Silver. I: Its antibacterial properties and mechanism of 

action. Journal of Wound Care, 4, 125–30. 

Leadbetter, J. R. & Greenberg, E. P. (2000). Metabolism of acyl-homoserine 

lactone quorum sensing signals by Variovarax paradoxus. Journal of 

Bacteriology, 182 (24), 6921-6926. 

Lelievre, H., Lina, G., Jones, M.E., Olive C., Forey, F., Roussel-Delvallez, M., 

Nicolas-Chanoine, M., Bebear, C., Jarlier, V., Andremont, A., 

Vandenesch, F., Etienne, J. (1999). Emergence and Spread in French 

Hospitals of Methicillin-Resistant Staphylococcus aureus with 

Increasing Susceptibility to Gentamicin and Other Antibiotics. 

Journal of Clinical Microbiology, 37 (11): 3452-3457.   

Leroy, C., Delbarre, C., Ghillebaert, F., Compere, C., Combes, D. (2008). Effects 

of commercial enzymes on the adhesion of a marine biofilm-forming 

bacterium. Biofouling, 24 (1),11–22. 

Libertino, S., Giannazzo, F., Aiello, V., Scandurra, A., Sinatra, F., Renis, M., 

and Fichera, M. (2008). XPS and AFM characterization of the 

enzyme glucose oxidase immobilized on SiO(2) surfaces. Langmuir, 

24 (5), 1965-1972. doi: 10.1021/la7029664. 

Lin, Y. H., Xu, J. L., Hu, J., Wang, L. H., Ong, S. L., Leadbetter, J. R., Zhang, 

L. H. (2003). Acyl-homoserine lactone acylase from Ralstonia strain 

XJ12B represents a novel and potent class of quorum-quenching 

enzymes. Molecular Microbiology, 47 (3), 849-860. 

Lu, Q., Wang, J., Faghihnejad, A., Zeng, H., Liu, Y. (2011). Understanding the 

molecular interactions of lipopolysaccharides during E. coli initial 

adhesion with a surface forces apparatus. Soft Matter, 7 (19), 9366-

9379. 

Miller, M. B. & Bassler, B. L. (2001). Quorum Sensing in Bacteria. Annu. Rev. 

Microbiol. 55, 165–99. 

Minier, M., Salmain, M., Yacoubi, N., Barbes, L., Méthivier, C., Zanna, S., 

Pradier, C. M. (2005). Covalent immobilization of lysozyme on 

stainless steel. Interface spectroscopic characterization and 

measurement of enzymatic activity. Langmuir, 21, 5957–5965. 

Orgaz, B., Kives, J., Pedregosa, A.M., Monistrol, I.F., Laborda, F., SanJose, C. 
(2006). Bacterial biofilm removal using fungal enzymes. Enzyme and 

Microbial Technology, 40, 51-56. 

Ploux, L., Beckendorff, S., Nardin, M., Neunlist, S. (2007). Quantitative and 

morphological analysis of biofilm formation on self-assembled 

monolayers. Colloids and Surfaces B: Biointerfaces, 57, 174–181. 



52 

Pratt, L. A. & Kolter, R. (1999). Genetic analyses of bacterial biofilm formation. 

Current Opinion in Microbiology, 2, 598–603. 

Raad, I. (1998). Intravascular-catheter-related infections. Lancet, 351 (9106): 893-

898. 

Raad, I., Darouiche, R., Hachem, R., Sacilowski, M., Bodey, G. (1995). 

Antibiotics and Prevention of Microbial Colonization of Catheters. 

Antimicrobial Agents and Chemoterapy, 39 (11), 2397-2400. 

Read, R., Kumar, N., Willcox, M. D. P., Zhu, H., Griesser, H., Muir, B., Thissen, 

H., Hughes, T. (2001). Antimicrobial coatings, PCT International 

Application, PQ6812. 

Read R. & Kumar, N. (1999). Production of furanones, PCT/AU99/00285. 

Reimmann, C., Ginet, N., Michel, L., Keel, C., Michaux, P. et al. (2002). 

Genetically programmed autoinducer destruction reduces virulence 

gene expression and swarming motility in Pseudomonas aeruginosa 

PAO1. Microbiology, 148, 923-932. 

Schierholz, J. M., Steinhauser, H., Rump, A. F. E., Berkels, R., Pulverer, G. 
(1997). Controlled release of antibiotics from biomedical 

polyurethanes: morphological and structural features. Biomaterials, 

18, 839-844. 

Schierholz J. M., Lucas, L. J., Rump, A., Pulverer G. (1998). Efficacy of silver-

coated medical devices. Journal of Hospital Infection, 40, 257-262. 

Schierholz, J. M., Beuth, J., Pulverer, G., Konig, D. P., Scharlack, R. S., Kampf, 

G., Dietze, B., Wendt, C., Martiny, H., Groe-Siestrup, C. (1999). 

Letters to the Editor: Silver-Containing Polymers. Antimicrobial 

Agents and Chemotherapy, 43(11), 2819-2821. 

Schierholz, J. M., Fleck, C., Beuth, J., Pulverer, G. (2000). The antimicrobial 

efficacy of a new central venous catheter with long-term broad-

spectrum activity. Journal of Antimicrobial Chemotherapy, 46, 45-50. 

Schierholz, J. M. & Beuth, J. (2001). Implant Infections: a haven for opportunistic 

bacteria. Journal of Hospital Infection, 49, 87-93. 

Shirtliff, M. E., Mader, J. T., Camper, A. K. (2002). Molecular interactions in 

biofilms. Chemistry & Biology, 9, 859–871. 

Shugar D. (1952). Measurement of lysozyme activity and the ultraviolet inactivation 

of lysozyme. Biochem. Biophys. Acta, 8: 302-308. 

Stobie, N., Duffy, B., Hinder, S. J., McHale, P., McCormack, D. E. (2009) Silver 

Doped Perfluoropolyether-Urethane Coatings: Antibacterial Activity 

and Surface Analysis. Colloids and Surfaces B: Biointerfaces, 72, 62–

67. 

Tobiesen, F. A. & Michielsen, S. (2002). Method for Grafting Poly(acrylic acid) 

onto Nylon 6,6 Using Amine end groups on Nylon Surface. J. Polym. 

Sci. Pol. Chem., 40, 719-728. 

Url-1, <www.biology.binghamton.edu/davies/images/biofilm.jpg>, Retrieved 

on 05.08.2013. 



53 

Url-2, <http://microbewiki.kenyon.edu/index.php/Pseudomnas_aeruginosa>, 

Retireved on 12.11.2013. 

Url-3, <http://lysozyme.co.uk>, Retrieved on 06.09.2013. 

Vijayaraghavan, R., Chandrashekhar, R., Sujatha, Y., Belagavi, C.S. (2006). 

Hospital outbreak of atypical mycobacterial infection of port sites 

after laparoscopic surgery. Journal of Hospital Infection, 64, 344-347. 

Xavier, J. B., Picioreanu, C., Rani, S. A., van Loosdrecht, M. C. M., Stewart, P. 

S. (2005). Biofilm-control strategies based on enzymic disruption of 

the extracellular polymeric substance matrix - a modelling study. 

Microbiology, 151, 3817–3832. 

Yang, X., Hua, L., Gong, H., Tan, S. T. (2003). Covalent immobilization of an 

enzyme (glucose oxidase) onto a carbon sol–gel silicate composite 

surface as a biosensing platform. Analytica Chimica Acta, 478, 67–75. 

Zhang, T., Ke, S.Z., Liu, Y., Fang, H.P. (2005). Microbial characteristics of a 

methanogenic phenol-degrading sludge. Water Science and 

Technology, 52 (1-2), 73-78. 

Zhang, L. H. (2003). Quorum quenching and proactive host defense. TRENDS in 

Plant Science, 8 (5), 238-44. 

  



54 

 



55 

APPENDIX 

APPENDIX A: Experimental set-up for the confocal microscopy imaging of the 

biofilm formation on coupons placed in the flow cell 

 

 

 Flow 
cell 
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