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BUILDING SENSOR-BASED REAL-TIME PREDICTIVE MAINTENANCE 

SYSTEM BY UTILIZING ARTIFICIAL INTELLIGENT TECHNIQUES 

SUMMARY 

Rolling elements are commonly used in heavy-duty machinery, oil firms, water 

treatment processing, transportation, and aeronautical equipment among other 

applications. Bearing failures can lead to a complete breakdown of machinery, 

resulting in a disastrous accident and financial losses for the owner. As a consequence, 

correctly detecting the presence of these vulnerabilities as early as possible is crucial. 

Predictive maintenance is therefore of a great importance for lowering the cost of 

repairing or replacing capital-intensive infrastructure. The definition of predictive 

maintenance and condition monitoring techniques is extensively discussed in this 

dissertation.  

Over the past few decades, a considerable attention has been paid to predictive 

maintenance policies as the basis for production management in many leading 

companies. Under the concept of zero failure manufacturing, predictive maintenance 

seeks to reduce downtime and maintenance costs by using real-time data to detect 

potential faults. The predictive maintenance principle states that maintenance is only 

done when it is required, which means that it is only done after analytical models have 

detected impending failures or degradations. In other words, the defects do not appear 

suddenly, they advance in time and increase the critical state of equipment aging.  

Considering this incremental and progressive nature, aging starts in the machine 

components when the operating condition changes from normal to critical.  

This dissertation spotlights on the concept of predictive maintenance and condition 

monitoring techniques. Specifically, it presents a review of the most popular condition 

monitoring methods applied on rotary machines like pumps, motors, gearboxes, 

turbines, etc. The pump is chosen as a case study as it plays a vital role in our everyday 

lives. Besides, pump machines are considered the most used mechanical equipment 

after motors, and an immense amount of money is spent annually on their maintenance 

activities. The current study provides various intelligent monitoring techniques for 

detecting bearings defects at early stages so that predictive maintenance actions can be 

taken timely to prevent major pumping systems' failures. 

Numerous publications discussing the topic of condition monitoring have been 

reviewed modules during this study. They give an overview of emerging capabilities 

in predictive maintenance by applying the Internet of Things technology. Achieving 

efficient predictive maintenance requires access to the machining process data 

(historical data and real-time), industrial network, and communication layers. These 

activities are accomplished by an intelligent condition monitoring system and 

industrial communication protocols.  

Fault prediction models and predictive maintenance suggested in this research have 

been applied on forwarding pumping stations run by the SEWERAGE TREATMENT 

COMPANY (STC), one of the largest sewage treatment firms in Qatar. The stoppage 
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in any of those pumping systems leads to significant financial loss consequences such 

as repair cost, replacement costs, consequential damage, etc. In addition, risk 

consequences such as the potential for safety or environmental incident, breach of 

statutory or license requirement can rise.   

The most challenging task this research attempts to attain is to keep pump machines in 

a functional state by estimating their operating condition in order to perform the 

necessary maintenance interventions. This would minimize machines downtime and 

achieve the maximum availability and reliability of pumping stations. The author 

proposes networked monitoring systems by IoT technology, specifically by 

SKF@ptitude observer monitoring, an expert diagnostics software commonly used for 

pump monitoring systems. Temperature measurement and vibration signal analysis are 

used to track rolling bearing conditions and provide more accurate detection results. 

Temperature measurements help in identifying potential temperature-related 

equipment faults, such as excessive mechanical friction (faulty bearings, inadequate 

lubrication, fouling in a heat exchanger, and shoddy electrical connections). Variable 

vibration signals may indicate wear, imbalance, misalignment, or damage. These 

measurements assist in identifying the causes of bearing failure, which is caused 

mainly by temperature and/or vibration. The required maintenance action can be 

carried out based on the findings of these observations, the professional experience of 

maintainers, as well as the rotary machinery maintenance manual. 

With artificial intelligence's massive regeneration, predictive maintenance has become 

the most effective process to deal with the vast amounts of data collected from smart 

manufacturing and complex engineering processes, particularly for implementing fault 

prediction systems based on data-driven approaches. This thesis presents two different 

case studies that utilize condition monitoring data and artificial intelligence techniques 

(namely machine learning and deep learning) as effective procedures for intelligent 

fault detection.  

In the first case, supervised machine learning is combined with decision-making 

techniques to anticipate potential bearing failures and improve overall manufacturing 

operations by performing necessary maintenance actions at the right time. The 

integrated model has been applied in this research where the data fed (mainly 

temperature and vibration) belong to the labeled type. In this regard, a comparison of 

four different types of classifiers is conducted. These classifiers are:  decision trees, 

random forests, gradient boosted, and support vector machines. The comparison is 

achieved using python programming package to investigate which type provides the 

highest detection accuracy. The predictive maintenance module's accuracy is tested 

using real-world industrial development datasets. Since the binary classification output 

of the applied machine learning algorithms would generate the pseudo probability of 

an observation belonging to a class, we decided to use the utility theory to leverage the 

likelihood of failures and thus help to perform correct maintenance behavior. 

The second case study introduces four different deep architectures, which are mostly 

used in predictive maintenance field, namely, the Deep Feedforward Networks (DFN), 

a standard Long Short-Term Memory (LSTM), gradient boosted, and an LSTM with 

Convolutional Neural Networks (CNN). These models are implemented using a 

vibration signal dataset for roller bearings to assess their superiorities in fault 

identification and prediction. The vibration signals are first processed and extracted 

using the statistical time-domain method. The extracted statistical parameters are then 

fed to the suggested DL approaches to classify the bearings operating conditions. 
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As a result, we tried to take advantage of CNN and LSTM complementarity by 

merging them into a single unified architecture to train the model jointly. The 

experimental results are then compared with the other suggested deep learning models 

to confirm the best performing model in terms of fault detection and operation 

assessment. Five performance indicators are evaluated to measure the performance of 

the tested ML and DL algorithms: accuracy, F-score, precision, recall, and area under 

the curve (AUC). 

Our research's novelty lays in the new perspective on predictions and the suggestion 

and comparison of several classifier models. This comparison is conducted on two 

real-world datasets from the pumping systems. Experimental results revealed that our 

proposed classifier models produced promising results. 
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YAPAY AKILLI TEKNİKLERİ KULLANARAK SENSÖR TABANLI 

GERÇEK ZAMAN TAHMİNLİ BAKIM SİSTEMİ KURULMASI 

ÖZET 

Yuvarlanma elemanları, diğer uygulamaların yanı sıra ağır iş makinelerinde, petrol 

firmalarında, su arıtma işlemlerinde, nakliye ve havacılık ekipmanlarında yaygın 

olarak kullanılmaktadır. Yatak arızaları, makinenin tamamen bozulmasına yol açarak, 

feci bir kazaya ve mal sahipleri için mali kayıplara neden olabilir. Sonuç olarak, bu 

güvenlik açıklarının varlığını olabildiğince erken doğru bir şekilde tespit etmek çok 

önemlidir. Bu yüzden kestirimci bakım; tamir, tadilat ve altyapı yenileme maliyetlerini 

düşürdüğünden büyük önem arz etmektedir. Kestirimci bakım ve süreç takip 

tekniklerinin tanımı bu tez içinde geniş bir biçimde tartışılacaktır.  

Geçtiğimiz birkaç onyılda sektöre yön veren büyük şirketler, üretimin yönetilmesi 

açısından dikkatlerini kesitirimci bakım politikalarına vermişlerdir. Sıfır hata üretim 

politikaları altında, kestirimci bakım; arıza süreleri ve bakım maliyetlerini kısmak için, 

gerçek zamanlı verileri kullanarak potansiyel arızaları tespit etmek için çalışır. 

Kestirimci bakım prensibi şunu beyan eder; genel olarak bakım sadece gerekli olduğu 

zaman gerçekleştirilir, bu da analitik modellerin yaklaşmakta olan bir arıza veya 

bozulmayı tespit etmesinden sonra yapılmasıdır. Diğer bir deyişle arızalar aniden 

ortaya çıkmaz, zaman içerisinde gelişirler ekipmanların kritik yıpranma sürecini 

artırırlar. Bu sürecin artan ve ilerleyen doğasını göz önüne aldığımızda, makine 

parçalarındaki yıpranma makinelerin işleyiş koşullarının normalden seviyeden kritik 

seviyeye gelmesiyle başlar.  

Bu tezde kestirimci bakım ve durum izleme konseptlerine dikkat çekilecektir. 

Özellikle dönen parçalardan ve aksamlardan oluşan pompalar, motorlar, vites kutuları, 

ve türbinlerdeki en bilindik süreç izleme methodları sunulacaktır. Çalışma konusu 

olarak pompa seçilmiştir. Pompaların günlük hayatımızda önemli rol oynadığı 

malumdur. Bunun dışında pompalar motorlardan sonra en sık kullanılan mekanik 

ekipmanlardır ve yıllık bakım faaliyetlerine ciddi miktarda para ödenmektedir. Yakın 

zamanda yapılan çalışmalar akıllı takip tekniklerinin erken safhalarda rulman 

kusurlarını tespit edebilmesini sağlayarak pompa sistemlerinin büyük bir arızaya 

girmeden kestirimci bakım aksiyonlarının alınmasını sağlamaktadır.  

Bu çalışmada durum takibi başlığı altında yayımlanmış bir çok yayın gözden 

geçirilerek değerlendirilmiştir. Bu çalışmalar; Nesnelerin İnterneti teknolojisini 

uygulayarak artan kapasiteleri ile kestirimci bakım hakkında genel bakış 

sağlamaktadır. Etkili bir kestirimci bakıma ulaşmak için makine işlem verileri (tarihsel 

ve anlık), endüstriyel ağ ve iletişim katmanlarına erişim gereklidir. Bu aktiviteler akıllı 

durum takibi sistemi ve endüstriyel iletişim protokolleri ile tamamlanmış olur. 

Bu araştırmada sunulan arıza tahmini modelleri ve kestirimsel bakım çalışmaları 

Katar’ın en büyük pis su artıma tesislerinden biri olan SEWERAGE TREATMENT 

COMPANY (STC) ‘nin pompa nakil istasyonlarından birinde uygulanmıştır. Bu 

sistemlerde meydana gelebilecek en ufak bir aksama veya durma hem mali anlamda 
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ciddi bir kayba (tamir masrafı, değiştirme masrafları ve takibinde meydana gelebilecek 

olasu hasarlar) bunun yanında çevresel, güvenlik ve görev ihlali veya lisans 

gereksinimleri risklerini artırabilir.  

Araştırmada en zorlayıcı kısım; pompa makinelerini işler düzeyde tutacak şartların 

tahmini ve bakım müdahalelerinin uygun anda yapılmasının sağlanmasıdır. Bu şekilde 

zorunlu duruş süreleri minimize edilir ve pompa istasyonlarının güvenilir ve 

maksimum kapasitede çalışması sağlanır. Yazar nesnelerin internet teknolojili ağ 

izleme sistemleri; özellikle pompa izleme sistemlerinde sıklıkla kullanılan 

SKF@ptitude gözleyici izleme, uzman tanı yazılımı önermektedir. Sıcaklık ölçümleri 

ve titreşim sinyal analizleri döner rulman sistemlerinin durumunun takibinde daha 

kesin sonuçların elde edilmesi için kullanılır.  

Sıcaklık ölçümleri yüksek mekanik sürtünmeden dolayı aşırı ısınma sebepli ekipman 

arızalarının tespitine yardım eder. (Arızalı rulmanlar, yetersiz yağlama, eşanjörde 

oluşan tortular ve gelişigüzel yapılmış elektrik bağlantıları) Değişken titreşim 

sinyalleri; yorulma, dengesizlik, hatalı hizalanma veya hasarları göstermekte faydalı 

olurlar. Bu tip önlemler başlıca rulman arıza sebebi olan ısınma ve titreşimin tespit 

edilmesine yardımcı olurlar. Gerekli bakım onarım faaliyetleri bu gözlemlerden sonra 

profösyonel bakımcılar tarafından veya bakım kılavuzlarına göre gerçekleştirilebilir. 

Yapay zekanın muazzam gelişimi, kestirimci bakım faaliyetinin; akıllı üretim ve 

karmaşık mühendislik işlemlerinden elde edilen (genellikle veriye dayalı arıza tespit 

system yaklaşımlarında) devasa boyuttaki verilerin en etkili şekilde işlenmesini 

mümkün kılar. Bu tezde akıllı arıza tespitinde etkili prosedür olarak süreç takip verileri 

ve yapay zeka teknikleri (makine öğrenmesi ve derin öğrenme) olmak üzere iki farklı 

vaka çalışması sunulacaktır. 

İlk durumda, kontrollü makine öğrenmesi, karar verme teknikleri ile birlikte 

kullanılarak potansiyel rulman arızalarının tespitini ve genel üretim operasyonunu 

geliştirmek için doğru zamanda gerekli bakım faaliyeti aksiyonunu almaktadır. Bu 

çalışmada işaretli tipte veri beslemeye  (genel olarak sıcaklık ve titreşim) ait olan 

tümleşik model uygulanmıştır. Bu bağlamda 4 farklı sınıflandırıcı mukayesesi 

yapılmıştır. Bu sınıflandırıcılar: karar şemaları (DT), rastgele orman (RF), gradian 

artırma (GB) ve destek vektör makineleridir (SVM). Python bilgisayar programı 

kullanarak hangi tipin en yüksek kesinliği sağladığı tespit edilmiştir. Kestirimci bakım 

modülünün kesinliği endüstiryel gerçek dünya endüstriyel gelişim veri setleri 

kullanılarak test edilmiştir. Ikili sınıflandırma çıktıları uygulanmış makine öğrenme 

algoritmaları ilgili sınıfa ait yalancı gözlem ihtimalleri oluşturacağından, arıza 

olasılığından yararlanmak ve böylece doğru bakım davranışını gerçekleştirmeye 

yardımcı olmak için fayda teorisini kullanmaya karar verdik. 

İkinci vaka çalışması, çoğunlukla kestirimci bakım alanında kullanılan dört farklı derin 

mimariyi tanıtmaktadır: Derin İleri Beslemeli Ağlar (DFN), standanrt Uzun Kısa 

Süreli Bellek (LSTM), gradyan artırılmış (GB) ve Evrişimli Sinir Ağlarına sahip 

(CNN) ve LSTM. Bu modeller, arıza tespiti ve tahminindeki üstünlüklerini 

değerlendirmek için makaralı rulmanlar için bir titreşim sinyali veri seti kullanılarak 

uygulanır. Titreşim sinyalleri ilk olarak istatistiksel zaman alanı yöntemi kullanılarak 

işlenir ve çıkarılır. Çıkarılan istatistiksel parametreler daha sonra rulman çalışma 

koşullarını sınıflandırmak için önerilen DL yaklaşımlarını beslemek için kullanılır.  

Sonuç olarak, modeli birlikte eğitmek için CNN ve LSTM tamamlayıcılığını tek bir 

birleşik mimaride birleştirerek yararlanmaya çalıştık. Daha sonra deneysel sonuçlar, 

hata tespiti ve operasyon değerlendirmesi açısından en iyi performans gösteren modeli 
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doğrulamak için önerilen diğer derin öğrenme modelleriyle karşılaştırılır. Test edilen 

ML ve DL algoritmalarının performansını ölçmek için beş performans göstergesi 

değerlendirilir: doğruluk, F-skoru, hassasiyet, geri çağırma ve eğri altındaki alan 

(AUC). 

Araştırmamızın yeniliği, tahminler ve birkaç sınıflandırıcı modelin önerisi ve 

karşılaştırması üzerine yeni perspektifte yatmaktadır. Bu karşılaştırma, pompalama 

sistemlerinden iki gerçek dünya veri setleri üzerinde yapılmıştır. Deneysel sonuçlar, 

önerilen sınıflandırıcı modellerimizin umut verici sonuçlar verdiğini ortaya koydu. 
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 INTRODUCTION 

This chapter provides a general overview of the maintenances in industries and a 

review of the maintenance strategies relevant to this study. It introduces the 

motivation, framework, and objectives of this thesis. Finally, the thesis organization is 

outlined. 

 Background 

In modern business, reliability and maintenance have a major effect on the three core 

elements of competitiveness: quality, expense, and time to market. Machines that are 

well-maintained retain tolerances better, minimize scrap and rework, increase 

component accuracy and efficiency, and lower overall production costs. Owing to a 

lack of recognition of the machine's output actions and the need to increase production 

quality, many factories still conduct reactive maintenance on machinery today. 

Systems that work in industrial environments must be highly reliable and accessible. 

Complex equipment's operating capacity is essential for facilities such as power plants, 

assembly lines, and oil and gas firms. The costs of missed output income aren't the 

only consequences of unscheduled maintenance. Failures affect the bottom line 

because of the costs of maintenance and clean-up, while critical failures can damage 

people and the environment. Reliability engineering and production management have 

long tried to reduce the risk of failure in these settings [1]. According to surveys on 

equipment reliability issues undertaken over the last 30 years, maintenance is to blame 

for about 17% of manufacturing interruptions and quality matters. The remaining 83% 

is completely beyond the reach of traditional maintenance [2]. 

To understand the maintenance concept, there are several definitions, which are 

necessary to follow the subsequent chapters: 

The term "maintenance" comes from the dictionary. "the work of keeping something 

in proper condition" In the literature on maintenance management, maintenance is 

characterized as a series of technical and managerial actions aimed at maintaining or 
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restoring an asset or system to a state where it can perform the necessary functions[3]. 

In[4] maintenance is described as having a significant impact on the three critical 

elements of important factors: cost, quality, and product lead-time. Machines that are 

regularly observed and maintained retain tolerances better, minimize scrap and rework, 

and increase component accuracy and efficiency.  While Sethiya [5] depicted 

maintenance as a collection of actions taken to keep a factory or equipment from 

falling or to restore deteriorated equipment. According to the current maintenance 

classification, maintenance is split into three important categories: corrective, 

preventive, and predictive maintenance, also known as condition-based maintenance. 

Maintaining a system regularly can help it meet its availability, reliability, product 

quality, and safety requirements. For meeting production goals, ensuring safety, and 

lowering costs, equipment reliability is critical. It also helps prevent catastrophic 

failures which result in extended downtime and labor/spare parts costs. Maintenance 

costs account for a significant portion of all manufacturing or production facility 

running costs. Maintenance costs can vary from 15% to 60% of the cost of products 

produced, depending on the industry. In the food industry, for example, average 

maintenance costs account for around 15% of the cost of products produced. 

Maintenance costs for iron and steel, pulp and paper, and other heavy industries, on 

the other hand, can account for up to 60% of overall production costs [2]. Practically, 

all operating systems are subjected to deterioration and random failure in performing 

their assigned tasks. The maintenance is reflected by the renewal of the equipment 

deterioration state, and after maintenance, the manufacturing system is restored to an 

as-good-as-new condition [6]. Martin provides a short description of the evolution of 

machine tool repair techniques [7].   

Run-to-failure maintenance, which happens only when something fails, is one of the 

earliest maintenance strategies. Time-based preventive maintenance is a later 

maintenance technique that defines a daily period for conducting preventive 

maintenance (PM) regardless of  a physical item's health status. Products are becoming 

more complex as new manufacturing technology advances at a rapid rate, necessitating 

higher quality and reliability. As a result, PM costs continue to increase. PM has 

gradually become a major burden for many manufacturing firms. Different 

components and subsystems may work together to accomplish a specific purpose. It is 

important to understand the consequences and causes of a malfunction as soon as 
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possible and take effective maintenance steps. Only a small portion of a system's 

downtime can be spent determining the root cause of the problem. A catastrophic 

failure may result in a serious accident as well as significant financial consequences 

for the firm. 

Consequently, early prediction capability, which can prevent failures from developing 

and ultimately turn into a serious problem, is meaningful and imperative for industrial 

situations [8]. Therefore, more effective maintenance approaches are being introduced 

to manage the situation, such as predictive maintenance and condition-based 

maintenance (CBM). According to the available information, the concept is to 

schedule maintenance, indicating the equipment current state or predicting specific 

degradations. However, it was difficult to achieve the goal because of technological 

capability and difficulties acquiring and integrating all essential information in the last 

few decades. With the fourth industrial revolution trend, we also see the potentials and 

challenges of predictive maintenance in this new era. 

 Maintenance Strategies 

A maintenance strategy covers the entire maintenance management process, which 

includes defining maintenance priorities, deciding the maintenance schedule, and 

establishing the maintenance organization. PM is credited with developing the 

maintenance management discipline in the 1950s. It has grown into a sophisticated 

area of study over time. Today, maintenance management covers terms such as 

reliability-centered maintenance (RCM), predictive maintenance (PdM) or CBM, and 

total productive maintenance (TPM). The principles of maintenance management are 

used by the majority of businesses to operate their equipment [9]. 

According to [10], Maintenance management can be categorized into three groups, 

which increase complexity and productivity in order. 

1) Run-to-failure (R2F), also known as (unplanned maintenance), is a 

maintenance technique in which maintenance interventions are carried out only 

after failures have occurred. This is the best strategy for dealing with 

maintenance (and for this reason, it is frequently adopted). Still, It is the least 

efficient. Intervention costs and downtime following the failure are normally 
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significantly higher than those associated with expected corrective actions 

conducted ahead of time. 

2) Maintenance steps are taken out according to a planned schedule depending on 

time or procedure iterations in preventive maintenance (PM), also known as 

(planned maintenance). Failures are typically avoided in this method, often 

known as scheduled maintenance, however excessive corrective steps are often 

undertaken, resulting in ineffective resource usage and higher operating costs. 

By reducing the number of failures and avoiding unplanned corrective 

maintenance, this approach aims to increase equipment reliability and 

availability. Since the correction is made before the malfunction, the 

equipment can be shielded from faults in PM. Even so, due to preventive 

maintenance, equipment elements can need to be replaced earlier than expected 

[11]. 

3) Predictive maintenance (PdM) is when equipment is monitored continuously 

and maintenance is done only when it is required [12]. The PdM framework 

enables advanced identification of suspension failures and allows timely pre-

failure interventions using prediction tools based on historical data (e.g., ML 

and DL strategies), integrity factors (e.g., visual features, wear, coloration 

different from the original, among others), statistical inference methods, and 

engineering processes. Another technique worth mentioning is RCM, which 

was developed in the 1960s but was initially geared toward aircraft 

maintenance and was used by aircraft manufacturers, airlines, and the 

government. It wasn't until two decades later that it started to spread to other 

industries. RCM is an analysis method for guiding maintenance activities on 

machines and components where reliability (i.e., safety) is critical [9]. RCM 

incorporates PM, Predictive Testing and Inspection (PT&I), Repair (also 

known as reactive maintenance), and Proactive Maintenance to improve the 

likelihood that equipment will perform as expected during its design life cycle 

with minimal maintenance and downtime [13]. 

When a small machine stops and requires minor maintenance, such as lubrication or 

screw tightening, the operator must wait for the technician to complete the task, 

resulting in lost production time. As a result, it's logical to assume that the operator 

can be taught to make such minor adjustments. This way of thinking gave birth to the 
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TPM philosophy, which has since become an integral part of the Total Quality 

Management (TQM) philosophy [14]. TPM aims to reduce losses associated with 

equipment failure, startup and adjustment time, operations at reduced speed, and low 

quality to improve equipment efficiency [15]. 

Predictive maintenance, as the most common and current maintenance technique, tests 

parameters in the state of equipment to perform the necessary tasks, extending the life 

of equipment and processes  while reducing the probability of failure risk. The 

technique is based on the objective phenomenon that when machinery begins to 

malfunction, it is possible to detect various forms of symptoms, such as temperature 

fluctuations, vibration, or noise, if sharp eyes, ears, and noses are used to detect failure 

precursors [16]. In this era of rapid technological growth, sensors have progressed to 

the point that they can replace sharp eyes, ears, and noses. However, it does not 

function as a trigger for constructive maintenance. Like the human brain, we must also 

derive information from these signals, uncover the intelligence behind information, 

and collect data about possible failures. As a result, condition-based predictive 

maintenance's crucial challenges in the last few decades have been accessed to the 

information necessary for condition monitoring and the accuracy of fault prediction. 

A machine's life is represented in (Figure 1.1) as a classic bathtub curve. Since a 

system's malfunction is typically followed by a rise in vibration and/or noise, the 

vibration level follows the same bathtub curve shape. During the initial run-in period, 

the vibration level decreases, then gradually increases due to normal wear during the 

normal operating condition period. Finally, it develops rapidly until failure or 

breakdown during the wear-out phase due to prolonged wear [17,18]. 

 

Figure 1.1 : The bathtub curve for the life of the equipment [19].  
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It is worth noting that some of the advantages of PdM and active approaches to system 

monitoring include the following:   

 Maintenance affects production by increasing production capacity and 

reliability of machines and the quantity of output. 

 Reduced quality goods and an inability to meet high-quality standards result 

from improved quality machine deterioration. 

 Machines and processes have been given a longer life span. 

 Unproductive downtime is reduced by significantly reducing the total time 

spent maintaining machines and providing adequate lead-time for proper 

maintenance and repair schedule. 

 Improve customer relations by improving machine performance consistency 

and staying on schedule. 

 Reduce and predict machine failures in advance to improve operator safety.  

 During the process, there should be as little equipment interference as possible. 

 Reduce production costs by eliminating unnecessary maintenance. Machine 

failures that are costly and catastrophic are avoided. It is possible to reduce or 

eliminate safety stock. 

 The use of CBM modelling in maintenance decision-making can help to reduce 

incorrect maintenance activities by utilizing measured CM information [20]. 

The new maintenance patterns, as represented by machinery status tracking and CBM 

techniques, lean toward a predictive approach. As a consequence, intelligent predictive 

maintenance (I-PdM) or Intelligent condition-based maintenance (I-CBM) is a cutting-

edge maintenance technique which can anticipate future failures and take prompt and 

effective maintenance steps [21]. It has gradually replaced traditional maintenance 

policies such as breakdown maintenance, RCM, PM, and others, which cannot 

eliminate faults and may no longer meet the demands of the modern industrial world. 

Wang et al. [22] proposed a new maintenance strategy classification, as illustrated in 

(Figure 1.2). They have separated the PdM from PM. This time corrective 

maintenance, PM, and PdM are three parallel kinds. 
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Figure 1.2 : Maintenance Strategy. 

Corrective maintenance is defined as a kind of maintenance achieved to recognize and 

rectify the cause for failures in a flawed system. It focuses on identifying failures that 

could involve symptom failures from the failure phenomenon [23]. Under this strategy, 

failure is allowed to occur as maintenance is carried out, which means that it is only 

acceptable if the effect of failure is minimal. Some issues do not matter, such as 

whether the equipment falls or how long the repair can take. This type of maintenance 

is classified into two categories: immediate and deferred.  

Interestingly, the availability of vibration, temperature, load, and other forms of 

condition monitoring data for electrical and mechanical devices has increased 

dramatically over the last few years. As a result, these data have been functionalized 

according to particular operating conditions. More explicitly, when the operating 

conditions reach a certain critical level, alerting signals are displayed by developed 

models to apply PdM [24]. Industrial equipment is connected as a community and 

independently exchanges information, particularly in the definition of Industry 4.0, 

which means that abundant industrial data can be obtained conveniently for condition-

based maintenance. So, Artificial Intelligence (AI) techniques, in particular, Machine 

Learning (ML), Deep Learning (DL), and Transfer Learning (TL), have been 

extensively included in the latest PdM program in the face of industrial big data [21]. 

The use of machine learning in condition monitoring is becoming more prevalent than 

traditional approaches due to the increased availability of computing resources and 

vast algorithmic advances. In the field of AI, ML has emerged as an effective tool for 
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constructing intelligent predictive models in a variety of applications [25]. ML 

methods are computer programs employed to solve a given problem using data or 

experience. These programs can learn from data, where learning is the process of 

obtaining new knowledge. Hence, for PdM applications, machine learning offers 

strong predictive approaches. As for DL, it has grown over time as computing capacity 

and big data have increased. Data mining attempts to derive valuable knowledge from 

a large volume of data by modelling high-level abstraction. In PdM, several DL 

methods have been employed. 

The final phase in a PdM schedule is maintenance decision-making. Maintenance 

employees decisions on maintenance actions will benefit from adequate and reliable 

decision support. Diagnostics and prognostics are the two primary types of 

maintenance decision support strategies in a PdM programme. When faults occur, fault 

diagnostics focus on finding, isolating, and recognizing them. However, prognostics 

seek to foresee defects or failures before they happen. Since prognostics can prevent 

errors, they are superior to diagnostics. If this isn't necessary, be prepared for problems 

(with replacement parts on hand and human resources set aside) to prevent further 

unplanned maintenance costs [26]. 

 Research Motivation 

Predictive maintenance gathers equipment parameters, detects changes in the physical 

state of equipment, and discovers fault details, such as when, where, and what sort of 

fault can occur, as an ideal maintenance policy. PdM may arrange appropriate 

maintenance activity through fault information to optimize the service life of 

equipment without raising the risk of failure. Predicting a possible future fault gives 

adequate time before the damage occurs for maintenance preparation (tools, spare 

parts, and technicians). Ideally, how to reduce downtime and maintenance costs and 

achieve zero equipment breakdowns is always a critical issue for a company to be 

efficient and sustainable.   

Sensor data is becoming more widely accessible, technology is becoming more 

complex, and many data-driven approaches are evolving, allowing for new PdM 

innovations. Through the use of artificial intelligence in smart factories, this research 

establishes a framework for identifying PdM's benefits and condition monitoring in 

rotating equipment, especially bearing components. Rotary machines are commonly 
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used and are important to the majority of engineering processes. Stator, rotor, and 

bearing failures are all common machine failures. Approximately half of all machine 

failures are caused by bearing failures [27]. As a result, the SEWERAGE 

TREATMENT COMPANY (STC) forwarding pumping stations were chosen as a case 

study of such a fault prediction application in the current study. Pumps, as we all know, 

play an major portion in our daily lives. Pumps are kept going by continually tracking 

their condition to avoid downtime. It also assists production managers in preparing 

maintenance tasks. As a consequence, it is important to keep track of bearing 

conditions in rotary machines. To control the bearing state, different techniques should 

be used depending on the application.  

Pumping equipment and the pumping station of a sewerage pumping station are 

essential elements. Pumping equipment is subject to wear, tear, degradation, and 

corrosion as a result of its use, making it prone to failure. More faults or interruptions 

in Sewerage Pumping Stations are caused by pumping machinery than any other 

component. Proper operation and timely maintenance and upkeep of pumping stations 

and pumping equipment are necessary to ensure an uninterrupted sewerage pumping 

station. Inspections carried out on time, steps taken in response to inspection results, 

and planned routine maintenance can also help to avoid unexpected failures. Holding 

a stock of fast-moving spare parts on hand will help you cut down on downtime. Due 

to normal wear and tear, the efficiency of pumping equipment degrades over time. If 

timely action is taken to restore efficiency, energy bills can be kept within reasonable 

limits. It's also vital to maintain correct records. 

All of these variables must take into account for pumping machines to operate 

efficiently and consistently. This study looks at how to apply fault prediction models, 

as well as the issues that occur when working with pumping machinery and its 

electrical and mechanical components. 

Finally, rather than relying solely on off-line sensor data, this study's main motivation 

is to combine on-line sensor measurement and off-line model training in condition 

monitoring of the bearing component. Off-line model training is done with historical 

data, while on-line data is gathered from real-time sensor measurements to predict the 

process state. 
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 Research Framework  

The predictive maintenance program framework is presented in the thesis to achieve 

accurate fault detection, efficient maintenance planning, an extension of data sources, 

and equipment condition monitoring. As a consequence, the efficiency of maintenance 

execution could be improved. The framework also offers facility managers and 

researchers an overall understanding and helpful guidance to implement predictive 

maintenance in the manufacturing industry. Figure 1.3 shows the study framework and 

summarizes the main procedures and steps.  

In this thesis, the supervised machine learning method was used, with the data fed 

(mostly temperature and vibration) being of the labelled type. Decision Trees, Random 

Forest, Gradient Boosted trees, and Support Vector Machine are the four classifiers 

compared in this study. Besides, four DL architectures, Deep Feedforward Networks, 

standard Long-Short Term Memory, Gradient Boosted, integrated Convolutional 

Neural Networks with Long-Short Term Memory are established using a new sample 

of vibration signal belong to the pumping system to interpret their superiorities in fault 

recognition and prediction in the predictive maintenance. With the experimental 

results, a comparison of ML and DL methods is presented. This comparison was made 

with the help of the Python programming language, which was used to see which type 

has the best detection accuracy. 

Since the applied ML algorithms' binary classification performance can generate the 

pseudo probability of an observation belonging to a class, decision making using utility 

theory is used to exploit the probability of failures and thereby assist in the 

implementation of successful maintenance interventions. This offers a logical 

framework for determining the correct action with the greatest expected benefit to 

decision-makers. 
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Figure 1.3 : Research framework. 

 Research Aim and Objectives 

This study aims to understand whether ML and DL approaches can be used in the field 

of predictive maintenance of rotating systems to detect common mechanical faults in 

bearing components. The following are the main objectives for achieving this aim: 

Objective 1: To address condition monitoring methods and their applications to rotary 

machines, as well as to study predictive maintenance strategies. 
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Objective 2: To concentrate on using an ideal data-driven model to detect impending 

faults and maintenance requirements in rotary machines, especially in a pumping 

system. 

Objective 3: To identify rolling bearings types in general, focus on the types used in 

the research as a case study and locate their operational characteristics, degradation 

mechanisms, and fault reasons. 

Objective 4: To present a framework for predictive maintenance concerning the 

artificial intelligent approaches to achieve accurate fault detection, efficient 

maintenance planning, an extension of data sources, and condition monitoring of 

equipment. 

Objective 5: To establish a predictive model using Internet of things technology to 

collect the process data integrated with machine learning techniques.  

Objective 6: To review various machine learning techniques and their important 

parameters on detecting bearing faults. 

Objective 7: To realize a prediction model to detect the critical operational conditions 

commonly present in bearing components of the single-stage forwarding pump before 

they lead to actual malfunction and/or stop the manufacturing process. 

Objective 8:  To conduct a comparison of different machine learning methods to 

illustrate the most useful predictive methods for the application in the industry. 

Moreover, various techniques are applied to show additional accuracy and precision 

according to the case study. 

Objective 9: To execute feature selection and extraction to identify necessary signals 

and characteristics before training the data-driven model. This task is accomplished by 

a statistics method and the principal component analysis solution to perform dimension 

reduction. 

Objective 10: To provide a general framework for integrating the concept utility 

theory with machine learning to improve PdM's decision-making. 

Objective 11: To overcome the dependence of classical machine learning algorithms 

on feature extraction methods utilizing deep learning methods. 
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Objective 12: To present various deep learning algorithms regarding vibration 

analysis in the roller bearing elements to predict the malfunctions in rotating 

machinery (using different sample data for the same case study). 

Objective 13: To introduce an experiment of fault classification for pumping systems 

to provide a comprehensive comparison of various deep learning methods. A novel 

CNN-LSTM approach is proposed for bearing fault prediction to train a data-driven 

model in different cases. 

Objective 14: To propose two case studies for two sample data as an experiment of 

the fault classification model for bearing components to achieve PdM in practical 

application. 

Objective 15: To construct a predictive maintenance platform for rotating machinery 

in the modern industry depended on experimental results from fault prediction models. 

Objective 16: To assess the performance of the proposed prediction models several 

evaluation measures are intended. 

 Thesis Organization 

The remainder of this thesis report is organized as follows. Chapter 2 provides a 

literature review related to predictive maintenance policy development and highlights 

online process data monitoring. It provides a comprehensive description of the data 

collection technique used to collect the data required to implement the prediction 

model. The development and application of the internet of things technology in smart 

manufacturing are also discussed in this chapter. Chapter 3 provides helpful guidelines 

about rolling bearing and describes the fundamental operating mechanisms for thrust 

ball bearings. It gives a general overview of different condition monitoring and fault 

detection techniques for roller bearings, such as vibration analysis and temperature 

monitoring techniques. Chapter 4 presents a literature review relevant to the 

development of prediction models using machine learning algorithms in rotary 

machines. It introduced a case study implementing a bearing fault detection model for 

pumping systems and gives the experimental results for detection accuracy. Chapter 5 

demonstrates an experiment of fault classification and fault detection for rotating 

machinery through deep learning approaches. Finally, chapter 6 concludes the thesis 

and highlights future research directions.  
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 PREDICTIVE MAINTENANCE 

The primary maintenance principles in Chapter 1 include general guidance for 

handling maintenance operations as well as a study of maintenance management and 

strategies. Maintenance managers must master tactical skills to organize and run the 

logistics activities of the maintenance role to efficiently address maintenance 

operations and apply ideas. As a consequence, this chapter aims to go through the 

pumping system's predictive maintenance and express condition monitoring 

techniques. 

Moreover, it describes the data sample that was used to implement the prediction 

model. Finally, it presents a review of online process data monitoring and the internet 

of things, the most relevant strategy in this study. 

 Introduction  

Condition-based maintenance, or PdM, is a technique for detecting impending faults 

before they become critical, allowing for more precise PM preparation [5]. PdM is 

commonly recognized as the most newest policy in the evolution of maintenance 

management, and its worth is better known when compared to conventional 

management policies. PdM maintains track of the mechanical condition, operating 

performance, and other measures of a process's health to provide the details needed to 

ensure the longest possible time between repairs. Furthermore, to reduce the number 

of unscheduled maintenance activities triggered by system failures and to make 

reasonable maintenance decisions to prolong the equipment's service life [2,28]. As a 

result, PdM can lead to substantial improvements in equipment and facility 

availability, protection, efficiency, and productivity [29]. Since PdM guarantees 

adequate time for maintenance planning (operators, equipment, spare parts, and so on), 

industrial organizations can schedule maintenance activities more effectively and 

flexibly. 

Conventional maintenance management approaches are not replaced by predictive 

maintenance. It is, however, an essential component of a systematic, long-term 
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planning and maintenance programme. Conventional maintenance management 

systems depend on routine maintenance of all equipment and a swift responding to 

unplanned damages. A programme for PdM schedules complex maintenance activities 

as required by plant machinery. It will not be able to remove the need for conventional 

maintenance programmes (i.e., R2F and PM). PdM, on the other hand, will assist in 

the avoidance of unanticipated errors as well as provide a more effective scheduling 

system for repetitive PM activities. 

Before a system breaks down, there are many PdM techniques for assigned faults, and 

new techniques are created every year. Chemical/particle analysis, vibration analysis 

to detect incipient problems such as bearings and gearboxes, temperature control, 

infrared image monitoring for electrical switchgear, engines, and electrical equipment, 

ultrasonic inspection, acoustic emission, lubricating oil analysis, and advanced 

visualization techniques are some of the most common PdM techniques [9]. As a result 

of these measures or assessments of machine state, maintenance activities are planned, 

typically trending parameters and forecasting lead time to failure. The premise is that 

most mechanical components show warning signs that they are about to malfunction. 

Use these warning signals to determine the machine's condition and boost preparation 

to fix equipment issues. Schedule system maintenance and upgrades during scheduled 

outages to prevent unplanned worker overtime triggered by reactive equipment 

management [30,31]. 

Condition monitoring (CM) is a simple PdM implementation that integrates equipment 

condition measurements into maintenance planning. PdM characteristics are often 

reported by inspecting the device regularly or by tracking it with various sensors 

regularly [32]. Industry machines have sensors mounted that output real-time data, 

which is then sent over the network to a monitoring device. The developed data is also 

preserved indefinitely so that historical views can be produced. The PdM strategy is 

based on historical and real-time data. As a result, the majority of PdM studies 

concentrate on identifying early warning signs of degradation and taking adequate 

precautions. It's good to realize that these indicators appear before 99% of system 

failures [4]. The CM procedure is divided into two sections. It begins by gathering the 

equipment's condition data (information). Second, it enhances awareness of failure 

causes and consequences, as well as equipment degradation patterns, which can be 

used to identify and evaluate equipment condition during service. The three kinds of 
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instrumentation systems which can be used for CM of equipment are the basic system, 

portable system, and computer-based system [17].  

Data collection, data pre-processing, and maintenance decision-making are the three 

key steps in PdM's related operations, as shown in (Figure 2.1), [33,34]. Data is 

registered and collected from the sensors in the first phase, data acquisition. PM 

schedule decisions, on the other hand, are based on the knowledge and instincts of the 

individuals involved, as well as alerting systems, spreadsheets, operator logs, and 

change transition discussions. The second step in a PdM's work is data pre-processing, 

which changes and interprets the data obtained in the first step with noise reduction. 

The final step includes making a conclusion based on the sequence of data analysis, 

which is primarily dictated by the type of data being analyzed. Scientists have created 

a variety of models and sophisticated algorithms that can be used to better understand 

and interpret different datasets. These decisions can alter operating procedures or 

maintenance plans, necessitating the collection and analysis of additional data. Reports 

can be created and archived for future reference after a decision has been taken, and 

assessments can be conducted if necessary [35]. 

 

 Various steps in the PdM program.  

In general, PdM's main goal is to anticipate a device malfunction by predicting early 

warning signs of deterioration and make maintenance more constructive PdM aims to 

forecast a system's failure cycle using experience, physical law, and machine learning 

methods to patch faulty components until they fail, minimizing system latency, 

maintenance costs, and product consistency [36]. As a result, using efficient PdM will 

save 8% on maintenance costs while also increasing productivity by 8% [37]. 
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 The Internet of Things 

The Internet of Things (IoT) is a network of physical objects and computers that assists 

in data collection and sharing. These devices have designed a portal to connect to 

machines and their subcomponents to capture process data and parameters, as well as 

physical health aspects of the machine such as vibration, temperature, temperature, 

viscosity, flow rate, acoustics, and displacement signals, and provide the most up-to-

date information for the network system of processing, transmission, analysis, and 

feedback [38]. Early fault identification and identification, machine health assessment, 

and future state prediction are all common uses for this information. Machine learning 

algorithms, which are applicable across a variety of learning realms, make this possible 

[39]. IoT has been versioned for use in maintenance, particularly PdM, because of the 

two most significant reasons for PdM's growth. The first is that modern equipment 

often has embedded computer chips for reading and controlling, allowing for data 

collection. Second, the cost of incorporating embedded sensors and other new 

information technology has decreased and is continuing to do so. [40]. To put it another 

way, the IoT refers to the growing trend of equipping physical objects and devices 

with sensing (all forms of sensors and wireless sensor networks), computing, and 

networking capabilities, then linking them to form a network and exploiting the 

collective effect of networked devices.  

The Internet of Things idea was born out of a network of radio frequency identification 

(RFID) systems established by the Massachusetts Institute of Technology's (MIT) 

automatic identification center in 1999. All of the items in this system, such as sensing 

devices, can be linked to the Internet through radio frequency identification 

information. It's all about achieving intelligent identification and management. The 

primary functions are knowledge collection, transmission, retrieval, and application of 

information [41].  

With the emergence of the IoT, PdM can now be extended to all forms of computers 

in all industries, resulting in a paradigm shift that generates major new business 

opportunities. Furthermore, integrating IoT into PdM task will provide new 

possibilities for E-maintenance, Remote maintenance, and Tele-maintenance 

applications [32].   
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 Online Process Data Monitoring (Data Acquisition System)  

An inevitable necessity for the PdM application is data, from which to analyze the past 

asset usage and extrapolate to the future. These data were collected from different 

sources such as Programmable Logic Controller (PLC) units and Data Acquisition 

(SCADA) systems that can be subdivided under the term Industrial Control System 

(ICS) [42]. 

The CM process can be performed in two ways: online or offline. On-line processing 

occurs when the equipment is in use, whereas offline processing occurs when the 

equipment is not in service [43]. The voltages of the sensor's data, like temperature, 

vibration, and pressure, are captured by a data acquisition device for online and offline 

monitoring. In industrial machinery, process data acquisition is moving toward 

automated systems (continuous or on-line systems), which in some cases provide more 

substantial benefits than data acquisition with handheld data collectors for the 

following reasons: 

 Since data is collected constantly, a significant reduction in data collection 

intervals allows for the identification of any system status changes. 

 Automatic data acquisition reduces the labor expense of collecting computer 

data, resulting in lower operating costs. 

 Since the data is measured simultaneously with the same sensor, the data 

measurement precision is higher, and the data collection can be adjusted to 

particular machine operating conditions (speed and load). 

The current research presents a fault detection model in the roller bearings component 

using data collected by IoT technology, expressly, by SKF@ptitude observer 

monitoring, an expert diagnostics software commonly used for pump monitoring 

system illustrated in (Figure 2.2). It maximizes the rotating equipment performance 

(REP) via allowing more agile business, delivers greater output, reliability, and 

optimizes safety.  Various sensors are installed along with the pumping system 

components used to measure the data needed as input to the prediction model. Various 

sensors are installed along with the pumping system components used to measure the 

data needed as input to the prediction model. Furthermore, other pertinent information 

is presented in a user-friendly manner. Live data, which is modified every second, as 

well as long-term history, can be viewed in several formats. Live data and warning 
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indicators for pumps are shown in descriptive pictures in the process overview pane. 

The SKF@ptitude observer monitors bearing temperature and vibration directly. 

Furthermore, the SKF@ptitude observer detects bearing noise, detecting defects that 

could contribute to bearing overheating. These measurements must be registered to 

protect the system, as the observer will sound an alarm if the recorded data reaches a 

pre-determined threshold. The critical limit is normally set per the pump's 

specifications and manufacturing standards. When the bearing temperature reaches 

120°, for example, a warning is activated, and the pump must be stopped immediately. 

When unfavorable events occur, the programme sends a warning message to the 

maintenance management department, which investigates the causes of the critical 

machine state. Due to their simplicity, they can only reliably detect imminent 

overheating and bearing failure. This does not allow for sufficient preparation and 

resource optimization for PdM. This illustrates the importance of the current analysis, 

which integrates the benefits of SKF@ptitude and the predictive ability of ML to 

predict the occurrence of abnormal conditions in advance. 

 

 SKF@ptitude observer monitoring system [44]. 

Using the SKF@ptitude observer monitoring system, the pump system is continuously 

monitored and measurements from specific sensors mounted along with the pumping 

system are processed. User-friendly displays reveal measurement data as well as other 

related information. The bulk of device data is extracted from specific data that is 

accessed either online or offline. In general, the two other kinds of data captured during 
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data collecting are failure data and process data. The failure data consists of a system 

component's direct-address failure modes, such as vibration signals and lubrication oil 

ingredients. Process data related to functional elements such as pressure, flow, and 

temperature, on the other hand, can predict failure mode. 

 Data Description 

Initially, a sample of real data obtained for model creation is called row-data, which 

must be arranged and prepared. Reserved-dataset, on the other hand, is not specifically 

appropriate for developing a predicting model since it includes a lot of noise and 

missing function values. As a consequence, data preprocessing is the first step in data 

cleaning to prevent errors caused by data anomalies and preparing raw data for further 

analysis before feeding it into prediction modeling. 

It is worth noting that the data gathered is split into two categories: condition 

monitoring data and event data. The condition monitoring data is used to assess the 

current state of the physical asset's health. Event data provides historical details such 

as installation, breakdown, overhaul, and so on. The error in event data may come from 

various sources, including human factors, while unreliable or inaccurate sensors cause 

condition monitoring data errors. Both event data and condition tracking data are 

equally relevant in the PdM application. Nonetheless, in practice, more focus is 

generally put on collecting condition monitoring data, with event data collection being 

wholly ignored in some cases [26]. 

Data analysis (data pre-processing) is the next step in the process, which varies 

depending on the type of data being analyzed. Researchers have developed various 

signal processing and sophisticated algorithms to help in the understanding and 

analysis of various datasets. Additionally, different feature extraction techniques are 

used to quantify multiple vibration characteristics such as amplitude, frequency, 

displacement, velocity, acceleration, phase, and period is common in the literature. 

In general, two approaches can be used to make predictions: model-based and data-

driven methods. These are competing approaches, but they can be combined in 

practice, resulting in hybrid prognostics [45]. Due to the rapidly growing condition 

monitoring data, data-driven fault detection has become the most popular approach 

and a hot research subject in the PdM framework. It has piqued the interest of both 
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academic and industry. To explain the operating state of industrial equipment, model-

based prediction methods depend on analytical models. Real-world ageing 

mechanisms are typically non-linear, randomized, and complex, making it difficult to 

achieve precise results using an empirical model. Data-driven methods, on the other 

hand, can be extended to the situation that is reluctant to construct an analytical model. 

The data-driven method aims to convert the machine's operational data into 

degradation information, exposing the system's functional status as well as the 

degradation mechanism model [46]. 

As an example, the real-world experimental dataset used in this research is the 

pumping system collected from several sensors that monitor the bearings' operation 

conditions in the sewerage treatment company. The pump station is monitored through 

its operating state, measured based on vibration and temperature monitoring 

parameters. The retrieved information belongs to a three-month operation of the 

pumping system, including 130,956 data recorded by specific sensors for every one 

minute. Four accelerometers are installed vertically and horizontally to pick up the 

vibration (acceleration) signals generated at the Driving End (DE) and Non-Driving 

End (NDE) bearings in terms of vibration. Similarly, there are two types of 

temperature sensors: Resistance Temperature Detectors and Infrared Temperature 

Detectors (RTD). These sensors are mounted in the same directional mode as the DE 

& NDE Bearing temperature sensors. 

Vibration condition monitoring is the most commonly used PdM technology in 

rotating equipment. It is used to detect a bearing fault and a deterioration process that 

has progressed to a certain damage point. In particular, increased vibration is often a 

sign of irregular conditions. Vibration measurements are typically the first indication 

of emerging failures on rotating machinery. This general method, known as the P-F 

curve, is depicted in (Figure 2.3). It depicts how a failure starts (potential failure) and 

progresses to the point where it happens (actual failure) (functional failure). The points 

in between illustrate how a condition deteriorates to the point that it can be detected 

(Point P) and then deteriorates further to reach (Point F) if it is not detected and 

corrected. A functional failure occurs when a system cannot perform a particular 

function to the desired quality level.   
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 P-F curve represents an asset's behavior (pump, motor), or asset element 

bearing until functional failure has occurred [47]. 

 Another commonly used technique in PdM for rotating equipment is temperature 

measurement. It assists in the detection of possible equipment failures caused by a 

temperature change. Excessive mechanical friction can be demonstrated by 

temperature changes (e.g., faulty bearings, insufficient lubrication). It's worth noting 

that vibration monitoring and thermography have also been shown to effectively 

predict failures and provide appropriate alert time for impending maintenance. When 

this strategy is in place, equipment repair is only undertaken when it is necessary. Since 

this study focuses on analyzing maintenance actions in pumping systems, the 

following section spotlights on the PdM tasks related to the pumping component. 

 Predictive Maintenance for the Pumping System 

This study addresses the PdM and applies the case study to one of the largest water 

treatment firms in Doha/ Qatar. While equipment failure can disrupt workflow in any 

sector, it is especially critical when it comes to the Sewerage Treatment Plant, which 

treats 245,000 m3 of wastewater each day for irrigation and other non-potable uses. 

The sludge from the treatment facility, on the other hand, is used as a soil conditioner 

in nearby farm fields and as a source of renewable energy. Vertical and single-stage 

forwarding pumps (TORISHIMA, Korea) are used for this. Driver output: 840 kW, 

flow capacity: 4738 m3/h, total head: 47 m, speed: 730 rev/min, and frequency: 50 Hz 

are the technical requirements for these pumps. The vibration and temperature data 

from one of these several pumps are used to implement ML algorithms. The 



24  

forwarding pump adopted in our research is illustrated in the following (Figure 2.4). 

Moreover, a photo of the pumping station and sensor types is shown in (Figure 2.5). 

 

 A schematic drawing of the forwarding pump and specific location of 

the sensors[48]. 

 

 Photographs of the (A) pumping station. (B) Vibration sensor. (C) 

Temperature sensor [48].  

To keep the pumping system going for as long as possible and improve pump operation 

performance, a prediction model was developed using ML algorithms to predict a 

system's failure. A company's ability to mitigate failure risks, reduce maintenance 
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costs, and optimize asset availability is aided by accurate information on pump 

conditions. CBM, a predictive tool in which data assessments and data trending are 

used to assess future maintenance needs at an early stage, is made possible by vibration 

and temperature measurements. 

In concrete terms, the aim is to enhance data-driven prediction methods' accuracy and 

precision in complex pumping system maintenance problems. Two case studies are 

presented to discuss this viewpoint, and they are used to examine the various AI 

methodologies suggested in this thesis. In the following chapters, we will go over how 

to apply the prediction model and how it performs.  
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 CONDITION MONITORING AND FAULT DETECTION OF ROLLER 

ELEMENT BEARING 

The classifications of rolling bearings and their basic operating mechanisms are 

explained in this chapter. The radial and thrust ball bearings are discussed in greater 

depth, and the standard failure modes in roller bearings. Furthermore, it provides a 

description of the specific rolling element bearing condition monitoring  and fault 

detecting strategies, such as vibration analysis and temperature monitoring that were 

used in the current research, as well as the advantages and disadvantages of each 

process. Finally, this chapter discusses time domain, frequency domain, and time-

frequency domain vibration signal processing methods that are widely used to track 

roller bearings. Various measuring instruments are also depicted. 

 Introduction  

Most rotary machines require rolling element bearings, which serve as the interface 

between the machine's stationary and rotating parts. The bearing's working condition 

has a direct impact on the machine's function and operation. As a result of the 

importance of bearings, detecting their running condition is extremely important. 

Many monitoring techniques and fault diagnosis procedures have been developed to 

minimize maintenance costs, increase productivity, and prevent catastrophic 

component failure during operation, resulting in machine downtime. 

Bearings come in a range of shapes and sizes. Fundamentally, bearings are classified 

into: (1) journal bearings, also known as sliding or plain surface bearings, and (2) 

rolling part bearings are often referred to as ball bearings. Sliding bearings are those 

that produce only sliding friction. The shaft is usually protected by the sliding board, 

with a tinny layer of lubricant in between to make the shaft slip smoothly. Journal 

bearings are small and compact, with long service life and no vibration or noise [48]. 

Moreover, unlike a rolling bearing, a sliding bearing is a bearing that does not include 

any rotating element. See (Figure 3.1). 
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Figure 3.1 : Bearing type (A) Sliding Bearing.   (B) Roller Bearing [48]. 

Rolling bearing is considered an irreplaceable component in automation systems. 

Failure of these components may cause catastrophic breakdown and costly downtime 

for the machine's maintenance action. Hence, an appropriate fault detection system 

must be established to prevent bearing damage and breakages during service, leading 

to catastrophic failure. A rolling-element bearing involves inner and outer races, a 

cage, and a roller, unlike sliding bearings which have just a sliding motion. The rolling 

element is described in (Figure 3.2). The roller between the inner and outer tracks and 

all wear will occur on the bearing's internal parts under normal running conditions. 

 

Figure 3.2 : Element of the roller bearing [49]. 

Rolling bearings are generally classified by the type of the rolling element, i.e., balls, 

cylindrical rollers, spherical rollers, tapered rollers, and needle rollers [49]. (Figure 

3.3) illustrates elements of common types of rolling bearings.  



29  

 

Figure 3.3 : Types of rolling bearings [50].  

While all roller bearings reduce rotational friction to enable a component to move at 

excessively high speeds and carry large loads efficiently and effectively, some high 

precision bearings are specifically designed to bear support bearing loads in different 

directions, such as the deep-groove single-row type shown in (Figure 3.4). These 

bearings are inexpensive and can handle radial and axial (thrust) loads. In most new 

machine designs, they are normally given top priority. This thesis focuses on a boll 

bearing named a thrust bearing and radial bearing which will be used as a case study 

in our research. 

 

Figure 3.4 : Radial and Thrust loads in the deep-groove ball bearing [51]. 

 Radial &Thrust Ball Bearings 

These bearings minimize friction between the shaft and bearing surfaces and 

accommodate radial and axial loads in rotating machinery. A thrust bearing is used for 

axial loading paths, which is ideal for heavy applications and high-speed machines that 

require precise control, low noise, and long tool life [51]. They are divided into two 

types: single-direction thrust bearings and bidirectional thrust bearings (double 

direction). A radial load cannot be supported by either unidirectional or bidirectional 

thrust ball bearings. A shaft washer, a housing washer, and a ball and cage assembly 

set up a single direction thrust ball bearing. Since they can only bear axial load in one 

direction, they are typically used in matched sets. One shaft washer, two housing 

washers, and two ball and cage assemblies form a double-direction thrust ball bearing. 

They can withstand the axial loads in both directions. Tool spindles, rock grinding, 
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rolling mill stands, trucks, gearboxes, pumps, and farm machinery all use thrust ball 

bearings. 

Radial bearings are rolling bearings that are mostly used for radial load-bearing. In 

other words, the load acts perpendicular to the moving element's direction of motion, 

while the load acts along the thrust bearings' axis of rotation, as shown in (Figure 3.5). 

These bearings are most commonly used in high-speed spinning machines like 

compressors, engines, pumps, and gas turbines. 

 

Figure 3.5 : Radial and Thrust bearings load direction according to the moving 

element [52]. 

Some ball bearings can support radial and axial loads on the shaft; Axial angular 

contact is used to achieve these axial/radial load bearings. The axial and radial loads 

are distributed more uniformly around the axial angular contact ball bearing because 

of the axial radial bearings' angle. The load line in angular contact ball bearings, for 

example, forms an angle with the bearing axis at the contacts between balls and 

raceways, as illustrated by (Figure 3.6). The inner and outer rings act as stabilizers for 

each other, and the bearings are primarily designed to handle radial and axial loads 

[53]. Heavy-duty machinery, electric motors, aircraft gas turbines, rotary tables, dental 

drills, and pump processing all use angular contact bearings. 

 

Figure 3.6 : Angular ball bearing [53]. 

Low-friction bearings are often crucial for efficiency, to reduce wear, and to simplify 

high speeds. A bearing can reduce frictional resistance by the effect of its design, 

material, or by introducing and containing a layer of fluid (known as a lubricant) 
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between its surfaces. The lubricant used to separate the contact surfaces, either rolling 

elements or any guiding surfaces on outer or inner bearing rings, is usually a mineral 

oil refined from petroleum, synthetic oil, vegetable oil, silicon oils, greases, etc. 

Inadequate lubrication often leads to high friction, wear, high temperature, sliding and 

fretting at rolling element contacts, and early cage breaking with a jammed bearing.  

It's essential to focus on a machine's bearings when running to avoid redundant bearing 

failure. Since each ball is subjected to cyclic loading as it makes repetitive trips 

through the highly loaded position, the rolling element bearings wear out over time. 

Fatigue wear or single point defects such as chips or dents are caused by cyclic loading. 

Vibration levels in rolling element bearings steadily increase as wear progresses until 

they fail. Bearings can be replaced well before they fail to maintain optimal 

performance. Wear failure of ball bearing elements (i.e., outer race, inner race, and 

rolling parts) causes most defects, which can be sensed mainly by mechanical noise, 

temperature, and vibration [30]. As a such, the most commonly encountered bearing 

issues can be summarized as follows [54]: 

(1) Lubricant is either insufficient or unnecessary, 

(2) The bearings were installed incorrectly,  

(3) Bearing clearance is restricted, or a heavy load is applied, 

(4) There is a lot of tension between the lip and the seal groove, 

(5) Using the wrong lubricant, and 

(6) Between the fitting surfaces, there is a creep. 

However, bearing failure can be expensive due to various reasons, including lost 

productivity, maintenance costs, and serious harm to other rotating machinery 

components [55]. As a result, continuous condition monitoring has emerged as a 

promising way of avoiding catastrophic component breakdown in machines by 

detecting, calculating, and recording physical variables obtained from sensor-mediated 

components [56]. As a result, the data is functionalized for specific operational 

conditions. In more detail, built models show alerting signals when operational 

conditions hit a critical threshold, allowing PdM to be applied [24]. This explanation 

is demonstrated in (Figure3.7), which illustrates a typical trend curve and alerts an 
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incipient failure. It also gives a lead time in which to schedule and implement 

maintenance. 

 

Figure 3.7 : The theory of condition monitoring indicators, which shows the 

degradation of the bearing [57]. 

Various tools, such as monitoring and diagnostic methods, can be used as part of a 

robust programme for PdM. Vibration analysis is one of these strategies [58], acoustic 

emission[59], thermographic inspection [60], oil analysis, radiographic inspection 

[61], shock pulse [62], ultrasonic leak detectors [31], performance testing, wear and 

dimensional measurements [63], signature analysis [64], time and frequency domain 

[65, 66]. Vibration analysis has gotten a lot of coverage as a time domain and time-

frequency domain method for measuring machinery working conditions, which 

essentially diagnoses faults and improves the machinery's life. 

 Condition Monitoring Techniques in Bearings 

Prediction of bearing faults has received considerable attention and is remains one of 

the state-of-the-art topics in recent years. Scientists have focused on developing 

various techniques and methodologies to improve bearing fault detection, typically 

modeling the bearing signal using sensor data. Local failures in roller bearings can be 

identified in the time domain using statistical features (RMS, mean, variance, 

skewness, kurtosis, crest factor, impulse factor, shape factor, spectrum, median, and 

range) [67]. 

The following (Table 3.1) shows the various condition monitoring methods used on 

bearing defects during the last few years. A depth study established four different 

methods for detecting and diagnosing bearing defects, categorized as vibration 

monitoring, acoustic measurements, temperature monitoring, and wear debris analysis. 

Vibration measurements are the most commonly used of these. 
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Table 3.1 : Monitoring methods which are suitable for the bearing components. 

Technique Principle Application examples 

Vibration analysis 

[68] 

Vibration analysis is a method of detecting 

irregular vibration events caused by changes in 

dynamic forces and evaluating the overall values 

and individual frequencies associated with 

machinery anomalies by monitoring the levels and 

patterns of vibration signals within moving 

elements. 

 Bearings, gears, shafts, 

freewheel. 

 Gearboxes, engines, fans, 

drive-trains, high-speed 

rotors in turbines, and pumps 

are examples of rotating 

machines. 

Temperature 

monitoring [69] 

Temperature allows for the gathering of 

information on bearing state and working 

conditions to comprehend all bearing anomalies. 

Consequently, a temperature increase above the 

normal value serves as a useful indicator of 

equipment failure. The greater the bearing 

system's safety margin if the running temperature 

value is below the appropriate limit [57]. Several 

critical parameters are affected by bearing 

temperature, including lubricant viscosity, load-

carrying capability, power loss, and load 

distribution. The temperature of a bearing 

determines whether it is working with low friction; 

as an effect, as the temperature rises, lubrication 

deteriorates, and internal clearance decreases. 

The temperature control technique is 

used to forecast how transient 

temperatures in bearing elements 

will evolve. In turn, the control 

system keeps track of the 

temperature and ensures that 

nothing goes wrong. A bearing's 

temperature shows whether or not it 

is working with low friction. 

Wear debris 

analysis [57] 

The accumulation and analysis of wear debris 

forms as metallic particles on component surfaces 

and is carried away in the lubricating oil. The 

amount of material, shape, and size of the debris 

particles may indicate the source and failure 

mechanism, allowing for early detection and 

control of the wear process. 

Wear debris analysis is used to 

diagnose the health of rotary 

machines. Online debris tracking is 

currently being used to improve 

system reliability and lower 

maintenance costs in commercial 

engines, fighter engines, helicopter 

gearboxes, and wind turbines. 

Acoustic 

measurements 

[70][71] 

In structural diagnosis, the acoustic emission (AE) 

approach is a widely used and standardized 

method. The stress waves caused by a sudden 

redistribution of internal stresses within a material 

are known as AE. When a material is exposed to 

friction, wear, corrosion, phase transition, 

cavitation, crack, fracture, and other stresses, the 

lattice structure changes. 

 

The AE measurement is used to 

detect defects in rolling element 

bearings early. Furthermore, the AE 

technique can detect changes in 

machinery elements at the lattice 

level that would otherwise go 

undetected by a low-frequency 

traditional vibration technique. The 

frequency range is usually limited to 

20 kHz [72]. 

Oil analysis [73] 

Oil particle counting and moisture measurements, 

as well as viscosity, acidity, and temperature, can 

all be used in this analysis. Many types of machine 

failures can be caused by lubricant degradation. In 

operation, a lubricant is exposed to a variety of 

conditions that can cause its base oil and additive 

system to fail. Heat, entrained air, incompatible 

pollutants, internal or external emissions, the 

presence of soil or water, and inadvertent mixing 

of a different fluid are examples of such causes. 

Oil analysis is most often used to 

assess the mechanical wear state of 

insulating machines such as a 

gearbox, transformer, and other 

electrical distribution equipment by 

testing the oil condition for bearing 

lubrication. 
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Condition monitoring and predictive maintenance technique for the rolling element 

bearings is considered an essential activity. When the component fails, they cause the 

whole machinery system's failure, possibly with some consequential damage and 

financial losses. Among the techniques mentioned in the previous table with the 

adoption of the published research in this area, the operating temperature and vibration 

signal are considered important aspects of bearing condition monitoring. They directly 

affect the performance and service life of the machine. Thus when these readings are 

higher than a pre-set critical level, the machine monitored is announced faulty, and a 

maintenance intervention is triggered. (Figure 3.8) depicts the distribution of pump 

failure using pie chart to show how vital roller bearings are for keeping pumps up and 

running. When a rotating machine fails, it's often due to a shaft seal failure or bearings. 

Roller bearings failures cause about 15⁒ of all unscheduled critical pump shutdowns.  

According to a report prepared by Swagelok Company under the title of (Rely on 

Swagelok Seal Support Systems to Reduce Pump Failures) Luke Wurban in Jun 2020, 

displayed a pie chart of the pump failures distribution.  

 

Figure 3.8 : Analysis of pump failure [74]. 

As a response, the most serious pump failures are the primary focus of further analysis 

and review. Pump seal failures account for the most failures, followed by downtime 

due to overhaul, bearing failures, impeller, shaft, and coupling malfunctions, and so 

on. Seals and bearings are non-repairable components that must be replaced when they 

alfunction. Seals, bearings, and overhaul are considered to be leading causes of pump 

failure [75]. 



35  

3.3.1 Vibration analysis  

Vibration analysis is a useful tool for measuring the state of roller bearings in machine 

components. By calculating the entire vibration range and conducting frequency 

analysis, vibration-based signal analysis is used to detect bearing faults. The ability to 

predict when a component will fail based on data analyzing increases uptime, 

production, and maintenance efficiency. The fit and runout (radial and axial) of the 

bearing and mounting surfaces, as well as the elastic behaviour of bearing elements 

and related system parts, all of which are affected by rotor unbalance [51]. 

Local and distributed defects are the two types of rolling bearing defects. Pits, spalls, 

flakes, and cracks on rolling components caused by fatigue on the roller surface are 

examples of local defects. Surface roughness, surface distress, waviness, smearing, 

waviness, misaligned races, and uneven diameter of rolling components are all 

examples of distributed defects. Operating conditions, installation position, improper 

bearing design, improper manufacturing, improper lubrication, overloading, uneven 

wear, and other factors may cause these defects. Bearing faults, whether local or 

distributed, will normally produce consecutive and periodic impulse terms in machine 

vibration as the ball bearing passes through the defect points. Knowing the rotating 

rate, location of faults, operating area, types of measurements, and bearing dimensions 

can be used to determine these terms [76]. Vibration analysis makes use of vibration 

signals produced while a machine is in operation. These signals are collected using 

different types of sensors at an accessible location on a computer, and then signal 

analysis is performed to predict the state of the bearings inside the machine at an early 

stage. 

The vibration analysis technique can detect, diagnose, and predict rolling element 

bearing faults. Depending on which transducers are used, vibration measurements are 

conveyed in displacement, envelope signal, velocity, or acceleration. A transducer is 

a system that converts physical variables into electrical quantities (such as current or 

voltage) [17]. A signal transformation instrument is used to amplify the signal to the 

appropriate value because the output signal (voltage or current) of the transducer is too 

small to be captured directly. The basic features of a vibration measurement pattern 

are shown in Figure . Due to a peculiar vibration frequencies that are excited in most 

measurements, it is possible to distinguish the defective bearing elements. The same 

cannot be said, however, for the defects that occur in bearing cages [49]. 
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Figure 3.9 : Basic principle of vibration measurement. 

The data from a vibration sensor's raw measurement is shown as a function of time 

and amplitude. The amplitude is a measurement of a bearing's vibration intensity. As 

a response, a certain amplitude value is used as a safety limit to denote the risk if the 

vibration exceeds this limit [77]. To put it another way, each measure has its own set 

of warning limits. When the measurement's value exceeds the set alarm limits, the 

predictive maintenance software or data collection sends an alert to the analyst. The 

vibration pattern of a broken bearing is made up of low-frequency collision 

components as well as high-frequency collision components. The structural details of 

the bearing part or machine are preserved [69]. 

Most fault identification methodologies in rotary equipment, like pumps, motors, and 

gearboxes, use vibration data [78]. The mathematical time domain, frequency domain, 

and time-frequency domain features are the most frequently used research techniques. 

In this regard, vibration signals are firstly gathered and processed using vibration 

analyzers equipped with sensors in the time domain. These signals are then converted 

into the frequency domain using Fast Fourier Transform (FFT) to extract the frequency 

signature. The information obtained from a vibration signals has significant 

advantages in predicting catastrophic failures [79]. 

As previously mentioned, vibration data from the DE and NDE thrust ball bearings of 

a pumping system were collected using an accelerometer and velocity sensor in our 

study. Sensor vibration signals were measured and analyzed. The statistical parameters 

are then measured and compared to detect bearing faults in the roller component, outer 

and inner races. The most commonly used vibration analysis (waveform data analysis) 

and fault prediction techniques for rolling element bearings are briefly discussed and 

outlined in the following sections.  

3.3.1.1 Time domain analysis 

The time domain analysis evaluates the performance product of vibration analysis 

from finite component software by looking at the signal's time history. The root mean 

square (RMS) is a condition monitoring parameter that measures the overall level of a 
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discrete signal. The time signal descriptors are peak to peak amplitudes, which are 

determined from the top of the positive peak to the bottom of the negative peak. Some 

statistical parameters, such as the crest factor, kurtosis factors, spectrum, kurtosis, and 

so on, are critical in determining the bearing's wellbeing [80,81].  

3.3.1.2 Frequency domain analysis 

The most common method for detecting bearing defects is frequency domain or 

spectral analysis. Using a FFT, frequency-domain techniques translate time-domain 

vibration signals into discrete frequency components. Simply put, FFT transforms time 

domain vibration signals into a sequence of discrete frequency components using 

mathematics [79]. 

The FFT spectrum can be used to distinguish various frequency signals or components. 

The frequency is plotted on the X-axis, while the signal components' amplitude, 

velocity, or acceleration is plotted on the Y-axis. The key benefit of frequency domain 

analysis over time domain analysis is that specific frequency components of interest 

may be easily detected. Furthermore, the FFT spectrum is an extremely useful method 

for analyzing machinery vibration and diagnosing most bearing problems by providing 

data that can be used to pinpoint the source and cause of the problem. 

3.3.1.3 Time-Frequency domain analysis 

Both stationary and non-stationary vibration signals can be handled using time 

frequency domain techniques. This is the key benefit of time domain techniques over 

frequency domain techniques. The signal frequency components can be seen using 

time-frequency analysis, as well as their time-variant features. The Short-Time Fourier 

Transform (STFT) [82], Wigner-Ville Distribution (WVD), and Wavelet Transform 

(WT) [83] are some of the time-frequency analysis methods that have been adopted. 

3.3.2 Temperature monitoring 

The operating temperature of a bearing element system is critical to its overall 

performance. The bearing temperature affects several critical parameters, including 

lubricant viscosity, load-carrying capability, load distribution, material thermal 

expansion, and power loss. As a result, temperature data is regarded as one of the most 

important calculated parameters for monitoring the bearing situation and operating 

status. Temperatures fluctuate rapidly during system startup and shutdown, so 
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temperature monitoring is advantageous for obtaining information on machine 

performance [84]. Most bearings in the industry are designed to work well at specific 

temperatures, but if the measured temperature exceeds this limit, the alarm message 

emerges. 

Temperature rises in bearing structures play a key role in rotary machine degradation 

(pumps, motors, gearboxes, and so on), resulting in catastrophic failures of the 

machinery. As a result, it's important to keep an eye on rotor components to make sure 

they stay within certain temperature ranges. As a result, successful thermal control 

prevents rotary machines from overheating and improves the overall drive process 

performance. To build a fault prediction model, we selected a sample of temperature 

data obtained from embedded temperature sensors mounted along with the vertical and 

horizontal directions of the bearings in this study. 

 Measurement Instrumentations 

3.4.1 Accelerometers 

High-quality, rugged, and cost-effective accelerometers are used with the SKF Local 

Monitoring Unit (LMU) on-line systems, protection systems, and the ever-versatile 

portable data collection instruments for vibration measurements shown in the (Figure 

3.9). The thrust ball bearing has an optional banded frequencies measure from (3.0 Hz 

to 5,000 Hz or 1.0 Hz to 9,000 Hz) accelerometer (model CMSS 2100) set up on the 

bearing housing case. A data acquisition system (SKF@ptitude observer monitoring), 

was used to record the signal sample in the computer software system for further 

analysis. To maximize use in a variety of applications, the nominal resonance 

frequency is 30 kHz, with a high sensitivity of the 100 mV/g and a sensitivity precision 

of 5% at +25 °C. These accelerometers, in particular, are designed at extremely low 

noise levels for low frequencies at high temperatures, are corrosion resistant, and are 

hermetically sealed for use in high humidity environments. 

Via a threaded bronze stud base that is glued to the bearing house, accelerometers were 

installed vertically and horizontally to the NE and NDE bearing housings. In 

centrifugal pumps case, the accelerometers are mounted horizontally on the pump 

bearing casing, perpendicular to the shaft movement, as near to the load regions as 

possible to provide high-quality signals. Similarly, the vertical accelerometer should 



39  

be mounted near the bearing housing, but two accelerometers should be mounted 90o 

apart. Due to the effect of structural resonances, an axial measurement in the vertical 

direction close to the pump casing can also produce good signals to the lubrication 

mechanism.   

 

Figure 3.10 :  SKF vibration sensor (CMSS 2100) [44]. 

3.4.2 Temperature sensors  

Resistance Temperature Detectors (RTD) is among the most precise temperature 

sensors on the market. In our case study, this sensor is used to calculate temperature 

data applied by the detection bearings fault model. Two RTD-PT100 temperature 

sensors are mounted in the vertical and horizontal directions of the pump bearing 

housing to collect temperature data with a measuring range of -50 to +180oC for DE 

and NDE Bearings. The resistance of these sensors varies with temperature, which can 

then be correlated to provide a temperature reading. Furthermore, the most common 

type of sensor (RTD Pt100) has a resistance of 100 ohms at 0°C. Instead of an alert on 

the measurement point, a device alarm will be triggered if the calculated value is 

beyond the measurement range. For instance, suppose the range is set to 0-300 °C, and 

the temperature sensor output is above 300 °C. In that case, this value will be treated 

as an unrealistic value, and the MasCon/IMx1 system will generate a system alarm in 

the system alarm list. The cause of this alarm could be a sinful earth connection or 

surrounding interference that disturbs the output signal from the sensor.  

 

1An on-line condition monitoring system like MasCon/IMx and @ptitude observer can be successfully 

operated only on an installed and tested network infrastructure. Even though the MasCon/IMx devices 

and @ptitude observer monitor are equipped with several fault-tolerant routines and procedures, they 

can ultimately only be as reliable and effective as the network to which they are connected. 
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 MACHINE LEARNING IN PREDICTIVE MAINTENANCE 

This chapter presents an introduction to machine learning (ML) in general and gives a 

brief explanation of the ML types. It then focuses explicitly on the ML approaches in 

PdM and provides the recent related work in this field. Section (4.3) describes 

intelligent predictive maintenance architecture illustrated with a flow chart. Moreover, 

it introduces feature selection and extraction methodology focus on the application 

methods used in the prediction model.  

Also, this chapter covers the research methodology followed to construct a data-driven 

approach based on an ML techniques. Moreover, it presents an overview of the main 

steps in developing the fault prediction model; various ML algorithms are established 

using sample bearings data from the pumping system. Concretely, four ML algorithms 

are tested, which include: Decision Trees, Random Forest, and Gradient Boosted trees, 

as well as Support Vector Machine. Finally, it introduces the evaluation measure of 

the tested ML approaches is based on five performance indicators: accuracy, precision, 

F-score, recall, and an area under curve (AUC). 

 Introduction 

At its most basic level, machine learning (ML) is the process of using algorithms to 

evaluate data, learn from it, and then determine or predict. Reverse the process of 

manually coding programme routines with a given set of instructions to complete a 

task. Huge quantities of data and algorithms are used to "train" the computer, allowing 

it to learn the association between input and desired output, as well as how to execute 

the task [40]. 

Innovations in specific domains such as mathematics and computer science, such as 

mathematical learning and the availability of easy-to-use, often freely accessible 

(software) tools, have the ability to turn the industrial domain and sustainably grasp 

increased manufacturing data depots. In the field of ML, one of the most exciting 

advances is taking place. However, several different and diverse algorithms, theories, 

and methods are adopted for applying ML structures [85].    
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Unlike conventional software programming, these algorithms are not built from a set 

of predefined rules. These algorithms, on the other hand, are self-learning. They 

achieve at rules by running a series of tests on training data and building an application 

field model. Each new set of data is then used to fine-tune the model and enhance its 

predictive power [86]. 

 Machine Learning Types 

The ML model is a mathematical model that finds trends in data to produce 

predictions. Many big data issues, speech recognition, vision, and robotics can all 

benefit from machine learning [87,88]. As briefly described in the following sections, 

there are three distinct forms of learning: supervised, unsupervised, and reinforcement.   

4.2.1 Supervised learning 

Supervised Learning is a ML pattern for learning a system's input-output relationship 

information from a collection of paired input-output training data. An input-output 

training set is also known as labelled training data or supervised data because the 

output is treated as a label of the input data [89]. 

"Regression" and "classification" problems are two types of supervised learning 

problems. A regression problem aims to predict outcomes from a continuous output or 

to map input variables to a continuous function. Instead, a classification problem aims 

to predict outcomes to a discrete output or to map input variables into discrete 

categories. 

To evaluate the predictor characteristics, supervised ML aims to construct a predictive 

model of class label classification. The resulting classifier is then used to assign the 

testing dataset as class labels, which has known predictor feature values but unknown 

class label values [10]. As far as this work is concerned, supervised ML has chosen to 

analyze the collected data as a prediction model. 

4.2.2 Unsupervised learning 

When a model or system is not given clear input, it is referred to as unsupervised 

learning. On its own, the machine must learn patterns or structures in the data [39]. 
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There are no branded examples of unsupervised learning processes, and the output is 

unknown during the learning process. In other words, no external input is needed 

during the training phase [4].  

4.2.3 Reinforcement learning 

Reinforcement learners engage with their surroundings and use what they have learned 

to select or prevent specific actions depending on the effects. If the same problem 

arises, situation tends to replicate actions that resulted in high rewards in the past. 

Choices that result in smaller rewards, on the other hand, are more likely to be avoided. 

Semi-supervised learning is another form of learning that is commonly discussed. It’s 

a mix of supervised and unsupervised learning with some labelled data. Getting 

labelled data for supervised learning can be expensive, but getting large quantities of 

unlabeled data is not. Semi-supervised learning takes advantage of both at the same 

time and is useful when only a limited of labelled data is obtainable. Furthermore, 

where only a portion of the historical data is available, the semi-supervised learning 

approach will assess the situation and detect failure, which is advantageous [90]. 

 Intelligent Predictive Maintenance Architecture 

Figure 4.1 depicts the I-PdM platform's architecture. This platform includes modules 

that transform rotary equipment data into helpful information for maintainers so they 

can take corrective steps, inspect the states, and repair the defective component to 

avoid equipment breakdowns. Many appropriate algorithms could be correctly chosen 

at each stage to achieve the best result and performance [90]. Artificial neural network 

(ANN) is the most usual method for intelligent diagnostics and prognostics of 

machines. Inputs to an ANN can be data gathered from vibration sensors, pressure, 

flow, power, and other performance features. ANNs are simulators inspired by a 

human nervous system that can handle various tasks like pattern recognition and 

classification [91] 

Operating observers can manually input working conditions or collect data from 

sensors installed on the devices for condition monitoring. Following that, suitable data 

processing algorithms, feature extraction, and feature selection is used to transform 

these data into features. A proper algorithm is employed in the feature space to identify 

the types of faults, predict degradation, and forecast the remaining lifetime of 
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machinery [55]. The deterioration data can be useful in making maintenance decisions 

and optimizing maintenance schedules. We may examine and discover patterns, rules, 

and information from data captured from various sources using decision making. As a 

consequence, depend on the analysis results and real-time data, we have the ability to 

make the right decision at the right time and in the right part [92]. 

 

Figure 4.1 : The architecture of I-PdM platform. 

Some primary concepts of intelligent predictive decision support systems have been 

presented in [93]. Different techniques can be applied in various PdM implementation 
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phases, such as data processing, diagnostics, practical real-time data monitoring, and 

prognostics. Therefore, evaluating the condition of components, the degradation 

status, and the processing system's quality-reliability chain may have a decision-

making policy to determine the production cost and ways to reduce cost according to 

maintenance efficiency. 

There are two ways to formulate the PdM dilemma. The first step is to formulate the 

PdM as a classification problem to identify the part that is failing before the machine 

fails. The second option is to frame it as a regression problem in which the goal is to 

estimate remains of time before the next failure. Both of these cases are examples of 

supervised learning techniques. Generalized linear models, tree-based ensemble 

methods (random forest, gradient boosted trees), and deep learning techniques would 

be the most appropriate PdM problems [94]. AI methods can learn from the dataset 

delivered to them and eventually predict or classify unknown situations. Diagnosis 

using condition monitoring methods can be solved as a pattern recognition problem, 

comprising of three stages; Feature extraction, Feature selection, and classification.  

We discuss these methods briefly in the next sections. 

 Machine Learning Approaches in PdM 

The accurate prediction of a machinery failure is one of the most exciting and 

challenging tasks for production planning managers. As a result, ML approaches are 

becoming increasingly common among industrial researchers. These methods can 

accurately predict the possible outcomes of faults by discovering and identifying 

patterns and interactions between them from complex datasets. 

Different ML methods are used in the thesis to predict the equipment operating 

condition. Classification algorithms inclusive Decision Tree, Ensemble Classification, 

Random Forest, Gradient Boosting, Logistic Regression, k-Nearest Neighbors, and 

Support Vector Machine algorithms are used to find the best classifier for the data in 

the comparative studies. 

Machine learning algorithms are commonly used in the field of PdM. Nam et al. [95] 

have utilized a data-driven approach to develop a health monitoring and diagnosis 

framework for a fused deposition modeling process based on an ML method. For a 

data-driven approach, three accelerometers, an acoustic emission sensor, three 
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thermocouples are installed, and associated data are collected from those sensors and 

processed to obtain RMS values. The frame's acceleration data were most effective for 

diagnosing the fused deposition modeling process's health states with the non-linear 

support vector machine-based model among various RMS values. Xayyasith et al. [96] 

presented the ML application for PdM of a cooling water system using the trained 

model's classification learner application. Twenty two classifier types were organized 

in six main comparable classification techniques, involve Decision Trees (DT), 

Discriminant Analysis, Support Vector Machines (SVM), Logistic Regression, k-

Nearest Neighbors (KNN), and Ensemble Classification. It was shown that the SVM 

and DT are better at predicting failures than the other methods used in the study.  

Qiao et al.[97] Presented a fault diagnosis model based on an improved wavelet 

package transform (IWPT), a distance evaluation technique, and the SVMs ensemble. 

The proposed model consisted of three phases. Firstly, the feature of impact fault in 

vibration signals was investigated; secondly, the optimal features were selected from 

the statistical characteristics of raw signals with the distance evaluation technique. 

Finally, to distinguish the various abnormal cases, the ideal characteristics were 

entered into the SVMs ensemble with the AdaBoost algorithm. Yan et al. [98] applied 

random forest (RF) as a classifier on Aircraft Engine Fault Diagnosis (AEFD). The 

methodology proved to be a reliable classification tool for various machine faults. 

They have also made some efforts to improve RF performance specifically for the 

AEFD problem. Yiakopoulos et al. [99] submitted a method for diagnosing faulty 

rolling element bearings using K-means clustering. The method was implemented as 

a two-stage procedure. In the first step, the method was deciding whether a bearing 

fault exists or not. In the second step, the method was identifying the type of defect 

(e.g., inner or outer race).  They showed the advantages of a presented model by the 

ease of programming, simplicity, and robustness. 

Recently, Z. Allah Bukhsh et al. [100] employed the ML techniques to develop PdM 

models based on DT, RF, and gradient boosted (GB) using existing data from a railway 

agency. For the prediction of maintenance need, the GB model performed most 

optimally compared to other methods with 86% accuracy. For maintenance activity 

type and trigger status prediction, the RF model attains 70% and 79% accuracy on the 

held-out test set, respectively. Gutschi et al. [101] introduced a data-driven approach 

to estimate the machine breakdown probability during a specified time interval in the 
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future. The authors described applied data-mining, feature-extraction, and ML 

methods and concluded that machine failures could be reliably predicted up to 168 

hours in advance. Soualhi et al. [102] utilized artificial ant clustering to predict broken 

rotor bars and bearing fault at diverse load levels in the induction motors. The 

experimental results indicate the effectiveness of the presented method compared with 

supervised classification methods. 

Kroll et al. [103] presented a system for PdM of manufacturing stations by using 

timed-hybrid automata of the machine's normal operation.They have demonstrated 

that this method has an advantage over traditional, static limit testing. This advantage 

is a model of continuous dynamics, which reduces it to separately modeled state 

vectors. This, in turn, allowed powerful anomaly detection by using a hybrid data 

acquisition and anomaly detection strategy, as well as they presented an outlook for 

other applications, such as PdM scheduling. While, Wei et al.[104] introduced a new 

CBM strategy to determine the optimal action (e.g., no action, imperfect repair, and 

corrective replacement) based on the system status by reducing the average long run 

cost average. 

Cline et al. [1] revealed the potential of ML strategies for improving the activities of a 

service department for oil and gas machinery. Analyzing significant data sets of 

individual machine performance resulted in substantial improvements in the 

customer’s ability to identify risky assets up to one year in advance. Paolanti [105] 

depicted the ML architecture for PdM on the base of the RF algorithm. The model was 

tested on a real manufacturing example by implementing the data collection and data 

analysis system, applying the ML algorithm, and comparing it to the simulation tool 

analysis. Data collection has been done using different sensors, PLC, and 

communication protocols before being available to data analysis tools on the Azure 

Cloud architecture. Preliminary results show that the technique is capable of 

effectively detecting various machine conditions. 

The current research, which is concerned with the fault detection in the bearings 

components, helps the production managers plan the maintenance activities, i.e., 

technicians and spare part availability. The supervised ML method has been applied 

in this study where the data fed (mainly temperature and vibration) belong to the 

labeled type. In this respect, a comparison of four different types of classifiers; DT, 

RF, GB, and SVM. This comparison was achieved by utilizing the python 
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programming language to investigate which type provides the highest detection 

accuracy. Since the binary classification output of the applied ML algorithms can 

generate the pseudo probability of an observation belongs to a class, the authors choose 

to use the utility theory to utilize the likelihood of failures and perform correct 

maintenance actions. 

 Feature Selection & Extraction Methodology 

Data pre-processing, feature extraction and selection, and fault detection are the three 

key steps in a learning protocol for intelligence prediction models. According to a 

specific feature selection criterion that selects the dataset's relevant features, locating 

a subset from an initial data set is referred to as feature selection. It contributes to 

reducing the size of data processing by removing redundant and irrelevant 

characteristics. Feature selection strategies can increase learning performance, 

minimize learning time, and simplify learning outcomes by pre-processing learning 

algorithms and selecting useful features [106]. 

The feature selection methods can be based on statistics, data theory, manifold, and 

rough set and can be categorized according to various criteria [107]. 

 According to the used training data (labeled, unlabeled, or partially labeled), 

feature selection methods can be divided into supervised, unsupervised, and 

semi-supervised models.  

 According to their relationship with learning methods, feature selection 

methods can be classified into a wrapper, filter, and embedded models [108]. 

 According to the evaluation criterion, feature selection methods can be derived 

from correlation, Euclidean distance [109], consistency, dependence, and 

measure information. 

 According to the search approaches, feature selection methods can be divided 

into forward increase, backward deletion, random, and hybrid models [45]. 

 According to the nature of the output, feature selection methods can be divided 

into subset selection models and feature rank (weighting) [110]. 

The objective of using feature selection methods is to choose features that allow for an 

accurate explanation of the equipment's state and, as a result, effective defect 
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classification and prediction.  It is critical to devise a comprehensive scheme capable 

of selecting the most proper features to optimize the classification model's 

performance for fault detection evaluation. Researchers have previously investigated 

the principal component analysis (PCA) technique for signal processing. The PCA-

based feature selection scheme for machine condition monitoring is built on the 

assumption that the amplitude of vibration signals faulty machine components rises in 

proportion to the defect's magnitude. This study explores PCA suitability to identify 

the most representative function as inputs to train ML models due to its ability to 

distinguish directions with the most significant variance in the original dataset [111]. 

The feature extraction process is considered a critical stage that directly affects fault 

detection effectiveness and precision. As mentioned in the previous chapter, several 

sensors are installed at various machine locations connecting in a condition monitoring 

device to collect numerous potential fault data. The data collected by these sensors is 

disordered and associated with a variety of sources. As a result, these signals' 

characteristics are inconsistent, making artificial feature selection complex and 

increasing ambiguity in the prediction model. An efficient and sensitive method for 

extracting statistical characteristics from sensor signals to determine equipment status 

is needed as an outcome [112].  

Furthermore, feature extraction often necessitates raw data transformation into 

features with high pattern recognition capacity, while raw data is regarded as features 

with low recognition ability [110]. In recent years, a plethora of existing approaches 

have been created and classified into various categories. Execution of feature 

extraction by time domain, frequency domain, time-frequency representation, and 

phase-space dissimilarity are only a few examples. In the roller element bearings case, 

the time domain features extraction method is the most commonly utilized. For non-

stationary and non-linear signals, the third and fourth methods are appropriate 

[113,114].  

 Machine Learning Algorithms 

Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), and Support 

Vector Machine (SVM) algorithms are used to find the best classifier for the data under 

study. A brief introduction about ML algorithms is given in sections 4.6.1 through 

4.6.4.  
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4.6.1 Decision trees (DT)  

In respect of this, Y. Sheng and S. M. Rovnyak [115] and Kotsiantis et al.[116] have 

created a summary of decision trees in which the benefits of the DT in ML are 

discussed. The decision tree, which is a well-known methodology for creating logic-

based rules as well as classification rules by tracing down the tree's nodes and 

branches, was selected as a consideration by the authors of the current thesis. The 

decision tree model often yields strong results, satisfies the consistency criteria, and 

creates simple logic rules that operators can understand. 

For learning patterns, decision trees usually require a large number of data samples. 

This denotes that a time series should not be too short, and multiple time series should 

be obtainable. Both related conditions and events should be included in the sample 

time sequence. The method can only be trained using historical data. As a 

consequence, it is unable to detect events that did not occur in the dataset. 

In the proposed ML classification model, the binary classification (0,1) dependent-

decision trees display a stronger propensity in terms of results, and thus the 

decision/classification can be easily calculated [117].    

4.6.2 Random Forest (RF)  

Random Forest, also known as ensemble decision trees, was used as a classifier 

algorithm for several reasons: (1) it provides better predictive results. (2), it allows for 

constructing multiple decision trees. (3) it will enable fault detection with more 

excellent reliability and accuracy than DT, particularly when the data is initially 

extended [118, 119]. RF is often used to minimize differences in actual and predicted 

values, such as variance, bias, and noise, which are not functionally included in RF.  

For nodes splitting, each tree is built under the consideration of a random subset of the 

features. Because of the usage of only features subset, the decision tree forest can 

handle a larger number of features. Within these features, the random subset selection 

makes the decision tree such a random subspace method, which in turn led to prevent 

overfitting. Furthermore, sampling on the dataset, trees are randomized using bagging 

and boosting techniques to generate splits [101]. 
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4.6.3 Gradient Boosted (GB)  

Gradient Boosted is an ensemble learning strategy that generates weak tree classifiers 

in a stage-wise fashion, close to how other boosting algorithms do for a different base 

model. To apply a GB algorithm to a particular problem, we must first specify the 

optimal tree size, and the number of iterations (trees) needed to achieve the best 

prediction accuracy. Each iteration attempts to reduce the loss function, such as cross-

entropy or overall squared errors, ensuring the number of iterations should be 

sufficient to minimize the error function [120]. RF, on the other hand, creates each tree 

by random sampling and replacement. In the GB model, the learning protocol often 

sequentially suits new models to provide a more reliable estimate of the response 

variable. With various model designs, boosting algorithms are relatively easy to 

implement [121].  

A gradient boosted model is a generalization of tree boosting that aims to create a 

reliable and efficient off-the-shelf data mining procedure compared to a single 

powerful predictive approach, such as neural networks. 

4.6.4 Support Vector Machines (SVM) 

Support Vector Machines (SVM) are currently the most popular tool for the 

classification and regression of large sample sizes, owing to their high classification 

precision, also for nonlinear problems, and the availability of optimized algorithms for 

their computation [10, 122–124]. It solves for separating hyperplanes when used in 

conjunction with learning algorithms. It provides the best separating hyperplane for 

maximizing the margin between two classes on either side. The hyperplane margin 

theorem separates the two data classes to minimize an upper bound on the predicted 

generalization error. In recent years, SVMs have received a lot of attention in various 

science, particularly in machine health diagnosis and monitoring [125]. 

 Research Methodology  

Figure 4.2 summarizes the research methodology, which is based on integrating an 

online fault detection algorithm with the decision theory for PdM. As the figure 

indicates, historical data are used for the offline model training, whereas online data 

are observed from instantaneous sensor measurement for predicting the process state. 

The utility theory is finally used for planning PdM. 
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Figure 4.2 : The flow chart of the proposed method for roller bearing fault 

prediction model. 

The first stage of building the prediction model depends on data acquisition, collecting 

and storing useful data from the target system to monitor the condition and diagnose 

the faults. The input for the data acquisition process is vibration signals and 

temperature readings. These signals are extracted to reduce feature space's dimension 

where the reduced features are fed to several ML algorithms to classify the operating 

conditions. Performance comparison among the tested ML algorithms is performed to 

select the one with the most accurate bearings faults prediction. The chosen model is 

then used to process state estimation for online sensor data measurements after feature 

extraction. Besides, we utilize utility theory coupled with the probability scores 

resulted from ML to guide decision-makers on when to implement the maintenance 

activities efficiently and cost-effectively. Therefore, our decision model provides a 

well-defined framework for selecting the correct maintenance action. The following 

sections explain more details of the study's main stages. 
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 Offline ML Models Training 

Several statistical features were extracted to train the ML models that, in turn, generate 

the final fault predictions. Seven descriptive statistical features for each sensor signal 

were constructed from the selected dataset of the bearing component; they are mean, 

skewness, kurtosis, maximum and minimum values representing the upper and lower 

ends of our data. The standard deviation (SD) and RMS was also included [55]. These 

statistical features are calculated for each selected attribute (i.e., temperature and 

vibration) gained from six different sensors. Among those features, the RMS values 

are considered the most effective to distinguish between healthy and faulty states [95]. 

The attributes used in the model listed in (Table 4.1). 

Table 4.1 : Selected attributes for ML prediction model. 

Type of sensor Attribute 

Accelerometer (vibration signal reading) 

NDE Bearing (x-axis) 

NDE Bearing (y-axis) 

DE Bearing (x-axis) 

DE Bearing (y-axis) 

RTD (temperature reading) 
NDE Bearing 

DE Bearing 

The binary classification is viable for PdM, being able to estimate whether the machine 

will fail over a future period of time. To use a binary classification, it is necessary to 

identify two classes, represented by zero and one. Each class is a record of a unit of 

time for an asset that conceptually defines the operating situations, considering the 

pump design's technical data and specifications. 

In the PdM binary classification context, the class “1” denotes the faults while the “0” 

class stands on the normal operation condition. This classification aims to find a model 

that identifies which bearing may fail or typically work in the future. In the present 

work, two different operating conditions have been considered. The first condition was 

labeled as normal, where no faults were present in the bearings. Whereas the second 

one is known as fault indication condition (announced when the operating conditions 

of the bearings, i.e., temperature or vibration, reach to or go over the critical limit 

value). The ranges of the standard and critical limits are listed in (Table 4.2). 
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Table 4.2 : Binary classification of the bearing operating condition for ML model. 

Description Range 
Critical 

Limit 

Model 

Classification 

Pump DE &NDE 

Temperature 
0-200 deg 80 deg  

0: Normal operating condition <80 deg 

1: Fault indication when  ≥80 deg 

Pump DE & NDE 

Vibration 
0-10 mm/sec 6 mm/sec 

0: Normal operating condition <6 mm/sec 

1: Fault indication when  ≥ 6 mm/sec 

Thus, The application of machine learning to temperature and vibration data has 

primarily focused on defining associations between normal and critical operating 

conditions to extract the most possible root causes for fault classification [113]. 

Temperature measurements help in potential failure estimating related to the 

temperature change in the equipment, such as excessive mechanical friction (faulty 

bearings, inadequate lubrication, fouling in a heat exchanger, and shoddy electrical 

connections). Those vibrations can indicate wear, imbalance, misalignment, and 

damage [78]. These measurements contribute to determining the causes of the faults 

that occur in the bearings, mainly due to either temperature and/or vibration. Following 

the results that came from these observations, expert knowledge of maintainers as well 

as the maintenance manual of pumping machinery, the right maintenance action can 

be executed.  

 Data Collection and Preprocess 

Data collecting is the most important step in applying ML algorithms. As mentioned 

previously, this work is based on a real data-set collected from several types of sensors 

that monitor the pumping processes in the sewerage treatment company. The sensor 

data stream-in at an interval of one minute, which is equivalent to 1440 rows of data 

per day, describes the original data sets as a time series of accelerations and 

temperature shown in (Figure 4.3).  However, a reserved-dataset is not directly suitable 

for creating a predicting model because it mostly contains noise and missing feature 

values. Therefore, the second step of data preparation and data preprocessing is applied 

before feeding it to the ML algorithm in order to convert the raw data into a clean data 

set and make them more suitable for further analysis. 

In this respect, feature extraction is used for data preprocessing that focuses on 

modifying the data for better fitting in a specific ML method. It also involves 



55  

condensing the data by producing a smaller set of predictors that aim to capture most 

of the initial variables' information [10]. In this way, the actual data are replaced by 

fewer variables providing a reasonable fidelity. 

 

Figure 4.3 : Features of the original data sets. 

Basing on this unique characteristic, PCA is finally used for the classification of 

variables and hence early identification of abnormalities in the data structure. In 

respect of this explanation and according to the available data, a set of 42 statistical 

features for six attributes listed in (Table 4.1) was reduced to a smaller set of seven 

uncorrelated final features corresponding to a 95% variance of the original data set. 

Figure 4.4 shows the change of the explained variance ratio of the 42 variables selected 

for PCA vs. the principal component. It is can be seen that seven of these 42 variables 

have explained 95% of the variance. This means that the seven PCs subspace contains 

enough information about the variation of the original features which is sufficient to 

construct the model that can detect the faults in the bearing component. 

Later, the analyzed frame of the target timestamp has been adequately sized by a 

limited-analysis approach. In current work, the time series is split into sub smaller 

periods in which the above-described features are extracted from sliding windows with 

a size of ten hours and a sliding length of one hour. These strategies could be performed 

using weekly or monthly time periods depending on the PdM requirements [126]. 
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Figure 4.4 : Principal Component selection. 

The use of previous time steps to predict the next time step is called the sliding window 

method. In some literature, it's referred to as the window process. In statistics and time 

series analysis, this is called a lag or lag method. 

A classification model is then generated from the training set while its accuracy is 

estimated on the test set. Among the most commonly used methods for evaluating a 

classifier's performance by splitting the original data set into subsets is k-fold cross-

validation. A subset of the training set is used to construct the classifier, called a 

validation set, used as a test set with which the original training set is learned to tune 

the model or obtain the model parameters [87]. 

In our model, we performed five-fold cross-validation using the raw data set. The 

training set is divided into five equal parts; one is used as the validation set, whereas 

the remained ones formed the training set. We have repeated this process five times, 

considering a different part as a validation set at each time and compute the validation 

data accuracy. The final accuracy results are the average of all different validation 

cycles. 

 Building Classification Algorithm 

While the Process state is used as input for ML algorithms, 𝑦𝑡 is the output as presented 

in the following equation (4.1): 

𝑦𝑡  =  𝑓(𝑋𝑡−𝑞 ) (4.1) 
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Where 𝑦𝑡 is the machine condition which is defined as a normal condition and critical 

condition, 𝑋𝑡 is the process state represented by extracted time-series features at time 

(𝑡) and time lag (𝑞). In this formulation, we would like to predict the process condition 

at q periods ahead.  

DT, RF, GB, and SVM are used to determine the best ML technique that will predict 

process conditions. In DT, the Gini index has a dual function: it is utilized to find the 

feature splits the training set that would be a root node of the tree; moreover,  it can be 

used in evaluating the quality of a particular split [127].  

The Gini index is determined by: 

𝐺 = ∑ �̂�𝑚𝑘(1 − �̂�ₘₖ)

𝐾

𝑘=1

 (4.2) 

where �̂�ₘₖ denotes the proportion of training observations in the 𝑚𝑡ℎ region in the 𝑘𝑡ℎ  

class.  

The maximum depth of a tree is set to five to prevent overfitting where max depth 

gives the maximum depth up to which a tree can grow [87]. To achieve the best results 

in the test data set, we tried values from two to ten for the maximum depth parameter 

so as to cover a wide range of possibilities.  

In the RF algorithm, the number of trees (number of iteration) is set to 100, which used 

the same parameters of the splitting decision and the maximum depth of the DT. Using 

more than 100 models in RF algorithm did not improve the results. 

The learning rate is taken as 0.12 and 100 models are built in a GB Algorithm. As the 

case of RF algorithm; 100 models did not improve the results of GB algorithm. Among 

the tested learning rates (0.01 to 0.5), a learning rate of 0.12 gave the best accuracy 

results for GB. 

For the SVM algorithm, the radial basis kernel function outperforms the kernel 

functions of linear, polynomial of order two and three, and sigmoid function. Another 

important support vector classifier (SVC) parameter is regularization parameter C 

changing the regularization parameter affects the shape of the function. While High 

values of C results in more smooth functions, low values result in more complex 

functions leading to overfitting problems. In our experiments, we found that the best 
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C value is 1.0.  Results of the algorithms are summarized in the figures and tables 

below. 

Next, we will fit a classification method to predict pump condition using delay (lag) 

functions that need to be created from data sources including timestamps. Lag features 

are the classical way that time series forecasting problems are transformed into 

supervised learning problems. The most straightforward approach is to predict the 

value at the next time (t+1) given the value at the previous time (t). 

The discussion begins with analyzing the numerical and graphical summaries that 

resulted from applying ML algorithms for the bearings data. For each recorded data, 

we have predicted the fault occurrence recognized by pump operating conditions for 

the nine previous hours, Lag 1 through Lag 9. Now we compare the algorithms' 

performance across five random train-test splits of the data using classification 

accuracy. Figure 4.5 presents the output of accuracy for every nine lags expressed as 

the probability of correct classification. As the figure indicates, the GB and RF 

achieved slightly more than 88% mean accuracy in Lag 1, associated with the correct 

detection of critical bearing conditions before 1 hour. On the other hand, SVM and DT 

respectively resulted in 82.2% and 81.9% mean accuracy giving an initial indication 

that DT gives the worse accuracy compared with the other three algorithms. A more 

extensive analysis of the algorithm’s performance is presented later in section (4.11). 

In general, we can see that the prediction accuracy for all models is decreasing 

meaningfully with increasing a lag number from one to nine, reaching minimum 

prediction accuracy of less than 53% at lag9. This is a logical consequence since many 

unexpected circumstances might appear when the prediction took place earlier. (Table 

4.3) summarizes the mean and SD for all ML models for nine lags. 
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Figure 4.5 : Comparison of ML algorithms performance with respect to their 

Accuracy-Lag. 

Table 4.3 : The mean and standard deviation for all ML models for nine lags. 

DT algorithm mean SD GB algorithm mean SD 

Lag1 0.819 0.102 Lag1 0.926 0.034 

Lag2 0.759 0.058 Lag2 0.85 0.06 

Lag3 0.707 0.031 Lag3 0.779 0.095 

Lag4 0.616 0.075 Lag4 0.716 0.102 

Lag5 0.543 0.032 Lag5 0.658 0.129 

Lag6 0.518 0.022 Lag6 0.616 0.139 

Lag7 0.511 0.043 Lag7 0.586 0.163 

Lag8 0.544 0.051 Lag8 0.589 0.141 

Lag9 0.524 0.017 Lag9 0.534 0.097 

RF algorithm mean SD SVM algorithm mean SD 

Lag1 0.876 0.031 Lag1 0.822 0.029 

Lag2 0.826 0.045 Lag2 0.755 0.032 

Lag3 0.767 0.041 Lag3 0.678 0.029 

Lag4 0.729 0.027 Lag4 0.633 0.026 

Lag5 0.672 0.025 Lag5 0.591 0.021 

Lag6 0.611 0.042 Lag6 0.564 0.027 

Lag7 0.569 0.023 Lag7 0.555 0.037 

Lag8 0.595 0.014 Lag8 0.55 0.044 

Lag9 0.61 0.015 Lag9 0.536 0.064 

For the purpose of comparing algorithms performance, it is important to consider both 

mean and SD values. The higher the SD, the less precise is the prediction estimate. For 

example, although the mean value for GB is better than RF, the SD in RF is less 

indicating a more precise estimation.  
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 Performance Measures for ML Models 

Several performance measures are used to compare and evaluate the intensity of model 

prediction. As mentioned earlier, four distinct models are developed to predict if the 

operating condition is critical or normal where the maintenance is performed or delay 

accordingly. For the testing accuracy of the classifiers method, the training outcomes 

of an application are compared in terms of predictive efficiency. In the analysis, 

accuracy (%) is considered as a performance index and is calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) (4.3) 

TP, TN, FP, and FN are true positive, true negative, false positive, and false negative 

rates. Thus, the accuracy is an integration of precision (or positive predictive value) 

and recall (sensitivity) measures [128]. The precision determines the exactness of the 

model. It is a ratio of correctly predicted positive instances (TP) to the total positively 

predicted instances (TP+FP). Precision is denoted as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (4.4) 

Recall, on the other hand, is an indicator of the model's completeness. It is a ratio of a 

correctly predicted positive instance to the total instance of the positive class (TP+FN) 

in the test set. A recall is determined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (4.5) 

Precision represents the model’s performance concerning false positives, whereas 

recall represents the performance with respect to false negatives. The F1-score conveys 

the balance between precision and recall by taking their weighted sum. F1-score is 

calculated as follows:  

F₁ =   (2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (4.6) 

Similar to the accuracy, F1-score performs well with the reasonably balanced dataset. 

Given the performance evaluation measures, the idea is to maximize the TP and TN 

and minimize the FN and FP. Generally, a reasonable tradeoff between the FP and TN 

risks is needed for better predictability. However, in the case of maintenance, the false 

negative (i.e., when the model predicts no need for maintenance, where it is needed) 
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is more critical. Finally, in our experiments, we also compute the receiver operating 

characteristic curve ROC (a.k.a Area under the curve AUC), which is a measure of the 

model's performance based on the tradeoffs between TP and TN rates over all possible 

risk thresholds between 0% and 100%. It is worth noting that a ROC over 0.70 is 

considered good, and a ROC over 0.80 is very good in the ML community [1].  

Table 4.4 shows the model evaluation results tested on a cross-validation dataset. All 

models offer a negligible difference in performance. The GB model performs best in 

terms of all performance indicators where it reaches an accuracy of 92%; precision of 

92.6% has an F-score and Recall of 91% and 89.5%, respectively. This supports our 

previous conclusion that the GB approach outperforms the other tested ML models. 

The SVM model, on the other hand, shows the lowest accuracy rate nearly to 82% as 

such as to the other evaluation criteria. Therefore, GB and RF showed the best 

performance indicators, with almost identical measures, and are found to outperform 

the other two models. It is also noteworthy that even with the worst ML model, DT, 

the AUC measure is considered acceptable (>0.7). ROC curves plots are used in order 

to evaluate the distinctive ability of the detection, the GB model exhibits an even 

higher AUC (92.8%) while the DT model gives a lower AUC (74.5%) as shown in 

(Figure 4.6). 

 

Figure 4.6 : ROC Curve of ML Algorithms. 
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Table 4.4 : Result of prediction models. 

Test Type DT GB RF SVM 

Accuracy 0.829 0.923 0.876 0.822 

F₁-score 0.775 0.909 0.847 0.785 

Precision 0.847 0.926 0.906 0.824 

Recall 0.721 0.895 0.799 0.758 

ROC_AUC 0.745 0.928 0.912 0.885 

 Decision-Making Theory 

Aiming to determine the optimal strategy alternatives, decision-making and utility 

theory have been comprehensively used to plan manufacturing and production 

activities [129]. In our case study, there is a list of 𝑑₁, 𝑑₂…𝑑ₘ of decisions (such as 

taking, or not, the maintenance action) and Ø₁, Ø₂ . . . Øₙ of events (such as normal or 

critical conditions) with the uncertainty of probability 𝑝(Øⱼ) of event Øⱼ (𝑗 =

 1, 2…  𝑛).   

Among the possible decisions (𝑑₁, 𝑑₂…𝑑ₘ), the optimal one is chosen to avoid the 

extra costs of incorrect maintenance that arise from unreal predictions which can be 

achieved by maximizing the expected utility function [130]. The utility of the 

consequence (𝑢𝑖𝑗), in correspondence to a decision (𝑖) on an event (𝑗), is determined 

by a utility function. As for fault prediction of bearings in the current work, there are 

two decisions, namely, 𝑑1: no maintenance action (continue working) and 𝑑2: perform 

maintenances action along with two events  Ø1 and Ø2 which present normal and 

critical conditions, respectively. The two correct decisions are: (a) to do maintenance 

if it is a critical condition and (b) to continue operating pumps if the normal condition 

has a significant utility.   

To compute the expected utilities for diverse decisions, formula (4.7) is considered for 

which the probabilities for each event 𝑝(Ø𝑗) shall be calculated [131]. They can be 

initially estimated based on historical data. After that, once the in-situ sensor data 𝑦 is 

available, 𝑝(Ø𝑗) will be updated as 𝑝(Ø𝑗|𝑦) using ML algorithms. The optimal 

decision (𝑑𝑖) will thus be chosen based on maximal expected utility. This aims to 

obtain the optimum maintenance action which combines the reliability and availability 

for each possible action [132]. 
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max
 𝑖

∑𝑢𝑖𝑗  𝑝(Ø𝑗 |𝑦)

𝑁

𝑗=1

 (4.7) 

  Decision Making  

Once the ML algorithms are tested and the best approach is selected, the utility theory 

as described in the previous section - is integrated into our model to plan the 

maintenance action based on the probability of fault occurrence. (Table 4.5) 

summarizes the utility matrix uij expressing the corresponding consequence for taking 

decision i given event j. Since it is less desirable to continue the machine work when 

the process is under a critical condition compared with taking a maintenance action 

when the process is normal, the utility (cost) for consequence  u12 is chosen to be less 

(higher) than that of  u21. 

Table 4.5 : Decision Table for critical condition prediction. 

 Normal Condition (Ø ₁) Critical Condition(Ø ₂) 

Probability p(Ø1) p(Ø2) 

Continue Working (d1) u₁₁  = 1 u₁₂   = -1 

Maintenance Action (d2) u₂₁   = -0.8 u₂₂   = 1 

The probability 𝑝(Øⱼ) represents how likely event i is to happen given the status of the 

active features extracted in the offline training phase. There are several approaches to 

detect these probabilities such as Bayesian networks and neural network algorithms. 

In this paper, however, we utilize the score resulted from the ML, which is a reflection 

of the status of all extracted features, and use it as input to the utility theory-based 

decision making. It is worth mentioning that the final output of ML is binary 0, 1 

classification depending on whether the resulted decimal score is less or greater than 

0.5, respectively. However, the decimal score (before binary classification) can be 

utilized in the application of utility theory as probability of normal and critical 

conditions.  

The choice of the utility value 𝑢ij is based on the decision maker’s knowledge of the 

system under investigation. Obviously, continue working under normal condition and 

take a maintenance action under critical condition will receive the maximum utility 1. 

The worst consequence, on the other hand, happens when work continues on a machine 
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under a critical condition which not only produces nonconforming items but also may 

cause extra damage in the machinery and production system. Therefore, a utility of     

(-1) is selected for such a consequence. The choice of utility value for taking a 

maintenance action under normal conditions depends on the cost of unnecessary 

maintenance and its impact on the production flow but in most cases, it is less serious 

than working under critical conditions. In this study, a value of (-0.8) has been 

arbitrarily chosen for computational illustration.  

It is also worthy to mention that the attitude of decision makers toward risk can 

significantly influence the way utility scores are defined. For example, in situations 

where the production management seeks to maximize profit through increasing the 

production volume within short period (risk-seeking approach), an unnecessary 

maintenance act will be avoided and critical condition signs with relatively small 

probabilities will be disregarded. On the other hand, risk-averse decision-makers who 

follow a more conservative approach will be more protective against any risk of 

machine failure even with low probability and thus will assign higher utility to 

unnecessary maintenance action.  

Therefore, in the current thesis we provides a general framework for integrating the 

concept utility theory with ML to improve decision making regarding PdM. 

Considering maintenance costs including inspection, repair, failure, and replacement 

costs; as well as decision-makers’ attitude to risks will help to provide an accurate 

estimate of the expected utility for each decision alternative. We highlight this as a gap 

for further extension and investigation.    

Figure 4.7 shows the two expected utility curves for d1 and d2. Based on utility 

maximization rule we should take maintenance action when the expected utility for d2 

(maintenance action) becomes more significant than d1 (continue working). Thus, the 

maintenance action time can be recognized by the intersection of two expected utility 

functions.  
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Figure 4.7 : Expected utility for "continue working" and "maintenance action". 
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 DEEP LEARNING IN PREDICTIVE MAINTENANCE 

This chapter introduces the impact of AI on the PdM, which is a significant piece of 

future progressed creation frameworks. First, it presents a general background of DL 

algorithms and reviews the most of methods implemented in the PdM strategy and 

provides a description of the data set that was used to build a prediction model. 

Besides, it talks about the most procedure for data pre-processing, extraction, and 

selection features which is performed on the vibration signals for building 

classification algorithm. It then provides a comprehensive review for recent research 

into the field of machine health assessment and fault prediction using LSTM and CNN 

techniques, which that adopted to build the prediction model of this research. Finally, 

this chapter provides a comparing result of predictive accuracy between ML and DL 

algorithms. Finally, it presents the experimental results of both models that have been 

evaluated by five performance indicators: accuracy, precision, recall, F-score, recall, 

and an area under curve (AUC). 

 Introduction 

Deep learning is a sort of Artificial Neural Network (ANN), or, to put it another way, 

it is the application of ANNs to learning tasks with multiple hidden layers [28].  Due 

to its possible benefits in data classification and feature extraction issues, DL has 

received a lot of attention. System health management, computer vision, natural 

language processing, voice recognition, power installations, and aerospace specialties 

are all examples of emerging research areas. Similarly, it provides solutions for 

detecting faults in electromechanical equipment, classifying deterioration, pattern 

recognition, and predicting part Remaining Useful Life (RUL) [90]. DL algorithms' 

primary advantage is that the highlights are not built by human expertise however 

gained from information itself through a generalized self-learning process. The aim is 

to model high-level abstractions in data to evaluate a high-level context, which can be 

done using supervised, partially supervised, and unsupervised learning techniques.   
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Various DL algorithms, such as Deep Neural Network (DNN) [133], Convolutional 

Neural Network (CNN) [134], Deep Feedforward Networks (DFN) [135], Long Short-

Term Memory (LSTM) [136], Back Propagation Neural Network (BPNN) [137], and 

Deep Belief Networks (DBNs) [138], have been successfully introduced in a fault 

detection and PdM research fields. Numerous researches on intelligent fault 

identification of rotating machinery, as well as rolling part bearings methods for 

reliable prognostics, have been performed. The methods based on ANNs are frequently 

used in these studies, which used signal processing methods to extract features and 

then fed the features into ANNs to classifying failures [139]. Uncertainties, of course, 

play a significant role in the overall process, influencing the predictive performance. 

As a response, it's normal to set certain minimum requirements for the health 

management system in use. Information about the operating environment, sensor 

resistance, trust levels, and so on can be included. Additionally, a variety of techniques 

can be used to process all of the data, including optimization algorithms like genetic 

algorithms (GAs), artificial immune systems (AIS), and Monte Carlo methods, 

learning algorithms like SVMs and ANNs, and reasoning algorithms like fuzzy logic 

systems, clustering algorithms, particle filtering algorithms, wavelet analysis 

algorithms, and the PCA algorithm. Data pre-processing, feature extraction, and 

feature selection can all be done with these approaches [140]. 

Samanta et al.[141] presented a performance comparison of the bearing fault detection; 

they used time domain features of vibration signals and used three sorts of ANNs: 

multilayer perceptron (MLP), radial basis function (RBF) network, and probabilistic 

neural network (PNN). The characteristics were derived from finite segments of two 

signals, one with regular gears and the other with defective gears. In [142] by merging 

WPT and DBN, a Hierarchical Diagnosis Network (HDN) was created to address the 

challenge of consecutive bearing damage position and severity recognition. The HDN 

is made up of two layers of DBNs that aid a device in determining the data's basic 

structure. With a mixture of fault intensities, the first layer was qualified to distinguish 

bearing fault positions. The second layer, on the other hand, obtained the first layer's 

result to further separate the internal fault severities. Khaled et al. [143] combined a 

PCA with ANNs to detect faults in the manufacturing processes. They have been 

presented a model entails of three-parts. To begin with, data analysis helps to 

distinguish between normal and abnormal data clusters (data with and without defects). 
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Second, using Partial Least Squares (PLS), fault visualization in the principal 

component space 2-D was performed. Finally, by measuring the contribution, faults 

were located. 

Many works have developed to prove the superiority of DL algorithms for system 

health management uses in the last few years due to the impact of increasing overall 

system versatility or potential cost benefits for maintenance, repair, and replacement. 

As a result, the authors took a realistic approach and focused their efforts on the area 

of system health management. For instance, Khan and Yairi [140] given a well-

organized and comprehensive review of DL research on system health management, 

that covers a wide range of technology fields. The process of diagnosing and 

preventing system failures while forecasting the reliability and RUL of its components 

is referred to as health management. RUL is the amount of time between now and the 

end of useful life. Precise RUL estimation plays a crucial role in Prognostics and 

Health Management (PHM). For example, in [144] for predicting the RUL structures, 

a novel Restricted Boltzmann Machine (RBM) was proposed. A new regularization 

term was introduced to model the hidden nodes' trend ability. This was combined with 

an unsupervised self-organizing map algorithm, which was used to convert the 

representation into a health attribute that could be used by a similarity-based life 

prediction algorithm to predict RUL. Ahmad et al.[145] suggested a scheme for 

detecting the health of rolling element bearings. A bearing's health was determined 

using a dimensionless health indicator (HI), and the bearing's RUL was calculated with 

dynamic regression models. The RUL of a bearing component was determined after 

calculating the time to start prediction (TSP) using an alarm bound method. They used 

a gradient-based methodology to determine the fault threshold, on the other hand. 

Yao et al. [46] Via time Empirical Mode Decomposition (EMD) and CNN, a novel 

DL method for bearing the RUL estimation approach was presented. The EMD method 

was used to decompose time sequence data without any character limitations, and it 

has a major advantage in dealing with non-stationary and nonlinear data. The featured 

information was then used as an input to the convolution layer of the suggested models. 

Ensemble models with various weighting methods were proposed for accurate 

prediction. The experimental results showed that prediction accuracy had improved. 

Zhang et al.[35] developed the new data-driven structure for estimating RUL in Tool 

Condition Monitoring (TCM). The structure included many modular components. The 
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proposed Adaptive Bayesian Change Point Detection (ABCPD) was used to perform 

data preprocessing for automatic data alignment and normalization. Then, the time 

window method was used with feature extraction from preprocessed signals by time-

frequency domains. Finally, there are two approaches proposed for selecting features. 

The efficacy of each function extraction process on the chosen dataset was tested using 

Pearson's Correlation Coefficient (PCC) and PCA. 

In [146] the RUL prediction model was developed using a DNN and statistical features 

in the time frequency domain. They did not define offline or online scenarios when 

dividing the deterioration data of multiple bearings into training and test sets. Shao et 

al.[147] to detect the roller bearing fault, researchers used a continuous deep belief 

network (CDBN) with locally linear embedding and a deep stacked auto encoder 

(DSAE). The findings revealed that the proposed approach was more successful than 

other approaches currently in use. Shao et al. [148] introduced a novel deep auto 

encoder feature learning method for gearbox and electrical locomotive  roller bearings 

fault identification. The findings revealed that the proposed approach has been both 

reliable and efficient. Zhao et al. [149] employed the machine health monitoring 

systems (MHMS) based on four DL architecture categories such as Auto-encoder,  

RBM models, CNN, and Recurrent Neural Network (RNN). Although the applications 

of several DL models have also been reviewed and summarized the recent 

achievements in MHMS. 

To deal with the previously presented researches, DL techniques have been used to 

produce increasingly effective solutions to detect the failure and predictions of the 

future operating conditions of components accurately, which is considered the most 

challenging problem in the PdM's programs. In this chapter, we attempted to propose 

a new data-driven model reached from DL algorithms to detect a roller bearing's 

pending failures and prognosticate its future operating condition to achieve correct 

maintenance actions.  

 Overview of the Long Short -Term Memory (LSTM) 

LSTM is a special form of RNN for sequence learning tasks and has achieved great 

success in prediction and forecasting [150]. LSTM networks firstly were introduced 

by Hochreiter & Schmidhuber [136] as a new recurrent network architecture combined 

with a suitable gradient-based learning algorithm A variable estimator memory is 
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present in RNN, a data-driven process. These networks function by maintaining a 

persistent, continuous state. This latent state allows taking advantage of the 

information given by the previous processing steps. Forms a short- and long-term 

memory that aids in understanding a single prediction in a series of predictions. To put 

it another way, the RNN's memory serves as a context for the calculations. In others 

word, the key distinction between the LSTM and standard RNN is that the standard 

RNN's concealed units arrangement has been replaced by LSTM cells, which solves 

the problem of gradient disappearance and gradient eruption. 

The promising results obtained from using RNN to make predictions demonstrated the 

models' ability to capture the important temporal information contained in sensor data. 

The LSTM is one of the recurring approaches discussed here [151], Gated Recurrent 

Unit (GRU) [152], and the simple RNN [46]. Long-range dependencies and non-linear 

dynamics in time series data can be captured using LSTMs. Speech recognition, 

handwriting recognition, machine translation, image captioning, genomic analysis, 

and natural language processing are just a few of the applications where LSTMs have 

been popular. A unique LSTM has recently become common for PdM, prognostics, 

and machine health monitoring. 

Long Short-Term Memory networks can deal with variable-length data sequences as 

well as learn long-term dependencies. LSTM is a form of neural network that combines 

representation learning and model training, requiring no additional domain knowledge. 

Furthermore, this construction can allow us to uncover some hidden structures, 

allowing us to improve model generalization. Raw sensor data normally contains 

noise, except when temporal information is needed [153]. As a result, we utilize CNN 

in conjunction with LSTM to extract local features. The first purpose of LSTM is to 

keep back propagated errors from disappearing or exploding. In LSTMs, forget gates 

are used to prevent the issue of long-term dependence. Because of their ability to catch 

long-term dependencies, LSTMs should be superior to conventional RNNs in terms of 

knowledge utilization in cell states and learning useful representations of system 

conditions [154].  Recently, many researchers have combined CNN and LSTM models 

to extract temporal and unique features. 

Kim and Cho [155] introduced a hybrid CNN-LSTM model for electric energy 

consumption achieving superior results than other conventional forecasting methods 

for the dataset. They found that extracting first the local features and then temporal 
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ones worked better than an LSTM-CNN model, performing with a mean square error 

(MSE). They also found that time series decomposition with DL models provides 

useful visualizations to predict better and analyze energy consumption. In [156] for 

photovoltaic (PV) power prediction, a one-dimensional hybrid DL model (LSTM-

Convolutional Network) was proposed. The LSTM network was used to derive the 

temporal features from the data in the proposed hybrid prediction algorithm. The CNN 

model was used in the second phase to extract the data's spatial attributes. In contrast, 

Tovar et al. [157] presented a CNN-LSTM hybrid model with a stronger multi-layer 

architecture, this included a 5D-CNN model with max-pooling and a 5D-LSTM 

model. The results indicate that the presented five-dimensional CNN-LSTM model 

can consume more computational resources for training than a uni-dimensional model, 

but high accuracy has been achieved. 

The LSTM neural networks have been commonly applied for intelligent fault 

diagnosis and machinery condition monitoring in recent years. Therefore, it’s adopted 

in several predictive kinds of research. For instance, a novel nonlinear hybrid model 

was established using the hysteretic extreme learning machine (HELM), LSTM 

network, differential evolution (DE) algorithm, and nonlinear combined mechanism 

to investigate and manipulate the implicit information of wind speed time series for 

wind speed forecasting. The aim is to improve wind speed detection accuracy and 

address the drawbacks of a linear combined process [158]. Zheng et al. [151] proposed 

an LSTM approach to estimating RUL that used several layers of LSTM cells along 

with regular feedforward layers to uncover concealed patterns from the sensor and 

operational data under a variety of operating conditions, faults, and degradation 

models. 

The LSTM neural networks commonly applied for intelligent failure diagnosis and 

machinery condition monitoring in recent years. Therefore, it’s adopted in several 

predictive kinds of research. For instance, a novel nonlinear hybrid model was 

established using the hysteretic extreme learning machine (HELM), LSTM network, 

differential evolution (DE) algorithm, and nonlinear joined mechanism to investigate 

and manipulate implicit information of wind speed time sequences for wind speed 

forecasting. The aim is to improve wind speed detection accuracy and address the 

drawbacks of a linear combined process [158]. Zheng et al. [151] proposed an LSTM 

approach to estimating RUL that used several layers of LSTM cells along with regular 
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feedforward layers to uncover concealed patterns from the sensor under a variety of 

operating conditions, faults, and degradation models. 

Wu et al. [159] Vanilla LSTM neural networks, which are typically used for supervised 

learning on language modelling and related state-of-the-art feature extraction 

technologies, were used to increase accuracy in RUL prediction problems involving 

complex industrial items. The vanilla LSTM was put to the test on NASA datasets for 

health testing of aircraft turbofan engines, which had four problems. Performance 

comparison of the used model with regular RNN and GRU-LSTM was also conducted, 

with vanilla LSTMs demonstrating excellent performance in the RUL estimation 

sector. Wu et al. [160] proposed a new data-driven paradigm for PdM that uses LSTM 

and RNN approaches to anticipate predicted defects and identify future health 

conditions in manufacturing systems. They used a motor bearing failure method to test 

the proposed model's accuracy and performance. Moreover, for combined demand-

side prediction models over short and medium-term monthly horizons, an LSTM-

RNN-based model was proposed by Bouktif et al. [161]. They executed ML techniques 

to compare with their proposed model. Using function selection and the GA, they 

introduced critical predictor variables, optimal latency, and layer selection. Several 

measurement metrics were used to assess the efficiency of the presented model, 

including the Coefficient of Variation RMSE (CVRMSE), Mean Absolute Error 

(MAE), and Root Mean Square Error (RMSE). 

Most of the research above have exposed that the LSTM outperforms DL models in 

terms of prediction accuracy. As a result, the current research suggests the LSTM 

approach for bearing fault detection, which uncovers hidden trends in sensor data 

under a diversity of operating conditions (normal and critical). More detail about the 

LSTM method is provided in the following section. 

5.2.1 Architecture of LSTM 

As previously mentioned, the LSTM methodology  usually has dominant performance 

in dealing with time series due to its superior ability to address long-term dependence 

issues by managing information flow using three gate structures, i.e. the input gate, 

forget gate, and output gate. These gates control information passage along with the 

sequences, which can acquire long-range dependencies with more precision. 

Furthermore, LSTMs has a capability to capture nonlinear dynamics in time sequence 
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data and avoid the fundamental problem of gradient vanishing. (Figure 5.1a) depicts a 

standard LSTM cell architecture, while (Figure 5.1b) depicts LSTM cells at various 

time steps [153]. 

 
(a) 

 
(b) 

Figure 5.1 : LSTM  architecture (a) for single cell (b) sequence of LSTM cell at time 

series [162]. 

The forget gate ƒₜ, input gate Ӏₜ and output gate Οₜ are single-layered neural networks 

that have sigmoid activation function 𝜎 (yields output between 0 and 1), 0 indicates 

that no data is passed while 1 denotes that all data is passed. Simultaneously, a 

candidate layer uses the tanℎ activation function (yields output between -1 and 1). 

These gates take the input vectors (u) and previous output vectors (w), concatenate 

them, and finally apply the sigmoid activation function[162,163]. 

The current time input vector xₜ is the input data to the LSTM model at time t; (hₜ˗₁) is 

the last time output vector; and cₜ˗₁ represents the previous time cell state. The forget 

gate and the input gate, which are used to control the model's cell state. Basically, 

forget gates and input gates are designed to restrict the information flow. The forget 

gate controls the last cell state information cₜ˗₁ transmitted to the current cell state cₜ. 

This process is defined in the following equation. 

𝑓ₜ = g(𝑤𝑓⸳[ℎₜˍ₁, 𝑥ₜ] + 𝑏𝑓)  (5.1) 
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Where g(⸳) represent the activate function that achieves the sigmoid nonlinear function, 

𝑤ϝ  is the forget gate weight matrix, 𝑏ϝ represents the bias vector of the forget gate, 

and [ℎₜˍ₁, 𝑥ₜ] consists of the combination vector of the last time output vector hₜ˗₁ and 

the current time input vector xₜ. 

The input gate regulates the current input information xₜ transmitted to the current cell 

state cₜ, depicted in the equation (5.2).  

Ӏₜ = g(𝑤ᵢ⸳[ℎₜˍ₁, 𝑥ₜ] + 𝑏ᵢ) (5.2) 

Where wᵢ represents the input gate's weight matrix and the input gate's bias vector is 

bᵢ. Then ćₜ is determined to get the current input state as seen in the equation below:  

ćₜ =  tanℎ(𝑤 ⸳[ℎₜˍ₁, 𝑥ₜ] + 𝑏 ) (5.3) 

Where 𝑤   is the weight matrix, and 𝑏  is the bias vector, tanh represents a hyperbolic 

tangent function. It is then possible to achieve the current cell state cₜ from equation 

(5.4), considering input gate and forget gate. 

𝑐ₜ = 𝑓ₜ ∗ 𝑐ₜˍ₁ + Ӏₜ ∗ ćₜ (5.4) 

The data flowing from the current cell state cₜ is regulated, represented by the output 

gate Οₜ, to the current output.  

𝛰ₜ = g(𝑤ₒ⸳[ℎₜˍ₁, 𝑥ₜ] + 𝑏ₒ) (5.5) 

Where  𝑤ₒ  represents the weight matrix, 𝑏ₒ is the bias vector.  

Finally, the output gate Οₜ and the current cell state cₜ calculate the LSTM model output 

displayed in the following equation. 

ℎₜ = 𝛰ₜ ∗ tanℎ (𝑐ₜ ) (5.6) 

By stacked memory cells, can hold information of previous input 𝑥 in the output to 

some degree, carried by cell state, making LSTM an excellent tool to imitate time 

series. This is a reason why we will implement this approach for fault prediction.  
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 Overview of the Convolutional Neural Network model 

The fundamental theory of CNN is that convolutional kernels and the pooling 

operation will extract abstract features. The convolutional kernels in CNN create 

invariant local features by convolving multiple local filters with raw sequential data, 

and the pooling layers extract the most relevant features inside fixed length sliding 

windows [153].  The CNN technique has been actively explored for this purpose in a 

variety of applications, comprising image processing, voice recognition, and natural 

language processing. For the learning picture, CNN learns the weights of each layer's 

feature maps, extracts abstract visual characteristics including (input data points, 

lines), and faces, and maintains relationships between pixels for the learning image 

[164,159]. In addition to all these mentioned applications, CNN is widely used in many 

PdM fields for fault detection and diagnosis [160].    

Ren et al. [165] used a CNN to develop a new approach for predicting bearing RUL. 

The spectrum-principal-energy-vector was introduced as a modern feature extraction 

tool for obtaining the eigenvector. The results demonstrate that the proposed model 

would significantly improve the accuracy of bearing RUL estimation. Chen et al.[166] 

introduced the DL technique based on the CNN method to detect and distinguish 

failures in the gearbox using vibration data determined with an accelerometer. With a 

vector generated by RMS values, SD, skewness, kurtosis, and rotation frequency, the 

feature representation was chosen as CNN's input parameters. An uncertainty matrix 

was used to evaluate the success of the presented model. Finally, the authors contrasted 

the CNN approach and the SVM algorithm to determine which method produced better 

experimental results for gearbox fault identification. Janssens et al. [167] suggested 

the CNN-based function learning model for condition tracking that uses vibration data 

to learn autonomously useful features for bearing failure prediction in a rotary 

machines. 

The feature learning model is depend on CNN, which has been proven to be effective 

in many fields [168,169]. When compared to other feature-learning approaches, CNNs 

have numerous advantages: 

1. Through their layered structure, CNNs learn multiple levels of data 

representations on their own. 
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2. Since CNN is considered as an end-to-end learning system, only one system 

has to be improved. 

3. CNN is utilized to manipulate a data's spatial structure. For example, in a 

vibration signal's frequency spectrum, the spatial structure is described as a 

frequency sequence. 

The majority of the DL architecture used to predict faults is based on CNN so it can 

accomplish the same precision or functionality with fewer parameters. As a result, 

CNN is thought to be a good choice for high-dimensional data and its ability to 

eliminate noise from vibration signals [170]. Furthermore, a large number of academic 

achievements emerged in the field of bearing fault detection using the CNN model. In 

[170] for carrying fault size prediction and severity determination, a hierarchical 

adaptive deep CNN was suggested. They prove that the proposed approach achieves 

adequate precision in both fault pattern recognition and fault size assessment. Sun at 

al. [171] utilized a dual-tree complex wavelet transform (DTCWT) and CNN to 

automatically classify a gear damage feature from multiscale signal features. The 

experiments' results showed that the proposed method was feasible and reliable, 

especially in the gear's poor fault features. Pan et al. [172] as a coherent frame, a one-

dimensional CNN with LSTM was used. To define the bearing fault types, they used 

the CNN output as input to the LSTM. The proposed model was compared to various 

ML algorithms using the same extracted elements, with prediction accuracy rates 

ranging from 75% to 90%. In contrast, the findings show that the presented model's 

average accuracy score in the research dataset is over 99%. Another methodology used 

by Guo et al. [173] for a rolling bearing fault trained in a greedy layer-wise manner, 

an optimized deep fault classifier approach based on the stacked de-noising auto 

encoder (SDAE) was used to de-noise random noises in the  initial signals and reflect 

fault features in defect pattern diagnosis. The experimental findings indicate that the 

presented model outperforms DBN in terms of diagnostic precision, with more than 

99% accuracy. 

Magar et al. [174] introduced a CNN FaultNet that can efficiently evaluate the bearing 

fault with a high degree of precision. Different signal processing was combined with 

the ML algorithm to identify different types of bearing faults by analyzing bearings' 

vibration signal data. They also demonstrated that the distinctive aspect was the 

concept of channels to extract additional information from the signal. Li et al.[175] 



78  

unified the CNN and Demspter-Shafer (D-S) proof theory based on data fusion model 

for bearing fault detection. The results indicate that the suggested model cans 

adaptability to different loads and reported an accuracy rate of nearly 99%. Hoang et 

al. [176] submitted a systematic survey on DL-based bearing fault diagnosis. They 

provided a comprehensive description of three types of standard DL algorithms: Auto 

encoder, RBM, and CNN, for the bearing fault detection. Finally,  Jiao et al. [177] 

presented a work to survey fault diagnosis methods based on CNN more broadly. In 

the mean time they have been provided useful guidance for individuals who want to 

comprehend the development of CNN technologies for equipment fault prediction to 

implement predictive maintenance program. 

To drive further along this line and rely on established research about CNN model in 

fault detection and the advantages presented in the previous literature reviews by 

following intelligent prediction flow, explicitly, from data to model and evaluation. 

Likewise, it is noteworthy that the shift of learning technologies using CNN as a 

backbone has begun to gain growing interest as more realistic diagnostic problems can 

be addressed. With these points in mind, this thesis intends to pull out a sequence of 

local features from the original data based on CNN to build a fault detection model 

more effectively. 

 The Accelerated Data Set Description 

In the industry, the art of predicting faults in rotary machines by vibration monitoring 

is frequently used. Vibration monitoring detects approximately 80% of common 

rotating equipment problems related to misalignment and imbalance [37]. If a rotary 

component has a defect, the vibration signal levels can change, and these 

measurements could indicate the severity of the damages. At specific vibration 

frequencies, vibrations develop by the defects take place. In other words, the 

components' characteristics are changing by their operation, assembly, and wear. This 

may probably be why the most common technique for fault detection and classification 

in rotary machinery is vibration condition monitoring. Therefore, it is often a 

significant issue to implement DL approaches for maintenance decision-making with 

greater precision in vibration signals. Actually, vibration patterns are the most often 

used to infer rotary machine working conditions. They have a wealth of information 

and are simple to measure with low-cost, off-the-shelf sensors. 
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During the DL models experiment, the same pump type used for applying ML 

algorithms (vertical and single-stage forwarding TORISHIMA pump) is utilized to 

predict the real working condition of roller bearings. Four model (CMSS 2100) 

accelerometers are installed in a bearing house. The technical specifications of 

these accelerometers are: sensitivity 100 mV/g, sensitivity precision; +/- 5% at 25C˚ 

and acceleration range; 0-80 peak, were mounted in two directions (x & y), to measure 

the vibration signal from Driving End (DE) & Non-Driving End (NDE) Bearings. The 

vibration (acceleration) signals stream-in at an interval of one second, giving a total of 

7,776,000 data points, which corresponds to three months. A description of the original 

data sets as a time series of accelerations shown in (Figure 5.2). 

 

Figure 5.2 : Features of the original data sets. 

After the data acquisition, all the collected data will be stored in the data warehouse 

for diagnosis and prediction. The data pre-processing method is applied to the acquired 

raw data before the subsequent step to improve the feature information to obtain better 

fault detection results. Generally, data preprocessing major functions include data 

cleaning, data de-nosing, data normalization, data integration, data reduction, and data 

transformation [89]. In our model, the data pre-processing step comprises data 

transformation (normalization), data cleaning (missing data) to be processed 

efficiently by the DL-based prediction model. The pre-processing data approach 

manages and analyses the collected data for a better understanding and interpretation. 
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Therefore, the data pre-processing approach is essential for extracting features and 

achieving high fault prediction model accuracy. 

 Programming Language 

Artificial intelligence approaches vary from conventional software approaches. The 

variance lies in the technology infrastructure, the skills needed for applying AI models, 

and the importance of in-depth analysis. Coelho and Richert [178] presented ML with 

Python as a perfect team. They introduced how an ML algorithm works to learn real 

data classification, how to apply python programs to train ML models proposed 

different application examples. They have illustrated the ML algorithm as an iterative 

process, making Python the right language for ML.  

Python enables designers to be more efficient and secure in the applications they 

develop. Benefits and capabilities that make the Python program the perfect fit for 

proposed prediction models in this thesis based on ML and DL approaches include: 

 Simplicity, stability, and coherence 

 Access to outstanding AI libraries and frameworks 

 Versatility and flexibility  

 Independency of platform 

 Tools availability 

 A diverse culture 

These contribute to the language's overall success, so we used Python in our AI 

prediction models. 

Besides, Python is considered an open-source language commonly used in the industry 

or for academic purposes. Python has many useful modules for simpler operations, 

such as NumPy, Pandas, Sklearn, and SciPy. It also has several deep learning 

frameworks that run on Python, Tensorflow, Keras, PaddlePaddle. 

 Methodology  

The proposed data-driven models based on integrating offline (history data) and online 

data are used for prediction model training. It makes maintenance decisions based on 
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the online measurements collected from accelerometers fixed on the machines to 

estimate the process state. When the operating condition of machines is changed, in 

real-time the model parameters can be changed also. The input data is first processed 

by time-domain statistical analysis, which diminishes the input data before feeding to 

the prediction models to decrease the model's required training time and prediction 

time. Four DL-based models are implemented for the classification of the operating 

conditions. Then, a Performance comparison is performed for the tested DL models to 

select the one with the most accurate bearings faults prediction. Finally, the DL 

classification results for prediction models are utilized to guide decision-makers when 

planning the PdM activities. The structure of the presented method is summarized as 

a flowchart shown in the (Figure 5.3). 

 

Figure 5.3 : The flow chart of the proposed DL-based method for roller bearing fault 

prediction model. 

5.6.1 Offline DL models Training 

As discussed previously, many analysis methods such as FFT, STFT, EMD, etc., are 

processed on the raw vibration data. These techniques have been commonly applied 
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to extract patterns from vibration signals in either the time domain or frequency 

domain, which can subsequently be effective for fault prediction [172]. Generally, 

statistical parameters provide good indications for extracting the condition information 

and pattern recognition. Thus, several statistical characteristics are extracted from 

rolling bearing signals in this study that are used to train the DL classification model 

for fault identification. Eleven statistical features are constructed for each sensor signal 

from the initial dataset of the bearing component and used to train the proposed DL 

models. These features are: mean, rang, skewness, kurtosis, maximum and minimum 

values, SD, quartiles (95%, 90%, 80%), and RMS. Concerning this explanation, and 

based on the available data, 44 statistical features from the four attributes are 

constructed to feed DL algorithms to classify the operation bearings condition. 

Selected attributes are listed in the (Table 5.1). In other words, these statistical features 

obtained from the vibration signals serve as input parameters of the DL-based models 

for bearings fault detection. Seventy percent of the samples set are used to train the 

prediction model, and thirty percent are used for testing. Before that, sliding windows 

are used to split the time series into a small time window to train the prediction models 

at each window and classify each signal point within a given class. In the DL approach, 

a four-hour window is selected, and the sliding length is chosen as one hour. 

Table 5.1 : Selected attributes for DL prediction model. 

Type of sensor Attribute 

Accelerometer (vibration signal reading) 

NDE Bearing (x-axis) 

NDE Bearing (y-axis) 

DE Bearing (x-axis) 

DE Bearing (y-axis) 

The binary classification is being built with the DL-based prediction model, where the 

class labels can only have two possible values: 0 or 1. Each class represents a specific 

operating condition, considering the pumping system design's technical information 

and specifications. As mentioned in the previous chapter, binary classification is 

commonly used for PdM, distinguishing between only two states. Furthermore, the 

binary classification can tune hyper-parameters, and their aim is not just discriminating 

between two classes— the classification of the operating conditions is specified in the 

table (Table 5.2).   
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Table 5.2 : Binary classification of the bearing operating condition for the DL 

model. 

Description Range 
Critical 

Limit 

Model 

Classification 

Roller bearing DE 

& NDE Vibration 
0-10 mm/sec 6 mm/sec 

0: Normal operating condition <6 mm/sec 

1: Critical operating condition ≥ 6 mm/sec 

Thus, the DL algorithms applied to vibration signals have mainly focused on finding 

the bearing's normal and critical operation conditions to identify the most likely root 

causes for the pump's failure. 

To achieve the above-mentioned structure, this thesis presents four-fault classification 

DL methods. First, a Deep Feedforward Networks (DFN) is built and the network is 

trained using the statistical parameters to classify the bearings operating condition. The 

second model, a standard LSTM, has been applied for developing a detection model 

using the same parameters. It aims to improve the recognition of the operating 

conditions and increase the prediction accuracy. The LSTM is adopted as a prediction 

model due to its ability to remember the observation results of long-term series 

intervals and many advantages. Thus, It has been usually used in the field of PdM 

[179] as discussed in section (5.2). 

In the third proposed model, the advantage of both CNN and LSTM is taken by 

combining them into one structure for enhancing the fault prediction performance. The 

CNN is introduced to extract the most significant features from the input statistical 

measurements bypassing through a few convolutional layers and pooling layers. In 

addition, CNN has an outstanding ability to reduce frequency variation as well as its 

ability to compact the length of the series. This leads to improving the prediction model 

capability to capture temporal information that is highly beneficial for bearings 

condition identification. Afterwards, LSTM follows to attain a good feature 

representation of the input signal and model training. More importantly, the LSTM is 

considered as an effective technology to solve the problem of long sequence 

dependency and to improve of the fault identification accuracy.  Consequently, this 

integration can reveal several hidden structures to improve the model generalization 

capabilities. 

Finally, the gradient Boosted (GB) algorithm is also applied to the new data sample to 

demonstrate whether it outperform other DL models in terms of accuracy. It was 

considered the most effective prediction model in the previous case study. It is also 
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noteworthy that these models are different from the ML-based models presented in 

chapter 4, in terms of there is  no dimension reduction methods are used, and the DL-

based models are applied to the vibration signal statistical measurements so that 

network can learn features on itself. The proposed fault prediction models based on 

DL architecture are shown in (Figure 5.4). 

 

Figure 5.4 : The architecture of the DL-based Models. 

5.6.2 Building classification algorithm  

As mentioned previously, the DFN, GB, LSTM, CNN-LSTM models are used to 

determine the best DL technique to detect bearings operating conditions. This section 

introduces the key parameters that are used to implement the above-mentioned models. 

It is noteworthy to mention that a comprehensive comparison between DL models have 
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been performed utilizing the same sample dataset to identify the distinctions between 

the presented models in the state of prediction performance. 

There are three layers in the DFN: input, hidden, and output. The normalized features 

extracted from the recorded vibration signals are represented by nodes in the input 

layer.  The hidden layers consist of three layers with 64, 32, and 16 nodes. The target 

values of two output nodes can have only binary levels representing "normal" (0) and 

"critical" (1) bearings, which is the number of classes. The sigmoidal activation 

function is used in the output layers to preserve the outputs close to 0 and 1; while 

"relu" activation is used in the hidden layers to allow signals to travel one way only, 

from input to output. The model is trained iteratively using 100 epochs for the training 

data set to maximize the mean's accuracy function to the corresponding target values. 

Interestingly,  literature  show that each condition's output fluctuations are minimized 

with the increasing number of hidden layer nodes [180], but they reported that no 

mathematical procedure was proven to find the best number of the hidden layer nodes. 

Nevertheless, in the current case study changing the number of hidden layer nodes did 

not affect the output's accuracy. Therefore, there is not much need to consider the 

number of hidden layer nodes. 

The learning rate is taken as 0.01 and 100 models are built in a GB Algorithm. 100 

models did not improve the results of GB algorithm. Among the tested learning rates 

(0.01 to 0.5), a learning rate of 0.01 gave the best accuracy results for GB. 

LSTM is built by supplanting each hidden neural with a memory cell and adjusting the 

relevant parameters through repeated tests to prevent the vanishing gradient problem. 

The network consists of three LSTM layers, a dense layer, input layer, and output 

layer. The learning rate is started to 0.001, with a dropout of 0.2 to avoid overfitting. 

We are setting the maximum number of training epochs to 100. The ultimate model 

structure and parameters are shown in (Table 5.3). 

Table 5.3 : Key structural parameters of LSTM model. 

Layer Type Parameter for Layer Other parameters 

Input Layer Feature Size= 4⸼11 
Epoch = 100 

Classifier =’Sgimoid’ 

Activation =’relu’ 

Optimizer = 

’AdamOptimizer ’ 

LSTM layer (32 nodes)  with Lag = 10 

   Dropout Layer Rate = 0.2 

Dense Layer (100 nodes) 

Output Layer Output channel=1 
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In the structure of CNN-LSTM, the learning performance is modified by adjusting the 

parameters of the layers composing the network. The proposed model entails of 

multiple layers such as a convolutional layer, pooling layer, LSTM layer, and dense 

layer. Each layer can adjust the number of filters, the kernel size, and the number of 

strides. Designing of the CNN-LSTM model parameters are presented in (Table 5.4), 

and the Adam optimizer is chosen to minimize the loss function[181]. 

Table 5.4 : Key Parameters for the CNN-LSTM model. 

Layer Type Parameter for Layer Other parameters 

Input Layer Feature Size= 4⸼11 

Epoch = 50 Dropout =0.2 

Activation=’relu’ 

Classifier =’Sgimoid’ 

Optimizer =’AdamOptimizer’ 

Convolutional Layer (64 filters) with filter size= 3 

Pooling Layer Pooling length = 2 Stride= 1 

LSTM Layer (32 nodes)  with lag = 10 

Dense Layer (100 nodes) 

Output Layer Output channel =1 

To train the DL classification model, samples of input and output pairs must be ordered 

according to features that define the machine condition. A standard PdM model 

typically utilizes every feature produced from one data sample as an input and the 

relevant components operating condition as an output. To solve this issue and enhance 

the information contained in an input data sample, delay functions (lag) is used to make 

a prediction for the next time step (t+1) given the value at the previous time (t) as 

previously assumed in the ML model. 

For each type of roller bearings used in the DL models case study, eleven features are 

removed from the original vibration signals, the details of the features mentioned in 

the previous section (5.6.1). The conditions are labeled into two states: normal and 

critical, the time series window size is chosen to be four. The sample data are randomly 

separated into two sets: training set (70%) and testing set (30%); this structure used to 

train the DL-based models, and then is used to verify the prediction precision. The 

results of training and testing of the presented DL models are shown in (Figure 5.5). 

The model also predicts the fault event identified by bearing operating conditions for 

the nine previous hours, Lag 1 to Lag 9. 



87  

 

Figure 5.5 : Comparison of DL algorithms performance with respect to their 

Accuracy-Lag. 

As the previous figure shows, the CNN-LSTM achieves higher accuracy than other 

proposed models which reach about nearly 85% mean accuracy in Lag 1, associated 

with the correct detection of critical bearing conditions before 1 hour. While, LSTM, 

GB, and DFN respectively resulted in 84%, 83.4%, and 82.4% mean accuracy giving 

an initial impression that DFN provides the worst accuracy compared with the others 

model. A more detailed analysis to the model’s performance is presented in the next 

section. 

In general, we can see that the prediction accuracy for all models is decreasing 

significantly with increasing the lag number from one to nine reaching minimum 

prediction accuracy. This is a logical consequence since many unexpected 

circumstances might appear when the prediction takes place earlier. (Table 5.5) 

summarizes the mean and SD for all DL models for nine lags. 
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Table 5.5 : The mean and standard deviation for all DL models for nine lags. 

DFN algorithm mean SD GB algorithm mean SD 

Lag1 82.4 0.950 Lag1 83.4 2.734 

Lag2 80.5 0.913 Lag2 80.7 2.174 

Lag3 77.4 2.543 Lag3 78.4 2.760 

Lag4 73.2 1.148 Lag4 73.5 3.218 

Lag5 70.1 1.182 Lag5 71.4 2.478 

Lag6 69.8 1.248 Lag6 70.2 1.440 

Lag7 68.5 1.579 Lag7 68.8 2.201 

Lag8 67.6 1.450 Lag8 68.2 1.131 

Lag9 67 0.879 Lag9 68.0 2.527 

LSTM algorithm mean SD CNN-LSTM algorithm mean SD 

Lag1 84.0 2.627 Lag1 84.8 2.644 

Lag2 81.5 2.218 Lag2 81.9 2.142 

Lag3 77.8 2.786 Lag3 79.9 2.628 

Lag4 74.2 3.374 Lag4 77.5 3.176 

Lag5 71.2 2.645 Lag5 71.1 2.494 

Lag6 71.8 1.481 Lag6 69.9 1.394 

Lag7 68.7 1.008 Lag7 68.6 2.077 

Lag8 67.7 0.803 Lag8 70.4 1.418 

Lag9 67.7 0.855 Lag9 71.9 2.616 

 Performance Measures for DL Models 

For the performance evaluation in the DL-based models, the same performance 

measurements (accuracy, precision, F-score, recall, and AUC) that are tested in ML-

based algorithms are utilized to evaluate the power of models prediction and compare 

it with the previously reported performance results of the proposed ML models. 

When compared to the previous ML models, the experimental results showed that the 

tested DL models are ineffective. (Table 5.6) provides a list of the model evaluation 

results tested on the selected dataset. 



89  

Table 5.6 : Result of DL prediction models. 

Test Type DFN GB LSTM CNN-LSTM 

Accuracy 82.4 83.4 84 84.8 

F1-score 78.44 79.17 81.28 82.44 

Precision 80.6 80.8 84.5 86.2 

Recall 76.4 77.6 78.3 79 

The evaluation of the effects of the integrated CNN-LSTM architecture is 

implemented to show that if the CNN can efficiently modify the model's detection 

capability. Unfortunately, this integration shows a negligible advance in the prediction 

performance compared with other presented DL models. It performs slightly better 

than three other compared models widely used as predicting methods, where it reaches 

an accuracy of 84.8%; precision of 86.2 % has an F-score and Recall of 82.4% and 

79% respectively. In contrast, the DFN model, shows the lowest accuracy and 

precision rate which are 82.4%, 80.6% respectively, as well as the lowest performance 

of 78.4% F-score and 76.4% Recall. 

Finally, the area under the curve (AUC) is also could be computed from model, which 

is a measure of a classifier model's overall performance based on the compromises 

between TP and TN rates over all possible risk thresholds between 0% and 100%. A 

perfect ROC curve would reach the top left corner, so the greater area under the AUC 

the better the classifier. As mentioned previously, a ROC over 0.70 is considered good, 

and a ROC over 0.80 is very good. Besides, ROC curves are useful for comparing 

different classifiers, since they take into account all possible thresholds.  

It should be noted that the proposed DL-based models achieved success rates of 

between 82 and 85 percent in the classification of vibration data, according to the 

obtained results, which are considered unsatisfactory results for the performed correct 

preventive maintenance tasks. 
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 CONCLUSION 

The work presented in this thesis is generally overviewed in this chapter and some 

suggestions for future research are presented. 

 Conclusions 

Increased complexity in industrial equipment and production processes has resulted 

from smart manufacturing evolution, making it difficult or almost impossible to 

recognize and detect critical conditions in a proper time using traditional methods. 

Therefore, it is essential to establish a framework for predictive maintenance and 

equipment-condition monitoring employing artificial intelligence concepts to improve 

their processes and increase machinery performance. It has been observed that 

prediction models aid the production managements in providing automated tools for 

scheduling PdM, which is flexible and easy to use. Today’s intelligent predictive 

maintenance in the modern industry has the potential to be totally capable of applying 

maintenance with less effort and with reduced downtimes. Therefore, it is possible to 

have a successful PdM program from a maintenance time reduction viewpoint as it is 

essential when the proper periodic inspection and corrective actions are taken, thus the 

overall equipment performance can be maximized, as presented in this dissertation. 

Chapter two provides helpful guidelines for steps to construct intelligent predictive 

maintenance on the rotary machines. The dissertation contains the entire condition 

monitoring process and its data analysis applications, including sensor and data 

preprocessing, features extracting and selecting, fault classification, fault identification 

and detection, and performance indicator evaluation. It also introduces detailed 

explanations for the pumping system that was used as a case study to develop the 

proposed prediction model. 

The basic fundamental operating mechanisms for roller bearings are presented in 

chapter 3. The state of rolling element bearings can be easily recognized using 

vibration and temperature monitoring. Vibration signals reveal essential information 

about fault progress, while temperature data provides information on bearing working 
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conditions to understand all phenomena affecting bearings. Therefore, the 

implementation of our proposed classification algorithm focused on vibration signals 

and temperature readings on the state of the data acquisition process. The dissertation 

also presents many techniques for vibration analysis used to identify rolling bearing 

faults. 

A systematic investigation about machine learning and deep learning approaches 

applied for fault identification and prediction are presented. Our models are based on 

estimations taken one to nine hours (Lag) in advance, giving operator’s sufficient time 

to prepare for inspections. This helps in taking the correct maintenance action on 

bearing components (e.g., checking the lubricant, cleaning the bearing housing, or 

preventing overheating), which will, in turn increase bearings durability. 

The prediction model has been implemented on a real industrial company which 

provided us with the necessary data collected using an online sensor measurement 

system and internet of things technology. The proposed model has been achieved by 

training several artificial intelligent algorithms on a python coded program. 

Chapter 4 demonstrates a case study of applying machine learning approaches to 

predict the roller bearings' operating conditions. The computational analysis showed 

that the four machine learning approaches resulted in acceptable fault detection power. 

However, GB and RF gave the best performance in terms of accuracy among the tested 

algorithms: 92% and 87.5%, respectively. Using machine learning with the recorded 

maintenance data demonstrated that predictive maintenance could be done and 

provides good and reliable criteria for the maintenance planned interventions. The 

model aids operators to quickly visualize and monitor the pumping system. The 

proposed prediction models of this dissertation can be applied easily and flexibly in all 

industrial processes. 

A systematic investigation about machine learning and deep learning approaches 

applied for fault classification and prediction are presented. Our models are based on 

estimations taken one to nine hours (Lag) in advance, giving operator’s sufficient time 

to prepare for inspections. This helps in taking the correct maintenance action on 

bearing components (e.g., checking the lubricant, cleaning the bearing housing, or 

preventing overheating), which will, in turn increase bearings durability. 
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The prediction model has been implemented on a real industrial company which 

provided us with the necessary data collected using an online sensor measurement 

system and internet of things technology. The proposed model has been achieved by 

training several artificial intelligent algorithms on a python coded program. 

Chapter 4 demonstrates a case study of applying machine learning approaches to 

predict the roller bearings' operating conditions. The computational analysis showed 

that the four machine learning approaches resulted in acceptable fault detection power. 

However, GB and RF gave the best performance in terms of accuracy among the tested 

algorithms: 92% and 87.5%, respectively. Using machine learning with documented 

maintenance data revealed that predictive maintenance could be done and offers good 

and reliable guidelines for the maintenance planned interventions. The model aids 

operators to quickly visualize and monitor the pumping system. The proposed 

prediction models of this dissertation can be applied easily and flexibly in all industrial 

processes. 

Chapter 5 introduces an experiment of deep learning algorithms for fault classification 

in the roller bearings depending on vibration signals collected from the sensor-

mediated components. The experimental results exposed that the novel model is, to 

some extent, more efficient for fault prediction than traditional deep learning 

algorithms and makes mechanical fault prediction move toward real artificial 

intelligence. An integrated CNN-LSTM model is also proposed and compared with a 

standard LSTM, GB, and DFN models to evaluate the change in fault detection 

performance on the bearing component. Additionally, CNN-LSTM integrated model 

gave the best accuracy among the tested algorithms nearly to 85 %. Thus, this research 

is intended on the model evaluation to assess the prediction models' performance, 

which is the key to achieving the correct predictive maintenance planning. 

Furthermore, while most of the related literature depends on their maintenance action 

only based on machine learning results (0, 1 binary classification), the current model 

is distinguished by its ability to show the probability of critical conditions through the 

use of utility theory. This helps to avoid false-positive alarms and thus reduces 

unnecessary maintenance costs. Therefore, this research significantly contributes to 

achieving a more trustworthy maintenance management system for different Industrial 

applications such as power plants, oil companies, water treatment companies, the 

aerospace industry, manufacturing facilities, and the like. 
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Finally, the key results show that machine learning algorithms provide more efficient 

solutions for most fault detection problems than deep learning algorithms. The 

experimental findings suggest that the proposed machine learning models are a 

competitive alternative to the conventional deep learning models. 

Via experiments that were performed using various methods of artificial intelligence, 

and by their application on the two data samples, it is concluded that to obtain high 

accuracy prediction model need: (1) large data sets to increase the size of training data 

and contain enough label information, i.e., normal and critical data for the presented 

case study. (2) better features tuning when applying AI methods.  (3) finding the 

optimum value for each parameter used for training model, and (4)  proper choice of 

AI algorithm that best fit with the data set.   

 Future Work 

1. Alarms system based on technical information rules could be created to detect 

a particular machine fault, specifically, the critical failure that could cause the 

malfunction of the pump. An alarming system can be integrated with the 

proposed prediction model and set for individual machines or a group of 

machines. These alarms can be displayed in many different formats like 

descriptive pictures, visual Alarming, specific sounds, or text messages 

appearing on the user window. In the bearing critical condition case, the system 

will automatically alarm triggers to alert the operator and maintainers to act the 

proper inspection and maintenance jobs. 

2. We may depend on multiple fault classification instead of binary classification 

output of the implemented fault detection models of rotating machinery; for 

example, there are various fault classes based on fault types and severity. 

3. We could also obtain high prediction accuracy by training several classification 

models with various operational conditions (normal, critical, trip or shutdown) 

to provide additional performance tradeoffs in terms of frequency of 

unexpected breaks and unexploited lifetime, and then use this information in 

an operating cost-based maintenance decision system to reduce expected costs. 

4. The ability to improve the prediction model in the future can be investigated 

by adding new label data such as pressure, flow rate, load, etc., and extend the 
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period of the collected sample data to make the model more effective and 

comprehensive. 

5. RNN and LSTM may be considered as an option for the fault prediction DL 

model. More data pre-processing methods could be integrated and compared. 

6. The future models shall not only be implemented on bearings but also on other 

pumping elements such as gearbox, seals, motors, etc. 
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