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NONLINEAR CONTROL METHODS OF INDUSTRIAL SERIAL ROBOTS

SUMMARY

The word robot was introduced to the public by the Czech writer Karel Capek in his
play R.U.R. (Rossum's Universal Robots) which published in 1920. However, early
studies about modern robots started after World War 11. In 1960s, the studies about
modern robotics started to increase rapidly. At first, to control the robot manipulators
simple control techniques were used like PID. However, today very complicated
control techniques are being used like Robust Control and Adaptive Control to
control the industrial robots.

Classifying the control methods are mainly divided into two groups. The first one is
the linear control and the second one is the nonlinear control. Nonlinear control can
show much better results than the linear control, however designing a nonlinear
controller requires a strong mathematical background.

Robot dynamics is concerned with the relationship between the forces acting on a
robot mechanism and the accelerations they produce. There are two main dynamic
problems. They are forward dynamics problem and inverse dynamics problem. In
forward dynamics, applied tip point forces are given and the problem is to find the
joint accelerations of the robot arm; in inverse dynamics, joint accelerations are
given and the problem is to find the tip point forces.

In this thesis the tip point torques are calculated by the computed torque or adaptive
control. These torque values are limited with the real robot joint torque parameters.
This torque values scattered to the links of the robot arm using forward dynamics.

The methodology presented in this thesis is based on Spatial Operator Algebra
(SOA). Nonlinear control algorithms applied to an industrial serial robot, which is
modeled with SOA. The complexity of dynamic analyze and control structures come
from the adaption of the computed torque control and adaptive control into the SOA
robot modeling theory, which have not been existed in the literature before this
thesis.

In this thesis, all of the control and modeling algorithms are applied to ABB IRB
6620 using real data. For structural modeling of an industrial robot arm, ABB IRB
6620 is chosen because it is favorable for both being widespread in the factories and
being durable. The virtual model was constructed from the CAD files, which have
been distributed from the ABB’s official web site.

Simulation results are obtained by using MATLAB and animation applications are
obtained by using the virtual reality toolbox of MATLAB (VRT). All simulation

XiX



results that have been shown in the thesis are obtained by virtualizing ABB IRB
6620, which is a well-known industrial serial robot.
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ENDUSTRIYEL SERi ROBOTLARIN DOGRUSAL OLMAYAN
KONTROLU

OZET

Robot sozcligiinii ilk olarak Cekoslovak yazar Karel Capek’in 1920 yilinda yazdigi
“Rossum’a Universal Robots” adl1 tiyatro oyununda kullanmistir. Cekge *de “robota”
sOzciigii “is, zorla calistirilan isci ya da kole” anlamlarina gelmektedir. Genel bir
tanim olarak robot, otonom veya Once programlanmis elektronik cihazlar olarak
tanimlanabilir. Robot Institute of America robotlar1 ”Robot; 6zel aletleri, parcalar
bir yerden bagka bir yere gotiirmek i¢in tasarlanmis, tekrar programlanabilen ¢ok
fonksiyonlu bir makinadir” seklinde tanimlamaistir.

II. Diinya savasindan sonra robotlar iizerine g¢alismalar baglamistir ve kontrol
konularindaki caligmalar da hiz kazanmistir. 1940’larda ‘“Argonne National”
laboratuvarlarinda radyoaktif maddeleri tutabilmek icin basit mekanik yapilara sahip
“master-slave” tipte bir robot kol tasarlanmisti. Bu sistemde “master”1 kontrol eden
insanin yaptig1 hareketleri “slave” robot izliyordu.

1950’lerin ortalarinda elektriksel ve hidrolik robot kollar1 gelistirilmistir. George C.
Devol 1959°da ilk programlanabilir endiistriyel robotu iiretmistir. 1961 yilinda ise ilk
endustriyel robot fabrikada Uretimde kullanilmistir. 1962’de Ernst dokunmay1
algilayabilen bir el gelistirmistir ve ‘“Argonne National” laboratuvarlarinda
gelistirilen bir robot koluna takilmistir. 1969 yilinda Scheinman, Standford
tiniversitesinde ilk 6 serbestlik dereceli robot kollarindan birini gergeklestirmistir. Bu
kol bilgisayar ile kontrol edilmekteydi ve tahrik elektrik motorlariyla
saglanmaktaydi.

Robotlar lizerine yapilan ilk caligmalarda arastirmacilar robotlarin kinematik ve
dinamik modellemelerinde biiyiik sorunlar yasamislardir. 1968 yilinda Pieper, robot
kinematigi lizerine, 1971°de Kahn ve Roth, robot dinamigi {izerine bir makale
yaymlamiglardir. 1969 yilinda ise General Electric ilk yiiriiyen robotu iiretmistir.

1970’lerde sensor teknolojisindeki gelismeler hem robot kontroliinii kolaylastirmis
hem de robotlarin gelismesini saglamistir. 1973’te Bolles ve Paul, bir robota goriintii
ve kuvvet geri beslemesi yardimiyla su pompasi montaji yapmasini saplamigslardir.
1974’te Inoue robotlarda yapay zekd uygulamalar ile ugrasmistir. Be jezy, uzay
calismalarinda kullanilmak {izere bir kontrol metodu gelistirmis ve bu metodu da
Standford robotu tizerinde denemistir.

1960’lardan beri robotun endiistride kullanilmasiyla goriilen faydalar, hem robot

teknolojisinde hizli bir gelisme saglamistir, hem de robotlarin seri Uretimdeki
paylarini artmistir.
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Endiistride kullanilan makinalar 6zel amachdir. Yeni bir iiretim yapilmasi gerektigi
zaman makinalarin degistirilmesi gerekir. Mevcut makinalar ¢ogu zaman bu yeni
proses icin kullanilamaz. Robotlarda durum bodyle degildir. Robotlarin gorevleri
degistirilebilir, farkli proseslere adapte edilebilir ve iiretim maliyetini diistirmektedir.
Bu yiizden sanayide robot kullanimi her gecen giin artmaktadir. Ozellikle otomotiv
endiistrisinde kullanimi1 oldukga yayginlagmistir.

Sanayi robotlar1 genel olarak ii¢ bashik altinda incelenebilir; seri, paralel ve bunlarin
birlestigi tipte (hibrit) hareket eden robotlar. Seri robotlarin yapisi genelde basittir ve
calisma uzaylar1 ¢ok genistir. Paralel robotlarin ise hassasiyet ve tekrarlanabilirlik
degerleri ¢ok yiiksek olmasina ragmen, calisma uzaylari ¢ok kiigiiktiir. Hareket
kabiliyetleri kisitli oldugu i¢in genis bir ¢calisma uzayina sahip olamazlar. Paralel
robotlar sinir tekilliklerine ¢ok daha kolay yakalanirlar. Seri robotlarin aksine, paralel
robotlarin ters kinematigi kolaydir, ileri kinematigi zordur.

Engelden sakinma gibi algoritmalarin kolaylikla uygulanabilmesi, genis g¢aligma
uzayina sahip olmasi ve ¢ok daha kolay programlanabilmesi sebebiyle genelde
sanayide seri robotlar tercih edilse de, yuksek hassasiyet ya da yuksek moment
thtiyacinin  duyuldugu durumlarda paralel robotlar kullamilmaktadir. Paralel
robotlarin kullanildig1 yerler olarak metal isleme gosterilebilir. Ayrica, paralel
robotlar kendilerine eglence sektoriinde de yer bulmaktadir. 9D, 8D ve 7D
sinemalarda, sinemanin alt tabaninin tahrik ve kontrol edilebilmesi i¢in bir paralel
robot olan Stewart platformu kullanilmaktadir.

Endiistride en yaygin kullanilan robotlar seri robotlar oldugu i¢in bu tez endiistriyel
seri robotlar ele almaktadir. Bu sistemlerin kinematik ve dinamik analizleri uzaysal
operator cebri (SOA) kullanilarak detayli olarak agiklanmistir. Bu bilgiler 1s1ginda
modellenen robotlar i¢cin dogrusal olmayan kontroldrler tasarlanmustir.

Uzaysal operatorler, rijit yapilarin kinematik ve dinamik modellenmesini ve analizini
kolaylastiran alt1 boyutlu vektdrler olarak tanimlanabilir. Ug¢ boyut agisal hizlardan,
diger li¢ boyut da lineer hizlardan olusur. Uzaysal operatdrler 6zyinelemeli yapisi
sayesinde ¢oklu manipilator sistemlerine kolayca uygulanabilir. Diger kinematik ve
dinamik analiz metotlarina gore daha sistematik ve kolay programlanabilir bir
yiiksek performansli hesaplama algoritmasidir.

Uc¢ boyutlu ¢alisma uzayinda gegerli biitiin konfigiirasyonlara ulasmak igin
manipiilatoriin serbestlik derecesinin altidan (li¢ boyutta déonme ve ii¢ boyutta
Oteleme) diisiik olmamasi gerekir. Tekil durumlarda Jakobiyen matrisin ranki
diisecegi i¢in genel olarak 6 serbestlik dereceli robotlar tercih edilmektedir.

Modelleme kinematik ve dinamik olmak {izere ikiye ayrilir. Robotlarn
modellenmesinde Ileri ve Ters Kinematik olmak iizere iki ana problem vardir. Ileri
kinematikte eklemlerin hareket etmesi geren hizlar verilir ve manipulatorin ug
noktasinin acgisal ve dogrusal hizlarinin hesaplanmasi incelenir. Ters kinematikte ise,
manipiilatoriin u¢ noktasinin agisal ve dogrusal hizlar1 verilerek eklem hizlarinin
hesaplanmasi istenir. Dinamik analizde de Ileri ve Ters Dinamik olmak tizere iki ana
problem vardir. ileri dinamik analizinde, manipiilatoriin u¢ noktasindaki tork vektorii
ve kuvvet vektorii verilerek eklemlerin ulagsmasi gereken ivme degerlerinin
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hesaplanmasi istenir. Ters dinamik analizde ise, eklemlerin ulasmasi gereken ivmeler
verilir ve manipiilatoriin u¢ noktasindaki uzaysal tork vektorii hesaplanir.

1960’lardan beri robotun endiistride kullanilmasiyla ortaya ¢ikan kontrol problemler
dogrusal kontrol yerine, dogrusal olmayan kontrolor tasarlama ihtiyacini ortaya
cikarmistir. Giinlimiizde ise, ¢cok sayida lineer olmayan kontroldrler robotlarda
kullanilmaktadir.

Kontrolorler iki ana gruba ayrilabilir. Dogrusal olan kontrolorler ve dogrusal
olmayan kontrolorler olarak. Dogrusal kontroldrler basit calisma mantiklart ve
haklarindaki genis literatiir ile uzun zaman boyunca kullanilmiglardir. Dogrusal
kontroldrlerin ilkel kaldigi durumlarin ilk olarak ucaklarda ortaya c¢ikmasi ile
dogrusal olmayan kontroldr tasarlamanin zorunlulugu ortaya ciktiginda, artik bu
konu {iizerinde ugrasilmaya baslandi. Daha sonra bu konuda yapilan c¢alismalarin
sonug vermesiyle, dogrusal olmayan kontrolorler tasarlanip, ucaklarda kullanilmaya
baglandi. Ucgaklardaki basarili sonuglar1 goriildiikten sonra, diger lineer olmayan
uygulama alanlarinda da kendisine kolayca yer bulmustur. Dogrusal olmayan
kontroloriin tasarimi dogrusal kontroltrlere gére ¢ok daha zordur, ama elde edilen
sonuclardaki basarilar bu kontroldrlerin kullanimini yayginlastirmistir.

Literatiirde farkli dogrusal olmayan kontrolor ¢aligmasi bulunmaktadir, ama robot
gibi mekanik sistemler i¢in geri besleme dogrusallagtirmasinin 6zel bir uygulamasi
olan hesaplanmis tork kontrolii, adaptif kontrol ve robust kontrol tercih edilmektedir.
Tercih edilmemesine ragmen, literatiirde kayma kipli mod kontrol metodu ile de
kontrol edilen robotlar vardir. Kayma kipli mod kontroliin tercih edilmeme sebebi
ise, bu yontemin yliksek frekansa izin veren sistemler i¢in uygun olusudur. Robot ve
robotlar gibi mekanik sistemlerin kontroloriin istedigi kadar hizli cevap
veremeyecekleri durumda sistem kararsizliga gidebilir ya da yiiksek frekans ihtiyaci
mekanik sistemlere zarar verebilir.

Tim parametrelerin ¢ok yiliksek dogrulukla bilindigi durumda, hesaplanmis tork
kontrol yontemi ¢ok iyi cevap vermektedir. Modellenemeyen belirsizliklerin artmasi
durumunda ise hesaplanmis tork kontrolii etkinligini kaybetmektedir. Bu durumlarda
robust kontrol ya da adaptif kontrol tercih edilmektedir. Robust kontroliin matematigi
ile adaptif kontrolin temelleri birbirine benzemektedir.

Yapilan ¢esitli calismalar, similasyonlar ve deneyler Adaptif kontrol ile elde edilen
sonuclarin, Robust kontrol ile elde edilen sonuglardan ¢ok daha basarili oldugunu
gostermektedir. Yine yapilan literatiir taramasi sonucunda, modellenemeyen
belirsizliklerin artmasi durumunda, Adaptif kontrol yonteminin hem Robust kontrol
hem de Hesaplanmis Tork kontroliinden ¢ok daha iyi sonug¢ verebildigi acikca
gorulmektedir.

Bu tezde, simiilasyon calismalar1t MATLAB kullanilarak, animasyon uygulamalari
ise MATLAB/Simulink'te bulunun sanal gerceklik ara¢ kutusu (VRT) kullanilarak
gerceklestirilmistir. Simiilasyonlar ABB tarafindan {iretilen IRB 6620 nin
kataloglarindan alinmis gergek robot kolun parametreleri kullanilarak elde edilmistir.
Elde edilen bu sonuglar ayrintili olarak analiz edilip, incelenmistir. Sonuglart detayli
sekilde aciklanmistir.
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1. INTRODUCTION

Robots are becoming more and more popular in massive production. Number of
robots is rapidly increasing in the industries where safety and fast production are
needed. These robots can be mainly classified as three types; serial robots, parallel
robots and hybrid of these two mechanisms. There are some pros and cons to each

other’s.

Serial robots are the most common ones. They can do various tasks in the industry,
like spraying, painting, water jet, flaming, arc welding, spot welding, plasma cutting,
cnc feeding, spindle motor milling, foaming, gluing, dispense, bending, laser cutting,

die casting, etc.

Parallel robots are for the applications where repeatability and accuracy are vital or
very high torques are demanded. Most commonly used parallel robot types are Delta
robot and Stewart platform.

Hybrid of these two mechanisms is also used in some applications to provide special

requirements, like CNC Machining Centre’s and Modules.

Serial robots can be classified based on the degrees of freedom. Robots are defined in

6-dimensional space.

Robots that have less than 6 DOF can’t go in at least one direction or rotate at one
axis. These robots can’t be fully defined at 6 dimensions. Because of this fact, they

suffer from singularities more than any other types.

Robots that have more than 6 DOF can be fully defined in 6-dimensional space.
Furthermore, this kind of robots can move at all dimensions and obstacle avoidance

etc. can be applied to these robots.

Robots that have 6 DOF can be fully defined in 6-dimensional space and can move
freely in 6-dimensional space. However, obstacle avoidance algorithms etc. can’t be

applied to this kind of robots.



Robots with 6 degrees of freedom are the major group that is being used in the
Industry. Because, they can move in 3 axes and rotate in 3 axes, thus they are capable
of doing all movements in 6-dimensional space and also industrial applications don’t
require additional degrees of freedom over 6 DOF, mostly. Considering these facts
with their payload capacity, reachable space and dexterous space values, it is fair to

accept, they are the optimal solution for most of the industrial applications.

The organization of the thesis is as follows: Chapter 2 describes general
representations of rigid body motion. Chapter 3 presents Kinematic Analysis and
Dynamic Analysis of a serial manipulator on a fixed platform using SOA. Chapter 4
explains Computed Torque Control as a successful nonlinear control technique,
which is preferable for robotics as many mechanical systems. Chapter 5 explains
Adaptive Control to eliminate uncertainties. Chapter 6 explains simulation studies,
shows and compares their results under various different circumstances. Finally,

Chapter 7 is the conclusion.

1.1 Purpose of Thesis

Industrial serial robots present some problems that exist because of their nature. They
are nonlinear systems and they needed to be modeled perfectly. This is impossible
from the fact that we cannot know masses, center of masses and friction coefficients
fully. That is why Adaptive Control is vital to track the trajectory more correctly by
estimating these values. This requires a good understanding of kinematics, dynamics
and keen knowledge of the nonlinear control systems. From the controlling point of
view, nonlinear control methods require much more effort when compared to linear
control methods. However, nonlinear control can provide much better results

compared to linear control.

In this thesis, Kinematic Analysis with SOA, Dynamic Analysis with SOA,
Computed Torque Control and Adaptive Control of an Industrial serial robot are

illustrated and their detailed equations are given.

The purpose of this thesis is to apply Computed Torque and Adaptive Control to the
robots, which modeled with SOA. The use of Computed Torque and Adaptive
Control methods for the robots modeled with SOA has not been in the literature
before this thesis.



1.2 Literature Review

There are various studies about controlling a serial robot, which are well documented
in the literature [1], [2], [3] and [4]. Computed torque as feedback linearization has
been well clearly covered in many different point aspects. Another important aspect
to the robot control method is adaptive computed torque. Some uncertainties come
from the nature of robots. Masses, center of masses and friction coefficients can’t be
known fully. These unknown parameters cause uncertainties. Adaptive control can
eliminate these uncertainties’ effects during trajectory tracking, i.e. converging path
tracking error to zero or at least cause them to be limited in a bound. For a detailed
review on various control methods, one can refer to a recent book [1] by L. Sciavicco
and B. Siciliano and [4] by L. F. Lewis.

There are a number of methods used for kinematics and dynamics for robot arms.
Out of these methods, Denavit-Hartenberg is well-known and well-used in
worldwide. Jacques Denavit and Richard Hartenberg introduced this convention in
1955 in order to standardize the coordinate frames for spatial linkages [5] and [6].
The more number of degrees of freedom, the more difficult it gets to apply D-H to
robots. When adding this controller calculations, necessary calculations period
increase dramatically. D-H modeling is proportional with the square of DOF of the

modeled robot manipulator.

Because, D-H modeling calculation difficulty is proportional with the square of
DOF, in the meanwhile SOA modeling calculation difficulty is proportional with the
DOF. D-H performance can be acceptable even for 5 DOF, but over for 5 DOF
robotic manipulators, it is getting more and more difficult to apply, and over 7 DOF
it is nearly impossible to apply D-H modeling method for a real-time application.
That is way, modeling a robotic manipulator over five degrees of freedom should be
modeled with SOA.

All of them show that, for a high performance algorithm to reduce the difficulty for
modeling a manipulator with high number of degrees of freedom is needed. It is also
essential that this should be a vector-based algorithm so that physical insight can be

provided.

One such robot-modeling algorithm is known as “screw theory.” The elements of

screw theory can be traced up to the work of Chasles and Poinsot in the early 1800s.



Chasles proved that a rigid body can be moved from any position to any other by a
movement consisting of rotation about a straight line followed by translation parallel
to that line. Robert S. Ball developed a complete theory of screws using the theorems
of Chasles and Poinsot as a starting point. Robert S. Ball published his studies in
1900 [7]. There are two main advantages of the screw theory for describing rigid
body kinematics and dynamic [8]. The first one is that they allow a global description
of rigid body motion, which does not suffer from local singularities due to the use of
local coordinates. The second advantage of screw theory is that it provides a very
geometric description of rigid motion that greatly simplifies the analysis of
mechanisms. In 1983, Featherstone [9] presents a study on the computation of robot
dynamics using articulated body inertias utilizing the spatial algebra. After that,
Guillermo Rodriguez [10] declares that inverse and forward dynamics of problems
for multi-link serial manipulators are solved by using recursive techniques from
linear filtering and smoothing theory. In 1991, Abhinandan Jain [11] published in its
paper that a unified formulation about serial rigid multibody systems can be
developed by utilizing the tools provided by the Spatial Operator Algebra (SOA).
Other works of Featherstone et al [12, 13]. Other works of Guillermo Rodriguez et al
on SOA are mentioned in [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Also, there are other studies about SOA in the literature which I find them very
important [25, 26, 27].

In this thesis in order to obtain Adaptive Control Rule, Lyapunov Stability is used.
Lyapunov Stability for robotics has been well documented and illustrated in many
books [4, 8].And also Lyapunov Stability has been explained for general nonlinear
systems [28, 29].

In this thesis, path planning [30], pseudo inverse [31] and singular value
decomposition [32] are used but for the sake of integrity and clarity of nonlinear

control, they are not explained in the details.

In this thesis, | analyze dynamics of a serial robot manipulator using a screw theory
based algorithm called Spatial Operator Algebra (SOA). | also modify different
nonlinear control methods to be compatible with SOA mathematical theory and then
| apply these mathematical theories to an industrial robot. All simulation values come
from a real industrial robotic manipulator ABB IRB 6620 [33, 34, 35].



1.3 Motivation

The present work is focused on the development of a new control algorithm for a
novel robot modeling theory, which was called SOA. The project starts with the
modeling an industrial serial robot arm. Then, computed torque control and adaptive
control mathematical models have been applied to the robot. First of all, these control
methods have been investigated in the literature and then all of these control methods
have been modified to achieve the adaption from D-H to the Spatial Operator

Algebra.

This work intends to represent to unify the strong nonlinear control theories with the
new and fast robot modeling theory, Spatial Operator Algebra. In addition, applying
these theories to ABB industrial robot arm simulation using real robot arm
parameters is our another focus. A detailed comparison of computed torque control

results and adaptive control results are shown.

The use of SOA mathematical models and algorithms fasten the computations. In this
way, the algorithms can provide shorter cycle times. With shorter cycle times, robot

arms and robotic systems can be controlled more effectively and strongly.

The computed torque control and adaptive control methods provide the nonlinear
control for robots. With the addition to the SOA method, both robustness and speed

can be provided at the same time.






2. RIGID BODY MOTION

All rigid body motion can be defined using translation and rotation transformations
[8]. Let us O be an object described as a subset of R3. We can define any object in
Cartesian coordinates using Euclidean space properties. A rigid body motion of an
object can be represented by g(t):0 — R3® which shows continuous family of
mappings. This mapping clearly shows that how individual points in the body can be
moved as a function of time relative to some fixed Cartesian coordinate frame. And
also this mapping represents that we can use vector definition instead of points. Let
us consider two points p,q € O and the vector v € R3 connecting p to q. It is
defined to be a direct line segment stretching from pto g. In Cartesian coordinates
this is given by v = g — p with p,q € R3. Even though the obvious fact that they
are conceptually quite different, both points and vectors are defined using similar

three components in Cartesian coordinates.

A mapping g: R3 - R3 is a rigid body transformation should satisfy the following

properties:
1. Length is preserved: ||lg(p) — g(@)ll = llp — q|| for all points p,q € R3
2. The cross product is preserved: g,.(v X w) = g.(v) X g,(w)

If we look at the first property, this gives us the distance between points on a rigid
body are not altered by rigid motions. However, this condition is not sufficient
because it allows internal reflections, which are not physically realizable [8]. Thus, a
rigid body transformation must also satisfy second property as well as to satisfy the

first property to preserve orientation.

Although the distance between points is fixed and the cross product between vectors
is also fixed, particles in a rigid body can be moved relative to each other. However,
those particles in a rigid body cannot be translated; they can only be rotated with
respect to each other. Thus, to keep track of the motion, of a rigid body, we need to
keep track of the motion of any one particle of the rigid body and the rotation of the
body about this point [8].



In order to do this, we represent the configuration of a rigid body by attaching a
Cartesian coordinate frame. In this way, it is provided for some points on the rigid
body and keeping track of the motion of this body coordinate frame relative to a
fixed frame. The motion of the individual particles in the body can then be retrieved
from the motion of the body frame and the motion of the point of attachment of the

frame to the body [8].
2.1 Rotational Motion in R3
First of all let us show a pure rotation as in the figure below:

z

ab
A
1
1

/]
/]
/]
/]
/]
!
!

Figure 2.1 : Pure rotational motion.

Orientation of the body is described by giving the relative orientation between a
coordinate frame and a fixed or inertial coordinate frame. Main coordinate frame is

considered to be attached to the body. From now on, for the sake of clarity all

coordinate frames in this thesis will be accepted as right-handed unless otherwise is
specially declared.

Let us assume that A is the inertial frame andBis the body frame. x4, Yap, Zap € R3

will be the coordinates of the principal axes of B relative to A (Figure 2.1). Using

these coordinate vectors, we can obtain a 3 X 3 matrix:

Rab= [xab Yab Zab] (2.1)



Constructed matrices as in the Equation 2.1 are called as rotation matrices. Every
rotation of the object corresponds to a rotation matrix. There are two major

properties of a rotation matrix:
RRT =RTR =1 (2.2)
detR = +1(since the coordinate frame is right-handed) (2.3)

The set of all 3 x 3 matrices which satisfy these two properties are represented in
S0(3). SO means special orthogonal.

S0(3) = {R € R3*3:RRT = I, detR = +1} (2.4)

2.2 Exponential Coordinates for Rotation

In robotics, rotation of a body about a given axis is a very common motion. Let’s
assume w € R3 to be a unit vector which specifies the direction of rotation and
6 € R be the angle of rotation and its angle unit is in radian. Rotation matrix can be

written as a function of w and 4.

q(0)

G

DNNNNNNNN

N—

Figure 2.2 : Exponential coordinates.

Let’s assume the body to rotate at constant unit velocity about the axis w. Then the

velocity of the point ¢ may be written as:



q(t) = w x q(t) = dq(t) (2.5)

This is a time-invariant linear differential equation. Using the following equation we

can propose a q(t) as:

q(t) = e®tq(0) (2.6)

where g(0) is the initial position of the point and e®? is the matrix exponential:

_ ot)?  (ot)d
e“’t=1+&)t+(2!) +(3!) + - 2.7)

If we rotate the axis w at a unit velocity for 6 units of time, then the net rotation

could be written as:

R(w,0) = e®? (2.8)

where the @ is a skew symmetric matrix which satisfies @” = —&. The vector space

of all 3 x 3 skew matrices are denoted in so(3):
so(3) ={S e R¥3: 8T = -} (2.9)

For a given matrix @ € so(3), ||lw|| = 1 and a real number 6 € R, we express @0 as:
2 3

ex (&)\9)_866_1+9&)\+—@2+9—&)\3+--- 210

plob)=e= = 2l 31 (2.10)

This is an infinite series and it is impossible computing all of the terms. To obtain a
closed-form expression for exp(@6), we have to do several deductions using

formulas for power of a.
a? = aa’ — ||al|?1 (2.11)

a® = —|lall?a (2.12)

if we put the terms a = w0, ||w|| = 1, then the exponential of @O the equation turns

into:

@6 _ 63 65 (6% 6* @° ~2
e e R TRl IR e ri i il 12 (2.13)
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and hence:
e®? = [ + &sind + &2(1 — cosh) (2.14)

This previous formula, commonly referred to as Rodrigues’ formula. Rodrigues’
formula provides an efficient method to compute exp(@8). It can be easily seen that
exp(@80) is the rotation matrix which expresses rotation by 6 about axis w. We can

also find 8 and w for a given any exp(&#) rotation matrices as:

1 Ti2 T3
exp(@h) =R =|T21 T2z T23
31 T32 133 (2.15)
0 = cos-1 <r11 + 1y, + 133 — 1)
2 (2.16)
1 [7”32 7"23]
W=5—-—7|"3" T3 (2.17)
2sinf To1 — 1

2.3 Rigid Motion in R3

Fixed Frame

>_(' gab

Figure 2.3 : Rigid motion in R3.
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In the Figure 2.3, the representation of general rigid body motion, involving both
translation and rotation is shown. In the Figure 2.3, we describe the position and
orientation of a coordinate frame B attached to the frame A which is fixed. Let
Pap € R3 be the position vector stretching from the origin of frame A to the origin

of the frame B and R,;, € SO(3) the orientation of frame B is relative to frame A.

A configuration of the system consists of a pair (pg;, Rgp). The configuration space
of the system is the product space of R3 with SO(3), It will be expressed as SE(3),

Special Euclidean group:
SE(3) = {(p,R) : p € R R € SO(3)} = R* x SO(3) (2.18)
with a given g, we can find g, as shown below:

da = Pap + Rapqp (2.19)

where gup = Pap, Rap) € SE(3) is the specification of the configuration. By an
abuse of notation, we will write g(q) to denote the action of a rigid transformation

on a point:
9(@) =p+Rq (2.20)
so that g, = g.»(qp). We may represent it in linear form by writing it as:
2 =[] =% Pe][7] = gats (2:21)

The 4 X 4 matrix g, is called the homogeneous representation of g,;, € SE(3). In
general, if g = (p,R) € SE(3), then

g= [g !l (2.22)

2.4 Exponential Coordinates for Rigid Motion

The notion of the exponential mapping for SO(3) can be generalized to the notation

of the Euclidean group SE(3). It can be illustrated with a simple example.

12



Let us look at an example of a one-link robot in Figure 2.4, where the axis of rotation
is € R3, |lw]l =1, and g € R3 is a point on the axis. It is accepted that the link

rotates with unit velocity. Then the velocity of the tip point p(t) is:

p() =wx () —q) =wxp(t) —wxq (2.23)

’ %

0
,0(0

Figure 2.4 : Exponential coordinates for rigid body motion.

The equation (2.23) can be rewritten as:
b=~ “IL] (2.24)
with v = —w X g, we can define & as:
—w><q=v=>§°=[§ l(; (2.25)
and the equation turns into:
[p] [p] >p=¢p (2.26)
This is a first order differential equation with the solution:
p(t) = €45 (0) (2.27)
where p(0) is the initial position of the point,p(t) is current position and et is the

matrix exponential of 4 x 4 matrix. £t defined as:

13



2 \2 2 \3
e$t=1+$t+%+(€%)+--- (2.28)

The scalar t represents the total amount of rotation angle. exp(ét) represents the

mapping from the initial location of a point to the location after rotating t radians.

The 4 x 4 matrix £ is a generalized form of the skew-symmetric matrix @ € so(3).

Similar to the definition of so(3), we can write:
se(3) ={(v,®) :veR3® € so3)} (2.29)

We can also write an element & € se(3) as:

s_[@ v 4%4

E=18 oler (2.30)
An element of se(3) can be both referred to as a twist, or a (infinitesimal) generator
of the Euclidean group. We define the v (vee) operator to extract the 6-dimensional

vector:

o o =[]

o o =l (2.31)

and & == (v, w) the twist coordinates of &. The inverse operator, A (wedge), forms a

matrix in se(3) in R®:

Bl =15 &

wl “lo o (2.32)
Thus, & € R®: (v, w) represents the twist coordinates for the twist £ € se(3).This
shows us another way of the notation for the skew-symmetric matrices.

The exponential of a twist shows the relative motion of a rigid body. As a mapping,
exp(ét) takes points from their initial coordinates p(0) € R, to their final

coordinates:

p(6) = e¢9p(0) (2.33)

Both p(0) and p (@) are stated with a single reference frame. If a coordinate frame B
is attached to a rigid body undergoing a screw motion, the configuration of the

coordinate frame B related to a fixed frame A for that moment;

14



Jar(0) = €% g4, (0) (2.34)

This transformation can be interpreted as follows: multiplication by g,;(0) maps the
coordinates of a point relative to the B frame into the A frames’ coordinates and the

exponential map transforms the point to its final destination.
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3. KINEMATIC AND DYNAMIC MODELLING USING SPATIAL
OPERATOR ALGEBRA

3.1 Spatial Operator Algebra (SOA)

Spatial Operator Algebra (SOA) is a high performance algorithm to model a robotic
manipulator with high degrees of freedom. SOA is a recursive method that uses

coordinate-free vectorial notation.

To clarify the notation throughout this thesis, it is needed to be explained some

notations. Vectors in 3-dimensional space are represented with an over arrow (X).

Spatial vectors in 6-dimensional space are represented with over two arrows (x) and

all of the other vectors are represented as underlined (x).

. i—
i i
Ok Ik,k+1 Tk
Center of Mass Ik .
,C IOk
~— Link k
Joint k+1 N———1
~—]
Joint k

Figure 3.1 : Vectors associated with link k of the manipulator i.
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A rigid link is shown in Figure 3.1. Angular and linear velocities of the k" link for
the it" manipulator are represented ‘@) and ', respectively. They propagate from

link k — 1 to link k for a revolute joint as follows:

‘@i = "D + Thi (3.1)

s _ i- i— i3 _ia i3 i—
Vi = Ugogt W1 X pqp= VUpog— Lpogp X Wi

= g1 — Cropk Bpog (3.2)

where ‘hy is the axis of rotation vector of joint k and Py, 2 ( Pr_y . X) is an

operator called skew symmetric matrix which is given as:

[ O ~ Co1py,  Loe1iy |
l‘?k—l,k = if(k—1,k)z 0 - if(k—1,k)x (3.3)
= P10, L0, o ]

where this is the reference frame:

[ ¢ (k=10) |
o1k = l lf(k—l,k)yJ

tp (k=1,),

If we unify the equations (3.1) and (3.2), we get:

i— i— i
W I 0] @Wr-1 ‘hie| i
Vi — ok sl Vik-1 0

where, spatial velocity of link k is

- i—
P Wi
W, 2| .
Vi l lﬂkl (3.5)

and the link velocity propagation operator is

Sl 3ol
— Prp ol

‘Prop-1 = l (3.6)
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and, finally, the axis of rotation spatial vector of joint k is defined as depicted:;

=3 in
'H, 2 l 6kl (3.7)

Equation (3.7) is for revolute joints. If the joint is prismatic then ‘Hy is defined as
i3 .| 0
Hy, £ l iﬁkl (3.8)
We can unify spatial velocity equation using definitions (3.5), (3.6), (3.7) and (3.8)
i o i i i7 g
Vie = "®rr-1 V-1 + Hp Ok (3.9)

With this unified equation, spatial velocity (angular and linear velocities) of link
k —1 propagated to the link k. This information helps us to model manipulators

much more easily.

3.2 Serial Manipulator Kinematics on a Fixed Platform

| i
In—l,n N TB
.———”———?n -1
— 3

TB —> Terminal Body
|
I0,1 ® —> Joints

Figure 3.2 : Serial manipulator on a fixed platform.
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A serial manipulator represents a serial topology system whose kinematics will be
examined and explained in this section. We will propagate the spatial velocities of
each joint from base to tip (terminal body) of serial robotic manipulator. We will use

arm i notation and accept that robotic arm is on a fixed base.

In Figure 3.2, ‘n means the number of DOF of the it" manipulator. Propagation of

spatial velocities from base to the link number ‘n will be detailed. The manipulator

is on a fixed platform which means that both angular and linear velocities for the
base are zero.

ir/)z = i¢2,1 il_/)1 + iﬁz i92 (3-10)

Using the state transition property of the propagation matrix, which is formulated as

‘Dap ‘Pne = ‘®qc We can rewrite the equations in (3.10) and we get:

(3.11)

Equations in (3.11) can be unified into one equation and can be rewritten in a matrix

form as follows:

20



|[ WI [ & 601|[ ‘H 0 0 1” 0]
.3 I i I 3 .3 3 i4
Vo l_| P21 ol Ol 0 'H 0 6,
I I N i O
[iﬁiJ ll¢ ‘n,1 l¢ 2 GIJl 6 6 ll_'l:)iJl 19 inJ
where;
i171 [ o 60 60]
iV — ir/)z l¢ — I l¢2 1 61 60|
B : | i I
i]_/in l ‘¢ n,1 ‘¢ in,2 51J
R - 5 (3.13)
iH, 0 0 [,
w_| T o || 6|
2 2 = [ ‘9 J
0 0 'H: | n
We can also write (3.12) in a compact form by the help of definitions in (3.13)
V= "¢ 'H'6 (3.14)

In equation (3.14), it is shown how to propagate the spatial velocities from base to
link ‘n of arm i. It is also essential to illustrate how to propagate the spatial

velocities from link ‘n to tip t of arm i.

- —> ‘
| 1 h
In—l,n ) ! B
1 1
" \
II ‘\\
= IW /,, \\ — Y
V=] | VAR B
n | ig t i —
Vin Vt

Figure 3.3 : Propagation from joint 'n to tip t of arm i.
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(3.15)
i _ i i— ip . _ = ip .
Ve = U in + ‘w in X P nt = v in £ int n

We could unify the equations in (3.15):

l ia_))tl _ .31 30 ia n
Bl = P S|, (3.10)

where, the propagation operator i(;bt i, 1S defined as:

i, =|_ i3 3.17
t, n Ly it 3l ( )
The equation (3.16) can also be rewritten in a compact form as:

Vo= o, i, Vi, (3.18)

V=o'V (3.19)
where:
ih, =60 &0 - ¢
be [e 6 t, n] (3.20)
with the equations (3.14) and (3.19) we can deduce:
V= ‘o' 'H G (3.21)
here we can define the Jacobian operator as:
‘1& '¢, ' 'H (3.22)

'3 is the Jacobian operator of the it" manipulator. Jacobian operator is a linear
operator which maps joint space to task space. Using the equations (3.21) and (3.22)

we can write the general expression of tip velocity as:
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W,= 179 (3.23)

That is to say, if the velocities in the joint space are known, operational space
velocities can be computed using Jacobian operator. In other saying, the angular and
linear velocities of the tip point can be computed using joint velocities. That is

referred to as forward kinematics.

Let us partition the six dimensional spatial space back to two 3 dimensional spaces

for linear and angular velocities as follows:

i— i
we| | ol i
EERE

where %7, and ‘7, are 3 x n matrices (where n is the number of the DOF). These

equations can be written as:

i(_‘)_)t = ijw iQ
. L (3.25)
lf}t = lgv lQ
With this representation we can see the general formulation of angular and linear
velocities due to the joint velocities.

What is referred to inverse kinematics is essentially the mapping of the velocity
vector in joint space based on the spatial velocity of the tip point. This may require
the pseudo inverse calculation of the Jacobian, which can be obtained as long as it is
full-rank.

g = lg* iy, (3.26)

where 7* is the pseudo-inverse of the Jacobian.

In the case of Jacobian being a square matrix, inverse of it can be directly computed
under the same assumption that it is full-rank. For the sake of simplicity in the
equations, we will not impose a restriction on the number of DOF to be equal to the
number of dimensions of the task space. Therefore we consider pseudo inverse
instead of straight inverse which also brings generality as well as simplicity in the

equations.
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3.3 Serial Manipulator Dynamics on a Fixed Platform

To make dynamic analysis, we need the time derivatives of angular and linear

velocities;
‘G = Wiy + e G+ Doy x By (3.27)
D= Wyoq — iz)k—l,k X Wiy + Bpemq X (Bpeoq X iTk—Lk) (3.28)
These two above equations can be written as follows:
iﬁk = i¢k,k—1 i‘i/k—1 + iﬁkék + iék, (3.29)
iczzk is the spatial bias accelerations of the arm i:

i— i
is _ Wg—1 X "W
ap =

W1 X ('Bp—q X ifk—l,k) (3.30)

‘a is the stacked bias spatial accelerations of the arm i:
. ial
a=|: (3.31)

iﬁk is the link spatial forces matrix of the arm i:
iﬁk = i¢£+1,k iﬁk+1 + M, lV)k + in (3.32)
IF, can also be written as:

4 iz
if, = [ fl‘l (3.33)
fr

where ‘7, is the torque vector of link k of arm i and ifk is the force vector of link k

of arm i.
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E=| (3.34)

In Equation 3.34, 'F is the stacked spatial forces of the arm i.

There is a formula defines the relation in between applied torques and link spatial

forces. That is:
‘1= '"HT 'F (3.35)

In order to find ', Inertia Matrix of link k of the arm i, let the mass density of the
object be a function of position p(x,y,z). Then the inertia tensor in the body

attached frame can be computed as:

Sy = }syx 3y }syz (3.36)

where,
S = [[[ 07 + 220072 dx ay az
'3, = fff(xz +z¥)p(x,v,z)dxdy dz
5., = [[[ @2 + 00y, dxdy az
By = Syx = — ]ﬂ xyp(x,y,2) dx dy dz (3.37)
Ser = Sy =— fff xzp(x,y,z)dxdydz

iSyz = iSzy = - ﬂf yzp(x,y,z)dxdydz

The integrals in the above expression are calculated over the region of space

occupied by the rigid body. The diagonal elements of the inertia tensor 'S, iSyy,
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'3,, are called the Principal Moments of Inertia which refers to the x,y,z axes,
respectively. The off diagonal terms iny, '3, etc., are called the Cross Products
of Inertia. If the mass distribution of the body is symmetric with respect to the body

attached frame then the cross products of inertia are identically zero, i.e. i:”sxy =0,

'3y, = 0 etc.

tM,is the link mass matrix of link k of arm i:

My = i i i (3.38)
where [ is the Identity Matrix (3x3), m, is the mass vector of the link k of the arm i
and 3y is the Inertia Matrix of link k of the arm i.
M is the mass matrix of arm i:

My, - 0

M= (3.39)
0 ani

iEk is the bias spatial forces remainder term:

My '@y X (B X ) '

where ifk,c is the link vector from the origin of the link frame k to the CM of the
link.

'p is the stacked bias spatial forces of arm i:

) iBl
‘b=t (3.41)
lbni
All of the above equations give us the final torque formula:
ir= iM i+ ic+ iy, W, + 9T IF, (3.42)
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where, ‘M is the generalized mass matrix of the arm i:
ing = IgT T iy i iy (3.43)
IC is the bias terms including Coriolis and gravity for the arm i:
ic = YT i@T( M o la+ 'b) (3.44)

IM, is the mass matrix regarding the dynamic interaction between the base and the

ith arm:
iMb — iHT i(pT iM i(p i(pb (345)

In this thesis, robotic serial manipulator on a fixed platform is studied. For the sake
of clarity of nonlinear control, the preferred robot arm is located on a fixed platform.

Furthermore, vast majority of industrial robots are installed on a fixed platform. For

only one platform i in the formulas, as in ‘C, M etc. al.equal to zero. And also,
because of the only platform being in the system is fixed, iI7b equals to zero matrix.

Kinematic and dynamic modeling of a serial manipulator on a fixed platform is now
completed. We will use this knowledge to model a serial manipulator on a fixed
platform in the following sections. For further details about kinematics and
dynamics, the studies in the literature can also be studied [12, 13] and [25, 26, 27].
For further details, it is also important to look at the references as mentioned in the
Introduction Section [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

In this thesis, we will also modify the nonlinear control theories to use with this
novel robot manipulator modeling theories, which have only been used with D-H
robot modeling theory before. Computed-torque control and adaptive control

nonlinear theories and their adaptions will be explained and illustrated, respectively.
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4. COMPUTED-TORQUE CONTROL OF ROBOTIC MANIPULATORS

In this chapter, we will examine a special feedback linearization type control scheme
for robot manipulators that fall under the class known as “computed-torque
controllers.” These generally perform well when the robot arm parameters are known
quite accurately. Some connections are given with the novel robot modeling and

advanced control techniques are provided as well.

4.1 Introduction

A fundamental problem in controlling robots is to make the manipulator to follow a
desired trajectory. Before the robot start moving, we must position it in the right
place at the right instances. In this chapter, we discuss computed-torque control,
which yields a family of easy-to-understand control schemes that often work well
and very fast in practice. These schemes involve the analysis of the controls design
problem into an inner-loop design and an outer-loop design.

In this section, we show how to use SOA (Spatial Operator Algebra) robot modeling
theory in conjunction with computed-torque control. Thus, this chapter could be
considered as a bridge between SOA robot modeling algorithm and the advanced
controller design techniques to obtain high performance in uncertain environments.
We assume here the robot is moving in free space, having no contact with its
environment. We will also assume in this chapter that the robot is a considerably
well-known rigid system, thus design of controller is based on a well-known model.
Control in the existence of uncertainties or unknown parameters (e.g., friction,
payload mass) require refined approaches. This problem is dealt with using adaptive

control in the following chapters.

Before we can control a robot arm, it is essential to know the desired path for
performing a specific task. There are many issues associated with the path planning
problem, such as avoiding obstacles, collision avoidance and making sure that the
planned path does not require exceeding the voltage and torque limitations of the

actuators. To reduce the control problem to its basic components to explain it clearly,
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it is necessary to assume that the ultimate control objective is to move the robot

along a prescribed desired trajectory.

In this chapter, we do not concern ourselves with the actual trajectory-planning
problem, however we show how to reconstruct a continuous desired path from a

given table of desired points the end effector should pass through.

In  most industrial applications, robot controllers are implemented on
microprocessors, particularly in view of the complex nature of modern control
schemes. In the following sections, we will demonstrate how to simulate a real
industrial robot on a computer. This should also be done to verify the effectiveness of
any proposed control scheme prior to actual implementation on a real robot

manipulator.

4.2 Path Generation

Throughout this chapter, we assume that there is prescribed path g, (t) the robot arm
should follow. We design control schemes that make the manipulator to follow this
prescribed desired path or trajectory. Trajectory Planning involves finding the
prescribed path and is usually considered as a separate design problem involving
collision avoidance, concerns about actuator saturation, motor drive’s torque and

velocity limits and so on.

Trajectory planning is not one of the main concerns for this thesis. However, we
need to use feedbacks of trajectory planning. That is why, it is necessary to mention
about the Path Planning.

First of all, for a specific task, robot manipulators’ tip point should have a path in 3-
dimensional position space. Then it should be decided at which velocities we will
track this path. Then, inverse kinematics will scatter these tip point velocities to the
actuators in 6-dimensional velocity space. Thus, joint space velocities can be

produced.

In this thesis, there are two different path-tracking simulations. The first one is about
the joint space trajectory planning and the second one is about the operational space
trajectory which could be called as Cartesian space trajectory too. In computed
torque control and adaptive control, we use joint space position, velocity and

acceleration values. These values could be taken from joint space trajectory for a
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given joint space trajectory directly. Nevertheless, for an operational space trajectory,

these values have to be deduced with trajectory planning algorithms.

4.3 Computed-Torque Control

In the history of robotics, many sorts of robot control schemes have been offered.
Most of them can be considered as special cases of the class of computed-torque
controllers. Computed torque can be considered as a special application of feedback
linearization of nonlinear systems, which has gained popularity in modern systems
theory [Hunt et al. 1983], [Gilbert and Ha 1984]. In fact, one way to classify robot
control schemes is to divide them as ‘“computed-torque-like” or “noncomputed-
torque-like” [LEWIS, 2004]. Computed-torque like controls can appear in robust

control, adaptive control, and fuzzy logic control and so on.

Computed-torque control allows us to derive very effective robot controllers,
conveniently. In the meanwhile, this method provides a framework to bring together

classical independent joint control and some modern design techniques.
4.3.1 Derivation of inner feedforward loop

The robot arm dynamics are as it was stated in eq. (3.40);
‘1= M@ G+ CladD+ M@ Vplq )+ T F A+ 1 (4.1)

with the joint variable q(t)eR™, ‘z, a disturbance. In our system, V,(q,q) =0

and ‘F, = 0. Thus the robot arm dynamic equation could be written as;

it= M) 6+ 'Clq.q)+ ‘zq (4.2)

Let us assume a predetermined desired trajectory in the joint space q4(t) has been

given. Trajectory tracking error would be;

e(t) = qa(t) —q(t) (4.3)

Velocity tracking error:

e(t) = qq(t) —q(®) (4.4)
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Acceleration tracking error:
ét) = 4a(®) — 4(®) (4.5)
Using eqg. (4.2) and eq. (4.4) we get:
E=Gg+ MT(CH 'Ta— D (4.6)
Control input function:
u=gg+ MICC- D (4.7)
Disturbance function:
W= ‘M1l (4.8)

and we could define a state x(t)eR?" by:

x =] (4.9)

The tracking error dynamics:

S1=19 01+ u+ o 10

This is a linear error system in Brunovsky Canonical Form consisting of n pairs of
double integrators 1/s2, one per joint [Lewis, 2004]. In (4.10) the control input is
u(t) and the disturbance is w(t).

The feedback linearizing transformation (4.7) could be written as
‘1= M@Ga-w)+ 'C (4.11)
Equation (4.11) is the computed-torque law.

It can be simply shown that, if we select a control u(t) that stabilizes (4.10), this will
make e(t) converge to zero. Thus, the nonlinear control input 'z (4.11) can track

trajectory in the robot arm (4.1).
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Nonlinear transformation, which illustrated in Fig. 4.1, has converted a complicated

nonlinear controls design problem into a n decoupled linear subsystem design

4.9

v

problem.
PSSO T
L Nonli i Linear
H onlinear ) : system
i ' inner €(q,9) !
' 1 loop :
P .
L |
3 L M ! Arm
qqg —> T (Q) !
X L oo j
u Outer loop

A

feedback

Figure 4.1 : Computed-torque control scheme showing inner and outer loops.

Computed-torque method depends on the inversion of the robot dynamics. That is

why it could also be named as inverse dynamic control in the literature. Also, in the

literature, abbreviation of inverse dynamic control is IDC. But, computed-torque

term is much more common.

4.3.2 PD outer-loop design

The auxiliary control signal u(t) could be selected as the proportional-plus

derivative (PD) feedback:
u=-K;é—Kpe
Then Computed-Torque Law turns into:

‘T= M@ (Gq + Kaé + Kpe) + 'C(q,9)
The closed-loop error dynamics are:
€+ Kqie+Kpe=0w

or in state-space form:
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d e 0 I e 0
ailel =1k, &L+ [0 (@.15)
The closed-loop characteristic polynomial is:
A(s) = |521 + Kys + Kpl (4.16)

It is usual to take the n X n gain matrices as PD Gains diagonal so that:

Ky = diag{kq,} (4.17)
Ky, = diag{kpi} (4.18)
then:
n
A(s) = l_[(sz + ka,s + kp,) (4.19)
i=1

and the error is asymptotically stable as long as both of the K;; and K,,; are positive.

Therefore, as long as the disturbance w(t) is bounded, so is the error e(t).

The standard form for the second-order characteristic polynomial:
p(s) = 5% + 2lwys + 4 (4.20)

with ¢ the damping ratio and w,, the natural frequency. Therefore, to achieve desired

performance in each component’s PD gains of the error e(t) should be selected

according to the following equations:
kp, = wi,  kq; = 23w, (4.21)

with n the desired damping ratio and natural frequency for joint error i.

It is undesirable for the robot to exhibit overshoot, since this could cause impact.

Therefore, the PD gains are usually selected for critical damping ¢ = 1.
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4.4 Stability of the Computed Torque Control Law

If K,, K; € R™™ are positive definite and symmetric matrices, then we could say
that the control law results in exponential trajectory tracking. The proof will be

explained.

Proof: The error dynamics can be written in the form of first-order linear system:

d
dt [i] - [—?{p —ﬁ(d] [g] (4.22)

It will be enough to show that each of the eigenvalues of A has negative real part. In

the case of 1 € C to be an eigenvalue of A with corresponding eigenvector

v = (vy,v,) € C?", v # 0. Then,

A=k, k) o] ==k = kv 4.23)

IfA = O0thenv = 0andhence A = 0 isnot an eigenvalue of A. Furthermore, if
A # 0, then v, = 0 refers that v; = 0. Thus, v, v, # 0 and we may assume without

loss of generality that ||v,|| = 1. Thus, we can write

22 = {220, = viAv, = vi(—Kpv, — Kgv,) = —viKav, — i K0 (4.24)
where * denotes complex conjugate transpose. Since a = v;K,v; > 0 and

B = viK,v; > 0, we have

A+al+p=0 a,B >0 (4.25)

and hence the real part of A is negative. O

The power of the computed torque control law comes from converting a nonlinear
dynamical system into a linear one. It allows the usage of any of a number of strong
linear control synthesis tools. Computed torque is a special type of a more general
technique known as feedback linearization, where a nonlinear system is rendered

linear via full-state nonlinear feedback. One disadvantage of using feedback
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linearization is that it can be demanding for processors and can increase computation
time. For robot manipulators, unboundedness of the inputs is rarely a problem since
the inertia matrix of the system is bounded and hence the control torques which must
be exerted always remain bounded [8]. In addition to that, different studies,
simulations and experimental results show that the computed torque controller has
very good performance characteristics. That is why this method is becoming

increasingly popular.
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5. ADAPTIVE CONTROL OF ROBOTIC MANIPULATORS

In this chapter, proposed adaptive controller is formulated based on separating
unknown constant parameters from known time functions in the robot dynamic

equation.

5.1 Introduction

Many researchers have focused on the problem of designing adaptive control laws
for rigid-robot manipulators that ensure asymptotic trajectory tracking. The
development of effective adaptive controllers represents an important step toward
high-speed/precision robotic applications [Lewis, 2004]. Even in a well-structured
industrial facility, robots could face different uncertainties. These uncertainties may
come from grasped loads (e.g., unknown moments of inertia). These parameters are
difficult to compute or measure and also some of the uncertainties may change
during the time. That is why these uncertainties are inevitable and limit the potential
for robots to manipulate accurately objects of considerable size and weight. The
accuracy and repeatability in high-speed applications is greatly affected by
parametric uncertainties. Adaptive strategies can compensate this parametric

uncertainty of robotic manipulators.

5.2 Adaptive Control by a Computed-Torque Approach

In real world applications, exact knowledge of the robot model cannot be known due
to many problems associated with model formulation. Two common uncertainties are

link masses due to payload disturbances and unknown friction coefficients.

For a powerful Adaptive Control it is necessary change our parameter estimates
based on an adaptive update rule that would be a function of the robot configuration
and the tracking error. The update rule is derived from the stability analysis of the

tracking error system. We ensure stability of the tracking error system by formulating
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the adaptive update rule and by analyzing the stability of the tracking error system at

the same time [Lewis, 2004].

i
. T
M(q) u Robot -
+
N i
da + A, . KE—O
C(q,9) ¢
+
q
q

Figure 5.1 : Adaptive computed torque control block scheme.

First of all, we should form the tracking error system to study of the adaptive
computed-torque controller. The first adaptive control strategy that we will examine
is the method outlined in [Craig 1985]. From [Craig 1985], we can write the robot

dynamic equation:

T=W(q,q,9)¢ (5.1)

where ¢ is an r x 1 vector of unknown constant parameters and W(q, g, §) is an
n X rmatrix of known time functions. This property is crucial. Because it illustrates

how to separate unknown parameters and the known time functions.

From [Craig 1985], the adaptive computed-torque controller for D-H is proposed by

the following formulation:
© = M(q)(Ga + Kaé + Kpe) + V(g g + G(@) + F(q) (5.2)

where the superscript “ "~ denotes the estimated dynamics with the unknown actual
parameters replaced by the parameter estimates. The estimated values come from
Adaptive Update Rule.
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For SOA , equation (5.2) turns into:
't = M(Q)(a + Kqé + Kpe) + 'C(q,9) (5.3)
Equation (5.2) can be derived as:
‘T= 'M(QE + Kqé + Kpe) + W(q,4, D (5.4)

where ¢ is an n x 1 vector which represents a time-varying estimate of the unknown

constant parameters. The tracking error system:
&+ Kqé + Kpe = M~ @OW(q,9, 9P (5.5)

where ¢ called is the parameter error vector:

P=9—¢ (5.6)

where the superscript “ "> denotes the difference in between varying estimate of the

unknown constant parameters and real values of the constant parameters.

Now for convenience, rewrite (5.5) in the state-space form:
U =AY +BM (W (q,q, P (5.7)

where the tracking error vector is:

o= (5.8)

and

0 0 I
B — n , A — n n
-l -9
where ./ is n X n identity matrix and ,,0 is n X n zero matrix.

In this thesis, Lyapunov stability analysis is used to show that the tracking error

vector  is asymptotically stable with the right choice of adaptive update law.

First of all, a positive-definite candidate Lyapunov function should be proposed:
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V=y"PY+¢' Ty (5.10)

where V' denotes the Candidate Lyapunov function, P is an 2n X 2n positive-
definite, constant, symmetric matrix, and I' is a diagonal, positive-definite r x r

matrix.

I’ can be written as:

I'=diag(y1, V2 - Vr) (5.11)

where y;’s are positive scalar constants.

If we differentiate the positive-definite Lyapunov-like function:
V=y"Py+ TPy + 29T 1§ (5.12)
To derive the above equation we have used:
6T p] =@ (5.13)

since I' = I'". We could write:

V=u"P(AY + BM Y (OW()P) + (AY + Bﬂ-l(q)W(.)qs)TPqJ

and
V=—yTQy+ 26" ("¢ + WT ()M *(q)B"PY) (5.15)
where Q is a positive-definite symmetric matrix that satisfies the Lyapunov equation:
ATP +PA=-Q (5.16)

To ensure stability, it is always desirable to have the candidate Lyapunov function V
at least negative semidefinite; therefore, the choice of adaptation update rule

deduced, by substituting:

¢ =—TWT()M*(q)B"PY (5.17)
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Then, in the Equation 5.17, ¢ term causes the candidate Lyapunov function ¥V turn

into:

V=—y"Qu (5.18)

We must do further analysis in order to determine the type of stability. However,
(5.17) gives the adaptive update rule for the parameter estimate vector since is equal
to zero. Thus, by recalling that the actual unknown parameters are constant, we can

obtain the adaptive update rule:

¢ =Trwr()M=(q)BTPy (5.19)

for the parameter estimate vector ¢@.

It can be seen that V is negative semidefinite and V is lower bounded by zero. Thus,

V remains upper bounded in the time interval [0, o)

HmV =V (5.20)

where V, is a positive scalar constant.

V is upper bounded, { and ¢ are bounded, which also shows that g, ¢ and ¢ are
bounded. We have already assumed ¢ is bounded, and we will always assume that

the desired trajectory and its first two derivatives are bounded.

Using (5.2) we can write:

‘b= "M ('T— 'Cq ) - '1a) (5.21)

Based on the equation 5.21, it can be easily said that, ¢ is bounded looking at the fact
that the right side of this equation consists of only bounded quantities, such as ‘r,

and ‘t.

If § is bounded, (5.7) shows that the tracking error vector { is bounded. If s is
bounded, we can also say that, the first derivative of the Lyapunov function V is
bounded, looking at the equation (5.18). Therefore, since the Lyapunov function V is
lower bounded by zero, V is negative semidefinite and V is bounded, then using

Barbalat’s lemma:
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t—oo

which means that by the Rayleigh-Ritz Theorem [Lewis, 2004].

. 2 _ i i =
th_f?o Amin {Q}HIWI|? = 0 which means that th_,r?olp =0 (5.23)

5.3 Adaptive Control Summary
5.3.1 Torque controller

Torque controller calculates torque values in order to send torque reference to the
servo motor drives for real systems. For simulations, this torque vector is the input

for Inverse Dynamics to compute the joint accelerations, velocities and positions.

Torque controller gets estimated values, which is shown as the symbol “«7> from

Adaptive Control Update Rule:
‘1= TM(q)(da + Kqé + Kpe) + 'C(q,9) (5.24)

5.3.2 Update rule

Adaptive Control Update Rule calculates the first derivative of estimated constant

vector shown as §.

¢ =TW'(q,q,§)M*(q)B"PY (5.25)
where:
I'=diag(y1,v2 - ¥r) (5.26)
w(q,q,4) = to* (5.27)
B = [”(I)l (5.28)
n

112k, + k I I
p— [Pl Y n;l — Zl( P I v)n n l (5.29)
n

PZnI P3n 2n1
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v =3 (5.30)

my
p=|: ] (5.31)

mp

0 I
A= [_"Kp _’;{Vl (5.32)
0.5k, I 0
P
20 (Kg +0.5) I (5:33)
W(q,q,§)¢ = M(@j+ C(q,9) +F(g) (5.34)
We assume that F(g) = 0, then we get

W(q, 4,5 = M(@j+C(q,9) (5.35)
ATP + PA=—-Q (5.36)

for some positive-definite, symmetric matrices P and Q.

P is symmetric and that it is positive definite if k,, is selected to be greater than 1 (for

further details, look at the Gerschgorin Theorem) [Lewis, 2004].
5.3.3 Stability

Tracking error vector  is asymptotically stable.

5.3.4 Restrictions

Parameter resetting method and measurement of ¢ is required.
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6. SIMULATION STUDIES

In this chapter; features, specification and dimensions of an industrial robot

explained in details.

In this chapter, two different kinds of simulations are presented. Under all
circumstances, “Adaptive Control” and “Computed-Torque Control” results are

compared.

In the first simulation type, joint space trajectory tracking results are compared with
and without the existence of uncertainties. In the second simulation type, operational
space trajectory tracking results are compared with and without the existence of

uncertainties.

6.1 Introduction about Simulations

In the previous chapters, various nonlinear control methods are illustrated. Using the
methodology presented in chapter 2 and 3 the robot is modeled. And also using the

methodology presented in chapter 4 and 5, the controller are designed.

The system was simulated using MATLAB. MATLAB is chosen for simulations
because animation applications can be easily made by using virtual reality toolbox of
MATLAB.

In this assignment we used IR6620 serial arm manipulator produced by ABB. 3D

CAD models of the robot arm are downloaded from vendor’s official site.

To determine Masses, Center of Masses etc. we have used vendor’s official product

specification document.

However, in the case of being missing values or vendor’s catalogue is lack of some
critical information; SolidWorks could be used to obtain dynamic parameters such as

CM (Center of Mass), mass and Inertia matrices.
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6.2 ABB IRB 6620

IRB 6620 is part of the IRB 6600 family produced by ABB. IRB 6620 is a flexible
and agile robot with a large workspace for industrial applications. The robot have the
different mounting capabilities, i.e. floor standing, tilted or inverted mounted and

shelf capability.

Figure 6.2 : ABB IRB 6620 (Ceil mounted) [35].
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Working range is also another criterion defining the design success for robot

manipulators.

2564

976

1473 2204

Figure 6.3 : Working range of IRB 6620 for floor mounted type [35].

2204 1473

Figure 6.4 : Working range of IRB 6620 for ceil mounted type [35].
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6.2.1 Specifications and dimensions of ABB IRB6620

This compact robot opens up opportunities for new flexible and improved line
concepts like saving floor space, creating higher robot density and shorter lines.

IRB 6620 is also suitable for machine tending applications such as Die Casting and

Injection Molding.

Table 6.1 : Technical specification data of IRB 6620 [34].

SPECIFICATION

Reach 2.2m
Handling Capacity 150 kg
Extra Loads can be mounted on to the 50 kg on to the upper and 100 kg
robot on to the robot base
Number of Axes 6
Protection IP 54
Mounting Floor, tilted or inverted
Position Repeatability 0.1 mm

{4}

{3}

Figure 6.5 : Axis description of IRB 6620 [34].
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Table 6.2 : Performance data of IRB 6620 [36].
Axis Type of Motion

Range of Maximum Maximum

Movement Axis Speed Permissible

Joint Torqgues

1 Rotation motion  +170° to -170° 100°/s 4400 Nm
2 Arm motion +140° to -65° 90°/s 15230 Nm
3 Arm motion +70° to -180° 90°/s 2770 Nm
4 Wrist motion +300° to -300° 150°/s 736 Nm
5 Bend motion +130° to -130° 120°/s 736 Nm
6 Turn motion +300° to -300° 190°/s 383 Nm

Figure 6.6 : Axis of rotations of IRB 6620 [36].
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Figure 6.7 : IRB 6620 CAD model with principal distances between axis [36].

In the Figure 6.7; A means R 199 mm for wrist rotation, B means Forklift width
1150 mm and C means R 568 mm for Axis 2 motor.

Figure 6.8 : DressPack for material handling (A: Connection point at axis 3) [36].
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6.3 How to Get Parameters from SolidWorks

SolidWorks software allows displaying dynamic parameters of object by ‘mass

properties’ button. Firstly, click button and related object are chosen from object tree

in left side for each link. After that, the selected part must be shown in a different

color depicted in the Figure 6.9.
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% Top Plane

-3 Right Plane
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SolidWaorks Premium 2009 Fully Defined  Editing Assembly
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Figure 6.9 : Selection of a link from the SolidWorks.

In the main screen, select “Evaluate” and then “Mass Properties”, then following

page will pop up. Then, all dynamic parameters for the selected part will be on the

new screen.

In the Figure 6.10, Mass, Center of Mass, Inertia values can be clearly seen. All

necessary parameters to model a robotic manipulator can be provided from
SolidWorks if 3D CAD model is provided by the vendor. However, for IRB6620 all
of the necessary parameters are provided in the official documents, except for Inertia.

So, in this thesis only Inertia data is extracted from SolidWorks because of being

easier and more accurate.
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ET0 Mass Properties - L ] [= ® |

[ pint.. |[ copy ][ close ][ options.. || Recalculate |

Output coordinate system: -- default - -
IRB6620_220-150_m2004_rev0_01-3-1 @IRBEE:

Selected items:

[#] Include hidden bodies/components

Show output coardinate system in corner of window

[] Assigned mass properties

Mass properties of IRBE620_220-150_m2004_revd_01-3 ( in Assembly Configuratian - Default } -
Output coordinate System: - default -

The center of mass and the moments of inertia are output in the coordinate system of IRE6620_220-150_m2004_rev0_01
Density = 1000.00 kilograms per cubic meter

Mass = 41,00 kilograms
Volume = 004 cubic meters
Surface area = 1,10 meters"2

Center of mass: | meters ]
X=032
Y=0.22
z=110

Principal axes of inertia and principal moments of inertia: { kilograms * square meters )
Taken at the center of mass.

=000, 0.10,099)  Px=031

Iy=(L00, 0.00, 0.00) Py=396

Iz=(0.00,099,010)  Pz=409

Moments of inertia: ( kilograms * square meters |
Taken at the center of mass and aligned with the output coordinate system.

Lt = 3.96 Ly = -0.00
Lyx = -0.00 Lyy = 4.05 lyz = 038
Lzx = 0.00 lzy = 0.38 Lzz =034

Moments of inertia: { kilograms * square meters )
Taken at the output coordinate system.

T = 5535 Ty = -2.87 b =14.42
yx = 287 Iyy = 5769 Iyz = 10.21
Izx = 1442 Iy = 1021 Iz = 6.50

« »

Figure 6.10 : Mass properties screen from SolidWorks for the selected part/parts.

6.4 Computed-Torqgue Control Simulation to Track a Joint Space Trajectory
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Figure 6.11 : Mass properties screen from SolidWorks for the selected part/parts.

In this thesis, Matlab is used to model and to simulate the robot arm. In chapter 5,
Computed-Torque Control is explained. In this part, the simulation which is

explained in chapter 5 is shown.
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Figure 6.12 : Interior of Virtual Reality block used in the simulation.

In this simulation, K, is selected as 20 and K, is selected as 100. Sinus signal is

selected as input for all joints. Joint torque limits are also added to the simulation.

6.5 Adaptive Control Simulation to Track a Joint Space Trajectory

Tools  Help
Ry afi o T PERS s REES

. PEE—— IR

> Oz |—jing2 fotstion

Configueations

100% ForedStepDiscrete

Figure 6.13 : Adaptive computed-torque control simulation.

In this simulation, k, is selected as 20, k,, is selected as 100 and I = 500 = I. Sinus

signal is selected as input for

all joints, because its fluctuating characteristic
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challenges the algorithm. Thus, we could easily see the limits and capabilities of the

algorithm. Joint torque limits are also added to the simulation.

E Function Block Parameters: IRB6620 Torque Limits

Saturation

Limit input signal to the upper and lower saturation values.

Main Signal Attributes

Upper limit:
[4400 15230 2770 736 736 383]
Lowver limit:
-[4400 15230 2770 736 736 383]
Treat as gain when linearizing
Enable zero-crossing detection
Sample time (-1 for inherited):

-1

\_) [ oK H Cancel H Help

)

App ly

Figure 6.14 : Interior of torque limits block used in the simulation.

6.6 Adaptive Control and Computed-Torque Control Results’ Comparison for

a Preplanned Joint Space Trajectory Tracking

For all cases under this heading, “Adaptive Control and Computed-Torque Results’

Comparison Tracking a Preplanned Joint Space Trajectory”, desired joint space

trajectory is depicted in Fig. 6.15.
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Figure 6.15 : Joint space desired trajectory.
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6.6.1 In the case of all masses are fully known
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Figure 6.16 : Joint space trajectory tracking with computed-torque control.
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Figure 6.17 : Joint space trajectory tracking with adaptive control.
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igure 6.18 : Joint space trajectory tracking position error with CTC.
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Figure 6.19 : Joint space trajectory tracking position error with adaptive control.
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Figure 6.20 : Adaptive control rule link masses’ estimation.
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6.6.2 In the case of all masses are presumed as 1.5 times heavier
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Figure 6.21 : Joint space trajectory tracking with computed-torque control.
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Figure 6.22 : Joint space trajectory tracking with adaptive control.
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igure 6.23 : Joint space trajectory tracking position error with CTC.
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Figure 6.24 : Joint space trajectory tracking position error with adaptive control.
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Figure 6.25 : Adaptive control rule link masses’ estimation.
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6.6.3 In the case of all masses are presumed as 2 times heavier

angle [rad]

angle [rad]

angle [rad]

angle [rad]

Joint 1 Joint 2 Joint 3
3 3 3
2 2 2
N g \ g ANMA'\ /nvhwg‘Y
0 / © © / 20 \
1 \J N g 1 \\/ N g_l \\_/
-2 -2 -2
-3 -3 -3
0 2 4 6 10 0 2 4 6 10 0 2 4 6 8 10
time [s] time [s] time [s]
Joint 4 Joint 5 Joint 6
3 3 3
2 2 2
1 A\ g 1+ g 1-d *\ 2
0 \ / \\ E o\ E 0 \ / \
1 \_/ g 1 T\ \f’?_ %_1 v/
-2 -2 -2
-3 -3 -3
0 2 4 6 10 0 2 4 6 10 0 2 4 6 8 10
time [s] time [s] time [s]
Figure 6.26 : Joint space trajectory tracking with computed-torque control.
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Figure 6.27 : Joint space trajectory tracking with adaptive control.
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igure 6.28 : Joint space trajectory tracking position error with CTC.
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Figure 6.29 : Joint space trajectory tracking position error with adaptive control.
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Figure 6.30 : Adaptive control rule link masses’ estimation.
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6.6.4 In the case of all masses are presumed as half of the real values
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Figure 6.32 : Joint space trajectory tracking with adaptive control.
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Figure 6.31 : Joint space trajectory tracking with computed-torque control.
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Figure 6.34 : Joint space trajectory tracking position
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igure 6.33 : Joint space trajectory tracking position error with CTC.
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Figure 6.35 : Adaptive control rule link masses’ estimation.
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6.7 Adaptive Control and Computed-Torque Control Results’ Comparison for

a Preplanned Operational Space Trajectory Tracking

For all cases under this heading, “Adaptive Control and Computed-Torque Results’
Comparison Tracking a Preplanned Operational Space Trajectory”, desired
operational space is an ellipsoid trajectory. Desired operational trajectory is shown in

green lines and the tracked trajectory is shown in red lines in the figures.
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Figure 6.36 : Corresponding joint space trajectory to produce desired ellipsoid
trajectory in Operational space.

6.7.1 In the case of all masses are fully known

In simulations, green points show the desired path and the red points show the Tip

Point’s passed positions.

Figure 6.37 : Operational space trajectory tracking with CTC.
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Figure 6.38 : Operational space trajectory tracking with adaptive control.
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Figure 6.39 : Joint space trajectory tracking with CTC.
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Figure 6.40 : Joint space trajectory tracking with adaptive control.
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Figure 6.41 : Trajectory tracking position error with CTC.
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Figure 6.42 : Trajectory tracking position error with adaptive control.
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Figure 6.43 : Adaptive control rule link masses’ estimation.
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6.7.2 In the case of all masses are presumed as 1.5 times heavier

Green points show the desired path and the red points show the Tip Point’s passed

positions.

Figure 6.44 : Operational space trajectory tracking with CTC.

Figure 6.45 : Operational space trajectory tracking with adaptive control.
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Figure 6.46 : Joint space trajectory tracking with CTC.
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Figure 6.47 : Joint space trajectory tracking with adaptive control.
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Figure 6.49 : Trajectory tracking position error with adaptive control.
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Figure 6.48 : Trajectory tracking position error with CTC.
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Figure 6.50 : Adaptive control rule link masses’ estimation.
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6.7.3 In the case of all masses are presumed as 2 times heavier

Green points show the desired path and the red points show the Tip Point’s real

positions.

Figure 6.51 : Operational space trajectory tracking with CTC.

Figure 6.52 : Operational space trajectory tracking with adaptive control.
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Figure 6.53 : Joint space trajectory tracking with CTC.
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Figure 6.54 : Joint space trajectory tracking with adaptive control.
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Figure 6.55 : Trajectory tracking position error with CTC.
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Figure 6.56 : Trajectory tracking position error with adaptive control.
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Figure 6.57 : Adaptive control rule link masses’ estimation.
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7. CONCLUSIONS AND RECOMMENDATIONS

We analyzed the industrial serial robotic arm with a high performance algorithm
(SOA) recursively. Then, we controlled the industrial robotic arm with two strong
nonlinear control techniques. The dynamic analysis of serial robot is not very
complicated; however when nonlinear control algorithms are included, the system
turns out to be a highly complex system. Using this algorithm, the model and its
controllers could be easily implemented into any kind of real world robot
applications. The visualization of the system was done using the “Virtual Reality
Toolbox” in the environment of MATLAB/Simulink. The performance of the robot

control algorithms was shown and results were compared in Chapter 7.

This study was very important for two main reasons. The first contribution is to show
the possibility to adapt strong background of nonlinear control methods, which were
designed for D-H, to be compatible with the usage of SOA, which is novel robot
modeling algorithm. The second major importance is to provide us to see the

possible results in the simulation and test the algorithms before the production.

In the simulations results, it can be clearly seen that, Adaptive Control can eliminate
the disturbance. In this way, it shows much better performance than Computed
Torque. However, if the expectations are low, computed torque can be preferred for
lightweight robots where masses and frictions are small. Computed torque can also
be preferred for the case of faster calculations are demanded, i.e. shorter cycle times

are needed, too.

Now that we have the successful models of the controllers, results of their outputs
and their 3D simulations, we could easily test these algorithms on a real robotic

manipulator in the future studies.

This work can also be extended to include parallel and cooperating manipulators in
the future studies. In the future studies, Delta Robots and Stewart Platform can be
our focus as industrial parallel robot. Baxter from Rethink Robotics could also be our

new focus as a cooperating robotic manipulator.
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