İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ

OTONOM BİSİKLET MODELLENMESİ VE TASARIMI

YÜKSEK LİSANS TEZİ

Ömer Faruk ARGIN

Mekatronik Mühendisliği Anabilim Dalı

Mekatronik Mühendisliği Programı

MAYIS 2014

İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ

OTONOM BİSİKLET MODELLENMESİ VE TASARIMI

YÜKSEK LİSANS TEZİ

Ömer Faruk ARGIN (518111030)

Mekatronik Mühendisliği Anabilim Dalı

Mekatronik Mühendisliği Programı

Tez Danışmanı: Doç. Dr. Zeki Yağız BAYRAKTAROĞLU

MAYIS 2014

İTÜ, Fen Bilimleri Enstitüsü'nün 518111030 numaralı Yüksek Lisans Öğrencisi Ömer Faruk ARGIN, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten sonra hazırladığı "OTONOM BİSİKLET MODELLENMESİ VE TASARIMI" başlıklı tezini aşağıdaki imzaları olan jüri önünde başarı ile sunmuştur.

Tez Danışmanı :	Doç. Dr. Zeki Yağız BAYRAKTAROĞLU	
	İstanbul Teknik Üniversitesi	

Jüri Üyeleri :	Prof. Dr. Ata MUĞAN	
	İstanbul Teknik Üniversitesi	

Yrd. Doç. Dr. Kadir ERKAN Yıldız Teknik Üniversitesi

.....

Teslim Tarihi :05 Mayıs 2014Savunma Tarihi :30 Mayıs 2014

iv

Aileme,

vi

ÖNSÖZ

Otonom Bisiklet Modellenmesi ve Tasarımı başlıklı bu çalışma, iki tekerlekli insansız bir bisikletin modellenmesi, kontrol sisteminin tasarlanması, sistemin dinamik davranışının benzetimi ve benzetim sonuçlarına uygun olarak deneysel sistemin oluşturulması konuları ele alınmıştır.

Çalışmalarım sırasında değerli zamanını ve bilgi birikimini benimle paylaşan, her zaman yardımlarını sunan ve çalışmamın her safhasında yakın ilgi ve önerileriyle beni yönlendiren danışmanım sayın Doç.Dr. Zeki Yağız Bayraktaroğlu'na teşekkür ederim. Tezimin her aşamasında yardımlarını esirgemeyen başta Ar.Gör. Hakan Ülker'e ve Ar.Gör. Gökçe Burak Tağlıoğlu' olmak üzere, Ar.Gör. Cihat Bora Yiğit'e, Ar.Gör. Ece Coşgun'a, Ar.Gör. Turgay Eray'a, Mesut Acar'a, Numan Mert Tan'a, Ulaş Çelik'e ve beni her zaman destekleyen ve motivasyonumu üst düzeyde tutmamı sağlayan aileme de teşekkürlerimi sunarım.

May1s 2014

Ömer Faruk ARGIN (Mekatronik Mühendisi)

İÇİNDEKİLER

Sayfa

ÖNSÖZ	vii
İÇİNDEKİLER	ix
ÇİZELGE LİSTESİ	xi
ŞEKİL LİSTESİ	xiii
ÖZET	xvii
SUMMARY	xix
1. GİRİŞ	1
2. MODELLEME	7
2.1 Kinematik Model	7
2.2 Nonholonomik Kısıt Denklemleri	13
2.3 Dinamik Model	15
3. KONTROL SİSTEMİ TASARIMI ve DİNAMİK BENZETİMLER	19
3.1 Kapalı Çevrim Kontrol Sistemi Tasarımı	19
3.1.1 Yörünge planlaması	21
3.1.2 Gidon referans açısının elde edilmesi	22
3.2 Model Parametrelerinin Elde Edilmesi	23
3.3 Dinamik Benzetimler	25
3.3.1 Volan dengeleme sistemi ile otonom yörünge takibi	25
3.3.1.1 Farklı kontrol katsayılarının yörünge takip performansına etkisi	31
3.3.1.2 Farklı hızlarda hareketin yörünge takip performansına etkisi	40
3.3.2 Mekanik jiroskop sistemi ile otonom olarak yörunge takip edilebilir-	
liğinin incelenmesi	60
4. DENEYSEL ÇALIŞMALAR	67
4.1 Mekanik Tasarım	67
4.2 Elektronik Tasarım	69
4.3 Programlama ve İletişim	72
5. SONUÇLAR	75
KAYNAKLAR	77
EKLER	79
EK A	80
ЕК В	98
EK C	104
ÖZGEÇMİŞ	109

ÇİZELGE LİSTESİ

Sayfa

Çizelge 2.1 : Eksen takımları.	8
Çizelge 2.2 : Sabit parametreler.	10
Çizelge 2.3 : Genelleştirilmiş koordinatlar.	10
Çizelge 3.1 : Gerçek bisiklet parametreleri	24

ŞEKİL LİSTESİ

Sayfa

Şekil 1.1	:	Bisikletin tarihi gelişimi [21].	1
Şekil 1.2	:	Bisiklet kafa açısı λ	3
Şekil 1.3	:	Ters sarkaç yardımıyla bisiklet denge kontrolü [14]	4
Şekil 1.4	:	Mekanik jiroskop yardımıyla bisiklet denge kontrolü [16]	4
Şekil 1.5	:	Volan yardımıyla bisiklet denge kontrolü [22]	5
Şekil 1.6	:	Modelleme için kullanılan bisiklet	5
Şekil 2.1	:	Bisiklet katı modeli	8
Şekil 2.2	:	Koordinat eksenleri, değişkenler ve sabit parametreler	9
Şekil 2.3	:	Gidon doğrultusu ile ön tekerlek dönme noktası arasındaki uzaklık	14
Şekil 3.1	:	Kapalı çevrim blok diyagramı genel durumu	19
Şekil 3.2	:	Kapalı çevrim blok diyagramı.	20
Şekil 3.3	:	Yörünge planlaması ve sınır şartları.	21
Şekil 3.4	:	Yörünge planlaması.	23
Şekil 3.5	:	Benzetimlerde kullanılan bisiklet.	23
Şekil 3.6	:	Bisiklet parametrelerinin ölçülmesi.	24
Şekil 3.7	:	Volan ile slalom hareket yörüngesi takibi	25
Şekil 3.8	:	Volan ile slalom hareket yörüngesi takibinde x yönü konum hatası	26
Şekil 3.9	:	Volan ile slalom hareket yörüngesi takibinde y yönü konum hatası	27
Şekil 3.10	:	Volan ile slalom hareket yörüngesi takibinde χ yatma açısı	27
Şekil 3.11	:	Volan ile slalom hareket yörüngesi takibinde ψ gidon açısı	28
Şekil 3.12	:	Volan ile slalom hareket yörüngesi takibinde θ yönelim açısı	29
Şekil 3.13	:	Volan ile slalom hareket yörüngesi takibinde \dot{v}_1 arka tekerlek açısal	
		hızı	29
Şekil 3.14	:	Volan ile slalom hareket yörüngesi takibinde $\dot{\alpha}$ volan açısal hızı	30
Şekil 3.15	:	Volan ile slalom hareket yörüngesi takibinde $\ddot{\alpha}$ volan ivmesi	30
Şekil 3.16	:	Farklı kontrol katsayıları için Z yörünge takibi	32
Şekil 3.17	:	Farklı kontrol katsayıları için Z yörünge takibinde χ açısı.	32
Şekil 3.18	:	Farklı kontrol katsayıları için Z yörünge takibinde ψ açısı	33
Şekil 3.19	:	Farklı kontrol katsayıları için Z yörünge takibinde $\dot{\upsilon}_1$ hızı	33
Şekil 3.20	:	Farklı kontrol katsayıları için Z yörünge takibinde θ hızı	34
Şekil 3.21	:	Farklı kontrol katsayıları için Z yörünge takibinde $\dot{\alpha}$ hızı	35
Şekil 3.22	:	Farklı kontrol katsayıları için Z yörünge takibinde $\ddot{\alpha}$ ivmesi	35
Şekil 3.23	:	Farklı kontrol katsayıları için slalom yörünge takibi	36
Şekil 3.24	:	Farklı kontrol katsayıları için slalom yörünge takibinde χ açısı	37
Şekil 3.25	:	Farklı kontrol katsayıları için slalom yörünge takibinde ψ açısı	37
Şekil 3.26	:	Farklı kontrol katsayıları için slalom yörünge takibinde $\dot{\upsilon}_1$ hızı	38
Şekil 3.27	:	Farklı kontrol katsayıları için slalom yörünge takibinde θ hızı	38

Şekil 3.28 : Farklı kontrol katsayıları için slalom yörünge takibinde $\dot{\alpha}$ hızı	39
Şekil 3.29 : Farklı kontrol katsayıları için slalom yörünge takibinde $\ddot{\alpha}$ ivmesi	39
Şekil 3.30 : Farklı hızlar için Z yörünge takibi.	40
Şekil 3.31 : 2 m/s ortalama bisiklet hızı için Z yörüngede χ açısı	41
Şekil 3.32 : 1.3 m/s ortalama bisiklet hızı için Z yörüngede χ açısı	41
Şekil 3.33 : 0.5 m/s ortalama bisiklet hızı için Z yörüngede χ açısı	42
Şekil 3.34 : 2 m/s ortalama bisiklet hızı için Z yörüngede ψ açısı.	42
Şekil 3.35 : 1.3 m/s ortalama bisiklet hızı için Z yörüngede ψ açısı.	43
Şekil 3.36 : 0.5 m/s ortalama bisiklet hızı için Z yörüngede ψ açısı.	43
Şekil 3.37 : 2 m/s ortalama bisiklet hızı için Z yörüngede v_1 hızı	44
Şekil 3.38 : 1.3 m/s ortalama bisiklet hızı için Z yörüngede v_1 hızı	44
Şekil 3.39 : 0.5 m/s ortalama bisiklet hızı için Z yörüngede v_1 hızı	45
Şekil 3.40 : 2 m/s ortalama bisiklet hızı için Z yörüngede θ açısı	45
Şekil 3.41 : 1.3 m/s ortalama bisiklet hızı için Z yörüngede θ açısı	46
Şekil 3.42 : 0.5 m/s ortalama bisiklet hızı için Z yörüngede θ açısı	46
Şekil 3.43 : 2 m/s ortalama bisiklet hızı için Z yörüngede ά hızı	47
Şekil 3.44 : 1.3 m/s ortalama bisiklet hızı için Z yörüngede α hızı	47
Şekil 3.45 : 0.5 m/s ortalama bisiklet hızı için Z yörüngede $\dot{\alpha}$ hızı	48
Şekil 3.46 : 2 m/s ortalama bisiklet hızı için Z yörüngede α ivmesi.	48
Şekil 3.47 : 1.3 m/s ortalama bisiklet hızı için Z yörüngede α ivmesi.	49
Şekil 3.48 : 0.5 m/s ortalama bisiklet hızı için Z yörüngede α ivmesi.	49
Şekil 3.49 : Farklı hızlar için slalom yörünge takibi.	50
Sekil 3.50 : 2 m/s ortalama bisiklet hızı için slalom yörüngede χ açısı.	51
Şekil 3.51 : 1.3 m/s ortalama bisiklet hızı için slalom yörüngede χ açısı.	51
Sekil 3.52 : 0.5 m/s ortalama bisiklet hızı için slalom yörüngede χ açısı.	52
Şekil 3.53 : 2 m/s ortalama bisiklet hızı için slalom yörüngede ψ açısı	52
Şekil 3.54 : 1.3 m/s ortalama bisiklet hızı için slalom yörüngede ψ açısı	53
Şekil 3.55 : 0.5 m/s ortalama bisiklet hızı için slalom yörüngede ψ açısı	53
Şekil 3.56 : 2 m/s ortalama bisiklet hızı için slalom yörüngede v_1 hızı.	54
Şekil 3.57 : 1.3 m/s ortalama bisiklet hızı için slalom yörüngede v_1 hızı.	54
Şekil 3.58 : 0.5 m/s ortalama bisiklet hızı için slalom yörüngede v_1 hızı.	55
Sekil 3.59 : 2 m/s ortalama bisiklet hızı icin slalom yörüngede θ acısı	55
Sekil 3.60 : 1.3 m/s ortalama bisiklet hızı icin slalom yörüngede θ acısı	56
Sekil 3.61 : 0.5 m/s ortalama bisiklet hızı için slalom yörüngede θ açısı	56
Sekil 3.62 : 2 m/s ortalama bisiklet hızı icin slalom vörüngede $\dot{\alpha}$ hızı	57
Sekil 3.63 : 1.3 m/s ortalama bisiklet hızı icin slalom vörüngede $\dot{\alpha}$ hızı	57
Sekil 3.64 : 0.5 m/s ortalama bisiklet hızı icin slalom vörüngede $\dot{\alpha}$ hızı	58
Sekil 3.65 : 2 m/s ortalama bisiklet hızı icin slalom yörüngede $\ddot{\alpha}$ ivmesi	58
Sekil 3.66 : 1.3 m/s ortalama bisiklet hızı icin slalom vörüngede $\ddot{\alpha}$ ivmesi	59
Sekil 3.67 : 0.5 m/s ortalama bisiklet hızı icin slalom vörüngede $\ddot{\alpha}$ ivmesi	59
Sekil 3.68 : Jiroskop ile slalom hareket vörüngesi takibi	60
Sekil 3.69 : Jiroskoplu slalom hareket vörüngesi takibinde x vönünde konum	
hatası.	61
Şekil 3.70 : Jiroskoplu slalom hareket yörüngesi takibinde y yönünde konum	
hatası.	62
Şekil 3.71 : Jiroskoplu slalom hareket yörüngesi takibinde χ yatma açısı	62

Şekil 3.72	: Jiroskoplu slalom hareket yörüngesi takibinde ψ gidon açısı	63
Şekil 3.73	: Jiroskoplu slalom hareket yörüngesi takibinde θ bisiklet yönelim	
	açısı	64
Şekil 3.74	: Jiroskoplu slalom hareket yörüngesi takibinde v_1 bisiklet arka	
	tekerlek açısal hızı	64
Şekil 3.75	: Jiroskoplu slalom hareket yörüngesi takibinde $\dot{\alpha}$ volan açısal hızı	65
Şekil 3.76	: Jiroskoplu slalom hareket yörüngesi takibinde $\ddot{\alpha}$ volan ivmesi	65
Şekil 4.1	: Volan montajı	67
Şekil 4.2	: Gidon tahrik mekanizması	68
Şekil 4.3	: Enkoder dişli sistemi	68
Şekil 4.4	: Hub motor	69
Şekil 4.5	: Arduinu Due geliştirme kartı	69
Şekil 4.6	: Mecapion artımsal enkoder	70
Şekil 4.7	: Gidon motor torku	70
Şekil 4.8	: Benzetimlerde maksimum volan hızı	71
Şekil 4.9	: Maxon EPOS dc motor sürücüsü	71
Şekil 4.10	: Maxon HEDL-5540 artımlı enkoder	71
Şekil 4.11	: Microstrain 3DM-GX2 imu.	72
Şekil 4.12	: IEI uIBX 210 gömülü bilgisayar	72
Şekil 4.13	: İletişim sistemi	73
Şekil 4.14	: Gömülü bilgisayarda otonom bisiklet kontrol menüsü	73
Şekil A.1	: Bisiklet arka tekerlek katı modeli	98
Şekil A.2	: Bisiklet ön tekerlek katı modeli	98
Şekil A.3	: Bisiklet ana çerçevesi katı modeli	99
Şekil A.4	: Bisiklet gidon katı modeli	99
Şekil A.5	: Bisiklet volan mekanizması katı modeli1	.00
Şekil A.6	: Bisiklet volan katı modeli 1	.00
Şekil A.7	: Bisiklet volan mekanizması alt üst bağlantı elemanı katı modeli 1	.01
Şekil A.8	: Bisiklet volan mekanizması yan bağlantı elemanı katı modeli 1	.01
Şekil A.9	: Bisiklet volan mekanizması orta bağlantı elemanı (motor bağlantısı	
	için) katı modeli 1	.02
Şekil A.10	Bisiklet volan mili katı modeli1	.02
Şekil A.11	: Bisiklet gidon motor bağlantı elemanı katı modeli 1	.03
Şekil A.12	: Bisiklet arka tekerlek dişlisi katı modeli(Enkoder montajı için) 1	.03
Şekil A.13	Bisiklet arka tekerlek enkoder dişlisi katı modeli 1	.03
Şekil A.14	Bisiklet maxon motor katalog bilgileri 1	.04
Şekil A.15	: Bisiklet maxon epos sürücü katalog bilgileri1	.05
Şekil A.16	: Bisiklet gömülü bilgisayar katalog bilgileri1	.06
Şekil A.17	Bisiklet arka tekerlek enkoder katalog bilgileri1	.07
Şekil A.18	: Bisiklet imu katalog bilgileri 1	.08

OTONOM BİSİKLET MODELLENMESİ VE TASARIMI

ÖZET

Bisiklet eğlence, spor, taşıma amacıyla kullanılan hayatımızda önemli bir yere sahip ulaşım aracıdır.Bisiklet kullanmak, öğrenilen bir beceridir ve öğrenilmesi zordur. Ancak öğrenildikten sonra bilinçialtı davranışı haline gelmektedir.Statik olarak kararsız bir sistem olan bisiklet, bazı belirli koşullar yerine geldiğinde kararlı duruma geçmektedir. Bisikletin denge konumuna geçmesi, yüksek bisiklet hızı ve gidon açısı ilişkisi ile olabileceği gibi, harici kuvvetler ile de sağlanabilmektedir. Bisiklet kullandığımızda kas gücümüz olan bu harici kuvvetler, insansız harekette ters sarkaç, mekanik jirokop ve volan olabilmektedir.

Bu çalışmada nonholonomik bir sistem olan iki tekerlekli insansız bir bisikletin yüksek mertebeden nonlineer modeli elde edilmiştir. Literatürde incelenen modellerden farklı olarak basitleştirici varsayımlar yapılmaksızın korunmuş ve benzetimlerde kullanılmıştır. Varsayımlar matematik modellerin fiziksel bisiklet davranışından sapmasına yol açmakta ve yapılan analizler ancak bisiklet hareketinin bazı özel halleri için geçerli olabilmektedir. Konu ile ilgili çalışmalarda genellikle bisikletin düşey denge konumu etrafında doğrusallaştırma yapılarak hareket denklemleri elde edilmiştir. Gidon kafa açısı λ (head tube angle) bisiklet dengesini ve manevra kabiliyetini etkilemektedir. Bisiklet nonlineer hareket denklemleri ile ilgili az sayıda çalışma vardır. Bu modellerde de λ açısı hesaba katılmamıştır. Bu durum modelin gerçek bisiklet davranışı göstermesini engellemektedir. Model tez kapsamında hazır olarak alınan elektrikli dağ bisikleti için elde edilmiştir.

Bisiklet dengesi ve yörünge takibi için kontrol sistemi tasarlanmıştır. Elde edilen model ve kontrol sistemi dinamik benzetimlerle incelenmiştir. Bisiklet dengesi için gerekli kuvvet bisiklet ana çerçevesi üzerine eklenen volanın oluşturduğu kuvvet yardımıyla ve ana çerçeveye eklenen mekanik jiroskop yardımıyla elde edilip ayrı ayrı incelenmiştir. İstenilen bir noktaya ulaşmak için izlenecek yol hareketten önce belirlenmiştir. Üretilen yörüngeler üzerindeki hareket, yazılan hareket denklemleri ve kapalı çevrim kontrol sisteminin kullanıldığı dinamik benzetimlerle incelenmiştir. Modelin hareketinin incelendiği dinamik benzetimlerde, tasarlanan kontrolcü ile üretilen yörüngelerin takip edilebildiği görülmektedir. Yatma dengesi kontrolü hareket süresince istenilen aralıkta sağlanabilmektedir. Benzetimlerde farklı gidon açısı oransal kontrol katsayısının yörünge takibine ve yatma açısına olan etkisi ile aynı yörüngenin farklı hızlarda kat edilmesi üç farklı hız kademesi için incelenmiştir.

Bu çalışmanın devamında, İ.T.Ü. Makina Fakültesi laboratuvarında ve gerekli donanım değişiklikleri yapılmış olan bisiklet üzerinde tasarlanan kontrol sistemi deneysel olarak hareket kontrolü için uygulanacaktır. Deneysel sistem dinamik benzetimlere uygun olarak oluşturulmuştur. Bisiklet arka tekerlekte bulunan hub motor ile tahrik edilmektedir. Gidonun açısal konumu ile denge diskinin açısal hızı ise birer elektrik motoru ile sağlanmaktadır. Gidon konumu artımsal enkoderle, bisikletin yatma açısı ise çerçeveye sabitlenen bir IMU ile ölçülmektedir. Kapalı çevrim kontrol

sistemi bisiklet çerçevesi üzerine monte edilmiş bir gömülü bilgisayar vasıtasıyla uygulanmaktadır. Bisikletin harekete başlama ve bitirmesi wifi ile ssh iletişimi ile farklı bilgisayardan sağlanmaktadır.

MODELLING AND DESIGNING OF AN AUTONOMOUS BICYCLE

SUMMARY

This thesis presents the mathematical modelling, simulation, control system design and real system design of an autonomous bicycle. We can examine the studies on bicycle in two part, modelling and stability control of biycle. The first models for bicycle were written at end of the 19th century. In the second half of the 20 Th century, various mathematical models for two-wheel vehicles have been proposed. Neimark and Fufaev revealed linear bicycle models for different wheel structures such as rigid disc, torus and pneumatic tire. The equations of motion of bicycle are highly nonlinear and rolling of wheels without slipping can only be expressed by nonholonomic constraint equations. In previously published works on the subject, many assumptions are made in order to simplify the equations of motion of the system. Simplified models lead to the deviation of the analysis results from the physical reality. Motion analysis based on simplified dynamics is valid only around specific nominal states such as the equilibrium of the bicycle. A few nonlinear bicycle models with certain assumptions have been proposed. The head tube angle (λ) is one of the most important parameters that effect stability of motion and maneuverability. The bicycle dynamics can be expressed in a simpler manner if the head tube angle (λ) is 0 degree, i.e. perpendicular to the ground. In this study, the head tube angle has been taken into account in dynamical modelling. The highly nonlinear equations of motion have also been preserved without any simplification through assumptions or linearization. In this study, the bicycle is assumed to move over perfectly horizontal ground.

Once certain speed conditions are met, the bicycle balance can be controlled by the position of the handlebar. External force to ensure the bicycle balance can be achieved with the aid of an inverted pendulum, a mechanical gyroscope or flywheel. In this study, we compare the external force required for balance control is supplied by the help of flywheel mounted on the frame and is supplied by the mechanical gyroscope.

The bicycle dynamics is obtained through the Euler-Lagrange equations. We assumed the vehicle consists of five mass; the main frame, handlebars, rear and front wheel and flywheel. The bicycle is assumed to move over perfectly horizontal ground with the wheels satisfying the rolling without slipping condition. The type of ground-wheel contact is modelled as a point contact. There is no linearization on modelling.

The body fixed reference frames are located at the mass centres. In order to observe the position of the bicycle in the world frame, an additional frame is located at the contact point of the rear-wheel with the ground. The bicycle variables are; x and y describe position of the contact point of the rear-wheel with the ground, θ is orientation of bicycle, χ is tilt angle of bicycle, ψ is handlebar angle, v_1 and v_2 are front and rear wheel angles. α describes flywheel angle for the flywheel used case and rotor angle for the mechanical gyroscope used case. γ is inner gimbal angle of mechanical gyroscope. Transformation matrices between successive reference frames are written. By using these transformation matrices, the dynamics of the bicycle motion can be expressed with respect to the ground fixed reference frame. The total kinetic energy due to translational and rotational motions and the potential energy of the system are written.

We can write the equations of motion of the bicycle with Euler-Lagrange formulation. The bicycle being a nonholonomic system, related constraint equations must be taken into acount in dynamical modelling. Bicycle have four nonholonomic constraint equations. In order to integrate the constraint forces to the Euler Lagrange equations we can use Lagrange multipliers, Voronec equation of motion, Volterra-Maggi equations ve Appel equations. In this study, we used the Voronec equation of motion with the reduced Lagrangian. The reduced lagrangian is obtained by replacing the cyclic variables in the original lagrangian function. The model with flywheel consists of four second-order differential equations and four nonholonomic constraint equations. The model with mechanical gyroscope consists of five second-order differential equations. The equations of motion have been derived using Mathematica \mathbb{R} .

The required reference trajectories must be generated for the autonomous motion of the bicycle. The path planning is based on ensuring continuity of the bicycle speed. Reference trjectories are described by bicyle rear wheel angular speed, handlebar angular position. Stabilization is described by flywheel speed or mechanical gyroscope inner gimbal position. These variables are the system inputs of a autonomous bicycle. Between the start and end positions of a desired path, intermediate points are selected to design the entire path. Third-order polynomials are generated between successive intermediate position references. The third-order polynomial trajectories are computed by using cubic splines. Boundary conditions are determined by the continuity of velocity at intermediate points. References for the orientation (θ) and rear wheel velocity (v_1 ref) are obtained as functions of (x, y, \dot{x}, \dot{y}) viz position and velocity of the contact point of the rear-wheel with the ground.

In this study, the pure pursuit algorithm, which is among the widely used geometric trajectory tracking algorithm, has been implemented for tracking control purpose. The pure tracking algorithm is based on calculating a circular arc between the rear-wheel ground contact and the target point. Bicycle reference handlebar angle can be calculated from the distance between the rear-wheel contact and the target position l_d , orientation error δ and the bicycle base length L. The reference inputs for the position (x_{ref}, y_{ref}) , the orientation (θ_{ref}) of the bicycle and the angular velocity of the rear wheel $(v_1 \text{ref})$ are calculated in trajectory generator. The reference for the handlebar angular position is calculated with using reference and measured position and orientation of bicycle in routing algorithm . Reference tilt angle of bicycle is always 0 degree.

We presented a proposed control for a bicycle with an flywheel and also presented a closed-loop stability analysis of the bicycle using a nonlinear model. Numerical results of the simulations show that the proposed closed-loop control system is achievable. Design of the experimental system has been based on a commercially available bicycle. The mechanical modifications and control system hardware have been designed according to the simulation results.

The bicycle to be used in experimental implementation is bought for this project to ITU. Simulations have been performed in Matlab® environment. Parameters of the vehicle have been measured and identified. Parameters of the bicycle to be used

in experimental setup have also been used in the dynamical model simulations. A closed-loop tracking controller has been designed and tested in dynamical simulations. PD controllers use in closed-loop control system. Coefficients of the PD controllers used in simulations can be determined by trial and error in successive simulations. Simulations have been made for both flywheel implemented model and mechanical gyroscope implemented model. Simulations have been made for with higher and lower trajectory tracking proportional gains. In simulations, the bicycle average velocities are 2,1.3 and 0.5 m/s. The both models simulation results confirm a satisfactory closed-loop performance with the proposed model and controller. The stability of motion is shown to be maintained during the motion in both models simulation. Tracking errors are partly due to the imperfect controller coefficients, obtained by trial and error in simulations. Simulation results show that for limited handlebar angular velocity, the trajectory tracking error increases while better stability and velocity tracking performance are achieved. The resulted ranges of numerical values of the control variables are compatible with physically achievable behaviour. Therefore, the simulation results confirm also the feasibility of the physical autonomous bicycle with commercially available hardware.

Hardware modifications are designed for the bicycle. The control system tested in simulations will be implemented on the experimental autonomous bicycle. The angular velocity of the flywheel and the angular position of the handlebars is provided by DC actuators. Rear wheel speed measured by using an 100 pulse incremental encoder in arduino control card. The position of the handlebar is measured with an incramental encoder and the tilt angle is measured by an IMU to be fixed to the frame. Closed loop control system is implemented in an embedded computer. Bicycle motion is started and stopped by an external computer which communicate with embedded computer through SSH.

1. GİRİŞ

Bisiklet, iki tekerlekli, pedallı ve insan gücüyle hareket eden ulaşım, egzersiz ve eğlence amacıyla kullanlan bir araçtır. Kas gücü haricinde bir tahrik sistemine ihtiyaç duyulmamasına ve basit bir mekanik yapısı olmasına rağmen, keşfedilmesi sadece iki yüzyıl evvel olabilmiştir. Zaman içerisinde bazı yapısal değişimlerden geçerek 1800 lü yılların sonunda günümüzde de kullanılmakta olan formunu almıştır (Şekil 1.1). Bisiklet kullanmayı öğrenirken, vücüdumuzun denge durumunu iç kulakta bulunan denge reseptörleri ile öğrenir ve denge merkezi beyinciğimizi kullanarak denge konumuna geçirmeyi öğreniriz. Ancak öğrenildikten sonra bilinçaltı davranışı olan öğrenilen refleks türü haline haline gelmektedir.

Şekil 1.1: Bisikletin tarihi gelişimi [21].

Bisiklet statik olarak kararsız bir sistemdir. Bazı belirli koşullar altında kararlı duruma gelmektedir. Örnek olarak, yüksek hızlarda ilerleyen bir bisikletin dengesi gidon konumunun kontrolü ile sağlanabilmektedir. Bunun tersi olarak yüksek hızda ilerlerken bisiklet dengesini bozarak bisikletin yönünü değiştirebiliriz. Ancak yeterli bisiklet hızının bulunmadığı veya sıfır olduğu durumda kararlılığı sürdürebilmek için harici kuvvetlere ihtiyaç duyulmaktadır. İnsanı modelleyen bu harici kuvvet bisiklete sonradan eklenen mekanizmalarla sağlanabilmektedir.

Bu çalışmada iki tekerlekli insansız bir bisikletin modellenmesi, kontrol sisteminin tasarlanması ve sistemin dinamik davranışının benzetimi ve benzetimlere uygun olarak deneysel sistemin oluşturulması konuları ele alınmıştır. Nonholonomik bir sistem olan bisikletin doğrusal olmayan matematik modeli, literatürde mevcut çalışmalardan farklı olarak, basitleştirici varsayımlar yapılmaksızın korunmuş ve benzetimlerde kullanılmıştır. Otonom (insansız) hareketin sağlanması amacıyla gerekli donanım değişiklikleri ve kapalı çevrim kontrol sistemi tasarlanmıştır. İstenilen bir noktaya ulaşmak için izlenecek yol hareketten önce belirlenmiştir. Üretilen yörüngeler üzerindeki hareket, yazılan hareket denklemleri ve kapalı çevrim kontrol sisteminin kullanıldığı dinamik benzetimlerle incelenmiştir.

Hareket denklemleri yüksek mertebeden nonlineer olup, tekerleklerin kaymadan yuvarlanması da nonholonomik bağ denklemleri ile ifade edilebilmektedir. İlgili literatür incelendiğinde, önerilen hareket denklemlerinde, matematik modelleri basitleştirmek amacıyla çok sayıda varsayım ve kabuller yapıldığı görülmektedir. Bu durum matematik modellerin fiziksel bisiklet davranışından sapmasına yol açmakta ve yapılan analizler ancak bisiklet hareketinin bazı özel halleri için geçerli olabilmektedir. Konu ile ilgili çalışmalarda genellikle bisikletin düşey denge konumu etrafında lineer hareket denklemleri elde edilmiştir.

Gidon kafa açısı λ (head tube angle) bisiklet dengesini ve manevra kabiliyetini etkileyen önemli parametrelerden birisidir(Şekil 1.2). Modelleme esnasında λ açısının 0 derece kabul edilmesi modeli basitleştirmektedir. Bisiklet nonlineer hareket denklemleri ile ilgili az sayıda çalışma vardır. Bu modellerde de λ açısı hesaba katılmamıştır. Bu durum modelin gerçek bisiklet davranışı göstermesini engellemektedir.

Bisikletin matematik modeli ile ilgili ilk çalışmalar 19.yy sonlarına dayanmaktadır. Bisiklet modeli ile ilgili ilk çalışmalara 19.yy sonu, 20.yy başlarında, 2003 yılında tekrar basılan Sharp'ın kitabı [1], Rankine [2] ve Bourlett [3] nun çalışmalarında rastlanmaktadır. Carvalho, Lagrange dinamiği ile düşey denge konumu etrafında doğrusallaştırılarak bisiklet basit hareket denklemlerini elde etmiştir [4]. 20. yy

Şekil 1.2: Bisiklet kafa açısı λ .

ikinci yarısıyla birlikte bilgisayar teknolojisindeki gelişmeler ve dinamik olarak benzer özelliker taşıyan motosiklet ve motosiklet yarışlarının popülerliğine de bağlı olarak çeşitli bisiklet modelleri önerilmiştir. Neimark ve Fufaev [5], Lagrange mekaniğini kullanarak, bisiklet tekerleğinin rijit disk, torus ve pnömatik tekerlek olma durumlarını da göz önüne alarak oldukça ayrıntılı bir doğrusal bisiklet modeli ortaya koymuştur.

Bisikletle ilgili ilk bilgisayar benzetimi Roland'ın çalışmasında yapılmıştır [6]. 1990lı yıllarla birlikte belirli kabullerle bisiklet doğrusal olmayan modelleri ortaya çıkmıştır [7] [8]. Getz λ açısının dikkate alınmadığı nonlinear modeli elde etmiştir [9]. L. Guo ve arkadaşları [10] ile S. Suntharasantic ve arkadaşları [11] nonholonmik kısıt kuvvetlerini dikkate almadan nonlineer modeller elde etmislerdir. Y. Huang ve arkadasları [12] ön tekerlekten tahrikli bisiklet için Kane metodunu kullanarak nonholonmik kısıt kuvvetlerini de içeren nonlineer hareket denklemlerini elde etmişlerdir.

Özellikle son on yılda bisiklet denge kontrolü ve yörünge takibi ile ilgili çalışmalar artmıştır. Bisiklet dengesi kontrolü ile ilgili ilk defa 1994 yılındaki çalışmasında doğrusal olmayan model ve hızın sıfır olmadığı durum için Getz uygulamıştır [8]. Belirli hız şartları sağlandığında bisiklet dengesi gidon pozisyonu ile kontrol edilebilmektedir [10], [12], [13]. Bisiklet dengesini sağlamak için gerekli harici kuvvet, bisiklet kullanan insanı modelleyen bir ters sarkaç yardımıyla elde edilebilir [13] [14] (Şekil 1.3).

Şekil 1.3: Ters sarkaç yardımıyla bisiklet denge kontrolü [14].

A.M. Formalskii, P.Y. Lam ve arkadaşları ile S. Suntharasantic ve arkadaşları denge kontrolü için mekanik jiroskopu kullanmışlardır [16], [11](Şekil 1.4).

Şekil 1.4: Mekanik jiroskop yardımıyla bisiklet denge kontrolü [16].

Bu çalışmada model oluşturulurken λ açısı da göz önüne alınmıştır. Model elde edilirken herhangi bir kabul yapılmamış; insansız bisikletin doğrusal olmayan kapsamlı modeli elde edilmiştir. Bisiklet dengesi için gerekli kuvvet ana çerçeve üzerine eklenen volan (Şekil 1.5) ve mekanik jiroskop (Şekil 1.4) olmak üzere iki farklı mekanizmanın oluşturduğu kuvvet ile sağlanan modeller ayrı ayrı incelenmiştir. Her iki mekanizma için ayrı ayrı doğrusal olmayan model elde edilmiştir. Volan kullanılarak elde edilen model gerçek bisiklet sistemi üzerinde tasarlanmış ve uygulanmıştır.

Şekil 1.5: Volan yardımıyla bisiklet denge kontrolü [22].

Model tez kapsamında hazır olarak alınan elektrikli dağ bisikleti için elde edilmiştir (Şekil 1.6). Bisiklet ana çevçevesi çelik malzemeden üretilmiştir ve 26" tekerleklere sahiptir. Bisiklet arkatekerlek göbeğinde 250 Watt lık hub motor bulunmaktadır.Hub motor enerjisi seleye monte edilmiş ve 80 kg lık bir insanı 6-8 saat götürebilecek kapasiteye sahip bir batarya ile sağlanmaktadır. Motor hızı gidonda bulunan hall-effect sensörü ile kontrol edilir. Sensör 0-4 V aralığında gerilim üreterek motor hızını ayarlamaktadır. Tez kapsamında bu hız kontrol yöntemi değiştirilerek hall efect sensörü yerine arduino mikro kontrolörü ile sağlanmıştır. Konu ile ilgili detaylı bilgi dördüncü bölümde açıklanacaktır.

Şekil 1.6: Modelleme için kullanılan bisiklet.

İkinci bölümde iki tekerlekli insansız bir bisikletin dinamik davranış modeli Euler-Lagrange denklemleri yazılarak elde edilmiştir. Üçüncü bölümde sistemin kapalı çevrim kontrolü için gerekli kontrol sistemi tasarlanmış ve yazılan matematik model ve tasarlanan kapalı çevrim kontrol sistemi dinamik benzetimlerle incelenmiştir. Dördüncü bölümde gerçek sistemin oluşturulması, kullanılan malzemelerin tanıtılması ve yapılan deneysel çalışmalarla ilgili bilgi verilmiştir. Son bölümde elde edilen sonuçlar irdelenmiştir.

2. MODELLEME

Bu bölümde bisikletin doğrusal olmayan dinamik denklemlerinin elde edilmesi anlatılmaktadır. Bölüm 2.1 de bisiklet kinematik modeli incelenecek, tanımlanan genelleştirilmiş koordinatlar, sabitler ve eksen takımları hakkında bilgi verilecektir. Bölüm 2.2 de nonholonomik kısıt tanımı yapılacak ve bisiklet nonholonomik denklemleri adım adım açıklanarak elde eldilecektir. Bölüm 3.3 de Euler-Lagrange fonksiyonu ve Voronec denklemleri kullanılarak kısıt kuvvetlerini de içeren hareket denklemleri volan elde edilecek ve volan kullanılan model ile mekanik jroskop kullanılan model denklemleri karşılaştırılacaktır.

2.1 Kinematik Model

Bisikletin genel mekanik yapısını herkes tarafından bilinmektedir. Gerçek bir bisiklet çok sayıda mekanik parçadan oluşmaktadır. Bisiklet dinamiği ile ilgili literatür incelendiğinde; genellikle bisikletin ön ve arka parça olarak iki kütleden oluştuğu kabulü için modeller elde edilmektedir. Bu modellerde ön parça gidon ve ön tekerlek, arka parça ise ana çerçeve ve arka tekerlekten oluşmaktadır. Bu çalışmada modellemede arka ve ön tekerlek ayrı birer kütle olarak ele alınmıştır. Dinamik model, bisiklet dengesini sağlamak için bisiklet ana çerçevesine volan ve mekanik jiroskopun eklendiği, iki farklı durum için elde edilmiştir. Bisiklet dengesini sağlamak için kullanılan volan ya da jiroskop ilave edildiğinde ele alınan bisiklet, ana çerçeve, gidon, arka ve ön tekerlekler ile volan (jiroskop) olmak üzere toplam 5 kütleden oluşmaktadır(Şekil 2.1). Bisiklet hareketinin düz bir zemin üzerinde gerçekleştiği varsayılmaktadır.

Bisikletlerde havalı(pnömatik) tekerlekler kullanılmaktadır. Tekerlek hava basıncı, temas yüzeyi ve iç kesit genişliği gibi değişkenler bisiklet dinamiğini etkilemektedir. Literatürdeki çalışmalarda genellikle tekerlek rijit ince disk kabulü ile modellenmektedir. Ancak tekerleğin gerçeğe en yakın hali olan torus ve havalı tekerlek olduğu durumlar için de yapılmış çalışmalar mevcuttur [5]. Bu çalışmada tekerleklerin

Şekil 2.1: Bisiklet katı modeli.

ince disk şeklinde olduğu kabul edilerek, yer ile tekerlek temasının noktasal olduğu varsayımı yapılmaktadır. Bisiklet gövdesine ve yere sabit koordinat eksen takımları (Şekil 2.2)'da görüldüğü gibi kütle merkezlerine yerleştirilmiştir. Kütle merkezleri haricinde yere sabit bir eksen takımı ve bisiklet konumunu gözlemlemek amacıyla arka tekerlek yere temas noktasına birer eksen takımı ilave edilmiştir (Tablo 2.1).

(Tablo 2.2)'de kullanılan sabit parametreler belirtilmektedir. (Tablo 2.3)' de modelde kullanılan genelleştirilmiş koordinatlar verilmektedir. Altıncı eksen takımı denge için uygulunan volan veya mekanik jiroskopun kütle merkezine yerleştirilmektedir. Volan kullanıldığı durumda altıncı eksen takımı için sadece bir adet genelleştirilmiş koordinat bulunurken, jiroskopik hareket sebebiyle iki adet genelleştirilmiş koordinat altıncı eksen takımı aetki etmektedir.

Koordinat Eksen takımı	Konumu
$R_0: x_0, y_0, z_0$	Yere sabit eksen takımı
$R_1: x_1, y_1, z_1$	Arka tekerlek yere temas noktası
$R_2: x_2, y_2, z_2$	Arka tekerlek kütle merkezi
$R_3: x_3, y_3, z_3$	Çerçeve(kadro) kütle merkezi
$R_4: x_4, y_4, z_4$	Gidon kütle merkezi
$R_5: x_5, y_5, z_5$	Ön tekerlek kütle merkezi
$R_6: x_6, y_6, z_6$	Volan(Jiroskop) kütle merkezi

Çizelge 2.1: Eksen takımları.

Şekil 2.2: Koordinat eksenleri, değişkenler ve sabit parametreler.

Parametre	Açıklaması
m_2	Arka tekerlek kütlesi.
m_3	Çerçeve (kadro) kütlesi
m_4	Gidon kütlesi
m_5	Ön tekerlek kütlesi
m_6	Volan kütlesi
g	Yer çekimi ivmesi
R	Bisiklet arka ve ön tekerlek yarıçapı
h_3	R_3 ün R_1 e göre z_1 doğrultusundaki koordinatı (yükseklik)
h_4	R_4 ün R_1 e göre z_1 doğrultusundaki koordinatı (yükseklik)
h_5	R_5 in R_4 e göre z_4 doğrultusundaki koordinatı (yükseklik)
h_6	R_6 nın R_1 e göre z_1 doğrultusundaki koordinatı (yükseklik)
l_3	R_3 ün R_1 e göre y_1 doğrultusundaki koordinatı
l_4	R_4 ün R_1 e göre y_1 doğrultusundaki koordinatı
l_5	R_5 in R_4 e göre y_1 doğrultusundaki koordinatı
l_6	R_6 nın R_1 e göre y_1 doğrultusundaki koordinatı
λ	Gidon dönme ekseni ile ön tekerlek kütle merkezinin
	öntekerlek yere temas noktası ekseni arasındaki açı
I_2	Arka tekerlek atalet matrisi
I ₃	Ana Çerçeve atalet matrisi
I_4	Gidon atalet matrisi
I_5	Ön tekerlek atalet matrisi
I ₆	Volan(Jiroskop) atalet matrisi

Çizelge 2.2: Sabit parametreler.

Parametre	Açıklaması
x	R_1 in x_0 doğrultusundaki koordinatı.
у	R_1 in y_0 doğrultusundaki koordinatı.
θ R_1 in z_1 eksenine göre açısal konumu	
	(Bisiklet yönelimi açısal konumu)
χ	R_1 in y_1 eksenine göre açısal konumu
	(Bisiklet yatma açısal konumu)
ψ	R_4 ün z_4 eksenine göre açısal konumu
·	(Gidon açısısal konumu)
v_1	R_2 nin x_2 eksenine göre açısal konumu
	(Arka tekerlek dönme konumu)
v_2	R_5 in x_5 eksenine göre açısal konumu
	(Ön tekerlek dönme konumu)
α	R_6 nın y ₆ eksenine göre açısal konumu
	(Jiroskop rotor dönme konumu)
γ	R_6 nın x_6 eksenine göre açısal konumu
	(Jiroskop dış çerçeve(gimbal) dönme konumu)

Çizelge 2.3: Genelleştirilmiş koordinatlar.

Modelde, bisikletin eğimsiz bir düzlemde hareket edeceği ve tekerleklerin düzlem üzerinde kaymadan yuvarlanacağı varsayılmaktadır. Koordinat eksenleri arasındaki transformasyon matrisleri aşağıdaki gibi elde edilir. Altıncı eksen takımı için volan kullanıldığı ve jiroskop kullanıldığı durum için iki farklı transformasyon matrisi elde edilmektedir.

$${}^{0}_{1}T = \begin{pmatrix} c\theta c\chi & -s\theta & -c\theta s\chi & x \\ s\theta c\chi & c\theta & -s\theta s\chi & y \\ s\chi & 0 & c\chi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, {}^{1}_{2}T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & cv_{1} & -sv_{1} & 0 \\ 0 & sv_{1} & cv_{1} & R \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$${}^{1}_{3}T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & l_{3} \\ 0 & 0 & 1 & h_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}, {}^{3}_{4}T = \begin{pmatrix} c\psi & -s\psi c\lambda & -s\psi s\lambda & 0 \\ s\psi & s\psi c\lambda & -c\psi s\lambda & l_{4} \\ 0 & s\lambda & c\lambda & h_{4} \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$${}^{4}_{5}T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & cv_{2} & -sv_{2} & l_{5}c\lambda - h_{5}s\lambda \\ 0 & sv_{2} & cv_{2} & h_{5}c\lambda + l_{5}s\lambda \\ 0 & 0 & 0 & 1 \end{pmatrix}, {}^{1}_{6}T_{volan} = \begin{pmatrix} c\alpha & 0 & -s\alpha & 0 \\ 0 & 1 & 0 & l_{6} \\ s\alpha & 0 & c\alpha & h_{6} \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$${}^{1}_{6}T_{jiroskop} = \begin{pmatrix} c\alpha & -c\gamma s\alpha & s\alpha s\gamma & 0 \\ s\alpha & c\alpha c\gamma & -c\alpha s\gamma & l_{6} \\ 0 & s\gamma & c\gamma & h_{6} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$(2.1)$$

(Denklem 2.1) 'de bulunun transformasyon matrisleri kullanılarak, eksen takımlarının konumları yere sabit eksen takımına göre Denklem (2.2 - 2.6) olarak yazılabilir. Volan ve jiroskop kullanıldığı iki model için de altıncı eksen takımı konum matrisi aynı olmaktadır.

$${}_{2}^{0}p = \begin{pmatrix} x - Rc\theta s\chi \\ y - Rs\theta s\chi \\ Rc\chi \end{pmatrix}$$
(2.2)

$${}_{3}^{0}p = \begin{pmatrix} x - l_{3}s\theta - h_{3}c\theta s\chi \\ y + l_{3}c\theta - h_{3}s\theta s\chi \\ h_{3}c\chi \end{pmatrix}$$
(2.3)

$${}^{0}_{4}p = \begin{pmatrix} x - (l_3 + l_4)s\theta - (h_3 + h_4)c\theta s\chi \\ y + (l_3 + l_4)c\theta - (h_3 + h_4)s\theta s\chi \\ (h_3 + h_4)c\chi \end{pmatrix}$$
(2.4)

$${}^{0}_{5}p = \begin{pmatrix} x - s\theta(l_3 + l_4 - c\psi s\lambda(h_5c\lambda + l_5s\lambda) + c\lambda(l_5c\lambda - h_5s\lambda)s\psi) \\ -c\theta((h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda))s\chi + c\chi(l_5c(2\lambda) - h_5s(2\lambda))s\psi) \\ y + c\theta(l_3 + l_4 - c\psi s\lambda(h_5c\lambda + l_5s\lambda) + c\lambda(l_5c\lambda - h_5s\lambda)s\psi) \\ +s\theta(-(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda))s\chi + c\chi(-l_5c(2\lambda) + h_5s(2\lambda))s\psi) \\ c\chi(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda)) + (-l_5c(2\lambda) + h_5s(2\lambda))s\chi s\psi \end{pmatrix}$$
(2.5)

$${}_{6}^{0}p_{volan} = \begin{pmatrix} x - l_6 s\theta - h_6 c\theta s\chi \\ y + l_6 c\theta - h_6 s\theta s\chi \\ h_6 c\chi \end{pmatrix}$$
(2.6)

$${}_{6}^{0}p_{jiroskop} = \begin{pmatrix} x - l_{6}s\theta - h_{6}c\theta s\chi \\ y + l_{6}c\theta - h_{6}s\theta s\chi \\ h_{6}c\chi \end{pmatrix}$$
(2.7)

Bulunan konumların zamana göre türevleri alınarak kütle merkezlerinin çizgisel hızları ve yine transformasyon matrisleri yardımıyla açısal hızları bulunur. Volan ve jiroskop kullanıldığı iki model için de altıncı eksen takımı çizgisel hız matrisi aynı elde edilirken açısal hız matrisleri değişmektedir.

$${}_{2}^{0}v = \begin{pmatrix} \dot{x} + Rs\theta s\chi \dot{\theta} - Rc\theta c\chi \dot{\chi} \\ \dot{y} - Rc\theta s\chi \dot{\theta} - Rs\theta c\chi \dot{\chi} \\ -Rs\chi \dot{\chi} \end{pmatrix}$$
(2.8)

$${}_{3}^{0}v = \begin{pmatrix} \dot{x} - l_{3}c\theta\dot{\theta} + h_{3}s\theta s\chi\dot{\theta} - h_{3}c\theta c\chi\dot{\chi} \\ \dot{y} - l_{3}s\theta\dot{\theta} - h_{3}c\theta s\chi\dot{\theta} - h_{3}s\theta c\chi\dot{\chi} \\ -h_{3}s\chi\dot{\chi} \end{pmatrix}$$
(2.9)

$${}^{0}_{4}v = \begin{pmatrix} \dot{x} - (l_{3} + l_{4})c\theta\dot{\theta} + (h_{3} + h_{4})s\theta s\chi\dot{\theta} - (h_{3} + h_{4})c\theta c\chi\dot{\chi} \\ \dot{y} - (l_{3} + l_{4})s\theta\dot{\theta} - (h_{3} + h_{4})c\theta s\chi\dot{\theta} - (h_{3} + h_{4})s\theta c\chi\dot{\chi} \\ -(h_{3} + h_{4})s\chi\dot{\chi} \end{pmatrix}$$
(2.10)

$${}^{0}_{5}v = \begin{pmatrix} \dot{x} - c\theta(l_{3} + l_{4} - c\psi s\lambda(h_{5}c\lambda + l_{5}s\lambda) + c\lambda(l_{5}c\lambda - h_{5}s\lambda)s\psi)\dot{\theta} \\ +s\theta((h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))s\chi + c\chi(l_{5}c(2\lambda) - h_{5}s(2\lambda)) \\ s\psi)\dot{\theta} - c\theta(c\chi(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))\dot{\chi} - (l_{5}c(2\lambda) - h_{5}s(2\lambda))s\chi s\psi\dot{\chi} + c\chi c\psi(l_{5}c(2\lambda) - h_{5}s(2\lambda))\psi) \\ -s\theta(c\lambda c\psi(l_{5}c\lambda - h_{5}s\lambda)\dot{\psi} + s\lambda(h_{5}c\lambda + l_{5}s\lambda)s\psi\dot{\psi}) \\ \dot{y} - s\theta(l_{3} + l_{4} - c\psi s\lambda(h_{5}c\lambda + l_{5}s\lambda) + c\lambda(l_{5}c\lambda - h_{5}s\lambda)s\psi)\dot{\theta} \\ + c\theta(-(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))s\chi + c\chi(-l_{5}c(2\lambda) + h_{5}s(2\lambda))) \\ s\psi)\dot{\theta} + s\theta(-c\chi(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))\dot{\chi} - (-l_{5}c(2\lambda) + h_{5}s(2\lambda))s\chi\dot{\chi} + c\chi c\psi(-l_{5}c(2\lambda) + h_{5}s(2\lambda))\dot{\psi}) + c\theta(c\lambda c\psi(l_{5}c\lambda - h_{5}s\lambda)\dot{\psi} + s\lambda(h_{5}c\lambda + l_{5}s\lambda)s\psi\dot{\psi}) \\ -(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))s\chi\dot{\chi} + c\chi(-l_{5}c(2\lambda) + h_{5}s(2\lambda))s\psi\dot{\chi} \\ + c\psi(-l_{5}c(2\lambda) + h_{5}s(2\lambda))s\chi\dot{\psi} \end{cases}$$
(2.11)

$${}^{0}_{6}v_{volan} = \begin{pmatrix} \dot{x} - l_{6}c\theta\dot{\theta} + h_{6}s\theta s\chi\dot{\theta} - h_{6}c\theta c\chi\dot{\chi} \\ \dot{y} - l_{6}s\theta\dot{\theta} - h_{6}c\theta s\chi\dot{\theta} - h_{6}s\theta c\chi\dot{\chi} \\ -h_{6}c\chi\dot{\chi} \end{pmatrix}$$
(2.12)
$${}^{0}_{6}v_{jiroskop} = \begin{pmatrix} \dot{x} - l_{6}c\theta\dot{\theta} + h_{6}s\theta s\chi\dot{\theta} - h_{6}c\theta c\chi\dot{\chi} \\ \dot{y} - l_{6}s\theta\dot{\theta} - h_{6}c\theta s\chi\dot{\theta} - h_{6}s\theta c\chi\dot{\chi} \\ -h_{6}c\chi\dot{\chi} \end{pmatrix}$$
(2.13)

$${}_{2}^{0}\boldsymbol{\omega} = \begin{pmatrix} \dot{\boldsymbol{\upsilon}}_{1} \\ -s\boldsymbol{\upsilon}_{1}\dot{\boldsymbol{\theta}} + c\boldsymbol{\upsilon}_{1}\dot{\boldsymbol{\chi}} \\ c\boldsymbol{\upsilon}_{1}\dot{\boldsymbol{\theta}} + s\boldsymbol{\upsilon}_{1}\dot{\boldsymbol{\chi}} \end{pmatrix}$$
(2.14)

$${}^{0}_{3}\omega = \begin{pmatrix} 0\\ \dot{\chi}\\ \dot{\theta} \end{pmatrix}$$
 (2.15)

$${}^{0}_{4}\omega = \begin{pmatrix} s\psi(s\lambda\dot{\theta} - c\lambda\dot{\chi}) \\ -c\psi(s\lambda\dot{\theta} + c\lambda s\psi\dot{\chi}) \\ c\lambda\dot{\theta} + s\lambda\dot{\chi} + \dot{\psi} \end{pmatrix}$$
(2.16)

$${}_{5}^{0}\omega = \begin{pmatrix} \dot{\upsilon}_{2} + s\psi(s\lambda\dot{\theta} - c\lambda\dot{\chi}) \\ c\upsilon_{2}(-c\psi s\lambda\dot{\theta} + c\lambda s\psi\dot{\chi}) - s\upsilon_{2}(c\lambda\dot{\theta} + s\lambda\dot{\chi} + \dot{\psi}) \\ s\upsilon_{2}(-c\psi s\lambda\dot{\theta} + c\lambda s\psi\dot{\chi}) + c\upsilon_{2}(c\lambda\dot{\theta} + s\lambda\dot{\chi} + \dot{\psi}) \end{pmatrix}$$
(2.17)

$${}_{6}^{0}\omega_{volan} = \begin{pmatrix} -s\alpha\dot{\theta} \\ \dot{\alpha} + \dot{\chi} \\ c\alpha\dot{\theta} \end{pmatrix}$$
(2.18)

$${}^{0}_{6}\omega_{jiroskop} = \begin{pmatrix} \dot{\gamma} + s\alpha(s\gamma\dot{\theta} - c\gamma\dot{\chi}) \\ c\alpha(-s\gamma\dot{\theta} + c\gamma\dot{\chi}) \\ \dot{\alpha} + c\gamma\dot{\theta} + s\gamma\dot{\chi} \end{pmatrix}$$
(2.19)

2.2 Nonholonomik Kısıt Denklemleri

Genelleştirilmiş koordinatların sayısının serbestlik derecesi sayısından fazla olduğu durumlarda, fazladan tanımlı koordinatlar diğer koordinatlardan bağımsız değildir. Bu bağıntılarda genelleştirilmiş koordinatların türevlerini içeren ve entegre edilemeyen bağ denklemlerine nonholonomik denklemler adı verilir [17]. Yuvarlanan tekerlek nonholonomik sistemlerin en çok bilinen örneklerindendir. Otonom bisiklet modelinde volan kullanılan model için 8 adet, jiroskop kullanılan model için 9 adet genelleştirilmiş koordinat olmasına rağmen bunların 4 adedi diğer değişkenlerden hesaplanabilmektedir. Geriye kalan değişkenler ise birbirinden bağımsız olduğu görülmektedir. Nonholonomik bağ denklemlerinin genel formu (Denklem 2.20) te verilmektedir. Burada k bağ denklemlerinin sayısı m bağımsız genelleştirilmiş koordinat sayısıdır.

$$\dot{q}_{m+1} - \sum_{j=1}^{m} a_{lj} \dot{q}_j = 0, \quad l = 1, 2....k.$$
 (2.20)

Bisiklet ön tekerlek yere temas noktasının R_0 eksen takımına göre konumu x^* ve y^* ve yönelimini θ^* ile tanımlandığında, ön tekerlek yere temas noktasının R_0 eksen takımına göre konumu (2.21) ve (2.22) ve yönelimi (2.23) ilişkileri ile ifade edilebilir (Şekil 2.3).

Şekil 2.3: Gidon doğrultusu ile ön tekerlek dönme noktası arasındaki uzaklık.

$$x^* = x - (l_3 + l_4 + l_5)\theta + ((h_3 + h_4)s\lambda - l_5c\lambda)\psi$$
(2.21)

$$y^* = y + (l_3 + l_4 + l_5)$$
(2.22)

$$\theta^* = \theta + \psi c \lambda \tag{2.23}$$

Bisiklet arka tekerlek yere temas noktasının (R_1 eksen takımı) yere sabit eksen takımı R_0 a göre hızı (2.24) ve (2.25) denklemleri ile ifade edilir ve ön tekerlek yere temas noktasının R_0 eksen takımına göre hızı (2.26) ve (2.27) denklemleri ile ifade edilebilir.

$$\dot{x} = -R\dot{v}_1 s\theta \tag{2.24}$$

$$\dot{y} = R\dot{v}_1 c\theta \tag{2.25}$$

$$\dot{x^*} = -R\dot{\upsilon}_2 s\theta^* \tag{2.26}$$

$$\dot{y^*} = R\dot{v}_2 c\theta^* \tag{2.27}$$

(2.21),(2.22) ve (2.23) ilişkileri için hız ifadeleri de (2.28) ve (2.29) eşitlikleri olarak yazılır.

$$\dot{x^*} = \dot{x} - (l_3 + l_4 + l_5)\dot{\theta} + ((h_3 + h_4)s\lambda - l_5c\lambda)\dot{\psi}$$
 (2.28)

$$\dot{y^*} = \dot{y}$$
 (2.29)

(2.29) eşitliğinde (2.25) ve (2.27) denklemleri yerlerini yazılarak (2.30) denklemi elde edilmiş olur.

$$\dot{\upsilon}_2 = \frac{c\theta}{(\theta + \psi c\lambda)} \dot{\upsilon}_1$$
(2.30)

(2.28) eşitliği (2.30) de kullanılarak düzenlenirse (2.31) denklemi elde edilir.

$$\dot{\theta} = -\frac{R}{l_3 + l_4 + l_5} \dot{\upsilon}_1 s \theta + \frac{R}{l_3 + l_4 + l_5} c \theta tan(\theta + c\lambda\psi) \dot{\upsilon}_1 + \frac{(h_3 + h_4)s\lambda - l_5c\lambda}{l_3 + l_4 + l_5} \dot{\psi}$$
(2.31)

(2.24), (2.25), (2.30) ve (2.31) denklemlerinin genelleştirilmiş koordinatları içeren entegre edilemeyen eşitlikler olduğundan dolayı sistemin nonholonomik bağ denklemleri (2.32)-(2.35) deklemleri olarak yazılır.

$$\dot{x} = -R\dot{v}_1 sin\theta \tag{2.32}$$

$$\dot{y} = R\dot{v}_1 cos\theta \tag{2.33}$$

$$\dot{\theta} = \frac{R}{l_3 + l_4 + l_5} \dot{\upsilon}_1 (c\theta tan(\theta + \psi c\lambda) - s\theta) + \frac{(h_4 sin\lambda - l_5 c\lambda)}{l_3 + l_4 + l_5} \dot{\psi}$$
(2.34)

$$\dot{\upsilon}_2 = \frac{\cos\theta}{\cos(\theta + \psi\cos\lambda)}\dot{\upsilon}_1$$
(2.35)

2.3 Dinamik Model

Bisiklet dinamik modeli Euler-Lagrange metodu ile elde edilmektedir. Euler Lagrange metodu enerji bazlı metod olduğu için yüksek serbestlik dereceli sistemlerde modellemeyi kolaylaştırmaktadır. Ancak nonholonomik kısıt kuvvetlerini de modele eklemek için Euler-Lagrange metodunun bir versiyonu olan Voronec hareket denklemlerinden yararlanılmaktadır. Dinamik model volan kullanılan ve mekanik jiroskop kullanılan model için ayrı ayrı elde edilmiştir.

Bisikleti oluşturan beş adet kütlenin sabit eksen takımına göre açısal ve çizgisel hızları hesapladıktan sonra sistemin toplam kinetik enerji ifadesi (Denklem 2.36) ile elde edilir.

$$T = \frac{1}{2}m_i v_i^T v_i + \frac{1}{2}\omega_i^T I_i \omega_i$$
(2.36)

Volan kullanılan model için elde edilen kinetik enerji ifadesi (Denklem 2.37) de görülmektedir.

$$\begin{split} T &= \frac{1}{2} (I_{xx6} c \alpha^2 \dot{\theta}^2 + I_{xx6} s \alpha^2 \dot{\theta}^2 + I_{xx2} \dot{v}_1^2 + I_{yy6} (\dot{\alpha} + \dot{\chi})^2 + \dot{\chi} (I_{yc3} \dot{\theta} + I_{yy3} \dot{\chi}) \\ &+ \dot{\theta} (I_{zc3} \dot{\theta} + I_{yc3} \dot{\chi}) + I_{xx4} s \psi^2 (s \lambda \dot{\theta} - c \lambda \dot{\chi})^2 + I_{yy2} (-s v_1 \dot{\theta} + c v_1 \dot{\chi})^2 + I_{yy2} \\ (c v_1 \dot{\theta} + s v_1 \dot{\chi})^2 + I_{yy4} (-c \psi s \lambda \dot{\theta} + c \lambda s \psi \dot{\chi})^2 + I_{xx5} (\dot{v}_2 + s \psi (s \lambda \dot{\theta} - c \lambda \dot{\chi}))^2 \\ &+ I_{zc4} (c \lambda \dot{\theta} + s \lambda \dot{\chi} + \psi)^2 + I_{yy5} (s v_2 (-c \psi s \lambda \dot{\theta} + c \lambda s \psi \dot{\chi}) + c v_2 (c \lambda \dot{\theta} + s \lambda \dot{\chi} \\ &+ \psi))^2 + I_{yy5} (c v_2 (-c \psi s \lambda \dot{\theta} + c \lambda s \psi \dot{\chi}) - s v_2 (c \lambda \dot{\theta} + s \lambda \dot{\chi} + \psi))^2) + \frac{1}{2} (m_3 \\ (h_3^2 s \chi^2 \dot{\chi}^2 + (\dot{x} + (-l_3 c \theta + h_3 s \theta s \chi) \dot{\theta} - h_3 c \theta c \chi \dot{\chi})^2 + (\dot{y} - (l_3 s \theta + h_3 c \theta s \chi)) \\ \dot{\theta} - h_3 c \chi s \theta \dot{\chi})^2) + m_4 ((h_3 + h_4)^2 s \chi^2 \dot{\chi}^2 + (\dot{x} + (-(l_3 + l_4) c \theta + (h_3 + h_4) \\ s \theta s \chi) \dot{\theta} - (h_3 + h_4) c \theta c \chi \dot{\chi})^2 + (\dot{y} - ((l_3 + l_4) s \theta + (h_3 + h_4) c \theta s \chi) \dot{\theta} - (h_3 + h_4) c \theta s \chi) \dot{\theta} - h_6 c^2 s \chi^2 \dot{\chi}^2 + (\dot{x} + (-l_6 c \theta + h_6 s \theta s \chi) \dot{\theta} - h_6 c \theta c \chi \dot{\chi})^2 + (\dot{y} - (l_6 s \theta + h_6 c \theta s \chi) \dot{\theta} - h_6 c \theta s \chi) \dot{\theta} - h_6 c \phi s \chi \dot{\theta} - \lambda s (s \chi \dot{\theta} - \chi s \theta \dot{\chi}))^2) + m_5 (((-(h_3 + h_4 + h_5 c (2 \lambda) + h_5 s (2 \lambda)) s \psi) \dot{\chi} + c \psi (-l_5 c (2 \lambda) + h_5 s (2 \lambda)) s \chi \psi) \\ (\dot{y} - (l_6 s \theta + l_6 c \theta s \chi) \dot{\theta} - h_6 c \chi s \dot{\theta} \dot{\chi}))^2) + m_5 (((-(h_3 + h_4 + h_5 c (2 \lambda) + h_5 s (2 \lambda)) s \chi + c \chi (-l_5 c (2 \lambda) + h_5 s (2 \lambda)) s \psi) \dot{\chi} + c \psi (-l_5 c (2 \lambda) + h_5 s (2 \lambda)) s \chi \psi) \\)^2 + (\dot{y} - (s \theta (l_3 + l_4 - c \psi s \lambda (h_5 c \lambda + l_5 s \lambda) + c \lambda (l_5 c \lambda - h_5 s \lambda) s \psi) + c \theta ((h_3 + h_4 + h_5 c (2 \lambda) + l_5 s (2 \lambda)) s \chi + c \chi (l_5 c (2 \lambda) - h_5 s (2 \lambda)) s \psi) \dot{\chi} + (c \psi (c \lambda c \theta (l_5 c \lambda - h_5 s \lambda) + c \lambda (-l_5 c \lambda + h_5 s \lambda) s \psi) \psi) + s \theta ((h_3 + h_4 + h_5 c (2 \lambda) + l_5 s (2 \lambda)) s \psi + c \chi (l_5 c (2 \lambda) - h_5 s (2 \lambda)) s \psi) \dot{\chi} + (c \psi (c \lambda c \theta (l_5 c \lambda - h_5 s \lambda) s \psi) \psi) + (c \psi (c \lambda c \theta (l_5 c \lambda - h_5 s \lambda) s \psi) \psi) + c (\ell (c \lambda c \theta (l_5 c \lambda - h_5 s \lambda) s \psi) \dot{\chi} + (c \psi (c \lambda c \theta (l_5 c \lambda - h_5 s \lambda) s \theta) + s \lambda (h_5 c \lambda + l_5 s \lambda)$$

Transformasyon matrisi kullanılarak elde edilen, kütle merkezlerinin referans eksen takımına göre yükseklikleri yardımıyla, toplam potansiyel enerji ifadesi (Denklem 2.38) olarak yazılır. Volan kullanılan model için potansiyel enerji ifadesi (Denklem 2.39) olarak elde edilir.

$$V = m_i g h_i \tag{2.38}$$

$$V = g(c\chi(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5(-l_5c(2\lambda) + h_5s(2\lambda))s\chi s\psi)$$
 (2.39)

(2.36) ve (2.38) eşitlikleri yardımıyla Euler-Lagrange fonksiyonu (2.40) denklemi olarak elde edilir.

$$L = T - V \tag{2.40}$$

Hareket denklemelerini elde edilirken, Euler- Lagrange denklemlerinde bağ kuvvetlerini de göz önüne alabilmek için Lagrange çarpanları metodu, Voronec denklemleri, Volterra-Maggi denklemleri ve Appel denklemleri kullanılabilir [5]. Bu çalışmada Voronec denklemleri kullanılarak, bisiklet dinamik denklemleri elde edilmiştir. Öncelikle indirgenmiş Euler- Lagrange fonksiyonu (\bar{L}) fonksiyonu, bağ denklemlerinin, Euler- Lagrange fonksiyonunda (L) yerlerine yazılmasıyla elde edilir ve nonholonomik bağları da içeren hareket denklemleri elde edilir [18]. Voronec hareket denklemi (2.40) ifadesidir.

$$\frac{d}{dt}\left(\frac{\partial \bar{L}}{\partial \dot{q}_{i}}\right) - \frac{\partial \bar{L}}{\partial q_{i}} = \tau_{i} + \sum_{\nu=1}^{k} \frac{\partial \bar{L}}{\partial q_{m+\mu}} a_{\nu i} + \sum_{\nu=1}^{k} \sum_{j=1}^{m} \frac{\partial L}{\partial \dot{q}_{m+\mu}} b_{ij}^{\nu} \dot{q}_{j}, \quad i = 0, 1...m \quad (2.41)$$

Burada b_{ij}^{v} ifadesi (2.42 denklemi ile elde edilir;

$$b_{ij}^{\mathbf{v}} = \frac{\partial a_{\nu i}}{\partial q_j} - \frac{\partial a_{\nu j}}{\partial q_i} + \sum_{\nu=1}^k \left(\frac{\partial a_{\nu i}}{\partial q_{m+\mu}} a_{\mu j} - \frac{\partial a_{\nu j}}{\partial q_{m+\mu}} a_{\mu i} \right)$$
(2.42)

 τ ifadesi sisteme etkileyen genelleştirilmiş kuvvetleri belirtmektedir.8 adet bisiklet geneleştirilmiş koordinatının k = 4 adedinin nonholonomik kısıtların oluşturduğunu Bölüm 2.2 de incelenmişti. Kalan m = 4 adet genelleştirilmiş koordinat bisiklet dinamik denklemlerini tanımlanmaktadır. Geneleştirilmiş koordinatları $q_1 = \chi$, $q_2 = \psi$, $q_3 = v_1$, $q_4 = \alpha$, $q_5 = x$, $q_6 = y$, $q_7 = \theta$, $q_8 = v_2$ olarak tanımlanırsa, kısıt denklemlerinin 2.20 denklemi formunda yazılabilmesi için (2.43-2.47) eşitlikleri tanımlanabilir. Yazılmayan diğer katsayılar sıfırdır.

$$a_{13} = -Rs\theta \tag{2.43}$$

$$a_{23} = Rc\theta \tag{2.44}$$

$$a_{32} = \frac{-l_5 c \lambda + (h_3 + h_4) s \lambda}{l_3 + l_4 + l_5}$$
(2.45)

$$a_{33} = \frac{R(-s\theta + c\theta tan(\theta + c\lambda\psi))}{l_3 + l_4 + l_5}$$
(2.46)

$$a_{43} = c\theta Sec(\theta + c\lambda\psi) \tag{2.47}$$

Denklem 2.42 için (2.48-2.55) eşitlikleri yazılılabilir. Diğer b değerleri sıfıra eşittir.

$$b_{23}^{1} = \frac{Rc\theta(-l_{5}c\lambda + (h_{3} + h_{4})s\lambda)}{l_{3} + l_{4} + l_{5}}$$
(2.48)

$$b_{32}^{1} = \frac{Rc\theta(l_{5}c\lambda - (h_{3} + h_{4})s\lambda)}{l_{3} + l_{4} + l_{5}}$$
(2.49)

$$b_{23}^2 = \frac{Rs\theta(-l_5c\lambda + (h_3 + h_4)s\lambda)}{l_3 + l_4 + l_5}$$
(2.50)

$$b_{32}^2 = \frac{Rs\theta(l_5c\lambda - (h_3 + h_4)s\lambda)}{l_3 + l_4 + l_5}$$
(2.51)

$$b_{23}^{3} = -(Rc\lambda c\theta (l_{5} + l_{4}sec(\theta + c\lambda\psi)^{2}) + R(l_{5}c\lambda s\theta + h_{4}sec(\theta + c\lambda\psi)s\lambda s(c\lambda\psi))$$
$$tan(\theta + c\lambda\psi))/(l_{3} + l_{4} + l_{5})^{2} \quad (2.52)$$

$$b_{32}^{3} = (Rc\lambda c\theta (l_{5} + l_{4}sec(\theta + c\lambda\psi)^{2}) + R(l_{5}c\lambda s\theta + h_{4}sec(\theta + c\lambda\psi)s\lambda s(c\lambda\psi))$$
$$tan(\theta + c\lambda\psi))/(l_{3} + l_{4} + l_{5})^{2} \quad (2.53)$$

$$b_{23}^{4} = -\frac{\sec(\theta + c\lambda\psi)(h_{4}sec(\theta + c\lambda\psi)s\lambda s(c\lambda\psi)) + c\lambda(l_{5}s\theta + l_{4}c\theta tan(\theta + c\lambda\psi))}{(l_{3} + l_{4} + l_{5})^{2}}$$
(2.54)

$$b_{32}^{4} = \frac{\sec(\theta + c\lambda\psi)(h_{4}sec(\theta + c\lambda\psi)s\lambda s(c\lambda\psi)) + c\lambda(l_{5}s\theta + l_{4}c\theta tan(\theta + c\lambda\psi))}{(l_{3} + l_{4} + l_{5})^{2}}$$
(2.55)

Bisikletin doğrusal olmayan modeli, bulunan (2.43-2.55) eşitlikleri yardımıyla (2.41) denklemi de kullanılarak elde edilmiş olur. Volan kullanılan model dört adet ikinci mertebeden diferansiyel denklem ve (2.32-2.35) de ki dört adet nonholonomik bağ denkleminden oluşmaktadır. Jiroskop kullanılan model beş adet ikinci mertebeden diferansiyel denklem ve (2.32-2.35) de ki dört adet nonholonomik bağ denkleminden oluşmaktadır. Volan kullanılan model için ikinci mertebeden diferansiyel denklem ve (2.32-2.35) de ki dört adet nonholonomik bağ denkleminden oluşmaktadır. Volan kullanılan model için ikinci mertebeden diferansiyel denklemi 1162, ψ denklemi 6375, v_1 denklemi 7061 ve α denklemi 4 terimden oluşmaktadır. Jiroskop kullanılan model için ikinci mertebeden diferansiyel denklemlerden, χ denklemi 617, ψ denklemi 2947, v_1 denklemi 3794, α denklemi 77 ve γ denklemi 175 terimden oluşmaktadır. Hareket denklemleri Mathematica(R) yazılımı kullanılarak elde edilmiştir.

3. KONTROL SİSTEMİ TASARIMI ve DİNAMİK BENZETİMLER

Bölüm 2 modellenen bisikletin otonom hareketi için, kapalı çevrim kontrol sisteminin tasarımı Bölüm 3.1 de açıklanmaktadır. Hareket yörüngelerinin planması ve üretilen referans yörünge konumlarına ulaşabilmek için gerekli gidon açısının bulunması da bu bölümde ele alınmaktadır. Benzetimlerde kullanılan bisikletin parametrelerinin elde edilmesi Bölüm 3.2 de ve dinamik benzetimlerde Bölüm 3.3 de incelenmektedir.

3.1 Kapalı Çevrim Kontrol Sistemi Tasarımı

Otonom bisiklet hareketinde önceden belirlenmiş referans yörüngeyi bisikletin kendi dengesini de sağlayarak takip etmesi amaçlanmaktadır. Gerekli referans yörünge Bölüm 2.1 de tanımlanan bisiklet arka tekerlek yere temas noktasına yerleştirilen R_1 eksen takımının hareketini belirlemektedir. R_1 eksen takımının yere sabit R_0 eksen takımına göre değişkenleri olan x, y, θ ve χ nin yörüngelerinin planlanması gerekmektedir. Bisiklet hareketi için arka tekerlek hızı $dot v_1$ da yörünge planlamasına dahil edilir. Yatma açısı kontrolü için birinci modelde volanın açısal hızı, ikinci modelde ise jiroskop dış çerçevesinin açısal konumu, bisikletin hız kontrolü için arka tekerlek açısal hızı ve bisikletin yönelimi için gidon konumu kontrol girişleri olarak uygulanmıştır.

Şekil 3.1: Kapalı çevrim blok diyagramı genel durumu.

Şekil 3.2: Kapalı çevrim blok diyagramı.

Bisiklet hareketi esnasında yatma açısı (χ) hareketin kararlığını etkileyen önemli bir değişkendir. Bisiklet yatma açısı ve gidon açısısının birbirine bağımlı olduğu dinamik denklemlerde görülmektedir. Bu etki kontrol sisteminde gidon girişine yatma açısının oransal olarak eklenmesi ile göz önüne alınmaktadır. Bisiklet yatma açısı (χ) sabit sıfır derece referansı etrafında kontrol edilmektedir. Diğer referanslar planan yörüngeye bağlı olarak yörünge planlayıcıda hesaplanmakatadır. Kapalı çevrim blok diyagramı Şekil 3.1 ve Şekil 3.2 de görülmektedir.

Kontrolör içerisinde bisiklet siklik koordinatları x, y ve θ , arka tekerlek hızı ve bisiklet yatma açısı kontrol edilmektedir. Kullanılan PD kontrolörlerin katsayıları yapılan benzetimler sonucu deneme yanılma yöntemiyle bulunmuştur. Şekil 3.2 de kullanılan kapalı çevrim blok diyagramının kontrolöründe açıklandığı en genel hali görülmektedir. Yörünge üreteci içerisinde referans x,y, \dot{v}_1 , θ Bölüm 3.1.1 ve referans ψ açısının nasıl elde edildiği 3.1.2 de açıklanmaktadır.

3.1.1 Yörünge planlaması

Yörünge planlamasında, bisikletin fiziksel olarak gerçekleştirilebilir yörüngeler üzerinde hız sürekliliğini de sağlayarak hareket etmesi esas alınmıştır.Hareketin süresince arka tekerleğin yere temas ettiği nokta için konum referansları, arka tekerleğin açısal hızı için ise hız referansları üretilmiştir. İstenen başlangıç ve son konumları arasında bisikletin geçmesi tasarlanan ara noktalar seçilmiştir.

Şekil 3.3: Yörünge planlaması ve sınır şartları.

Şekil 3.3 da görüldüğü gibi daha önceden seçilen noktalardan geçerek bisikletin hedeflenen noktaya ulaşması amaçlanmaktadır. Bu noktaları bağlayan eğrileri oluşturmak için bir kaç farklı method bulunmaktadır. En kolay method, bu noktaları

doğrular kullanılarak birleştirmektir. Ancak eğeri yönünün değiştiği noktalarda hız süreksizliği meydana geleceği için bu meted tercih edilmemektedir. Diğer method ise yüksek dereceden polinom ile eğrinin tanımlanmasıdır. Ancak geçmesi gereken çok fazla sayıda nokta tanımlandığında yüksek dereceli polinomun oluşturduğu titreşim artacaktır. Daha verimli bir yol olarak, noktalar arasında parçalı kübik polinomlar tanımlanarak pozisyon,hız, ivme ve oryantasyonda süreklilik sağlanabilmektedir. Ara noktalarda hız sürekliliği sınır koşul olarak belirlenmiştir [19].

Şekil 3.3'de belirtilen sınır şartları sağlayan, kübik polinomlarla splinelar oluşturularak yörüngeler üretilmiştir [14]. Bisiklet referans konum, hız ve ivme denklemleri;

$$x = a_{x0} + a_{x1}s + a_{x2}s^2 + a_{x3}s^3$$
(3.1)

$$y = a_{y0} + a_{y1}s + a_{y2}s^2 + a_{y3}s^3$$
(3.2)

$$\dot{x} = a_{x1} + 2a_{x2}s + 3a_{x3}s^2 \tag{3.3}$$

$$\dot{y} = a_{y1} + 2a_{y2}s + 3a_{y3}s^2 \tag{3.4}$$

$$\ddot{x} = 2a_{x2} + 6a_{x3}s \tag{3.5}$$

$$\ddot{y} = 2a_{y2} + 6a_{y3}s \tag{3.6}$$

Bisiklet arka tekerlek hız referansı da bisiklet arka tekerlek yere temas noktasının çizgisel hızından yola çıkarak 3.7 denklemi ile elde edelir;

$$\dot{\upsilon}_1 = \frac{1}{R}\sqrt{\dot{x}^2 + \dot{y}^2}$$
(3.7)

Bisiklet referans θ açısı aşağıdaki denklem ile hesaplanabilir;

$$\theta = tan^{-1}(\frac{dy/dt}{dx/dt}) = tan^{-1}\frac{a_{y1} + 2a_{y2}s + 3a_{y3}s^2}{a_{x1} + 2a_{x2}s + 3a_{x3}s^2}$$
(3.8)

3.1.2 Gidon referans açısının elde edilmesi

Önceden seçilmiş olan yörüngenin takip edilebilmesi için gidon açısı referanslarının da üretilmesi gerekmektedir. Yörünge takibinde en çok kullanılan yöntem geometrik yörünge takipçileridir [20]. Bu çalışmada da bu metodlardan 'pure pursuit' algoritması kullanılmıştır. Saf takip algoritması Şekil 3.4' de görüldüğü gibi arka tekerlek yere temas noktasıyla hedef nokta arasındaki geometrik bir dairesel yay hesaplanmasına dayanmaktadır. Bisiklet gidon açısı, arka tekerlek temas noktası ile hedef nokta arasındaki en yakın uzaklık (l_d), bisiklet yönelimindeki hata (δ), ve bisiklet boyu

Şekil 3.4: Yörünge planlaması.

 $(L = l_4 + l_5)$ yardımıyla hesaplanabilmektedir. Saf takip kontrol algoritması aşağıda görülmektedir.

$$\psi = \frac{2L}{l_d} \sin(\delta) \tag{3.9}$$

3.2 Model Parametrelerinin Elde Edilmesi

İ.T.Ü. Makina Fakültesine bu proje kapsamında alınan bisiklet parametreleri kullanılarak hazırlanan modelin benzetimi yapılmıştır (Şekil 3.5).

Şekil 3.5: Benzetimlerde kullanılan bisiklet.

Bisiklet demonte edilerek (Şekil 3.6) kütle ve ağırlık merkezi parametreleri ölçülmüştür. SolidWorks® yazılımı ortamında üç boyutlu bisiklet modeli

oluşturulmuş ve yazılım tarafından hesaplanan atalet momenti değerleri benzetimlerde kullanılmıştır. Yazılım ortamında oluşturulan üç boyutlu bisiklet modelinin parçaları Ek A.2 de verilmektedir. Elde edilen parametre değerleri (Tablo 3.1)'de belirtilmektedir.

Şekil 3.6: Bisiklet parametrelerinin ölçülmesi.

$m_2 = 5.75 kg$	$m_3 = 11.5 kg$
$m_4 = 1.95 kg$	$m_5 = 2.3 kg$
$m_{6volan} = 8kg$	$m_{6jiroskop} = 1.8kg$
$h_3 = 0.54m$	$h_4 = 0.75m$
$h_5 = -0.42m$	$h_6 = 0.45m$
$l_3 = 0.32m$	$l_4 = 0.89m$
$l_5 = 0.20m$	$l_6 = 0.55m$
$\lambda=21^{o}$	$g = 9.81 m/s^2$
R = 0.33m	
$(0.44 \ 0 \ 0)$	$(1.29 \ 0 \ 0)$
$I_2 = \begin{bmatrix} 0 & 0.22 & 0 \end{bmatrix}$	$I_3 = \begin{bmatrix} 0 & 0.32 & 0.04 \end{bmatrix} kg.m^2$
$\begin{pmatrix} 0 & 0 & 0.22 \end{pmatrix}$	(0 0.04 0.99)
$(0.17 \ 0 \ 0)$	$(0.21 \ 0 \ 0)$
$I_4 = \begin{bmatrix} 0 & 0.19 & 0 \end{bmatrix}$	$I_5 = \begin{bmatrix} 0 & 0.10 & 0 \end{bmatrix} kg.m^2$
$\begin{pmatrix} 0 & 0 & 0.03 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0.10 \end{pmatrix}$
$\left(0.06 0 0 \right)$	$\begin{pmatrix} 0.1 & 0 & 0 \end{pmatrix}$
$I_{6volan} = \begin{bmatrix} 0 & 0.09 & 0 \end{bmatrix}$	$I_{6 jiroskop} = \begin{bmatrix} 0 & 0.1 & 0 \end{bmatrix} kg.m^2$
	$\begin{pmatrix} 0 & 0 & 0.3 \end{pmatrix}$

Çizelge 3.1: Gerçek bisiklet parametreleri.

3.3 Dinamik Benzetimler

Otonom bisiklet hareketi bölüm 3.1 de tasarlanan kapalı çevrim kontrol sistemi, bölüm 3.2 de belirtilen gerçek bisiklet parametreleri için benzetimlerle incelenmiştir. Benzetimler Matlab Simulink (R) yazılımı ile yapılmıştır. Diferansiyel denklemlerin çözümü için Runge-Kutta(ode4) çözücüsü, 0.01 saniyelik örnekleme periyodu ile uygulanmıştır. Bu örnekleme zamanı deneme yanılma yöntemiyle bulunmuştur. Bölüm 3.3.1 de bisiklet dengelemesi için volanın kullanıldığı model benzetimleri yapılmış, bölüm 3.3.2 de ise jiroskopun kullanıldığı model için benzetimler yapılmış ve irdelenmiştir.

3.3.1 Volan dengeleme sistemi ile otonom yörünge takibi

Bisiklet genel hareket performansının incelenmesi için Şekil 3.7' de kırmzı kesikli eğri ile belirtilen referans yorunge Bolüm 3.1.1 de belirtildiği gibi üçüncü dereceden polinomlar kullanılarak üretilmiştir. Bisikletin (0,0) konumundan yola çıktıktan sonra 5 m düz harket, ardından slalom hareket yaptıktan sonra tekrar 5 m düz ilerleyerek hareketin sonlandırılması istenmektedir.

Şekil 3.7: Volan ile slalom hareket yörüngesi takibi.

Hareketin başlangıç ve bitiş hızları sıfırdır. Toplam harket süresi 54 saniyedir. Şekil 3.7 de dinamik benzetim sonucunda elde edilen bisiklet hareketinin izi mavi sürekli eğri ile görülmektedir.Başlangıç noktasından 30 m uzaklıkta sonuçlanan hareket sonucunda toplam konum hatası 0.051 m olmuştur. Şekil 3.8 de x yönündeki, Şekil 3.9' de ise y yönündeki hata değişimi görülmektedir. Referans yörünge eğim değişiminin arttığı noktalarda konum takip hatası da artmaktadır. Bu artış bisikletin nonholonomik bir sistem olup hatayı hemen giderebilecek geometrik yapıya sahip olmaması nedeniyledir. Seçilen referans hareket eğrisinin bisiklet yoneliminin y doğrultusunda başlayıp yine y doğrultusunda sonuçlanması sebebiyle x yönünde konum hatası miktarı daha fazla olmuştur. Bu konum hatası miktarı bisiklet boyutu, hareket eğrisi ve kat edilen mesafe göz önüne alındığında kabul edilebilir seviyededir.

Şekil 3.8: Volan ile slalom hareket yörüngesi takibinde x yönü konum hatası.

Bisiklet yatma açısının değişimi Şekil 3.10' de görülmektedir. Kırmızı kasikli çizgiler bisiklet denge konumu olan 0 dereceyi, düz mavi çizgi ise benzetim sonucu gerçekleşen yatma açısı (χ) miktarını göstermektedir. Bisiklet yatma açısı χ hareket süresince -2, +2 aralığında değişmektedir. Ani 5 dereceye çıkan yatma açısı nonlineer sistem olması kaynaklı hesap hatalarından kaynaklanmaktadır. Bisiklet yatma açısı miktarı yörünge eğim değişiminin arttığı noktalarda arttığı Şekil 3.10'

Şekil 3.9: Volan ile slalom hareket yörüngesi takibinde y yönü konum hatası.

de görülmektedir. Ancak bisiklet hareket sonuna kadar dengesini koruyabilmekte, kararsız duruma geçmemektedir. Bu durumda Şekil 3.10' de görülen benzetimlerde ki yatma açı miktarı değişiminin kabul edilebilir seviyelerde olduğunu görülmektedir.

Şekil 3.10: Volan ile slalom hareket yörüngesi takibinde χ yatma açısı.

Benzetim sonucu bisiklet gidon açısının değişimi Şekil 3.11' da görülmektedir. Kırmızı kasikli çizgiler gidon yörünge planlayıcısından elde edilen referans gidon açısı değerini, düz mavi çizgi ise benzetim sonucu gerçekleşen gidon açısı (ψ) miktarını göstermektedir. Gidon açısı referans gidon açısını takip edebildiği görülmektedir.Yaklaşık 9.5. saniye civarında hesap hatası kaynaklı ani değişim az miktarda da olsa görülmektedir. Gidon açısının maksimum değeri -45, +45 aralığında sınırlandırılmıştır.

Şekil 3.11: Volan ile slalom hareket yörüngesi takibinde ψ gidon açısı.

Benzetim sonucu bisiklet yönelim açısının değişimi Şekil 3.12' da görülmektedir. Kırmızı kasikli çizgiler kapalı çevrim kontrolör yörünge planlama bloğundan elde edilen referans bisiklet yönelim açısı değerini, düz mavi çizgi ise benzetim sonucu gerçekleşen bisiklet yönelim açısı (θ) miktarını göstermektedir. Gidon referans takibinde ki hatanın az olması bisiklet yöneliminin istenilen düzeyde gerçekleşmesini sağlamıştır. Yörünge eğim değişiminin arttığı noktalarda kabul edilir düzeyde yönelim hataları meydana gelmektedir. Benzetim sonucu bisiklet arka tekerlek açısal hızı Şekil 3.13' da görülmektedir. Kırmızı kasikli çizgiler gidon yörünge planlayıcısından elde edilen referans arka tekerlek açısal hız değerini, düz mavi çizgi ise benzetim sonucu gerçekleşen arka tekerlek hız (v_1) miktarını göstermektedir.

Şekil 3.12: Volan ile slalom hareket yörüngesi takibinde θ yönelim açısı.

Şekil 3.13: Volan ile slalom hareket yörüngesi takibinde v_1 arka tekerlek açısal hızı.

Konum hatalarını sıfırlamak amacıyla bisiklet planlanandan daha fazla yol aldığı için gerçekleşen arka tekerlek hızı referans değerin bir miktar üzerinde gerçekleşmektedir.

Hesap hatası kaynaklı ani değişimler 9.5. saniye civarında burada da görülmektedir.Benzetim sonucu bisiklet volan hızı ($\dot{\alpha}$) Şekil 3.14' da, volan ivmesi ($\ddot{\alpha}$) de Şekil 3.14' da görülmektedir. Volan hız ve ivmesinin gerçeklenebilir değerlerde olduğu görülmektedir.

Şekil 3.14: Volan ile slalom hareket yörüngesi takibinde $\dot{\alpha}$ volan açısal hızı.

Şekil 3.15: Volan ile slalom hareket yörüngesi takibinde $\ddot{\alpha}$ volan ivmesi.

3.3.1.1 Farklı kontrol katsayılarının yörünge takip performansına etkisi

Ek A.1 de bisiklet yatma açısı (χ) ve gidon açısı (ψ) denkleminden görüldüğü üzere, χ ve ψ açısı birbirine bağımlıdır. Şekil 3.2 de görülen sistem girişlerinden gidon açısı referansı, yörünge takibi için hesaplanan gidon açısı kontrolörü ve bisiklet dengesinin kontrolü için yatma açısı P oranıyla çarpımının çıkışlarının toplamından oluşmaktadır. Yatma açısının gidon referans konumuna eklenmesi doğal olarak tasarlanan referans yörüngenin takibini olumsuz etkilerken, bisiklet dengesine ise olumlu katkı sağlamaktadır.

Farklı kontrol katsayıları için bu etki, gidon açısı oransal kontrolörünün yatma açısı oransal katsayısından çok büyük olduğu ve çok küçük olduğu durumlar aşağıdaki iki bölümde tanımlanan Z yörünge ve slalom yörünge için benzetimlerle incelenmiştir.

Z yörünge için farklı kontrol katsayıların performanslarının karşılaştırılması

Yörünge takibi oransal kontrolör katsayısının 10000 türev katsayısının 40 ve yatma açı oransal katsayının 1000 seçildiği durum ile yörünge takibi oransal kontrolör katsayısının 100 türev katsayısının 40 ve yatma açı oransal katsayının 1000 seçildiği durumun Z yörüge için benzetimleri yapılmıştır. Şekil 3.16 de dinamik benzetim sonucunda elde edilen yörünge takibi oransal kontrol katsayısının çok büyük olduğu bisiklet hareketinin izi siyah sürekli eğri ve yörünge takibi oransal kontrol katsayısının küçük olduğu bisiklet hareketinin izi mavi sürekli eğri ile görülmektedir. Referans Z yörünge de kırmızı kesikli çizgilerle gösterilmiştir. Yörünge takibi oransal kontrol katsayısının çok büyük olduğu durumda, bisiklet son hareket noktasında 0.0395 m hata ile konumlanırken, küçük olduğu durumda ise 0.0895 m hata ile konumlanımaktadır. Yörünge takibi oransal kontrol katsayısının çok büyük olduğu durumda kisayısının küçük olduğu durumda hareket süresince çok daha hassas yörünge takibi yapılabilmektedir. Ancak bu durum genel bisiklet hareketi düşünüldüğünde oransal kontrol katsayısının küçük olduğu durumda ki sapmalar kabul edilebilir seviyededir.

Hareket süresince gerçekleşen bisiklet yatma açısı ise, şekil 3.17 de görüldüğü gibi yörünge oransal kontrol katsayısının çok küçük olduğu durumda, daha düşük seviyede olmaktadır. Bu durum bisikletin daha kararlı davrandığını göstermektedir.

Şekil 3.17: Farklı kontrol katsayıları için Z yörünge takibinde χ açısı.

Şekil 3.18 de dinamik benzetim sonucu elde edilen gidon açıları görülmektedir. Şekilde pembe renkle yörünge takibi oransal kontrolör katsayısının büyük olduğu,

Şekil 3.18: Farklı kontrol katsayıları için Z yörünge takibinde ψ açısı.

mavi renkle ise küçük olduğu durumu gösterilmektedir. Oransal kontrol katsayısı küçük olduğunda daha yumuşak geçişli olduğu görülmektedir.

Şekil 3.19: Farklı kontrol katsayıları için Z yörünge takibinde v_1 hızı.

Şekil 3.19 de dinamik benzetim sonucu elde edilen arka tekerlek açısal hızlar görülmektedir. Şekilde pembe renkle yörünge takibi oransal kontrolör katsayısının büyük olduğu, mavi renkle ise küçük olduğu durumu gösterilmektedir. Yörünge takibinin daha hassas olduğu durumda hızda küçük salınımlar görülmektedir.

Şekil 3.20 da dinamik benzetim sonucu elde edilen bisiklet yönelim açısı görülmektedir. Şekilde pembe renkle yörünge takibi oransal kontrolör katsayısının büyük olduğu, mavi renkle ise küçük olduğu durumu gösterilmektedir. Kontrol katsayısının küçük olduğu durumda bisiklet yönelimine daha geç cevap verdiği görülmektedir.

Şekil 3.20: Farklı kontrol katsayıları için Z yörünge takibinde θ hızı.

Şekil 3.21 da dinamik benzetim sonucu elde edilen volan hızı ve Şekil 3.22 de volan ivmesi görülmektedir. Yörünge takibi oransal kontrolör katsayısının büyük olduğu durumda gidon açısının bisiklet denge kontrolüne katkısı azaldığı için, volan ivmesinin arttığı görülmektedir. Yörünge takibi oransal kontrolör katsayısının küçük olduğu durumda volan ivmesi çok daha yumuşak geçişli değerler almaktadır.

Şekil 3.21: Farklı kontrol katsayıları için Z yörünge takibinde $\dot{\alpha}$ hızı.

Şekil 3.22: Farklı kontrol katsayıları için Z yörünge takibinde $\ddot{\alpha}$ ivmesi.

Slalom yörünge için farklı kontrol katsayıların performanslarının karşılaştırılması

Bu bölümde yörünge takibi oransal kontrolör katsayısının 10000 türev katsayısının 40 ve yatma açı oransal katsayının 1000 seçildiği durum ile yörünge takibi oransal kontrolör katsayısının 100 türev katsayısının 40 ve yatma açı oransal katsayının 1000 seçildiği durumun slalom yörüge için benzetimleri yapılmıştır. Şekil 3.23 de dinamik benzetim sonucunda elde edilen yörünge takibi oransal kontrol katsayısının çok büyük olduğu bisiklet hareketinin izi mavi sürekli eğri ve yörünge takibi oransal kontrol katsayısının küçük olduğu bisiklet hareketinin izi siyah sürekli eğri ile görülmektedir. Referans Z yörünge de kırmızı kesikli çizgilerle gösterilmiştir.

Şekil 3.23: Farklı kontrol katsayıları için slalom yörünge takibi.

Yörünge takibi oransal kontrol katsayısının çok büyük olduğu durumda, bisiklet son hareket noktasında 0.0368 m hata ile konumlanırken, küçük olduğu durumda ise 0.1984 m hata ile konumlanmaktadır. Yörünge takibi oransal kontrol katsayısının çok büyük olduğunda hareket süresince yörünge takibi hatası Z yörüngede ki hata ile

aynı seviyelerdedir. Ancak yörünge takibi oransal kontrol katsayısının küçük olduğu durumda hata Z yörüngeden fazladır. Bu durum dönme sayısının fazla olmasından kaynaklanmaktadır. Hareket süresince gerçekleşen bisiklet yatma açısı ise, şekil 3.24 de görüldüğü gibi yörünge oransal kontrol katsayısı küçük olduğunda, daha küçük olmaktadır.

Şekil 3.24: Farklı kontrol katsayıları için slalom yörünge takibinde χ açısı.

Şekil 3.25: Farklı kontrol katsayıları için slalom yörünge takibinde ψ açısı.

Şekil 3.25 de dinamik benzetim sonucu elde edilen gidon açıları görülmektedir. Şekilde mavi renkle yörünge takibi oransal kontrolör katsayısının büyük olduğu, pembe renkle ise küçük olduğu durumu gösterilmektedir.

Şekil 3.26: Farklı kontrol katsayıları için slalom yörünge takibinde v_1 hızı.

Şekil 3.26 de dinamik benzetim sonucu elde edilen arka tekerlek açısal hızlar görülmektedir. Şekilde mavi renkle yörünge takibi oransal kontrolör katsayısının büyük olduğu, pembe renkle ise küçük olduğu durumu gösterilmektedir.

Şekil 3.27: Farklı kontrol katsayıları için slalom yörünge takibinde θ hızı.

Şekil 3.27 da dinamik benzetim sonucu elde edilen bisiklet yönelim açısı görülmektedir. Şekilde mavi renkle yörünge takibi oransal kontrolör katsayısının büyük olduğu, pembe renkle ise küçük olduğu durumu gösterilmektedir.

Şekil 3.28: Farklı kontrol katsayıları için slalom yörünge takibinde $\dot{\alpha}$ hızı.

Şekil 3.28 da dinamik benzetim sonucu elde edilen volan hızı ve Şekil 3.29 de volan ivmesi görülmektedir. Z yorungeye göre yatma açısı değerleri büyüdüğü için volan hızı ve ivmesi slalom yörüngede daha büyük değerler almaktadır.

Şekil 3.29: Farklı kontrol katsayıları için slalom yörünge takibinde $\ddot{\alpha}$ ivmesi.

3.3.1.2 Farklı hızlarda hareketin yörünge takip performansına etkisi

Bisiklet kararlılığı tekerlek jiroskopik kuvvetlerinin artması ile artar. Jiroskopik kuvvet büyüklüğü tekerlek dönme ekseni ataleti ve dönme hızına bağlıdır. Çocuk ve eğitim bisikletlerinde atalet kuvvetini arttırılarak bisiklet kullanma öğretilmektedir. Bisiklet hızının bisiklet kararlılığına olan etkisi ve otonom bisiklet performansına etkisi Bölüm 3.3.3.1 ve Bölüm 3.3.3.2 de iki farklı yörüngede üç farklı hız kademesi için incelenmiştir.

Z yörünge için farklı hareket hızları performanslarının karşılaştırılması

Bu bölümde bisiklet ortalama hızının 2 m/sn, 1.3 m/sn ve 0.5 m/sn olduğu durumda aynı referans Z yörüge için benzetimler yapılmıştır. Şekil 3.30 de dinamik benzetim sonucunda elde edilen 2 m/sn lik ortalama hızda bisiklet hareketinin izi magenta rengi sürekli eğri, 1.3 m/sn lik ortalama hızda bisiklet hareketinin izi mavi renkte sürekli eğri,ve 0.5 m/sn lik ortalama hızda bisiklet hareketinin izi siyah renkte sürekli eğri ile görülmektedir. Referans Z yörünge de kırmızı kesikli çizgilerle gösterilmiştir. Yörünge takibinde bisiklet hızı arttıkça hatalarında arttığı görülmektedir.

Şekil 3.30: Farklı hızlar için Z yörünge takibi.

Şekil 3.31: 2 m/s ortalama bisiklet hızı için Z yörüngede χ açısı.

Şekil 3.32: 1.3 m/s ortalama bisiklet hızı için Z yörüngede χ açısı.

Şekil 3.33: 0.5 m/s ortalama bisiklet hızı için Z yörüngede χ açısı.

Şekil 3.31, Şekil 3.32 ve Şekil 3.33 da dinamik benzetim sonucu elde edilen bisiklet yatma açısının sırasıyla 2 m/sn 1.3 m/sn ve 0.5 m/sn hızlarında değişim grafikleri görülmektedir. Hız arttıkça jirokopik kuvvet etkisiyle yatma açısının genliği düşmektedir.

Şekil 3.34: 2 m/s ortalama bisiklet hızı için Z yörüngede ψ açısı.

Şekil 3.35: 1.3 m/s ortalama bisiklet hızı için Z yörüngede ψ açısı.

Şekil 3.36: 0.5 m/s ortalama bisiklet hızı için Z yörüngede ψ açısı.

Şekil 3.34, Şekil 3.35 ve Şekil 3.36 de dinamik benzetim sonucu elde edilen bisiklet gidon açısının sırasıyla 2 m/sn 1.3 m/sn ve 0.5 m/sn hızlarında değişim grafikleri görülmektedir. Bisiklet hızı azaldıkça bisiklet kararsızlığı artmakta ve bu nedenle gidon açısı salınımı da artmaktadır.

Şekil 3.37, Şekil 3.38 ve Şekil 3.39 de dinamik benzetim sonucu elde edilen bisiklet arka tekerlek açısal hızları sırasıyla 2 m/sn 1.3 m/sn ve 0.5 m/sn ortalama bisiklet hızlarında değişim grafikleri görülmektedir.

Şekil 3.37: 2 m/s ortalama bisiklet hızı için Z yörüngede v_1 hızı.

Şekil 3.38: 1.3 m/s ortalama bisiklet hızı için Z yörüngede v_1 hızı.

Şekil 3.39: 0.5 m/s ortalama bisiklet hızı için Z yörüngede v_1 hızı.

Şekil 3.40, Şekil 3.41 ve Şekil 3.42 da dinamik benzetim sonucu elde edilen bisiklet yönelim açısı görülmektedir. Bisiklet hızı düştükçe kararsızlık nedeniyle gidon açısındaki değişimin artması bisiklet yöneliminin de salınım yapmasına neden olmaktadır.

Şekil 3.40: 2 m/s ortalama bisiklet hızı için Z yörüngede θ açısı.

Şekil 3.41: 1.3 m/s ortalama bisiklet hızı için Z yörüngede θ açısı.

Şekil 3.42: 0.5 m/s ortalama bisiklet hızı için Z yörüngede θ açısı.

Şekil 3.43: 2 m/s ortalama bisiklet hızı için Z yörüngede $\dot{\alpha}$ hızı.

Şekil 3.44: 1.3 m/s ortalama bisiklet hızı için Z yörüngede $\dot{\alpha}$ hızı.

Şekil 3.45: 0.5 m/s ortalama bisiklet hızı için Z yörüngede $\dot{\alpha}$ hızı.

Şekil 3.46: 2 m/s ortalama bisiklet hızı için Z yörüngede $\ddot{\alpha}$ ivmesi.

Şekil 3.47: 1.3 m/s ortalama bisiklet hızı için Z yörüngede $\ddot{\alpha}$ ivmesi.

Şekil 3.48: 0.5 m/s ortalama bisiklet hızı için Z yörüngede $\ddot{\alpha}$ ivmesi.

Slalom yörünge için farklı hareket hızları performansının karşılaştırılması

Bu bölümde bisiklet ortalama hızının 2 m/sn, 1.3 m/sn ve 0.5 m/sn olduğu durumda aynı referans slalom yörüge için benzetimler yapılmıştır. Şekil 3.49 de dinamik benzetim sonucunda elde edilen 2 m/sn lik ortalama hızda bisiklet hareketinin izi magenta rengi sürekli eğri, 1.3 m/sn lik ortalama hızda bisiklet hareketinin izi mavi renkte sürekli eğri,ve 0.5 m/sn lik ortalama hızda bisiklet hareketinin izi siyah renkte sürekli eğri ile görülmektedir. Referans slalom yörünge de kırmızı kesikli çizgilerle gösterilmiştir. Bisiklet hızı arttıkça konum hatası artmaktadır. Ancak hata bisiklet

Şekil 3.49: Farklı hızlar için slalom yörünge takibi.

Yörünge takibinde bisiklet hızı arttıkça referans yörünge takip hatalarının arttığı görülmektedir. Şekil 3.50, Şekil 3.51 ve Şekil 3.52 da dinamik benzetim sonucu elde edilen bisiklet yatma açısının sırasıyla 2 m/sn 1.3 m/sn ve 0.5 m/sn hızları için değişim grafikleri görülmektedir. Bisiklet hızı düştükçe kararlılığın azalması burada da görülmektedir.

Şekil 3.50: 2 m/s ortalama bisiklet hızı için slalom yörüngede χ açısı.

Şekil 3.51: 1.3 m/s ortalama bisiklet hızı için slalom yörüngede χ açısı.

Şekil 3.52: 0.5 m/s ortalama bisiklet hızı için slalom yörüngede χ açısı.

Şekil 3.53, Şekil 3.54 ve Şekil 3.55 de dinamik benzetim sonucu elde edilen bisiklet gidon açısının sırasıyla 2 m/sn 1.3 m/sn ve 0.5 m/sn hızlarında değişim grafikleri görülmektedir.

Şekil 3.53: 2 m/s ortalama bisiklet hızı için slalom yörüngede ψ açısı.

Şekil 3.54: 1.3 m/s ortalama bisiklet hızı için slalom yörüngede ψ açısı.

Şekil 3.55: 0.5 m/s ortalama bisiklet hızı için slalom yörüngede ψ açısı.

Şekil 3.56, Şekil 3.57 ve Şekil 3.58 de dinamik benzetim sonucu elde edilen bisiklet arka tekerlek açısal hızları sırasıyla 2 m/sn 1.3 m/sn ve 0.5 m/sn ortalama bisiklet hızlarında değişim grafikleri görülmektedir.

Şekil 3.56: 2 m/s ortalama bisiklet hızı için slalom yörüngede v_1 hızı.

Şekil 3.57: 1.3 m/s ortalama bisiklet hızı için slalom yörüngede v_1 hızı.

Şekil 3.58: 0.5 m/s ortalama bisiklet hızı için slalom yörüngede v_1 hızı.

Şekil 3.59, Şekil 3.60 ve Şekil 3.61 da dinamik benzetim sonucu elde edilen bisiklet yönelim açısı görülmektedir.

Şekil 3.59: 2 m/s ortalama bisiklet hızı için slalom yörüngede θ açısı.

Şekil 3.60: 1.3 m/s ortalama bisiklet hızı için slalom yörüngede θ açısı.

Şekil 3.61: 0.5 m/s ortalama bisiklet hızı için slalom yörüngede θ açısı.

Şekil 3.62, Şekil 3.63 ve Şekil 3.64 da dinamik benzetim sonucu elde edilen volan hızı ve Şekil 3.65, Şekil 3.66 ve Şekil 3.67 de volan ivmesi görülmektedir.

Şekil 3.62: 2 m/s ortalama bisiklet hızı için slalom yörüngede $\dot{\alpha}$ hızı.

Şekil 3.63: 1.3 m/s ortalama bisiklet hızı için slalom yörüngede $\dot{\alpha}$ hızı.

Şekil 3.64: 0.5 m/s ortalama bisiklet hızı için slalom yörüngede $\dot{\alpha}$ hızı.

Şekil 3.65: 2 m/s ortalama bisiklet hızı için slalom yörüngede $\ddot{\alpha}$ ivmesi.

Şekil 3.66: 1.3 m/s ortalama bisiklet hızı için slalom yörüngede $\ddot{\alpha}$ ivmesi.

Şekil 3.67: 0.5 m/s ortalama bisiklet hızı için slalom yörüngede $\ddot{\alpha}$ ivmesi.

3.3.2 Mekanik jiroskop sistemi ile otonom olarak yörunge takip edilebilirliğinin incelenmesi

Bisiklet dengesini sağlamak için mekanik jiroskop kullanılan model bu bölümde benzetimlerle incelenmiştir. Bisiklet genel hareket performansının incelenmesi için Şekil 3.68' de kırmzı kesikli eğri ile belirtilen referans yorunge Bolüm 3.1.1 de belirtildiği gibi üçüncü dereceden polinomlar kullanılarak üretilmiştir. Bisikletin (0,0) konumundan yola çıktıktan sonra 5 m düz hareket, ardından slalom hareket yaptıktan sonra tekrar 5 m düz ilerleyerek hareketin sonlandırılması istenmektedir. Hareketin başlangıç ve bitiş hızları sıfırdır. Ortalama bisiklet hızı 0.38 m/s ve toplam harket süresi 72 saniyedir.

Şekil 3.68: Jiroskop ile slalom hareket yörüngesi takibi.

Şekil 3.68 de dinamik benzetim sonucunda elde edilen bisiklet hareketinin izi mavi sürekli eğri ile görülmektedir.Başlangıç noktasından 30 m uzaklıkta sonuçlanan hareket sonucunda toplam konum hatası 0.12 m olmuştur. Şekil 3.69 de x yönündeki, Şekil 3.70' de ise y yönündeki hata değişimi görülmektedir. Referans yörünge eğim değişiminin arttığı noktalarda konum takip hatası da artmaktadır. Bu artış bisikletin nonholonomik bir sistem olup hatayı hemen giderebilecek geometrik yapıya sahip olmaması nedeniyledir. Seçilen referans hareket eğrisinin bisiklet yoneliminin y doğrultusunda başlayıp yine y doğrultusunda sonuçlanması sebebiyle x yönünde konum hatası miktarı daha fazla olmuştur. Bu konum hatası miktarı bisiklet boyutu, hareket eğrisi ve kat edilen mesafe göz önüne alındığında kabul edilebilir seviyededir.

Şekil 3.69: Jiroskoplu slalom hareket yörüngesi takibinde x yönünde konum hatası.

Bisiklet yatma açısının değişimi Şekil 3.71' de görülmektedir. Kırmızı kasikli çizgiler bisiklet denge konumu olan 0 dereceyi, düz mavi çizgi ise benzetim sonucu gerçekleşen yatma açısı (χ) miktarını göstermektedir. Bisiklet yatma açısı χ hareket süresince 6 dereceye kadar çıkmaktadır. Bisiklet yatma açısı miktarı yörünge eğim değişiminin arttığı noktalarda arttığı görülmektedir. Ancak bisiklet hareket sonuna kadar dengesini koruyabilmekte, kararsız duruma geçmemektedir. Bu durum benzetimlerde ki yatma açı miktarı değişiminin kabul edilebilir seviyelerde olduğunu göstermektedir.

Şekil 3.70: Jiroskoplu slalom hareket yörüngesi takibinde y yönünde konum hatası.

Şekil 3.71: Jiroskoplu slalom hareket yörüngesi takibinde χ yatma açısı.

Şekil 3.72: Jiroskoplu slalom hareket yörüngesi takibinde ψ gidon açısı.

Benzetim sonucu bisiklet gidon açısının değişimi Şekil 3.72' da görülmektedir. Kırmızı kesikli çizgiler gidon yörünge planlayıcısından elde edilen referans gidon açısı değerini, düz mavi çizgi ise benzetim sonucu gerçekleşen gidon açısı (ψ) miktarını göstermektedir. Gidon açısı referans gidon açısını takip edebildiği görülmektedir.Gidon açısının maksimum değeri -45, +45 derece aralığında sınırlandırılmıştır.

Benzetim sonucu bisiklet yönelim açısının değişimi Şekil 3.73' da görülmektedir. Kırmızı kesikli çizgiler kapalı çevrim kontrolör yörünge planlama bloğundan elde edilen referans bisiklet yönelim açısı değerini, düz mavi çizgi ise benzetim sonucu gerçekleşen bisiklet yönelim açısı (θ) miktarını göstermektedir. Gidon referans takibinde ki hatanın az olması bisiklet yöneliminin istenilen düzeyde gerçekleşmesini sağlamıştır. Yörünge eğim değişiminin arttığı noktalarda kabul edilir düzeyde yönelim hataları meydana gelmektedir. Benzetim sonucu bisiklet arka tekerlek açısal hızı Şekil 3.74' da görülmektedir. Kırmızı kasikli çizgiler gidon yörünge planlayıcısından elde edilen referans arka tekerlek açısal hız değerini, düz mavi çizgi ise benzetim sonucu gerçekleşen arka tekerlek hız (v_1) miktarını göstermektedir.

Şekil 3.73: Jiroskoplu slalom hareket yörüngesi takibinde θ bisiklet yönelim açısı.

Şekil 3.74: Jiroskoplu slalom hareket yörüngesi takibinde v_1 bisiklet arka tekerlek açısal hızı.

Konum hatalarını sıfırlamak amacıyla bisiklet planlanandan daha fazla yol aldığı için gerçekleşen arka tekerlek hızı referans değerin bir miktar üzerinde gerçekleşmektedir. Benzetim sonucu bisiklet volan hızı ($\dot{\alpha}$) Şekil 3.75' da, volan ivmesi ($\ddot{\alpha}$) de Şekil

3.76' da görülmektedir. Volan hız ve ivmesinin gerçeklenebilir değerlerde olduğu görülmektedir.

Şekil 3.75: Jiroskoplu slalom hareket yörüngesi takibinde $\dot{\alpha}$ volan açısal hızı.

Şekil 3.76: Jiroskoplu slalom hareket yörüngesi takibinde $\ddot{\alpha}$ volan ivmesi.

4. DENEYSEL ÇALIŞMALAR

Bu bölümde dinamik modelin elde edilmesi ve benzetimlerin ardından gerçek bisiklet üzerinde deneyler ele alınacaktır. Bölüm 4.1 de bisiklet üzerinde sistemin gerçeklenebilmesi için yapılan mekanik değişiklikler açıklanacaktır. Bölüm 4.2 de hareketin sağlanması ve kontrolünde kullanılan elektronik elemanlar hakkında bilgi verilecektir. Bölüm 4.3 de kontrol sisteminin gömülü bilgisayarda programlanması, sürücü ve uzak bilgisayarla iletişimi incelenecektir.

4.1 Mekanik Tasarım

Bisikletin otonom hareketinde Bölüm 2 de anlatılan sistem girişleri için bisiklet üzerinde bazı mekanik değişiklikler yapılması gerekmektedir. Dengelemede bir nevi insanı modelleyen volan ana çerçeve üzerinde bulunan üçgen boşluğa monte edilmiştir(Şekil 4.1). Volan benzetimlerde kullanılan kütle ve atalet değerlerine uygun olarak SolidWorks® yazılımında çizilmiş ve imal edilmiştir. Motor mili ile volan mili arasında ki hareket iletimi triger kayış kasnak mekanizması ile sağlanmaktadır.

Şekil 4.1: Volan montajı.

Gidonu tahrik etmek için triger kayış kasnak mekanizması kullanılmıştır (Şekil 4.2). Tahrik için gerekli torkun elde edilebilmesi için 15/44 oranlı triger dişliler kullanılmıştır.

Şekil 4.2: Gidon tahrik mekanizması.

Arka tekerlek hızının ölçülebilmesi için enkoder kullanılmıştır ve tekerlek hareketinin enkoder miline aktarılması gerekmektedir. Hareket 33/95 oranlı dişli çark sistemi ile aktarılmaktadır (Şekil 4.2). Volan, volan motoru ve gidon motoru montajı için imal edilen parçalar Ek A.3 de verilmiştir.

Şekil 4.3: Enkoder dişli sistemi.

4.2 Elektronik Tasarım

Otonom bisiklet modelinde arka tekerlek hızı, gidon açısının konumu ve volan hızının sistemin girişleri olduğu üçüncü bölümde bahsedilmişti. Bu girişlerden arka tekerlek hız girişi için hazır alınan elektrikli bisiklet arka tekerlek göbeğindeki hub motor kullanılmaktadır(Şekil 4.4). 250 watt lık bu motor 24 V ile beslenmekte 10 A e kadar akım çekebilmektedir.

Şekil 4.4: Hub motor.

Elektrikli bisiklette hub motor hızının kontrolü için kullanıllan ve 0-4 V arası voltaj üreten hall-effect sensör (gaz sensörü) iptal edilmiştir. Hız kontrolü için 0-4 V arası voltaj çıkışı arduinu due nun analog çıkışından elde edilmektedir (Şekil 4.5). Arduino Due üzerinde 32bit Cortex-M3 ARM işlemci bulunmaktadır. 54 adet dijital giriş/çıkış, 12 adet analog giriş ve 2 adet analog çıkış pinine sahiptir. Ayrıca dijital giriş çıkışlardan 17 adedi pwm çıkışı olarakta kullanılabilmektedir. 7-12 V gerilim ile beslenebilmektedir. Tekerlek hız ölçümü için arduinonun iki adet dijital giriş pini kullanılmaktadır.

Şekil 4.5: Arduinu Due geliştirme kartı.

Arka tekerlek hız ölçümünde Mecapion marka ve S48-8 modeli artımsal enkoder kullanılmaktadır (Şekil 4.6). Bir tur döndüğünde 100 adet pals üreten bu encoder 5 V gerilim ile beslenmektedir ve bu gerilim arduino geliştirme kartı üzerinden alınmaktadır. Artımsal enkoderinürettiği 0-4 V kare dalga gerilimler arduino dijital girişi üzerinden sayılmaktadır.

Şekil 4.6: Mecapion artımsal enkoder.

Gidon ataletinin düşük değerlerde olmasına rağmen lastik tekerlek ile yer arasında sürtünme nedeniyle yüksek tork gerektirmektedir. SolidWorks® yazılım ortamında yapılan benzetimlerde gidon hareketi için gerekli tork 0.9 Nm değerine kadar çıkabilmektedir(Şekil 4.7). Tedbir amaçlı olarak 1.2 Nm lik tork sağlanmaya

Sekil 4.7: Gidon motor torku.

çalışılmıştır. 0.4 Nm max tork ve 200 watt lık katalog değeri bulunan Maxon markasını RE-50 modeli firçlalı dc motoru 1/3 lük dönüşüm oranlı kayış kasnak mekanizması ile kullanılmaktadır(Şekil 4.9). Benzetimlerde maksimum volan ivmesi $10^6 rad/sn^2$ ye kadar çıkmaktadır Maxon RE-50 motoru bu ivme seviyelerini karşılayabilmektedir. Aynı benzetimlerde volan hızı 3000 dev/dk civarına ulaşmaktadır(Şekil 4.8). Maxon RE-50 motoru 4500 dev/dk hıza ulaşabilmektedir. Volan için de Maxon RE-50 firçalı dc motoru seçilmiştir. Motorlara monte edilmiş HEDL-5540 2000 palslik

Şekil 4.8: Benzetimlerde maksimum volan hızı.

artımlı enkoderler de bulunmaktadır(Şekil 4.10). Gidon ve volan motorlarının kontrolü için iki adet Maxon EPOS dc motor sürücüsü kullanılmıştır(Şekil 4.9). Epos motor sürücüleri kendi içerisinde motor hız, konum ve akım kontrollerinin barındırmaktadır. Kullanılacak sisteme bağlı olarak kontrol katsayıları bir kere Zigler-Nichols yöntemiyle sürücü tarafından hesaplanmaktadır.

Şekil 4.9: Maxon EPOS dc motor sürücüsü.

Şekil 4.10: Maxon HEDL-5540 artımlı enkoder.

Bisiklet yatma açısı χ ve oryantasyon açısı θ ana çerçeveye eklenen Microstrain markasının 3DM-GX2 modeli imu ile ölçülmektedir(Şekil 4.11). 3DM-GX2 ile üç eksen için açı, hız ve ivme değerleri ölçülebilmektedir. Besleme gerilimi 12 volttur.

Şekil 4.11: Microstrain 3DM-GX2 imu.

Tüm sistemin kontrolünü gömülü bilgisayar yapmaktadır.IEI markasının uIBX 210 modeli fansız gömülü bilgisayar ana çerçeveye monte edilmiştir(Şekil 4.12). Intel 1.6 Ghz çift çekirdek işlemci, 2gb ram e sahip bilgisayar wifi bağlantısı da sağlayabilmektedir.

Şekil 4.12: IEI uIBX 210 gömülü bilgisayar.

4.3 Programlama ve İletişim

Gömülü bilgisayarın iki adet epos sürücü, arduino ve imu sensörü ile haberleşmesi gerekmektedir. Epos sürücüleri usb,rs232 ve can bus iletişimine izin vermektedir. Arduino ve imu iletişimi seriport üzerinden gerçekleşebilmektedir. bu nedenle epos motor sürücüleri için de usb iletişimi tercih edilmiştir. Kontrolörün uzaktan kontrolü için wifi bağlantısı ile ssh hattı üzerinden putty® programı ile sağlanmaktadır(Şekil 4.13). Hareketin başlatılması bitirilmesi ve online verilerin takibi uzak bilgisayar ile yapılmaktadır.

Şekil 4.13: İletişim sistemi.

Gömülü bilgisayar ve arduinoda ki kontrol ve haberleşme programı c dilinde yazılmıştır. Arka tekerlek hız kontrolü için kullanılan PD kontrolör kodları aşağıda verilmektedir.

Ana programbaşlatıldığında Şekil 4.14 deki menü ekrana gelmekte menüden istenilen program çalıştırılabimektedir. Seçenekler arasında tüm bileşenlerin ayrı ayrı çalıştırılabilmesi veya otonom bisiklet kontrol kodunun çalıştırılması bulunmaktadır.

bisiklet@bisiklet-pc:~/Desktop/Bicycle Control/120314\$./test

*******WELCOME TO BICYLE CONTROL PROGRAM*******

Choose a program
1: Set handlebar zero position!!!
2: Read IMU
3: Rear wheel speed control
4: Handlebar position control
5: Flywheel speed control
6: Autonomous Bicycle Control
7: Exit

Şekil 4.14: Gömülü bilgisayarda otonom bisiklet kontrol menüsü.

5. SONUÇLAR

Bu çalışmada öncelikle otonom bisikletin doğrusal olmayan ve volan ve mekanik jiroskop dengeleme sistemi kullanılan modeli, literatürden farklı olarak kafa açısı (λ) nın da göz önüne alındığı durum için ayrı ayrı elde edilmiştir. Nonlineer modele uygun olarak kapalı çevrim kontrol sistemi tasarlanmıştır. Bisiklet hareketi için üçüncü dereceden polinomlar kullanılarak bisiklet hareket yörüngeleri oluşturulmuştur. Modelin hareketinin incelendiği dinamik benzetimlerde, tasarlanan kontrolcü ile üretilen yörüngelerin takip edilebildiği görülmektedir. Yörünge takibindeki hataların kontrolcü katsayılarının benzetimler sonucu elde edilmiş olmasından ve bisiklet hız referansının üretilen yörünge için elde edilmiş olup pozisyon hataları karşısında yeni hız referansı üretilmemesinden kaynaklanmaktadır. Yatma dengesi kontrolü hareket süresince istenilen aralıkta sağlanabilmektedir. Benzetimlerde farklı gidon açısı oransal kontrol katsayısının yörünge takibine ve yatma açısına olan etkisi incelenmiştir. Küçük yörünge takibi oransal kontrol katsayısı kullanıldığında bisiklet daha kararlı hareket ederken, yörünge takibi hataları ise artmaktadır. Aynı yörüngenin farklı hızlarda kat edilmesi üç farklı hız kademesi için incelenmiştir. Bisiklet hızı arttıkça bisiklet kararlılığı artarken yörünge takibi hatası azalmaktadır.

Bu çalışmanın devamında, İ.T.Ü. Makina Fakültesi laboratuvarında ve gerekli donanım değişiklikleri yapılmış olan bisiklet üzerinde tasarlanan kontrol sistemi deneysel olarak hareket kontrolü için uygulanacaktır (Şekil 3.5). Bisiklet arka tekerlekte bulunan hub motor ile tahrik edilmektedir. Gidonun açısal konumu ile denge diskinin açısal hızı ise birer elektrik motoru ile sağlanmaktadır. Gidon konumu artımsal enkoderle, bisikletin yatma açısı ise çerçeveye sabitlenen bir IMU ile ölçülmektedir. Kapalı çevrim kontrol sistemi bisiklet çerçevesi üzerine monte edilmiş bir gömülü bilgisayar vasıtasıyla uygulanmaktadır. Bisikletin harekete başlama ve bitirmesi wifi ile ssh iletişimi ile farklı bilgisayardan sağlanmaktadır.

KAYNAKLAR

- [1] **Sharp, A.** (2003). Bicycles and Tricycles: A Classic Treatise on Their Design and Construction, *Dover*, New York.
- [2] **Rankine, W.J.M.** (1869). On the dynamical principles of the motion of velocipedes, *Engineer*, 28.
- [3] Bourlett, C. (1898). Traité des Bicycles et Bicyclettes, *Gauthier-Villars*, Paris.
- [4] **Carvallo, E.** (1900). Théorie du mouvement du monocycle et de la bicyclette, *J. de L'Ecole Polytechnique*.
- [5] Neimark, I.U.I. ve Fufaev, N.A. (1972). Dynamics of Nonholonomic Systems, *American Mathematical Society*, Rhode Island.
- [6] **Roland, R.D.** (1973). Computer Simulation of Bicycle Dynamics, *ASME*, New York.
- [7] Franke, G., Suhr, W. ve Rieβ, F. (1990). An advanced model of bicycle dynamics, *Eur. J. Phys.*, 11(2), 116-121.
- [8] Getz, N.H. (1994). Control of balance for a nonlinear nonholonomic nonminimum phase model of a bicycle, *Proc. Amer. Control Conf.*,148-151, Baltimore, MD.
- [9] Getz, N.H. ve Marsden, J.E. (1995). Control for an autonomous bicycle, *Proc. IEEE Conf. Robotics Control*,1397–1402, Nagoya, Japan.
- [10] Guo, L., Liao, Q., Wei, S. ve Huang, Y. (2010). A kind of bicycle robot dynamic modelling and nonlinear control, *Proc. of Int. IEEE Conf. Information and Automation*, 1613-1617, Harbin, China.
- [11] Suntharasantic, S. ve Wongsaisuwan, M. (2011). Piecewise affine model and control of bicycle by gyroscopic stabilization, *Proc. 8th ECTI Conference*, 549-552, Khon Kaen, Thailand.
- [12] Huang, Y., Liao, Q., Wei, S. ve Guo, L. (2010).Dynamic Modelling of a bicycle robot with front wheel drive based on Kane's method., *Proc. of Int. IEEE Conf. Information and Automation*, 758-764, Harbin, China.
- [13] Yamakita, M., ve Utano, A., (2005). Automatic Control of Bicycles with a Balancer., Proc. of Int. IEEE Conf. Advanced Intelligent Mechatronics, 1245-1250, Monterey, CA.

- [14] Keo, L., ve Yamakita, M., (2009). Controlling Balancer and Steering for Bicycle Stabilization., Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, 4541-4546, St. Louis, USA.
- [15] **Frosali, G., ve Ricci, F.**, (2009). A nonlinear mathematical model for a bicycle, *Proc. XIX Congresso AIMETA*, 1-10, Ancona.
- [16] Lam, P.Y. ve Sin, T.K. (2011). Gyroscopic stabilization of a self-balancing robot bicycle, Int. J. of Automation Technology, 5(6),916-923.
- [17] Pasin, F. (1994). Mekanik Sistemler Dinamiği, I.T.U, Istanbul.
- [18] Lemos, N. A. (2003). Nonholonomic constraints and Voronecs equations, Rev. Bras. Ens. Fis., 25, 25-28.
- [19] **Waheed, Imran** (2006). Trajectory and temporal planning of a wheeled mobile robot, *Msc Thesis*, Saskatchewan University, Canada.
- [20] **Snider, J. M.** (2009). Automatic steering methods for autonomous automobile path tracking, *Technical report, Robotics Institute*, Carnegie Mellon University, USA.
- [21] Url-1, http://rehber.uzmantv.com, alındığı tarih: 01.05.2014.
- [22] Url-2, http://www.murata.com, alındığı tarih: 01.05.2014.

EKLER

- EK A : Bisiklet Dinamik Modeli Denklemleri
- **EK B :** Bisiklet Katı Modeli
- EK C: Deneysel Sistem Elemanları Katolog Değerleri

EK A

 $\ddot{\chi} = 4(I_{xx4} + I_{xx5} + 4I_{yy2} + 4I_{yy3} + I_{yy4} + 3I_{yy5} + 4I_{yy6} + 2I_{zz4} + 4h_3^2m_3 + 4(h_3 + 4h_3^2m_3$ $(h_4)^2 m_4 + (4(h_3 + h_4)^2 + 3(h_5^2 + l_5^2))m_5 + 4(h_6^2 m_6 + m_2 R^2) + 2(h_5 - l_5)(h_5 + h_6^2 m_6 + m_2 R^2) + 2(h_5 - h_5)(h_5 + h_6^2 m_6 + m_2 R^2)$ $l_{5})m_{5}c(4\lambda)c(\psi)^{2} - (I_{xx4} + I_{xx5} + I_{yy4} + I_{yy5} + (h_{5}^{2} + l_{5}^{2})m_{5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{yy5} + (h_{5}^{2} + h_{5}^{2})m_{5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5} + I_{yy4} + I_{yy5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5} + I_{yy4})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + c(2\lambda)(I_{xx4})$ $I_{xx5} + I_{yy4} - I_{yy5} - 2I_{zz4} + 8(h_3 + h_4)h_5m_5 - (I_{xx4} + I_{xx5} + I_{yy4} + I_{yy5})c(2\psi)) +$ $8(h_3 + h_4)l_5m_5s(2\lambda) + 4h_5l_5m_5c(\psi)^2s(4\lambda))^{-1}(-\ddot{\alpha}I_{yy6} + gs(\chi)(h_4(m_4 + m_5) + m_5))^{-1}(-\ddot{\alpha}I_{yy6})^{-1}(-\ddot{\alpha}I_{yy6})^{-1}(-\ddot{\alpha}I_{yy6})^{-1}(-\ddot{\alpha}I_{yy6})^{-1}(-\ddot{\alpha}I_{yy6})^{-1}(-\ddot{\alpha}I_{yy6})^{-1}(-\ddot{\alpha}I_{yy6})^{-1}(-\ddot{\alpha}I_{yy6})^{-1}(-\ddot{\alpha}I_{yy6})^{-1}(-\ddot{\alpha}I_{yy6})^{-1}(-\ddot{\alpha}I_{yy6})^{-1}(-\dot{$ $h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) - \ddot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} +
M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c(2\lambda))) - \dot{\psi}((I_{vv5} + M_5m_5c($ $I_{zz4})s(\lambda) + m_5c(\psi)(l_5c(2\lambda) - h_5s(2\lambda))(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda))) +$ $I_{xx5} \ddot{v}_1 c(\lambda) c(\theta) sec(\theta + \psi c(\lambda)) s(\psi) + m_5 (l_5 c(2\lambda) - h_5 s(2\lambda)) (gc(\chi) + \dot{\psi}^2 (h_3 + h_5 c(2\lambda))) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 s(2\lambda)) (gc(\chi) + \dot{\psi}^2 (h_3 + h_5 c(2\lambda))) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 s(2\lambda)) (gc(\chi) + \dot{\psi}^2 (h_3 + h_5 c(2\lambda))) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 s(2\lambda)) (gc(\chi) + \dot{\psi}^2 (h_5 + h_5 c(2\lambda))) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 s(2\lambda)) (gc(\chi) + \dot{\psi}^2 (h_5 + h_5 c(2\lambda))) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 s(2\lambda)) (gc(\chi) + \dot{\psi}^2 (h_5 + h_5 c(2\lambda))) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 s(2\lambda)) (gc(\chi) + \dot{\psi}^2 (h_5 + h_5 c(2\lambda))) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 s(2\lambda)) (gc(\chi) + \dot{\psi}^2 (h_5 + h_5 c(2\lambda))) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 s(2\lambda)) (gc(\chi) + \dot{\psi}^2 (h_5 + h_5 c(2\lambda))) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 s(2\lambda)) (gc(\chi) + \dot{\psi}^2 (h_5 + h_5 c(2\lambda))) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 s(2\lambda)) (gc(\chi) + \dot{\psi}^2 (h_5 + h_5 c(2\lambda))) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 s(2\lambda)) (gc(\chi) + \dot{\psi}^2 (h_5 + h_5 c(2\lambda))) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 s(2\lambda)) (gc(\chi) + \dot{\psi}^2 (h_5 + h_5 c(2\lambda))) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 c(2\lambda)) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 c(2\lambda)) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 c(2\lambda)) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 c(2\lambda)) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 c(2\lambda)) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 c(2\lambda)) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 c(2\lambda)) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 c(2\lambda)) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 c(2\lambda)) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 c(2\lambda)) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 c(2\lambda)) s(\psi) + m_5 (h_5 c(2\lambda) - h_5 c(2\lambda)) s(\psi) + m_5 (h_5 c(2\lambda)) s(\psi) +$ $h_4 + h_5 c(2\lambda) + l_5 s(2\lambda)) s(\psi) - 1/2 \dot{\chi} \dot{\psi} (I_{xx4} + I_{xx5} + I_{yy4} + I_{yy5} + (h_5^2 + l_5^2) m_5 + I_{yy4} + I_{yy5}) s(\psi) - 1/2 \dot{\chi} \dot{\psi} (I_{xx4} + I_{xx5} + I_{yy4} + I_{yy5}) s(\psi) + I_{yy5} + I_{yy4} + I_{yy5} + I_{y$ $(I_{xx4} + I_{xx5} + I_{yy4} + I_{yy5})c(2\lambda) + (-h_5^2 + l_5^2)m_5c(4\lambda) - 2h_5l_5m_5s(4\lambda))s(2\psi) +$ $I_{xx5}(l_4 + l_5)^{-1}\dot{v}_1\dot{\psi}c(\lambda)sec(\theta + \psi c(\lambda))((l_4 + l_5)c(\psi)c(\theta) + (l_5c(\lambda) - \psi c(\lambda))c(\theta))$ $1/4(l_4+l_5)^{-1}(-4m_5\psi c(\psi)s(\chi)(l_5c(2\lambda)-h_5s(2\lambda))(l_3+l_4-c(\psi)s(\lambda)(h_5c(\lambda)+h_5s(2\lambda))(l_3+l_4-c(\psi)s(\lambda)(h_5c(\lambda)+h_5s(2\lambda))(l_5+l_4-c(\psi)s(\lambda)(h_5c(\lambda)+h_5s(2\lambda))(l_5+l_4-c(\psi)s(\lambda)(h_5c(\lambda)+h_5s(2\lambda))(l_5+l_4-c(\psi)s(\lambda)(h_5c(\lambda)+h_5s(2\lambda))(l_5+l_4-c(\psi)s(\lambda)(h_5c(\lambda)+h_5s(2\lambda))(l_5+l_4-c(\psi)s(\lambda)(h_5c(\lambda)+h_5s(2\lambda))(l_5+l_4-c(\psi)s(\lambda)(h_5c(\lambda)+h_5s(2\lambda))(l_5+l_4-c(\psi)s(\lambda)(h_5c(\lambda)+h_5s(2\lambda))(l_5+h_5s(\lambda))(l_5+h_5s(\lambda))(h_5+h_5s(\lambda)(h_5+h_5s(\lambda)+h_5s(\lambda))(h_5+h$ $l_{5s}(\lambda)) + c(\lambda)(l_{5c}(\lambda) - h_{5s}(\lambda))s(\psi)) - 4\dot{\chi}m_{5c}(\chi)(l_{5c}(2\lambda) - h_{5s}(2\lambda))s(\psi)(l_{3} +$ $l_4 - c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + 4m_5\psi c(\chi)(h_3 + h_5)k(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + k(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + k(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + k(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + k(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + k(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + k(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + k(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + k(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + k(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + k(\lambda)(h_5c(\lambda) +
h_5s(\lambda)) + k(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + k(\lambda)(h$ $h_4 + h_5c(2\lambda) + l_5s(2\lambda))(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda)) + s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) - b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + h_5s(\lambda))s(\psi) + b(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi) + h_5s(\lambda))$ $4m_5\psi s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda)) + s(\lambda)(h_5c(\lambda) + h_5s(\lambda)))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))) + s(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda)))s(\psi)(h_5c(\lambda) + h_5s(\lambda))s(\psi)(h_5c(\lambda) - h_5s(\lambda)$ $l_{5s}(\lambda)(\psi) - 4\dot{\chi}s(\chi)(h_4(l_3+l_4)(m_4+m_5)+h_3(l_4(m_4+m_5)+l_3(m_3+m_4+m_5))+h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5) + h_3(m_3+m_4+m_5) + h_3(m_3+m_4+m_5) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5) + h_3(m_3+m_4+m_5) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5) +
h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5) + h_3(m_3+m_4+m_5) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5) + h_3(m_3+m_4+m_5) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_4+m_5)) + h_3(m_3+m_5)) + h_3(m_5)) + h_3(m_5)) + h_3(m_5)) + h_3(m_5)) + h_3(m_5)) +$ $h_{6}l_{6}m_{6} + m_{5}((l_{3} + l_{4})(h_{5}c(2\lambda) + l_{5}s(2\lambda))) - c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))(h_{3} + h_{4} + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda$ $h_5c(2\lambda) + l_5s(2\lambda)) + c(\lambda)(l_5c(\lambda) - h_5s(\lambda))(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda))s(\psi))) + b_5c(2\lambda)$ $2\dot{\psi}s(2\lambda)((-I_{yy4} - I_{yy5})c(2\psi) - (I_{xx4} + I_{xx5})s(2\psi)))(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda)) + h_4s(\lambda)))$ $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) + (1/8)(-8(l_4 + l_5)^{-1}\dot{\upsilon}_1 R(c(\chi)(h_4(m_4 + m_5) + l_5))))$ $h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi)) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) +
m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi)) + m_5s(\chi)) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi)) + m_5s(\chi)) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi)) + m_5s(\chi)) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi)) + m_5s(\chi)) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi)) + m_5s(\chi)) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi)) + m_5s(\chi)) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi)) + m_5s(\chi)) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi)) + m_5s(\chi)) + m_5s(\chi)(-l_5c(\chi)) + m_5s(\chi)) + m_5s(\chi)(-l_5c(\chi)) + m_5s(\chi)) + m_5$ $h_{5}s(2\lambda)s(\psi)(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) +$ $\frac{1}{4}(8(l_4+l_5)^{-1}(4\dot{\psi}(m_5s(\chi)((l_3+l_4)c(\psi)-s(\lambda)(h_5c(\lambda)+l_5s(\lambda)))(-l_5c(2\lambda)+l_5s(\lambda)+l_5s(\lambda)))(-l_5c(2\lambda)+l_5s(\lambda)+l_5s(\lambda)))(-l_5c(2\lambda)+l_5s(\lambda)+l_5s(\lambda)))(-l_5c(2\lambda)+l_5s(\lambda)+l_5s(\lambda)+l_5s(\lambda)))(-l_5c(2\lambda)+l_5s(\lambda)+l_5s(\lambda)))(-l_5c(2\lambda)+l_5s(\lambda)+l_5s(\lambda)+l_5s(\lambda)))(-l_5c(2\lambda)+l_5s(\lambda)+l_5s(\lambda)+l_5s(\lambda)))(-l_5c(2\lambda)+l_5s(\lambda)+l_5s(\lambda)+l_5s(\lambda)+l_5s(\lambda)))(-l_5c(2\lambda)+l_5s(\lambda)+l_5$ $h_{5}s(2\lambda)) - m_{5}c(\chi)(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s($ $s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi))) + \dot{\chi}(-4m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)(l_3 + l_4 - k_5)s(2\lambda))s(\psi)(l_3 + l_4 - k_5)s(2\lambda))s(\psi)(l_3 + l_4 - k_5)s(2\lambda))s(\psi)(l_3 + k_5)s(2\lambda))s(\psi)(l_3 + k_5)s(2\lambda))s(\psi)(l_3 + k_5)s(2\lambda))s(\psi)(l_3 + k_5)s(2\lambda))s(\psi)(l_5 + k_5)s(\lambda))s(\psi)(l_5 +
k_5)s(\lambda))s(\psi)(l_5 + k_5)s(\lambda))s(\psi)(l_5 + k_5)s(\lambda))s(\psi)(l_5 + k_5)s(\lambda))s(\psi)(l_5 + k_5)s(\mu)(h_5 + k_5)s(\mu))s(\psi)(l_5 + k_5)s(\mu)(h_5 + k_5)s(\mu))s(\psi)(h_5 + k_5)s(\mu))s$ $c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) - 4s(\chi)(h_4(l_3 + l_5s(\lambda))s(\psi))$ $l_4(m_4 + m_5) + h_3(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5))) + h_6l_6m_6 + m_5((l_3 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5))) + h_6l_6m_6 + m_5((l_3 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5))) + h_6l_6m_6 + m_5((l_3 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5))) + h_6l_6m_6 + m_5((l_3 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5))) + h_6l_6m_6 + m_5((l_3 + m_5))) + h_6l_6m_6 + m_5((l_3 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5))) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6) + h_6l_6m_6 + m_5(m_5)) + h_6l_6m_6) + h_6l_6m_6) + h_6l_6m_6) + h_6l_6m_6) + h_6l_6m_6) + h_6l_6m_6) + h_6l_6m_6) + h_6l_6m_6) + h_6$ $l_4)(h_5c(2\lambda) + l_5s(2\lambda)) - c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda))(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda)) + l_5s(2\lambda)) + l_5s(2\lambda) + l_5s($ $c(\lambda)(l_5c(\lambda) - h_5s(\lambda))(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda))s(\psi))))(\dot{\psi}(-l_5c(\lambda) + h_5c(2\lambda)))(\dot{\psi}(-l_5c(\lambda) + h_5c(2\lambda)))))$ $h_4s(\lambda)) + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) + 2(l_4 + l_5)^{-2}(4m_5c(2\psi)s(2\chi)(l_5c(2\lambda) - k_5))s(\psi c(\lambda))) + 2(l_4 + l_5)^{-2}(4m_5c(2\psi)s(2\chi)(l_5c(2\lambda) - k_5))s(\psi c(\lambda))) + 2(l_4 + l_5)^{-2}(4m_5c(2\psi)s(2\chi)(l_5c(2\lambda) - k_5))s(\psi c(\lambda))) + 2(l_4 + l_5)^{-2}(4m_5c(2\psi)s(2\chi)(l_5c(2\lambda) - k_5))s(\psi c(\lambda))) + 2(l_4 + l_5)^{-2}(4m_5c(2\psi)s(2\chi)(l_5c(2\lambda) - k_5))s(\psi c(\lambda))) + 2(l_4 + l_5)^{-2}(4m_5c(2\psi)s(2\chi)(l_5c(2\lambda) - k_5))s(\psi c(\lambda))) + 2(l_4 + l_5)^{-2}(4m_5c(2\psi)s(2\chi)(l_5c(2\lambda) - k_5))s(\psi c(\lambda)))s(\psi c(\lambda))) + 2(l_4 + l_5)^{-2}(4m_5c(2\psi)s(2\chi)(l_5c(2\lambda) - k_5))s(\psi c(\lambda)))s(\psi c(\lambda)))s(\psi c(\lambda)))s(\psi c(\lambda)))s(\psi c(\lambda)))s(\psi c(\lambda))s(\psi c(\lambda)))s(\psi c(\lambda))s(\psi c(\lambda)))s(\psi c(\lambda))s(\psi$
$(h_{5}s(2\lambda))^{2} + 2s(2\chi)(4h_{3}^{2}m_{3} + 4(h_{3} + h_{4})^{2}m_{4} + (4(h_{3} + h_{4})^{2} + h_{5}^{2} + l_{5}^{2})m_{5} + h_{5}^{2}m$ $4(h_6^2m_6^2 + m_2R^2) + m_5(8(h_3 + h_4)h_5c(2\lambda) + 3(h_5 - l_5)(h_5 + l_5)c(4\lambda) + 8(h_3 + h_4)h_5c(2\lambda) + 3(h_5 - h_5)(h_5 + h_5)c(4\lambda) + 8(h_3 + h_4)h_5c(2\lambda) + 3(h_5 - h_5)(h_5 + h_5)c(4\lambda) + 8(h_5 - h_5)(h_5 + h_5)c(4\lambda) + 8(h_5 - h_5)(h_5 + h_5)c(4\lambda) + 8(h_5 - h_5)(h_5 + h_5)c(4\lambda) + 8(h_5 - h_5)(h_5 + h_5)c(4\lambda) + 8(h_5 - h_5)(h_5 - h_5)(h_5 - h_5)(h_5 - h_5)c(4\lambda) + 8(h_5 - h_5)(h_$ $h_4)l_5s(2\lambda) + 6h_5l_5s(4\lambda))) + 16m_5c(2\chi)(l_5c(2\lambda) - h_5s(2\lambda))(h_3 + h_4 + h_5c(2\lambda) + h_5c(2\lambda))(h_3 + h_4)h_5c(2\lambda)) + h_5c(2\lambda) +$ $l_{5}s(2\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))^{2})) +$ $I_{xx5}\dot{v}_{1}c(\lambda)c(\theta)sec(\theta+\psi c(\lambda))s(\psi)(\dot{\psi}c(\lambda)+(l_{4}+l_{5})^{-1}(\dot{\psi}(-l_{5}c(\lambda)+h_{4}s(\lambda))+$ $\dot{v}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/4(l_4 + l_5)^{-2}(4I_{yz3} - (I_{xx4} + I_{xx5} - I_{yz3})))tan(\theta + \psi c(\lambda)) - 1/4(l_4 + l_5)^{-2}(4I_{yz3} - (I_{xx4} + I_{xx5})))tan(\theta + \psi c(\lambda)) - 1/4(l_4 + l_5)^{-2}(4I_{yz3} - (I_{xx4} + I_{xx5})))tan(\theta + \psi c(\lambda)) - 1/4(l_4 + l_5)^{-2}(4I_{yz3} - (I_{xx4} + I_{xx5})))tan(\theta + \psi c(\lambda)) - 1/4(l_4 + l_5)^{-2}(4I_{yz3} - (I_{xx4} + I_{xx5})))tan(\theta + \psi c(\lambda)) - 1/4(l_4 + l_5)^{-2}(4I_{yz3} - (I_{xx4} + I_{xx5}))$ $2(I_{vv5}+I_{zz4})s(2\lambda) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)(l_3 + l_4 - c(\psi)s(\lambda)(h_5c(\lambda) + l_5c(\lambda))s(\psi)(l_5 + l_4 - c(\psi)s(\lambda)(h_5c(\lambda)))s(\psi)(l_5 + l_4 - c(\psi)s(\lambda)(h_5c(\lambda)))s(\psi)(l_5 + l_4 -
c(\psi)s(\lambda)(h_5c(\lambda)))s(\psi)(h_5c(\lambda))s(\psi)(h_$ $l_{5s}(\lambda)) + c(\lambda)(l_{5c}(\lambda) - h_{5s}(\lambda))s(\psi)) + 4c(\chi)(h_{4}(l_{3} + l_{4})(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5}))) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5}))) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5}))) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5}))) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5}))) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5}))) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5}))) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5}))) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5}))) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5}))) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5}))) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(l_{4}(m_{4} + m_{5}))) + h_{3}(l_{4}(m_{4} + m_{5})) + h_{3}(m_{4}(m_{4} + m_{5})) + h_{3}(m_{4}(m_{4} +$ $(m_5) + l_3(m_3 + m_4 + m_5)) + h_6 l_6 m_6 + m_5((l_3 + l_4)(h_5 c(2\lambda) + l_5 s(2\lambda))) - l_5 s(2\lambda))$ $lc(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda))(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda)) + c(\lambda)(l_5c(\lambda) - l_5s(2\lambda)))$ $h_{5}s(\lambda)(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))s(\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi)) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx5})c(2\psi) + s(2\lambda)(I_{$
$$\begin{split} I_{yy5}(2\psi))(-(l_4+l_5)\ddot{\psi}(l_5c(\lambda)-h_4s(\lambda))+Rsec(\theta+\psi c(\lambda))((l_4+l_5)\ddot{\upsilon}_1s(\psi c(\lambda))+\dot{\upsilon}_1((l_4+l_5)\dot{\psi}c(\lambda)c(\psi c(\lambda))+s(\psi c(\lambda)))(\dot{\psi}(l_4c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))s(\psi c(\lambda)))tan(\theta+\psi c(\lambda)))))) \end{split}$$

 $\ddot{\psi} = (2(l_4 + l_5)^{-1}(-l_5c(\lambda) + h_4s(\lambda)))((I_{vv5} + I_{zz4})c(\lambda) + 1/2m_5c(\chi)(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi)))((l_{vv5} + l_{zz4})c(\lambda) + 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi)))((l_{vv5} + l_{zz4})c(\lambda) + 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi)))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi)))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi))(2(l_3 + l_4)c(\psi) - 1/2m_5c(\chi))(2(l_3 + l_4)c(\psi))(2(l_4 + l_4)c(\psi))(2(l_$ $2s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)))(l_{5}c(2\lambda) - h_{5}s(2\lambda)) - m_{5}s(\chi)(h_{3} + h_{4} + h_{5}c(2\lambda) + h_{5}c(2\lambda)) + h_{5}s(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda)))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda))(h_{5}c(\lambda))(h_{5}c(\lambda))(h_{5}c(\lambda))(h_{5}c(\lambda))(h_{$ $l_{5}s(2\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda)) + s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))) + 1/16(l_{4} + h_{5}s(\lambda))s(\psi))s(\psi)) + 1/16(l_{4} + h_{5}s(\lambda))s(\psi))s(\psi)) + 1/16(l_{4} + h_{5}s(\lambda))s(\psi))s(\psi)) + 1/16(l_{4} + h_{5}s(\lambda))s(\psi))s(\psi))s(\psi))s(\psi))s(\psi)$ $(I_{5})^{-2}(-I_{5}c(\lambda) + h_{4}s(\lambda))^{2}(4(I_{xx4} + I_{xx5} + 4I_{xx6} + 4I_{yy2} + I_{yy4} + 3I_{yy5} + 4I_{zz3} + 4I_{zz3})$ $2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2((h_3 + h_4)^2 + 2(l_3 + l_4)^2)m_4 + (2((h_3 + h_4)^2 + h_5^2 + 2(l_3 + l_4)^2) + 3l_5^2)m_5 + 2(h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) - 8h_3^2m_3c(2\chi) - 8h_3^2m_4c(2\chi) - 8h_3^2m_4c(2\chi) - 8h_3^2m_4c(2\chi) + 8h_3^2m_4c(2\chi) + 8h_3^2m_4c(2\chi) + 8h_3^2m_4c(2\chi) + 8h_3^2m_4c(2\chi) + 8h_3^2m_4c(2\chi) + 8h_3^2m_4c(2\chi) + 8h_3^2m_4c(2\chi) + 8h_3^2m_4c(2\chi) + 8h_3^2m_4c(2\chi) + 8h_4^2m$ $16h_{3}h_{4}m_{4}c(2\chi) - 8h_{4}^{2}m_{4}c(2\chi) - 8h_{3}^{2}m_{5}c(2\chi) - 16h_{3}h_{4}m_{5}c(2\chi) - 8h_{4}^{2}m_{5}c(2\chi) - 8h_{4}^{2}m_{5}c(2\chi) - 8h_{4}^{2}m_{5}c(2\chi) - 8h_{4}^{2}m_{5}c(2\chi) - 8h_{4}^{2}m_{5}c(2\chi) - 8h_{4}^{2}m_{5}c(2\chi) - 8h_{4}^{2}m_{5}c(2\chi) -
8h_{4}^{2}m_{5}c(2\chi) - 8h_{4}^{2}m_{5}c$ $2h_5^2m_5c(2\chi) - 2l_5^2m_5c(2\chi) - 8h_6^2m_6c(2\chi) - 8m_2R^2c(2\chi) - 3h_5^2m_5c(2\chi - 4\lambda) +$ $3l_{5}^{2}m_{5}c(2\chi - 4\lambda) - 4I_{xx4}c(2\lambda) - 4I_{xx5}c(2\lambda) - 4I_{yy4}c(2\lambda) + 4I_{yy5}c(2\lambda) + 8I_{zz4}c(2\lambda) +$ $16h_{3}h_{5}m_{5}c(2\lambda) + 16h_{4}h_{5}m_{5}c(2\lambda) - 8h_{3}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda))) - 8h_{4}h_{5}$ $\lambda)) - 8h_3h_5m_5c(2(\chi + \lambda)) - 8h_4h_5m_5c(2(\chi + \lambda)) - 3h_5^2m_5c(2(\chi + 2\lambda)) +$ $l_{5s}(\lambda)) + 16h_{3}l_{5}m_{5s}(2\lambda) + 16h_{4}l_{5}m_{5s}(2\lambda) + 2c(2\psi)((-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2V_{yy4})))$ $I_{yy5}) - (h_5^2 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) +
2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{x$ $I_{xx5} + (-1)I_{yy4} - I_{yy5} - 2l_5^2m_5 + 2h_5l_5m_5c(2\chi)s(2\lambda)) - 2h_5m_5((-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5(-8)l_5c(\lambda)^3s(\lambda)) + 2h_5m_5(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(2\chi)s(2\lambda)) - 2h_5m_5(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(2\chi)s(2\lambda)) - 2h_5m_5(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(2\chi)s(2\lambda)) - 2h_5m_5(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(2\chi)s(2\lambda)) - 2h_5m_5c(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(-8)l_5c(\lambda) + 2h_5m_5c(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5c(\lambda)^3s(\lambda) + 2h_5m_5c(\lambda)^3s(\lambda) + 2h_5m_5c(\lambda)^3s(\lambda)^3s(\lambda) + 2h_5m_5c(\lambda)^3s(\lambda)^3s(\lambda) + 2h_5m_5c(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda) + 2h_5m_5c(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda)^3s(\lambda$ $\lambda)) - 8h_4 l_5 m_5 s(2(\chi + \lambda)) + (-6)h_5 l_5 m_5 s(2(\chi + 2\lambda)) + 4m_5 (8(l_3 + l_4)c(\lambda)(l_5 c(\lambda) - 2k_5))) + 4m_5 (8(l_3 + l_5)c(\lambda)(l_5 c(\lambda) - 2k_5))) + 4m_5 (8(l_3 + l_5)c(\lambda)(l_5 c(\lambda) - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 c(\lambda) - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 c(\lambda) - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 c(\lambda) - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 c(\lambda) - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 c(\lambda) - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - 2k$ $h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)))s(\psi) +$ $4m_{5}s(2\lambda)((-2)h_{5}l_{5}c(2\lambda) + (h_{5} + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi)) + (1/8)(8I_{vv5} + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi)) + (1/8)(8I_{vv5} + (-1)l_{5})(h_{5} + h_{5})s(2\lambda))s(2\psi)) + (1/8)(8I_{vv5} + (-1)l_{5})(h_{5} + h_{5})s(2\lambda))s(2\psi)) + (1/8)(8I_{vv5} + (-1)l_{5})(h_{5} + h_{5})s(2\lambda))s(2\psi)) + (1/8)(8I_{vv5} + (-1)l_{5})(h_{5} + h_{5})s(2\lambda))s(2\psi)) + (1/8)(8I_{vv5} + (-1)l_{5})(h_{5} + h_{5})s(2\lambda))s(2\psi)) + (1/8)(8I_{vv5} + (-1)l_{5})(h_{5} + h_{5})s(2\lambda))s(2\psi)) + (1/8)(8I_{vv5} + (-1)l_{5})(h_{5} + h_{5})s(2\lambda))s(2\psi)) + (-1/8)(8I_{vv5} + (-1)l_{5})(h_{5} + h_{5})s(2\lambda))s(2\psi)) + (-1/8)(8I_{vv5} + (-1)h_{5})(h_{5} + h_{5})s(2\lambda))s(2\psi)) + (-1/8)(8I_{vv5} + (-1)h_{5})(h_{5} + h_{5})s(2\lambda))s(2\psi)) + (-1/8)(h_{5} + h_{5})s(2\lambda))s(2\psi)) + (-1/8)(h_{5} + h_{5})s(2\lambda))s(2\psi)) + (-1/8)(h_{5} + h_{5})s(2\lambda))s(2\psi))s(2\psi)) + (-1/8)(h_{5} + h_{5})s(2\lambda))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi)$ $(-h_5^2 + l_5^2)c(3\lambda) - 2h_5l_5s(3\lambda)) + (-6)h_5l_5s(4\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + l_5^2)c(3\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) +
2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5l_5c(2\lambda) + 2s(2\lambda)(2h_5c(2\lambda) + 2s(2\lambda)(2h_5c(2\lambda) + 2s(2\lambda)(2h_5c(2\lambda)) + 2s(2\lambda)(2h_5c(2\lambda) + 2s(2\lambda)(2h$ $\psi c(\lambda) s(\lambda) (-l_5 c(\lambda) + h_4 s(\lambda)) - gm_5 c(\psi) s(\chi) (-l_5 c(2\lambda) + h_5 s(2\lambda)) - \ddot{\chi} ((I_{yy5} + h_5 s(2\lambda))) - \ddot{\chi} ((I_{yy$ $I_{zz4}(\lambda) + m_5c(\psi)(l_5c(2\lambda) - h_5s(2\lambda))(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda)) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda)) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_4 + h_5c(2\lambda) + h_5s(2\lambda))) - I_{xx5}(l_5 + h_5s(2\lambda)) - I_{xx5}(l_5 + h_5s(2\lambda))) - I_{xx5}(l_5 + h_5s(2\lambda))$ $(l_5)^{-1}\ddot{v}_1c(\theta)sec(\theta + \psi c(\lambda))s(\lambda)(-l_5c(\lambda) + h_4s(\lambda))s(\psi) + \dot{\chi}m_5\psi(l_5c(2\lambda) - \psi)s(\lambda))s(\psi)$ $h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))s(\psi) - (l_{4} + l_{5})^{-1}\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(2\lambda))s(\psi)$ $h_{4s}(\lambda))((-1/2)\dot{\chi}m_{5}s(\chi)(2(l_{3} + l_{4})c(\psi) - 2s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)))(l_{5}c(2\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda) - l_{5}c(\lambda)))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda)))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda)))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c(\lambda))(l_{5}c($ $h_{5}s(2\lambda)$ + $(-1)(l_{3} + l_{4})m_{5}\psi c(\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))s(\psi) - m_{5}s(\chi)(h_{3} + l_{4})m_{5}\psi c(\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))s(\psi) - m_{5}s(\chi)(h_{3} + l_{4})m_{5}\psi c(\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))s(\psi) - m_{5}s(\chi)(h_{3} + l_{4})m_{5}\psi c(\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))s(\psi) - m_{5}s(\chi)(h_{3} + l_{4})m_{5}\psi c(\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))s(\psi) - m_{5}s(\chi)(h_{3} + l_{4})m_{5}\psi c(\chi)(h_{3} + l_{4})m_{5}\psi c(\chi)(h_{3} + l_{4})m_{5}\psi c(\chi)(h_{3} + l_{4})m_{5}\psi c(\chi)(h_{3} + l_{4})m_{5}\psi
c(\chi)(h_{3} + l_{4})m_{5}\psi c(\chi)$ $h_4 + h_5 c(2\lambda) + l_5 s(2\lambda))(\psi c(\psi) s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - \psi c(\lambda)(l_5 c(\lambda) - \psi c(\lambda))(h_5 c(\lambda)))$ $h_{5}s(\lambda))s(\psi)) - \dot{\chi}m_{5}c(\chi)(h_{3}+h_{4}+h_{5}c(2\lambda)+l_{5}s(2\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda)-h_{5}s(\lambda))+l_{5}s(\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda)-h_{5}s(\lambda))))$ $s(\lambda)(h_5c(\lambda)+l_5s(\lambda))s(\psi)))-(l_4+l_5)^{-1}\dot{v}_1\dot{\psi}Rc(\lambda)c(\psi c(\lambda))sec(\theta+\psi c(\lambda))((l_{yy5}+l_{yy5})))$ $I_{zz4}(\lambda) + 1/2m_5c(\chi)(2(l_3 + l_4)c(\psi) - 2s(\lambda)(h_5c(\lambda) + l_5s(\lambda)))(l_5c(2\lambda) - l_5s(\lambda)))(l$ $h_{5}s(2\lambda)) - m_{5}s(\chi)(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda)))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda))$ $s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi)) + (-1/16)(l_4 + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1\psi Rc(\lambda)c(\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta + l_5)(-2)\dot{\upsilon}_1$ $\psi c(\lambda))(-l_5 c(\lambda) + h_4 s(\lambda))(4(I_{xx4} + I_{xx5} + 4I_{xx6} + 4I_{yy2} + I_{yy4} + 3I_{yy5} + 4I_{zz3} + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2((h_3 + h_4)^2 + 2(l_3 + l_4)^2)m_4 + (2((h_3 + h_4)^2 + h_5^2 + 2(l_3 + l_4)^2) + 3l_5^2)m_5 + 2(h_6^2 m_6
+ 2l_6^2 m_6 + m_2 R^2)) - 8h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2(h_6^2 m_6 + 2l_6^2 m_6 + m_2 R^2)) - 8h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2(h_6^2 m_6 + 2l_6^2 m_6 + m_2 R^2)) - 8h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2(h_6^2 m_6 + 2l_6^2 m_6 + m_2 R^2)) - 8h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2(h_6^2 m_6 + 2l_6^2 m_6 + m_2 R^2)) - 8h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2(h_6^2 m_6 + 2l_6^2 m_6 + m_2 R^2)) - 8h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2(h_6^2 m_6 + 2l_6^2 m_6 + m_2 R^2)) - 8h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2(h_6^2 m_6 + 2l_6^2 m_6 + m_2 R^2)) - 8h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2(h_6^2 m_6 + 2l_6^2 m_6 + m_2 R^2)) - 8h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2(h_6^2 m_6 + 2l_6^2 m_6 + m_2 R^2)) - 8h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2(h_6^2 m_6 + 2l_6^2 m_6 + m_2 R^2)) - 8h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2(h_6^2 m_6 + 2h_6^2 m_6 + m_2 R^2)) - 8h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2(h_6^2 m_6 + 2h_6^2 m_6 + m_2 R^2) + 2h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2h_3^2 m_5 + 2(h_6^2 m_6 + m_2 R^2)) - 2h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2h_3^2 m_5 + 2h_3^2 m_5 + 2h_3^2 m_5 + 2h_3^2 m_3 c(2\chi) - 2h_3^2 m_5 + 2$ $8h_3^2m_4c(2\chi) - 16h_3h_4m_4c(2\chi) - 8h_4^2m_4c(2\chi) - 8h_3^2m_5c(2\chi) - 16h_3h_4m_5c(2\chi) +$ $(-8)h_4^2m_5c(2\chi) - 2h_5^2m_5c(2\chi) - \bar{2}l_5^2m_5c(2\chi) - 8h_6^2m_6c(2\chi) - 8m_2R^2c(2\chi) - \bar{2}l_5m_5c$ $3h_5^2m_5c(2\chi-4\lambda)+3l_5^2m_5c(2\chi-4\lambda)-4I_{xx4}c(2\lambda)-4I_{xx5}c(2\lambda)-4I_{yy4}c(2\lambda)+$ $4I_{vv5}c(2\lambda) + 8I_{zz4}c(2\lambda) + 16h_3h_5m_5c(2\lambda) + 16h_4h_5m_5c(2\lambda) - 8h_3h_5m_5c(2(-\chi + 1)))$ λ)) - 8h₄h₅m₅c(2(- χ + λ)) - 8h₃h₅m₅c(2(χ + λ)) + (-8)h₄h₅m₅c(2(χ + $\lambda)) - 3h_5^2 m_5 c(2(\chi + 2\lambda)) + 3l_5^2 m_5 c(2(\chi + 2\lambda)) + 6h_5 l_5 m_5 s(2\chi - 4\lambda) +$

 $(-32)(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + 16h_3l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) +$ $2h_5m_5((-8)l_5c(\lambda)^3s(\lambda) + h_5c(2\chi)s(2\lambda)^2)) - 8h_3l_5m_5s(2(-\chi + \lambda)) 8h_4l_5m_5s(2(-\chi + \lambda)) - 8h_3l_5m_5s(2(\chi + \lambda)) - 8h_4l_5m_5s(2(\chi + \lambda)) +$ $(-6)h_{5}l_{5}m_{5}s(2(\chi+2\lambda)) + 4m_{5}(8(l_{3}+l_{4})c(\lambda)(l_{5}c(\lambda)-h_{5}s(\lambda))) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda))) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda))) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda))) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda))) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda))) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda))) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda))) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda))) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l$ $h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)))s(\psi) + 4m_{5}s(2\lambda)((-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5}))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}h_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}h_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}h_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}h_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + (h_{5} - h_{5})s(2\lambda)$ $l_5)(h_5 + l_5)s(2\lambda))s(2\psi)) + (-1/8)m_5\psi(4\psi c(2\psi)s(2\lambda)(2h_5l_5c(2\lambda) + (-h_5^2 + (-h_$ $l_{5}^{2}(2\lambda)) - 8\dot{\psi}c(\lambda)((h_{5}^{2} + l_{5}^{2})c(\lambda) + (-h_{5}^{2} + l_{5}^{2})c(3\lambda) - 2h_{5}l_{5}s(3\lambda))s(2\psi)) -$ $\frac{1}{4\ddot{\chi}(l_4+l_5)^{-1}(-l_5c(\lambda)+h_4s(\lambda))(4I_{yz3}-(I_{xx4}+I_{xx5}-2(I_{yy5}+I_{zz4}))s(2\lambda)-(I_{yz3}-(I_{xx4}+I_{xx5}-2(I_{yy5}+I_{zz4}))s(2\lambda)-(I_{yz3}-(I_{yz3}+I_{zz4}))s(2\lambda)-(I_{yz3}-(I_{yz3}+I_{zz4}))s(2\lambda)-(I_{yz3}-(I_{yz3}+I_{zz4}))s(2\lambda)-(I_{yz3}-(I_{yz3}+I_{zz4}))s(2\lambda)-(I_{yz3}-(I_{yz3}+I_{zz4}))s(2\lambda)-(I_{yz3}-(I_{yz3}+I_{zz4}))s(2\lambda)-(I_{yz3}-(I_{yz3}+I_{zz4}))s(2\lambda)-(I_{zz4}+I_{zz4})s(2\lambda)-(I_{zz4}+I_{$ $4m_5s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)(l_3 + l_4 - c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) +$
$c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + 4c(\chi)(h_4(l_3 + l_4)(m_4 + m_5) + h_3(l_4(m_4 + m_5) + h_3(l_4(m_4 + m_5))))$ $l_3(m_3 + m_4 + m_5)) + h_6 l_6 m_6 + m_5((l_3 + l_4)(h_5 c(2\lambda) + l_5 s(2\lambda)) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda)) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda)) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)$ $l_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+l_{5}s(2\lambda))+c(\lambda)(l_{5}c(\lambda)-h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{5}+h_{5}+h_{5}s(\lambda))(h_{5}+h$ $l_{5}s(2\lambda)(\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi))) - \frac{1}{4\dot{\chi}(l_4 + I_{yy5})} + \frac{1}{4\dot{\chi}(l_4 + I_{yy$ $(l_5)^{-1}(-l_5c(\lambda) + h_4s(\lambda))((-4)m_5\dot{\psi}c(\psi)s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))(l_3 + l_4 - h_5s(2\lambda))(l_3 + l_4 - h_5s(2\lambda))(l_3 + h_4s(\lambda))((-4)m_5\dot{\psi}c(\psi)s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))(l_3 + h_4s(\lambda))((-4)m_5\dot{\psi}c(\psi)s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))(l_5 -
h_5s(2\lambda))(l_5 - h_$ $c(\boldsymbol{\psi})s(\boldsymbol{\lambda})(h_5c(\boldsymbol{\lambda})+l_5s(\boldsymbol{\lambda}))+c(\boldsymbol{\lambda})(l_5c(\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\chi}))s(\boldsymbol{\psi}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\chi}))s(\boldsymbol{\psi}))s(\boldsymbol{\psi}))+(-4)\dot{\boldsymbol{\chi}}m_5c(\boldsymbol{\chi})(l_5c(2\boldsymbol{\lambda})-h_5s(\boldsymbol{\chi}))s(\boldsymbol{\psi}))s(\boldsymbol{\psi}))s(\boldsymbol{\psi}))s(\boldsymbol{\psi}))s(\boldsymbol{\psi}))s(\boldsymbol{\psi})s(\boldsymbol{\chi})s(\boldsymbol{\psi})s(\boldsymbol{\chi})s(\boldsymbol{\psi})s(\boldsymbol{\chi})s($ $h_{5}s(2\lambda)s(\psi)(l_{3}+l_{4}-c(\psi)s(\lambda)(h_{5}c(\lambda)+l_{5}s(\lambda))+c(\lambda)(l_{5}c(\lambda)-h_{5}s(\lambda))s(\psi)) 4m_{5}s(\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))s(\psi)(\dot{\psi}c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda)) + \dot{\psi}s(\lambda)(h_{5}c(\lambda) + h_{5}s(\lambda)))s(\psi)(\dot{\psi}c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + h_{5}s(\lambda)(h_{5}c(\lambda) + h_{5}s(\lambda))s(\psi)(\dot{\psi}c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + h_{5}s(\lambda)(h_{5}c(\lambda) + h_{5}s(\lambda))s(\psi)(h_{5}c(\lambda) - h_{5}s(\lambda)) + h_{5}s(\lambda)(h_{5}c(\lambda) + h_{5}s(\lambda))s(\psi)(h_{5}c(\lambda) - h_{5}s(\lambda)) + h_{5}s(\lambda)(h_{5}c(\lambda) + h_{5}s(\lambda))s(\psi)(h_{5}c(\lambda) - h_{5}s(\lambda)) + h_{5}s(\lambda)(h_{5}c(\lambda) + h_{5}s(\lambda))s(\psi)(h_{5}c(\lambda) - h_{5}s(\lambda)) + h_{5}s(\lambda)(h_{5}c(\lambda) + h_{5}s(\lambda))s(\psi)(h_{5}c(\lambda) - h_{5}s(\lambda))s(\psi)(h_{5}c(\lambda) +
h_{5}s(\lambda))s(\psi)(h_{5}c(\lambda))s(\psi)(h_{5}c(\lambda))s(\psi)(h_{5}c(\lambda))s(\psi)$ $l_{5s}(\lambda))s(\psi)$ + $4m_5c(\chi)(\dot{\psi}c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))(h_3 + h_4 + h_5c(2\lambda) +$ $l_{5}s(2\lambda)) + \psi s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))s(\psi)) 4\dot{\chi}s(\chi)(h_4(l_3 + l_4)(m_4 + m_5) + h_3(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5)) +$ $h_{6}l_{6}m_{6} + m_{5}((l_{3} + l_{4})(h_{5}c(2\lambda) + l_{5}s(2\lambda)) - c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))(h_{3} + l_{5}s(\lambda))(h_{3} + l_{5}s(\lambda))(h_{5}c(\lambda))(h_{5}c(\lambda))$ $h_4 + h_5c(2\lambda) + l_5s(2\lambda)) + c(\lambda)(l_5c(\lambda) - h_5s(\lambda))(h_3 + h_4 + h_5c(2\lambda) + h_5c(2\lambda)) + h_5c(2\lambda)$ $l_{5}s(2\lambda)s(\psi)) + s(2\lambda)((-2)(I_{yy4} + I_{yy5})\dot{\psi}c(2\psi) - 2(I_{xx4} + I_{xx5})\dot{\psi}s(2\psi))) \ddot{v}_1 Rs(\theta)((1/4)(l_4+l_5)^{-1}(-l_5c(\lambda)+h_4s(\lambda))(4c(\theta)(l_4(m_4+m_5)+l_3(m_3+m_4+m_5))))$ m_5) + $l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) +$ $4(s(\chi)((-1)h_4(m_4 + m_5) - h_3(m_3 + m_4 + m_5) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m$ $l_{5}m_{5}s(2\lambda)) + m_{5}c(\chi)(-l_{5}c(2\lambda) + h_{5}s(2\lambda))s(\psi))s(\theta)) + m_{5}(s(\lambda)(h_{5}c(\lambda) + h_{5}s(2\lambda))s(\psi))s(\theta))$ $l_{5s}(\lambda))s(\psi)s(\theta) + c(\psi)(c(\chi)c(\theta)(l_{5}c(2\lambda) - h_{5}s(2\lambda))) + c(\lambda)(l_{5}c(\lambda))$
 $h_{5}s(\lambda))s(\theta))) + \ddot{v}_{1}Rc(\theta)((l_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))(c(\theta)(s(\chi)(h_{4}(m_{4} + l_{5})^{-1}(-l_{5}c(\lambda) + h_{4}s(\lambda)))))))))$ $(m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + l_5m_5s(2\lambda)$ $m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + (l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5) + l_4(m_4 + m_5))$ $l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)s(\theta))$ $m_5(c(\theta)s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_5c(\lambda) - h_5s(\lambda)) +$ $c(\boldsymbol{\chi})(-l_5c(2\lambda)+h_5s(2\lambda))s(\boldsymbol{\theta}))))-(l_4+l_5)^{-1}\ddot{\upsilon}_1Rsec(\boldsymbol{\theta}+\boldsymbol{\psi}c(\lambda))((I_{vv5}+I_{zz4})c(\lambda)+h_{zz4})c(\lambda))$ $1/2m_5c(\chi)(2(l_3 + l_4)c(\psi) - 2s(\lambda)(h_5c(\lambda) + l_5s(\lambda)))(l_5c(2\lambda) - h_5s(2\lambda))$ $m_{5}s(\chi)(h_{3}+h_{4}+h_{5}c(2\lambda)+l_{5}s(2\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda)-h_{5}s(\lambda))+s(\lambda)(h_{5}c(\lambda)+h_{5}s(\lambda)))(c(\lambda)c(\psi)(l_{5}c(\lambda)-h$ $l_{5}s(\lambda))s(\psi))s(\psi c(\lambda)) + (-1/16)(l_{4} + l_{5})^{-2}\ddot{v}_{1}Rsec(\theta + \psi c(\lambda))(-l_{5}c(\lambda)) + (-1/16)(l_{4} + l_{5})^{-2}\ddot{v}_{1}Rsec(\theta + \psi c(\lambda))(-l_{5}c(\lambda)) + (-1/16)(l_{4} + l_{5})^{-2}\ddot{v}_{1}Rsec(\theta + \psi c(\lambda))(-l_{5}c(\lambda)) + (-1/16)(l_{4} + l_{5})^{-2}\ddot{v}_{1}Rsec(\theta + \psi c(\lambda))(-l_{5}c(\lambda)) + (-1/16)(l_{4} + l_{5})^{-2}\ddot{v}_{1}Rsec(\theta + \psi c(\lambda))(-l_{5}c(\lambda)) + (-1/16)(l_{4} + l_{5})^{-2}\ddot{v}_{1}Rsec(\theta + \psi c(\lambda))(-l_{5}c(\lambda)) + (-1/16)(l_{5}c(\lambda))(-l_{5}c(\lambda)) + (-1/16)(l_{5}c(\lambda))(-l_{5}c(\lambda))(-l_{5}c(\lambda)) + (-1/16)(l_{5}c(\lambda))(-l_{5}c(\lambda))(-l_{5}c(\lambda)) + (-1/16)(l_{5}c(\lambda))(-l_{5}c(\lambda))(-l_{5}c(\lambda)) + (-1/16)(l_{5}c(\lambda))(-l_{5}c(\lambda))(-l_{5}c(\lambda))(-l_{5}c(\lambda))(-l_{5}c(\lambda))(-l_{5}c(\lambda))) + (-1/16)(l_{5}c(\lambda))(-l_{5}c($ $\begin{array}{l}
h_{4s}(\lambda))(4(I_{xx4}+I_{xx5}+4I_{xx6}+4I_{yy2}+I_{yy4}+3I_{yy5}+4I_{zz3}+2I_{zz4}+2(h_3^2+2l_3^2)m_3+2((h_3+h_4)^2+2(l_3+l_4)^2)m_4+(2((h_3+h_4)^2+h_5^2+2(l_3+l_4)^2)+3l_5^2)m_5+2(h_3+h_4)^2+h_5^2+2(h_3+h_4)^2)+3l_5^2)m_5+2(h_3+h_4)^2+h_5^2+2(h_3+h_4)^2)+3l_5^2)m_5+2(h_3+h_4)^2+h_5^2+2(h_3+h_4)^2)+3l_5^2)m_5+2(h_3+h_4)^2+h_5^2+2(h_3+h_4)^2)+3h_5^2)m_5+2(h_3+h_4)^2+h_5^2+2(h_3+h_4)^2)+3h_5^2)m_5+2(h_3+h_4)^2+h_5^2+2(h_3+h_4)^2)+3h_5^2)m_5+2(h_3+h_4)^2+h_5^2+2(h_3+h_4)^2)+3h_5^2)m_5+2(h_3+h_4)^2+h_5^2+2(h_3+h_4)^2)+3h_5^2)m_5+2(h_3+h_4)^2+h_5^2+2(h_3+h_4)^2)+3h_5^2)m_5+2(h_3+h_4)^2+h_5^2+2(h_3+h_4)^2)+3h_5^2)m_5+2(h_3+h_4)^2+h_5^2+2(h_3+h_4)^2)+3h_5^2)m_5+2(h_3+h_4)^2+h_5^2+2(h_3+h_4)^2)+3h_5^2)m_5+2(h_3+h_4)^2+h_5^2)m_5+2(h_3+h_4)^2)m_5+2(h_3+h_4)^2+h_5^2+2(h_3+h_4)^2)m_5+2(h_3+h_4)^2)m_$ $2(h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) - 8h_3^2m_3c(2\chi) + (-8)h_3^2m_4c(2\chi) - 16h_3h_4m_4c(2\chi) - 16h_3m_3c(2\chi) - 16h_3m$ $8h_4^2m_4c(2\chi) - 8h_3^2m_5c(2\chi) - 16h_3h_4m_5c(2\chi) - 8h_4^2m_5c(2\chi) - 2h_5^2m_5c(2\chi) - 2h$ $2l_{5}^{2}m_{5}c(2\chi) - 8h_{6}^{2}m_{6}c(2\chi) - 8m_{2}R^{2}c(2\chi) + (-3)h_{5}^{2}m_{5}c(2\chi - 4\lambda) + 3l_{5}^{2}m_{5}c$ $(4\lambda) + (-4)I_{xx4}c(2\lambda) - 4I_{xx5}c(2\lambda) - 4I_{yy4}c(2\lambda) + 4I_{yy5}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) + 8I_{zz4}c(2\lambda) +
8I_{zz4}c(2\lambda) + 8I$ λ)) - 8h_3h_5m_5c(2(\chi + \lambda)) - 8h_4h_5m_5c(2(\chi + \lambda)) - 3h_5^2m_5c(2(\chi + 2\lambda)) + $3l_5^2m_5c(2(\chi+2\lambda)) + 6h_5l_5m_5s(2\chi-4\lambda) + (-32)(l_3+l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) +$ $l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + 16h_{4}l_{5}m_{5}s(2\lambda) + 2c(2\psi)((-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{xx5}) + 2(I_{yy4} + 2I_{yy4})$ $I_{yy5}) - (h_5^2 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{x$ $I_{xx5} - I_{yy4} - I_{yy5} - 2l_5^2 m_5 + 2h_5 l_5 m_5 c(2\chi) s(2\lambda)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda)) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5
c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_$ $\lambda)) - 8h_4 l_5 m_5 s(2(\chi + \lambda)) + (-6)h_5 l_5 m_5 s(2(\chi + 2\lambda)) + 4m_5 (8(l_3 + l_4)c(\lambda)(l_5 c(\lambda) - k_5))) + 4m_5 (8(l_3 + l_5)c(\lambda)(l_5 c(\lambda) - k_5))) + 4m_5 (8(l_3 + l_5)c(\lambda)(l_5 c(\lambda) - k_5))) + 4m_5 (8(l_3 + l_5)c(\lambda)(l_5 c(\lambda) - k_5))) + 4m_5 (8(l_3 + l_5)c(\lambda)(l_5 c(\lambda) - k_5))) + 4m_5 (8(l_3 + l_5)c(\lambda)(l_5 c(\lambda) - k_5))) + 4m_5 (8(l_3 + l_5)c(\lambda)(l_5 c(\lambda) - k_5))) + 4m_5 (8(l_3 + l_5)c(\lambda)(l_5 c(\lambda) - k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 c(\lambda) - k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5)c(\lambda))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5)c(\lambda))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5)c(\lambda)) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5)c(\lambda))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5)c(\lambda))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5)c(\lambda))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5)c(\lambda))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5)c(\lambda))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5)c(\lambda))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5)c(\lambda))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5)c(\lambda))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5)c(\lambda))) + 4m_5 (8(l_5 + l_5)c(\lambda)(l_5 - k_5)c(\lambda))) + 4m_5 (8(l_5 + l_5)c(\lambda$ $h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)))s(\psi) +$ $4m_{5}s(2\lambda)((-2)h_{5}l_{5}c(2\lambda) + (h_{5} - l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi)s(\psi c(\lambda)) - (l_{4} + l_{5})s(2\lambda)s(2\psi)s(\psi c(\lambda)) - (l_{4} + l_{5})s(2\lambda)s(2\psi)s(\psi c(\lambda)) - (l_{4} + l_{5})s(2\lambda)s(2\psi)s(\psi c(\lambda)) - (l_{4} + l_{5})s(2\lambda)s(2\psi)s(\psi c(\lambda)) - (l_{4} + l_{5})s(2\lambda)s(2\psi)s(\psi c(\lambda)) - (l_{4} + l_{5})s(2\lambda)s(2\psi)s(\psi c(\lambda)) - (l_{4} + l_{5})s(2\lambda)s(2\psi)s(\psi c(\lambda)) - (l_{4} + l_{5})s(2\lambda)s(\psi c(\lambda))s(\psi c(\lambda)) - (l_{4} + l_{5})s(2\lambda)s(\psi c(\lambda))s(\psi c(\lambda)) - (l_{4} + l_{5})s(2\lambda)s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda)) - (l_{4} + l_{5})s(\psi c(\lambda))s(\psi$ $l_5)^{-1}((-1/2)\dot{\chi}m_5s(\chi)(2(l_3 + l_4)c(\psi) - 2s(\lambda)(h_5c(\lambda) + l_5s(\lambda)))(l_5c(2\lambda) - l_5)(\lambda))(l_5c(2\lambda)) - l_5(\lambda)(h_5c(\lambda) + h_5s(\lambda)))(l_5c(2\lambda)) - l_5(\lambda)(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda)))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda)))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda)))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda)))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) +
h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda))(h_5c$ $h_{5}s(2\lambda)) - (l_{3} + l_{4})m_{5}\psi c(\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))s(\psi) - m_{5}s(\chi)(h_{3} + h_{4} + h_{5})s(\chi)(h_{5} + h_{5})s($ $h_5c(2\lambda) + l_5s(2\lambda))(\psi c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) - \psi c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) \dot{\chi}m_5c(\chi)(h_3+h_4+h_5c(2\lambda)+l_5s(2\lambda))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)+h_$ $l_{5}s(\lambda)s(\psi))(\dot{\psi}(-l_{5}c(\lambda)+h_{4}s(\lambda))+\dot{\upsilon}_{1}Rsec(\theta+\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda)))+(-1/16)(l_{4}+i)s(\psi c(\lambda))s(\psi
c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))$ $(l_5)^{-2}(-l_5c(\lambda) + h_4s(\lambda))(12h_5\dot{\chi}l_5m_5c(2\chi - 4\lambda) + 16h_3\dot{\chi}l_5m_5c(2(-\chi + \lambda)) + 16h_3\dot{\chi}l_5m_5c(2(-\chi + \lambda))))$ $16h_4 \dot{\chi} l_5 m_5 c (2(-\chi + \lambda)) - 16h_3 \dot{\chi} l_5 m_5 c (2(\chi + \lambda)) - 16h_4 \dot{\chi} l_5 m_5 c (2(\chi + \lambda)) +$ $(-12)h_5\dot{\chi}l_5m_5c(2(\chi+2\lambda)) + 16h_3^2\dot{\chi}m_3s(2\chi) + 16h_3^2\dot{\chi}m_4s(2\chi) + 32h_3h_4\dot{\chi}m_4s(2\chi) +$ $16h_{4}^{2}\dot{\chi}m_{4}s(2\chi) + 16h_{3}^{2}\dot{\chi}m_{5}s(2\chi) + 32h_{3}h_{4}\dot{\chi}m_{5}s(2\chi) + 16h_{4}^{2}\dot{\chi}m_{5}s(2\chi) +$ $4h_{5}^{2}\dot{\chi}m_{5}s(2\chi) + 4\dot{\chi}l_{5}^{2}m_{5}s(2\chi) + 16h_{6}^{2}\dot{\chi}m_{6}s(2\chi) + 16\dot{\chi}m_{2}R^{2}s(2\chi) + 6h_{5}^{2}\dot{\chi}m_{5}s($ $(-4)\lambda$) + $(-6)\dot{\chi}l_5^2m_5s(2\chi - 4\lambda)$ + $8m_5\dot{\psi}c(2\psi)s(2\lambda)((-2)h_5l_5c(2\lambda) + (h_5 - 4\lambda))$ $l_{5}(h_{5} + l_{5})s(2\lambda)) + 2c(2\psi)(4\dot{\chi}l_{5}^{2}m_{5}c(2\lambda)^{2}s(2\chi) - 8h_{5}\dot{\chi}l_{5}m_{5}c(2\lambda)s(2\chi)s(2\lambda) +$ $4h_{5}^{2}\dot{\chi}m_{5}s(2\chi)s(2\lambda)^{2}) + 4m_{5}\dot{\psi}c(\psi)(8(l_{3} + l_{4})c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))) +$ $4s(2\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))) - 16h_{3}h_{5}\dot{\chi}m_{5}s(2(-\chi + h_{5}c(2\lambda) - h_{5}s(2\lambda))) - h_{5}s(2\lambda)) - h_{5}s(2\lambda)) - h_{5}s(2\lambda)$ $\lambda)) - 16h_4h_5\dot{\chi}m_5s(2(-\chi+\lambda)) + 16h_3h_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(2(\chi+\lambda)) +
16h_4\dot{\chi}m_5\dot{\chi}$ $6h_{5}^{2}\dot{\chi}m_{5}s(2(\chi+2\lambda)) + (-6)\dot{\chi}l_{5}^{2}m_{5}s(2(\chi+2\lambda)) + 32(l_{3}+l_{4})m_{5}\dot{\psi}s(\lambda)(h_{5}c(\lambda) +$ $l_{5s}(\lambda)s(\psi) + 32\dot{\chi}m_{5c}(2\chi)(l_{5c}(2\lambda) - h_{5s}(2\lambda))(h_{3} + h_{4} + h_{5c}(2\lambda) + l_{5s}(2\lambda))s(\psi) - h_{5s}(2\lambda)s(\psi) + h$ $4\dot{\psi}((-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + I_{yy5}) - (h_5^2 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5)(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5)(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5)(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5)$ $I_{5})m_{5}c(4\lambda) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy4} - I_{yy5} - 2l_{5}^{2}m_{5} + 2h_{5}l_{5}m_{5}c(2\chi)s(2\lambda)) +$ $(-2)h_5m_5((-8)l_5c(\lambda)^3s(\lambda) + h_5c(2\chi)s(2\lambda)^2))s(2\psi))(\psi(-l_5c(\lambda) + h_4s(\lambda)) +$ $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) + I_{xx5}(l_4 + l_5)^{-2}\dot{\upsilon}_1 sec(\theta + \psi c(\lambda))s(\lambda)(-l_5c(\lambda) + l_5c(\lambda)))s(\lambda)(-l_5c(\lambda)))$ $l_{5})^{-1}\dot{\upsilon}_{1}Rc(\theta)((1/4)(l_{4}+l_{5})^{-1}(-l_{5}c(\lambda)+h_{4}s(\lambda))(4c(\theta)(l_{4}(m_{4}+m_{5})+l_{3}(m_{3}+m_{5})))))))$ $m_4 + m_5) + l_6 m_6 - m_5 c(\psi) s(\lambda) (h_5 c(\lambda) + l_5 s(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda) - h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) s(\psi) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) s(\psi) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) s(\psi) (h_5 c(\lambda) + h_5$
$4(s(\chi)(-h_4(m_4+m_5)-h_3(m_3+m_4+m_5)-h_6m_6-m_2R-h_5m_5c(2\lambda)-l_5m_5s(2\lambda))+$ $m_5c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi)s(\theta)) + m_5(s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi)s(\theta) +$ $h_{4}s(\lambda)) + \dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) - (l_{4} + l_{5})^{-1}\dot{v}_{1}Rs(\theta)((l_{4} + l_{5})) - (l_{4} + l_{5})^{-1}\dot{v}_{1}Rs(\theta)((l_{4} + l_{5}))$ $m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + (l_4(m_4 + m_5))s(\psi) + (l_4(m_4 + m_5))s(\psi))s(\psi)) + (l_4(m_4 + m_5))s(\psi))s(\psi))s(\psi)) + (l_4(m_4 + m_5))s(\psi))s(\psi))s(\psi))s(\psi))s(\psi))s(\psi)$ $m_5) + l_3(m_3 + m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_$ $h_{5}s(\lambda)s(\psi)s(\theta)) - m_{5}(c(\theta)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_{5}c(\lambda) - l_{5}s(\lambda))s(\psi))s(\theta)) - m_{5}(c(\theta)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_{5}c(\lambda) - l_{5}s(\lambda))s(\psi))s(\psi))s(\theta)) - m_{5}(c(\theta)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_{5}c(\lambda) - l_{5}s(\lambda))s(\psi))s(\psi))s(\psi))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_{5}c(\lambda) - l_{5}s(\lambda))s(\psi))s(\psi))s(\psi))s(\psi))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_{5}c(\lambda) - l_{5}s(\lambda))s(\psi))s(\psi))s(\psi))s(\psi))s(\psi)$ $h_{5}s(\lambda)) + c(\chi)(-l_{5}c(2\lambda) + h_{5}s(2\lambda))s(\theta))))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + i\beta)))$ $\psi c(\lambda) s(\psi c(\lambda)) + (1/8)(l_4 + l_5)^{-1} \dot{v}_1 R(-l_5 c(\lambda) + h_4 s(\lambda)) s(\theta)(8(m_2 + m_3 + m_3)) + (1/8)(m_2 + m_3) + (1/8)(m_3 + m_3) + (1/8)(m_3) +$ $m_4 + m_5 + m_6)\dot{\upsilon}_1Rc(\theta) - 8(\dot{\chi}(c(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6 + m_6)))$ $m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5s(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi))s(\theta)$ $m_5 \dot{\psi}(c(\theta)s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_5c(\lambda) - h_5s(\lambda)) +$ $c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\theta))) + (l_4 + l_5)^{-1}(c(\theta)(s(\chi))(h_4(m_4 + m_5) +$ $h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - m_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) +
m_5c(\chi)(l_5c(2\lambda)) + m_5c($ $h_{5}s(2\lambda)s(\psi) + (l_{4}(m_{4}+m_{5})+l_{3}(m_{3}+m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+m_{5}c(\lambda)))$ $l_{5}s(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) +$ $\dot{v}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))) + (1/8)(l_4 + l_5)^{-1}\dot{v}_1 Rc(\theta)(-l_5c(\lambda) + l_5)^{-1}\dot{v}_1 Rc(\theta)(-l_5c(\lambda)))$ $h_{4s}(\lambda))((-8)(m_{2} + m_{3} + m_{4} + m_{5} + m_{6})\dot{\upsilon}_{1}Rs(\theta) - 8(\dot{\chi}c(\theta)(c(\chi))(h_{4}(m_{4} + m_{5})))(m_{2})(m_$ m_5) + $h_3(m_3 + m_4 + m_5)$ + $h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)$) + $m_5s(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi)) + m_5\psi(s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi)s(\theta) +$ $c(\boldsymbol{\psi})(c(\boldsymbol{\chi})c(\boldsymbol{\theta})(l_5c(2\boldsymbol{\lambda}) - h_5s(2\boldsymbol{\lambda})) + c(\boldsymbol{\lambda})(l_5c(\boldsymbol{\lambda}) - h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta}))) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta}))s(\boldsymbol{\theta})) + (1/4)(l_4 + h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta}))s(\boldsymbol{\theta}))s(\boldsymbol{\theta}))s(\boldsymbol{\theta}))s(\boldsymbol{\theta}))s(\boldsymbol{\theta})$ $l_{5})^{-1}(4c(\theta)(l_{4}(m_{4}+m_{5})+l_{3}(m_{3}+m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+$ $l_{5}s(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5}) - h_{3}(m_{3} + m_{5}))) + h_{5}s(\lambda))s(\psi)) + h_{5}s(\lambda)(-h_{4}(m_{4} + m_{5})) - h_{3}(m_{3} + m_{5}))s(\psi)) + h_{5}s(\lambda)(-h_{4}(m_{4} + m_{5})) - h_{3}(m_{3} + m_{5}))s(\psi)) + h_{5}s(\lambda)(-h_{4}(m_{4} + m_{5})) - h_{3}(m_{3} + m_{5}))s(\psi)) + h_{5}s(\lambda)(-h_{4}(m_{4} + m_{5})) - h_{3}(m_{3} + m_{5}))s(\psi)) + h_{5}s(\lambda)(-h_{4}(m_{4} + m_{5}))s(\psi))s(\psi)) + h_{5}s(\lambda)(-h_{4}(m_{4} + m_{5}))s(\psi))s(\psi))s(\psi))s(\psi))s(\psi))s(\psi)$ $m_4 + m_5) - h_6 m_6 - m_2 R - h_5 m_5 c(2\lambda) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi)) + m_5$ $h_{5}s(2\lambda)s(\psi)s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))))) +$ $\dot{\chi}c(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) +$ $l_5m_5s(2\lambda)) - \dot{\chi}m_5s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + (m_5\dot{\psi}c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(2\lambda))s(\psi)))$ $h_{5}s(\lambda)) + m_{5}\psi s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) +
(l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{5} + m_{5}))s(\psi))s(\psi)$ $l_3(m_3 + m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda)) + m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda)) + m_5c$ $h_{5}s(\lambda)s(\psi)(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) - (l_{4} + i)s(\psi c(\lambda))s(\psi c(\lambda)))$ $(l_5)^{-1}(s(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + h_6m_6 + m_2R + h_5m_5c(2\lambda)))$ $l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi))s(\theta)(\psi(-l_5c(\lambda) + h_4s(\lambda))) +$ $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) - m_5(\dot{\psi}c(\psi)c(\theta)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)))$ $\dot{\psi}s(\psi)(c(\lambda)c(\theta)(l_5c(\lambda) - h_5s(\lambda)) + c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\theta))$ $l_5)^{-1}s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi)s(\theta)(\psi(-l_5c(\lambda) + h_4s(\lambda)))$ $(l_4 +)$ + $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) + c(\psi)(\dot{\chi}s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta)) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s$ $(h_5)^{-1}c(\chi)c(\theta)(-l_5c(2\lambda) + h_5s(2\lambda))(\psi(-l_5c(\lambda) + h_4s(\lambda)) + \dot{\upsilon}_1Rsec(\theta + h_5s(\lambda)))$ $\psi c(\lambda) s(\psi c(\lambda))) - (l_4 + l_5)^{-1} c(\lambda) (l_5 c(\lambda) - h_5 s(\lambda)) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda)) + h_5 s(\lambda)) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda)) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5
c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + h_5 s(\lambda) s$ $\dot{v}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))))) - \dot{v}_1 Rs(\theta)((1/4)(l_4 + l_5)^{-1}(-l_5c(\lambda) + l_5))))$ $h_{4}s(\lambda))(4c(\theta)(m_{5}\dot{\psi}c(\lambda)c(\psi)(l_{5}c(\lambda)-h_{5}s(\lambda))+m_{5}\dot{\psi}s(\lambda)(h_{5}c(\lambda)+l_{5}s(\lambda))s(\psi))+$ $4(m_5\psi c(\chi)c(\psi)(-l_5c(2\lambda)+h_5s(2\lambda))+\dot{\chi}c(\chi)(-h_4(m_4+m_5)-h_3(m_3+m_4+m_5)-h_5(2\lambda))+\dot{\chi}c(\chi)(-h_4(m_4+m_5)-h_3(m_3+m_4+m_5)-h_5(2\lambda))+\dot{\chi}c(\chi)(-h_4(m_4+m_5)-h_3(m_3+m_4+m_5)-h_5(2\lambda))+\dot{\chi}c(\chi)(-h_4(m_4+m_5)-h_3(m_3+m_4+m_5)-h_5(2\lambda))+\dot{\chi}c(\chi)(-h_4(m_4+m_5)-h_3(m_3+m_4+m_5)-h_5(2\lambda))+\dot{\chi}c(\chi)(-h_4(m_4+m_5)-h_5(m_3+m_5)-h_5(m_3+m_5)-h_5(m_3+m_5)-h_5(m_3+m_5)-h_5(m_3+m_5)-h_5(m_3+m_5)-h_5(m_3+m_5)-h_5(m_3+m_5)-h_5(m_3+m_5)-h_5(m_3+m_5)-h_5(m_5)-h_5(m_5+m$ $4(l_4 + l_5)^{-1}c(\theta)(s(\chi)(-h_4(m_4 + m_5) - h_3(m_3 + m_4 + m_5) - h_6m_6 - m_2R - m_2R)$ $h_5m_5c(2\lambda) - l_5m_5s(2\lambda)) + m_5c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi))(\psi(-l_5c(\lambda) + h_5s(2\lambda))s(\psi)))(\psi(-l_5c(\lambda) + h_5s(\lambda))s(\psi)))(\psi(-l_5c(\lambda))s(\psi)))(\psi($ $h_{4}s(\lambda)) + \dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) - 4(l_{4} + l_{5})^{-1}(l_{4}(m_{4} + m_{5}) + l_{5})c(\lambda))$ $l_{3}(m_{3} + m_{4} + m_{5}) + l_{6}m_{6} - m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))
+ m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m$ $h_{5}s(\lambda)s(\psi)s(\theta)(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))) +$ $\psi s(\psi)(c(\chi)c(\theta)(l_5c(2\lambda)))$ $m_5(\psi c(\psi)s(\lambda)(h_5c(\lambda)))$ + $l_5 s(\lambda)) s(\theta)$ $h_{5}s(2\lambda)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + (l_{4} + l_{5})^{-1}c(\theta)s(\lambda)(h_{5}c(\lambda) + l_{5}c(\lambda))s(\theta))$ $l_{5}s(\lambda))s(\psi)(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))$ + $c(\boldsymbol{\psi})(-\dot{\boldsymbol{\chi}}c(\boldsymbol{\theta})s(\boldsymbol{\chi})(l_5c(2\lambda) - h_5s(2\lambda)) + (l_4 + l_5)^{-1}c(\lambda)c(\boldsymbol{\theta})(l_5c(\lambda))$ _ $h_{5}s(\lambda))(\psi((-1)l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) - (l_{4})$ + $(h_5)^{-1}c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda)) + \dot{\upsilon}_1Rsec(\theta))$ + $\psi c(\lambda) s(\psi c(\lambda))))) - I_{xx5}(l_4 + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5 c(\lambda) + l_5)^{-1} \dot{v}_1 c(\lambda) sec(\theta + \psi c(\lambda)) s(\lambda)(-l_5)^{-1} \dot{v}_1 c(\lambda) sec(\theta + \psi c(\lambda)) s$ $h_{4s}(\lambda))s(\psi)(\psi c(\lambda) + (l_4 + l_5)^{-1}(\psi(-l_5c(\lambda) + h_{4s}(\lambda))) + \dot{\upsilon}_1Rsec(\theta))$ + $\psi c(\lambda) s(\psi c(\lambda))) tan(\theta + \psi c(\lambda)) - (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))((I_{vv5} + \psi c(\lambda)))) tan(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) tan(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) tan(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) tan(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) tan(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) tan(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) tan(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) tan(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) tan(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) tan(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) tan(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) tan(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) tan(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) + (l_4$ $I_{zz4}(\lambda) + 1/2m_5c(\chi)(2(l_3 + l_4)c(\psi) - 2s(\lambda)(h_5c(\lambda) + l_5s(\lambda)))(l_5c(2\lambda) - l_5s(\lambda)))(l_5c(2\lambda) - l_5s(\lambda))(l_5c(2\lambda) - l_5s(\lambda)))(l_5c(2\lambda) -
l_5s(\lambda)))(l_5c(2\lambda) - l_5s(\lambda)))(l_$ $h_{5}s(2\lambda)) - m_{5}s(\chi)(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(b_{5}c(\lambda) - b_{5}s(\lambda)) + l_{5}s(\lambda)$ $s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi))s(\psi c(\lambda))(\psi c(\lambda) + (l_4 + l_5)^{-1}(\psi (-l_5c(\lambda) +$ $h_{4s}(\lambda)$ + $\dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_{4} + \psi c(\lambda))$ $(l_5)^{-2}\dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))(-l_5c(\lambda) + h_4s(\lambda))(4(I_{xx4} + I_{xx5} + 4I_{xx6} + 4I_{yy2} + I_{xx5}))$ $I_{yy4} + 3I_{yy5} + 4I_{zz3} + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2((h_3 + h_4)^2 + 2(l_3 + l_4)^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_3^2 + h_4^2)m_4 + 2(h_4^2 + h_4^2)m_4 + 2(h$ $(2((h_3 + h_4)^2 + h_5^2 + 2(l_3 + l_4)^2) + 3l_5^2)m_5 + 2(h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) 8h_3^2m_3c(2\chi) - 8h_3^2m_4c(2\chi) - 16h_3h_4m_4c(2\chi) - 8h_4^2m_4c(2\chi) + (-8)h_3^2m_5c(2\chi) - 6h_4^2m_4c(2\chi) + (-8)h_3^2m_5c(2\chi) - 6h_4^2m_4c(2\chi) + (-8)h_3^2m_5c(2\chi) - 6h_4^2m_4c(2\chi) + (-8)h_3^2m_5c(2\chi) - 6h_4^2m_4c(2\chi) + (-8)h_3^2m_5c(2\chi) - 6h_4^2m_4c(2\chi) + (-8)h_3^2m_5c(2\chi) - 6h_4^2m_4c(2\chi) + (-8)h_3^2m_5c(2\chi) - 6h_4^2m_4c(2\chi) + (-8)h_3^2m_5c(2\chi) - 6h_4^2m_4c(2\chi) + (-8)h_3^2m_5c(2\chi) - 6h_4^2m_4c(2\chi) + (-8)h_3^2m_5c(2\chi) - 6h_4^2m_4c(2\chi) + (-8)h_3^2m_5c(2\chi) - 6h_4^2m_4c(2\chi) + (-8)h_3^2m_5c(2\chi) - 6h_4^2m_4c(2\chi) + (-8)h_4^2m_5c(2\chi) - 6h_4^2m_5c(2\chi) - 6h_4^2m_5c(2\chi) - 6h_4^2m_5c(2\chi) - 6h_4^2m_5c(2\chi) - 6h_4^2m_5c(2\chi) - 6h_4^2m_5c(2\chi) - 6h_4^2m_5c(2\chi) - 6h_4^2m_5c(2\chi) - 6h_4^2m_5c(2\chi) - 6h_4^2m_5c(2\chi) - 6h_5^2m_5c(2\chi)$ $16h_{3}h_{4}m_{5}c(2\chi) - 8h_{4}^{2}m_{5}c(2\chi) - 2h_{5}^{2}m_{5}c(2\chi) - 2l_{5}^{2}m_{5}c(2\chi) + (-8)h_{6}^{2}m_{6}c(2\chi) - 2h_{5}^{2}m_{5}c(2\chi) -
2h_{5}^{2}m_{5}c(2\chi) - 2h_{5}^{2}m_{5}$
$8m_2R^2c(2\chi) - 3h_5^2m_5c(2\chi - 4\lambda) + 3l_5^2m_5c(2\chi - 4\lambda) - 4I_{xx4}c(2\lambda) - 4I_{xx5}c(2\lambda) - 4$ $4I_{yy4}c(2\lambda) + 4I_{yy5}c(2\lambda) + 8I_{zz4}c(2\lambda) + 16h_3h_5m_5c(2\lambda) + 16h_4h_5m_5c(2\lambda) 8h_3h_5m_5c(2(-\chi + \lambda)) - 8h_4h_5m_5c(2(-\chi + \lambda)) - 8h_3h_5m_5c(2(\chi + \lambda)) 8h_4h_5m_5c(2(\chi+\lambda)) - 3h_5^2m_5c(2(\chi+2\lambda)) + 3l_5^2m_5c(2(\chi+2\lambda)) + 6h_5l_5m_5s(2\chi-\lambda))$ $4\lambda) + (-32)(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + 16h_3l_5m_5s(2\lambda) +$ $16h_4l_5m_5s(2\lambda) + 2c(2\psi)((-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + I_{yy5}) - (h_5^2 + l_5^2)m_5 2l_{5}^{2}m_{5}c(2\chi)c(2\lambda)^{2} + (h_{5} - l_{5})(h_{5} + l_{5})m_{5}c(4\lambda) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy4} - I_{yy5} - I_{yy4}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy4} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} + I_{xx5}) + 2c(2\lambda)(I_{xx5} +$ $2l_5^2m_5 + 2h_5l_5m_5c(2\chi)s(2\lambda)) - 2h_5m_5((-8)l_5c(\lambda)^3s(\lambda) + h_5c(2\chi)s(2\lambda)^2)) 8h_{3}l_{5}m_{5}s(2(-\chi + \lambda)) + (-8)h_{4}l_{5}m_{5}s(2(-\chi + \lambda)) - 8h_{3}l_{5}m_{5}s(2(\chi + \lambda)) 8h_4l_5m_5s(2(\chi + \lambda)) + (-6)h_5l_5m_5s(2(\chi + 2\lambda)) + 4m_5(8(l_3 + l_4)c(\lambda)(l_5c(\lambda) - k_5)c(\lambda)))$ $h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)))s(\psi) +$ $(l_4+l_5)^{-1}(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))s(\psi c(\lambda))))tan(\theta+\psi c(\lambda))+$ $h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) +$ $(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + l_5s(\lambda)) + l_5s(\lambda))$ $m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5)))s(\psi)s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5)))s(\psi)s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5)))s(\psi)s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5)))s(\psi)s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5)))s(\psi)s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5)))s(\psi)s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5)))s(\psi)s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5)))s(\psi)s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5)))s(\psi)s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5)))s(\psi)s(\theta))s(\psi)s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5)))s(\psi)s(\theta))s(\psi)s(\theta))s(\psi)s(\theta)$ m_5) + $l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) +$ $4(s(\chi)(-h_4(m_4 + m_5) - h_3(m_3 + m_4 + m_5) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - h_6m$
$l_5m_5s(2\lambda)) + m_5c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi))s(\theta)) + (1/4)(8(4I_{xx5}\dot{\upsilon}_1c(\theta)sec(\theta +$ $\psi c(\lambda) s(\lambda) s(\psi) + 4 \dot{\psi} ((I_{yy5} + I_{zz4})c(\lambda) + 1/2m_5 c(\chi)(2(l_3 + l_4)c(\psi) - 1/2m_5 c(\chi))(2(l_3 + l_4)c(\psi)) - 1/2m_5 c(\chi)(2(l_3 + l_4)c(\chi)) - 1/2m_5 c(\chi)(2(l_3 + l_4)c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)) -$ $2s(\lambda)(h_5c(\lambda) + l_5s(\lambda)))(l_5c(2\lambda) - h_5s(2\lambda)) - m_5s(\chi)(h_3 + h_4 + h_5c(2\lambda) +$ $l_{5}s(2\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) + -h_{5}s(\lambda)) + s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))) + \dot{\chi}(4I_{yz3} - h_{5}s(\lambda))s(\psi))s(\psi)) + \dot{\chi}(4I_{yz3} - h_{5}s(\lambda))s(\psi))s(\psi)) + \dot{\chi}(4I_{yz3}$ $(-1)c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + 4c(\chi)(h_4(l_3 + l_5s(\lambda))s(\psi$ $l_4)(m_4+m_5)+h_3(l_4(m_4+m_5)+l_3(m_3+m_4+m_5))+h_6l_6m_6+m_5((l_3+l_4)(h_5c(2\lambda)+m_5))+h_6l_6m_6+m_5))+h_6l_6m_6+m_5))+h_6l_6m_6+m_5)$ $l_{5}s(2\lambda)) - c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)) + c(\lambda)(l_{5}c(\lambda) + h_{5}s(2\lambda)) + c(\lambda)(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda) +
h_{5}s(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda))(h_{5}c(\lambda))(h_{5}c(\lambda))($ $(-1)h_{5}s(\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))s(\psi))) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi) - h_{xx5})c(2\psi) + h_{xx5}(\lambda)(I_{xx4} + I_{xx5})c(2\psi) + h_{xx5}(\lambda)(I_{xx5}(\lambda)(I_{xx5})c(2\psi) + h_{xx5}(\lambda)(I_{xx5}(\lambda)(I_{xx5})c(2\psi) + h_{xx5}(\lambda)(I_{xx5}(\lambda)(I_{xx5})c(2\psi) + h_{xx5}(\lambda)(I_{xx5}(\lambda)(I_{xx5})c(2\psi) + h_{xx5}(\lambda)(I_{xx5}(\lambda)(I_{xx5})c(2\psi) + h_{xx5}(\lambda)(I_{xx5}(\lambda)(I_{xx5})c(2\psi) + h_{xx5}(\lambda)(I_{xx5}(\lambda)(I_{xx5})c(2\psi) + h_{xx5}(\lambda)(I_{xx5}(\lambda)(I_{xx5})c(2\psi) + h_{xx5}(\lambda)(I_{xx5}(\lambda)(I_{xx5})c(2\psi) + h_{xx5}(\lambda)(I_{xx5}(\lambda)(I_{xx5})c(2\psi) + h_{xx5}(\lambda)(I_{xx5}(\lambda)(I_{xx5}(\lambda)(I_{xx5})c(2\psi) + h_{xx5}(\lambda)(I_{xx5}(\lambda)($ $4I_{zz3} + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2((h_3 + h_4)^2 + 2(l_3 + l_4)^2)m_4 + (2((h_3 + h_4)^2 + h_5^2 + 2(h_3 + h_4)^2)m_4 + (2((h_3 + h_4)^2 + h_5^2 + h_5^2)m_4)m_4 + (2((h_3 + h_4)^2 + h_5^2)m_4)m_4)m_4 + (2((h_3 + h_4)^2 + h_5^2)m_4)m_4)m_4 + (2((h_3 + h_4)^2 + h_5^2)m_4)m_4 + (2((h_3 + h_4)^2 + h_5^2)m_4)m_4)m_4 + (2((h_3 + h_4)^2 + h_5^2)m_4)m_4)m_4)m_4 + (2((h_3 + h_4)^2 + h_5^2)m_4)m_4)m_4)m_4 + (2((h_3 + h_4)^2)m_4)m_4)m_4)m_4)m_4$ $2(l_3 + l_4)^2) + 3l_5^2)m_5 + 2(h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) - 8h_3^2m_3c(2\chi) - 8h_3^2m_4c(2\chi) - 8h_3^$ $16h_{3}h_{4}m_{4}c(2\chi) - 8h_{4}^{2}m_{4}c(2\chi) - 8h_{3}^{2}m_{5}c(2\chi) - 16h_{3}h_{4}m_{5}c(2\chi) - 8h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c(2\chi) +
6h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c$ $(-2)h_5^2m_5c(2\chi) - 2l_5^2m_5c(2\chi) - 8h_6^2m_6c(2\chi) - 8m_2R^2c(2\chi) - 3h_5^2m_5c(2\chi - 4\lambda) + 2h_6^2m_6c(2\chi) - 2h_6^2m_6c(2\chi)$ $3l_{5}^{2}m_{5}c(2\chi - 4\lambda) - 4I_{xx4}c(2\lambda) - 4I_{xx5}c(2\lambda) - 4I_{yy4}c(2\lambda) + 4I_{yy5}c(2\lambda) + 8I_{zz4}c(2\lambda) +$ $16h_{3}h_{5}m_{5}c(2\lambda) + 16h_{4}h_{5}m_{5}c(2\lambda) - 8h_{3}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda))) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda))) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda))) - 8h_{4}h_{5}m_{$ λ)) - 8h_3h_5m_5c(2(\chi + \lambda)) - 8h_4h_5m_5c(2(\chi + \lambda)) - 3h_5m_5c(2(\chi + 2\lambda)) + $3l_{5}^{2}m_{5}c(2(\chi+2\lambda)) + 6h_{5}l_{5}m_{5}s(2\chi-4\lambda) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) +$ $l_{5s}(\lambda)) + 16h_{3}l_{5}m_{5s}(2\lambda) + 16h_{4}l_{5}m_{5s}(2\lambda) + 2c(2\psi)((-2)I_{xx4} - 2I_{xx5} +$ $2(I_{yy4} + I_{yy5}) - (h_5^2 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 +
(h_5 - l_5)(h_5 + l_5)m_5c(4\lambda) + (h_5 - l_5)(h_5 +$ $2c(2\lambda)(I_{xx4} + I_{xx5} + (-1)I_{yy4} - I_{yy5} - 2l_5^2m_5 + 2h_5l_5m_5c(2\chi)s(2\lambda)) 2h_5m_5((-8)l_5c(\lambda)^3s(\lambda) + h_5c(2\chi)s(2\lambda)^2)) - 8h_3l_5m_5s(2(-\chi + \lambda))$ $8h_4l_5m_5s(2(-\chi + \lambda)) - 8h_3l_5m_5s(2(\chi + \lambda)) - 8h_4l_5m_5s(2(\chi + \lambda)) +$ $(-6)h_5l_5m_5s(2(\chi+2\lambda)) + 4m_5(8(l_3+l_4)c(\lambda)(l_5c(\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) +$ $h_{5}s(2\lambda)(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))(\psi) + 4m_{5}s(2\lambda)((-2)h_{5}l_{5}c(2\lambda) + h_{5}s(2\lambda))(\omega)$ $(h_5 + (-1)l_5)(h_5 + l_5)s(2\lambda)s(2\psi))(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda)) + \dot{\upsilon}_1Rsec(\theta +$ $\psi c(\lambda) s(\psi c(\lambda))) (Rc(\lambda)c(\theta)(l_5 + l_4 sec(\theta + \psi c(\lambda))^2) + R(l_5 c(\lambda)s(\theta) + l_4 sec(\lambda)))) (Rc(\lambda)c(\theta)) + R(l_5 c(\lambda)s(\theta)) + R(l_5 c(\lambda)s(\theta))) (Rc(\lambda)c(\theta)) + R(l_5 c(\lambda)s(\theta))) (Rc(\lambda)c(\theta)) + R(l_5 c(\lambda)s(\theta))) (Rc(\lambda)c(\theta)) (Rc(\lambda)c(\theta))) (Rc(\lambda)c(\theta)) (Rc(\lambda)c(\theta))) (Rc(\lambda)c(\theta)) (Rc(\lambda)c(\theta))) (Rc(\lambda)c(\theta)) (Rc(\lambda)c(\theta)) (Rc(\lambda)c(\theta))) (Rc(\lambda)c(\theta)) (Rc(\lambda)c(\theta))) (Rc(\lambda)c(\theta)) (Rc(\lambda)c(\theta)) (Rc(\lambda)c(\theta))) (Rc(\lambda)c(\theta))$ $h_{4}sec(\theta + \psi c(\lambda))s(\lambda)s(\psi c(\lambda)))tan(\theta + \psi c(\lambda))) + (-1/32)(l_{4} + l_{5})^{-1}\dot{v}_{1}sec(\theta + \psi c(\lambda)))$ $\psi c(\lambda))(2(16I_{xx5}\dot{\upsilon}_1c(\theta)sec(\theta
+ \psi c(\lambda)) + (-16)I_{xx5}\dot{\chi}c(\lambda)s(\psi)) + 32I_{xx5}(l_4 + \psi c(\lambda))))$

 $(l_5)^{-1}s(\lambda)s(\psi)(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))s(\psi c(\lambda))))(h_4sec(\theta+\psi c(\lambda))s(\psi c(\lambda))))$ $\psi c(\lambda) s(\lambda) s(\psi c(\lambda)) + c(\lambda) (l_5 s(\theta) + l_4 c(\theta) tan(\theta + \psi c(\lambda)))) + (1/8)(l_4 + l_4 c(\theta) tan(\theta + \psi c(\lambda))))$ $(l_5)^{-1}(-l_5c(\lambda) + h_4s(\lambda))(8\dot{v}_1Rs(\theta))(\dot{\chi}(c(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5)))))$ $h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5s(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi))s(\theta) - h_6m_6 + m_2R + h_5m_5c(2\lambda) + h_5m_5s(2\lambda)) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda)) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda)) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda)) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda)) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda)) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda)) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5m_5s(2\lambda) + h_5$ $m_5\psi(c(\theta)s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_5c(\lambda) - h_5s(\lambda)) +$ $c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\theta))) + (l_4 + l_5)^{-1}(c(\theta)(s(\chi))(h_4(m_4 + m_5) + l_5))(h_4(m_4 + m_5))))$ $h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - m_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c($ $h_{5}s(2\lambda)s(\psi) + (l_{4}(m_{4}+m_{5})+l_{3}(m_{3}+m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+m_{6}m_{6}-m_{5}c(\psi)s(\lambda))h_{5}c(\lambda))$ $l_{5}s(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\psi))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda)))s(\psi))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda)))s(\psi))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda)))s(\psi))s(\theta))s(\theta)$ $\psi c(\lambda) s(\psi c(\lambda))) + 8\dot{v}_1 R c(\theta) (\dot{\chi} c(\theta) (c(\chi) (h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + m_4))))$ $h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5s(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi)) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi)) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi)) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi)) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi)) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi)) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))$ $m_5\psi(s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi)s(\theta) + c(\psi)(c(\chi)c(\theta)(l_5c(2\lambda) - h_5s(2\lambda))) +$ $c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\theta))) + (1/4)(l_4 + l_5)^{-1}(4c(\theta)(l_4(m_4 + m_5) + l_3(m_3 + l_5))))$ $m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + m_5c(\lambda)(h_5c(\lambda) 4(s(\chi)(-h_4(m_4+m_5)-h_3(m_3+m_4+m_5)-h_6m_6-m_2R-h_5m_5c(2\lambda)-l_5m_5s(2\lambda))+$ $m_5c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi))s(\theta))(\psi((-1)l_5c(\lambda) + h_4s(\lambda)) + \dot{\upsilon}_1Rsec(\theta + i)s(\lambda))s(\psi))s(\theta))(\psi(-1)l_5c(\lambda) + h_4s(\lambda)))$ $\psi c(\lambda) s(\psi c(\lambda))) - 8\dot{v}_1 R c(\theta) (\dot{\chi} c(\theta) (c(\chi) (h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + m_4))))$ $h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5s(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi)) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi)) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi)) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi)) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi)) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi)) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi) + h_5m_5c(2\lambda))s(\psi)$ $h_{5}s(2\lambda)) - c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta))) + (l_{4} + l_{5})^{-1}(c(\theta)(l_{4}(m_{4} + m_{5}) + l_{3}(m_{3} + m_{5})))))$ $m_4+m_5)+l_6m_6-m_5c(\psi)s(\lambda)(h_5c(\lambda)+l_5s(\lambda))+m_5c(\lambda)(l_5c(\lambda)-h_5s(\lambda))s(\psi)) (s(\chi)(h_4(m_4+m_5)+h_3(m_3+m_4+m_5)+h_6m_6+m_2R+h_5m_5c(2\lambda)+l_5m_5s(2\lambda))+$ $\psi c(\lambda) s(\psi c(\lambda))) + (l_4 + l_5)^{-1} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))(c(\theta)(s(\chi)(h_4(m_4 + m_5)))))$ $h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - m_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c($ $h_{5s}(2\lambda)(\psi) + (l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + m_5c(\lambda))) + (l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5)) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + m_5c(\lambda))) + (l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5)) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + m_5c(\lambda))) + (l_4(m_4 + m_5)) + l_5m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + m_5c(\lambda))) + (l_4(m_4 + m_5) + l_5m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + m_5c(\lambda))) + (l_4(m_4 + m_5)) + (l_4(m_5 + m_5)) + (l_5m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda))) + (l_5m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda))) + (l_5m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda))) + (l_5m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda))) + (l_5m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda))) + (l_5m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda))) + (l_5m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda))) + (l_5m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda))) + (l_5m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda))) + (l_5m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda))) + (l_5m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda))) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c(\psi)s(\lambda)) + (l_5m_6 - m_5c$ $l_{5s}(\lambda)) + m_{5c}(\lambda)(l_{5c}(\lambda) + -h_{5s}(\lambda))s(\psi))s(\theta))s(\psi c(\lambda))tan(\theta + \psi c(\lambda))) +$ $8\dot{v}_1Rs(\theta)(-\dot{\chi}(c(\chi)(h_4(m_4+m_5)+h_3(m_3+m_4+m_5)+h_6m_6+m_2R+h_5m_5c(2\lambda)+m_4m_5))$ $l_{5s}(\lambda))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_{5}c(\lambda) - h_{5s}(\lambda))) + (-1)c(\chi)(l_{5}c(2\lambda) - h_{5s}(\lambda)))$ $h_{5}s(2\lambda)s(\theta)) + (1/4)(l_{4}+l_{5})^{-1}(4c(\theta)(s(\chi)(-h_{4}(m_{4}+m_{5})-h_{3}(m_{3}+m_{4}+m_{5})-h_{3}(m_{5}+m_{4}+m_{5}))))$ $h_6m_6 - m_2R - h_5m_5c(2\lambda) - l_5m_5s(2\lambda)) + m_5c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi)) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_5m_5s(2\lambda)) + h_5s(2\lambda)s(\psi)) - h_5m_5c(2\lambda) + h_5s(2\lambda)s(\psi)) - h_5m_5c(2\lambda) + h_5s(2\lambda)s(\psi)) + h_5s(2\lambda)s(\psi)) - h_5m_5c(2\lambda) + h_5s(2\lambda)s(\psi)) + h_5s(2\lambda)s(\psi)) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi)) + h_5s(2\lambda)s(\psi)) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi)) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi)) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi)) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi)) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5s(2\lambda)s(\psi) + h_5$ $4(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + l_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + l_5s(\lambda$ $m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + \dot{\upsilon}_1Rsec(\theta + h_5s(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda)))$ $\psi c(\lambda) s(\psi c(\lambda)) + (1/4)(l_4 + l_5)^{-1} \dot{v}_1 Rsec(\theta + \psi c(\lambda))(4c(\theta)(l_4(m_4 + m_5) + l_3(m_3 + m_5))))$ $m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5c(\lambda) - h_5m_6 - h_5m_6)s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5m_6 - h_5m_6)s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5m_6 - h_5m_6)s(\psi)) + l_5m_6 - m_5c(\lambda)(h_5m_6 - h_5m_6)s(\psi)) + l_5m_6 - m_5m_6 - m_5m_6)s(\psi)) + l_5m_6 - m_5m_6 - m_5m_6)s(\psi)) + l_5m_6 - m_5m_6 - m_5m_6)s(\psi)) + l_5m_6 - m_5m_6 - m_5m_6)s(\psi)) + l_5m_6 - m_5m_6 - m_5m_6)s(\psi)) + l_5m_6 - m_5m_6)s(\psi)) + l_5m_6 - m_5m_6)s(\psi)) + l_5m_6 - m_5m_6)s(\psi)) + l_5m_6 - m_5m_6)s(\psi)) + l_5m_6 - m_5m_6)s(\psi)) + l_5m_6 - m$ $4(s(\chi)(-h_4(m_4+m_5)-h_3(m_3+m_4+m_5)-h_6m_6-m_2R-h_5m_5c(2\lambda)-l_5m_5s(2\lambda))+$ $m_5c(\chi)((-1)l_5c(2\lambda)+h_5s(2\lambda))s(\psi)s(\theta)s(\psi c(\lambda))tan(\theta+\psi c(\lambda)))+(1/4)(8(l_4+$ $(I_5)^{-1}\dot{v}_1Rsec(\theta + \psi c(\lambda))(4I_{xx5}\dot{v}_1c(\theta)sec(\theta + \psi c(\lambda))s(\lambda)s(\psi) + 4\dot{\psi}((I_{yy5} + \psi c(\lambda))s(\lambda)s(\psi)))$ $I_{zz4}(\lambda) + 1/2m_5c(\chi)(2(l_3 + l_4)c(\psi) - 2s(\lambda)(h_5c(\lambda) + l_5s(\lambda)))(l_5c(2\lambda) - l_5s(\lambda)))(l_5c(2\lambda)) = 0$ $h_{5}s(2\lambda)) - m_{5}s(\chi)(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda)) + l_{5}s(\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(b_{3} + b_{4} + h_{5}c(2\lambda) + l_{5}s(\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(b_{3} + b_{4} + h_{5}c(2\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(b_{3} + b_{4} + h_{5}c(2\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(b_{3} + b_{4} + h_{5}c(2\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(b_{3} + b_{4} + h_{5}c(\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(b_{3} + b_{4} + h_{5}c(\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(b_{3} + b_{4} + h_{5}c(\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(b_{3} + b_{4} + h_{5}c(\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(b_{3} + b_{4} + h_{5}c(\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + l_{5}s(\lambda)(b_{3} + b_{4} + h_{5}c(\lambda))(c(\lambda)c(\psi)(h_{5} + b_{5}c(\lambda))) + l_{5}s(\lambda)(h_{5} + b_{5}c(\lambda))(c(\lambda)c(\psi)(h_{5} + b_{5}c(\lambda))) + l_{5}s(\lambda)(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))) + l_{5}s(\lambda)(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))) + l_{5}s(\lambda)(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} + b_{5}c(\lambda))(h_{5} +$ $s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi))) + \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5} - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{yy5} + I_{yz3}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{yy5} + I_{yz3}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{yy5} + I_{yz3}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{yy5} + I_{yz3}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - ($ $4m_5s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)(l_3 + l_4 - c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda))) +$ $c(\lambda)(l_5c(\lambda) + -h_5s(\lambda))s(\psi)) + 4c(\chi)(h_4(l_3 + l_4)(m_4 + m_5)) + h_3(l_4(m_4 + m_5)) + h_3(l_4(m_4 + m_5)) + h_3(l_4(m_4 + m_5)))$ $l_3(m_3 + m_4 + m_5)) + h_6 l_6 m_6 + m_5((l_3 + l_4)(h_5 c(2\lambda) + l_5 s(2\lambda)) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda)) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda)) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_5 s(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda))) - c(\psi)s($ $l_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+l_{5}s(2\lambda))+c(\lambda)(l_{5}c(\lambda)-h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5}s(\lambda))(h_{5}+h_{5}+h_{5}s(\lambda))(h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h_{5}+h$ $l_{5s}(2\lambda)(\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda$ $\psi c(\lambda)) + 2(l_4 + l_5)^{-2} \dot{v}_1 Rsec(\theta + \psi c(\lambda))(4(I_{xx4} + I_{xx5} + 4I_{xx6} + 4I_{yy2} + I_{yy4} + I_{yy4}))$

 $3I_{yy5} + 4I_{zz3} + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2((h_3 + h_4)^2 + 2(l_3 + l_4)^2)m_4 + (2((h_3 + h_4)^2)m_4)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2)m_4)m_4 + (2(h_3 + h_4)^2)m_4)m_4 + (2(h_3 + h_4)^2)m_4)m_4 + (2(h_4 + h_4)^2)m_4)m_4)m_4 + (2(h_4 + h_4)^2)m_4)m_4)m_4)m_4)m_4)m_4)m_4)m_4)m_4)m_$ $(h_4)^2 + h_5^2 + 2(l_3 + l_4)^2) + 3l_5^2)m_5 + 2(h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3^2m_3c(2\chi) - 8h_3$ $8h_3^2m_4c(2\chi) - 16h_3h_4m_4c(2\chi) - 8h_4^2m_4c(2\chi) - 8h_3^2m_5c(2\chi) - 16h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3h_4m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h_3m_5c(2\chi) - 6h$ $8h_4^2m_5c(2\chi) - 2h_5^2m_5c(2\chi) - 2l_5^2m_5c(2\chi) - 8h_6^2m_6c(2\chi) - 8m_2R^2c(2\chi) 3h_5^2m_5c(2\chi-4\lambda)+3l_5^2m_5c(2\chi-4\lambda)-4I_{xx4}c(2\lambda)-4I_{xx5}c(2\lambda)-4I_{yy4}c(2\lambda)+$ $4I_{vv5}c(2\lambda) + 8I_{zz4}c(2\lambda) + 16h_3h_5m_5c(2\lambda) + 16h_4h_5m_5c(2\lambda) - 8h_3h_5m_5c(2(-\chi + 1)))$ λ)) - $8h_4h_5m_5c(2(-\chi + \lambda))$ - $8h_3h_5m_5c(2(\chi + \lambda))$ - $8h_4h_5m_5c(2(\chi + \lambda))$ $\lambda)) - 3h_5^2 m_5 c (2(\chi + 2\lambda)) + 3l_5^2 m_5 c (2(\chi + 2\lambda)) + 6h_5 l_5 m_5 s (2\chi - 4\lambda) +$ $(-32)(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + 16h_3l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) +$ $l_{5}(h_{5}+l_{5})m_{5}c(4\lambda)+2c(2\lambda)(I_{xx4}+I_{xx5}-I_{yy4}-I_{yy5}-2l_{5}^{2}m_{5}+2h_{5}l_{5}m_{5}c(2\chi)s(2\lambda)) 2h_5m_5((-8)l_5c(\lambda)^3s(\lambda) + h_5c(2\chi)s(2\lambda)^2)) - 8h_3l_5m_5s(2(-\chi + \lambda))' +$ $(-8)h_4l_5m_5s(2(-\chi + \lambda)) - 8h_3l_5m_5s(2(\chi + \lambda)) - 8h_4l_5m_5s(2(\chi + \lambda)) +$ $(-6)h_5l_5m_5s(2(\chi+2\lambda)) + 4m_5(8(l_3+l_4)c(\lambda)(l_5c(\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) +$ $h_{5}s(2\lambda)(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)))s(\psi) + 4m_{5}s(2\lambda)((-2)h_{5}l_{5}c(2\lambda) + h_{5}s(2\lambda))(1-2)h_{5}s(2\lambda))(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda))(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda))(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda))(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda))(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda)(1-2)h_{5}s(2\lambda) + h_{5}s(2\lambda$ $(h_5 - l_5)(h_5 + l_5)s(2\lambda))s(2\psi)s(\psi c(\lambda))(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda)) + \dot{\upsilon}_1Rsec(\theta + h_5c(\lambda)))s(2\psi))s(\psi c(\lambda))(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + \dot{\upsilon}_1Rsec(\theta + h_5c(\lambda)))s(2\psi)s(\psi c(\lambda))(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + \dot{\upsilon}_1Rsec(\theta + h_5c(\lambda))s(2\psi))s(\psi c(\lambda))(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + \dot{\upsilon}_1Rsec(\theta + h_5c(\lambda))s(2\psi)s(\psi c(\lambda))(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + \dot{\upsilon}_1Rsec(\theta + h_5c(\lambda))s(2\psi)s(\psi c(\lambda))(\dot{\psi}(-h_5c(\lambda) + h_4s(\lambda))) + \dot{\upsilon}_1Rsec(\theta + h_5c(\lambda))s(2\psi)s(\psi c(\lambda))(\dot{\psi}(-h_5c(\lambda) + h_4s(\lambda))) + \dot{\upsilon}_1Rsec(\theta + h_5c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))) + \dot{\upsilon}_1Rsec(\theta + h_5c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi$ $\psi c(\lambda) s(\psi c(\lambda)) tan(\theta + \psi c(\lambda)) + 2((-16)I_{xx5}\dot{v}_1^2 c(\theta) sec(\theta + \psi c(\lambda))^2 s(\theta) +$ $\psi c(\lambda)$) - $16I_{xx5}\dot{\chi}\dot{\upsilon}_1 c(\lambda)c(\theta)sec(\theta + \psi c(\lambda))s(\psi)tan(\theta + \psi c(\lambda))) + 8(l_4 + \psi c(\lambda))$ $(l_5)^{-1}(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda)) + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda)))((-4)I_{xx5}\dot{\upsilon}_1sec(\theta + \psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c($ $\psi c(\lambda) s(\lambda) s(\psi) s(\theta) + 4I_{xx5} \dot{v}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda) s(\psi) tan(\theta)$ + $\psi c(\lambda)))) + (1/8)((-8)\dot{v}_1Rc(\theta)(\dot{\chi}m_5c(\psi)s(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\theta))))$ _ $m_5\psi(c(\psi)c(\theta)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) - s(\psi)(c(\lambda)c(\theta)(l_5c(\lambda) - h_5s(\lambda)))$ + $c(\boldsymbol{\chi})(-l_5c(2\lambda) + h_5s(2\lambda))s(\boldsymbol{\theta}))) + (l_4 + l_5)^{-1}(m_5c(\boldsymbol{\chi})c(\boldsymbol{\psi})c(\boldsymbol{\theta})(l_5c(2\lambda)))c(\boldsymbol{\theta}))$ + $(-1)h_{5}s(2\lambda)) + (m_{5}c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))) + m_{5}s(\lambda)(h_{5}c(\lambda))$ + $l_{5}s(\lambda))s(\psi)s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))$ + $(l_4 + l_5)^{-1}(c(\theta)(s(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6))$ + $m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi))$ + $(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda)))$ + $l_{5}s(\lambda))$ + $m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)s(\theta))(\dot{v}_1Rc(\lambda)c(\psi c(\lambda))sec(\theta))$ + $\dot{\upsilon}_1 Rc(\lambda) sec(\theta + \psi c(\lambda)) s(\psi c(\lambda)) tan(\theta + \psi c(\lambda)) s(\psi c(\lambda)) tan(\theta) + \psi c(\lambda) s(\psi c(\lambda)) tan(\theta) + \psi c(\lambda) s(\psi c(\lambda)) s(\psi c(\lambda)) tan(\theta) + \psi c(\lambda) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s(\psi c(\lambda)) s$ $\Psi c(\lambda)$ + $\Psi c(\lambda))))$ + $8\dot{v}_1 R_s(\theta)(\dot{\chi}m_5c(\psi)c(\theta)s(\chi)(-l_5c(2\lambda) + h_5s(2\lambda)) + m_5\dot{\psi}(c(\psi)s(\lambda)(h_5c(\lambda)))$ + $l_{5}s(\lambda))s(\theta) - s(\psi)(c(\chi)c(\theta)(l_{5}c(2\lambda) - h_{5}s(2\lambda)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta))) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda) - h_{5}c(\lambda))s(\theta)) + c(\lambda)(l_{5}c(\lambda))s(\lambda)(h_{5}$ $(1/4)(l_4 + l_5)^{-1}(4c(\theta)(m_5c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda)) + m_5s(\lambda)(h_5c(\lambda) + m_5s(\lambda))))$ $l_{5}s(\lambda))s(\psi)) + 4m_{5}c(\chi)c(\psi)(-l_{5}c(2\lambda) + h_{5}s(2\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda)) + h_{5}s(2\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda)) + h_{5}s(2\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda)) + h_{5}s(2\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda)) + h_{5}s(2\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda)) + h_{5}s(2\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda)) + h_{5}s(2\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda)))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda)))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(-l_{5}c(\lambda) + h_{5}s(\lambda))s(\theta))(\psi(\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) + (1/4)(l_4 + l_5)^{-1}(4c(\theta)(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5))))$ $m_5) + l_6 m_6 - m_5 c(\psi) s(\lambda) (h_5 c(\lambda) + l_5 s(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda) - h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) + l_5 s(\lambda) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) s(\psi) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) s(\psi) (h_5 c(\lambda) + h_5 s(\lambda)) s(\psi)) s(\psi) (h_5 c(\lambda) + h_5 s(\lambda))$ $4(s(\chi)(-h_4(m_4 + m_5) - h_3(m_3 + m_4 + m_5) - h_6m_6 - m_2R - h_5m_5c(2\lambda) \psi c(\lambda)$) + $\dot{v}_1 Rc(\lambda) sec(\theta + \psi c(\lambda)) s(\psi c(\lambda)) tan(\theta + \psi c(\lambda)))$ + $(1/4)((l_4 + \psi c(\lambda)))$ $l_{5})^{-2}(8m_{5}c(2\psi)s(2\lambda)((-2)h_{5}l_{5}c(2\lambda) + (h_{5} - l_{5})(h_{5} + l_{5})s(2\lambda)) + 4m_{5}c(\psi)(8(l_{3} + l_{5})s(2\lambda)))$ $l_4)c(\lambda)(l_5c(\lambda) - h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda) + -h_5s(2\lambda))(h_3 + h_4 + h_5c(2\lambda) +$ $l_{5s}(2\lambda))) + 32(l_{3} + l_{4})m_{5s}(\lambda)(h_{5c}(\lambda) + l_{5s}(\lambda))s(\psi) - 4((-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{yy4}))s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx4} - 2I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{xx5})s(\psi) - 4((-2)I_{x5})s(\psi) - 4((-2)I_{x5})s(\psi) - 4((-2)I_{x5})s(\psi) - 4((-2)I_{x5})s(\psi) - 4((-2)I_{x5})s(\psi)$ $I_{vv5}) - (h_5^2 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{x$ $I_{xx5} - I_{yy4} - I_{yy5} - 2l_5^2 m_5 + 2h_5 l_5 m_5 c(2\chi) s(2\lambda)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda)) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_5 c(\lambda)^3 s(\lambda) + 2h_5 m_$ $h_5c(2\chi)s(2\lambda)^2))s(2\psi))(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{v}_1Rsec(\theta+\psi c(\lambda))s(\psi c(\lambda)))^2+$ $2((-16)I_{xx5}\dot{\chi}\dot{\upsilon}_{1}c(\lambda)c(\psi)c(\theta)sec(\theta+\psi c(\lambda))-16\dot{\chi}m_{5}\dot{\psi}(l_{5}c(2\lambda)-h_{5}s(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{3}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}c(2\lambda))(h_{5}+h_{5}-h_{5}c(2\lambda))(h_{5}+h_{5}-h_{5}c(2\lambda))(h_{5}+h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{5}-h_{$

 $8h_5l_5m_5c(\psi)s(4\lambda)s(\psi) + 2(I_{xx4} + I_{xx5} + I_{yy4} + I_{yy5} + (h_5^2 + l_5^2)m_5)s(2\psi) + 2(I_{xx4} + I_{yy5} + (h_5^2 + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + I_{yy5} + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5} + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5} + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5} + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5} + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5} + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5} + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5} + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5} + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5} + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5} + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5} + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5} + h_5^2)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5})m_5)m_5)s(2\psi) + 2(I_{xx4} + h_{yy5})m_5)m_5)s(2\psi$ $I_{xx5} + I_{yy4} + I_{yy5}c(2\lambda)s(2\psi) + m_5\dot{\psi}^2(4c(2\psi)s(2\lambda)(2h_5l_5c(2\lambda) + (-h_5^2 +$ $l_{5}^{2}(2\lambda)) - 8c(\lambda)((h_{5}^{2} + l_{5}^{2})c(\lambda) + (-h_{5}^{2} + l_{5}^{2})c(3\lambda) - 2h_{5}l_{5}s(3\lambda))s(2\psi)) +$ $16I_{xx5}\dot{v}_{1}^{2}c(\lambda)c(\theta)^{2}sec(\theta+\psi c(\lambda))^{2}tan(\theta+\psi c(\lambda))-16I_{xx5}\dot{\chi}\dot{v}_{1}c(\lambda)^{2}c(\theta)sec(\theta+\psi c(\lambda))^{2}c(\theta)sec(\theta+\psi c(\lambda))^{2}c(\theta)sec(\theta+\psi c(\lambda))^{2}c(\theta)sec(\theta+\psi c(\lambda))^{2}sec(\theta+\psi c(\lambda))^$ $\psi c(\lambda) s(\psi) tan(\theta + \psi c(\lambda))) + 8(l_4 + l_5)^{-1}(\psi(-l_5c(\lambda) + h_4s(\lambda)) +$ + $\psi c(\lambda) s(\psi c(\lambda)) (4I_{xx5} \dot{\upsilon}_1 c(\psi) c(\theta) sec(\theta +$ $\psi c(\lambda))s(\lambda)$ $\dot{v}_1 Rsec(\theta)$ + $4\dot{\psi}((-l_3 - l_4)m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi) - m_5s(\chi)(h_3 + h_4 + h_5c(2\lambda) + h_5c(2\lambda))s(\psi) - h_5s(\chi)(h_5 - h_5)s(2\lambda))s(\psi) - h_5s(\chi)(h_5 - h_5)s(2\lambda) + h_5s(\chi)(h_5 - h_5)s(2\lambda))s(\psi) - h_5s(\chi)(h_5 - h_5)s(2\lambda) + h_5s(\chi)(h_5 - h_5)s(2\lambda))s(\psi) - h_5s(\chi)(h_5 - h_5)s(2\lambda) + h_5s(\chi)(h_5 - h_5)s(2\lambda))s(\psi) - h_5s(\chi)(h_5 - h_5)s(2\lambda) + h_5s(\chi)(h_5 - h_5)s(2\lambda))s(\psi) - h_5s(\chi)(h_5 - h_5)s(2\lambda) + h_5s(\chi)(h_5 - h_5)s(2\lambda))s(\psi) - h_5s(\chi)(h_5 - h_5)s(2\lambda) + h_5s(\chi)(h_5 - h_5)s(2\lambda))s(\psi) - h_5s(\chi)(h_5 - h_5)s(2\lambda) + h_5s(\chi)(h_5 - h_5)s(2\lambda) + h_5s(\chi)(h_5 - h_5)s(2\lambda) + h_5s(\chi)(h_5 - h_5)s(\chi)(h_5 - h_5)s(\chi) + h_5s(\chi)(h_5 - h_5)s(\chi)(h_5 - h_5)s(\chi) + h_5s(\chi)(h_5 - h_5)s(\chi)(h_5 - h_5)s(\chi) + h_5s(\chi)(h_5 - h_5)s(\chi)(h_5 - h_5)s(\chi) + h_5s(\chi)(h_5 - h_5)s(\chi)(h_5 - h_5)s(\chi) + h_5s(\chi)(h_5 - h_5)s(\chi)(h_5 - h_5)s(\chi) + h_5s(\chi)(h_5 - h_5)s(\chi)($ $l_{5s}(2\lambda))(c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) - c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\psi))) +$ $\dot{\chi}((-4)m_5c(\psi)s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))(l_3 + l_4 - c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) +$ $c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(2\lambda))s(\psi))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi))s(\psi)) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi))s(\psi))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) -
h_5s(\lambda))s(\psi))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi)(c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))s(\psi)(u))s(\psi)(u))s(\psi)(u)s$ $h_{5}s(\lambda)) + s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))s(\psi)) + 4m_{5}c(\chi)(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda))(h_{3} + h_{5}s(\lambda)))(h_{3} + h_{5}s(\lambda))(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}$ $h_4+h_5c(2\lambda)+l_5s(2\lambda))+s(\lambda)(h_5c(\lambda)+l_5s(\lambda))(h_3+h_4+h_5c(2\lambda)+l_5s(2\lambda))s(\psi))+$ $s(2\lambda)((-2)(I_{yy4} + I_{yy5})c(2\psi) - 2(I_{xx4} + I_{xx5})s(2\psi))) + 4I_{xx5}\dot{v}_1c(\lambda)c(\theta)sec(\theta + I_{yy5})c(2\psi) - 2(I_{xx4} + I_{xx5})s(2\psi)) + 4I_{xx5}\dot{v}_1c(\lambda)c(\theta)sec(\theta + I_{yy5})c(2\psi) - 2(I_{xx4} + I_{xx5})s(2\psi)) + 4I_{xx5}\dot{v}_1c(\lambda)c(\theta)sec(\theta + I_{yy5})c(2\psi) - 2(I_{xx4} + I_{xx5})s(2\psi)) + 4I_{xx5}\dot{v}_1c(\lambda)c(\theta)sec(\theta + I_{yy5})c(2\psi) - 2(I_{xx4} + I_{xx5})s(2\psi)) + 4I_{xx5}\dot{v}_1c(\lambda)c(\theta)sec(\theta + I_{yy5})c(2\psi) - 2(I_{xx4} + I_{xx5})s(2\psi)) + 4I_{xx5}\dot{v}_1c(\lambda)c(\theta)sec(\theta + I_{xx5})c(2\psi) + 4I_{xx5}\dot{v}_1c(\lambda)c(\theta)sec(\theta + I_{xx5})c(2\psi) + 4I_{xx5}\dot{v}_1c(\lambda)c(\theta)sec(\theta + I_{xx5})c(2\psi) + 4I_{xx5}\dot{v}_1c(\lambda)c(\theta)sec(\theta + I_{xx5})c(2\psi) + 4I_{xx5}\dot{v}_1c(\lambda)c(\theta)sec(\theta + I_{xx5})c(\psi) + 4I_{xx5}\dot{v}_1c(\lambda)c(\theta)sec(\theta + I_{xx5})c(\psi) + 4I_{xx5}\dot{v}_1c(\lambda)c(\theta)sec(\theta + I_{xx5})c(\psi) + 4I_{xx5}\dot{v}_1c(\lambda)c(\theta)sec(\theta + I_{xx5})c(\psi) + 4I_{xx5}\dot{v}_1c(\lambda)c(\psi)sec(\theta + I_{xx5})c(\psi) + 4I_{xx5}\dot{v}_1c(\lambda)c(\psi)sec(\theta + I_{xx5})c(\psi)sec(\theta + I_{xx5})c(\psi)sec$ $\psi c(\lambda) s(\lambda) s(\psi) tan(\theta + \psi c(\lambda))) + 8(l_4 + l_5)^{-1} (4I_{xx5} \dot{v}_1 c(\theta) sec(\theta + \eta))$ $\psi c(\lambda) s(\lambda) s(\psi) + 4 \dot{\psi} ((I_{vv5} + I_{zz4})c(\lambda) + 1/2m_5 c(\chi)(2(l_3 + l_4)c(\psi) - 1/2m_5 c(\chi))(2(l_3 + l_4)c(\psi)) - 1/2m_5 c(\chi)(2(l_3 +
l_4)c(\psi)) - 1/2m_5 c(\chi)(2(l_3 + l_4)c(\chi)) - 1/2m_5 c(\chi)(2(l_3 + l_4)c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)) -$ $2s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)))(l_{5}c(2\lambda) + -h_{5}s(2\lambda)) - m_{5}s(\chi)(h_{3} + h_{4} + h_{5}c(2\lambda) +$ $l_{5s}(2\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda)) + s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))) + \dot{\chi}(4I_{vz3} - h_{5}s(\lambda))s(\psi))s(\psi)) + \dot{\chi}(4I_{vz3} - h_{5}s(\lambda))s(\psi))s(\psi))s(\psi))s(\psi)) + \dot{\chi}(4I_{vz3} - h_{5}s(\lambda))s(\psi))s(\psi))s($ $(I_{xx4} + I_{xx5} - 2(I_{yy5} + I_{zz4}))s(2\lambda) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)(l_3 + l_4 - h_5s(2\lambda))s(\psi)(l_3 + l_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4 - h_5s(2\lambda))s(\psi)(h_5$ $c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + 4c(\chi)(h_4(l_3 + k_5))s(\psi))$ $l_4(m_4 + m_5) + h_3(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5))$ $l_{4}(h_{5}c(2\lambda) + l_{5}s(2\lambda)) + (-1)c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + h_{5}c(2\lambda))(h_{5}c(\lambda) + h_{5}c(2\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) +
h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda) + h_{5}c(\lambda))(h_{5}c(\lambda))(h_{5}c(\lambda))(h_{5}c(\lambda))(h_{5}c(\lambda))(h_{$ $l_{5}s(2\lambda)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))s(\psi))) +$ $s(2\lambda)((I_{xx4}+I_{xx5})c(2\psi)-(I_{yy4}+I_{yy5})s(2\psi))))(\dot{\upsilon}_1Rc(\lambda)c(\psi c(\lambda))sec(\theta+\psi c(\lambda))+$ $\dot{\upsilon}_1 Rc(\lambda) sec(\theta + \psi c(\lambda)) s(\psi c(\lambda)) tan(\theta + \psi c(\lambda))) + 2(l_4 + l_5)^{-2}(4(I_{xx4} + I_{xx5} + I_{xx5})) + 2(l_4 + l_5)^{-2}(4(I_{xx4} + I_{xx5}))) + 2(l_4 + l_5)^{-2}(I_{xx5})) + 2(l_4 + l_5)^{-2}(I_{xx5}) + 2(l_5 + l_5)^{-2}(I_{xx5})) + 2(l_5 + l_5)^{-2}(I_{xx5}) + 2(l_5 + l_5)^{-2}(I_{xx5}) + 2(l_5 + l_5)^{-2}(I_{xx5})) + 2(l_5 + l_5)^{-2}(I_{xx5}) + 2(l_5 + l_5)^{-2}(I_{xx5}) + 2(l_5 + l_5)^{-2}(I_{xx5}) + 2(l_5 + l_5)^{-2}(I_{xx5}) + 2(l_5 + l_5)^{-2}(I_{xx5}) + 2(l_5 + l_5)^{-2}(I_{xx5}) + 2(l_5 + l_5)^{-2}(I_{x5}) + 2(l_5 + l_5)^{-2}(I_{x5}) + 2(l_5 + l_5)^{-2}(I_{x5}) + 2(l_5 + l_5)^{-2}(I_{x5}) + 2(l_5 + l$ $4I_{xx6} + 4I_{yy2} + I_{yy4} + 3I_{yy5} + 4I_{zz3} + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2((h_3 + h_4)^2 + 2(l_3 + h_4)^2)m_3 + 2(h_3 + h_4)^2 + 2(h_4 + h_4)^2 + 2(h_4 + h_4)^$ $l_{4})^{2})m_{4} + \left(2\left((h_{3} + h_{4})^{2} + h_{5}^{2} + 2(l_{3} + l_{4})^{2}\right) + 3l_{5}^{2}\right)m_{5} + 2(h_{6}^{2}m_{6} + 2l_{6}^{2}m_{6} + m_{2}R^{2})) - \frac{1}{2}\left(h_{6}^{2}m_{6} + 2l_{6}^{2}m_{6} + m_{2}R^{2}\right)m_{5} + 2(h_{6}^{2}m_{6} + 2l_{6}^{2}m_{6} + m_{2}R^{2})m_{5} + 2(h_{6}^{2}m_{6} + m_{2}R^{2})m_{6} + 2(h_{6}^{2}m_{6} + m_{2}R^{2})m_{6} + 2(h_{6}^{2}m_{6} + m_{2}R^{2})m_{6} + 2(h_{6}^{2}m_{6} + m_{2}R^{2})m_{6} + 2(h_{6}^{2}m_{6} + m_{2}R^{2})m_{6} + 2(h_{6}^{2}m_{6} + m_{2}R^{2})m_{6} + 2(h_{6}^{2}m_{6} + m_$ $8h_3^2m_3c(2\chi) - 8h_3^2m_4c(2\chi) - 16h_3h_4m_4c(2\chi) - 8h_4^2m_4c(2\chi) - 8h_3^2m_5c(2\chi) +$ $(-16)h_3h_4m_5c(2\chi) - 8h_4^2m_5c(2\chi) - 2h_5^2m_5c(2\chi) - 2l_5^2m_5c(2\chi) - 8h_6^2m_6c(2\chi) +$ $(-8)m_2R^2c(2\chi) - 3h_5^2m_5c(2\chi - 4\lambda) + 3l_5^2m_5c(2\chi - 4\lambda) - 4I_{xx4}c(2\lambda) - 4I_{xx5}c(2\lambda) -
4I_{xx5}c(2\lambda) - 4I_{xx5}c(2\lambda) - 4I_{xx5}c(2\lambda) - 4I_{xx5}c(2\lambda)$ $4I_{vv4}c(2\lambda) + 4I_{vv5}c(2\lambda) + 8I_{zz4}c(2\lambda) + 16h_3h_5m_5c(2\lambda) + 16h_4h_5m_5c(2\lambda) 8h_3h_5m_5c(2(-\chi + \lambda)) - 8h_4h_5m_5c(2(-\chi + \lambda)) + -8h_3h_5m_5c(2(\chi + \lambda)) 8h_4h_5m_5c(2(\chi + \lambda)) + (-3)h_5^2m_5c(2(\chi + 2\lambda)) + 3l_5^2m_5c(2(\chi + 2\lambda)) +$ $6h_{5}l_{5}m_{5}s(2\chi - 4\lambda) + (-32)(l_{3} + l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + (-32)(l_{3} + l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + (-32)(l_{3} + l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + (-32)(l_{3} + l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + (-32)(l_{3} + l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + (-32)(l_{3} + l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + (-32)(l_{3} + l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + (-32)(l_{3} + l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + (-32)(l_{3} + l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + (-32)(l_{3} + l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + (-32)(l_{3} + l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + (-32)(l_{5} + l_{5})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5})m_{5}c(\psi)s(\lambda)) + (-32)(l_{5} + l_{5})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5})m_{5}c(\psi)s(\lambda)) + (-32)(l_{5} + l_{5})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5})m_{5}c(\psi)s(\lambda)) + (-32)(l_{5} + l_{5})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5})m_{5}c(\psi)s(\lambda)) + (-32)(l_{5} + l_{5})m_{5}c(\psi)s(\lambda)$ $16h_4l_5m_5s(2\lambda) + 2c(2\psi)((-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + I_{yy5}) - (h_5^2 + l_5^2)m_5 2l_{5}^{2}m_{5}c(2\chi)c(2\lambda)^{2} + (h_{5} - l_{5})(h_{5} + l_{5})m_{5}c(4\lambda) + 2c(2\lambda)(I_{xx4} + I_{xx5} + (-1)I_{yy4} - (-1)I_{yy4}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + (-1)I_{yy4} - (-1)I_{yy4} - (-1)I_{yy4} + (-1)I_{yy4} - (-1)I_{yy4} + (-1)I_{yy4} - (-1)I_{yy4} + (-1)I_{yy4} - (-1)I_{yy4} + (-1)I_{yy4} - (-1)I_{yy4} + (-1)I_{yy4} + (-1)I_{yy4} - (-1)I_{yy4} + (-1)I_{yy$ $I_{yy5} - 2l_5^2 m_5 + 2h_5 l_5 m_5 c(2\chi) s(2\lambda)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(\lambda)^2)) - 2h_5 m_5 ((-8) l_5 c(\lambda)^3 s(\lambda) + h_5 c(\lambda)^3 s($ $8h_{3}l_{5}m_{5}s(2(-\chi + \lambda)) - 8h_{4}l_{5}m_{5}s(2(-\chi + \lambda)) - 8h_{3}l_{5}m_{5}s(2(\chi + \lambda)) h_{5}s(\lambda)$ + $4s(2\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)))s(\psi)$ + $4m_{5}s(2\lambda)((-2)h_{5}l_{5}c(2\lambda) + (h_{5} + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} +
l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})s(2\psi))$ $h_{4s}(\lambda)$) + $\dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))(\dot{v}_{1}Rc(\lambda)c(\psi c(\lambda))sec(\theta + \psi c(\lambda)) +$ $\dot{\upsilon}_1 Rc(\lambda) sec(\theta + \psi c(\lambda)) s(\psi c(\lambda)) tan(\theta + \psi c(\lambda)))))$

$$\begin{split} \ddot{\upsilon}_1 &= (I_{xx2} + (m_2 + m_3 + m_4 + m_5 + m_6)R^2 + I_{xx5}c(\theta)^2 sec(\theta + \psi c(\lambda))^2 + 2I_{xx5}(l_4 + l_5)^{-1}Rc(\theta)sec(\theta + \psi c(\lambda))^2 s(\lambda)s(\psi)s(\psi c(\lambda)) &- 2(l_4 + l_5)^{-1}R^2c(\theta)sec(\theta + \psi c(\lambda))(c(\theta)(s(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + (l_4(m_4 + m_5) + h_6m_6) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + (l_4(m_4 + m_5) + h_5m_5c(2\lambda))s(\psi)) + (l_4(m_5) + h_5m_5c(2\lambda))s(\psi)) + (l_4(m_5) + h_5m_5c(2\lambda))s(\psi)) + (l_4(m_5) + h_5m_5c(2\lambda))s(\psi)) + (l_5(m_5))s(\psi)) + (l_5(m_5))s(\psi)) + (l_5(m_5))s(\psi)) + (l_5(m_5))s(\psi)$$

 $l_3(m_3 + m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) +$ $h_{5}s(\lambda))s(\psi))s(\theta))s(\psi c(\lambda)) + \frac{1}{2}(l_{4}+l_{5})^{-1}R^{2}sec(\theta+\psi c(\lambda))s(\theta)(4c(\theta)(l_{4}(m_{4}+l_{5})^{-1}R^{2}sec(\theta+\psi c(\lambda))s(\theta)(4c(\theta)(l_{4}(m_{4}+l_{5})^{-1}R^{2}sec(\theta+\psi c(\lambda))s(\theta)(4c(\theta)(l_{4}(m_{4}+l_{5})^{-1}R^{2}sec(\theta+\psi c(\lambda))s(\theta)(4c(\theta)(l_{4}(m_{4}+l_{5})^{-1}R^{2}sec(\theta+\psi c(\lambda))s(\theta)(4c(\theta)(l_{4}(m_{4}+l_{5})^{-1}R^{2}sec(\theta+\psi c(\lambda))s(\theta)(4c(\theta)(l_{4}(m_{4}+l_{5})^{-1}R^{2}sec(\theta+\psi c(\lambda))s(\theta)(4c(\theta)(l_{4}(m_{4}+l_{5})^{-1}R^{2}sec(\theta+\psi c(\lambda))s(\theta)(4c(\theta)(l_{4}(m_{4}+l_{5})^{-1}R^{2}sec(\theta+\psi c(\lambda))s(\theta)(4c(\theta)(l_{4}(m_{4}+l_{5})^{-1}R^{2}sec(\theta+\psi c(\lambda))s(\theta)(4c(\theta)(l_{4}(m_{4}+l_{5})^{-1}R^{2}sec(\theta+\psi c(\lambda))s(\theta)(4c(\theta)(l_{4}(m_{4}+l_{5})^{-1}R^{2}sec(\theta+\psi c(\lambda))s(\theta)(4c(\theta)(l_{4}(m_{4}+l_{5})^{-1}R^{2}sec(\theta+\psi c(\lambda))s(\theta)(\theta+\psi c(\lambda))s(\theta)(\theta)(\theta+\psi c(\lambda))s(\theta)(\theta+\psi c(\lambda))s(\theta)(\theta+\psi c(\lambda))s(\theta)(\theta+\psi c(\lambda))s(\theta)(\theta+\psi c(\lambda))s(\theta)(\theta+\psi c(\lambda))s(\theta)(\theta+\psi c(\lambda))s(\theta)(\theta+\psi c(\lambda))s(\theta)(\theta+\psi c(\lambda))s(\theta$ m_{5}) + $l_{3}(m_{3} + m_{4} + m_{5})$ + $l_{6}m_{6} - m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)))$ $h_{5}s(\lambda))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})) - h_{3}(m_{3} + m_{4} + m_{5})) - h_{6}m_{6} - m_{2}R - m_{4}m_{5})$ $h_5m_5c(2\lambda) - l_5m_5s(2\lambda)) + m_5c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi)s(\theta))s(\psi c(\lambda)) +$ $1/16(l_4 + l_5)^{-2}R^2sec(\theta + \psi c(\lambda))^2(4(I_{xx4} + I_{xx5} + 4I_{xx6} + 4I_{yy2} + I_{yy4} + 3I_{yy5} + 4I_{yy5})^2$ $4I_{zz3} + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2((h_3 + h_4)^2 + 2(l_3 + l_4)^2)m_4 + (2((h_3 + h_4)^2)m_4)m_4 + (2((h_3 + h_4)^2)m_4)m_4 + (2((h_3 + h_4)^2)m_4)m_4 + (2((h_3 + h_4)^2)m_4)m_4 + (2((h_3 + h_4)^2)m_4)m_4 + (2((h_3 + h_4)^2)m_4)m_4 + (2((h_3 + h_4)^2)m_4)m_4$ $(h_4)^2 + h_5^2 + 2(l_3 + l_4)^2) + 3l_5^2)m_5 + 2(h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) - 8h_3^2m_3c(2\chi) -
8h_3^2m_3c(2\chi) - 8h_3$ $8h_4^2m_5c(2\chi) - 2h_5^2m_5c(2\chi) - 2l_5^2m_5c(2\chi) + (-8)h_6^2m_6c(2\chi) - 8m_2R^2c(2\chi) 3h_5^2m_5c(2\chi-4\lambda)+3l_5^2m_5c(2\chi-4\lambda)-4I_{xx4}c(2\lambda)-4I_{xx5}c(2\lambda)-4I_{yy4}c(2\lambda)+$ $4I_{yy5}c(2\lambda) + 8I_{zz4}c(2\lambda) + 16h_3h_5m_5c(2\lambda) + 16h_4h_5m_5c(2\lambda) - 8h_3h_5m_5c(2(-\chi + 16h_4h_5m_5c(2\lambda) - 8h_3h_5m_5c(2(-\chi + 16h_4h_5m_5c(2\lambda) - 8h_3h_5m$ λ)) - $8h_4h_5m_5c(2(-\chi + \lambda))$ - $8h_3h_5m_5c(2(\chi + \lambda))$ - $8h_4h_5m_5c(2(\chi + \lambda))$ $\lambda)) - 3h_5^2 m_5 c(2(\chi + 2\lambda)) + 3l_5^2 m_5 c(2(\chi + 2\lambda)) + 6h_5 l_5 m_5 s(2\chi - 4\lambda) +$ $(-32)(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + 16h_3l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) +$ $2c(2\psi)((-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + I_{yy5}) - (h_5^2 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + 2(h_5^2 + h_5^2)m_5 - 2(h_5^2$ $(h_5 - l_5)(h_5 + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy4} - I_{yy5} - 2l_5^2m_5 + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy4} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{$ $2h_5l_5m_5c(2\chi)s(2\lambda)) - 2h_5m_5(-8l_5c(\lambda)^3s(\lambda) + h_5c(2\chi)s(2\lambda)^2)) - 8h_3l_5m_5s(2(-\chi + 1))) -
8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5m_5s(2(-\chi + 1))) - 8h_3l_5m_5m_5m_5m_$ λ)) - $8h_4l_5m_5s(2(-\chi + \lambda)) - 8h_3l_5m_5s(2(\chi + \lambda)) - 8h_4l_5m_5s(2(\chi + \lambda)) - 8h_4l_5m_5s(2(\chi + \lambda)))$ $6h_{5}l_{5}m_{5}s(2(\chi+2\lambda)) + 4m_{5}(8(l_{3}+l_{4})c(\lambda)(l_{5}c(\lambda)-h_{5}s(\lambda))) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda))) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda))) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda))) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)-h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(\lambda)$ $h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)))s(\psi) + 4m_{5}s(2\lambda)((-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5}))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))(h_{5} + h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}l_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}h_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}h_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}h_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}h_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + 4m_{5}s(2\lambda)(-2)h_{5}h_{5}c(2\lambda) + (h_{5} - h_{5})s(2\lambda))s(\psi) + (h_{5} - h_{5})s(2\lambda)$ $l_{5}(h_{5}+l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))^{2})^{-1}(\tau_{\upsilon 1}+I_{xx5}\dot{\chi}\dot{\psi}c(\lambda)c(\psi)c(\theta)sec(\theta+\psi c(\lambda))+$ $I_{xx5}\ddot{\chi}c(\lambda)c(\theta)sec(\theta+\psi c(\lambda))s(\psi)-I_{xx5}(l_4+l_5)^{-1}\dot{\upsilon}_1\psi Rc(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta+\psi c($ $h_{4s}(\lambda))s(\psi) -
1/4(l_{4}+l_{5})^{-1}\psi Rc(\lambda)c(\psi c(\lambda))sec(\theta+\psi c(\lambda))(4I_{xx5}\dot{v}_{1}c(\theta)sec(\theta+\psi c(\lambda)))(4I_{xx5}\dot{v}_{1}$ $\psi c(\lambda) s(\lambda) s(\psi) + 4 \psi ((I_{vv5} + I_{zz4})c(\lambda) + 1/2m_5 c(\chi)(2(l_3 + l_4)c(\psi) - 1/2m_5 c(\chi))(2(l_3 + l_4)c(\psi)) - 1/2m_5 c(\chi)(2(l_3 + l_4)c(\chi)) - 1/2m_5 c(\chi)(2(l_3 + l_4)c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_$ $2s(\lambda)(h_5c(\lambda) + l_5s(\lambda)))(l_5c(2\lambda) - h_5s(2\lambda)) - m_5s(\chi)(h_3 + h_4 + h_5c(2\lambda) +$ $(I_{xx4} + I_{xx5} - 2(I_{yy5} + I_{zz4}))s(2\lambda) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)(l_3 + l_4 - h_5s(2\lambda))s(\psi)(l_3 + l_4 - h_5s(2\lambda))s(\psi)(l_3 + h_4) - h_5s(2\lambda))s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(l_3 + h_4) - h_5s(2\lambda)s(\psi)(h_4) - h_5s(\psi)(h_4) - h_5s(\psi)(h_4) - h_5s(\psi)(h_$ $c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + 4c(\chi)(h_4(l_3 + l_5s(\lambda))s(\psi))$ $l_4(m_4 + m_5) + h_3(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5))$ $l_4(h_5c(2\lambda) + l_5s(2\lambda)) - c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda))(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda)) + l_5s(2\lambda)) + l_5s(2\lambda) +
l_5s(2\lambda) + l_5s(2$ $c(\lambda)(l_5c(\lambda) - h_5s(\lambda))(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda))s(\psi)) + s(2\lambda)((I_{xx4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi)))$ $I_{xx5}(2\psi) - (I_{yy4} + I_{yy5})s(2\psi))) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_4 + l_5)^{-1}\dot{v}_1\psi R^2 c(\lambda)c(\theta)c(\psi c(\lambda))sec(\theta + l_5)) + 2(l_5 + l_5)^{-1}$ $\psi c(\lambda) (c(\theta)(s(\chi)(h_4(m_4+m_5)+h_3(m_3+m_4+m_5)+h_6m_6+m_2R+h_5m_5c(2\lambda)+$ $l_{5}m_{5}s(2\lambda)) + m_{5}c(\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))s(\psi)) + (l_{4}(m_{4} + m_{5}) + l_{3}(m_{3} + m_{4} + m_{5}) + h_{5}c(2\lambda))s(\psi)) + (l_{4}(m_{4} + m_$ $(l_5)^{-1}\ddot{\psi}Rc(\theta)(-l_5c(\lambda) + h_4s(\lambda))(c(\theta)(s(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5)))))$ $h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) -
h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi))$ $(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + l_5s(\lambda)) + l_5s(\lambda))$ $m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi))s(\theta)) - 1/2(l_4 + l_5)^{-1}\dot{\upsilon}_1\psi R^2c(\lambda)c(\psi c(\lambda))sec(\theta + l_5)c(\lambda))sec(\theta + l_5)c(\lambda))sec(\theta + l_5)c(\lambda))sec(\theta + l_5)c(\lambda))sec(\theta + l_5)c(\lambda)sec(\theta + l_5)c(\lambda))sec(\theta + l_5)c(\lambda)sec(\theta + l_5)c(\lambda))sec(\theta + l_5)c(\lambda)sec(\theta + l_5)c(\lambda))sec(\theta + l_5)c(\lambda)sec(\theta + l_5)c(\lambda))sec(\theta + l_5)c(\lambda)se$ $m_4 + m_5) - h_6 m_6 - m_2 R - h_5 m_5 c(2\lambda) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m$ $h_{5}s(2\lambda))s(\psi)s(\theta)) - \frac{1}{4}(l_{4} + l_{5})^{-1}\ddot{\psi}R(-l_{5}c(\lambda) + h_{4}s(\lambda))s(\theta)(4c(\theta)(l_{4}(m_{4} + l_{5})^{-1}))s(\theta)(4c(\theta)(l_{4}(m_{4} + l_{5})^{-1})s(\theta))s(\theta))$ $m_5) + l_3(m_3 + m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) +
m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_$ $h_5m_5c(2\lambda) - l_5m_5s(2\lambda)) + m_5c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi)s(\theta))$ $m_5 \psi R_s(\theta)(s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi)s(\theta) + c(\psi)(c(\chi)c(\theta)(l_5c(2\lambda) - h_5s(2\lambda))) +$

 $c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\theta))) - m_5 \psi Rc(\theta)(c(\theta)s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi) +$ $c(\boldsymbol{\psi})(c(\boldsymbol{\lambda})c(\boldsymbol{\theta})(l_5c(\boldsymbol{\lambda}) - h_5s(\boldsymbol{\lambda})) + c(\boldsymbol{\chi})(-l_5c(2\boldsymbol{\lambda}) + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}))) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_4 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta})) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_5 + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}) - I_{xx5}(l_$ $(l_5)^{-1}\dot{v}_1\dot{\psi}Rc(\psi)c(\theta)sec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_4 + l_5)^{-1}\dot{\psi}Rsec(\theta + \psi c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_5 + \ell c(\lambda))^2s(\lambda)s(\psi c(\lambda)) - (l_5 +$ $\psi c(\lambda) (-1/2 \dot{\chi} m_5 s(\chi) (2(l_3 + l_4) c(\psi) - 2s(\lambda) (h_5 c(\lambda) + l_5 s(\lambda))) (l_5 c(2\lambda) - l_5
s(\lambda))) (l_5 c(2\lambda) - l_5 s(\lambda))) (l_5 c(2\lambda) - l_5 s(\lambda))) (l_5 c(2\lambda) - l_5 s(\lambda))) (l_5 c(2\lambda) - l_5 s(\lambda))) (l_5 c(2\lambda) - l_5 s(\lambda))) (l_5 c(2\lambda) - l_5 s(\lambda))) (l_5 c(2\lambda) - l_5 s(\lambda))) (l_5 c(2\lambda) - l_5 s(\lambda))) (l_5 c(2\lambda) - l_5 s(\lambda))) (l_5 c(2\lambda) - l_5 s(\lambda))) (l_5 c(2\lambda) - l_5 s(\lambda))) (l_5 c(2\lambda) - l_5 s(\lambda)))$ $h_{5}s(2\lambda)) - (l_{3} + l_{4})m_{5}\psi c(\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))s(\psi) - m_{5}s(\chi)(h_{3} + h_{4} + h_{5})s(\chi)(h_{5} + h_{5})s($ $h_5c(2\lambda) + l_5s(2\lambda))(\dot{\psi}c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) - \dot{\psi}c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) - \dot{\psi}c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s(\psi)) - \dot{\psi}c(\lambda)(h_5c(\lambda) - h_5s(\lambda))s($ $\dot{\chi}m_5c(\chi)(h_3+h_4+h_5c(2\lambda)+l_5s(2\lambda))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)))(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)+h_$
$l_{5s}(\lambda)(s(\psi))(v_{c}(\lambda)) - (l_{4} + l_{5})^{-1} \ddot{\psi} Rsec(\theta + \psi c(\lambda))((I_{vv5} + I_{zz4})c(\lambda) + l_{zz4})c(\lambda)$ $1/2m_5c(\chi)(2(l_3 + l_4)c(\psi) - 2s(\lambda)(h_5c(\lambda) + l_5s(\lambda)))(l_5c(2\lambda) - h_5s(2\lambda))$ $m_{5}s(\chi)(h_{3}+h_{4}+h_{5}c(2\lambda)+l_{5}s(2\lambda))(c(\lambda)c(\psi)(l_{5}c(\lambda)-h_{5}s(\lambda))+s(\lambda)(h_{5}c(\lambda)+h_{5}s(\lambda)))(c(\lambda)c(\psi)(l_{5}c(\lambda)-h$ $l_{5}s(\lambda))s(\psi))s(\psi c(\lambda)) + (-1/16)(l_{4} + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c(\lambda)c(\psi c(\lambda))sec(\theta + l_{5})^{-2}\dot{\upsilon}_{1}\psi R^{2}c$ $\psi c(\lambda))^2 (4(I_{xx4} + I_{xx5} + 4I_{xx6} + 4I_{yy2} + I_{yy4} + 3I_{yy5} + 4I_{zz3} + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 1))$ $2((h_3 + h_4)^2 + 2(l_3 + l_4)^2)m_4 + (2((h_3 + h_4)^2 + h_5^2 + 2(l_3 + l_4)^2) + 3l_5^2)m_5 +$ $2(h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) - 8h_3^2m_3c(2\chi) - 8h_3^2m_4c(2\chi) - 16h_3h_4m_4c(2\chi) - 6h_3m_4c(2\chi) - 6h_3h_4m_4c(2\chi) - 6h_3m_4c(2\chi) 8h_4^2m_4c(2\chi) - 8h_3^2m_5c(2\chi) - 16h_3h_4m_5c(2\chi) - 8h_4^2m_5c(2\chi) - 2h_5^2m_5c(2\chi) - 2h_5^2m_5c(2\chi) - 2h_5^2m_5c(2\chi) - 2h_5^2m_5c(2\chi) - 2h_5^2m_5c(2\chi) -
2h_5^2m_5c(2\chi) - 2h$ $2l_{5}^{2}m_{5}c(2\chi) - 8h_{6}^{2}m_{6}c(2\chi) - 8m_{2}R^{2}c(2\chi) - 3h_{5}^{2}m_{5}c(2\chi - 4\lambda) + 3l_{5}^{2}m_{5}c(2\chi - 4\lambda)$ $(4\lambda) - 4I_{xx4}c(2\lambda) - 4I_{xx5}c(2\lambda) - 4I_{yy4}c(2\lambda) + 4I_{yy5}c(2\lambda) + 8I_{zz4}c(2\lambda) +$ $16h_{3}h_{5}m_{5}c(2\lambda) + 16h_{4}h_{5}m_{5}c(2\lambda) - 8h_{3}h_{5}m_{5}c(2(-\chi\lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi+1)))$ $\lambda)) - 8h_3h_5m_5c(2(\chi + \lambda)) - 8h_4h_5m_5c(2(\chi + \lambda)) - 3h_5^2m_5c(2(\chi + 2\lambda)) +$ $3l_5^2m_5c(2(\chi+2\lambda)) + 6h_5l_5m_5s(2\chi-4\lambda) + (-32)(l_3+l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) +$ $l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + 16h_{4}l_{5}m_{5}s(2\lambda) + 2c(2\psi)((-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{yy4}))) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{yy4})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{yy4})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{yy4})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{yy4})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{yy4})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{yy4})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{yy4})) + 2c(2\psi)(-2)I_{yy4} + 2(I_{yy4} + 2I_{yy4})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{yy4})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{yy4})) + 2c(2\psi)(-2)I_{yy4} + 2(I_{yy4} + 2I_{yy4}) + 2(I_{yy4} + 2I_{yy4})) + 2(I_{yy4} + 2(I_{yy4} + 2I_{yy4})) + 2(I_{yy4} + 2(I_{yy4} + 2I_{yy4})) + 2(I_{yy4} + 2(I_{yy4} + 2I_{yy4})) + 2(I_{yy4} + 2(I_{yy4} + 2I_{yy4})) + 2(I_{yy4} + 2(I_{yy4} + 2I_{yy4})) + 2(I_{yy4} + 2(I_{yy4} + 2I_{yy4})) + 2(I_{yy4} + 2(I_{yy4} + 2I_{yy4})) + 2(I_{yy4} + 2(I_{yy4} + 2I_{yy4})) + 2(I_{yy4} + 2(I_{yy4} + 2I_{yy4})) + 2(I_{yy4} + 2(I_{yy4} + 2(I_{yy4} + 2I_{yy4})) + 2(I_{yy4} + 2(I_{yy4} +$ $I_{yy5}) - (h_5^2 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{x$ $I_{xx5} - I_{yy4} - I_{yy5} - 2l_5^2 m_5 + 2h_5 l_5 m_5 c(2\chi) s(2\lambda)) - 2h_5 m_5 (-8l_5 c(\lambda)^3 s(\lambda) +$ $h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)))s(\psi) +$ $4m_5s(2\lambda)((-2)h_5l_5c(2\lambda) + (h_5 - l_5)(h_5 + l_5)s(2\lambda))s(2\psi)s(\psi c(\lambda)) - 1/16(l_4 + l_5)s(2\lambda))s(2\psi)s(\psi c(\lambda)) - 1/16(l_4 + l_5)s(2\lambda))s(2\psi)s(\psi c(\lambda)) - 1/16(l_4 + l_5)s(2\lambda))s(2\psi)s(\psi c(\lambda)) - 1/16(l_4 + l_5)s(2\lambda))s(2\psi)s(\psi c(\lambda)) - 1/16(l_4 + l_5)s(2\lambda))s(2\psi)s(\psi c(\lambda)) - 1/16(l_4 + l_5)s(2\lambda))s(2\psi)s(\psi c(\lambda)) - 1/16(l_4 + l_5)s(2\lambda))s(2\psi)s(\psi c(\lambda)) - 1/16(l_4 + l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) -
1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(2\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(\xi c(\lambda))s(\psi c(\lambda)) - 1/16(l_5)s(\xi c(\lambda))s(\psi c(\lambda$ $(l_5)^{-2}\ddot{\psi}Rsec(\theta + \psi c(\lambda))(-l_5c(\lambda) + h_4s(\lambda))(4(I_{xx4} + I_{xx5} + 4I_{xx6} + 4I_{yy2} + I_{yy4} + I_{yy4}))$ $3I_{yy5} + 4I_{zz3} + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2((h_3 + h_4)^2 + 2(l_3 + l_4)^2)m_4 + (2((h_3 + h_4)^2 + 2(h_3 + h_4)^2)m_4 + (2(h_4 + h_4)^2)m$ $h_{5}^{2}+2(l_{3}+l_{4})^{2})+3l_{5}^{2})m_{5}+2(h_{6}^{2}m_{6}+2l_{6}^{2}m_{6}+m_{2}R^{2}))-8h_{3}^{2}m_{3}c(2\chi)-8h_{3}^{2}m_{4}c(2\chi$ $16h_3h_4m_4c(2\chi) - 8h_4^2m_4c(2\chi) - 8h_3^2m_5c(2\chi) - 16h_3h_4m_5c(2\chi) - 8h_4^2m_5c(2\chi) - 8h_5^2m_5c(2\chi) -$ $2h_{5}^{2}m_{5}c(2\chi) - l_{5}^{2}m_{5}c(2\chi) - 8h_{6}^{2}m_{6}c(2\chi) - 8m_{2}R^{2}c(2\chi) - 3h_{5}^{2}m_{5}c(2\chi - 4\lambda) +$
$3l_5^2m_5c(2\chi-4\lambda)-4I_{xx4}c(2\lambda)-4I_{xx5}c(2\lambda)-4I_{yy4}c(2\lambda)+4I_{yy5}c(2\lambda)+8I_{zz4}c($ $16h_{3}h_{5}m_{5}c(2\lambda) + 16h_{4}h_{5}m_{5}c(2\lambda) - 8h_{3}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda)))$ $\lambda)) - 8h_3h_5m_5c(2(\chi + \lambda)) - 8h_4h_5m_5c(2(\chi + \lambda)) - 3h_5^2m_5c(2(\chi + 2\lambda)) +$ $l_{5}s(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + 16h_{4}l_{5}m_{5}s(2\lambda) + 2c(2\psi)((-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})$ $I_{yy5}) - (h_5^2 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4$ $I_{xx5} - I_{yy4} - I_{yy5} - 2l_5^2 m_5 + 2h_5 l_5 m_5 c(2\chi) s(2\lambda)) - 2h_5 m_5 (-8l_5 c(\lambda)^3 s(\lambda) +$ $h_5c(2\chi)s(2\lambda)^2)) - 8h_3l_5m_5s(2(-\chi+\lambda)) - 8h_4l_5m_5s(2(-\chi+\lambda)) - 8h_3l_5m_5s(2(\chi+\lambda))) -
8h_3l_5m_5s(2(\chi+\lambda))) - 8h_3k(\chi+\lambda)) - 8h_3k(\chi+\lambda)) - 8h_3k(\chi+\lambda)) - 8h_3$ λ)) - 8h₄l₅m₅s(2(χ + λ)) + (-6)h₅l₅m₅s(2(χ + 2 λ)) + 4m₅(8(l₃ + l₄)c(λ)(l₅c(λ) $h_{5}s(\lambda)$ + $4s(2\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))(s(\psi) + h_{5}s(2\lambda))(h_{5} + h_{5}s(2\lambda)$ $4m_{5}s(2\lambda)((-2)h_{5}l_{5}c(2\lambda) + (h_{5} - l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(2\lambda))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda))s(\psi c(\lambda)))s(\psi c(\lambda)))s(\psi c(\lambda)) - 1/4\ddot{\chi}(l_{4} + l_{5})s(\psi c(\lambda))s(\psi c(\lambda)))s(\psi c(\lambda)))s(\psi c(\lambda))s(\psi c(\lambda)))s(\psi c(\lambda))s(\psi$ $l_{5})^{-1}Rsec(\theta + \psi c(\lambda))(4I_{yz3} - (I_{xx4} + I_{xx5} - 2(I_{yy5} + I_{zz4}))s(2\lambda) - 4m_{5}s(\chi)(l_{5}c(2\lambda) - 4m_{5}s(\chi))(l_{5}c(2\lambda) - 4m_{5}$
$h_{5}s(2\lambda)s(\psi)(l_{3}+l_{4}-c(\psi)s(\lambda)(h_{5}c(\lambda)+l_{5}s(\lambda))+c(\lambda)(l_{5}c(\lambda)-h_{5}s(\lambda))s(\psi))+$ $4c(\chi)(h_4(l_3+l_4)(m_4+m_5)+h_3(l_4(m_4+m_5)+l_3(m_3+m_4+m_5))+h_6l_6m_6+$ $m_5((l_3+l_4)(h_5c(2\lambda)+l_5s(2\lambda))-c(\psi)s(\lambda)(h_5c(\lambda)+l_5s(\lambda))(h_3+h_4+h_5c(2\lambda)+l_5s(\lambda))(h_3+h_4+h_5c(2\lambda)+h_5s(2\lambda))(h_3+h_4+h_5c(2\lambda)+h_5s(2\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)$ $l_{5}s(2\lambda)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))s(\psi))) +$ $s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda)) - 1/4\dot{\chi}(l_4 + l_5)^{-1}Rsec(\theta + l_5))s(2\psi))s(\psi c(\lambda)) - 1/4\dot{\chi}(l_4 + l_5)^{-1}Rsec(\theta + l_5))s(2\psi))s(\psi c(\lambda)) - 1/4\dot{\chi}(l_4 + l_5))s(2\psi) + 1/2\dot{\chi}(l_4 + l_5)s(2\psi))s(\psi c(\lambda)) - 1/2\dot{\chi}(l_4 + l_5)s(2\psi))s(\psi c(\lambda)) - 1/2\dot{\chi}(l_4 + l_5)s(2\psi))s(\psi c(\lambda)) - 1/2\dot{\chi}(l_4 + l_5)s(2\psi))s(\psi c(\lambda)) - 1/2\dot{\chi}(l_4 + l_5)s(2\psi))s(\psi c(\lambda)) + 1/2\dot{\chi}(l_4 + l_5)s(2\psi) + 1/2\dot{\chi}(l_4 + l_5)s(2\psi))s(\psi c(\lambda)) - 1/2\dot{\chi}(l_4 + l_5)s(2\psi)$

 $\psi c(\lambda))((-4)m_5\psi c(\psi)s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))(l_3 + l_4 - c(\psi)s(\lambda)(h_5c(\lambda) + l_5c(\lambda)))(l_5c(\lambda)))$ $l_{5}s(\lambda)) + c(\lambda)(l_{5}c(\lambda) + -h_{5}s(\lambda))s(\psi)) - 4\dot{\chi}m_{5}c(\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))s(\psi)(l_{3} +$ $l_4 - c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(\chi))s(\psi)) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(\chi))s(\psi)) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(\chi))s(\psi)) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(\chi))s(\psi)) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(\chi))s(\psi)) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(\chi))s(\psi)) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(\chi))s(\psi)) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(\chi))s(\psi))$ $h_{5}s(2\lambda))s(\psi)(\psi c(\lambda)c(\psi)(l_{5}c(\lambda) - h_{5}s(\lambda)) + \psi s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))s(\psi)) +$ $4m_5c(\chi)(\psi c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(\lambda))(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda)) +$ $\dot{\psi}s(\lambda)(h_5c(\lambda) + l_5s(\lambda))(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda))s(\psi)) - 4\dot{\chi}s(\chi)(h_4(l_3 + h_5c(2\lambda))s(\psi)) - 4\dot{\chi}s(\chi)(h_4(l_3 + h_5c(2\lambda))s(\psi)) - 4\dot{\chi}s(\chi)(h_5c(\lambda))s(\psi)) - 4\dot{\chi$ $l_4(m_4 + m_5) + h_3(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5)) + h_6l_6m_6 + m_5((l_3 + m_5))$ $l_4)(h_5c(2\lambda) + l_5s(2\lambda)) - c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda))(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda)) + l_5s(2\lambda)) + l_5s(2\lambda) +
l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s(2\lambda) + l_5s($ $c(\lambda)(l_5c(\lambda) - h_5s(\lambda))(h_3 + h_4 + h_5c(2\lambda) + l_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda) + h_5s(2\lambda))s(\psi))) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda))s(\psi)) + s(2\lambda)((-2)(I_{yy4} + h_5c(2\lambda))s(\psi)) + s(2\lambda)(I_{yy4} + h_5c(2\lambda))s(\psi)) + s(\mu)(I_{yy4} + h_5c(2\lambda))s(\psi)) + s(\mu)(I_{yy4} + h_5c(2\lambda))s(\psi)) + s(\mu)(I_{yy4} + h_5c(2\lambda))s(\psi)) + s(\mu)(I_{yy4} + h_5c(2\lambda))s(\psi)) + s(\mu)(I_{yy4} + h_5c(2\lambda))s(\psi)) + s(\mu)(I_{yy4} + h_5c(2\lambda))s(\psi)) + s(\mu)(I_{yy4} + h_5c(2\lambda))s(\psi)) + s(\mu)(I_{yy4} + h_5c(2\lambda))s(\psi)) + s(\mu)(I_{yy4} + h_5c(2\lambda))s(\psi)$ $\psi c(\lambda) s(\lambda) (\dot{\psi}(-l_5 c(\lambda) + h_4 s(\lambda)) + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda)) s(\psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) + \dot{\chi}(l_4 + \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))) +$ $(l_5)^{-1}Rc(\theta)^2(c(\chi)(h_4(m_4+m_5)+h_3(m_3+m_4+m_5)+h_6m_6+m_2R+h_5m_5c(2\lambda)+m_6m_6+m_5m_5c(2\lambda)+m_5m_5c(2\lambda)+m_6m_6+m_5c(2\lambda)+m_5m_5m_5c(2\lambda)+m_5m_5c(2\lambda)+m_5m_5m_5c(2\lambda)+m_5m_5m_5m_5m_5m_5m_5m_5m_5m_5$ $l_5m_5s(2\lambda)) + m_5s(\chi)(-l_5c(2\lambda)) + h_5s(2\lambda))s(\psi))(\psi(-l_5c(\lambda)) + h_4s(\lambda))) + \dot{\upsilon}_1Rsec(\theta + i\delta_1)$ $\psi c(\lambda) s(\psi c(\lambda)) - 1/16(l_4+l_5)^{-2} \dot{\psi} Rc(\lambda) c(\psi c(\lambda)) sec(\theta + \psi c(\lambda))(4(I_{xx4} + I_{xx5} + I_{xx5})))$ $4I_{xx6} + 4I_{yy2} + I_{yy4} + 3I_{yy5} + 4I_{zz3} + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2((h_3 + h_4)^2 + 2(l_3 + 2l_3^2)m_3)m_3
+ 2(h_3 + h_4)^2 + 2(h_3 + 2l_3^2)m_3 + 2(h_3$ $(l_4)^2)m_4 + (2((h_3 + h_4)^2 + h_5^2 + 2(l_3 + l_4)^2) + 3l_5^2)m_5 + 2(h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) - (h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) - (h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) - (h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) - (h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) - (h_6^2m_6 + m_2R^2) + (h_6^2m_6 + m_2R^2)) - (h_6^2m_6 + m_2R^2) + (h_6^2m_6 + m_2R^2)) - (h_6^2m_6 + m_2R^2) + (h_6^2m_6 + m_2R^2)) - (h_6^2m_6 + m_2R^2) + (h_6^2m_6 + m_2R^2) + (h_6^2m_6 + m_2R^2)) - (h_6^2m_6 + m_2R^2) + (h_6^2m_6$ $\frac{8h_3^2m_3c(2\chi) - 8h_3^2m_4c(2\chi) - 16h_3h_4m_4c(2\chi) - 8h_4^2m_4c(2\chi) - 8h_3^2m_5c(2\chi) - 16h_3h_4m_5c(2\chi) - 8h_4^2m_5c(2\chi) - 2h_5^2m_5c(2\chi) - 2l_5^2m_5c(2\chi) - 8h_6^2m_6c(2\chi)$ $8m_2R^2c(2\chi) - 3h_5^2m_5c(2\chi - 4\lambda) + 3l_5^2m_5c(2\chi - 4\lambda) - 4I_{xx4}c(2\lambda) - 4I_{xx5}c(2\lambda) - 4$ $4I_{yy4}c(2\lambda) + 4I_{yy5}c(2\lambda) + 8I_{zz4}c(2\lambda) + 16h_3h_5m_5c(2\lambda) + 16h_4h_5m_5c(2\lambda) 8h_3h_5m_5c(2(-\chi + \lambda)) - 8h_4h_5m_5c(2(-\chi + \lambda)) - 8h_3h_5m_5c(2(\chi + \lambda)) 8h_4h_5m_5c(2(\chi + \lambda)) - 3h_5^2m_5c(2(\chi + 2\lambda)) + 3l_5^2m_5c(2(\chi + 2\lambda + 6h_5l_5m_5s(2\chi - 4h_5))))$ $4\lambda) - 32(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + 16h_3l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) + 16h_4l_5m_5s(2\lambda) +
16h_4l_5m_5s(2\lambda) + 16h_5m_5s(2\lambda) + 16h_5m_5m_5m_5m_5m_5m_5m_5m_5m_5m_5m_5$ $l_{5}(h_{5}+l_{5})m_{5}c(4\lambda)+2c(2\lambda)(I_{xx4}+I_{xx5}-I_{yy4}-I_{yy5}-2l_{5}^{2}m_{5}+2h_{5}l_{5}m_{5}c(2\chi)s(2\lambda)) 2h_5m_5((-8)l_5c(\lambda)^3s(\lambda) + h_5c(2\chi)s(2\lambda)^2)) - 8h_3l_5m_5s(2(-\chi + \lambda)) 8h_4l_5m_5s(2(-\chi+\lambda)) - 8h_3l_5m_5s(2(\chi+\lambda)) - 8h_4l_5m_5s(2(\chi+\lambda)) - 6h_5m_5s(2(\chi+\lambda)) - 6h_5m_5s(2(\chi+\lambda)) -$ $2\lambda)) + 4m_5(8(l_3 + l_4)c(\lambda)(l_5c(\lambda) - h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda) - h_5s(2\lambda))(h_3 + h_5s(2\lambda))(h_5s(2\lambda)$ $(l_5)s(2\lambda))s(2\psi))(\psi(-l_5c(\lambda) + h_4s(\lambda)) + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) + b_4s(\lambda))$ $2I_{xx5}(l_4+l_5)^{-1}\dot{\upsilon}_1c(\theta)sec(\theta+\psi c(\lambda))^2s(\theta)(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))^2s(\theta)(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))^2s(\theta)(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))^2s(\theta)(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))^2s(\theta)(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))^2s(\theta)(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))^2s(\theta)(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))^2s(\theta)(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))^2s(\theta)(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))^2s(\theta)(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))^2s(\theta)(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))^2s(\theta)(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi
c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda)+h_4s$ $\psi c(\lambda))s(\psi c(\lambda))) - 1I_{xx5}\dot{\chi}(l_4 + l_5)^{-1}c(\lambda)sec(\theta + \psi c(\lambda))s(\psi)s(\theta)(\psi(-l_5c(\lambda) + l_5))s(\psi)s(\theta))$ $h_4s(\lambda)) + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) + \dot{\chi}(l_4 + l_5)^{-1}R(c(\chi)(h_4(m_4 + m_5) + \mu_5)))$ $h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi)) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi)) + m_5s(\chi)) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi)) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))) + m_5s(\chi)(-l_5c(2\lambda$ $h_{5}s(2\lambda))s(\psi)s(\theta)^{2}(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) 1/16(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda))(12h_5\dot{\chi}l_5m_5c(2\chi - 4\lambda) + 16h_3\dot{\chi}l_5m_5c(2(-\chi + 4\lambda)))(12h_5\dot{\chi}l_5m_5c(2\chi - 4\lambda)))$ $\lambda)) + 16h_4 \dot{\chi} l_5 m_5 c (2(-\chi + \lambda)) - 16h_3 \dot{\chi} l_5 m_5 c (2(\chi + \lambda)) - 16h_4 \dot{\chi} l_5 m_5 c (2(\chi + \lambda)) + 16h_4 \dot{\chi} l_5 m_5 c (2(\chi + \lambda))) + 16h_4 \dot{\chi} l_5 m_5 c (2(\chi + \lambda)$ $(-12)h_5\dot{\chi}l_5m_5c(2(\chi+2\lambda))+16h_3^2\dot{\chi}m_3s(2\chi)+16h_3^2\dot{\chi}m_4s(2\chi)+32h_3h_4\dot{\chi}m_4s(2\chi)+$ $16h_4^2\dot{\chi}m_4s(2\chi) + 16h_3^2\dot{\chi}m_5s(2\chi) + 32h_3h_4\dot{\chi}m_5s(2\chi) + 16h_4^2\dot{\chi}m_5s(2\chi) +$ $4h_5^2 \dot{\chi} m_5 s(2\chi) + 4 \dot{\chi} l_5^2 m_5 s(2\chi) + 16h_6^2 \dot{\chi} m_6 s(2\chi) + 16 \dot{\chi} m_2 R^2 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) - 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h_5^2 \dot{\chi} m_5
s(2\chi) + 6h_5^2 \dot{\chi} m_5 s(2\chi) + 6h$ $4\lambda) + (-6)\dot{\chi}l_5^2 m_5 s(2\chi - 4\lambda) + 8m_5 \dot{\psi}c(2\psi)s(2\lambda)(-2h_5 l_5 c(2\lambda) + (h_5 - l_5)(h_5 + 4\lambda)) + (h_5 - h_5)(h_5 + 4\lambda)) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda)) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda)) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda)) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda)) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda)) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda)) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda)) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + 4\lambda) + (h_5 - h_5)(h_5 + h_5)(h_$ $l_5)s(2\lambda)) + 2c(2\psi)(4\dot{\chi}l_5^2m_5c(2\lambda)^2s(2\chi) - 8h_5\dot{\chi}l_5m_5c(2\lambda)s(2\chi)s(2\lambda))$ + $4h_{5}^{2}\dot{\chi}m_{5}s(2\chi)s(2\lambda)^{2}) + 4m_{5}\dot{\psi}c(\psi)(8(l_{3} + l_{4})c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda)))$ + $4s(2\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))) - 16h_{3}h_{5}\dot{\chi}m_{5}s(2(-\chi +$ $\lambda)) - 16h_4h_5\dot{\chi}m_5s(2(-\chi+\lambda)) + 16h_3h_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(2(\chi+\lambda)) + 16h_4\dot{\chi}m_5\dot{\chi}m_5s(\chi+\chi)m_5\dot{\chi}m_5s(\chi+\chi) + 16h_4\dot{\chi}m_5\dot{\chi}m$ $6h_{5}^{2}\dot{\chi}m_{5}s(2(\chi+2\lambda)) + (-6)\dot{\chi}l_{5}^{2}m_{5}s(2(\chi+2\lambda)) + 32(l_{3}+l_{4})m_{5}\dot{\psi}s(\lambda)(h_{5}c(\lambda) + l_{5}c(\lambda)) + 32(l_{3}+l_{4})m_{5}\dot{\psi}s(\lambda)(h_{5}c(\lambda)) + 32(l_{5}+l_{5})m_{5}\dot{\psi}s(\lambda)(h_{5}c(\lambda)) +
32(l_{5}+l_{5})m_{5}\dot{\psi}s(\lambda)(h_{5}+l_$ $l_{5}s(\lambda)s(\psi) + 32\dot{\chi}m_{5}c(2\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))s(\psi) - h_{5}s(2\lambda)s(\psi) + h_{5}s(\psi) + h_{5}s(\psi)$ $4\dot{\psi}((-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + I_{yy5}) - (h_5^2 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5)(h_5$ $I_{5})m_{5}c(4\lambda) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy4} - I_{yy5} - 2l_{5}^{2}m_{5} + 2h_{5}l_{5}m_{5}c(2\chi)s(2\lambda)) -$

 $2h_5m_5(-8l_5c(\lambda)^3s(\lambda) + h_5c(2\chi)s(2\lambda)^2))s(2\psi))s(\psi c(\lambda))(\psi (-l_5c(\lambda)))s(2\psi))s(\psi c(\lambda))(\psi (-l_5c(\lambda)))s(2\psi))s(\psi c(\lambda))(\psi (-l_5c(\lambda)))s(2\psi))s(2\psi))s(\psi c(\lambda))(\psi (-l_5c(\lambda)))s(2\psi))s(2\psi))s(\psi c(\lambda))(\psi (-l_5c(\lambda)))s(2\psi))s(2\psi))s(2\psi))s(\psi c(\lambda))(\psi (-l_5c(\lambda)))s(2\psi))s(2\psi))s(2\psi))s(\psi c(\lambda))(\psi (-l_5c(\lambda)))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi))s(2\psi$ + $h_{4}s(\lambda)$) + $\dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))$ + $I_{xx5}(l_{4} + l_{5})^{-2}\dot{\upsilon}_{1}Rsec(\theta)$ + $\psi c(\lambda))^2 s(\lambda) s(\psi) s(\theta) s(\psi c(\lambda))(\psi(-l_5 c(\lambda) + h_4 s(\lambda)) + \dot{\upsilon}_1 Rsec(\theta))$ + $\psi c(\lambda) s(\psi c(\lambda))) - (l_4 + l_5)^{-2} \dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)) s(\theta) (c(\theta)(s(\chi))(h_4(m_4 + m_5) + m_5)))$ $h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - m_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c($ $l_{5}s(\lambda))$ $m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi))s(\theta))s(\psi c(\lambda))(\psi(-l_5c(\lambda)))$ ++ $h_4s(\lambda)$) + $\dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) - 1/4(l_4 + l_5)^{-2}\dot{\upsilon}_1R^2c(\theta)sec(\theta + \psi c(\lambda))s(\psi c(\lambda)))$ $\psi c(\lambda) (4c(\theta)(l_4(m_4+m_5)+l_3(m_3+m_4+m_5)+l_6m_6-m_5c(\psi)s(\lambda)(h_5c(\lambda)+m_6m_6-m_5c(\psi)s(\lambda)(h_5c(\lambda)+m_6m_6m_6)))))$ $l_{5s}(\lambda)) + m_{5c}(\lambda)(l_{5c}(\lambda) - h_{5s}(\lambda))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5}) - h_{3}(m_{3} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})))s(\psi))s(\psi))s(\psi))s(\psi))s(\psi))s(\psi)$ $m_4 + m_5) - h_6 m_6 - m_2 R - h_5 m_5 c(2\lambda) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi))) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)))$ $h_{5}s(2\lambda))s(\psi))s(\theta))s(\psi c(\lambda))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda)))$ + $\dot{v}_1 Rsec(\theta)$ + $\dot{h}_{4s}(\lambda)$ + $\dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))^{2}$ - $1/4(l_{4} + l_{5})^{-1}\dot{\upsilon}_{1}R^{2}sec(\theta + l_{5})^{-1}$ $\psi c(\lambda) s(\theta) s(\psi c(\lambda)) (4c(\theta)(m_5 \dot{\psi} c(\lambda) c(\psi)(l_5 c(\lambda) - h_5 s(\lambda)) + m_5 \dot{\psi} s(\lambda)(h_5 c(\lambda) + h_5 c(\lambda))))$ $l_{5}s(\lambda))s(\psi)) + 4(m_{5}\psi c(\chi)c(\psi)(-l_{5}c(2\lambda) + h_{5}s(2\lambda))) + \dot{\chi}c(\chi)(-h_{4}(m_{4} + h_{5}s(2\lambda))))$ $m_5) - h_3(m_3 + m_4 + m_5) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - l_5m_5s(2\lambda)) \dot{\chi}m_5s(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi)s(\theta) + 4(l_4 + l_5)^{-1}c(\theta)(s(\chi)(-h_4(m_4 + l_5))s(\psi))s(\theta))$ $m_5) - h_3(m_3 + m_4 + m_5) - h_6m_6 - m_2R + (-1)h_5m_5c(2\lambda) - l_5m_5s(2\lambda)) +$ $m_5c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi))(\psi(-l_5c(\lambda) + h_4s(\lambda)) + \dot{\upsilon}_1Rsec(\theta + h_5s(\lambda)))$ $\psi c(\lambda) s(\psi c(\lambda))) - 4(l_4 + l_5)^{-1}(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5) + l_6m_6 - m_6)$ $h_{4s}(\lambda)$) + $\dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))$) - $1/4(l_{4} + l_{5})^{-1}Rs(\theta)(\dot{\psi}(-l_{5}c(\lambda) + d_{5}c(\lambda))))$ $h_4s(\lambda)$) + $\dot{v}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))(4c(\theta)(m_5\psi c(\lambda)c(\psi)(l_5c(\lambda))))$ $h_{5s}(\lambda)$) + $m_5 \psi_s(\lambda)(h_{5c}(\lambda) + l_{5s}(\lambda))s(\psi)$) + $4(m_5 \psi_c(\chi)c(\psi)(-l_{5c}(2\lambda) +$ $h_{5}s(2\lambda)) + \dot{\chi}c(\chi)(-h_{4}(m_{4} + m_{5}) - h_{3}(m_{3} + m_{4} + m_{5}) - h_{6}m_{6} - m_{2}R - m_{2}R$ $h_5m_5c(2\lambda) - l_5m_5s(2\lambda)) - \dot{\chi}m_5s(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi))s(\theta) +$ $4(l_4 + l_5)^{-1}c(\theta)(s(\chi)(-h_4(m_4 + m_5) - h_3(m_3 + m_4 + m_5) - h_6m_6 - m_2R - m_2R)$ $h_5m_5c(2\lambda) - l_5m_5s(2\lambda)) + m_5c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi))(\psi((-1)l_5c(\lambda) + h_5s(2\lambda))s(\psi)))(\psi(-1)l_5c(\lambda) + h_5s(2\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(2\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(2\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(2\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(2\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(2\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(2\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(2\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(2\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(2\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(2\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(2\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda) + h_5s(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))s(\psi))s(\psi))(\psi(-1)l_5c(\lambda))s(\psi))s(\psi))s(\psi))$ $h_{4}s(\lambda)) + \dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) - 4(l_{4} + l_{5})^{-1}(l_{4}(m_{4} + m_{5}) + l_{3}(m_{3} + l_{5}))$ $m_4 + m_5) + l_6 m_6 + -m_5 c(\psi) s(\lambda) (h_5 c(\lambda) + l_5 s(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda) - m_5 c(\lambda)) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_5 c(\lambda) (l_5 c(\lambda)) + m_$ $h_{5s}(\lambda)s(\psi)s(\theta)(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))) +$ $(l_4 + l_5)^{-1}\dot{\upsilon}_1 R^2 c(\theta) sec(\theta + \psi c(\lambda))s(\psi c(\lambda))(c(\theta)(m_5\psi c(\chi)c(\psi)(l_5c(2\lambda) - \psi c(\chi)c(\psi)))))$ $h_{5s}(2\lambda)$ + $\dot{\chi}c(\chi)(h_4(m_4+m_5)+h_3(m_3+m_4+m_5)+h_6m_6+m_2R+h_5m_5c(2\lambda)+$ $l_5m_5s(2\lambda)) - \dot{\chi}m_5s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + (m_5\dot{\psi}c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(2\lambda))s(\psi)))$ $h_{5}s(\lambda)) + m_{5}\psi s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{5} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{5} + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{5} + l_{5}s(\lambda))s(\psi)s(\psi)$ $l_3(m_3 + m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)))$ $h_{5}s(\lambda)s(\psi)(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) - (l_{4} + i)s(\psi c(\lambda))s(\psi c(\lambda)))$ $l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi))s(\theta)(\psi(-l_5c(\lambda) + h_4s(\lambda)) +$ $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) + (l_4 + l_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + l_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + l_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + l_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + l_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + l_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + l_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_5 + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_5)) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_5)) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_5)) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_5)) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_5)) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_5)) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_5)) + (l_4 + h_5)^{-1} Rc(\theta)(\dot{\psi}(-l_5c(\lambda) + h_5)) + (l_4 + h_5)^{-1} Rc(\theta)(h_5)) + (l_4 + h_5)^{-1} Rc(\theta)(h_5) + (l_5 + h_5)) + (l_5 + h_5)^{-1} Rc(\theta)(h_5) + (l_5 + h_5)) + (l_5 + h_5)^{-1} Rc(\theta)(h_5) + (l_5 + h_5) + (l_5 + h_5) + (l_5 + h_5) + (l_5 + h_5) + (l_5 + h_5) + (l_5 + h_5) + (l_5 + h_5) + (l_5 + h_5) + (l_5 + h_5) + (l_5 + h_5$ $\dot{v}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))(c(\theta)(m_5\psi c(\chi)c(\psi)(l_5c(2\lambda) - h_5s(2\lambda))) +$ $\dot{\chi}c(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) +$ $l_5m_5s(2\lambda)) - \dot{\chi}m_5s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + (m_5\dot{\psi}c(\lambda)c(\psi)(l_5c(\lambda) - h_5s(2\lambda))s(\psi)))$ $h_{5}s(\lambda)) + m_{5}\psi s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\psi))s(\theta) + (l_{4} + l_{5})^{-1}c(\theta)(l_{4}(m_{5} + m_{5}))s(\psi))s(\psi)$ $l_{3}(m_{3} + m_{4} + m_{5}) + l_{6}m_{6} - m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) +$ $h_{5}s(\lambda)s(\psi)(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) - (l_{4} + i)s(\psi c(\lambda))s(\psi c(\lambda)))$

 $l_{5}m_{5}s(2\lambda)$) + $m_{5}c(\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))s(\psi))s(\theta)(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda)) +$ $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))) - (l_4 + l_5)^{-1}Rs(\theta)(\psi(-l_5c(\lambda) + h_4s(\lambda)) + l_5)c(\lambda))$ $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))(\dot{\chi}(c(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6 + m_6))))$ $m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda) + m_5s(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi))s(\theta)$ $m_5 \dot{\psi}(c(\theta)s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_5c(\lambda) - h_5s(\lambda)) +$ $c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\theta))) + (l_4 + l_5)^{-1}(c(\theta)(s(\chi)(h_4(m_4 + m_5) + m_5))))$ $h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - m_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c($ $h_{5}s(2\lambda)s(\psi) + (l_{4}(m_{4}+m_{5})+l_{3}(m_{3}+m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+m_{5}c(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{3}(m_{3}+m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+m_{5}c(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{3}(m_{3}+m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+m_{5}c(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{3}(m_{3}+m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+m_{5}c(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{3}(m_{3}+m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+m_{5}c(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{3}(m_{3}+m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+m_{5}c(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{3}(m_{3}+m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+m_{5}c(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+m_{5}c(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+m_{5}c(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+m_{5}c(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda))) + (l_{4}(m_{4}+m_{5})+l_{6}m_{6}-m_{5}$ $l_{5}s(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda))) + \dot{\upsilon}_{1}Rsec(\theta + h_{5}s(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{5}s(\lambda)))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{5}s(\lambda)))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{5}s(\lambda)))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{5}s(\lambda)))s(\psi))s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{5}s(\lambda)))s(\psi))s(\psi))s(\psi))s(\psi))s(\psi)$ $\psi c(\lambda) s(\psi c(\lambda))) - (l_4 + l_5)^{(-1)} Rc(\theta) (\psi (-l_5 c(\lambda) + h_4 s(\lambda)) + \dot{v}_1 Rsec(\theta + h_5 c(\lambda)))$ $\psi c(\lambda) s(\psi c(\lambda)))(\dot{\chi} c(\theta)(c(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6 + m_6))))$ $m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5s(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi)) +$ $m_5\psi(s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi)s(\theta) + c(\psi)(c(\chi)c(\theta)(l_5c(2\lambda) - h_5s(2\lambda))) +$ $c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\theta))) + (1/4)(l_4 + l_5)^{-1}(4c(\theta)(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5)))))$ $m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) + -h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) + -h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(h_5c(\lambda) + -h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda)) + m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5s(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda) + h_5c(\lambda))s(\psi)) + l_6m_6 - m_5c(\lambda)(h_5c(\lambda)$ $4(s(\chi)(-h_4(m_4 + m_5)) - h_3(m_3 + m_4 + m_5)) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_5c($ $l_5m_5s(2\lambda)) + m_5c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi))s(\theta))(\psi(-l_5c(\lambda) + h_4s(\lambda)) +$ $\psi c(\lambda) (\psi c(\lambda)) = m_5 \psi Rc(\theta) (\psi c(\psi) c(\theta) s(\lambda) (h_5 c(\lambda)))$ $\dot{v}_1 Rsec(\theta +$ + $l_{5}s(\lambda)) + (-1)\psi s(\psi)(c(\lambda)c(\theta)(l_{5}c(\lambda) - h_{5}s(\lambda))) + c(\chi)(-l_{5}c(2\lambda))$ + $h_{5}s(2\lambda))s(\theta)) - (l_{4}+l_{5})^{-1}s(\lambda)(h_{5}c(\lambda)+l_{5}s(\lambda))s(\psi)s(\theta)(\dot{\psi}(-l_{5}c(\lambda)+h_{4}s(\lambda))+$ $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) + c(\psi)(\dot{\chi}s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta)) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s(2\lambda))s(\theta) + (l_4 + h_5s$ $(l_5)^{-1}c(\chi)c(\theta)(-l_5c(2\lambda) + h_5s(2\lambda))(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda))) + \dot{\upsilon}_1Rsec(\theta)$ + $\psi c(\lambda) s(\psi c(\lambda))) - (l_4 + l_5)^{-1} c(\lambda) (l_5 c(\lambda) - h_5 s(\lambda)) s(\theta) (\psi (-l_5 c(\lambda)))$ + $h_4s(\lambda)$) + $\dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))$) - $m_5\psi Rs(\theta)(\psi c(\psi)s(\lambda)(h_5c(\lambda) + \psi c(\lambda))))$ $l_{5}s(\lambda))s(\theta) - \psi s(\psi)(c(\chi)c(\theta)(l_{5}c(2\lambda) - h_{5}s(2\lambda))) + c(\lambda)(l_{5}c(\lambda))$ + $(-1)h_{5}s(\lambda))s(\theta)) + (l_{4} + l_{5})^{-1}c(\theta)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))s(\psi)(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))s(\psi))(\dot{\psi}(-l_{5}c(\lambda) + l_{5}s(\lambda))$ $h_{4}s(\lambda)) + \dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) + c(\psi)((-1)\dot{\chi}c(\theta)s(\chi)(l_{5}c(2\lambda) - \omega))s(\psi c(\lambda))) + c(\psi)((-1)\dot{\chi}c(\theta)s(\chi)(l_{5}c(2\lambda) - \omega))s(\psi c(\lambda))) + c(\psi)((-1)\dot{\chi}c(\theta)s(\chi)(l_{5}c(2\lambda) - \omega))s(\psi c(\lambda)))s(\psi c(\lambda))) + c(\psi)((-1)\dot{\chi}c(\theta)s(\chi)(l_{5}c(2\lambda) - \omega))s(\psi c(\lambda)))s(\psi c(\lambda)))s(\psi c(\lambda)))s(\psi c(\lambda)))s(\psi c(\lambda))s(\psi c(\lambda)))s(\psi c(\lambda))s(\psi c(\lambda)))s(\psi c(\lambda))s(\psi c(\lambda)))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi$ $h_{5}s(2\lambda)) + (l_4+l_5)^{-1}c(\lambda)c(\theta)(l_5c(\lambda)-h_5s(\lambda))(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{v}_1Rsec(\theta+h_4s(\lambda))))$ $\psi c(\lambda) s(\psi c(\lambda))) - (l_4 + l_5)^{-1} c(\chi) (l_5 c(2\lambda) - h_5 s(2\lambda)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s(\theta) (\psi(-l_5 c(\lambda) + l_5)) s($ $h_{4}s(\lambda)) + \dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))) + (1/8)(l_{4} + l_{5})^{(-1)}\psi R(l_{5}c(\lambda) - l_{5}c(\lambda)))$ $h_{4}s(\lambda)s(\theta)(8(m_{2} + m_{3} + m_{4} + m_{5} + m_{6})\dot{v}_{1}Rc(\theta) - 8(\dot{\chi}(c(\chi))h_{4}(m_{4} + m_{5}))k_{1}Rc(\theta))$ m_5) + $h_3(m_3 + m_4 + m_5)$ + $h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)$) + $m_{5}s(\chi)(-l_{5}c(2\lambda) + h_{5}s(2\lambda))s(\psi)s(\theta) - m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))s(\psi) +$ $c(\boldsymbol{\psi})(c(\boldsymbol{\lambda})c(\boldsymbol{\theta})(l_5c(\boldsymbol{\lambda}) - h_5s(\boldsymbol{\lambda})) + c(\boldsymbol{\chi})(-l_5c(2\boldsymbol{\lambda}) + h_5s(2\boldsymbol{\lambda}))s(\boldsymbol{\theta}))) +$ $(l_4 + l_5)^{-1}(c(\theta)(s(\chi))(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + m_3m_4)$ $h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + (l_4(m_4 + m_5) + l_5m_5c(2\lambda))s(\psi)) + (l_4(m_4 + m_5)) + l_5m_5c(2\lambda))s(\psi)) + (l_4(m_4 + m_5)) + l_5m_5c(2\lambda))s(\psi)) + (l_4(m_4 + m_5)) + l_5m_5c(2\lambda))s(\psi)) + (l_4(m_4 + m_5)) + l_5m_5c(2\lambda))s(\psi)) + (l_4(m_4 + m_5)) + l_5m_5c(2\lambda))s(\psi)) + (l_4(m_4 + m_5)) + l_5m_5c(2\lambda))s(\psi)) + (l_4(m_4 + m_5)) + l_5m_5c(2\lambda))s(\psi)) + (l_4(m_4 + m_5)) + l_5m_5c(2\lambda))s(\psi)) + (l_4(m_4 + m_5)) + l_5m_5c(2\lambda))s(\psi)) + (l_4(m_4 + m_5)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda))s(\psi)) + l_5m_5c(2\lambda)$ $l_{3}(m_{3} + m_{4} + m_{5}) + l_{6}m_{6} - m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m$ $h_{5}s(\lambda))s(\psi))s(\theta))(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))))) +$ $(1/8)(l_4+l_5)^{-1}\psi Rc(\theta)(l_5c(\lambda)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_4+m_5+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_3+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\theta)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\mu)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\mu)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\mu)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\mu)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\mu)-h_4s(\lambda))((-8)(m_2+m_6)\dot{v}_1Rs(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h_4s(\mu)-h$ $8(\dot{\chi}c(\theta)(c(\chi)(h_4(m_4+m_5)+h_3(m_3+m_4+m_5)+h_6m_6+m_2R+h_5m_5c(2\lambda)+m_4m_5))$ $l_5m_5s(2\lambda)$) + $m_5s(\chi)(-l_5c(2\lambda)$ + $h_5s(2\lambda))s(\psi)$) + $m_5\psi(s(\lambda)(h_5c(\lambda))$ + $l_{5s}(\lambda))s(\psi)s(\theta) + c(\psi)(c(\chi)c(\theta)(l_{5}c(2\lambda) - h_{5}s(2\lambda))) + c(\lambda)(l_{5}c(\lambda))$ _ $h_{5}s(\lambda)(s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{3}(m_{3} + m_{4} + m_{5}) + l_{5}))$ $l_6m_6 + -m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) +$ $4(s(\chi)(-h_4(m_4 + m_5) - h_3(m_3 + m_4 + m_5) - h_6m_6 - m_2R - h_5m_5c(2\lambda) \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))) - 2I_{xx5}\dot{\upsilon}_1 c(\theta)^2 sec(\theta + \psi c(\lambda))^2(\psi c(\lambda) + (l_4 + l_5))^2)$ $(l_5)^{-1}(\dot{\psi}(-l_5c(\lambda) + h_4s(\lambda)) + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda))s(\psi c($ $I_{xx5}\dot{\chi}c(\lambda)c(\theta)sec(\theta+\psi c(\lambda))s(\psi)(\dot{\psi}c(\lambda)+(l_4+l_5)^{-1}(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+$

 $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 2I_{xx5}(l_4 + l_5)^{-1}\dot{\upsilon}_1 Rc(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 2I_{xx5}(l_4 + l_5)^{-1}\dot{\upsilon}_1 Rc(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 2I_{xx5}(l_4 + l_5)^{-1}\dot{\upsilon}_1 Rc(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 2I_{xx5}(l_4 + l_5)^{-1}\dot{\upsilon}_1 Rc(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 2I_{xx5}(l_4 + l_5)^{-1}\dot{\upsilon}_1 Rc(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 2I_{xx5}(l_4 + l_5)^{-1}\dot{\upsilon}_1 Rc(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 2I_{xx5}(l_4 + l_5)^{-1}\dot{\upsilon}_1 Rc(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 2I_{xx5}(l_4 + l_5)^{-1}\dot{\upsilon}_1 Rc(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 2I_{xx5}(l_4 + l_5)^{-1}\dot{\upsilon}_1 Rc(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 2I_{xx5}(l_4 + l_5)^{-1}\dot{\upsilon}_1 Rc(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 2I_{xx5}(l_4 + l_5)^{-1}\dot{\upsilon}_1 Rc(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 2I_{xx5}(l_4 + l_5)^{-1}\dot{\upsilon}_1 Rc(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 2I_{xx5}(l_4 + l_5)^{-1}\dot{\upsilon}_1 Rc(\theta)sec(\theta + \psi c(\lambda))$ $(\psi c(\lambda))^2 s(\lambda) s(\psi) s(\psi c(\lambda)) (\psi c(\lambda) + (l_4 + l_5)^{-1} (\psi (-l_5 c(\lambda) + h_4 s(\lambda))) + (l_4 + l_5)^{-1} (\psi (-l_5 c(\lambda) + h_4 s(\lambda))))$ $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)) + 1/4(l_4 + l_5)^{-1}Rsec(\theta + \psi c(\lambda)) + 1/4(l_5 + \psi c$ $\psi c(\lambda))(4I_{xx5}\dot{v}_{1}c(\theta)sec(\theta + \psi c(\lambda))s(\lambda)s(\psi) + 4\dot{\psi}((I_{vv5} + I_{zz4})c(\lambda) + \psi c(\lambda))s(\lambda)s(\psi))$ $1/2m_5c(\chi)(2(l_3 + l_4)c(\psi) - 2s(\lambda)(h_5c(\lambda) + l_5s(\lambda)))(l_5c(2\lambda) - h_5s(2\lambda))$ $m_5s(\chi)(h_3+h_4+h_5c(2\lambda)+l_5s(2\lambda))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))+s(\lambda)(h_5c(\lambda)+h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))(c(\lambda)-h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))(c(\lambda)c(\psi)(l_5c(\lambda)-h_5s(\lambda)))(c(\lambda)-h_5s(\lambda)))(c(\lambda)-h_5s(\lambda)))(c(\lambda)-h_5s(\lambda)))(c(\lambda)-h_5s(\lambda)))(c(\lambda)-h_5s(\lambda))(c(\lambda)-h_5s(\lambda)))(c($ $l_{5}s(\lambda))s(\psi)) + \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5} - 2(I_{yy5} + I_{zz4}))s(2\lambda) - 4m_5s(\chi)(l_5c(2\lambda) - 4m_5s(\chi))(l_5c(2\lambda) -
4m_5s(\chi))(l_5c(2\lambda) - 4m_5x)(l_5c(2\lambda) - 4m_5x)(l_5c(2\lambda) - 4m_5x)(l_5c(2\lambda) - 4m_5x)(l_5c(2\lambda)$ $h_{5}s(2\lambda)s(\psi)(l_{3}+l_{4}-c(\psi)s(\lambda)(h_{5}c(\lambda)+l_{5}s(\lambda))+c(\lambda)(l_{5}c(\lambda)+-h_{5}s(\lambda))s(\psi))+$ $4c(\chi)(h_4(l_3+l_4)(m_4+m_5)+h_3(l_4(m_4+m_5)+l_3(m_3+m_4+m_5))+h_6l_6m_6+$ $m_5((l_3+l_4)(h_5c(2\lambda)+l_5s(2\lambda))-c(\psi)s(\lambda)(h_5c(\lambda)+l_5s(\lambda))(h_3+h_4+h_5c(2\lambda)+l_5s(\lambda))(h_3+h_4+h_5c(2\lambda)+h_4)(h_5c(2\lambda)+h_5s(2\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)+h_5s(\lambda))(h_5c(\lambda)+h_5s(\lambda)+h$ $l_{5}s(2\lambda)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))s(\psi))) +$ $s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))(\psi c(\lambda) + (I_4 + I_{yy5})s(2\psi)))s(\psi c(\lambda))(\psi c(\lambda)) + (I_4 + I_{yy5})s(2\psi)))s(\psi c(\lambda))(\psi c(\lambda)) + (I_4 + I_{yy5})s(2\psi)))s(\psi c(\lambda))(\psi c(\lambda)) + (I_4 + I_{yy5})s(2\psi)))s(\psi c(\lambda))(\psi c(\lambda)) + (I_4 + I_{yy5})s(2\psi)))s(\psi c(\lambda))(\psi c(\lambda)) + (I_4 + I_{yy5})s(2\psi)))s(\psi c(\lambda))(\psi c(\lambda)) + (I_4 + I_{yy5})s(2\psi)))s(\psi c(\lambda))(\psi c(\lambda)) + (I_4 + I_{yy5})s(2\psi)))s(\psi c(\lambda))(\psi c(\lambda)) + (I_4 + I_{yy5})s(2\psi)))s(\psi c(\lambda))(\psi c(\lambda)) + (I_4 + I_{yy5})s(2\psi)))s(\psi c(\lambda))(\psi c(\lambda)) + (I_4 + I_{yy5})s(2\psi))s(\psi c(\lambda))(\psi c(\lambda)) + (I_4 + I_{yy5})s(2\psi))s(\psi c(\lambda))(\psi c(\lambda)) + (I_4 + I_{yy5})s(2\psi))s(\psi c(\lambda))(\psi c(\lambda)) + (I_4 + I_{yy5})s(\psi c(\lambda)))$ $(l_5)^{-1}(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))s(\psi c(\lambda))))tan(\theta+\psi c(\lambda))+2(l_4+i)s(\psi
c(\lambda))+2(l_4+i)s(\lambda))+2(l_4+i)s(\lambda))+2(l_4+i)s(\lambda)+2(l_4+i)s(\lambda))+2(l_4+i)s(\lambda)+2(l_4+i)s(\lambda))+2(l_4+i)s(\lambda))+2(l_4+i)s(\lambda)+2(l_4+i)s(\lambda))+2(l_4+i)s(\lambda))+2(l_4+i)s(\lambda)+2(l_4+i)s(\lambda))+2(l_4$ $(l_5)^{-1}\dot{v}_1 R^2 c(\theta) sec(\theta + \psi c(\lambda))(c(\theta)(s(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6 + m_6))))$ $m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)) + (l_4(m_4 + m_5) + l_5m_5c(2\lambda))s(\psi)) + (l_4(m_4 + m_5))s(\psi)) + (l_4(m_5))s(\psi)) + (l_4(m_5))s(\psi)) + (l_5(m_5))s(\psi)$ $l_3(m_3 + m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda)) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda) - m_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) + m_5c(\lambda)(l_5c(\lambda))) +$ $h_{5}s(\lambda))s(\psi)s(\theta))s(\psi c(\lambda))(\dot{\psi}c(\lambda) + (l_{4} + l_{5})^{-1}(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + l_{5}s(\lambda))))$ $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/2(l_4 + l_5)^{-1}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/2(l_4 + l_5)^{-1}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/2(l_4 + l_5)^{-1}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/2(l_4 + l_5)^{-1}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/2(l_4 + l_5)^{-1}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/2(l_4 + l_5)^{-1}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/2(l_4 + \ell_5)^{-1}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/2(l_4 + \ell_5)^{-1}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/2(l_4 + \ell_5)^{-1}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/2(l_4 + \ell_5)^{-1}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/2(l_4 + \ell_5)^{-1}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/2(l_4 + \ell_5)^{-1}\dot{\upsilon}_1 R^2 sec(\theta
+ \psi c(\lambda)))tan(\theta + \psi c(\lambda)) - 1/2(l_4 + \ell_5)^{-1}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda))$ $l_{5}s(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\psi)) + 4(s(\chi)(-h_{4}(m_{4} + m_{5}) - h_{3}(m_{3} + m_{5}))) + h_{5}s(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\psi)) + h_{5}s(\lambda)(-h_{4}(m_{4} + m_{5})) - h_{3}(m_{3} + m_{5})) + h_{5}s(\lambda)(h_{5}c(\lambda) - h_{5}s(\lambda))s(\psi)$ $m_4 + m_5) - h_6 m_6 - m_2 R - h_5 m_5 c(2\lambda) - l_5 m_5 s(2\lambda)) + m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi)) - m_5 c(\chi) (-l_5 c(2\lambda) + m_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi))) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi) (-l_5 c(\chi)) + m_5 c(\chi)) + m_5$ $h_{5}s(2\lambda)s(\psi)s(\theta)s(\theta)s(\psi c(\lambda))(\psi c(\lambda) + (l_{4} + l_{5})^{-1}(\psi(-l_{5}c(\lambda) + h_{4}s(\lambda)) + (l_{5}c(\lambda))))$ $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}\dot{\upsilon}_1 R^2 sec(\theta + \psi c(\lambda))$ $\psi_c(\lambda))^2 (4(I_{xx4} + I_{xx5} + 4I_{xx6} + 4I_{yy2} + I_{yy4} + 3I_{yy5} + 4I_{zz3} + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2((h_3 + h_4)^2 + 2(l_3 + l_4)^2)m_4 + (2((h_3 + h_4)^2 + h_5^2 + 2(l_3 + l_4)^2) + 3l_5^2)m_5 + 2(h_6^2m_6 + 2(h_6^2m_6 + 2h_6^2m_6))m_5 + 2(h_6^2m_6) + 2(h_$ $2l_6^2m_6 + m_2R^2)) - 8h_3^2m_3c(2\chi) - 8h_3^2m_4c(2\chi) - 16h_3h_4m_4c(2\chi) - 8h_4^2m_4c(2\chi) -
8h_4^2m_4c(2\chi) - 8h_4^2m_4c(2\chi$ $8h_3^2m_5c(2\chi) - 16h_3h_4m_5c(2\chi) - 8h_4^2m_5c(2\chi) - 2h_5^2m_5c(2\chi) + (-2)l_5^2m_5c(2\chi) -$ $8h_6^2m_6c(2\chi) - 8m_2R^2c(2\chi) - 3h_5^2m_5c(2\chi - 4\lambda) + 3l_5^2m_5c(2\chi - 4\lambda) - 4I_{xx4}c(2\lambda) -$ $4I_{xx5}c(2\lambda) - 4I_{yy4}c(2\lambda) + 4I_{yy5}c(2\lambda) + 8I_{zz4}c(2\lambda) + 16h_3h_5m_5c(2\lambda) +$ $16h_4h_5m_5c(2\lambda) - 8h_3h_5m_5c(2((-1)\chi + \lambda)) - 8h_4h_5m_5c(2(-\chi + \lambda)) 8h_{3}h_{5}m_{5}c(2(\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(\chi + \lambda)) - 3h_{5}^{2}m_{5}c(2(\chi + 2\lambda)) + 3l_{5}^{2}m_{5}c(2(\chi + \lambda)))$ (2λ)) + $6h_5l_5m_5s(2\chi - 4\lambda) + (-32)(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + (-32)(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + (-32)(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + (-32)(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + (-32)(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + (-32)(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + (-32)(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + (-32)(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + (-32)(l_3 + l_4)m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + (-32)(l_5 + l_5s(\lambda)) + (-32)($ $16h_{3}l_{5}m_{5}s(2\lambda) + 16h_{4}l_{5}m_{5}s(2\lambda) + 2c(2\psi)((-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + I_{yy5}) - (h_{5}^{2} + I_{yy5}) + 2h_{5}^{2}h_{yy5} + 2h_{5}^{2}h_{yy$ $l_{5}^{2})m_{5} - 2l_{5}^{2}m_{5}c(2\chi)c(2\lambda)^{2} + (h_{5} - l_{5})(h_{5} + l_{5})m_{5}c(4\lambda) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy4} - I_{yy4}) +
2c(2\lambda)(I_{xx4} + I_{xx5} - I_{yy4}) + 2c(2\lambda)(I_{xx4} + I_{xx5} - I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{xx4} + I_{xx5}) + 2c(2\lambda)(I_{x$ $I_{yy5} - 2l_5^2 m_5 + 2h_5 l_5 m_5 c(2\chi) s(2\lambda)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(2\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(2\chi) s(\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda) + h_5 c(\lambda)^3 s(\lambda)^2)) - 2h_5 m_5 ((-8)l_5 c(\lambda)^3 s(\lambda)^3 s(\lambda) + h_5 c(\lambda)^3 s(\lambda)^3 s(\lambda) + h_5 c(\lambda)^3 s(\lambda)^3 s(\lambda) + h_5 c(\lambda)^3 s(\lambda)^3 s(\lambda)^3 s(\lambda) + h_5 c(\lambda)^3 s(\lambda)^3 s(\lambda) + h_5 c(\lambda)^3 s(\lambda)^3 s(\lambda) + h_5 c(\lambda)^3 s(\lambda)^3 s(\lambda) + h_5 c(\lambda)^3 s(\lambda)^3 s(\lambda)^3 s(\lambda) + h_5 c(\lambda)^3 s(\lambda)^3 s(\lambda)^3 s(\lambda) + h_5 c(\lambda)^3 s(\lambda)^3 s(\lambda)^3 s(\lambda) + h_5 c(\lambda)^3 s(\lambda)^$ $8h_{3}l_{5}m_{5}s(2(-\chi + \lambda)) - 8h_{4}l_{5}m_{5}s(2((-1)\chi + \lambda)) - 8h_{3}l_{5}m_{5}s(2(\chi + \lambda)) 8h_4l_5m_5s(2(\chi + \lambda)) + (-6)h_5l_5m_5s(2(\chi + 2\lambda)) + 4m_5(8(l_3 + l_4)c(\lambda)(l_5c(\lambda) - k_5)c(\lambda)))$ $h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)))s(\psi) +$ $4m_{5}s(2\lambda)((-2)h_{5}l_{5}c(2\lambda) + (h_{5} - l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi)s(\psi c(\lambda))^{2}(\psi c(\lambda) + l_{5})s(2\lambda))s(2\psi)s(\psi c(\lambda))^{2}(\psi c(\lambda) + l_{5})s(2\lambda))s(2\psi)s(\psi c(\lambda))^{2}(\psi c(\lambda) + l_{5})s(2\lambda))s(2\psi)s(\psi c(\lambda))s(2\psi)s(\psi c(\lambda))s(2\psi)s(\psi c(\lambda))s(2\psi)s(\psi c(\lambda))s(2\psi)s(\psi c(\lambda))s(2\psi)s(\psi c(\lambda))s(2\psi)s(\psi c(\lambda))s(2\psi)s(\psi c(\lambda))s(2\psi)s(\psi c(\lambda))$ $(l_4 + l_5)^{-1}(\psi(-l_5c(\lambda) + h_4s(\lambda)) + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta +
\dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \dot{\upsilon}_1Rsec(\theta + \psi c(\lambda))s(\psi c($ $\psi c(\lambda)) + (-1)I_{xx5}(l_4 + l_5)^{-1}c(\theta)sec(\theta + \psi c(\lambda))s(\lambda)s(\psi)(\psi(-l_5c(\lambda) + h_4s(\lambda)) + h_4s(\lambda))) + (-1)I_{xx5}(l_4 + l_5)^{-1}c(\theta)sec(\theta + \psi c(\lambda))s(\lambda)s(\psi)(\psi(-l_5c(\lambda) + h_4s(\lambda)) + h_4s(\lambda)))$ $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))(\dot{\psi} c(\lambda) + (l_4 + l_5)^{-1}(\dot{\psi}((-1)l_5c(\lambda) + h_4s(\lambda))) + (l_4 + l_5)^{-1}(\dot{\psi}(-1)l_5c(\lambda) + h_4s(\lambda)))$ $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + l_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + \ell_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + \ell_5)^{-2}Rsec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + \ell_5)^{-2}Rsec(\theta + \psi c(\lambda))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + \ell_5)^{-2}Rsec(\theta + \psi c(\lambda))tan(\theta + \psi c(\lambda)) + (-1/16)(l_4 + \ell_5)^{-2}Rsec(\theta + \psi c(\lambda))tan(\theta + \psi c(\lambda))t$ $\psi c(\lambda))(4(I_{xx4} + I_{xx5} + 4I_{xx6} + 4I_{yy2} + I_{yy4} + 3I_{yy5} + 4I_{zz3} + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2(h_3^2$ $2((h_3 + h_4)^2 + 2(l_3 + l_4)^2)m_4 + (2((h_3 + h_4)^2 + h_5^2 + 2(l_3 + l_4)^2) + 3l_5^2)m_5 + 2(l_4 + h_4)^2 + 2(l_5 + l_4)^2 + 3(l_5 + l_4)^2 + 3(l_5 + l_4)^2 + 3(l_5 + l_4)^2 + 3(l_5 + l_4)^2 + 3(l_5 + l_4)^2 + 3(l_5 + l_4)^2 + 3(l_5 + l_4)^2 + 3(l_5 + l_4)^2 + 3(l_5 + l_4)^2 + 3(l_5 + l_4)^2 + 3(l_5 + l_4)^2 + 3(l_5 + l_4)^2 + 3(l_5 + l_4)^2 + 3(l_5 + l_4)^2 +
3(l_5 + l_4)^2 + 3(l_6 + l_4)^2 + 3(l_6 + l$ $2l_{5}^{2}m_{5}c(2\chi) - 8h_{6}^{2}m_{6}c(2\chi) - 8m_{2}R^{2}c(2\chi) - 3h_{5}^{2}m_{5}c(2\chi - 4\lambda) + 3l_{5}^{2}m_{5}c(2\chi - 4\lambda) + 3h_{5}^{2}m_{5}c(2\chi$

 $(4\lambda) - 4I_{xx4}c(2\lambda) - 4I_{xx5}c(2\lambda) - 4I_{vv4}c(2\lambda) + 4I_{vv5}c(2\lambda) + 8I_{zz4}c(2\lambda) +$ $16h_{3}h_{5}m_{5}c(2\lambda) + 16h_{4}h_{5}m_{5}c(2\lambda) - 8h_{3}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2\lambda) + 16h_{4}h_{5}m_{5}c(2\lambda) - 8h_{3}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi$ λ)) - 8h_3h_5m_5c(2(\chi + \lambda)) - 8h_4h_5m_5c(2(\chi + \lambda)) - 3h_5^2m_5c(2(\chi + 2\lambda)) + $l_{5s}(\lambda)) + 16h_{3}l_{5}m_{5}s(2\lambda) + 16h_{4}l_{5}m_{5}s(2\lambda) + 2c(2\psi)((-2)I_{xx4} - 2I_{xx5} + 2F_{xx5})$ $2(I_{yy4} + I_{yy5}) - (h_5^2 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5)m_5c(4\lambda) + (h_5 - l_5)(h_5 - l_5)(h_5 + l_5)m_5c(4\lambda) + (h_5 - l_5)(h_5 -$ $2c(2\lambda)(I_{xx4} + I_{xx5} + (-1)I_{yy4} - I_{yy5} - 2l_5^2m_5 + 2h_5l_5m_5c(2\chi)s(2\lambda)) 2h_5m_5((-8)l_5c(\lambda)^3s(\lambda) + h_5c(2\chi)s(2\lambda)^2)) - 8h_3l_5m_5s(2(-\chi + \lambda))$ _ $8h_4l_5m_5s(2(-\chi + \lambda)) - 8h_3l_5m_5s(2(\chi + \lambda)) - 8h_4l_5m_5s(2(\chi + \lambda)) +$ $(-6)h_5l_5m_5s(2(\chi+2\lambda)) + 4m_5(8(l_3+l_4)c(\lambda)(l_5c(\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda))) + 4s(2\chi)(l_5c(2\lambda)-h_5s(\lambda)) + 4s(2\chi)(l_5\chi)(l_5\chi)(l_5\chi)(l_5\chi)(l_5\chi)) + 4s(2\chi)(l_5\chi$ $h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)))s(\psi) + 4m_{5}s(2\lambda)((-2)h_{5}l_{5}c(2\lambda) + l_{5}s(2\lambda))((-2)h_{5}l_{5}c(2\lambda)) +
l_{5}s(2\lambda))((-2)h_{5}l_{5}c(2\lambda)) + l_{5}s(2\lambda))((-2)h_{5}l_{5}c(2\lambda)) + l_{5}s(2\lambda))((-2)h_{5}l_{5}c(2\lambda)) + l_{5}s(2\lambda))((-2)h_{5}l_{5}c(2\lambda)) + l_{5}s(2\lambda))((-2)h_{5}l_{5}c(2\lambda)) + l_{5}s(2\lambda))((-2)h_{5}h_{5$ $(h_5 + (-1)l_5)(h_5 + l_5)s(2\lambda))s(2\psi)s(\psi c(\lambda))(\psi (-l_5c(\lambda) + h_4s(\lambda)))$ ++ $\psi c(\lambda))s(\psi c(\lambda)))(\psi c(\lambda) + (l_4 + l_5)^{-1})(\psi (-l_5 c(\lambda)))$ + $\dot{v}_1 Rsec(\theta)$ $h_{4s}(\lambda)$ + $\dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) + (1/8)(l_{4} + (1/8))c(\lambda)$ $(l_5)^{-2}\dot{\psi}((-8)\dot{v}_1Rc(\theta)(c(\theta)(s(\chi)(h_4(m_4+m_5)+h_3(m_3+m_4+m_5)+h_6m_6+m_6)))))$ $m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) + (-1)h_5s(2\lambda))s(\psi)) +$ $(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5) + l_6m_6 - m_5c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + l_5s(\lambda)) + l_5s(\lambda))$ $m_5c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5)))s(\psi)s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5)))s(\theta))s(\theta)) + 2\dot{v}_1Rs(\theta)(4c(\theta)(l_4(m_4 + m_5)))s(\theta))s(\theta))s(\theta))s(\theta))s(\theta)$ $4(s(\chi)(-h_4(m_4 + m_5) - h_3(m_3 + m_4 + m_5) - h_6m_6 - m_2R - h_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6 - m_5m_5c(2\lambda) - h_6m_6$ $l_5m_5s(2\lambda)) + m_5c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi))s(\theta)) + (1/4)(8(4I_{xx5}\dot{\upsilon}_1c(\theta)sec(\theta + h_5s(2\lambda))s(\psi))s(\theta)) + (1/4)(8(4I_{xx5}\dot{\upsilon}_1c(\theta)sec(\theta + h_5s(2\lambda))s(\psi))s(\theta)) + (1/4)(8(4I_{xx5}\dot{\upsilon}_1c(\theta)sec(\theta + h_5s(2\lambda))s(\psi))s(\theta)) + (1/4)(8(4I_{xx5}\dot{\upsilon}_1c(\theta)sec(\theta + h_5s(2\lambda))s(\psi))s(\theta)) + (1/4)(8(4I_{xx5}\dot{\upsilon}_1c(\theta)sec(\theta + h_5s(2\lambda))s(\psi))s(\theta)) + (1/4)(8(4I_{xx5}\dot{\upsilon}_1c(\theta)sec(\theta + h_5s(2\lambda))s(\psi))s(\theta)) + (1/4)(8(4I_{xx5}\dot{\upsilon}_1c(\theta)sec(\theta + h_5s(\theta)sec(\theta + h_5s(\theta))s(\psi))s(\theta)) + (1/4)(8(4I_{xx5}\dot{\upsilon}_1c(\theta)sec(\theta + h_5s(\theta)sec(\theta + h_$ $\psi c(\lambda) s(\lambda) s(\psi) + 4 \dot{\psi} ((I_{vv5} + I_{zz4})c(\lambda) + 1/2m_5 c(\chi)(2(l_3 + l_4)c(\psi) - 1/2m_5 c(\chi))(2(l_3 + l_4)c(\psi)) - 1/2m_5 c(\chi)(2(l_3 + l_4)c(\psi)) - 1/2m_5
c(\chi)(2(l_3 + l_4)c(\psi)) - 1/2m_5 c(\chi)(2(l_3 + l_4)c(\psi)) - 1/2m_5 c(\chi)(2(l_3 + l_4)c(\psi)) - 1/2m_5 c(\chi)(2(l_3 + l_4)c(\chi)) - 1/2m_5 c(\chi)(2(l_3 + l_4)c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)(2(l_4 + l_4)c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)) - 1/2m_5 c(\chi)) -$ $2s(\lambda)(h_5c(\lambda) + l_5s(\lambda)))(l_5c(2\lambda) - h_5s(2\lambda)) - m_5s(\chi)(h_3 + h_4 + h_5c(2\lambda) + h_5c(2\lambda)) + h_5s(2\lambda))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda)))(h_5c(\lambda) + h_5s(\lambda)))(h_5c(\lambda) + h_5s(\lambda)))(h_5c(\lambda) + h_5s(\lambda)))(h_5c(\lambda) + h_5s(\lambda)))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda) + h_5s(\lambda)))(h_5c(\lambda) + h_5s(\lambda))(h_5c(\lambda))(h_5c(\lambda) + h_5s(\lambda))(h$ $(I_{xx4} + I_{xx5} - 2(I_{yy5} + I_{zz4}))s(2\lambda) - 4m_5s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)(l_3 + l_4 + I_{zz4})s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)(l_3 + l_4 + I_{zz4})s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\chi)(l_5c(2\lambda) (-1)c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda)) + c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + 4c(\chi)(h_4(l_3 + l_5s(\lambda))s(\psi$
$l_4)(m_4+m_5)+h_3(l_4(m_4+m_5)+l_3(m_3+m_4+m_5))+h_6l_6m_6+m_5((l_3+l_4)(h_5c(2\lambda)+m_5))+h_6l_6m_6+m_5))+h_6l_6m_6+m_5))+h_6l_6m_6+m_5)$ $l_{5}s(2\lambda)) - c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)) + c(\lambda)(l_{5}c(\lambda) + h_{5}s(2\lambda)) + c(\lambda)(h_{5}c(\lambda) + h_{5}s(\lambda))(h_{5}c(\lambda))(h_{5}c(\lambda))(h_{5}c(\lambda))($ $(-1)h_{5}s(\lambda)(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda))s(\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi) - h_{xx5})c(2\psi) + h_{xx5}c(2\psi)$ $4I_{zz3} + 2I_{zz4} + 2(h_3^2 + 2l_3^2)m_3 + 2((h_3 + h_4)^2 + 2(l_3 + l_4)^2)m_4 + (2((h_3 + h_4)^2 + h_5^2 + 2(h_3 + h_4)^2)m_4 + (2(h_3 + h_4)^2 + h_5^2)m_4 + (2(h_3 + h_4)^2)m_4 + (2$ $2(l_3 + l_4)^2) + 3l_5^2)m_5 + 2(h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) - 8h_3^2m_3c(2\chi) - 8h_3^2m_4c(2\chi) -
8h_3^2m_4c(2\chi) - 8h_3^$ $16h_{3}h_{4}m_{4}c(2\chi) - 8h_{4}^{2}m_{4}c(2\chi) - 8h_{3}^{2}m_{5}c(2\chi) - 16h_{3}h_{4}m_{5}c(2\chi) - 8h_{4}^{2}m_{5}c(2\chi) + 6h_{4}^{2}m_{5}c$ $(-2)h_5^2m_5c(2\chi) - 2l_5^2m_5c(2\chi) - 8h_6^2m_6c(2\chi) - 8m_2R^2c(2\chi) - 3h_5^2m_5c(2\chi - 4\lambda) +$ $3l_{5}^{2}m_{5}c(2\chi - 4\lambda) - 4I_{xx4}c(2\lambda) - 4I_{xx5}c(2\lambda) - 4I_{yy4}c(2\lambda) + 4I_{yy5}c(2\lambda) + 8I_{zz4}c(2\lambda) +$ $16h_{3}h_{5}m_{5}c(2\lambda) + 16h_{4}h_{5}m_{5}c(2\lambda) - 8h_{3}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda))) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda))) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda))) - 8h_{4}h_{5}m_{$ $\lambda)) - 8h_3h_5m_5c(2(\chi + \lambda)) - 8h_4h_5m_5c(2(\chi + \lambda)) - 3h_5^2m_5c(2(\chi + 2\lambda)) +$ $3l_{5}^{2}m_{5}c(2(\chi+2\lambda)) + 6h_{5}l_{5}m_{5}s(2\chi-4\lambda) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda))(h_{5}c(\lambda)) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) +
(-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{3}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{5}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{5}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{5}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)) + (-32)(l_{5}+l_{4})m_{5}c(\psi)s(\lambda)(h_{5}+l_{4})m_{5}c(\psi)s(\lambda)) + (-32)(l_{5}+l_{5})m_{5}c(\psi)s(\lambda)(h_{5}+l_{5})m_{5}c(\psi)s(\lambda)(h_{5}+l_{5})m_{5}c(\psi)s(\lambda)) + (-32)(l_{5}+l_{5})m_{5}c(\psi)s(\lambda)(h_{5}+l_{5})m_{5}m_{5})m_{5}c(\psi)s(\lambda)(h_{5}+l_{5})m_{5}m_{5})m_{5}c(\psi)s(\lambda)(h_{5}+l_{5})m_{5}m_{5})m_{5}m_{5}m_{5}m_{5}m_{5})m_{5}m_{5}m_{5}m_{5}m_{5}$ $l_{5s}(\lambda)) + 16h_{3}l_{5}m_{5s}(2\lambda) + 16h_{4}l_{5}m_{5s}(2\lambda) + 2c(2\psi)((-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2I_{xx5} + 2(I_{yy4} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2(I_{xx5} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2(I_{xx5} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2(I_{xx5} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx4} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5})) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{xx5} - 2(I_{xx5} + 2I_{xx5}) + 2c(2\psi)(-2)I_{x5} - 2(I_{x5} + 2I_{x5}) + 2c(2\psi)(-2)I_{x5} - 2(I_{x5} + 2I_{x5}) + 2c(2\psi)(-2)I_{x5} - 2(I_{x5} +$ $I_{yy5}) - (h_5^2 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{x$ $I_{xx5} + (-1)I_{yy4} - I_{yy5} - 2l_5^2m_5 + 2h_5l_5m_5c(2\chi)s(2\lambda)) - 2h_5m_5((-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5(-8)l_5c(\lambda)^3s(\lambda)) + 2h_5m_5(-8)l_5c(\lambda)^3s(\lambda) + 2h_5m_5(-8)l_5c(\lambda) + 2h_5m_5$ $h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)))s(\psi) +$ $4m_{5}s(2\lambda)((-2)h_{5}l_{5}c(2\lambda) + (h_{5} + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) +
(-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})(h_{5} + l_{5})s(2\psi))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})s(2\psi))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})s(2\psi))s(2\psi))(\psi(-l_{5}c(\lambda) + (-1)l_{5})s(2\psi))s(2\psi))(\psi(-l_{5}c(\lambda) +$ $h_{4s}(\lambda)) + \dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))))(Rc(\lambda)c(\theta)(l_{5} + l_{4}sec(\theta))))$ + $(\psi c(\lambda))^2) + R(l_5 c(\lambda) s(\theta) + h_4 sec(\theta + \psi c(\lambda)) s(\lambda) s(\psi c(\lambda))) tan(\theta)$ + $\psi c(\lambda))) + (1/32)(l_4 + l_5)^{-1} \dot{\psi} sec(\theta + \psi c(\lambda))(2(16I_{xx5}\dot{\upsilon}_1 c(\theta) sec(\theta)))$ + $\psi c(\lambda)$) + $(-16)I_{xx5}\dot{\chi}c(\lambda)s(\psi)$) + $32I_{xx5}(l_4 + l_5)^{-1}s(\lambda)s(\psi)(\dot{\psi}(-l_5c(\lambda) + l_5)^{-1}s(\lambda)s(\psi))(\dot{\psi}(-l_5c(\lambda) + l_5)^{-1}s(\lambda)s(\psi)))$

 $h_{4}s(\lambda)) + \dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))(h_{4}sec(\theta + \psi c(\lambda))s(\lambda)s(\psi c(\lambda)) +$ $c(\lambda)(l_{5}s(\theta) + l_{4}c(\theta)tan(\theta + \psi c(\lambda)))) + (1/8)(l_{4} + l_{5})^{-1}R(-s(\theta) + c(\theta)tan(\theta + \psi c(\lambda)))) + (1/8)(l_{4} + l_{5})^{-1}R(-s(\theta) + c(\theta)tan(\theta + \psi c(\lambda))))$ $\psi c(\lambda))(8\dot{v}_1Rs(\theta)(\dot{\chi}(c(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6 +$ $m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5s(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi))s(\theta) +$ $(-1)m_5\dot{\psi}(c(\theta)s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_5c(\lambda) - h_5s(\lambda)) + l_5s(\lambda))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_5c(\lambda) - h_5s(\lambda)) + l_5s(\lambda))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_5c(\lambda) - h_5s(\lambda)) + l_5s(\lambda))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_5c(\lambda) - h_5s(\lambda))s(\psi) + l_5s(\lambda))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_5c(\lambda) - h_5s(\lambda))s(\psi) + l_5s(\lambda))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_5c(\lambda) - h_5s(\lambda))s(\psi) + l_5s(\lambda))s(\psi) + l_5s(\lambda)s(\psi) + l_5s(\psi$ $c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\theta))) + (l_4 + l_5)(-1)(c(\theta)(s(\chi)(h_4(m_4 + m_5) +$ $h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - m_5c(2\lambda)) + m_5c(\chi)(l_5c(2\lambda)) + m_5c($ $h_{5}s(2\lambda)s(\psi) + (l_{4}(m_{4}+m_{5})+l_{3}(m_{3}+m_{4}+m_{5})+l_{6}m_{6}-m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda)+m_{6}m_{6}-m_{5}c(\psi)s(\lambda))h_{5}c(\lambda))$ $l_{5s}(\lambda)) + m_{5c}(\lambda)(l_{5c}(\lambda) - h_{5s}(\lambda))s(\psi))s(\theta))(\dot{\psi}(-l_{5c}(\lambda) + h_{4s}(\lambda)) +$ $\dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) + 8\dot{\upsilon}_1 Rc(\theta)(\dot{\chi}c(\theta)(c(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_5)))))$ $m_4 + m_5$) + $h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)$) + $m_5s(\chi)(-l_5c(2\lambda) + m_5s(\chi))(-l_5c(2\lambda))$ + $h_{5}s(2\lambda)) + c(\lambda)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{4} + l_{5})^{-1}(4c(\theta)(l_{4}(m_{4} + m_{5}) + l_{5}s(\lambda))s(\theta))) + (1/4)(l_{5}(m_{4} + m_{5}))s(\theta)) + (1/4)(l_{5}(m_{4}(m_{5} + m_{5}))s(\theta)) + (1/4)(l_{5}(m_{5}(m_{5}(m_{5} + m_{5}))s(\theta)) + (1/4)(l_{5}(m_{5}(m_{5} + m_{5}))s(\theta))) + (1/4)(l_{5}(m_{5}(m_{5} + m_{5}))s(\theta)) + (1/4)(l_{5}(m_{5} + m_{5}))s(\theta)) + (1/4)(l_{5}(m_{5} + m_{5}))s(\theta)) + (1/4)(l_{5}(m_{5} + m_{5}))s(\theta)) + (1/4)(l_{5}(m_{5} + m_{5})(m_{5} + m_{5}))s(\theta)) + (1/4)(l_{5}(m_{5} + m_{5}))s(\theta)) + (1/4)(l_{5}(m_{5} + m_{5}))s(\theta)) + (1/4)(l_{5}(m_{5} + m_{5}))s(\theta))s(\theta)) + (1/4)(l_{5}(m_{5} + m_{5}))s(\theta))s(\theta))s(\theta))s(\theta))s(\theta))s(\theta)$ $l_{3}(m_{3} + m_{4} + m_{5}) + l_{6}m_{6} - m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) -
m_{5}c(\lambda))) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) +$ $h_{5}s(\lambda)(y) + 4(s(\chi)(-h_{4}(m_{4} + m_{5})) - h_{3}(m_{3} + m_{4} + m_{5})) - h_{6}m_{6} - m_{2}R - m_{2}R$ $h_{4}s(\lambda)) + \dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) - 8\dot{v}_{1}Rc(\theta)(\dot{\chi}c(\theta)(c(\chi))h_{4}(m_{4} + \omega)))$ $(m_5) + h_3(m_3 + m_4 + m_5) + h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + l_5m_5s(2\lambda)$ $m_5s(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi)) - m_5\psi(-s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi)s(\theta) +$ $c(\boldsymbol{\psi})(c(\boldsymbol{\chi})c(\boldsymbol{\theta})(-l_5c(2\boldsymbol{\lambda}) + h_5s(2\boldsymbol{\lambda})) - c(\boldsymbol{\lambda})(l_5c(\boldsymbol{\lambda}) - h_5s(\boldsymbol{\lambda}))s(\boldsymbol{\theta}))) + (l_4 + l_4)$ $l_{5s}(\lambda)) + m_{5c}(\lambda)(l_{5c}(\lambda) - h_{5s}(\lambda))s(\psi)) - (s(\chi)(h_{4}(m_{4} + m_{5}) + h_{3}(m_{3} + m_{5})))s(\psi)) - (s(\chi)(h_{4}(m_{4} + m_{5})))s(\psi)) + h_{3}(m_{3} + m_{5s})s(\psi)) + h_{3}(m_{3} + m_{5s})s(\psi) + h_{3}(m_{3} + m_{5s})s(\psi)) + h_{3}(m_{3} + m_{5s})s(\psi) + h_{3}(m_{3} + m_{5$ $m_4 + m_5) + h_6 m_6 + m_2 R + h_5 m_5 c(2\lambda) + l_5 m_5 s(2\lambda)) + m_5 c(\chi) (l_5 c(2\lambda) - m_5 c(2\lambda)))$ $h_{5}s(2\lambda)s(\psi)s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) +$ $(l_4 + l_5)^{-1}\dot{v}_1Rsec(\theta + \psi c(\lambda))(c(\theta)(s(\chi)(h_4(m_4 + m_5) + h_3(m_3 + m_4 + m_5) +$ $h_6m_6 + m_2R + h_5m_5c(2\lambda) + l_5m_5s(2\lambda)) + m_5c(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi))$ $(l_4(m_4 + m_5) + l_3(m_3 + m_4 + m_5) + l_6m_6 + (-1)m_5c(\psi)s(\lambda)(h_5c(\lambda) +$ $l_{5s}(\lambda)) + m_{5c}(\lambda)(l_{5c}(\lambda) - h_{5s}(\lambda))s(\psi))s(\theta))s(\psi c(\lambda))tan(\theta + \psi c(\lambda))) +$ $8\dot{v}_1R_5(\theta)(-\dot{\chi}(c(\chi)(h_4(m_4+m_5)+h_3(m_3+m_4+m_5)+h_6m_6+m_2R+h_5m_5c(2\lambda)+$ $l_{5}m_{5}s(2\lambda)) + m_{5}s(\chi)(-l_{5}c(2\lambda) + h_{5}s(2\lambda))s(\psi))s(\theta) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda) + h_{5}s(2\lambda))s(\psi))s(\theta)) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda) + h_{5}s(2\lambda))s(\psi))s(\theta)) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda) + h_{5}s(2\lambda))s(\psi))s(\theta)) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda) + h_{5}s(2\lambda))s(\psi))s(\theta)) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda) + h_{5}s(2\lambda))s(\psi))s(\theta)) +
m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda) + h_{5}s(2\lambda))s(\psi))s(\theta)) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda) + h_{5}s(2\lambda))s(\psi))s(\theta)) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda) + h_{5}s(2\lambda))s(\psi))s(\theta)) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda)))s(\psi))s(\theta) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda))s(\psi))s(\theta)) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda))s(\psi))s(\theta)) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda))s(\psi))s(\theta)) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda))s(\psi))s(\theta)) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda))s(\psi))s(\psi))s(\theta) + m_{5}\psi(c(\theta)s(\lambda)(h_{5}c(\lambda))s(\psi))s(\psi))s(\psi))s(\psi)$ $l_{5s}(\lambda))s(\psi) + c(\psi)(c(\lambda)c(\theta)(l_{5}c(\lambda) - h_{5}s(\lambda)) - c(\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))s(\theta))) + c(\chi)(l_{5}c(\lambda) - h_{5}s(\lambda))s(\theta)) + c(\chi)(l_{5}c(\lambda))s(\theta))s(\theta))$ $(1/4)(l_4+l_5)^{-1}(4c(\theta)(s(\chi)(-h_4(m_4+m_5)+-h_3(m_3+m_4+m_5)-h_6m_6-m_2R-m_2R))$ $h_5m_5c(2\lambda) + -l_5m_5s(2\lambda)) + m_5c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi)) - 4(l_4(m_4 + m_5) + m_5c(2\lambda))s(\psi)) - 4(l_4(m_4 + m_5)) + m_5c(2\lambda))s(\psi)) - 4(l_4(m_4 + m_5))s(\psi)) - 4(l_4(m_5 + m_5))s(\psi)) - 4(l_4(m_5 + m_5))s(\psi)) - 4(l_4(m_5 + m_5))s(\psi)) - 4(l_4(m_5 + m_5))s(\psi)) - 4(l_5(m_5 + m_5))s(\psi)) - 4(l_5(m_5 + m_5))s(\psi)) - 4(l_$ $l_{3}(m_{3} + m_{4} + m_{5}) + l_{6}m_{6} - m_{5}c(\psi)s(\lambda)(h_{5}c(\lambda) + l_{5}s(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m_{5}c(\lambda)(l_{5}c(\lambda) - m_{5}c(\lambda)) + m$ $h_{5}s(\lambda)s(\psi)s(\theta))(\dot{\psi}(-l_{5}c(\lambda) + h_{4}s(\lambda)) + \dot{\upsilon}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda))) +$ $(1/4)(l_4+l_5)^{-1}\dot{v}_1Rsec(\theta+\psi c(\lambda))(4c(\theta)(l_4(m_4+m_5)+l_3(m_3+m_4+m_5)+l_6m_6-m_6)))$
$m_5c(\psi)s(\lambda)(h_5c(\lambda)+l_5s(\lambda))+m_5c(\lambda)(l_5c(\lambda)-h_5s(\lambda))s(\psi))+4(s(\chi)(-h_4(m_4+m_5c(\lambda))s(\psi))+h_5s(\lambda))s(\psi))+h_5s(\lambda)(h_5c(\lambda)+h_5s(\lambda))s(\psi))$ $m_5) - h_3(m_3 + m_4 + m_5) - h_6m_6 + -m_2R - h_5m_5c(2\lambda) - l_5m_5s(2\lambda)) +$ $m_5c(\chi)(-l_5c(2\lambda) + h_5s(2\lambda))s(\psi)s(\theta)s(\psi c(\lambda))tan(\theta + \psi c(\lambda))) + (1/4)(8(l_4 + \psi c(\lambda)))$ $(I_5)^{-1}\dot{v}_1Rsec(\theta + \psi c(\lambda))(4I_{xx5}\dot{v}_1c(\theta)sec(\theta + \psi c(\lambda))s(\lambda)s(\psi) + 4\dot{\psi}((I_{vv5} + \psi c(\lambda))s(\lambda)s(\psi)))$ $I_{zz4}(\lambda) + 1/2m_5c(\chi)(2(l_3 + l_4)c(\psi) - 2s(\lambda)(h_5c(\lambda) + l_5s(\lambda)))(l_5c(2\lambda) - l_5s(\lambda)))(l_5c(2\lambda) - l_5s(\lambda))(l_5c(2\lambda) - l_5s(\lambda)))(l_$ $s(\lambda)(h_5c(\lambda) + l_5s(\lambda))s(\psi)) + \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5} - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{xx4} + I_{xx5}) - 2(I_{yy5} + I_{zz4}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{yy5} + I_{yz3}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{yy5} + I_{yz3}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{yy5} + I_{yz3}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{yy5} + I_{yz3}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{yy5} + I_{yz3}))s(2\lambda) - \dot{\chi}(4I_{yz3} - (I_{yy5} + I_{yy5}))s(2\lambda) - \dot{\chi}(4I_{yy5} - (I_{yy5} + I_{yy5}))s(2\lambda) 4m_5s(\chi)(l_5c(2\lambda) - h_5s(2\lambda))s(\psi)(l_3 + l_4 - c(\psi)s(\lambda)(h_5c(\lambda) + l_5s(\lambda))) +$ $c(\lambda)(l_5c(\lambda) - h_5s(\lambda))s(\psi)) + 4c(\chi)(h_4(l_3 + l_4)(m_4 + m_5) + h_3(l_4(m_4 + m_5) + h_3(m_4 + m_5)))$ $l_3(m_3 + m_4 + m_5) + h_6 l_6 m_6 + m_5((l_3 + l_4)(h_5 c(2\lambda) + l_5 s(2\lambda)) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_6 m_6)) + h_6 l_6 m_6 + m_5((l_3 + l_4)(h_5 c(2\lambda) + l_5 s(2\lambda))) - c(\psi)s(\lambda)(h_5 c(\lambda) + l_6 m_6))$
$l_{5s}(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+l_{5s}(2\lambda))+c(\lambda)(l_{5}c(\lambda)-1h_{5s}(\lambda))(h_{3}+h_{4}+h_{5}c(2\lambda)+h_{5s}(\lambda))(h_{3}+h_{4}+h_{5s}(2\lambda))+c(\lambda)(l_{5s}(\lambda)-1h_{5s}(\lambda))(h_{3}+h_{4}+h_{5s}(2\lambda))+c(\lambda)(l_{5s}(\lambda)-1h_{5s}(\lambda))(h_{3}+h_{4}+h_{5s}(2\lambda))+c(\lambda)(l_{5s}(\lambda)-1h_{5s}(\lambda))(h_{3}+h_{4}+h_{5s}(2\lambda))+c(\lambda)(l_{5s}(\lambda)-1h_{5s}(\lambda))(h_{3}+h_{4}+h_{5s}(2\lambda))+c(\lambda)(l_{5s}(\lambda)-1h_{5s}(\lambda))(h_{3}+h_{4}+h_{5s}(2\lambda))+c(\lambda)(l_{5s}(\lambda)-1h_{5s}(\lambda))(h_{3}+h_{4}+h_{5s}(2\lambda))+c(\lambda)(l_{5s}(\lambda)-1h_{5s}(\lambda))(h_{3}+h_{4}+h_{5s}(2\lambda))+c(\lambda)(l_{5s}(\lambda)-1h_{5s}(\lambda))(h_{3}+h_{4}+h_{5s}(2\lambda))+c(\lambda)(l_{5s}(\lambda)-1h_{5s}(\lambda))(h_{3}+h_{4}+h_{5s}(2\lambda))+c(\lambda)(l_{5s}(\lambda)-1h_{5s}(\lambda))(h_{5s}(\lambda)-1h_{5s}(\lambda$ $l_{5s}(2\lambda)(\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)((I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) - (I_{yy4} + I_{yy5})s(2\psi)))s(\psi c(\lambda))tan(\theta + I_{yy5})s(2\psi)) + s(2\lambda)(I_{xx4} + I_{xx5})c(2\psi) + s(2\lambda)(I_{xx5})c(2\psi) + s(2\lambda)(I_{xx5})c(2$ $\psi c(\lambda)) + 2(l_4 + l_5)^{-2} \dot{\upsilon}_1 Rsec(\theta + \psi c(\lambda))(4(I_{xx4} + I_{xx5} + 4I_{xx6} + 4I_{yy2} + I_{yy4} + 3I_{yy5} + I_{yy4}))(4(I_{xx4} + I_{xx5} + 4I_{xx6} + 4I_{yy2} + I_{yy4} + 3I_{yy5} + I_{yy4}))$ $2(l_3 + l_4)^2) + 3l_5^2)m_5 + 2(h_6^2m_6 + 2l_6^2m_6 + m_2R^2)) - 8h_3^2m_3c(2\chi) - 8h_3^2m_4c(2\chi) - 8h_3^$ $16h_{3}h_{4}m_{4}c(2\chi) - 8h_{4}^{2}m_{4}c(2\chi) - 8h_{3}^{2}m_{5}c(2\chi) - 16h_{3}h_{4}m_{5}c(2\chi) - 8h_{4}^{2}m_{5}c(2\chi) -
8h_{4}^{2}m_{5}c(2\chi) - 8h_{4}^{2}m_{5}c$ $2h_{5}^{2}m_{5}c(2\chi) - 2l_{5}^{2}m_{5}c(2\chi) - 8h_{6}^{2}m_{6}c(2\chi) - 8m_{2}R^{2}c(2\chi) - 3h_{5}^{2}m_{5}c(2\chi - 4\lambda) +$ $3l_{5}^{2}m_{5}c(2\chi - 4\lambda) - 4I_{xx4}c(2\lambda) - 4I_{xx5}c(2\lambda) - 4I_{yy4}c(2\lambda) + 4I_{yy5}c(2\lambda) + 8I_{zz4}c(2\lambda) +$ $16h_{3}h_{5}m_{5}c(2\lambda) + 16h_{4}h_{5}m_{5}c(2\lambda) - 8h_{3}h_{5}m_{5}c(2(-\chi + \lambda)) - 8h_{4}h_{5}m_{5}c(2(-\chi + \lambda))) - 8h_{4}h_{5}$ $\lambda)) - 8h_3h_5m_5c(2(\chi + \lambda)) - 8h_4h_5m_5c(2(\chi + \lambda)) - 3h_5^2m_5c(2(\chi + 2\lambda)) +$ $l_{5s}(\lambda)) + 16h_{3}l_{5}m_{5s}(2\lambda) + 16h_{4}l_{5}m_{5s}(2\lambda) + 2c(2\psi)(-2I_{xx4} - 2I_{xx5} + 2(I_{vv4} + I_{vv5}) - 2V_{vv4}) + 2c(2\psi)(-2I_{xx4} - 2I_{xx5} + 2(I_{vv4} + I_{vv5}) - 2V_{vv4}) + 2c(2\psi)(-2I_{xx4} - 2I_{xx5} + 2(I_{vv4} + I_{vv5}) - 2V_{vv4}) + 2c(2\psi)(-2I_{xx4} - 2I_{xx5} + 2(I_{vv4} + I_{vv5}) - 2V_{vv4}) + 2c(2\psi)(-2I_{xx4} - 2I_{xx5} + 2(I_{vv4} + I_{vv5}) - 2V_{vv4}) + 2c(2\psi)(-2I_{vv4} - 2I_{vv4} - 2I_{vv4} + I_{vv5}) + 2c(2\psi)(-2I_{vv4} - 2I_{vv4} - 2I_{vv4} + I_{vv5}) + 2c(2\psi)(-2I_{vv4} - 2I_{vv4} - 2I_{vv4} + I_{vv5}) + 2c(2\psi)(-2I_{vv4} - 2I_{vv4} - 2I_{vv4} + I_{vv5}) + 2c(2\psi)(-2I_{vv4} - 2I_{vv4} - 2I_{vv4} + I_{vv5}) + 2c(2\psi)(-2I_{vv4} - 2I_{vv4} + I_{vv4} + I_{vv5}) + 2c(2\psi)(-2I_{vv4} - 2I_{vv4} + I_{v$ $(h_5^2 + l_5^2)m_5 - 2l_5^2m_5c(2\chi)c(2\lambda)^2 + (h_5 - l_5)(h_5 + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda) + 2c(2\lambda)(I_{xx4} + l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} +
l_5)m_5c(4\lambda)) + 2c(2\lambda)(I_{xx4} + l_5)m$ $I_{xx5} - I_{yy4} - I_{yy5} - 2l_5^2 m_5 + 2h_5 l_5 m_5 c(2\chi) s(2\lambda)) - 2h_5 m_5 (-8l_5 c(\lambda)^3 s(\lambda) +$ $h_{5}s(\lambda)) + 4s(2\chi)(l_{5}c(2\lambda) - h_{5}s(2\lambda))(h_{3} + h_{4} + h_{5}c(2\lambda) + l_{5}s(2\lambda)))s(\psi) +$ $4m_{5}s(2\lambda)(-2h_{5}l_{5}c(2\lambda) + (h_{5} - l_{5})(h_{5} + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(2\psi))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(\psi c(\lambda))(\psi c(\lambda)))s(\psi c(\lambda))(\psi (-l_{5}c(\lambda) + l_{5})s(2\lambda))s(\psi c(\lambda)))s(\psi c(\lambda))(\psi c(\lambda))(\psi c(\lambda))s(\psi c(\lambda))(\psi c(\lambda))s$ $h_{4s}(\lambda)$) + $\dot{v}_{1}Rsec(\theta + \psi c(\lambda))s(\psi c(\lambda)))tan(\theta + \psi c(\lambda)) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))) + 2(-16I_{xx5}\dot{v}_{1}^{2}c(\theta)sec(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda))tan(\theta + \psi c(\lambda)))tan(\theta + \psi c(\lambda)$ $\psi c(\lambda))^{2} tan(\theta + \psi c(\lambda)) - 16I_{xx5} \dot{\chi} \dot{v}_{1}c(\lambda)c(\theta)sec(\theta + \psi c(\lambda))s(\psi)tan(\theta + \psi c(\lambda))) +$ $8(l_4+l_5)^{-1}(\dot{\psi}(-l_5c(\lambda)+h_4s(\lambda))+\dot{\upsilon}_1Rsec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi
c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda))s(\psi c(\lambda)))(-4I_{xx5}\dot{\upsilon}_1sec(\theta+\psi c(\lambda))s(\psi c(\lambda)$ $\psi c(\lambda) s(\lambda) s(\psi) s(\theta) + 4I_{xx5} \dot{\upsilon}_1 c(\theta) sec(\theta + \psi c(\lambda)) s(\lambda) s(\psi) tan(\theta + \psi c(\lambda)))))).$

$$\ddot{lpha} = -\ddot{\chi} + I_{yy6}^{-1} au_{lpha}.$$

Şekil A.1: Bisiklet arka tekerlek katı modeli.

Şekil A.2: Bisiklet ön tekerlek katı modeli.

Şekil A.3: Bisiklet ana çerçevesi katı modeli.

Şekil A.4: Bisiklet gidon katı modeli.

Şekil A.5: Bisiklet volan mekanizması katı modeli.

Şekil A.6: Bisiklet volan katı modeli.

Şekil A.7: Bisiklet volan mekanizması alt üst bağlantı elemanı katı modeli.

Şekil A.8: Bisiklet volan mekanizması yan bağlantı elemanı katı modeli.

Şekil A.9: Bisiklet volan mekanizması orta bağlantı elemanı (motor bağlantısı için) katı modeli.

Şekil A.10: Bisiklet volan mili katı modeli.

Şekil A.11: Bisiklet gidon motor bağlantı elemanı katı modeli.

Şekil A.12: Bisiklet arka tekerlek dişlisi katı modeli(Enkoder montajı için).

Şekil A.13: Bisiklet arka tekerlek enkoder dişlisi katı modeli.

EK C

CANopen RS232 GUI OIGITAL

EPOS2 50/5 Matched with DC brush motors with encoder or brushless EC motors with Hall sensors and encoder, from 5 to 250 watts.

NEW

EPOS 70/10 Matched with DC brush motors with encoder or brushless EC motors with Hall sensors or encoder, from 80 to 700 watts.

Additional information

maxon motor control

Controller versions		Modes of Operation	
Slave version	Slave version	CANopen Profile Position-, Profile Velocity- and	
Electrical Data		Homing Mode	
11 - 50 VDC	11 - 70 VDC	Position-, Velocity- and Current Mode	
11 - 50 VDC	11 - 70 VDC	Digital position setting by Step-Direction or	
0.9 x V _{cc}	0.9 x V _{cc}	Master Encoder	
10 A	25 A	Path generating with trapezoidal or sinusoidal	
5 A	10 A	velocity profiles	
10 kHz	10 kHz	Feed forward for velocity and acceleration	
1 kHz	1 kHz	EPOS2 additional interpolated position mode	
1 kHz	1 kHz	Sinusoidal or block commutation for EC motors	
25 000 rpm (sinusoidal); 100 000 rpm (block)	25 000 rpm	Communication	
22 µH / 5 A	25 μH / 10 A	Communication via CANopen and/or RS232, EPOS2 additionally with USB 2.0	
Input		Gateway RS232 to CAN	
H1, H2, H3	H1, H2, H3	EPOS2 additionally gateway USB to CAN	
A, A B, B I, I\ (max, 5 MHz)	A, A B, B I, I\ (max, 1 MHz)	Inputs / Outputs	
11 digital inputs	8 digital inputs	Free configurable digital inputs e.g. for limit	
2 analogue inputs (differential)	2 analogue inputs	switches and reference switches	
12-bit resolution, ±10 V	10-bit resolution, 0 +5 V	Free configurable digital outputs e.g.	
Configurable with	Configurable with	for brakes	
DIP switch 1 10	DIP switch 1 7	Free analogue inputs	
Output		Available software	
5 digital outputs; 1 analogue 12-bit 0 10 V	4 digital outputs	EPOS Studio	
+5 VDC max. 100 mA	+5 VDC, max. 100 mA	EPOS Graphical User Interface (GUI)	
+5 VDC max. 30 mA	+5 VDC, max. 30 mA	Windows DLL	
+5 VDC max. 150 mA	+5 VDC (R = 1 kΩ)	IEC 61131-3 Libraries	
Interface		Firmware	
RxD; TxD (max. 115 200 bit/s)	RxD; TxD (max. 115 200 bit/s)	Available documentation	
high; low (max. 1 Mbit/s)	high; low (max. 1 Mbit/s)	Getting Started	
Data+; Data- (max. 12 Mbit/s)		Cable Starting Set	
Indicator		Hardware Reference	
Red LED, green LED	Bi-colour LED	Firmware Specification	
Ambient temperature / Humidity range		Communication Guide	
-10 +45°C	-10 +45°C	Application Notes	
-40 +85°C	-40 +85°C	Cable	
20 80 %	20 80 %	A comprehensive range of cables is available as	
Mechanical data		an option. Details can be found on page 299.	
Approx. 240 g	Approx. 330 g		
120 x 93.5 x 27 mm	150 x 93 x 27 mm		
Flange for M3-screws	Flange for M3-screws		
Order Number	-		
347717 EPOS2 50/5	300583 EPOS 70/10		

Accessories 309687 DSR 50/5 Shunt regulator 235811 DSR 70/30 Shunt regulator Order accessories separately, see page 299 Order accessories separately, see page 299 Order accessories separately, see page 299 May 2008 edition / subject to change

maxon motor control 295

Şekil A.15: Bisiklet maxon epos sürücü katalog bilgileri.

New

Embedded System

Function		1 X R8-422/485 (COM 3)	4-92		4-60	
	Indicators	HDD LED / Power LED indicator	27.7			
	Front VOs	1 x HDMI 1 x VGA 2 x USB port 1 x Audio & Speaker Jack				
	Rear VOs	2 x USB port COM 3 (R6+422/485) COM 1 (R6-232) COM 2 (R6-232) 1 x LAN	Packing List			
		AT/ATX support	1 x UIBX-210-CV-N2600-R10	1 x UIBX-210-CV-N2600-R10		
Power	Power Supply	Power input: +12V only	1 x Adaptor 12V/5A		1 x Utility CD	
	Watobdog Timer	Software programable 1~255 sec. system reset	1 x Screw set		1 x QIG (Quick Installation Guide)	
Reliability Reliability Reliability Cha Con Dim Mou EMC	Hardware Monitor	Fintek 81866	Ordering Information			
	Operating Temperature	0°C ~ 50°C with air flow	Part No. Decoription		n	
	Power Consumption	+12V @ 1.57A (Inte® Atom™ N2600 dual Core 1.6GHz , DDR3 800 2GB memory)		Fanless embedded system with Intel® Alom™ N2500 DC 1.6GHz, Intel® NM10 chipset, 2GB DDR3 memory, 12VDC-In, with 60W power adaptor PSE adaptor, black, RoHS		
	Chassis Construction	Aluminum Alloy, ABS	UBA-210-07-N2000/20B-R10			
	Dimensions	146.6mm x 132mm x 45.2mm (DxWxH)		Fanless e	Fanless embedded system with Intel® Atom™ N2600	
	Mounting	VE8A75	uIBX-210W-CV-N2600/2GB-R10	DC 1.6GHz, Intel® NM10 chipset, 2GB DDR3 memory, built-in 2T2R 802.11b/gin wireless, 12VDC-in, with 60W power adaptor PSE adaptor, black, RoHS		
	EMC/Safety	CE, FCC class A				
	Supported OS	Microsoft® WES7E UIBXVK-210B		VESA 75 mount kit for uIBX-210, black		
		Microsoft® Windows® XP Embedded	soft® Windows® XP Embedded soft® CE 5.0 VK-751008		VESA mount 75 to 100 adapter, black	

Şekil A.16: Bisiklet gömülü bilgisayar katalog bilgileri.

Şekil A.17: Bisiklet arka tekerlek enkoder katalog bilgileri.

Specifications

The system architecture has been carefully designed to substantially eliminate common sources of error such as	Orientation range (pitch, roll, yaw)	360° about all axes		
hysteresis induced by temperature changes and sensitivity to supply voltage variations. The use of six independent	Accelerometer range	accelerometers: ± 5 g standard ± 10 g and ± 2 g also available		
Delta-Sigma A/D converters (one for each sensor) ensures	Accelerometer bias stability	± 0.010 g for ± 10 g range		
that all sensors are sampled simultaneously, and that the		± 0.005 g for ± 5 g range		
best possible time integration results are achieved. On-board	Accelerometer poplinearity	± 0.003 g for ± 2 g range		
data output rates while maintaining performance of a fast	Guro range	0.270		
internal sampling rate.	Gyro range	sec, ± 150°/sec, ± 75°/sec also available		
3DM-GX2 incorporates an integral triaxial magnetometer;	Gyro bias stability	± 0.2°/sec for ± 300°/sec		
optionally, the magnetometer can be located remotely to	Gyro nonlinearity	0.2%		
reduce hard and soft iron interference.	Magnetometer range	± 1.2 Gauss		
	Magnetometer nonlinearity	0.4%		
triaxial accelerometer	Magnetometer bias stability	0.01 Gauss		
triaxial angular rate gyros calibration data	A/D resolution	16 bits		
six Delta-Sinma	Orientation Accuracy	\pm 0.5° typical for static test conditions \pm 2.0° typical for dynamic (cyclic) test conditions & for arbitrary orientation angles		
16 bit A/D converters microprocessor	Orientation resolution	<0.1° minimum		
w/ embedded	Repeatability	0.20°		
Vectors, Euler angles, Matrix	Output modes	acceleration and angular rate, deltaAngle and deltaVelocity, Euler angles, rotation matrix		
triaxial magnetometer temperature sensor USB 2.0, RS232, RS422	Interface options	RS232, RS422, USB 2.0 and wireless - 2.45 GHz IEEE 802.15.4 direct sequence spread spectrum, license free worldwide (2.450 to 2.490 GHz) - 16 channels		
	Wireless communication range	70 m		
computer or host	Digital output rates	1 to 250 Hz with USB interface 1 to 100 Hz with wireless interface		
system	Serial data rate	115200 bps		
	Supply voltage	5.2 to 9.0 volts		
	Power consumption	90 mA		
	Connectors	micro DB9		
	Operating temp.	-40 to +70°C with enclosure -40 to +85°C without enclosure		
	Dimensions	41 mm x 63 mm x 32 mm with enclosure 32 mm x 36 mm x 24 mm without enclosure		
	Weight	39 grams with enclosure, 16 grams without enclosure		
	Shocklimit	1000 g (unpowered), 500g (powered)		
	MicroStrain [®]			
	MieroStr 310 Hurri Williston, www.mic	ann Inne. Canne Lanne, Urnit 4 phr.: 800-449-3878 VT 05495 USA fax: 802-863-4093 rostrain.com sales®microstrain.com		
Copyright © 2007 MicroStavin Inc. 30M GS2 is a incidente of MicroStavin Inc. Specifications are subject to change without notice. Updated July 13,2007		Patent Pending		

Şekil A.18: Bisiklet imu katalog bilgileri.

ÖZGEÇMİŞ

Ad Soyad: Ömer Faruk ARGIN

Doğum Yeri ve Tarihi: Orhaneli-18.09.1986

E-Posta: ofargin@gmail.com

Lisans: Kocaeli Üniversitesi Mekatronik Mühendisliği

TEZDEN TÜRETİLEN BİLDİRİLER

• Argın Ö.F. and Bayraktaroğlu Z. Y., 2013: Otonom Bisiklet Modellenmesi ve Kontrolü. *TOK2013*, September 26-28, 2013 Malatya, Turkey.

• Argin O.F. and Bayraktaroglu Z. Y., 2014: Modelling, Control System Design and Simulation of an Autonomous Bicycle. *MIC2014- IASTED*, February 17-19, 2014 Innsbruck, Austria.