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PREFACE
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interference well test data numerically and to analyze them to obtain parameters of
multi-layered reservoir and wellbore by using optimization techniques.
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wellbore storage constant, RB/ psi

wellbore storage constant at the active well, RB/ psi
wellbore storage constant at the observation well, RB/ psi
step varying criterion for simulated annealing algorithm
centroid of the best » vertices x,,x,,...,x, for polytope algorithm
porosity-thickness-compressibility ratio, defined by Eq. 2.8
system total compressibility, psi™

Gauss-Newton Direction, if 4, is zero

exponential integral, defined by Egs. 2.13 and 2.14

flow capacity ratio, defined by Eq 2.6

function to be minimized by simulated annealing

function to be minimized by polytope and/or Levenberg-Marquardt
algorithms

total reservoir thickness, ft

layer j thickness, ft

the sensitivity coefficient matrix
objective function to be minimized defined by Eq.4.1
rank-deficient related Levenberg-Marquardt algorithm defined by 3.3

jacobian matrix of F(x, ) related L-M algorithm defined by 3.1

reservoir permeability, md
thickness averaged permeability, md

number of observed pressure and sandface flow rate data

number of unknown parameters

step variation for simulated annealing algorithm

number of successive temperature reductions to test for termination
function evaluations required at each iteration defined by Eq. 3.3

pressure, psi
dimensionless pressure drop at the observation well

bottomhole pressure at the observation well, psi
dimensionless pressure drop at the active well
bottomhole pressure at the active well, psi

rate normalized pressure drop for constant sandface rate production,
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psi/ RB/day

total surface production flow rate from the active well, RB/day

total surface production flow rate from the observation well, RB/day
sandface rate of production from layer j at the active well, RB/day
sandface rate of production from layer j at the observation well,
RB/day

dimensionless sandface rate at the active well, defined by Eq. C.1
dimensionless sandface rate at the observation well, defined by Eq.C.2
second-order term defined by Eq. 3.1

radial distance, ft

dimensionless distance between the active well and the observation

well, defined by Eq.C.3
temperature reduction coefficient

wellbore radius, ft
radius of the active well, ft

radius of the observation well, ft

skin factor
skin factor of layer j at the observation well

skin factor of layer j at the observation well

time in hours or days
dimensionless time based on thickness averaged properties, defined by
Eq.C4

cooling temperature in simulated annealing

step vector in simulated annealing

randomly generated new point by simulated annealing
randomly generated optimal point by simulated annealing
randomly generated new point by polytope annealing

expansion coefficient for polytope algorithm

the estimate obtained by minimizing J(f)

the estimate of i" model parameter at the minimum
the true, but unknown value of the model parameter

the reflection coefficient for polytope

contraction coefficient for polytope algorithm

difference

non-negative scalar related to Levenberg-Marquardt algorithm

scalar related to 4, defined by Eq. 3.2
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termination criteria
Gauss-Newton direction
the solution of Eq. 3.1

thickness averaged porosity compressibility product, psi~

layer j porosity
diffusivity, md — psi/cp, y

average diffusivity, md — psi/cp .defined by Eq. 2.3
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viscosity, cp

active well
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time index
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numerical solution
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APPLICATION OF DIFFERENT OPTIMIZATION TECHNIQUES TO
PARAMETER ESTIMATION FROM INTERFERENCE WELL TEST DATA

SUMMARY

This study considers pressure interference testing in a two-well system in an
infinite-acting, multi-layered commingled reservoir where the layers are in
communication only through the wellbore. The first well is an active well which is
produced at a specified surface flow rate history, and the second well is an
observation well which is shut-in for all times during the test. Wellbore storage and
individual layer skins in both wells are considered. The results are described in two
parts. In the first part, the effects of reservoir parameters such as layer permeabilities,
layer skin factors and wellbore storage effects (in both wells) on the active/
observation wellbore pressures and layer sandfaces rates were examined through
forward computations carried out by a semi-analytical model developed during the
course of this study. The semi-analytical model developed is based on the
assumption of line-source wells and is quite general in the sense that it can be used to
simulate interference tests in a reservoir sytem consisting of N layers. In the first
part, different case studies about evaluation of interference tests in single and multi-
layer commingled reservoirs are given to show the effects of wellbore storage/skin
and cross-flow among the layers in both wells on pressure responses and sandface
flow rates at both wells. The results in the first part indicate that conventional type-
curve matching based on the well-known Theis curve and semilog straight-line
analysis methods are not feasible to determine individual layer parameters from
pressure interference tests in multi-layer commingled systems with wellbore and skin
effects in both wells.

In the second part, nonlinear parameter estimation methods are used to
determine layer parameters from pressure and/or sandface flow rate data obtained
from two-well interference tests in single and multi-layered commingled systems.
Since parameter estimation is an inverse problem, its solution needs to be found by
optimization techniques. Both gradient and non-gradient based optimization
algorithms are considered to identify which optimization methods can be effective
and efficient in terms of unigness and computation for the problem considered in this
study. Due to its popular use, only the Levenberg-Marquardt method is considered as
a gradient-based algorithm. Simulated annealing and ploytope methods are
considered as two non-gradient based methods in the study. It is shown that the
Levenberg-Marquardt algorithm uses gradient (or derivative) information and thus
converges to the global minimum of the objective function faster than simulated
annealing and polytope methods. However, it has a problem related to sticking at
local minima, particularly when the number of parameters to be estimated is quite
large. Although it is a global optimizer method, simulated annealing does not appear
to be a feasible optimization method to be used for the parameter estimation problem
considered in this study due to its computational inefficiency. Because the
computation of gradients from the forward solutions, particularly in cases where the

xvi



number of layers is large and pressure and sandface flow rates at both wells are
matched simultaneously, introduces a heavy computational overhead for the gradient
based Levenberg-Marquardt method, polytope algorithm appears to be more efficient
than the Levenberg-Marquardt method in such cases.

xvii



GIiRISIMLI KUYU BASINC TESTI VERILERINDEN FARKLI
OPTIMIZASYON TEKNIKLERININ KULLANILMASIYLA PARAMETRE
TAHMINI

OZET

Bu calismada, ¢ok tabakali, tabakalar arasinda gegirimsiz arayiizeylerin
bulundugu ve tabakalar arasi iletisimin sadece kuyuigi boyunca sz konusu oldugu
ve tamamuyla firetime agik iki kuyulu bir rezervuar sisteminde basing girigim testi ele
alinmaktadir. Birinci kuyu, sabit veya degisken debide iiretim yapan aktif kuyudur ve
ikinci kuyu da test boyunca tiim zamanlarda kapali tutulan gdzlem kuyusudur. Her
iki kuyuda da kuyui¢i depolama etkilerinin hesaba katilmasimn yamsira, her tabaka
icin farkli zar faktorii degerlerinin olabilecegi varsayillmaktadir. Sonuglar iki ayn
kisimda tammlanmaktadir. Ik kisimda, tabakalara ait gegirgenlik, gbzeneklilik, zar
faktorii ve her iki kuyudaki kuyu i¢i depolama katsayilan gibi rezervuar
parametrelerinin aktif ve/veya gozlem kuyusu basing sinyali ve tlim tabakalara ait
formasyon debileri lizerindeki etkileri, bu ¢aligma esnasinda geligtirilen yan analitik
bir model ile incelenmigtir. Geligtirilen yan analitik model ¢izgi kaynak kuyular
varsayimina dayanmaktadir ve N tabakadan olusan bir rezervuar sisteminde girigim
testlerinin simiilasyonunda kullamlabilecek tarzda geneldir. Ik kisimda, tek ve gok
tabakali ve tabakalar arasinda gecirimsiz araylizeylerin bulundugu rezervuarlarda
girigim testlerinin degerlendirilmesi hakkinda bilgi edinmek amaci ile g6z dniinde
bulundurulmugtur. Bu durumlarda iki kuyudaki kuyui¢i depolama katsayilan, zar
faktorleri ve tabakalar arasi olusan karsihikli akigin her iki kuyudaki basing sinyali ve
tabakalara ait formasyon debileri lizerindeki etkileri gdsterilmigtir. Ik kisimdaki
sonuglar, iyi bilinen Theis egrisi (veya Cizgi Kaynak Coziimil) ve yan log dogru
analizi yontemlerine dayanan geleneksel tipte egri ¢akigtirmamn, her iki kuyuda
kuyu i¢i depolama ve zar faktorlerinin bulundufu arayiizeyleri gegirimsiz g¢ok
tabakali rezervuarlarda basing girisim testlerinden bireysel tabaka &zelliklerinin
belirlenebilmesinin makul olmadifim géstermigtir.

Ikinci kisimda, dogrusal olmayan parametre tahmini yontemleri, tek ve gok
tabakali (tabaka araylizeyleri gecirimsiz) rezervuarlarda iki kuyulu girigim
testlerinden elde edilen basing ve/veya tabakalara ait formasyon debi verilerinden
tabakalara ait parametreleri belirlemek i¢in kullanilmaktadirlar. Parametre tahmini
ters bir problem oldugu i¢in ¢6zlimii optimizasyon tekniklerinin kullanilmasim
gerekli kilar. Bu ¢aligmada diigiiniilen problem i¢in sonuglarin tekil olarak elde edilip
edilemeyecegi ve hesaplama zamam bakimindan aragtirmak amaciyla hem gradyent
kékenli ve hem de gradyent kékenli olmayan optimizasyon algoritmalar1 g6z Sniinde
bulundurulmugtur. Yaygin kullammi nedeniyle, sadece bir gradyent k&kenli
algoritma (Levenberg-Marquardt yoOntemi) bu g¢aligmada digiiniilmiigtir. Bu
calismada ayrica gradyent koékenli olmayan iki farkli ydontem olarak, simulated
annealing ve polytope yontemleri diigiiniilmiigtiir. Levenberg-Marquardt algoritmasi
tirev bilgisini kullandi§ i¢in hedef fonksiyonun “global” minimumuna simulated
annealing ve polytope yOntemlerinden ¢ok daha hzli yakinsadify g6riilmiigtiir.
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Ancak, ozellikle tahmin edilecek parametre sayisinin olduk¢a fazla oldugu
durumlarda, Levenberg-Marquardt algoritmas: lokal minimumlara takilma problemi
ile karsilagmaktadir. Simulated annealing bir global optimizasyon y&ntemi olmasina
ragmen, hesaplama siiresi verimsizligi yiiziinden, bu ¢alismada diisliniilen parametre
tahminj problemi igin kullanilabilecek makul bir optimizasyon ySntemi olmadif
anlas;ilmgtir. Her iki kuyudaki basing ve forttiasyon debi verilerine eszamanh bir
sekilde gakistirma yapilmasi ve de 6zellikle tabaka sayisinin fazla oldugu durumlarda
ileri (forward) ¢6ziimlerden tiirevlerin hesaplanmasi Levenberg-Marquardt ySntemi
icin agir bir hesaplama yiiki getirdigi i¢in, bdyle durumlarda polytope algoritmasinin
Levenberg-Marquardt algoritmasina alternatif olarak kullanmilabilecegi g6riilmiigtiir.
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CHAPTER1

INTRODUCTION

In this study, we consider a two-well problem in an infinite acting multi-layered
commingled reservoir. One well (the active well) is produced at a specified total surface
rate, and the second well (the observation well or interference well) is shut-in for all
times. The layers are commingled; that is, they communicate only through the wellbore,
and no crossflow between layers occurs within the reservoir. Such reservoir systems are
quite common in real reservoir systems, where the layers are separated by impermeable
barriers such as shales, and thus their pressure behavior has attracted attentions of many
researchers in the literature (Lefkovits [2], Larsen [3,4], Onur [5], etc.).

This work focuses on the observation and active well pressure and sandface rate
responses in a multi-layered reservoir system. It examines in detail the causes and
effects of crossflow through the observation and active wells and presents results
regarding pressure changes, pressure-derivative and sandface flow rates data at both

wells.

The first major objective of this study is to develop a semi-analytical procedure
for obtaining the pressure responses and individual layer flow rates at both wells. The
semi-analytical procedure for generating solutions can be used for any number of layers
and allows consideration of individual layer skin factors as well as wellbore storage in
both wells. The semi-analytical procedure uses the well-known Duhamel principle and
superposition in space, which enables to model production/injection with different
surface flow rates at active and observation wells. The semi-analytical model used in the
study is similar to that of given by Onur [5]. The model developed in this study can also
be used for studying two-well interference tests in single layered reservoir systems
including wellbore storage and skin effects in both wells. We utilize the skin concept of

Van Everdingen [6] and Hurst [7]. The wellbore storage effects are modeled by using



the ideas presented by Ogbe and Brigham [8], who investigated the influence of
wellbore-storage and skin effects at both wells on interference pressure response in a
single-layer system in their work. They concluded that when wellbore storage was
present in both wells, it was not possible to define a single, equivalent wellbore storage
factor because the pressure response is different in shape from the single wellbore
storage case. For the case where wellbore storage presents only in the active well, Jargon
[9] indicated that neglecting the effect of wellbore storage at the active well could cause

an underestimation of transmissivity (kh/4) and an overestimation of storativity (¢ ¢,k )

when analyzing an interference test by Theis’s type curve. Onur [5] studied the
interference tests in a two layer commingled system, but did not consider wellbore
storage effects in both wells in their analysis. They concluded that it would be extremely
difficult to determine individual layer permeabilities, porosities and skin factors from
pressure data at active and observation well alone unless individual sandface flow rates
are measured and used in the analysis. The parameter estimation from two-well
interference tests in multi-layered commingled systems with wellbore storage and skin
in both wells has not been investigated in detail in the literature. Thus, the second major
objective of this work is to investigate the use of both gradient and non-gradient
nonlinear parameter estimation methods to determine layer parameters from pressure
and/or sandface flow rate data obtained from two-well interference tests in single and
multi-layered commingled systems. Levenberg-Marquardt as a gradient method, and
simulated annealing and polytope as two non-gradient optimization methods are

considered to achieve the second objective.

There are five chapters in this thesis. In chapter II, we give the development of
semi-analytical solution used to compute pressure drops and sandface flow rates at
active and observation wells. The specific results computed for a two-layered reservoir
case were compared with analytical and other numerical solutions computed by Onur [5]
to verify the semi-analytical model developed in this study. In this chapter, it is also
shown and discussed that a lot of study cases related to effects of wellbore storage and
skin terms on active and observation well pressure and sandface flow rates for single

and multi-layered reservoirs.



Chapter I1I presents parameter estimation by using different optimization algorithms. In
this study, the second objective which was focused on especially based on inverse
problem. Parameters such as permeability, porosity, skin and wellbore storage
coefficients are estimated for a reservoir system whose model behavior is known
mathematically by using interference well test data. For this purpose, gradient-based and
non-gradient optimization techniques are used in this study. Since derivative
information is used by gradient-based methods (we only used the Levenberg-Marquardt
method in this study), parameter estimation can be carried out in a very short time by
reaching global minimum of non-linear functions needed to be optimized. However, if
smart initial guesses are not given in non-convex problems, gradient-based methods can
get stuck in local minima. To exceed this problem, non-gradient methods (we used both
Simulated Annealing and Polytope algorithms in this study) are also considered
alternatively to gradient-based Levenberg-Marquardt method. Menekse [10] studied the
analysis of well test data belonging to naturally fractured reservoir by using non-linear
regression analysis. He used Levenberg-Marquardt algorithm to analyze the well test
data. He concluded and focused on that more realistic initial guesses should be used to

reach more accurate results and to shorten the duration of regression analysis.

Since the simulated annealing method does not use gradient (derivative)
information and it is a statistically random search method, it is possible that it can reach
the global minimum of the objective function even if time cost and number of function
evaluations are higher than that in gradient-based techniques. Press et al [11) expressed
that the simulated annealing technique has recently attracted significant attention as
suitable for optimization problems of very large scale. Yoshida et al [12] used simulated
anngaling algorithm to analyze interference test in fractured reservoir. They developed a
method for analyzing for interference well test data by using simulated annealing. Model
data of interference well test were analyzed by them for four kinds of reservoir
parameters to examine the effects of cooling coefficient (7,) on estimates of the
parameters and computational time. They achieved good estimates and acceptable
computational time when r, =0.999 is given. However, they did not report and

compare the cemputational efficiency of the simulated annealing with a gradient-based
method. Goktas [13] used simulated annealing to do an automated well test



interpretation in horizontal wells. He concluded that results and plots of the final match
of all the cases considered in his study show that the simulated annealing is highly
reliable. As a second non-gradient method, we consider polytope algorithm. It was
firstly introduced by Nelder and Mead [14] . The polytope method which is a typically
direct search method is usually named as “Simplex” method. However, Philip et al [15]
preferred not to use the latter name, to avoid confusion with the better-known simplex
method for linear programming. They modified polytope method to improve its
performance considerably. Leitdo and Schiozer [16] used polytope algorithm, direct
search method, in automatic history matching for reservoir characterization. Since
polytope algorithm reduces total number of function evaluations in these kinds of
optimization problems and it is very robust technique too, they suggested that this kind
of optimization techniques must be used to estimate parameters for reservoir

characterization.

In Chapter 1V, applications about parameter estimation are presented by
considering several synthetic cases. This chapter also includes performance and cpu time

comparisons of optimization algorithms used in this study.

Chapter V gives conclusions and recommendations withdrawn from this study.



CHAPTER II

MATHEMATICAL FORMULATION AND CASE STUDIES

In this chapter, we give the relevant equations which describe the problem of
interest and present a computational procedure for generating the layer sandface flow
rates and wellbore pressures at the active and observation wells. We also show that
our computational procedure gives accurate results by comparing our results with

analytical solutions presented previously by Onur [5] in the literature.

2.1 Definitions

All definitions are given in oil field units and assume single phase flow of a
slightly compressible liquid of constant viscosity. Unless specifically stated
otherwise, all rates refer to sandface flow rates and are in RB/day. The subscripts “a”

and “o” refer to the active well and the observation well, respectively. The symbols,
k, 7 and 7 , used in this study represent respectively the thickness-averaged value
of permeability, the average diffusivity and the diffusivity of layer j. The thickness
averaged permeability is defined by

_ !
k=—>kh, .1
Jj=1

N

where [ is the number of layers and 4 is the sum of the individual layer thickness;
that is, the total reservoir thickness given by

h=)h, @2)

The average diffusivity is defined by

n== 23)




where gc, represents the thickness-averaged porosity-compressibility product and is

given by

{
ge, = %Z;ﬁ, ¢, hy (2.4)

=

The diffusivity of layer j is given by

my =—2 2.5)

The subscript j in Egs. 2.1-2.5 refers to the layer index and ¢,, k;, ¢, and A,

represent respectively porosity, permeability, compressibility and thickness of layer
J . Also [ represents the total number of layers.

When we consider a two-layer commingled reservoir for convenience, we let
f,, n, and c,, respectively, represent the flow capacity ratio, the diffusivity ratio,
and the porosity-compressibility-thickness ratio defined, respectively by

: klhl
= 2.6
f K h, (2.6)
n, =L @7
m
and
C,, = ¢I cllhl i (2.8)
$,Cuh,

2.2 Mathematical Model and Solutions

The model used in this study is based on the application of Duhamel’s
principle and superposition in space. We consider the single phase flow of a slightly
compressible fluid of constant viscosity in a multi-layered reservoir. We consider
only infinite-acting behavior. We assume that each layer is homogeneous. We
neglect gravitational effects and assume that the initial prssure is the same in all
layers. We also assume that only two wells exist in the reservoir and they are fully

penetrating. The active well is produced at a constant total surface sandface flow rate



and the observation well is shut-in all times. A shematic diagram of a two-layer
system is shown in Figure 2.1. In Figure 2.1, k£ denotes permeability (horizontal), ¢

porosity, ¢, system compressibility, /# thickness, g, sandface flow rate at the active
well, ¢, sandface flow rate at the observation well and r distance between the wells.
The subscripts 1 and 2 refer to layer 1 and 2, respectively.

We begin with a single-layer problem. Duhamel’s principle and superposition
in space give the pressure drop at any point for a two-well problem in an infinite

reservoir as :
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Figure 2.1 Two-layered reservoir geometry.

Ap, ()= Iqa (T)p;-‘CN (rwa T T)dr + Iqo (T)p;‘CN (r,t - t)d"" (2.9)
0 0

Ap, (1) = J.qa (T)p'FCN (r L= 1:)d't + Jqo (T)p;*cw (r wosl T)dt . (2.10)
0 0

Recall that g, and g, in Egs. 2.9 and 2.10 represent the sandface (at the
formation/wellbore face) flow rates in RB/day at the active and observation wells,

respectively. Prcy represents the rate normalized pressure drop that would be



obtained if production were at a constant sandface flow rate, and Prcy denotes the

derivative of Pgy with respect to time. The expressions for flow rates are given by

d.
q,(t)=q,(t)—24C, P (2.11)
dt
and
d,
g, =q,,(t)-24C, e 4 (2.12)

dt

where ¢q,, and ¢,,, respectively, denote the surface rates at the active and
observation wells. Note that if the observation well is shut-in at surface, then we set

9. (t)= 0 for all ¢ during the test time. We wrote Egs. 2.11 and 2.12 in a general
way so that we can consider variable surface rate production at the active (or even

observation) well. In Egs. 29212, Ap, ()=p,-p,() and

Ap,(t) = p, — p,;(t) . Furthermore, prcy functions in Eqgs. 1 and 2 are given by

Pray(ri) = - f r 2.13
v 0= |2 al2637at0 g ) T O T2 e 1)
14124 1 2

Fren\rt)= =521 =5 T +S, 2.14

rou (1) k,h, { 2 1[4@.637x10'4)17t] f} @14
and

r,=r, = Smj =Sa )i

r,=r, = 8, =S, (2.15)

Note that we consider that active and observation wells can have different well radii.
Also, the skin factor at both wells can be different as defined by S, and S,, which

represent the skin factors at the active and observation wells, respectively.

We wish to write Eqs.(2.9-2.10) in a discrete form. To do so, we will partition
the time interval (0,7 ) into discrete time points, as defined by



0=t, <t <t,<..<t,<t,, =t. (2.16)

Note that ¢, =0 and #,,, =¢. Using the partition given by Eq. 2.16, we can rewrite

Eqgs. 2.9 and 2.10, respectively, as
n e
Ap,,(t..)= fqa(r)pFCN( Fwasban "')df + Z f qo(T)P;?CN(r sbpt — 2')d"' (2.17)
k—O 4 k=0 4

and

80y to) =3 Ja. ket ~ M+ 3 T hen ot~ @.18)

k=0 o k=0 g

Now, we will appmximate the integrals in Eqs. 2.17 and 2.18. We will show how we
do it only for the first integral term in Eq. 2.17. The other integrals are similarly
approximated. Let’s rewrite the first sum of integrals given in Eq. 2.17, which is

n

z .rqa (T)pFCN( Fvas n+l T)dT . (2°19)

k=0 4

There are several methods to numerically approximate an integral. For our purposes,
it is convenient to use rectangular rule for the flow rate g, i.e., in the interval from
t, to ¢, ,we approximate g,(r)=gq,(t,.,;) in Eq. 2.19 so we can take it out of the

integral in Eq. 2.19. Thus, we can approximate Eq. 2.19 as :
Z 9. (tk+l) JJPFCN( Foas n+l 2')12' (2.20)

Now recall that p FCN( LN T) in Eq. 2.20 is noting more than

AP ey (Myastpu = T)

pFCN( Foastn — T) de

(2.21)

Using Eq. 2.21 in Eq. 2.20 and performing the integration gives



o

Z 9.(t) IPFCN( Fyastys = THT = Z X (A oy N (e 7)]::“

(2.22)
"Z 9, tk+l)[pFCN Ly . tk) pFCN( Twartnil tk+l)]

We would like to write Eq. 2.22 in a more conveniet structure for computational
purposes. To do so, first let’s see the structure by taking » = 3 in Eq. 2.22. Thus,

ta =1,

n+l

Z qa(tk+l)[PFCN( L tk) pFCN( Twartnil tk+l)]
—qa(tl)[PFCN( Fwarla to) pFCN(wa’ A tl)]

+4q, (tz )[PFCN ( Tva>t tx) pFCN( Twaslsa — b )] (2.23)
+ qa(ta)[Pch( wa’t4 tz) pFCN( Foasls ts)]

+qa(t4)[pFCN(rwa’4— ) pFCN(wa’4 t4)]

Because ¢, =0 and Prey (oot —t,) =Py, ¥,.50) =0 (note that this is true

regardless of skin factor; i.e., it is zero even if we have S, is not zero. At first glance,
this may appear a contradiction what is given by Eq. 2.14 (or Eq. 2.15 for the
observation well). It is not really, because skin becomes effective when ¢ = 0" (given

by Onur [17]), then we can rewrite Eq. 2.23 as

Z qa(tk+l)[PFCN(wa’ lns1 tk) pFCN(wa’ Lyt tk+l)]
—qa(t )[pFCN(wa’ tO) pFCN(wa’ t ]

+ ‘Ia(t )[pFCN( Twasta — 1 ) pFCN( Twasls tz)] (2.24)
+4q, (13)[pFCN( Vvasl tz) pFCN( Fwasta — ts)]

+4, (t4 )[PFCN ( Twas? )]

Because ¢, (to ) =q, (0) =0 and note that 7, =0, we can rewrite Eq. 2.24 as

10



Z qa(tkﬂ )[PFCN(waa L tk) pFCN( Fwastust — bin )]

[qa (tl) 9, (to)]pFCN( Foasls o)"’ [qa (tz) 9, (tl )]pFCN( Foasts =1 ) (2.25)
+ [qa (ts) a.(, )]pFCN( Fwasla ~1,)+ [qa (t)-q. (t3)]pFCN( Tvasl ~1,)

which can be generalized as

Z qa(tk+l)[pFCN(r arbnl tk) PFCN(waa L tk+1)]
-Z [qa(tkﬂ) qa(tk)]pFCN(wa’ Lo — )

(2.26)

where in the right-hand side, #, =0 and ¢q, (to) =q, (O) =0,

Now, we are going to replace all the integrals appearing in Eqgs. 2.17 and 2.18 with
their approximations similar to those given in the form of Eq. 2.26. Doing so, we can

approximate Eqgs. 9 and 10, respectively, as

wf( 1) = Z [qa(tk+l) qa(t )]pFCN(wa’ lov1 — )
+z [qo(tkﬂ) qo(t )]PFCN(" lnii tk)

.27

and

qf’( 1) = Z [qa (tk+l) 9. (t )]pFCN (" bt — )
+Z [qo(tkH) qo(t )]pFCN(wo’ L tk)

(2.28)

These are two main equations to be used. The other two equations are obtained by

approximating flow rate equations given by Egs. 2.11 and 2.12 as, respectively,

24C, 24C

P prf(tn+1)+qa(tn+1)=qsa(tn+1)+t _; pr/(t,,) (2.29)

n+l n n+l n

and

11



24C 24C
t _ot Apof(tn+l)+qo(tn+l)=qso(tn+l)+ ¢ _;

n+l n n+l

Ap,(t,) (2.30)

(of course, if the observation well is shut-in for all times, then we set g, (t,,,)=0 for
Z n+l ) N

Let’s investigate our system of equations in terms of implementation in
computing pressure drops and flow rates at the active and observation wells as a
function of time. We start with » = 0, here the objective is to compute pressure drops

and sandface flow rates at f,. For, » =0, Eq. 2.27 can be written as

Ap,, )= Z [qa (tk+1 )_ q, (tk )]pFCN (rwa’tl - )

k=0

+ i [qa (tk+l )‘ 9, (tk )]pFCN (" yh = ) (2.31)

= [k;:(tx )‘ 9. (to)]Pch (" warlt — to)
+ [qo (tl )— 9, (to )]pFCN (’3 h— to)

Because ¢,(f,)=g,(0)=0 and t, =0, then Eq. 2.31 can be rewritten as

Ap,(4)= qa(tl )pFCN (rwa’tl)+ qo(tl )pFCN(r’tl)

or can be rearranged as

Ap,, t)—4q, (tl )pFCN (rwa’tl )" 9 (tl )pFCN (r’tl )= 0 (2.32)

Similarly, for n =0, Eq. 2.28 can be written as

Apof t)=q, (tl )pFCN (r’tl )‘+ 9, (tl )pFCN (rwo’tl)

or can be rearranged as

Apof t)-q, (tx )pFCN ("’ L )“ 9, (tx )pFCN (rwa’tl ) =0. (2.33)

Forn =0, Egs. 2.29 and 2.30 become
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24C 24C
“Ap, (1)) +9q,(t)=q,()+ “Ap,. (1) (2.34)
tl "to tl "to
and
24C 24C
P ° Apof(tl)+ q, (tl) = qso (tl)+ . Apof(tO) (2'35)
1~ % 1~ %o

Note that ¢, =0 and Ap(%,)=Ap,(0)=0,Ap, (t,)=Ap,(0)=0. We take
pressure drops at the wells at 7, =0 to be zero but they can be treated different from

initial pressure. However, for our applications, we set them to zero as done here. So,
Egs. 2.34 and 2.35 become

24C
p “Ap, () +q,(t)=9,@) (2.36)
1
and
24C
¢ = Apof(tl)+qo(tl)=qso(tl)- (237)
1

Thus, the system of equations by Eqgs. 2.32, 2.33, 2.36 and 2.37 for pressure

drops and sand face rates at time ¢,.

For n=1, Eq. 2.27 becomes

Ap,(1,) = kz_; [qa (ten )“ 2.(, )]PFCN ("wa by — tk)

1 (2.38)

+ 2 [qo(tltﬂ)—qo(tk )]PFCN (r.t, —t)

or

Ap,, (t2)=[qa(tl)_qa (tO)]pFCN (rwa’tZ ‘to)
+[qa(t2)—qa(tl)]pFCN (rwa’tz _tl) 239
+[qo(tl)—qo(t0)]pFCN(r’t2 "‘to) (239)
+[qo(t2)_qo(tl)]pFCN ("’tz _tl)

or can be rearranged as

13



APw/(tz)"'qa(tz )pFCN (rwa’t2 "tx)_qo(tz)l’pczv (r’tz —tl)=
[‘Ia (tl)_qa (to )]pFCN ("wa’tz "to)”'[" 9. (tl )]pFCN (rwa’tZ "tl). (2.40)
+[qo(t1)_qa (to)]pFCN ("’tz _t0)+[—qo (tl )]pFCN ("stz —tl)

Similarly, for n =1, Eq. 2.28 can be written as

A]’qf(tZ)_qa (tZ)pFCN (r,t2 —tl)—qo (tz)pFCN (rwo’t2 _tx)'—'
[qa(tl)_qa(to)]pFCN ("atz '"to)"‘[— qa(tl)]pFCN(r’tZ "tl) . (2.41)
+ [qo(tl)“qa(to)]PFCN (A —to)'*'[‘% (tl)lpFCN (rwo’tZ ~1,)

For n =1, Egs. 2.29 and 2.30 can be written as, respectively,

24C, 24C,

Ap,(8,)+q,(8,) =q,(,)+ Ap, () (2.42)
and
24C 24C
2Ap, (1) +q,()=9,,)+—=Ap, (1)). (2.43)

Now, we can solve the system of equations given by 2.40-2.42 for pressure

drops and sandface flow rates at time ¢, because pressure drops and flow rates at

time #, are known because they were computed at the time level at n=0.

Now we consider the time level at » =2, then Eq. 2.27 becomes

Aow (&)= kZ;; [qa (tk+l ) -4, (tk )]pFCN (rwa o3 — tk)
t i [‘Io (tk+1 ) -4, (tk )]pFCN (" b =1, )

k=0

(2.44)

or

Ap,, ()= [qa (tx)— 9. (to )]pFCN (rwa7t3 ’to)"' [qa(tz)‘qa (tl )]pFCN (rwa’t3 _‘1)
+ [qa (ts)“ 9. (tz )]va (rwa’t3 _tz)
+[a, ()~ 4, lprey (rot ~ 1) +0,(t,) - 4, (& prc (55— 1,)
+[qo(t3)_qo (tz )]pFCN (r,t3 “tz)
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which can be rearranged as

Ap, () "qa(ts)PFCN (rwa’t3 —tz)—qo(tB)pFCN ("sts "tz)

= [Qa (tl )' qa (to )lpFCN (rwa ol — to)'*‘ [qa (tz)“ s (tl )]pFC‘N ("wa ol — tl)
+[- 4, )Py (asts ~ 1,)

+lq,()-4q. (to)]pFCN (r.t;—1,)+ [qo(t2 )-4,(, )]PFCN (r.t;-1)
+[- g, Npren (7.1, -1,)

Similarly, for n =2, Eq. 2.28 can be rearranged as

Apof(t3)_qa(t3)pFCN(r’t3 "tz)"qo(ts)PFCN("wo’ts “tz)
= [qa(tl)—qa(to)]pFCN (",13 —t0)+[qa(t2)_qa(t] )]PFCN ("’ts "tl)
+- 0. )ppen (o1, -1,)

18, 0)- 2, NPec ooty ~20)+ 12, 6)- 2,6 Prcn ooty 1)

+[-q,)Prey (uoots — 1)

For n=2, Egs. 2.29 and 2.30 can be written as, respectively,

24C,

24C
prf(ta)"'qcz(ts)=qm(t3)+——"a—Aow(t2)
and
24C 24C
=AP,(83)+q,(t)=q,, () +—= o (82).
=1 [Fhd

(2.44)

(2.45)

(2.46)

(247)

Now, we can solve the system of equations given by Egs. 2.44-2.47 for pressure

drops at ¢, . The system of equations to be solved for the active and observation wells

at time level n can be generalized by the following equations :

prj‘ (tn+1) - qa (tm-l )pFCN (rwa9 tm-l - tn)— qo (tm-l )pFCN (r’ tn-l—l - tn)

n-l
= Z [qa (tlz+1 )_ 9. (tk )]pFCN (rwa’ tn+l - tk )_ 9. (tn )PFCN (rwa ’tm-l - tn)
k=0

n-~|
+ Z [Qo (tm )‘ q, (tk )]PFCN (" she — b )— 9. (tn )Pnav (" slpn — tn)
k=0

15
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Avof( +l) qa( +l)pFCN(r’ n+l t) qo( +1)pFCN( Tvos n+l tn)

= Z [qa (tk+l)_ qa(tk )]PFCN(" s bnat _tk)-qa(tn )pFCN(r slan ~‘tn) (2.49)
"'Z [qo(tkﬂ) qo(tk)]pFCN( Twostnst tk) qo(t )PFCN( Fwosnit tn)

and the flow rate equations are given by Egs. 2.29 and 2.30.

Eqgs. 2.48 and 2.49 can be easily extended to [ -layered system by introducing
a layer index j in flow rates and p,., terms in Eqs. 2.48 and 2.49. Then the

resulting equations represent 2/ equations in 2/ +2 unknowns, Ap,., Ap,., q, and
9,> J=L2,..1. We need two more equations to solve the problem. The two

necessary equations are the wellbore flow rate conditions as given by :

qu(t) —qm(t) 24C, prf (2.50)
J=1

and
Zq,,,(t) q,,(t)-24C, Zp @.51)

J=1

In our applications given in thesis study, we consider observation well is shut-in for
all times so ¢,,()=0 in Eq. 2.51.

The system of equations, Egs. 2.48 and 2.51, can be written in matrix form as :

-

A% =bh (2.52)

The structure of the coefficient matrix 4, and column vectors are given in Table 2.1.

Note that 4 is a real symmetric matrix. In Table 2.1, b,,c;, d; and e, are given
by the mathematical expressions in Appendix A.
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Table 2.1: Matrix representation of the problem with storage and skin.

2.3 Accuracy Study About Number of Time Points per Log Cycle :

In this study, computations were done by using 3, 5, 8, 10, 15, 20, 30, 40, 50, 80, 100
numbers in turn as a number of time points per log cycle. Scenario used in these
computations takes into account existence of wellbore storage and skin effects at

both active and observation wells (C, =C, =0.5 and S, = S, =5).

17



Table 2.2 Reservoir properties.

Parameters Values
M, cp (viscosity) 1.0
k, md (permeability) 100
¢ (porosity) 0.15
c,, psi”' (compressibility) 10°
h, ft (layer thickness) 50
r,, and r,,, ft (radii of wells) 0.33
r, ft (distance between both wells) 200

Numerical values in Table 2.2 were used in this accuracy study. To decide how
many number of time points per log cycle need, results of the study are shown by
graphs given below .

As seen in Figures 2.2-2.3, while pressure change, pressure-derivative and
sandface flow rate curves were constructed in forward computation, firstly 3 time
points on each log cycle were used to do accuracy analysis. Although computation
time decreases when we use a few time points on each log cycle, accurate and
sensitive results cannot be obtained in computing of pressures and sandface flow
rates at both active and observation well. When we increase number of time points
on each log cycle like 50 or 100 time points, very much accurate and sensitive results
can be obtained, but computation time increases in forward problem. Therefore,
optimum number of time points on each log cycle needs to be used to reach optimum
accuracy and computation time. When we look at graphs and tables beginning from
Figure 2.2 and Table 2.3 (many of them are in Appendix A section), it will be seen
that computation accuracy doesn’t change after 20 time points on each log cycle,

though termination time continues increasing in forward computation.

In Table 2.3, dimensionless sandface flow rates in 2™ layer at active well
were computed by using analytical and numerical methods. These analytical and
numerical results are compared with results obtained by this study. In Table 2.4,
results in Table 2.3 were recomputed by using different number of time points on
each log cycle. It is appeared that more accurate and sensitive results can be obtained

when number of time points on each log cycle increases in forward computation. In
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these figures, f,

denotes flow capacity ratio, 7, denotes diffusivity ratio, 7,

denotes dimensionless distance between the active well and the observation well, S,,

denotes skin factor at n™ layer at active well and S,, denotes skin factor at n™ layer

at observation well. Other comparison figures and tables are given in Appendix A

section. Furthermore, mathematical expressions of dimensionless layer rates qp and

pressure changes Pp are given in Appendix C section.

Pressure Change and Pressure-Derivative, )

.

psi

g

—
8
S
|

A Pressure Changes Versus Time
® Pressure-Derivative Versus Time
0.1 — . S U Y DU | | S NN ... ... ..
0.01 T
0.001 0.01 0.1 1 10 100

Time, hour

1000

D

Figure 2.2 Pressure change and pressure-derivative versus time at the active well
which consists of 20 points on each log cycle.

Sandface Flow Rate at Active

A Sandface Flow Rate at Active Well

® Sandface Flow Rate at Observation Well

0.01 0.1

Time, hour

10

100

Sandface Flow Rate at
Obscrvation Well, RB/day

Figure 2.3 Sandface flow rates versus time at both wells which consists of 20 points
on each log cycle.
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Table 2.3 Comparison of analytical and numerical solutions; dimensionless layer

rate dpa. ( f, =1.0, 7,=100, r, =1000 and s, =S5, =S, =5, =0)

A;’:l‘y':i:al This Study

tp/tp” qpa2 qpa2 (N=10)
0.01 0.59748 0.59868
0.05 0.58417 0.58481
0.08 0.58059 0.5809
0.1 0.57882 0.57906
0.5 0.56648 0.56679
0.7 0.56407 0.5643
1 0.56163 0.56183
2 0.55725 0.5575
6 0.55137 0.5517
10 0.54906 0.54931
20 0.54627 0.5465
50 0.54307 0.54328
80 0.5416 0.54177
100 0.54094 0.54107

Table 2.4 Comparison of analytical and numerical solutions in terms of number of

time points on each log cycle; dimensionless layer rate pa»,
«f, =10, n,=100, r, =1000 and s, =5, =5, =5,=0)

This Study This Study This Study This Study
% Deviation % Deviation % Deviation % Deviation
=10) (N=20) (N=30) (N=50)
0.201 0.030 0.022 0.015
0.110 0.050 0.046 0.042
0.053 0.016 0.013 0.009
0.041 0.014 0.011 0.008
0.055 0.013 0.010 0.006
0.041 0.015 0.011 0.008
0.036 0.014 0.010 0.007
0.045 0.013 0.009 0.005
0.060 0.014 0.010 0.007
0.046 0.013 0.009 0.006
0.042 0.011 0.008 0.005
0.039 0.009 0.007 0.004
0.031 0.009 0.007 0.005
0.024 0.009 0.006 0.005
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2.4 Case Studies
In this section, pressure change, pressure-derivative and sandface flow rate data are

investigated for both wells and plotted on graphs. Wellbore storage and/or skin factor
effects over these data are investigated in this case study section. Therefore Theis’s
line source solution which does not consider wellbore storage and skin terms is used

to comparison with other case with wellbore storage/skin terms.

70.6q,Bu [ 948¢curl | 70.6q,Bu ,.[948¢c, ur?
= 2 " E ¥y 2 —F 2.53
Bp, = e B T [ B @253)
- 2 h - 2
Ap, = 70.6:th;1 E, 9484 ;,yrw + 70.613:03/1 E, 948¢k¢;,yr :l (2.54)

We accept that formation volume factor equals to one and observation well is shut-in

all times in this thesis study. So we can rewrite Eqs.(2.53-2.54) as given below.

70.6 948dc ur?

Ap, = kzmﬂ EI[ ¢kt,ﬂ w] 2.55)
70.6 948 r?

Ap, = kZ’"“ E[ ¢,;'"‘ ] (2.56)

we should use average permeability and storativity (¢c,h) for multi-layered

reservoir as given below:

kh +khy +...+ kb
h +hy+..+h

k=

(2.57)
JE:F =@gc by + dycyh, .t gicyhy (2.58)

where subscript / refers to number of layers.

2.4.1 Single-Layered System 1 : This case study considers single layer system with
an active well and an observation well. The active well is produced at a specified

surface flow rate with g, =1000RB/day, and the second well (the observation

well or interference well) is shut-in for all times. Using information below, sandface
flow rate, pressure and pressure derivative values versus time were computed in each

well and then their graphics were plotted here. The objective of this case is
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considering study interference test pressure behavior in a single layer system for

various cases.

Table 2.5 Wellbore data for different cases (1).

Active Well Observation Well
Cases | C,, RB/psi S, C,, RB/psi S,
1.1 0 0 0 0
1.2 0 2 0 0
13 0.1 2 0 0
1.4 0 0 0 2
1.5 0 0 0.1 2
1.6 0.1 2 0 . 2
1.7 0.1 2 0.1 2

Other parameters for reservoir are given in Table 2.2 (except forC, =10~ psi*):

In Figure 2.4, log-log plots of pressure change and pressure-derivative versus
time for the active well. As can be seen from Figure 2.4, skin factor at the active well
affects pressure response at the active well. However, skin factor at the observation
well (Case 1.4) does not affect pressure response at the active well, because there is
no production available at the observation well. In the same manner, skin factor at
the active well does not affect pressure change at the observation well. Skin factor at
the observation well does not vary pressure change at the observation well either as
can be seen from Figure 2.5. Therefore pressure response for the cases 1.1-1.4

matches with Theis’ line source solution.

In Figures 2.6-2.7, sandface flow rate changes are shown for both wells.
Apparently, surface rate at the active well changes sandface flow rate at the active

well, but surface rate at the active well does not affect sandface flow rate at the
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observation well, because there is no any wellbore storage/skin effects at the

observation well.
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Figure 2.4 Pressure change and pressure-derivative versus time at the active well for

Cases 1.
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Figure 2.5 Pressure change and pressure-derivative versus time at the observation
well for Cases 1.1-1.2-1.4.
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Figure 2.7 Sandface flow rate versus time at the observation well for Cases 1.1-1.2-
1.4.

Figure 2.8 shows effects of wellbore storage and skin factor over pressure
change and its derivative information at the active well. As you can see in Figure 2.8,
wellbore storage and skin factor at the active well affect the pressure response at the
active well. However, there is no any effect of wellbore storage and skin factor at the

observation well over pressure signal over the active well.
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Figure 2.8 Pressure change and pressure-derivative versus time at the active well for
Cases 1.3-1.5.
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Figure 2.9 Pressure change and pressure-derivative versus time at the observation
well for Cases 1.3-1.5.

Figure 2.9 shows effects of wellbore storage and skin factor for both wells
over pressure response at the observation well. Apparently, at early times wellbore
storage and skin term for cases 1.3-1.5 affects pressure signal at the observation well.
As you can remember from Figure 2.5, only skin term at the observation well does

not affect pressure signal at the observation well. However, in cases of existence of
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both wellbore storage and skin factor at the observation well, it can be seen effect of
wellbore storage and skin factor over pressure response at the observation well. We
can also see that wellbore storage and skin factor at only active well affect pressure
change at the observation well, even if there is no wellbore storage and skin factor
available at the observation well. But when the wellbore storage effects disappear at

late times, all pressure data match with the Theis curve.
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Figure 2.10 Sandface flow rate versus time at the active well for Cases 1.3-1.5.

Figure 2.10 illustrates sandface flow rate changes at the active well.
Nonexistence of wellbore storage and skin factor (Case 1.5) at the active well causes
that sandface flow rate remains constant. Moreover existence of wellbore storage and
skin factor at the observation well does not cause to change sandface flow rate at the
active well, due to the fact that there is no production from surface at the observation
well. However, when wellbore storage and skin factor exist in the active well (Case
1.3), sandface flow rate changes from zero to surface production rate at the active

well until wellbore storage effects dissappear at the active well.

Figure 2.11 shows sandface flow rate changes at the observation well. Since
wellbore storage and skin factor does not exist in the observation well (Case 1.3),
sandface flow rate does not change in terms of time at the observation well even if
wellbore storage and skin factor exist in the active well. However, in case of

existence of wellbore storage and skin factor at the observation well (Case 1.5),
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injection fron wellbore through layer occurs at the active well. Sandface flow rate
decreases from zero to -2.1 RB/day (minus means injection) sharply after 1 hour
production time and then sandface flow rate begins to increase after 10" hour from -
2.1 RB/day toward zero gradually, because of wellbore storage at the observation
well, though there is no available surface flow rate at the observation well. Injection
occurs between 1 and 10 hours by expanding fluid volume in the wellbore at the
observation well and then injection from the wellbore through the layer begins
decreasing from 2.1 RB/day to zero, because fluid in the wellbore cannot expand any

more at the observation well.
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Figure 2.11 Sandface flow rate versus time at the observation well for Cases 1.3-1.5.

Figure 2.12 shows log-log plots of pressure change and pressure-derivative
versus time for the active well. Since wellbore storage and skin factor exist in the
active well for each cases 1.3-1.6-1.7, a unit-sloped line occurs at early times till
about 18 minutes. Wellbore storage and/or skin factor at the observation well does
not affect pressure change and its derivative at the active well, because of

nonexistence of surface production rate at the observation well.

Figure 2.13 illustrate log-log plots of pressure change and its derivative
versus time at the observation well. Wellbore storage and skin factor at the active
well (Case 1.3) affect pressure signal at the observation well, even if there is no

wellbore storage and skin factor at the observation well. Only skin factor but not
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wellbore storage at the observation well (Case 1.6) does not affect pressure change
and its derivative at the observation well. However, both wellbore storage and skin
factor at the observation well (Case 1.7) affect pressure change and its derivative at

the observation well.
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| Figure 2.12 Pressure change and pressure-derivative versus time at the active well
for Cases 1.3-1.6-1.7.
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Figure 2.13 Pressure change and pressure-derivative versus time at the observation
well for Cases 1.3-1.6-1.7.
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-Figure 2.14 Sandface flow rate versus time at the active well for Cases 1.3-1.6-1.7.

Figure 2.14 shows plots of sandface flow rate versus time at the active well
for each cases 1.3-1.6-1.7. Since wellbore storage for each cases 1.3-1.6-1.7 exists in
the active well, active well produces fluid at early times from wellbore instead of
reservoir due to expanding volume of fluid in the active well. After 10 hours,
wellbore storage effects at the active well begin decrasing and then the active well
begins producing fluid truly from reservoir. In the same manner, Figure 2.15 shows
plots of sandface flow rate versus time at the observation well for each cases 1.3-1.6-
1.7. In cases 1.3-1.6, since wellbore storage does not exist in the observation well,
sandface flow rate at the observation well remains zero, though there is a skin factor
available at the observation well. Moreover, wellbore storage and skin factor (Case
1.6) at the active well does not affect sandface flow rate at the observation well,
because of nonexistence of wellbore storage at the observation well. However, when
both wellbore storage and skin factor exist in the observation well, injection occurs
from the wellbore at the observation well thtough the reservoir. Injection occurs
between 1 and 10 hours by expanding fluid volume in the wellbore at the observation
well and after 10 hours injection from the wellbore through the reservoir begins
decreasing from 2.1 RB/day to zero, because fluid in the wellbore cannot expand any

more at the observation well.
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Figure 2.15 Sandface flow rate versus time at the observation well for Cases 1.3-1.6-
1.7.

2.4.2 Single-Layered System 2 : This case study considers again single layer system

with an active well and an observation well.

Table 2.6 Wellbore data for different cases (2).

Active Well Observation Well

Cases | C,, RB/psi S, C,, RB/psi S,

2.1 0.5 0 5 0

22 05 0.5 5 5

The active well is produced at a specified surface flow rate with g, =1000RB/day,

and the second well (the observation well or interference well) is shut-in for all
times. Using information above, sandface flow rate, pressure and pressure derivative
values versus time were computed in each well and then their graphics were plotted
here. The objective of this case is considering study interference test pressure
behavior in a single layer system for various cases. Reservoir properties are given in
Table 2.2 and other parameters such as wellbore storage and skin factor are given
above in Table 2.6.

30



s a
. 1000

o
2 AT S Arrdeirtd

‘; AJK A A“
2 A48

5 100 887 °,

R ) M‘ Yol

@ ab? deb

a 0 SRS T S N -'-"—'-"J;ﬂ'ﬁ'"'—""_ -+ q e """"F"‘"‘ Fo .Y blé

§ 9

(=5 ‘7 nﬂl“
2 a at®

< 1 Y a & Pressure Change versus Time

zo 4 ?Pﬂ' ©  Pressure-Derivative versus Time

= nn“f ——Theis Curve for Pressure Change

% 0.1¢# = - = Theis Curve for Pressure-Derivative H

2

£ om

0.001 0.01 0.1 1 10 100 1000
L Time, hour )

Figure 2.16 Pressure change and pressure-derivative versus time at the active well

for Case 2.1.

As can be seen from Figure 2.16, pressure change and pressure-derivative are
shown on the same graph. A unit-sloped line is seen at early times till approximately
1 hour, because of existence of wellbore storage effect. After 1 hour, pressure-
derivative curve starts separating from pressure changes curve, due to the fact that
there is wellbore storage and skin effects at the active well. Size of hump seen after
approximately 100 hours is controlled by wellbore storage at the active well. In
Figure 2.17, pressure change and pressure-derivative are shown at the observation
well. Wellbore storage at the active well causes to a small hump among 10 and 100
hours. In both Figure 2.16 and Figure 2.17, radial flow is seen after about 100 hours.
In Figure 2.18, sandface flow rates are shown at both active and observation wells.
Since active well has wellbore storage effect, production at surface is done from
wellbore until about 50 hours. Since observation well shuts-in at all production time
and there is no wellbore storage and skin effects, sandface flow rate at observation

well equals to zero at all times.

As can be seen from Figure 2.19, pressure change and pressure-derivative at
the active well are shown on the same graph. A unit-sloped line is seen at early times
till approximately 1 hour, because of existence of wellbore storage effect as been in

Figure 2.16. Differently from Case 2.1, size of hump in Figure 2.20 is greater than
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that in Figure 2.17, because there is wellbore storage and skin effects at observation

well though there is no surface production.
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Figure 2.17 Pressure change and pressure-derivative versus time at the observation
well for Case 2.1.
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Figure 2.18 Sandface flow rates versus time at the active and observation wells for
Case 2.1.

In Figure 2.21, sandface flow rates are shown at the active and observation

wells. Since the active well has wellbore storage effect, production at surface is done
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from wellbore until about 50 hours. Since the observation well has wellbore storage
and skin effects though there is no surface production, sandface flow rate toward
reservoir increases among 0.8 and 10 hours, because of expanding of fluid volume in
wellbore. After 10 hours, the active well produces from surroundings observation
well, because fluid in wellbore of observation well couldn’t expand any more.
Therefore, injection from observation well to active well starts decreasing after about

10 hours.
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or Case 2.2.

In Figure 2.22, pressure changes and pressure-derivative curves in Case 2.1
and Case 2.2 are shown on the same graph. Although wellbore storage and skin
effects are different from each other in both cases, pressure changes and pressure-
derivative curves matches at late times. Namely, effects of wellbore storage and skin
factor don’t appear over pressure changes and pressure-derivative curves.

In Figure 2.23, sandface flow rate curves at the active well and observation
well are shown on the same graph. Existence of wellbore storage and skin effects at
the observation well doesn’t affect sandface flow rate at the active well. However,
existence of wellbore storage at observation well affect sandface flow rate at

observation well.
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Figure 2.21 Sandface flow rates versus time at the active and observation wells for
Case 2.2.
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Figure 2.23 Sandface flow rates versus time at the active and observation wells for
Case 2.3.

2.4.3 Single-Layered System 3 : In this application study, there are seven different
substudies related to how distance between active and observation wells, wellbore
storage/skin factors, permeability and porosity affect pressure signal at both wells
especially observation well. In direction of this purpose, figures are given in this
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section below. In addition to these, pressure signals belonging to observation well are
shown with reference line source (Theis) solution which doesn’t take into
consideration wellbore storage effects at both wells. Reservoir properties are given in
Table 2.2.

2.4.3.1 Case 3.1 : In this case, to see how the wellbore storage/skin terms affect
pressure changes and pressure-derivative data at the active and the observation well,
several computations were done in forward mode. In this case, parameters belonging
to active and observation wells such as wellbore storage and skin effects were used

as C,=C,=05RB/psi, and s,=s,=5 where C, and C, denote wellbore
storages at active and observation wells, respectively. s, and s, denotes skin effects

at active and observation wells, respectively. Furthermore, the active well produces

at constant surface rate g,=1000 RB/day and the observation well shut-in at all

times ( g,, =0 RB/day) during interference test.

In Figure 2.24, pressure change and pressure-derivative at active well are
shown with line source solution. As seen in the figure, line source solution (El
reference solution) demonstrates a very serious deviation from pressure changes and
pressure-derivative curves at early times (until approximately 10 and/or 100 hours).
Cause of this behaviour results from wellbore storage at the active well. Since line
source solution doesn’t take into account wellbore storage effects though it takes into
account skin terms at both wells, all pressure data don’t match with reference
solutions at all times. However, pressure changes and pressure derivative curves with
wellbore storage effects begin matching line source solution (E1 reference solution)

after about 100 hours, because wellbore storage effects appear only at early times.

In Figure 2.25, pressure changes and pressure-derivative at the observation
well are shown with reference solutions. Comparison of pressure changes and
pressure-derivative to reference solutions is shown on this figure as been in Figure
2.24. Interference test data don’t match reference solutions at early times until
approximately 10~100 hours, because wellbore storage effects are available at the
active and observation wells. Wellbore storage effects are available at both wells,
reference solutions separate from interference test data at early times. Namely in this
period, the active well produces from wellbore not only reservoir. Since wellbore

storage effects don’t appear over pressure data at late times, pressure changes and
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pressure-derivative data match reference solution at the observation well, as been at
active well in Figure 2.24. When the time goes ahead, wellbore storage effects start
disappearing at both wells.
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Figure 2.24 Pressure change and pressure-derivative versus time at the active well
together with line source solution (E1).
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Figure 2.25 Pressure change and pressure-derivative versus time at the observation
well together with line source solution (E1).

37



~N
W

%
|
1

8

had 04 \adad

O ..0
v [
o a8

,o‘;:;: ,;T A

¢
’o‘y ol 3
{

—
(3

&
3

—
4

¢ AL

Pressure Change and Pressure-Derivative,
psi

4
S o] 4] # Pressure-Derivative versus Time (Case3 28)
0.1 o X A X Pressure Change versus Time (Case3.23)  [[]
L o'| 2] || & Pressure-Derivative versus Time (Case3.2b)
JIX o AJ‘ ® Pressure Chnge‘v?rf%’m ((T,fase'3.22
0.01 L L]
0.1 1 10 100 1000 10000
L Time, hour )

Figure 2.28 Demonstration of both curve sets in Cases 3.2a and 3.2b on the same
graph.

When we look at Figure 2.28, interference test data belonging to both Subsections
2.a and 2.b begin matching each other after approximately 10000 hours. Reason of
this behavior can be explained like that distance between both wells and wellbore
storage/skin effects disappear at very late times, because we takes into consideration

an infinite acting reservoir.

2.4.3.3 Case 3.3 : In this case, one-layered reservoir system is considered as been in
Case 3.2. Basic parameters such as viscosity, porosity, total compressibility, layer
thickness, radii of both wells and distance between active and observation wells are
the same as values in Table 2.2. This case is divided to two different subsections
where permeabilities belonging to the reservoir have different numerical values.
Wellbore storages and skin effects aren’t present at both wells. Furthermore, the
active well produces at constant surface rate g,,=1000 RB/day and the observation
well shut-in at all times (g,, =0 RB/day) during interference test, as been in Case 3.2.

Subsections are given below :

Subsection 3.a: & =1000md
Subsection 3.b : £ = 0.1 md

Pressure change and pressure-derivative data belonging to these Subsections 3.a and

3.b are shown given below figures by comparing with line source solutions.

40



~

2

—
=]

o

\

&
2
=
R
S
(=]
&
2
§ 209" . AMidA LA AN AAMA VANITY
o, ;1
ta o
@ )& /’ ©  Pressure Change versus Time
_§ 0.1 AAA A Pressure-Derivative versus Time ﬁ,l
bt I Theis Curve for Pressure Change
§ £ = « = Theis Curve for Pressure-Derivative
§0mf/ T T T 1]
O S A o
0.01 0.1 | S 10 100 1000
Time, hour

_

Figure 2.29 Pressure change and pressure-derivative versus time at the observation
well together with line source solution for Case 3.3. (k =1000 md )
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Figure 2.31 Interference well test data belonging to both subsections versus time at
the observation well with line source solution for Case 3.3.

As can be seen from the results given in Figures 2.31, as permeability increases, the
effect of production at the active well on the observation well pressure change is felt
in a short time and that magnitude of pressure drop at the observation well decreases.
In Subsection 3.2, since permeability parameter has 1000 md numerical value,
bottom hole flow pressure needs to be decreased as much as ~1 psi to produce with

surface flow rate (g,, = 1000 RB/day) from the active well. Namely in order to reach

the radial flow in reservoir, it is enough that bottom hole flow pressure drop is set to
about 1 psi. Figure 2.30 displays interference well test data belonging to an
impermeable/little permeable reservoir. In Subcase 3.b (shown by Figure 2.30), in
order to reach the radial flow in reservoir, bottom hole flow pressure drop at
observation well needs to be increased considerably until approximately 10000 psi.
Figure 2.31 is a combined form of Figures 2.29 and 2.30. It’s show that permeability
is a very sensitive parameter, because interference well test data changes

considerably by altering only permeability.

2.4.3.4 Case 3.4 : In this case, all parameters are the same as been in Case 3.3 except
for permeability and porosity. Effect of porosity over interference well test data is
investigated differently from Case 3.2. This case is again divided to two subcases
taking into account different porosity values. Reservoir is considered as single

layered system with 100 md of permeability. In this case, it is accepted that there
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aren’t wellbore storage and skin effects at both wells like Case 3.3. On the other
hand, other parameters are the same as been in Table 2.2. The active well is produced

at a constant rate with 1000 RB/day and the observation well is shut-in at all times.

Subsection4.a: ¢ =0.15 (porosity)
Subsection4.b: ¢=0.015 ()

Pressure change and pressure-derivative data at observation well belonging to these
. two subsections are shown by figures given below. As can be seen from Figures 2.32
and 2.33, interference well test data matches line source solution perfectly, because
wellbore storages and skin effects aren’t available at both wells. Figure 2.34 displays
two interference well test pressure data for two different values of porosity at the
observation well. Pressure drop at the observation well corresponding to ¢ =0.15 is
less than pressure drop in a reservoir having ¢ =0.015 . In subsection 4.a, radial
flow can be appeared after 4 hours. However, in subsection 4.b, radial flow begins to
be appeared after 0.4 hours, because porosities in both subsection are different from
each other. Moreover, it can be seen that two interference well test data belonging to

subsections 4.a and 4.b match each other at late times, as seen in Figure 2.34.
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Figure 2.32 Interference well test data versus time at the observation well together
with line source solution for Case 3.4. (¢ =0.15)

The results also indicate that increasing porosity delays the effect of production at the

active well and the observation well pressure. This is due to the fact that increasing
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porosity, other parameters being the same, decreases diffusivity constant which is a

measure of the speed of pressure propagation in the reservoir.

a )
o 1000 l

B

=

2

d‘:’ 100

e

2

2 10

ez

ERal il

g 1

_§ o(A & Pressure Change versus Time

&) 01 4} © Pressure-Derivative versus Time
= I —— Theis Curve for Pressure Change ||

§ 4 = = = Theis Curve for Pressure-Derivative

A 0.01 J | 1u|m1 |l LHJJH! IR

0.001 0.01 0.1 1 10 100 1000 10000

L Time, hour )

Figure 2.33 Interference well test data versus time at the observation well together
with line source solution for Case 3.4. (¢ = 0.015)
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Figure 2.34 Comparison of interference well test data belonging to both subsections
on the same graph for Case 3.4.

2.4.3.5 Case 3.5 : In this case, analysis of interference well test data with variable

flow rate is investigated. A single layered reservoir is considered in this case and
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basic parameters are the same as been in Table 2.2. Wellbore storages and skin
effects are neglected at both wells for this case. Production with variable flow rate is
done from active well and production scenario is given below :

q,, = 100 RB/day, between ¢ =0 and =10 hours

q,, = 500 RB/day, between ¢ =10 and # =100 hours
g,, = 0.0 RB/day, between ¢ =100 and # =500 hours
g, =500 RB/day, between ¢ = 500 and # =1000 hours

Figures belonging to pressure drops and sandface flow rates at both wells are given
below.

Figure 2.35 displays pressure drop and sandface flow rate changes at the
active and observation wells under production scenario with variable surface flow
rate. Since the active well produces at a constant rate with 100 RB/day between 0
and 10 hours, pressure drop occured at the active well is four times greater than
pressure drop occured at the observation well due to distance of active well from
observation well. Pressure drops at the active well and observation well increase very
quickly between 10 and 100 hours, because surface flow rate at the active well is

risen to 500 RB/day from 100 RB/day.
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Figure 2.35 Pressure drop and sandface flow rate changes at both wells for Case 3.5.

Since the active well is shut-in between 100 and 500 hours, pressure drops at both

wells decreased quickly, but after 500" hours, pressure drops at the active and
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observation well begin increasing dramatically, because the active well produces at
500 RB/day from reservoir then. Sandface flow rates equal to surface total flow rate

at both wells, because there aren’t wellbore storages and skin effects at the active and

the observation wells.

2.4.3.6 Case 3.6 : In this case, analysis of interference well test data with variable
flow rate is investigated like Case 3.5. A single-layered reservoir is considered in this
case and basic parameters are the same as been in Table 2.2. Wellbore storage and
.skin effect are neglected at only observation well for this case. There is wellbore
storage and skin factor at the active well. Numerical values of these parameters

belonging to the active well are C, =0.1RB/ psi and s, =10. As been in Case 3.5,

production with variable flow rate is done from active well and production scenario
is given below :

g., = 100 RB/day, between ¢ =0 and ¢ =10 hours

q., =500 RB/day, between ¢ = 10 and # =100 hours

q,, = 0.0 RB/day, between ¢ = 100 and # =500 hours
q,, =500 RB/day, between ¢ = 500 and £ =1000 hours

Figures belonging to pressure drops and sandface flow rates at both wells are given

below.
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Figure 2.36 Pressure drop and sandface flow rate changes at both wells for Case

3.6.
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Although Figure 2.36 gives the same tendency as been in Figure 2.35, pressure drops
increased at especially production periods as much as two times of pressure drops in
Case 3.5, due to existence of wellbore storage and skin effects at the active well.
Conversely, pressure drops at the observation well don’t change extraordinarily,
because of not available wellbore storage and skin effects at the observation well.
Consequently, we can say that wellbore storage and skin terms at the active well
don’t affect considerably pressure drops and sandface flow rate at the observation
well. Sandface flow rates at the active well cannot be equal to surface flow rate at
early times at the active well, owing to existence of wellbore storage/skin effects at
the active well, because the active well produces at early times or open perionds from

both wellbore and reservoir.

2.4.3.7 Case 3.7 : In this case, analysis of interference well test data with variable
flow rate is investigated like Case 3.6. A single-layered reservoir is considered and
basic parameters are the same as given in Table 2.2. There are wellbore storages and
skin factors at both wells. Numerical values of these parameters belonging to the
active well are C, =0.1RB/ psi, C, =0.1RB/ psi, s, =10 and s, =10. As been in

Case 3.6, production with variable flow rate is done from active well and production
scenario is given below :

q.,= 100 RB/day, between ¢t =0 and # =10 hours

9., =500 RB/day, between ¢ =10 and ¢ =100 hours
q., = 0.0 RB/day, between ¢t =100 and ¢ =500 hours
q.,= 500 RB/day, between ¢ = 500 and ¢ =1000 hours

Figures belonging to pressure drops and sandface flow rates at both wells are given

below.

In Case 3.7, existence of wellbore storage and skin effect at the observation
well are considered differently from Case 3.6. However, since there is no available
surface flow rate at the observation well, bottomhole pressure drop doesn’t show any
changes according to Case 3.6. In the same manner, when we look at pressure drops
at the active well, pressure drop changes different from previous case cannot be
observed at the active well. We can explain its reason by that wellbore storage and
skin effects at the observation well doesn’t affect pressure change at active well.
Only changed parameters in this case differently from Case 3.6, are the sandface
flow rates at both wells.
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Figure 2.37 Pressure drops at both wells and sandface flow rate changes at the
active well for Case 3.7.

In Figure 2.37, sandface flow rates cannot be equal to surface flow rate at early times
at the active well, due to existence of wellbore storage at the active well. In Figure
2.38, sandface flow rate changes at the observation well are shown differently from
Figure 2.37. At early times or open/closure period, sandface flow rates take negative
values at the observation well, because the observation well injects fluid into layer by
expanding volume of fluid into the wellbore at the observation well. After surface
rate is increased to 500 RB/day, sandface flow rate at observation well converges to
zero quickly. As soon as the active well is shut-in after 100™ hour, sandface flow rate
at the observation well displays a sharp increase towards direction of positive.
However, sandface flow rate at the observation well decreases to zero asymptotically
at close period between 100" and 500™ hours. After the active well launches to
produce at 500 RB/day beginning from S00™ hour, sandface flow rate at the
observation well shows a sharp decrease towards direction of negative and then it
rises to zero asymptotically at 100 hours. Sandface flow rate changes at open/closure
period at observation well result from wellbore storage and skin effects at

observation well.
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Figure 2.38 Pressure drops at both wells and sandface flow rate changes at the
observation well for Case 3.7.

2.4.4 Two-Layered System : In this application, drawdown test and buildup tests are
considered for both wells. This forward application is divided to two subsections.
Wellbore storage effects are neglected for both subsections, but skin effects are
investigated in these sub sections. Layer and wellbore properties are shown in Tables
2.7-2.8 for both subsections. The active well produces with surface rate of 1000
RB/day till 1000 hours and then the active well is shut-in 1000 hours later. The

observation well is shut-in at all times. The distance between wells is r = 350 ft.

2.4.4.1 Case 4.1 : In this subsection, it is considered that skin terms for both wells do
not exist at individual layers. Pressure change and sandface flow rate change at
individual layers are investigated for both wells. Graphs about this case are given in
Figures 2.39-2.41.

Figure 2.39 illustrates plots of pressure changes at both wells. Since the
active well is open to production until end of drawdown test period and the
observation well is shut-in at all times, pressure drop at active well increases
considerably and decreases sharply after 1000™ hour. Although the observation well
is shut-in at all times, pressure drop at the observation well increases quite a lot,
because production at the active well creates pressure drop at the observation well. In

buildup period, pressure drop resulted from active well pressure drop decreases
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gradually at the observation well, becasue pressure drop at the active well cannot

affect pressure drop at the observation well too much.

Table 2.7 Layer properties for Case 4.1

Parameters Layer 1 Layer 2
k, md 100 50
¢ 0.15 0.30
¢, psia’ 1x10° 25x107
U, Cp ~ 1.0 1.0
h, ft 50 100
Skin factors at the active well, Sg; 0.0 0.0
Skin factors at the observation well, Sy 0.0 0.0

Table 2.8 Well Data for Case 4.1.

Active Well Observation Well
rw, ft 0.35 0.35
Flow rate, g,, RB/day 1000 0.0
Wellbore storage, C,
RB/psi 0.0 0.0
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Figure 2.39 Pressure drop change during draw-down and build-up test for both wells

(Case 4.1).
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Figure 2.40 Sandface flow rate change at each layer for the active well (Case 4.1).

r )
YYYYvwY

o .

<

=

> ]

o | S " A | .. e

g

g 0000 0 0 0 0|0 o ¢ [ [

= [ A hffi]f A AA|ATATATY T

o

:'-20 I B ® Sandface Flow Rate at Observation| |

§ Well (Layer 1)

= L ||  Sandface Flow Rate at Observation| |
540 7 Well (Layer 2)

N

0000 o
’60 1 I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

\ Timc, hour J

Figure 2.41 Sandface flow rate change at each layer for the observation well (Case
4.1).

Figure 2.40 shows plots of sandface flow rates for both layers at the active

. 1 N 0.5, it is mean that production is

well. In cases of 77, >1 and f, =1,
qal + 9a2

peformed from 2™ layer much more than done from 1* layer. This case shows that
layer with low diffusivity produces much more than layer with high diffusivity, so
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this case is a special and interesting result. However, in buildup period, production
relationship between layers reverses and 1st layer with high diffusivity injects fluid
into 2nd layer with low diffusivity until balance between layers reaches to stability.

Figure 2.41 shows plots of sandface flow rates for both layers at the
observation well. In drawdown period, 2™ layer with low diffusivity injects fluid into
1** layer with high diffusivity, because pressure drop of 1** layer at active well
reduces pressure drop of 1% layer at the observation well quicklier than that pressure
drop of 2" layer at active well reduces pressure drop of 2" Jayer at the observation
well. When the time is passed, injection decreases gradually from 2" layer to 1%
layer, because pressure drop of 2" layer at the active well begins reducing the
pressure drop of 2™ layer at the observation well. In buildup period, cross-flow
between layers begins decreasing sharply and after 1200 hours cross-flow reverses
among layers, because pressure drop of 1* layer decreases at observation well faster
than pressure drop of 2* layer at observation well. When the time is passed, 1** layer
with high diffusivity injects fluid into 2" Jayer with low diffusivity.
2.4.4.2 Case 4.2 : In this subsection, it is considered that skin terms for both wells
exist at individual layers. Numerical values of skin terms are shown in Table 2.9.
Well data are the same as been in Table 2.8. Pressure change and sandface flow rate
change at individual layers are investigated for both wells. Graphs about this case are
given in Figures 2.42-2.44.

Table 2.9 Layer properties for Case 4.2.

Parameters Layerl | Layer2
k, md 100 50
¢ 0.15 0.30
¢,, psia” 1x107 25x10°
L, cp 1.0 1.0
h, ft 50 100
Skin factors at the active well, Sy 5.0 20.0
Skin factors at the observation well, Sy 2.0 10.0

52



f )
300 q
250 YT R RICRE AL ,.‘ L"
200
W
on
81504
S 150 A Pressure Drop versus Time at Active Well
5100 | ® Pressure Drop versus Time at Observation Well
g
=]
50 -
AYYYEXIURALBUEE v
0 ‘Lnun.'. L!__J_
0 200 400 600 800 1000 1200 1400 1600 1800 2000
\ Time, hour )
Figure 2.42 Pressure drop change during drawdown and buildup test for both wells
(Case 4.2).

Figure 2.42 illustrates plots of pressure changes at both wells for Case 4.2.
Since skin factors exist at both individual layers for both wells, pressure drop
increases considerably in order to obtain same surface production rate from the
active well until end of drawdown test period. In buildup period, pressure drop
resulted from active well pressure drop decreases gradually at the observation well,
becasue pressure drop at the active well cannot affect pressure drop at the
observation well too much.

Figure 2.43 shows plots of sandface flow rates of individual layers at the

1* layer at

active well. Since skin term of 2™ layer is much bigger than skin term of
the active well, pressure drop of 1* layer is bigger than pressure of 2" layer at the
active well in the drawdown period. Accordingly, production is performed from 1°*
layer much more than 2™ layer. In buildup period, 2™ layer with low diffusivity
injects fluid into 1* layer for a short time and then cross-flow among the layers

decreases sharply until balance between layers reaches to stability.

Figure 2.44 illustrates plots of sandface flow rates for both layers at the
observation well. In drawdown period, 2™ layer with low diffusivity injects fluid into
1** layer with high diffusivity, because pressure drop of 1st layer at the active well

reduces pressure drop of 1% layer at the observation well quicklier than that pressure
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drop of 2™ layer at active well reduces pressure drop of 2™ layer at the observation

well.
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Figure 2.43 Sandface flow rate change at each layer for the active well (Case 4.2).
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Figure 2.44 Sandface flow rate change at each layer for the observation well (Case
4.2).

When the time is passed, injection increases gradually from 2™ layer to 1 layer,

because pressure drop of 2™ layer at the active well cannot reduce the pressure drop
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of 2™ layer at the observation well due to high skin factor. In buildup period, cross-
flow between layers begins decreasing considerably, because pressure drop of 1st
layer begins decreasing at observation well together with pressure drop of 2* layer at
observation well. When the time is passed, cross-flow between both layers decreases
and then disappears at late times, because of reaching to stability.

2.4.5 Three-Layered System : In this application, three-layered and very
heterogeneous reservoir is considered. Wellbore storage and skin effects are
investigated in this application. Reservoir and wellbore properties are shown in
Tables 2.10-2.11. The active well produces with surface rate of 1000 RB/day and the
observation well is shut-in at all times. The distance between wells is r = 350 ft.

Table 2.10 Reservoir properties for three-layered system.

Parameters Layer1 | Layer2 Layer 3
k, md 15 30 100
0.1 0.2 0.3
¢,, psia” 1x107 5x107 1x10™
W, cp 1.0 1.0 1.0
h, ft 20 10 30
Skin factors at the active well, Saj 5.0 0.5 1.0
Skin factors at the observation well, 3.0 2.0 0.5
So;
Table 2.11 Well Data for three-layered system.
Active Well Observation Well
rw, ft 0.35 0.35
Flow rate, q,, RB/day 1000 0.0
Wellbore storage, C,
RB/psi 0.1 0.1

Figure 2.45 shows log-log plots of pressure change and pressure-derivative
for both wells on the same graph. As can be seen from Figure 2.45, radial flow
begins appearing after 10 hours at the active well, but after 300 hours at the
observation well. Wellbore storage effects are seen at early times for both wells,

because of existence of wellbore storage at both wells.
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Figure 2.45 Pressure change and pressure-derivative versus time for both wells.

N

3
B

L~

¢ Sandface Flow Rate at Layer 1 il
© Sandface Flow Rate at Layer 2 |
& Sandface Flow Rate at Layer 3 |

Sandface Flow Rate at Active Well,

0 ¥ L) i 1 L

0.001 0.01 0.1 | 10 100 1000 10000
L Time, hour )

Figure 2.46 Sandface flow rate at layers versus time for the active well.

Figure 2.46 illustrates sandface flow rate changes at all layers for the active
well. As can be seen from Figure 2.46, most of production at the active well is
performed from 3™ layer though 3™ layer has a low diffusivity coefficient.

Conversely, less of production at the active well is carried out from 1* layer, though
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1* layer has a high diffusivity coefficient. Reason for this situation is due to skin

terms at individual layers.
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Figure 2.47 Sandface flow rate at layers versus time for the observation well.

Figure 2.47 illustrates sandface flow rate changes at all layers for the

observation well. As can be seen from Figure 2.47, sandface flow rates belonging to
all layers change versus time incredibly. Since 1* layer has the highest diffusivity

coefficient, pressure propagation occurs there faster than the others. Moreover, 3%

layer has the second highest diffusivity coefficient, pressure propagation occurs there
faster than 2™ layer. Reason for this situation is due to different skin terms at

individual layers for both wells.

57



CHAPTER I

NONLINEAR OPTIMIZATION TECHNIQUES FOR PARAMETER
ESTIMATION

Three different optimization algorithms were used in this study and one of
them is Levenberg-Marquardt method which is a gradient-based algorithm. Since the
Levenberg-Marquardt algorithm uses derivative information of functions to be
optimized, it enables to user very fast solution. Therefore it is used widely to
optimize functions and to estimate parameter in different disciplines. Another
optimization technique we used in this study is simulated annealing method. It is a
non-gradient and iterative algorithm, because it doesn’t use derivative information
contrary to the Levenberg-Marquardt. Since it’s claimed that it converges to global
minimum independently from initial guesses, it’s named as a global optimization
technique. Third optimization technique used in this study is polytope algorithm.
Although it doesn’t use derivative information of functions to be optimized, it’s a
very fast iterative technique even if it isn’t very fast as much as Levenberg-
Marquardt. Detailed information about these optimization techniques is given in this
chapter like below.

3.1 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm was proposed independently by
Levenberg [18] and Marquardt [19]. Fletcher [20] has proposed an algorithm that
adjusts the value of 4, in (Eq.3.1) according to the relationship between the actual
and predicted change in the sum of squares. Alternatively, A" may be adjusted and
the implicitly defined value of 4, can be computed using a variant of Hebden’s [21]

method that is specially tailored to least-squares problems (see :Hebden [21] and
Notes for Section 4.4 in Practical Optimization [15]). A popular alternative to the
Gauss-Newton method is the Levenberg-Marquardt method.

The Levenberg-Marquardt modification of the Gauss-Newton algorithm for

the minimization of non-quadratic objective functions was found to be an efficient
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and robust method for most parameter estimation problems. After local linearization
of the objective function with respect to the parameters to be estimated, the
Levenberg-Marquardt algorithm performs initially small, but robust steps along the
steepest descent direction, and switches to more efficient quadratic Gauss-Newton
steps as the minimum is approached. The derivatives are calculated numerically

using the perturbation method in this study.

The Levenberg-Marquardt method uses a search direction that is a solution of

the linear set of equations

[J (x, ) I(x)+ A,,I]d,, =-J(x, )F(x,) 3.D

where the scalar 4, is a non-negative scalar and controls both the magnitude and
direction of d,. When 4, is zero, the direction d, is identical to that of the Gauss-
Newton method. As 4, tends to infinity, d, tends towards a vector of zeros and a
steepest descent direction. This implies that for some sufficiently large 4, , the term

F(x, +d,)< F(x,) bolds true. The term 4, can therefore be controlled to ensure

descent even when second order terms, which restrict the efficiency of the Gauss-
Newton method, are encountered. The Levenberg-Marquardt method therefore uses a
search direction that is a cross between the Gauss-Newton direction and the steepest

descent. A unit step is always taken along 4, , i.e., x,,, is given by x, +d, . It can
be shown that, for some scalar A’ related to 4,, the vector d, is the solution of the

constrained subproblem
... 1
minimize —2-[[Jkd + f,‘Hi
dER" 3.2)
subject to [[d], < A’.
Hence, the Levenberg-Marquardt algorithm is of the trust-region type (discussed in

the Notes at the end of Section 4.4 in Practical Optimization [15]), and a “good”

value of 4, (or A’) must be chosen in order to ensure descent. If 4, is zero, d, is

the Gauss-Newton direction; as 4, — 0, |d,| - 0 and d, becomes parallel to the
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steepest-descent direction. This implies that F(x, + d,)<F, for sufficiently large
.

Let d,,,(4,) denote the solution of (3.1) for a specified value of x,, where
A, is positive. If J, is rank-deficient, in general

“du —diy (ﬂ'km

=0(1), (3.3)
]

regardless of the size of |Q(x)| or 4,.

We use in this study publicly available code LMDER]1 from Argonne [22] for the
Levenberg-Marquardt method. Error tolerance for termination is used value of 1x10°
for Levenberg-Marquardt.

3.2 Simulated Annealing

Simulated annealing's roots are in thermodynamics, where one studies a
system's thermal energy. A description of the cooling of molten metal motivates this
algorithm. After slow cooling (annealing), the metal arrives at a low energy state.
Inherent random fluctuations in energy allows the annealing system to escape local
energy minima to achieve the global minimum. But if cooled very quickly (or
"quenched"), it might not escape local energy minima and when fully cooled it may
contain more energy than annealed metal. Simulated annealing attempts to minimize
some analogue of energy in a manner similar to annealing to find the global minimum.
Details can be found in Press et al [11].

According to Goffe et al [23], early simulated annealing algorithms considered
combinatorial systems, where the system's state depends on the configuration of
variables. Perhaps the best known is the traveling salesman problem, in which one
tries to find the minimum trip distance connecting a number of cities. Combinatorial
simulated annealing has been used successfully in computer and circuit design
(Kirkpatrick et al [24] and Wong et al [25]), pollution control (Derwent [26]), a special
case of 0-1 programming (Drexl [27]), neural networks (Wasserman et al [28]),
reconstruction of polycrystalline structures (Telly et al [29]) and image processing
(Carnevali et al [30]). Ouenes et al [31] have studied over accelerating the convergence
of the algorithm by adjusting the reduction factor automatically.
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This study uses Corana et al’s [32] extensive source code named SIMANN of
simulated algorithm modified by Goffe [23]. Corana et al [32] introduces extensions
to the simulated algorithm and its Fortran90 version prepared by A. Miller [33]. One
modification checks that the global optimum is indeed achieved, while another allows
the researcher to restrict optimization to a subset of the parameter space (this can be
very useful for understanding the function). The third extension allows the researcher
to determine a critical initial parameter for the algorithm, while the final one directs the
selection of parameters that control the robustness of the algorithm. This allows the
researcher to minimize the execution time of the algorithm. The Corana et al [32].
implementation of simulated annealing for continuous variable problems appears to

offer the best combination of ease of use and robustness, so it is used in this study.

The problem of determining the position in n-space of the minimum of a
given function of n variables has been tackled using nonlinear programming methods

for many years, in practice since digital computers have been available.

If the cost function is unimodal in the domain of interest, one can choose
among many good alternatives. Some of the available minimization algorithms
(direct methods) involve only function evaluations, such as Nelder and Mead. Others
also use the evaluation of the derivatives of the cost function such as Levenberg-
Marquardt and are considered to be more efficient than direct methods; but they are
also more complicated and inclined to terminate far from the minimum if the cost

function is very ill-conditioned.

Under mild conditions on the test functions, these stochastic methods
guarantee asymptotic convergence to the global optimum as the number of sample
points increases. All of these techniques are efficient in the case of functions with a
few local minima; but, in practice, many optimization problems deal with a large
number of variables (up to tens or hundreds) and/or a very large number of local
minima that is often an increasing function of the number of variables. In this

situation, traditional methods offer low efficiency and limited reliability.

Recently, a global optimization algorithm called Simulated Annealing (SA)
has been proposed in the area of combinatorial optimization, that is, when the cost
function is defined in a discrete domain. This method is reported to perform well in
the presence of a very high number of variables (even tens of thousands). It is based

on random evaluations of the cost function, in such a way that transitions out of a
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local minimum are possible. It does not guarantee, of course, to find the global
minimum, but if the function has many good near optimal solutions, it should find
one. In particular, this method is able to discriminate between “gross behavior” of the
function and finer “wrinkles”. First, it reaches an area in the function domain where a
global minimum should be present, following the gross behavior irrespectively of
small local minima found on the way. It then develops finer details, finding a good,

near-optimal local minimum, if not the global minimum itseif.

3.2.1 Approach of Simulated Annealing
Let xbe vector in R" and (x,,x,,...,X, ) its components. Let f(x) be the

function to minimize and let q, <x, <b,,...,a, <x, <b, be its n variables, each
ranging in a finite, continuous interval. f does not need to be continuous but it must
be bounded.

Simulated Annealing algorithm is schematically shown in Figure 3.1. It
proceeds iteratively : Starting from a given point x,, it generates a succession of
points : xg,X,,...,X,,... tending to the global minimum of the cost function. New
candidate points are generated around the current point x, applying random moves

along each coordinate direction, in turn. The new coordinate values are uniformly

distributed in intervals centered around the corresponding coordinate of x,. Half the

size of these intervals along each coordinate is recorded in the step vector v. If the

point falls outside the definition domain of f, a new point is randomly generated
until a point belonging to the definition domain is found. A candidate point x' is

accepted or rejected according the Metropolis [34] criterion :

If Af <0, then accept the new point : x,,, = x'

else accept the new point with probability:
p(ar) =exp(- A7/T) (3.4)

where Af = f(x')- f(x,) and T is a parameter called temperature.
At a fixed value of T' the succession of points x,, X, ,...,X,,... is not downhill,

except when T = 0. For values of T large compared to the mean value of
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Initialize parameters

Perform a cycle of random moves, each along one
coordinate direction. Accept or reject each point
according to the Metropolis criterion. Record the

optimum point reached so far,

No. cycles =N

Adjust step vector v.
Reset no. cycles to 0

No. step
Adjustment > N,

Reduce temperature.
Reset no. adjustments to 0.
Set current point to the optimum.

Stopping criterion
satisfied ?

Figure 3.1 Flow chart of simulated annealing algorithm.
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| (x,)-f (xk] (x, and x, are points randomly chosen inside the definition domain
of f) almost all new points are accepted and succession is a random sampling of f.
The SA algorithm starts at some “high” temperature T, given by the user. A

sequence of points is then generated until a sort of “equilibrium” is approached; that

is a sequence of points x, whose average value of f reaches a stable value as i
increases. During this phase the step vector v, is periodically adjusted to better

follow the function behavior. The best point reached is recorded as x,, .

After thermal equilibration, the temperature T is reduced and a new

sequence of moves is made starting from x,,, until thermal equilibrium is reached

again, and so on. The process is stopped at a temperature low enough that no more
useful improvement can be expected, according to a stopping criterion that we will
describe later. The SA optimization algorithm can be considered analogous to the
physical process by which a material changes state while minimizing its energy. A
slow, careful cooling brings the material to a highly ordered, crystalline state of
lowest energy. A rapid cooling instead yields defects and glass-like intrusions inside

the material.

From an optimization point of view, an iterative search accepting only new
points with lowest function values is like rapidly quenching a physical system at zero
temperature. It is very likely to get stuck in a metastable, local minimum. On the
contrary, SA permits uphill moves under the control of a temperature parameter. At
higher temperature only the gross behavior of the cost function is relevant to the
search. As temperature decreases, finer details can be developed to get a good final
point. While the optimality of the final point cannot be guaranteed, the method is
able to proceed toward better minima even the presence of many local minima.

A detailed description of the algorithm follows :

Step 0 (Initialization)
Choose
A starting point x, .
A starting step vector v,.

A starting temperature 7.
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A terminating criterion € and a number of successive temperature
reductions to test for termination N._. |
A test for step variation N and a varying criterion c.
A test for temperature reduction N, and a reduction coefficient r; .
Set i,j,m,k to 0. i is the index denoting successive points, j denotes

successive cycles along every direction, m describes successive step adjustments,
-and k covers successive temperature reductions.
Set hto 1. A is the index denoting the direction along which the trial point is
generated, starting from the last accepted point.

Compute f; = f(x,).

Set x,,, =%g5 fou = S

Setn, =0, u=12,..,n.

Set f = f,, u=12,..,~N_+1.

Step 1
Starting from the point x,, generate a random point x’ along the direction 4 :

x'=x,+rv,e, (3.5)

where ris a random number generated in the range [—- 1,1] by a pseudorandom

number generator; e, is the vector of the Ath coordinate direction; and v, is the

component of the step vector v,, along the same direction.

Step 2
If the 2™ coordinate of x' lies outside the definition domain of f, that is, if

x, <a, or x; >b,, then return to step 1.
Step 3

Compute f' = f(x').
If f'< f,, then accept the new point:

set x,,, = x',
set f;+l = f"
add 1to n, ;
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if f'< f,,, then set
Xpp = X',
Jom =1
endif;
else (f’> f;) accept or reject the point with acceptance probability p (Metropolis
move) :
p= exp(-é—;k—f) (3.6)

In practice, a pseudorandom number p'is generated in the range [0,1] and is
compared with p . If p’ < p, the point is accepted, otherwise it is rejected.
In the case of acceptance:
set x,,, =x',
set fra=1">
add1to 7,
add 1 to n,.
Step 4
Add1to 4.
if A < n, then goto step 1;
elseset htolandadd 1 to 5.
Step 5
If j < Ny, then goto step 1;
else update the step vector v,, :

for each direction u the new step vector component v/, is

v, =V, (1+cun—"/—Niﬂ) if n,>06Ng,
g 0.4
' = m, ; 04N 37
ST 04-n, /N, yon <04N;, @7
l4¢, ——TulTs
04
V, =V, otherwise.
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set j to 0,
set n, 100, u=12,..,n,
add 1to m.

The aim of these variations in step length is to maintain the average percentage of
accepted moves at about one-half of the total number of moves. The rather

complicated formula used is discussed at the end of this part. The ¢, parameter
- controls the step variation along each u ™ direction.
Step 6
If m < N, , then go to step 1;
else, it is time to reduce the temperature 7, :
set T, =171,
set f, = £,
add1to k&,

set m to 0.

It is worth noting that a temperature reduction occurs every Ng. N, cycles of moves

along every direction and after N, step adjustments.

Step 7 (Terminating Criterion)

If:
fo —feoalSe, u=12,.,N,_ (3.8)
f: —f;pt <e
then stop the search;
else:
add1to i,
set x; = x,,,
Set f; = f;)pt M
Go to step 1.

Reasonable values, found after some test optimizations done by Corana et al [32], of

the parameters that control the simulated annealing are
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N =20.
N, =max(100,5*n)
¢, =2, i=12,..,n.
N_=4.

r, =0.85

In this study, as control parameters which simulated annealing’s performance

depends on, these numerical values are used like N =20, N,.=5, ¢,=2, N_ =4,

£=10" and r, = 0.95.

3.3 Polytope Algorithm

This method was primarily introduced by Spendley et al {35], as an ingenious
idea for tracking optimum operating conditions by evaluating the output from a
system at a set of points forming a simplex in the factor-space, and continually
forming new simplices by reflecting one point in the hyperplane of the remaining
points. This idea is clearly applicable to the problem of minimizing a mathematical
function of several variables, as was recognized by J.A. Nelder and R. Mead [14].
This method was described by Nelder and Mead for the minimization of a function

of n variables, which depends on the comparison of function values at the (z+1)

vertices of a general simplex, followed by the replacement of the vertex with the
highest value by another point. The simplex adapts itself to the local landscape, and
contracts on to the final minimum. The method is shown to be effective and

computationally compact.

Gill et al [15] considered briefly the polyfope method, which is usually
termed the “simplex” method in order to give the flavour of a typical direct search
method,. However, they preferred not to use the latter name, in order to avoid

confusion with the better-known simplex method for linear programming,.

Polytope is an optimization technique in which one finds the best response in
a multidimensional space, where the variables may be interrelated. The polytope is
computationally slow but is quick and easy to implement. The essence of the method
is to observe the response of a system, change variables intelligently, not the new
response, change variables, etc. One is searching for a minimum or a maximum in a
response surface. The response surface is in n-dimensional space where the axes

correspond to the variables of the problem. A polytope is a geometric figure with
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n+1 vertices in an n-dimensional space. To illustrate this concept, consider a two
parameter space.

The polytope method requires only function evaluations, not derivatives. It is
not very efficient in terms of the number of function evaluations that it requires.
However the pélytope method may frequently be the best method to use if the figure
of merit is “get something quickly” for a problem whose computational burden is
small.

At each stage of the algorithm, »+1 points x,,x,,...,x,, are retained,
together with the function values at these points, which are ordered so that
F

n+l

> F, 2..2F, 2 F . The method derives its name because these points can be

considered to be the vertices of a polytope in n-space. At each iteration, a new
polytope will be generated by producing a new point to replace the “worst” point
X, (i.e., the point with the highest function value).

Let ¢ denote the centroid of the best n vertices x,,x,,...,x, , given by
1 n
c==>x, (3.9)
n j=1

At the beginning of each iteration , a trial point is generated by a single reflection
step in which Gill et al constructed the point x, = ¢ + a(c - x,,, ), where @ (a > 0) is

the reflection coefficient. The function is evaluated at x,, yielding F,.

There are three cases to consider.

1. If F<F,<F, (ie., x, is not either a new best point or a new
worst point), x, replaces x,,, and the next iteration is begun.
2. If F, <F, so that x, is the new best point, Gill et al [15] assume

that the direction of reflection is a “good” direction, and attempt to
expand the polytope in this direction by defining an expanded point
x, such that x, = c+ B (x, —c), where (8 >1) is the expansion
coefficient. If F, < F,, the expansion is successful, and x, replaces
x,,, . Otherwise, the expansion has failed, and x,,, is replaced by

X

re
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3. If F, > F,, the polytope is assumed to be too large, and should be

contracted. A contraction step is carried out by defining

_[e+y(xa=c), if FL2F,;
*Ne+ylx, -¢), if F.<F,,, (3.10)

‘where y(0<y<1) is the contraction coefficient. If F, <min{F,,F,,+l}, the
contraction step has succeeded, and x, replaces x,,,. Otherwise, a further

contraction is carried out. Figure 3.2 illustrates the position of the reflected and

expansion steps for a polytope in two dimensions.

Occasionally, the most recent polytope is discarded and replaced by a regular
polytope. This procedure is known as restarting. Restarting can be used to prevent
the polytope from becoming unbalanced after several successive expansions are
made. In this case the best two points are retained and their vector-difference
determines the length of the side of the new regular polytope. A restart may also be
made to check the validity of a solution. In this case, the regular polytope may be

given the centre x, and side ||x, — x,,,|,. If the algorithm re-converges to the same

point, or 2niterations are made without finding a lower point, x, is regarded as an

adequate solution [15].

Modifications can be made to the polytope method that significantly improve
its performance. For example, during the contraction step described above, a new
point is found on a line joining what could be two poor points (the worst point and
the reflected point). In this case it is better to compute a point biased toward the best
point of the polytope. A modified contraction step that achieves this bias is given in
the following variation of Step 3 of the original algorithm.

3. If F, > F,, a contraction step is carried out by defining

X, +7(xn+l _xl)’ !f E‘ S F‘n+l;

3.11
‘ {xl+7(xr"x1)a if F,<F,,. G-1D

Another modification involves shrinking the polytope if the contraction step

is unsuccessful, or if the best point remains unchanged for many iterations. The
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polytope is shrunk by moving the vertices half-way toward the current best point in
the order x,,x;,.... Note that the best point may change during the shrinking process.

Figure 3.2 The position of the reflected point x, and expanded point x, fora
polytope in two dimensions. The vertex of the polytope corresponding to the highest
function value is marked on the figure as F;.

The method has a geometrical naturalness about it which makes it delightful
to describe or work through. A simplex or polytope is the geometrical figure
consisting, in »n dimensions, of n+1 points (or vertices) and all their
interconnecting line segments, polygonal faces, etc. In two dimensions, a polytope is
a triangle. In three dimensions it is a tetrahedron, not necessarily the regular
tetrahedron. In general William H. Press et al are only interested in polytopes that are
non-degenerate, i.e. which enclose a finite inner »-dimensional volume. If any point
of a non-degenerated polytope is taken as the origin, then the n other points define

vector directions that span the »-dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum, so
that the success of a subsequent isolation was guaranteed. There is no analogous
procedure in multidimensional space. For multidimensional minimization, the best
we can do is to give this algorithm a starting guess, that is, an n-vector of
independent variables as the first point to try. The algorithm is then supposed to
make its own way downhill through the unimaginable complexity of an #-
dimensional topography, until it encounters an (at least local) minimum [11].
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This algorithm may be more appropriate and efficient when the gradient of
F is hard to calculate, or when the function value contains noise. For an n-
dimensional problem, this method maintains a simplex of »n+1 points (a triangle in
two dimensions, or a pyramid in three dimensions). This method is slow and can be
applied only to problems in which » is small. It is, however, extremely popular,
since it requires the user to supply only function values, not derivatives. In this study,
MINIM.F90 programmed by B. E. Shaw [36] and further amended by Alan Miller
[37] has been used as a source code of Polytope algorithm. We also use slightly
different values of control parameters which polytope algorithm’s performance
depends on them. These are stopping criterion (eps =10%), criterion for expanding
the simplex to overcome rounding errors (simp= 10%%) and initial step sizes

(step(number of unknown parameters)=0.4).

3.4 Confidence Intervals :

Confidence intervals predicts the uncertainty for a parameter in the estimated
parameters. Large confidence intervals for a parameter indicate that the uncertainty is
bigger in the estimated parameters. Similarly, small confidence intervals for a model
parameter indicate that the parameter is determined more confidently.

We use the standard definition of confidence interval [38,39]. For example,

when we perform regression on pressure data, we compute the ¥ x100% confidence

intervals from

Br-tll-7/2,N, - N, )y KH@"»I[ <A, (3.12)
Sﬂim +t(1_7/2’Nd —Np)f V I(H@m))l li

where S denotes the estimate obtained by minimizing J (ﬁ) (Eq.4.1), B" denotes

the estimate of i™ model parameter at the minimum, H (ﬁ °°) denotes the sensitivity
coefficient matrix (containing derivatives of pressure data with respect to model
parameters) evaluated at the estimate 8°, B, represents the true, but unknown value
of the model parameter, S,, and t(1—7/2,N ,—-N p) is the value that cuts off
(1-7)/2x100% in the upper tail of r-distribution with N, - N , degrees of
freedom. In Eq. (3.12), s is computed from
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s= JIg° (3.13)

where N, denotes number of observed pressure and sandface flow rate data, N,

denotes number of unknown parameters.

We also use RMS (Root Mean Square Error) computations to calculate standard

-deviation over pressure or sandface flow rate data. This expression helps us to decide
whether optimization algorithms carry out parameter estimation successfully or not.
For example; for only pressure data, RMS can be shown by

N
RMS = |5 (8P, = BPrcss ) G149

i=l

where N denotes number of data points.

In our applications, we minimize the appropriate objective function with the
Levenberg-Marquardt and polytope methods with a restricted step procedure as
described by Fletcher [40], and constrain the unknown parameters in regression by
using the so-called imaging method of Carvalho et al [41]. Computer program
designed and written in this thesis study is attached with recordable CD inside back
page of this thesis. Also input page of this program which includes forward and

inverse computations is given in Appendix D.
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CHAPTER IV

APPLICATIONS OF NONLINEAR PARAMETER ESTIMATION TO
INTERFERENCE WELL TESTS

In this section, we focus on parameter estimation from interference tests in a
multilayer commingled system. The results given in this chapter pertain to ideal
data where the exact model is assumed to be known and are obtained by the
automatic type curve matching program developed in this work. We generate several
synthetic test cases pertaining to single, two and three-layer systems using the
forward model developed in this work, and then corrupt pressure and/or rate data
using random normal errors with zero mean and specified standard deviation to
simulate “real” test cases. Then, by matching observed pressure and/or rate data
corresponding to these test cases with three different optimization algorithms, we
investigate parameter estimation problem for interference tests in multilayer
commingled systems. As mentioned previously, we consider Levenberg-Marquardt,

polytope and simulated annealing methods for nonlinear parameter estimation.

In this study, the objective function which we try to minimize can be given in

the following general form :
s i[ApAB)—Ap.,M} 5 22[" ; q] “n
=l O, i=l =l jsl P

In this equation , B denotes unknown parameter vector. O n and O, denote

standard deviations on pressure change and sandface flow rate.. Moreover, Ap,, (ﬂ)

and ¢, (ﬁ) refer to pressure changes and sandface flow rates at both active and
observation wells computed by the model. In the same manner, Ap,, and q,, refer
to pressure changes and sandface flow rates measured at both wells. N, denotes the

number of wells which is equal to 2 (the active and observation wells) in our study.

N, denotes the number of data points on pressure and sandface flow rate data. N,
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denotes the number of layers in reservoir. It is worth noting from Eq. (4.1) that Eq.
(4.1) allows us to use different standard deviations for pressure change data sets
measured at the active and/or observation wells as well as different standard
deviations for sandface flow rate data measured from individual layers at both wells.
As can be seen in equation (4.1), the objective function has been structured in a
least-squares form. In least-squares method, measurement errors are assumed to be a
Gaussian random variable with zero mean and specified standard deviation. Indeed,

'in the literature, it is usually assumed that measurement errors are Gaussian.

4.1 Parameter Estimation in A Single-Layered Reservoir :

First, we look at parameter estimation for an interference test in a single-
layered reservoir system. In this application, the unknown parameters are
permeability, porosity, wellbore storage and skin factors at both the active and
observation wells. So, the total number of unknown parameters is 6. Here, we will
consider the use of different data sets to investigate which unknown parameters can
be reliably estimated from which data sets for this single-layer example. In order to
carry out this target, pressure data at only active well, pressure data at both wells and
pressure data and sandface flow rate data at both wells are considered as alternative
data sets in parameter estimation. Therefore, it’ll be possible to see which
parameters can be reliably estimated by using which observed data sets at the well.
Tables 4.1 and 4.2 presents the input model parameters used to generate the

interference test case to be considered in this application.

Table 4.1 Layer properties for regression 1 case.

Layer
k, md (permeability) 100
¢ (porosity) 0.15
¢, psia’ (Total compressibility) 1x10”
p,cp  (Fluid viscosity) 1.0
h, ft (Thickness of layer) 50
r, ft (The distance between wells) 200
| Sa, Skin factor at the active well 5
S,, Skin factor at the observation well 5
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Table 4.2 Well data for regression 1 case.

Active Well Observation Well
ryandr, ft 0.33 0.33
C, RB/psi (Wellbore | 0.5 0.5
storage)
Flow rate, g, RB/Day 1000 0

Because our aim is that a realistic regression analysis can be performed to estimate
the parameters of interest, active well pressure data were corrupted by adding them
normal errors with zero mean and 2 psi standard deviation, while observation well
pressure data were corrupted by adding them normal errors with zero mean and 0.5
psi standard deviation. No random errors were added to sandface flow rates at both

the active and observation wells.

4.1.1 Matching Only Pressure Data at Active Well: In this sub section, we assume
that we have pressure data measured only at the active well. Thus, we only match
active well pressure data to estimate all 6 unknown parameters. For performing
matching in all cases given in this section, we consider the Levenberg-Marquardt
method. In Table 4.3, the results of regression are presented together with the initial
guesses and confidence limits for the parameters. As can be seen from the table, only
permeability and wellbore storage coefficient at the active well could be obtained
reliably and confidently by matching only pressure data at the active well. Other
parameters couldn’t be estimated from the active well pressure data, because

observation well pressure data are needed.

Table 4.3 Results of Regression 1.1 to estimate all parameters.

PARAMETERS | INITIAL TRUE | OPTIMIZED | CONFIDENCE
GUESSES | VALUES VALUES LIMIT

k, md 200 100 98.939403 + 4.575
¢ 0.3 0.15 0.001404 + 1.722E-3

| Ca; RB/psi 0.001 0.5 0.498976 + 9.3594E-3
C,, RB/psi 0.001 0.5 0.003276 +0.1798

A 2.0 5.0 2.517103 + 4.36405E-4
Se 2.0 5.0 42.830449 +0.13444

Now, we investigate whether optimized values in Table 4.3 provide acceptable
matches of pressure data at both wells.. Therefore, curve matching to pressure data

at both wells is done separately by calculating interference well test data with
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optimized values obtained from inverse problem. Curve matching processes over the

active and observation pressure data are shown in Figures 4.1 and 4.2.
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Figure 4.1 Comparison of curve matches of true data with optimized data for
pressure drop at active well (Regression 1.1).
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Figure 4.2 Comparison of curve matches of true data with optimized data for
pressure drop at observation well (Regression 1.1).

71



As is seen from Figure 4.1, pressure data obtained from true initial values
and pressure drop data obtained from optimized values are matched perfectly for the
active well. Although matches for the active well pressure data are very good, the
match of observation well pressure data with the model observation pressure data is
quite poor. These results indicate that other parameters such as porosity and wellbore
storage and skin at the observation well cannot be estimated by using only active
well pressure data. Accordingly, pressure data at the observation well should be used
to estimate other parameters in regression, in addition to pressure data at the active

well.

4.1.2 Matching Pressure Data at Both Active and Observation Wells: In this
subsection (Regression 1.2), we consider that we have pressure data at both the
active and observation wells, but no flow rate data. We performed regression
analysis to estimate the same six parameters as in section 4.1. In Table 4.4, the
results of regression are presented together with initial guesses and confidence limits
for parameters. The results indicate that porosity and skin at the active well in
addition to permeability and wellbore storage at the active well are reliably and
confidently estimated by matching pressure data at both the active and observation
wells. Note that wellbore storage and skin at the observation well are still could not

be determined confidently even if we considered observation well pressure data in

matching.
Table 4.4 Results of Regression 1.2 to estimate all parameters.
}’ARAMETERS INITIAL TRUE OPTIMIZED | CONFIDENCE
GUESSES | VALUES VALUES LIMIT
ik, md 200 100 101.317165 + 0.26209
¢ 0.3 0.15 0.139996 + 7.8827E-3
2 RB/psi 0.001 0.5 0.500539 + 2.83206E-3
os RB/psi 0.001 0.5 0.873005 +(.13522
E 2.0 5.0 5.152430 + 1.08422E-2
o 2.0 5.0 0.297684 + 1.50105

Next, we investigate whether the set of optimized parameters values in Table 4.4
provides good matches of pressure data and sandface flow rate data at both wells or
not. Therefore, curve matching to both pressure data and sandface flow rate data is

done separately by calculating interference well test data with optimized values
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obtained from inverse problem. Curve matching processes over pressure data and

sandface flow rate data are shown in Figures 4.3 and 4.5.
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Figure 4.5 Comparison of curve matches of true data with optimized data for
sandface flow rates at both active and observation wells (Regression 1.2).

As can be seen from Figures 4.3 and 4.4, the matches of active and
observation well pressure data with the corresponding model curves are quite good.
However, the match of sandface flow rate at the observation well with the
corresponding model curve is quite poor. The reason for this poor match on sandface
flow rate data is due to poor optimized estimates of wellbore storage and skin at the
observation well. Although pressure data matches for the active and observation
wells are very good , all parameters except wellbore storage and skin factor at
observation well could be obtained exactly by matching both the active and
observation pressure data. Therefore, we can state that wellbore storage and skin at
the observation well cannot be estimated reliably from pressure data at both the
active and observation wells. Accordingly, next we investigate whether adding
sandface flow rate data measured at the observation well in addition to pressure data

at the both wells can help resolving these two parameters.

4.1.3 Matching Pressure Data at Both Wells and Sandface Flow Rate Data at
Only Observation Well : In this subsection (Regression 1.3), we assume that we
have pressure data at both wells and the sandface flow rate data only at the
observation well. We performed regression analysis to estimate the six parameters
considered previously. In Table 4.5, the results of this regression application are
presented together with initial guesses and confidence limits. As can be seen, all
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parameters including wellbore storage and skin at the observation well can now be
estimated confidently . As can be seen from Table 4.5, confidence limits for the
parameters are very small indicating high confidence in the optimized values. .

As been in previous regression steps, now we want to investigate again that
whether optimized values in Table 4.5 can match pressure data and sandface flow
rate data at both wells or not. Therefore, curve matching to both pressure data and

. sandface flow rate data is done separately by calculating interference well test data
with optimized values obtained from inverse problem. Curve matching processes

over pressure and sandface flow rate data are shown in Figures 4.6-4.8.

Table 4.5 Results of Regression 1.3 to estimate all parameters.

PARAMETERS | INITIAL TRUE OPTIMIZED | CONFIDENCE
GUESSES | VALUES VALUES LIMIT

k, md 200 100 100.29274 + 0.186942

¢ 0.3 0.15 0.147952 + 3.99527E-3
| Cay RB/psi 0.001 0.5 0.499974 + 1.964875E-3

C,, RB/psi 0.001 0.5 0.499755 + 1.48895E-2

Sy 2.0 5.0 5.035773 +2.23741E-2

Se 2.0 5.0 5.177492 + (.713833

As is seen in Figures 4.6-4.8, pressure and sandface flow rate data obtained from true
initial values and pressure data obtained from optimized values are matched
perfectly for both the active well. Since all pressure and sandface flow rate data
belonging to the observation well are used to estimate parameter, all reservoir
parameters are estimated successfully in this sub section. It can be seen that pressure
data matches for the observation well are very good at all production times in Figure
4.7, distinctively from Figure 4.4. While sandface flow rate data at the observation
well calculated from true initial values and optimized values don’t match with each
other as seen in Figure 4.5, it can be seen in Figure 4.8 that sandface flow rate data
matches with each other perfectly because we used measured sandface flow rate data
belonging to the observation well for regression analysis. Consequently, the more
data described reservoir and wellbores we use in regression analysis, the more

parameter belonging to reservoir and wellbores we estimate.
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4.2 Demonstration of Performances of Optimization Methods :

As aforementioned, three different optimization algorithms were used to estimate
parameter in this study. These algorithms are divided to two groups as gradient-based
and non-gradient methods. These optimization methods were used for the above
applications and comparison of performances of these algorithms is shown in Figure
4.9 in terms of reaching the global minimum of the objective function. For all
methods, we considered the same set of initial guesses for parameters. As can be
seen from Figure 4.9, the Levenberg-Marquardt algorithm is the fastest one with
regard to reaching global minimum. Polytope algorithm is also a very fast technique
in comparison to simulated annealing. Note that simulated annealing requires a long
termination time and numerous number of function evaluations for this simple
application. Information on runtimes of the algorithms in interest is also given in the
inset of Figure 4.9. Note that simulated annealing requires almost 666 times bigger
runtimes than does the Levenberg-Marquardt algorithm, while polytope requires

almost ten times larger runtimes than does the Levenberg-Marquardt.
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Figure 4.9 Demonstration of performances of optimization algorithms.

4.3 Parameter Estimation in A Two-Layered Reservoir :

In this section, an interference test example in a two-layered reservoir system is
considered to estimate individual layer parameters. Reservoir and wellbore properties
are given by Tables 4.6-4.7. The active well pressure data were corrupted by adding
them normal errors with zero mean and 2 psi standard deviation, while observation
well pressure data were corrupted by adding them normal errors with zero mean and
0.5 psi standard deviation. In the same manner measurement error was added to

sandface flow rate at the active and observation well.

Table 4.6 Layer properties for regression 3 case.

Parameters Layer 1 Layer 2
k, md 100 50
¢ 0.15 0.3
c,, psi’! 1x10° 25x107
M, cp 1.0 1.0
h, fi 50 100
S, 5 20
S, 2 10

The distance between the active and observation wells is 350 fi.
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Table 4.7 Well data for Regression 2.

Active Well Observation Well
r,, ft 035 0.35
q. RB/day 1000 0.0
C, RB/ psi 0.5 0.1

'4.3.1 Matching Only Pressure Data at The Observation Well : In this subsection,

parameter estimation has been performed by using only pressure data at the

observation well. Results of parameter estimation are given below Table 4.8.

Table 4.8 Results of Regression 3.1 to estimate all parameters.

Parameters Initial Approximately | Optimized | Confidence
Guesses True Values Values Limits
C,, RB/ psi 0.0001 0.5 0.13935 + 0.9461309
C,, RB/ psi 0.0001 0.1 0.059958 + 0.996779
k,, md 50 100 101.87 +4.019107
&, 0.3 0.15 0.13333 + 0.0165082
S 15 5 32.579 +0.013878
S, 12 2 29.354 +2.81387
k,, md 100 50 23.142 + 1.74289
&, 0.15 0.3 0.4999 + 0.649078
S,z 2 20 30.634 +0.1313006
S, 1 10 21.131 +1.711581

As can be seen in Table 4.8, parameter estimation by using only pressure data at the
observation well cannot be carried out successfully. Since model data obtained by
using only observation well pressure response do not match with sandface flow rate
data of individual layers at the observation well (Fig. 4.11), it is not possible to

resolve all basic layer and wellbore parameters, even if the match for the observation

well pressure data is quite good (Fig. 4.10).
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with zero mean and 2 psi standard deviation has been added to only the observation
well pressure to obtain realistic observed pressure data. In this application, no
measurement errors were added to sandface flow rate data at the observation well.

Results of parameter estimation are given below Table 4.9.

Table 4.9 Results of Regression 3.2 to estimate all parameters.

Parameters Initial Approximately | Optimized Confid.ence
Guesses True Values Values Limits
C,, RB/ psi 0.0001 0.5 0.5631039 | +0.0104779
C,, RB/ psi 0.0001 0.1 0.100243 | +£0.00781712
k,, md 50 100 95.106444 + 0.852026
& 0.3 0.15 0.13184 + 0.00081131
Sar 9 5 4.513811 | +0.0018495
S, 5 2 2.28191 + 0.049009
k,, md 100 50 50.88142 + 0.0652508
o, 0.2 0.3 0.3484408 | 4 0.0098549
S, 10 20 183582 | 4 0.008893
Sz 6 10 10.5518 +0.05294

As can be seen in Table 4.9, all unknown parameters are estimated reliably by using
only pressure and sandface flow rate data at the observation well. . Because we add
flow rate data of individual layers into parameter estimation, , it becomes possible to
estimate all individual layer and wellbore parameters, even if the matches
belonging to the active well pressure and sandface flow rate data are not very good
(Figs. 4.14 and 4.15) . If we added the active well pressure and sandface flow rate
data into regression analysis, we would surely obtain adapted match between model

and true sandface flow rate data at the active well.
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Figure 4.15 Comparison of curve matches of true data with optimized data for
sandface flow rates at the active well (Regression 3.2).

4.3.3 Matching Both Pressure and Corrupted Sandface Flow Rate Data at The
Observation Well : In this sub section, regression analysis has been applied to
pressure response and sandface flow rate of individual layers at the observation well,

as been sub section 4.2.3. However, measurement errors with zero mean and
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specified standard deviations have been added to both the observation well pressure
data and sandface flow rate data to obtain realistic observed pressure data.
Measurement error with zero mean and 1 RB standard deviation has been added to
the sandface flow rate data as a 1% weighted error at the observation well, while
measurement error with zero mean and 2 psi standard deviation has been added to

pressure data. Results of parameter estimation are given below Table 4.10.

As can be seen from Table 4.10, all parameters except skin factors for the
first layer at both wells could be estimated correctly. The reason that the skin
factors for the first layer cannot be obtained is due to lack of information about
pressure and sandface flow rate data at the active well and measurement error on
sandface flow rate data. If we had measured sandface flow rate data in 1% layer atthe
active well, we would estimate all parameters correctly. Figures 4.16-4.19 show the
matches of different data sets with the corresponding model data using the optimized
values given in Table 4.10.

Table 4.10 Results of Regression 3.3 to estimate all parameters.

Parameters Initial Approximately | Optimized j Confidence
Guesses True Values Values Limits
C,. RB/ psi 0.0001 0.5 0.578386 +0.0158869
C,, RB/ psi ‘0.0001 0.1 0.10047 + 0.00880297
k,, md 50 100 90.10318 + 0.957656
& 0.3 0.15 0.11374 | 1 0.00136527
Sa 15 5 3.40232 + 0.00217434
S, 12 2 6.19291 + 0.036707
k,, md 100 50 47.047 + 0.062739
@, 0.15 0.3 0.267769 + 0.011001
S.2 2 20 21.8542 +0.012575
S,2 1 10 9.00528 + 0.072548
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Figure 4.19 Comparison of curve matches of true data with optimized data for
sandface flow rates at the active well (Regression 3.3).

4.3.4 Comparison of Performances of Optimization Techniques According to

Different Initial Guess Set : In this section, regression analysis was applied to all

pressure and sandface layer flow rate data at the active and observation wells to

compare the performance of optimization techniques, using several different sets of
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initial guesses for the parameters. We regress on ten unknown parameters as those
given in Table 4.10. Randomly generated 21 trials with different sets of initial
guesses were used to determine the performance of each optimization method in

terms of runtime, number of iterations and the value of objective function at the

Table 4.11 Comparison of three optimization techniques.
Average Average Average
Success Ratio Runtime, Iteration Function
seconds Number Minimum
Levenberg- 18
Marquarar 8, 521217 13 667.3082
Polytope A 206.235 5574 726.392
Simulated 21
Annealing _ 21 5180.74 151000 672.28059

As can be seen in Table 4.11, 18 of 21 different initial guess trials for this application
can be carried out successfully without getting stuck at local minima by Levenberg-
Marquardt. In this problem, we can see that simulated annealing does not have any
local minimum problem. This is an expected result because simulated annealing is
known as a robust technique and it does not depend very much on initial guesses.
However, simulated annealing method is not good as much as Levenberg-Marquardt
and polytope techniques in terms of runtimes. Polytope technique is faster than
simulated annealing, but it depends on initial guess set more than simulated
annealing. Although Levenberg-Marquardt technique depends on initial guess set
like polytope, it appears as a more efficient method with respect to runtime and
function minimum value for minimization.

4.4 Hybrid Usage of L-M and SA at Three-Layered Reservoir :

In this study, a three-layered reservoir is considered and 14 unknown
parameters have been tried to be estimated correctly by using Levenberg-Marquardt
and simulated annealing algorithms collectively. Properties of reservoir and wellbore
are given in Tables 4.12-4.13. Measurement errors with zero mean and 2 psi standard
deviation have been added to pressure data at the active well. The active and
observation wells sandface flow rate data consist of measurement errors with zero

mean and 1 RB standard deviation as a %1 weighted error. At the same manner,
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measurement errors with zero mean and 0.5 psi standard deviation have been added

to pressure data at the observation.

Table 4.12 Properties of three-layered reservoir for regression 4.

Parameters Layer 1 Layer 2 Layer 3
k, md 15 30 100
¢ 0.1 0.2 0.3
1e,, psi?! 1x10° 5x10° 1x10™
M, CP 1.0 1.0 1.0
h, 20 10 30
Su 5 0.5 1
S, 3 2 0.5
Table 4.13 Wellbore properties for regression 4.
Active Well Observation Well
Ty St 0.35 0.35
q, RB/day 1000 0.0
C, RB/ psi 0.5 0.1

In this application, SA algorithm has been firstly used to reduce value of
objective function and create smart initial guesses to L-M algorithm, starting with
bad initial guesses. As we recall from Figure 4.9, optimization technique which
reduces value rapidly of function to be minimized in a several iteration is simulated
annealing method, but it converges to global minimum of objective function
gradually. To exceed problem of getting stuck at local minima of Levenberg-
Marquardt, we consider using the simulated annealing in a first Monte Carlo step to
create smarter initial guesses for Levenberg-Marquardt algorithm. One Monte Carlo
step consists of 1400 iterations and it takes approximately 96 seconds for 14
unknown non-linear regression problem. Having run simulated annealing for one
Monte Carlo step, optimal parameters obtained by using simulated annealing in one
Monte Carlo step have been used as an initial guess set for Levenberg-Marquardt
algorithm. Namely, inverse problem is tried to be solved by hybrid usage of
Levenberg-Marquardt and simulated annealing algorithms. After smarter initial guess
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set is created by using simulated annealing for one Monte Carlo step, Levenberg-
Marquardt algorithm can solve this inverse problem in a few iterations which takes
about 15 seconds. Thus, we can overcome the problem of Levenberg-Marquardt
algorithm getting stuck to local minima by using simulated annealing technique
collectively. Table 4.14 illustrates the results obtained for this hybrid application.

Table 4.14 Results of hybrid usage of Levenberg-Marquardt and simulated annealing

techniques.
SA Results
Parameter | Initial Guesses Agproximately After 1 L-R\?iaR&“lts
rue Values Monte (Hybridization)
Carlo Step
C.. RE/ 0.001 0.1 999529 |  0.099918
C,, R%S,- 0.001 0.1 0.12214 0.10012
k,, md 100.0 15.0 73.98521 14.90681
é 0.25 0.1 0.073758 0.09969
S, 10.0 5.0 11.68891 4.95212
S, 8.0 3.0 11.37028 3.00487
k,, md 200.0 30.0 189.919 29.7507
é, 0.1 0.2 0.35294 0.19883
S, 3.0 0.5 2.98105 0.46394
S, 5.0 2.0 22.86128 1.55182*
ks, md 50.0 100.0 59.73917 98.80885
é, 0.08 0.3 0.078326 0.29882
S, 3.0 1.0 1.80807 0.93513
S, 5.0 0.5 4.575 0.13844*
nf;nu:t:: .| 6,197.355413.14 |  1097.87152 | 6,235382.2 1108.175

As can be shown in Table 4.14, using simulated annealing in first Monte Carlo step
result in reducing objective function value from 6x10° to 6x10°. Moreover,
Levenberg-Marquardt method can complete parameter estimation successfully by
using initial guess set obtained from simulated annealing technique. To decide
whether optimization algorithms can reach to global minimum or not, we should look
at RMS which indicates measurement error over pressure and sandface flow rate data

(see Chapter III for the definition of RMS). These RMS values are given in Table
4.15.
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Table 4.15 RMS values of observed and mode! data.

Approximately True Values | Hybridized Optimization Results
ActiveWell | 0PSO | pctive Well | Observation Well
RMS RMS RMS RMS
PressreData | 416533 | 017333 | 4.128418 0.161401
Sandface Rate
Data at Layer 1 0.32204 0.00738 | 0.32481 0.00712
Sandface Rate
Data at Layer 2 0.61113 ’ 0.00097 0.61266 0.0009604
Sandface Rate
DatastLayerd | ~o20r | 0.00564 5.62681 0.0054

Since RMS values of observed and model data are almost equal to each other, we can
say that parameter estimation process or match of observed and model data is
performed successfully.
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Figure 4.20 Comparison of curve matches of observed data with optimized data for
pressure drop at the active well (Regression 4).
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Figure 4.21 Comparison of curve matches of observed data with optimized data for
sandface flow rates at the active well (Regression 4).
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Figure 4.22 Comparison of curve matches of observed data with optimized data for
pressure drop at observation well (Regression 4).
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As can be seen in Tables 4.19-4.21, matches of observed data and model data are
very good. However, skin factors for the 2°¢ and 3™ layers at observation well cannot
be estimated correctly, in spite of good match of all observed and model data. The
reason for this can be explained from Figure 4.22, because interference well test
sustained shortly till 300 hours. Therefore radial flow period could not be seen
exactly from the observation well, as can be seen in Figure 4.22. To be able to
estimate whole parameter correctly, we should continue interference well test such a

long time that radial flow period can be exactly felt at the observation well.

98



CHAPTER V

CONCLUSIONS

In this study, analysis of interference tests in commingled infinite-acting
multilayer reservbir systems has been considered. One well (the active well) is
produced at a specified total surface flow rate, and the second well (observation or
interference well) is shut-in for all times. We have presented a semi-analytical
solution procedure for computing the wellbore pressure drops and individual layer
sandface flow rates. This semi-analytical procedure is general in that it can be
applied for any number of layers and also can be applied if wellbore storage and skin

effects exist at one or both wells.

By considering simulated data generated from the semi-analytical model
developed, we examined the effects of wellbore storage and skin at one or both wells
both in single layer and multilayer systems. We found that the wellbore storage and
skin effects have a dominant influence on the sandface flow rates and observation
well pressure change so that conventional analysis procedures (e.g., type-curve
matching and semilog-straight line) render useless to determine individual layer
permeability and porosity and skin factors. The specific results indicate that the
difference between the pressure change at the observation well and the line source
solution is influenced more by the layer flow rates at the active well than the rate of
crossflow at the observation well. In some cases, the effect of crossflow on the
observation well pressure drop is negligible. In general the magnitude and direction
of crossflow through the observation well is governed by the difference in layer
pressures that would result if the layers were isolated at the observation well. For the
case where all skin factors are zero, crossflow always occurs from the low diffusivity
layer to the high diffusivity layer.

In the second phase of our study, both gradient-based and non-gradient based
optimization algorithms have been used and applied to our problem to perform non-
linear regression analysis of interference well test data. Parameter estimation

applications have been performed by using these algorithms; Levenberg-Marquardt
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as a gradient-based algorithm, and polytope and simulated annealing methods as
non-gradient based methods. We found that the Levenberg-Marquardt algorithm is a
very efficient and fast optimization tool, because it has an advantage using derivative
information of functions to be optimized. However, because it is known as a local
optimizer, it can get stuck at local minima when the user doesn’t give smart initial
guesses close to the global minimum. The second optimization algorithm used in
this study alternatively to Levenberg-Marquardt is polytope method. Since this
technique doesn’t use any derivative information of functions to be optimized
contrary to the Levenberg-Marquardt, it’s named as a random direct search method.
Although we found that the polytope algorithm isn’t fast as Levenberg-Marquardt,
when the function to be optimized is very difficult to be calculated its derivative, the
polytope algorithm proves useful for being easy to implement. The final optimization
method used in this study is simulated annealing. The simulated annealing doesn’t
use any derivative information of functions like Polytope technique. However, we
found that it is very slow when it is compared to the Polytope and Levenberg-
Marquardt algorithms. Simulated annealing algorithm is simple to implement like
Polytope technique, because user doesn’t need to prepare a subroutine calculating

derivatives or sensitivities of functions to be optimized.

All things considered, if wellbore storage and/or skin effects exist in
wellbores of both wells in a single or multi-layered reservoir system, it needs
sandface flow rate information beside pressure data in order to estimate values of
skin factor and permeability correctly. In parameter estimation, Levenberg-
Marquardt method enables to solve non-linear parameter estimation problem in a
very short processor time relatively to polytope and simulated annealing methods.
Nevertheless, Levenberg-Marquardt and polytope methods require to be used smart
initial guesses. Nonetheless, convergences of simulated annealing and polytope
methods depend on control parameters of their kernel codes relatively to Levenberg-
Marquardt method. Optimal values belonging to control parameters can change from
a problem to another problem. Although simulated annealing method does not
depend on initial guesses very much in parameter estimation, it requires a lot of

processor times.
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As a suggestion to new researchers, a hybrid method between Levenberg-
Marquardt and simulated annealing may be developed to succeed in estimating

parameters in a very short time without getting stuck at local minima.
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APPENDIX A

Solution and Demonstration with Matrix of Problem Including Wellbore
Storage and Skin Factor Effects

Let [ denote the number of layer in multi-layered reservoir system. The

elements of the 4 matrix, X and b column vectors shown in Table 2.1 are defined

by functions as given below : The elements of the coefficients matrix are

d; = —Prcy, (ruasB5:5,.), i=12,..1 (A.1)
e; =Py, (s AL, S,), j=12,..1 (A2)
b, = ~Ppey (r, A1), j=12,..1 (A3)
24 C
= d A.
fi A7 (A4)
24 C
= o A.
fr= (A5)

¢, variable series into the right hand-side vector is defined as given below :

For _] = 1,2, o

€y =4y (tl)PFCN,("wa ’tn+l)_ 94 (tn)PFCN,("wa sl — tn)
+ PFCN,("wa slas — 1) )(qqi ¢)- 94 (tl))

n-2
¥ k2=1 [PFCN J (rwa slner — lin )(qﬂf (t"*‘z )_ 1y (tk“ ))]

+4q, (tl )PFCN s (r,t“l)— q . (tn )PFCN ; (r9tn+l - tn) (A.6)
+ Py ,(r:tnn - tl)(qoj (tz)" 9. (tl))

n-2
+ kz=1 [PFCN ; (r’tn+l - tk+l)(qoj (tk+2 )" q, (tk+| ))]

For j=l+1,1+2,..21
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C; =44 (tl)PFCN,("’tnn)' q 4 (tn)PFCN,(r=tn+1 - tn)

OQ hQ

~N

wa

-~

qos

+ PFCN, ("’tnu -t anj (tz )_ q 4 (tlb))
n-2
+ z [PFCN, (r’tn-H —lin qui (tuz)_ q . (tk+l))]
k=1
+ qoj (tl )PFCN J (rwo ’tn+l )— qoj (tn )PFCN ] (rwo 9tn+l - tn) (A'7)
+ PFCN, (rwo sla1 — 4 )(qoj (tz )_ q o (tl ))
n-2
+ Z [PFCN, (rwo N tk+quoj (tk+2 )" gy (tk+1 ))]
k=1

gl = fi prf(tn)

A8
g2 = f; Avof(tn) ( )

: Wellbore storage coefficient at active well, RB/psi

: Wellbore storage coefficient at observation well, RB/psi
: Radius of active well, ft

: Radius of observation well, ft

qaj :
qoj :
9o
: Total surface flow rate at observation well, RB/day

Sandface flow rate of j layer at active well, RB/day
Sandface flow rate of j layer at observation well, RB/day
Total surface flow rate at active well, RB/day

Ap,, : Bottom hole pressure drop at active well, psi

Ap,, : Bottom hole pressure drop at observation well, psi

As can be seen from Egs. A.1-A.7, when the number of layers is increased,

both locations and the size of the coefficient matrix change. To solve the matrix

problem shown in Table 2.1, one can use any matrix solver based on Gauss-

elimination technique. In this work we used GBAND matrix solver given in Aziz and
Settari [42] to solve the matrix problem.

Firstly, if we begin from coefficient matrix in Table 2.1, this matrix forms

from nine (“9”) different series varying independently from each other. To be able to

see the changes of these series quite easily :

For a reservoir system where number of layers equals to one (“/ =1"),

coefficient matrix occured in solving the problem :
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d b 1 0
b ¢ 0 1
A4lxa)=| P (A.9)
1
1o 1 0 £

We make these series into the coefficient matrix read by computer program as given
below :

AQ) =d,, A(2)=A(5)=b,, AB3)=A(8)=A(9)=A(14)=1.0
A(4) = A(7) = A(10) = A(12) = A(13) = A(15) =0 (A.10)
AQD) = f;, A16)= f,

For a multi-layered reservoir system where the number of layers equals two

("1 =2"), the coefficient matrix occured in solving of this problem :

[d, 0:5 01 0
04,10 b :1 0
b, Oie 0:0 1
A4,(6x6)=| Pl : A.1l
070 8,10 60 1 N
1 110 0:f, 0O
0 0!1 1t0 f

where ;

A =d,, AB8)=d,
A(3)=b,, A(10)=b,
A(5)=A(11)=1.0
A(13)=b,, A(20)=b,
A(15)=¢,, A(22)=e,
A(18) = 4(24)=1.0
A(25) = 4(26) =1.0
A(33)=A(34)=1.0
A(29) = £, A(36) = f,

= Elements of Zone 1
=> Elements of Zone 2
=> Elements of Zone 3
= Elements of Zone 4
= Elements of Zone 5
=> Elements of Zone 6
=> Elements of Zone 7
= Elements of Zone 8
=> Elements of Zone 9

For I =2, rest of all the other elements of coefficients matrix equals to zero.

(A.12)

For a reservoir system where the number of layers equals to three ("] = 3") s

coefficients matrix occured in solving of this problem :
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d 0 0ib 0 0i1 0
0 d, 0.0 b 0:i1 0
0.0 4i0 0 bil 0

4,(8x8)= 1:)‘ b(l g Z‘ e(z g g : (A.13)
0.0 510 0 eio 1
1 1 1:0 0 0:if, O
000 0i1 1 1i0 f

We make these values into the coefficient matrix Eq.(A.13) read by computer
program, as given below :

AV =d,, A10)=d,, A(19)=d; = Elements of Zone 1

A(4)=b,, A(13)=b,, A(22)=b,  => Elements of Zone 2

A7) =1.0, A(15)=1.0, A(23)=1.0 = Elements of Zone 3 (A.14)
A(25)=b,, A(34)=b,, A(43)=b, = Elements of Zone 4

A(28)=e,, A(37)=e,, A(46)=e, => Elements of Zone 5

A(32) =1.0, A(40)=1.0, A(48)=1.0 => Elements of Zone 6

A(49) = A(50) = A(51)=1.0 => Elements of Zone 7
A(60) = A(61) = 4(62)=1.0 = Elements of Zone 8
A(55) = f;, 4(64) = f, = Elements of Zone 9

For a multi-layered reservoir with four layers ("l = 4"), the coefficient matrix

occured in solving the matrix :

0: 0 0
0 dp 0 0.0 b 0 0i1 0
0 0 d, 0{0 0 b 0{1 0
0 0 0 4,00 0 0 bt 1 0 |Zoneb
b, 0 0 0:ie 0 0 0:0 1
4,(10x10)= 0 0i0 ¢ 0 0 0/1 (A.15)
0.0 5 010 0]
0 b, E
11 i
0 0! i
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We make again these elements into the coefficient matrix Eq.(A.15) read by

computer program, as given below :

AN =d,, A(12)=d,, A(23)=d,, A(34)=d, = Elements of Zonel
A(S)=b,, A(16)=0b,, A(27)=b;, A(38)=b, => Elements of Zone 2
A(9)=1.0, 4(19)=1.0, A(29)=1.0, A(39) =1.0 => Elements of Zone 3
A(41)=b,, A(52)=b,, A(63)=0b,, A(74)=b, => Elements of Zone 4
A(45)=e,, A(56)=e,, A(67)=e,, A(78)=e, => Elements of Zone S (A.16)

A(50) = A(60) = A(70) = A(80)=1.0 = Elements of Zone 6
A(81) = A(82)= A(83) = A(84)=1.0 = Elements of Zone 7
A(95) = A(96) = A(97) = A4(98)=1.0 = Elements of Zone 8
AR9)= f,, A(100) = f, => Elements of Zone 9

Coefficient matrices for (l =123, 4,...), to show how the elements into the

coefficient matrix change in terms of number of layers and to prove how correlations
of the series in every zones of coefficients matrix can be set up, are formed one by

one. It is important note that if we denote number of elements into coefficients

matrix by N, we can use expression of N = (2/ +2) easily.

Now, by starting from Zone 1 into the coefficient matrix in Table 2.1, let’s

show how all the variables and constant terms can be read from the matrix by using
computer program.
Firstly, as an initial step, zero number is assigned to all the terms into the

coefficient matrix. If we want to show this easily as a programming routine ;

For I=1, (21 +2)

A(D)=0.0

Next
A.1 Assignment of Elements in Zones 1 and §
If we look at Table A.1 carefully, assignment of Zone 1 is completed by assigning d,
term to first element of coefficient matrix formed for a one layered reservoir system.

However, if the number of layers increases, d ; terms occur as much as the number

of layers, along with d, is always assigned to first element of coefficients matrix.

Then d, term is assigned to the 8™ element of the coefficient matrix. In the same
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manner, subscripts of elements to which d, series need to be assigned of the

coefficient matrix are shown below in Table A.1, in case of the fact that the number

of layers equals to 3 and 4.

Table A.1 Assignment plan of elements in zones 1 and 5.
For /=1 For =2 For /=3 For /=4
A®) 1dG) | AD d@) | AG) d@) { AG) D@)
i=1 [j=11i=1y |j=11i=1 | |j=1]i=1 | |j=!
i=8 Jj=2 |i=10 Jj=21i=12 | }j=
i=19 | |j=31i=23 | |j=

! i=34 | |J=
DIFF 2 DIFF 3 DIFF 4
7 9 | 11

In cases that the number of layers equals to 5, 6, 7 ...., 10,... respectively, which order
number of coefficients matrix are d, series assigned to? To reply this question, we
need to look at expressions of DIFF 2, DIFF_3, DIFF 4, etc. in Table A.1. As seen
in Table A.1, while these expressions proceed like 7, 9, 11, ... in form of chain,
increase quantities of differences equal to each other. Namely, constant number “2”
=11-9 = 9-7=2 is the same as been in 100 layered reservoir problem too. This “2”
numerical value which can be defined as an increase quantity of differences gives
coefficient of function used to calculate which per step can be d, terms assigned
from coefficients matrix respectively. According to this, our step function based on
number of layers will be expressed by 2/ + X . If we look at Table 2.2, number X
which will give number seven (“7”) for / =2, and number of nine (“9”) for I =3, is
found as a number of three (“3”). Namely, our step interval function is constructed as

“27+3”. If we look at the matrix shown by Eq.(A.15) carefully, since ¢, and d,
series are located on the same band, ¢, series are assigned by the same step quantity
as done in d, from coefficients matrix. However, after final element of d, series is
assigned, subscript j will be equal to / (number of layers). From as this level, value

of subscript j will need to be set to zero in order to make e, series read from Zone 5
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in coefficients matrix. We can show assignment of element into Zones 1 and 5 in the
coefficients matrix explicitly by given below algorithm :

Counter=0
Counter_1=0
Do K=1,(2/+2),2I+3
Counter= Counter +1
If Counter < / Then

A(K)=d(Counter)
Else

Counter_1= Counter_1+1
IfCounter 1 </ Then
A(K)=e(Counter_1)
Else
Goto 10
Endif
Endif
Enddo
10 Continue

A.2 Assignment of Elements in Zones 2 and 4
When we look at the coefficient matrix Eq.(A.15), elements in Zones 2 and 4 have

the same step increase function as elements in Zones 1 and 5, even if initial locations
of elements are different, because elements in Zones 2 and 4 are located on diagonal
bands which have the same slope, as elements in Zones 1 and 5. What we only need
to do here, derives formulations which gives initial order values of series in Zones 2

and 4 in terms of number of layers.

Table A.2a Assignment plan of elements in zone 2.

For /=1 For /=2 For /=3 For /=4
A@ | bd) A() b(j) A(D) b@) A(i) b(@)
i=2 j=1 i=3 | =1 i=4 J=1 i=5 j=1

=10 =2 =13 J= i=16 j=2
l i=22 j= i=27 =3
v =33V |4

As seen in Table A.2a, we need to begin assigning elements by initial step
“l+1” in Zone 2 for each layer. If we note to the differences of subscripts in
direction of arrows in Table A.2a, we can see that they equal to “2/ + 3” like that in
Zones 1 and 5. This expression (“2/ +3”) also denotes step length. To understand
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and derive assignment procedure of elements in Zone 4, we need to look at Table

A.2b given below :
Table A.2b Assignment plan of elements in zone 4.
I=1igin [ =2 igin [ =3 igin [=4 igin
A@) | bG) A(i) b() A(i) b() A(i) b()
i=5 j=1 i=13| j=1 i=25 =1 i=41 =1
i=20 j= i=34 j= i=52 j=
l i=43 1i=3 i=63 =

v i=74v |j=4

If we look at carefully differences of initial element subscripts in Zone 4 and Zone 2,
it has been seen to proceed as a chain in form of 5—-2 =3, 13 — 3=10, 25 - 4 =21
and 41 — 5 =36, etc. If we look at difference of differences, we can see that they grow
up by increases like 7, 11, 15, 19, ... . If we look at increase quantities of these
increases, we can reach to constant value “4” which means that initial value of
elements in Zones 4 and 2 can be related to number of layers (“7 ).

Looking at Table A.2a and A.2b, differences between initial elements of
series or bands in both Zones 2 and 4, can be seen as 3, 10, 24, 36, in turn by
increasing number of layers. Namely, while number of layers equals to 1 (“I =1"),
difference of order numbers of initial elements of diagonal bands in Zones 2 and 4 of
the coefficients matrix, equals to three (3, for / =1), ten (10, for [ = 2), twenty-four
(24, for [ = 3), thirty-six (36, for / =4) and so on. Mathematical expression of this

relationship appears to be “2/% +/”. While elements in Zone 2 are assigned by order

number of “/+1”, elements in Zone 4 are assigned too by order number of
“l+1+ (21 2y l)” from the coefficients matrix.

Elements in Zones 2 and 4, are assigned briefly and clearly by using

algorithm given below :

Counter 2=0
Do K=1I+1, (21 +2), 21 +3
Counter_2=Counter 2+1
If Counter 2 </ Then
A(K)=b(Counter_2)
AK+(21? +1))=b(Counter_2)
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Else

Goto 20
Endif
Enddo
20 Continue

A.3 Assignment of Elements in Zone 3

If we again look at the coefficient matrix Eq.(A.15), all elements which we need to
assign from Zone 3, equal to one (“1”). (Note ; since zeros are firstly assigned from
the coefficient matrix, we don’t make them read second times). If correlation logic
used for assigning elements of Zones 1, 2, 3 and 4 is performed in the same manner,
whatever number of layers equals to any number, elements (e.g., 1’s) in Zone 3 of

the coefficient matrix are read easily by using algorithm given below :

Counter_3=0
Do K=2/+1, (21 +2), 21 +2
Counter 3= Counter_3+1
If Counter 3 </ Then
AK)=1.0
Else
Goto 30
Endif
Enddo
30 Continue

A.4 Assignment of Elements in Zone 6

All elements in Zone 6 of the coefficient matrix Eq.(A.15) are equal to one (“1”) as
been in Zone 3. If the correlation logic used for assigning elements of Zones 1, 2, 3,
and 4, is performed in the same manner, whatever dimensions of the coefficient
matrix are, elements (e.g., 1°s) in Zone 6 of such a coefficient matrix are read or

assigned easily by using algorithm given below :

Counter_4=0

Do K=2I* +4L+2, L +2)*,2L+2
Counter_4= Counter_4+1
IfCounter 4 < L Then
AK)=1.0
Else
Goto 40
Endif
Enddo
40 Continue
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A.S Assignment of Elements in Zones 7 and 8
If we again look at the coefficient matrix Eq.(A.15), all elements in Zones 7 and 8

are equal to one (*“1”). To make computer program read elements in Zones 7 and 8,
by using assignment logic of elements in other zones of the coefficient matrix,

algorithms given below can be used easily :

Counter 5=0 N
Do K= 412 +4l +1, (21 +2), 1
Counter_5= Counter_5+1
If Counter 5 </ Then

A(K)=1.0 Assign from Zone 7
Else > &
Goto 50
Endif
Enddo
50 Continue ’)
) Counter_6=0 . )

Do K=4* +71+3, (21 +2), 1

Counter_6= Counter_6+1
If Counter 6 </ Then
A(K)=1.0 ? Assign from Zone 8

Else .

Goto 60

Endif

Enddo

60 Continue _J

A.6 Assignment of Elements in Zone 9

In this zone, there are two variables which we need to assign. One of these f, is
always read from order number which equals to number of all elements into the
coefficients matrix, but other of these variables, f, is always read from order number

which equals to number less as much as 2/ + 3 from number of all elements into the

coefficient matrix. We can express this in the simple form as given below :

Al21+28)= £,
Al +2¢ -@1+3))= £,

Thus, we have achieved that elements on the diagonal and horizontal bands into the

coefficients matrix are assigned in the series form.
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Now, let’s make right hand-side vector in Table 2.1 denoted by b read and
we need to assign variables into this vector to one series as defined by D( I ). This

process can be done extremely easily as given below :

Do K=1, /

D(K)=c,(K) !Equation (A.6)
Enddo
Do K=I+1,2!

DX)=c,(K) !Equation (A.7)
Enddo

DQRI+1)=q,(t)+ g,
D(21+2)=¢q,(@)+¢g,

Having been read all data in matrix mentioned above in series form, GBAND matrix

solver [42] algorithm was used to solve this problem in forward mode.

115



APPENDIX B

B.1 Comparison, Accuracy and Time Efficiency Analysis
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Figure B.1 Pressure change and pressure-derivative versus time at the active well

which consists of 3 points on each log cycle.
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Figure B.2 Sandface flow rates versus time at both wells which consists of 3 points
on each log cycle.
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Figure B.9 Pressure change and pressure-derivative versus time at the active well
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Table B.1a Comparison of analytical and numerical solutions; dimensionless layer
rate dooz. ( f, =1.0, 7,=100, r, =1000 and s, =5, =S, =5, =0)

Table B.1b Comparison of analytical and numerical solutions in terms of number of

Onur's .

Analytical This Study

tD/rDZ Jpo2 Do2 (N=1 0)
0.01 0.0105 0.00976
0.05 0.029757 0.02892
0.08 0.035649 0.03505
0.1 0.038393 0.03792
0.5 0.052672 0.05246
0.7 0.053661 0.05358
1 0.054005 0.05402
2 0.053189 0.05336
6 0.049947 0.05025
10 0.048194 0.04843
20 0.04583 0.04606
50 0.04289 0.04311
80 0.041491 0.04166
100 0.040853 0.04098

time points on each log cycle; dimensionless layer rate pog.
(f, =10, n,=100, r, =1000 and s, =5, =5,=5,=0)

This Study This Study This Study This Study
% Deviation % Deviation % Deviation % Deviation
(N=10) (N=20) (N=30) (N=50)
7.0476 1.581 1.173 0.781
2.8128 0.607 0.451 0.298
1.6803 0.495 0.372 0.257
1.2320 0.453 0.344 0.242
0.4025 0.051 0.030 0.011
0.1509 0.005 0.000 0.004
0.0278 0.031 0.022 0.013
0.3215 0.088 0.060 0.036
0.6066 0.136 0.098 0.063
0.4897 0.139 0.100 0.064
0.5019 0.135 0.096 0.061
0.5129 0.126 0.092 0.059
0.4073 0.119 0.085 0.056
0.3109 0.115 0.083 0.054
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Table B.2a Comparison of analytical and numerical solutions; dimensionless
pressure drop Pwp_ ( f, =1.0, 77,=100, r, =1000 and s, =5, =5, =5,,=0)

Table B.2b Comparison of analytical and numerical solutions in terms of number of

Onur's

Analytical This Study

to/Tp” Pyup P,p (N=10)
0.01 5.594 5.58944
0.05 6.4084 6.40426
0.08 6.6414 6.63704
0.1 6.7502 6.74669
0.5 7.5262 7.52285
0.7 7.6913 7.68944
1 7.8689 7.86779
2 8.221 8.21958
6 8.7861 8.78508
10 9.0502 9.04932
20 9.4082 9.40727
50 9.8802 9.87927
80 10.122 10.12103
100 10.236 10.23573

time points on each log cycle; dimensionless pressure drop, Pup
«f, =10, n,=100, r, =1000 and s, =5, =58, =5,=0)

This Study This Study This Study This Study
% Deviation % Deviation % Deviation % Deviation
N=10) (N=20) (N=30) (N=50)
7.0476 1.581 1.173 0.781
2.8128 0.607 0.451 0.298
1.6803 0.495 0.372 0.257
1.2320 0.453 0.344 0.242
0.4025 0.051 0.030 0.011
0.1509 0.005 0.000 0.004
0.0278 0.031 0.022 0.013
0.3215 0.088 0.060 0.036
0.6066 0.136 0.098 0.063
0.4897 0.139 0.100 0.064
0.5019 0.135 0.096 0.061
0.5129 0.126 0.092 0.059
0.4073 0.119 0.085 0.056
0.3109 0.115 . 0.083 0.054
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Table B.3a Comparison of analytical and numerical solutions; dimensionless
pressure drop Pop,. ( £, =1.0, 7, =100, r, =1000 and s, =S, =5, =5,,=0)

Table B.3b Comparison of analytical and numerical solutions in terms of number of

Onur's .
Analytical This Study
tp/Tp Pop Pop (N=10)
0.01 0.086441 0.09108
0.05 0.30682 0.31232
0.08 0.38744 0.39169
0.1 0.42783 0.43119
0.5 0.81452 0.81796
0.7 0.93126 0.93334
1 1.0692 1.0705

2 1.37 1.37029

6 1.8985 1.89767
10 2.1546 2.15387
20 2.5065 2.50571
50 2.9748 2.97401
80 3.2155 3.21484
100 3.3297 3.32923

time points on each log cycle; dimensionless pressure drop, Pop.
(f; = 1'0’ 7, =100’ p =1000 and Sa = Sa2 =55 = soz =0 )

This Study This Study This Study This Study
% Deviation % Deviation % Deviation % Deviation
(N=10) (N=20) (N=30) (N=50)
5.367 0.575 0.415 0.278
1.793 0.246 0.170 0.110
1.097 0.237 0.173 0.119
0.785 0.202 0.142 0.093
0.422 0.076 0.052 0.032
0.223 0.060 0.043 0.028
0.122 0.040 0.028 0.019
0.021 0.008 0.005 0.002
0.044 0.004 0.002 0.000
0.034 0.004 0.002 0.000
0.032 0.004 0.002 0.000
0.027 0.002 0.001 0.002
0.021 0.005 0.003 0.001
0.014 0.003 0.002 0.000

124




Table B.4a Comparison of analytical and numerical solutions; dimensionless layer
rate dpa. ( f, =1.0, 77,=100, 7, =1000 and s, =5, 5, =20, 5, =2, 5, =10)

Onur's

Analytical This Study

tp/rp’ 92 qpx2 (N=10)
0.01 0.32692 0.32666
0.05 0.33371 - 0.33351
0.08 0.3355 0.33532
0.1 0.33629 0.33614
0.5 0.34126 0.34107

0.7 - 0.34215 0.342

1 0.34303 0.34291
2 0.34459 0.34449
6 0.34679 0.34669
10 0.34772 0.34764
20 0.3489 0.34884
50 0.35036 0.35029
80 0.35106 0.35101
100 0.35138 0.35134

Table B.4b Comparison of analytical and numerical solutions in terms of number of

time points on each log cycle; dimensionless layer rate qpao,
«f, =10, n,=100, r, =1000 and s, =5, s5,,=20, 5,,=2, 5,,=10)

This Study This Study This Study This Study
% Deviation % Deviation % Deviation % Deviation
(N=10) (N=20) (N=30) (N=50)
0.080 0.009 0.008 0.006
0.060 0.003 0.007 0.010
0.054 0.010 0.008 0.005
0.045 0.012 0.009 0.006
0.056 0.008 0.006 0.003
0.044 0.009 0.007 0.005
0.035 0.009 0.006 0.004
0.029 0.004 0.003 0.002
0.029 0.008 0.005 0.003
0.023 0.006 0.005 0.003
0.017 0.005 0.003 0.001
0.020 0.004 0.004 0.002
0.014 0.006 0.003 0.002
0.011 0.003 0.002 0.001
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Table B.5a Comparison of analytical and numerical solutions; dimensionless layer
rate qpo2. ( f, =1.0, 5 ,=100, r, =1000 and s, =5, s, =20, 5, =2, 5,,=10)

Onur's .

Analytical This Study

tp/Tp- oz Qoo (N=10)
0.01 0.0088277 0.00806
0.05 0.024916 0.02435
0.08 0.030038 0.02962
0.1 0.032448 0.03211
0.5 0.047639 0.04723
0.7 0.05 0.04971
1 0.052179 0.05196
2 0.055632 0.05545
6 0.05973 0.05957
10 0.061296 0.06118

20 0.063209 0.0631

50 0.065475 0.06538
80 0.066549 0.06647
100 0.067041 0.06698

Table B.5Sb Comparison of analytical and numerical solutions in terms of number of

time points on each log cycle; dimensionless layer rate qpo2,
(f, =10, n,=100, r, =1000 and s, =5, s,, =20, s, =2, 5,,=10)

This Study This Study This Study This Study
% Deviation % Deviation % Deviation % Deviation
(N=10) (N=20) (N=30) (N=50)
8.696 4.284 4.020 3.814
2.272 0.411 0.289 0.187
1.392 0.337 0.246 0.163
1.042 0.335 0.235 0.154
0.859 0.142 0.105 0.065
0.580 0.128 0.090 0.058
0.420 0.114 0.081 0.052
0.327 0.094 0.062 0.041
0.268 0.061 0.042 0.028
0.189 0.059 0.038 0.024
0.172 0.052 0.033 0.020
0.145 0.032 0.027 0.018
0.119 0.034 0.026 0.017
0.091 0.032 0.024 0.016
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Table B.6a Comparison of analytical and numerical solutions; dimensionless
pressure drop Pp,

(f, =10, 5,=100, r, =1000 and s, =5, 5,,=20, 5, =2, 5,,=10)

Onur's .

Analytical This Study

to/Tp” Pup_ Pyp (N=10)
0.01 16.121 16.11615
0.05 16.994 16.98949
0.08 17.243 17.23786
0.1 17.359 17.35464
0.5 18.174 18.16857
0.7 18.343 18.33968
1 18.523 18.52069
2 18.876 18.87338
6 19.438 19.43653
10 19.7 19.69942
20 20.057 20.05596
50 20.528 20.52692
80 20.769 20.76836
100 20.883 20.88296

Table B.6b Comparison of analytical and numerical solutions in terms of number of

time points on each log cycle; dimensionless pressure drop, Pyp
«f, =10, ,=100, r, =1000 and s, =5, s,, =20, 5, =2, 5,,=10)

This Study This Study This Study This Study
% Deviation % Deviation % Deviation % Deviation
(N=10) (N=20) (N=30) (N=50)
0.030 0.003 0.003 0.002
0.027 0.011 0.012 0.014
0.030 0.004 0.002 0.000
0.025 0.006 0.004 0.002
0.030 0.004 0.003 0.001
0.018 0.003 0.001 0.000
0.012 0.002 0.001 0.000
0.014 0.006 0.006 0.005
0.008 0.002 0.002 0.001
0.003 0.000 0.001 0.001
0.005 0.003 0.002 0.002
0.005 0.003 0.003 0.003
0.003 0.001 0.001 0.001
0.000 0.001 0.001 0.001
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Table B.7a Comparison of analytical and numerical solutions; dimensionless
pressure drop Pop,

(f. =1.0, 7,=100, r, =1000 and s, =5, $,, =20, 5,=2, 5, =10)

Onur's .

Analytical This Study

tp/Tp- Pop Pop (N=10)
0.01 0.24065 0.23641
0.05 0.75486 0.7499
0.08 0.92682 0.92318
0.1 1.0099 1.00697
0.5 1.6446 1.64127
0.7 1.7907 1.78847
1 1.9513 1.94965
2 2.2773 2.27601
6 2.8178 2.81686
10 3.0743 3.07361
20 3.4246 3.42409
50 3.8896 3.8892
80 4.1285 4.12814
100 4.2419 4.24161

Table B.7b Comparison of analytical and numerical solutions in terms of number of

time points on each log cycle; dimensionless pressure drop, Pop,
«f, =10, ,=100, r, =1000 and s, =5, s,,=20, 5,, =2, 5,,=10)

This Study This Study This Study This Study
% Deviation % Deviation % Deviation % Deviation
(N=10) (N=20) (N=30) (N=50)
1.762 0.216 0.162 0.109
0.657 0.092 0.064 0.037
0.393 0.076 0.051 0.029
0.290 0.075 0.053 0.032
0.202 0.037 0.027 0.016
0.125 0.030 0.022 0.014
0.085 0.025 0.018 0.012
0.057 0.016 0.012 0.008
0.033 0.009 0.007 0.005
0.022 0.008 0.007 0.005
0.015 0.004 0.004 0.002
0.010 0.002 0.001 0.000
0.009 0.003 0.002 0.002
0.007 0.003 0.002 0.001
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B.2 Case Study Over Examining of CPU Time of GBAND Matrix Solver

Table B.8 CPU time of GBAND matrix solver to compute pressure drops and

sandface flow rates.

Number | Dimension of | Total Termination | CPU Time of GBAND For
of Layer Matrix Time Each Time Step (for one
For 101 Time Step time step)
1 (4x4) 0,38 sec < 0.05 sec
5 (12x12) 0,39 sec 0.05 sec
10 (22x22) 0,55 sec 0,05 sec
20 (42x42) 0,88 sec 0,06 sec
30 (62x62) 1.6 sec 0,06 sec
40 (82x82) 2.91 sec 0,06 sec
50 (102x102) 5.49 sec 0,06 sec
100 (202x202) 41,53 sec 0,39 sec
200 (402x402) 339,17 sec 3,73 sec

Numbers in first columns show number of layers of which reservoir forms.

Expressions in second columns demonstrate sizes of matrix formed in forward

computation. Third column displays computation times of a full well test which

consists of 101 times matrix solution. Question marks in last four boxes of third

column means that author didn’t want to wait any more seening results due to time

cost. Fourth columns displays run times per each matrix solution. As seen in Table

B.8, huge matrices occured in solving our problems are solved by GBAND matrix
solver fastly. Computer used to measure CPU times in Table B.8 had a 128 MB
RAM and a Celeron 400 Mhz cpu.
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APPENDIX C
Dimensionless Expressions

. The dimensionless wellbore pressure drops at both the active well and the

interference well (observation well) which is shut-in for all times are defined as

Pup = khAp,, C.1
141.2qu
and
poD = khpro C.2
141.2qu

In Egs. C.1-C2, Ap,, and Ap,, denote pressure drops at active and the

observation wells respectively. g represents surface flow rate.

The dimensionless times are given by the following equations :

4 —
[, = 2O37x107 7 c3

r

w

In Eq. C.3, 77 denotes the average diffusivity which is defined by

Ll

C4

n=

S
iyl

7]

The dimensionless sandface flow rate from layer j at the active well is defined by

- qu(t)
q 2

Dby C.5

where we have used the subscript “a” to denote the active well. The analogous

dimensionless sandface rate at the observation well is defined by
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Aoy = q"’(t), C.6

q

where the subscript “o” refers to the observation well. In Egs. C.5-C.6, qu(t) and
4, (¢) represent sandace flow rates in RB/day from layer j at the active well and the
observation well, respectively.

The dimensionless radial distances are defined as

rp =

C.7

r
rw

In Eq. C.5, r represents distance between the active and observation wells and r,

represents radius of the active or observation well.
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APPENDIX D

Input Page of The Program Designed In This Study

e,

EEXEEEEEEFEEEEEEREEEEEREEE R EEEREREERERLEEREE L EELE LT LR TN NN AN T 0TI 0636 00300 066 62
exxgxnsxzzzserrenzreezzrenr [NPUT FILE OF THE PROGRAM *%22stysnsssszssrasietsiss,
AEAAREFERREEXREBLRXEERERERERLRELRLERRELERE R ERBEEREEE XN R R T LR LR TR HT 00T 0NN NN
FERERRELRREEERTERFERERLBEAREREERERTHE L EREERERRERERE R RS SR E TR RN R RS RE LR REE RS
= CARD1
EEXREEEEEERESER XX AL XL XXX RS RLERE LR R LR ZRRARBZRFRREFEREXLBLREEEAREREE AR XL RRRERE,
= NLAYER: NUMBER OF LAYERS
= VIS : VISCOSITY OF FLUID, cp
= PERM : PERMEABILITY OF INDIVIDUAL LAYER, md
* POR : POROSITY OF INDIVIDUAL LAYER

CT : COMPRESSIBILITY OF THE ROCK, 1/psi

THICK : THICRNESS OF INDIVIDUAL LAYER, ft

SKINA : SKIN FACTOR OF INDIVIDUAL LAYER IN ACTIVE WELL REGION, psi

SKINO : SKIN FACTOR OF INDIVIDUAL LAYER IN OBSERVATION WELL REGION, psi

: RADIUS OF ACTIVE WELL, ft

RWO : RADIUS OF OBSERVATION WELL, ft

R : DISTANCE BETWEEN ACTIVE AND OBSERAVIION WELLS, ft

CaA : WELLBORE STORAGE AT ACTIVE WELL
= C0 : WELLBORE STORAGE AT OBSERVATION WELL

36263 6363330 36 036 2636363 3 I 22 W6 NN T TR0 I NANNN T RRE XN

= L R RWA RwO

REXFAEEXXEERZXEEREREZXERFEXXEFXEREXERTZRAREXERXEREZAR XXX R SR EREXERLEREFLEREXERRXXS

3 350.0 0.35 0.35

e B N A S I . S D0, S0, G K. S %, AT . P B N 28, s . S8 I 2 I T S I T B S N I B I 2 N SN . 2 A, B 3, B0 W AL B B, 35, B, . 2. 2. D 30, 20. 3. 28, 30, 3 . B 28, 86, 3, M8 0, 38, 2. D, T I 3

T3 26 T e 2606 26 36 T 202 26 00 36 6 e 02 063 3606 0 3 36 060606 2 E 36 06 06 36 06 3696 36 26 395 36 25 U 36 2% 3 06 26 06 6 6 2 2630 06 0 0% 26 00 6 0 06 I,

= TI : INITIAL TIME VALUE, hour

= TF : FINAL TIME VALUE, hour

= NCYCLE : NUMBER OF TIME VALUES AT EACH LOG CYCLE

= RATEA : CONSTANT FLOWRATE AT ACTIVE WELL ON DIFFERENT SCHEDULES

*= RATEQ : CONSTANT FLOWRATE AT OBSERVATION WELL ON DIFFERENT SCHEDULES
= TNDEX : NUMBER OF SCENARIOS

EXRRXAZXFXXEXXXEREXEEXZFAEREZRXE XL B RERAREFERREEXRAERE XL REERREXFEXRERESREREEXRREREXE
-

= JNDEX TI

EEAFAEXEEFEEXXERERAXELLEZAERLEEL RS EREREXRELEEFEREL XXX BEXBXERLEXREERERERERREREEREELEE

2 0.001

FEXRBEEEEEEREEXERLEREEEEERERLEXRZZLREREREEELLERERELRREEBREXEZAEEE L EEREXXEEESREENES

= TF NCYCLE  RATEA RATED

030 30 30 3 30 06 30 06 3630 600 3606 36 36 3636 36 38 OF 36 06 2636 36 36 05 36 36 36 36 36 3 26 36 23 36 3638 35 36 0006 36 0635 06 35 36 36 36 95 36 30 36 3 36 36 3 36 38 08 O 3 3F 96 3 309 08 06 4 3 3 3¢

L I I B I N B
w»

1000.0 20 1000.0 0.0
2000.0 20 0.0 0.0
300.0 5 1000.0 0.0
263636 3 3606 06 3 3 2626 3 36 002 336 6 26 26 36 36 3 30 36 36 96 6 36 36 2 36T 3 3636 36 33 36 360 6 36 3 3 T 3K 96 95 36 3636 3 3 36 96 T 96 36 2636 3 36 38 9 96 36 36 36 3 30 96 36 996 % 36 36 2
* CARD2

TR I TN TN NI TN T T T T2 220062 3K 6 0 2 U 96 B 36069 263 6O 9636 2 08 06 36 36 3% 3 36 9% 95 % 2

ICOMP =====) 0 {Program Works in FORWARD Mode}
//DUHAMEL Principles//

ICOMP =====) 1 {Program Works in INVERSE Mode and Semsitivities are Computed}
//LEVENBERG-MARQUARDT Algorithm is used//

ICOMP =====) Z {Program Works in INVERSE Mode and it uses Gradient Free Technigu
//SIMULATED ANNEALING Algorithm// [Global Optimizer]

ICOMP =====) 3 {Program Works in INVERSE Mode and it uses Gradient Free Technigu
//POLYTOPE (Non-Linear Simplex) Algorithm// [Local Optimizer]
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EEEREREEREXBERRERERERFEREREARFEFELEREXXFEEZEREEREFXEFRRXXRF XX ERERFXERLRAXAXAFARERE

ez JCOMP
0

T3 200 005 3 0 26 06 2 36 366 T 36 6 3 2636 5 36 36 262 36 36 36 36 36 36 36 36 T 36 36 06 38 06 3% 36 36 0 36 30 08 3 96 96 06 5 96 360 36 36 6 06 36 6 030 06 6 3 06 6 30 06 336 06 00 6 06 00 26

= OPTIMIZATION PARAMETERS RELATED TO LEVENBERG-MARQUARDT ALGORITHM

* TOL MAXIT
9900045 96 0005 06 26 40 90 200698 9806 96 00 00 35 36 36 406 36 38 35 06 36 00 000 00 36 06 00 06 00 00 20 30 06 06 0000 00 6 20 000626 05 06 00 20 30 30 40 300 06 06 06250036 9 06 30 0500 30 06 30 00 0040 00 96 06 06 0
1.0e-6 1200

REEEEEEEEEEREREEEEEEEEEREEEEE TR EXREEEEREEREEEE LT EEEEEREEEE IR E LR E NN %58 EREE

= OPTIMIZATION PARAMETERS RELATED TO SIMULATED ANNEALING ALGORITHM
i*ii!*i**iilii*ii*ii*iii*iilii*i*iiiiii*i*!iiiiliil!iilii*iiiii*iliiillili*liilit
In thig description, SP is single precision, DP is double precision,

INT is integer, L is logical and (N) denotes an array of length n.

Thus, DP(N) denotes a double precision array of length n.

RT - The temperature reduction factor. (DP)

EPS - Error tolerance for termination. If the final function
values from the last neps temperatures differ from the
corresponding value at the current temperature by less than
EPS and the final function value at the current temperature
differs from the current optimal function value by less than
EPS, execution terminates and IER = 0 is returned. (EP)

NS - Number of cycles. After NS=N function evaluations, each element of
VM is adjusted so that approximately half of all function evaluations
are accepted. The suggested value is 20. (INT)

NT - Number of iterations before temperature reduction. After .
NT=NS*N function evaluations, temperature (T) is changed

by the factor RI. Value suggested by Corana et al. is
MAX(100, 5#N). See Goffe et al. for further advice. (INT)

NEPS - Number of final function values used to decide upon termi-

nation. See EPS. Suggested value is 4. (INT)

MAXEVL - The magimum number of function evaluations. If it is

exceeded, IER = 1. (INT)

C - Vector that controls the step length adjustment. The suggested

value for all elements is 2.0. (DP(N))

IPRINT - controls printing inside SA. (INT}

Suggested value: 1
Note: For a given value of IPRINT, the lower valued
options (other than 0) are utilized.
Input/Output Parameters:
T - On input, the initial temperature. See Goffe et al. for advice,
On output, the final temperature. (DP)

VM - The step length vector. On input it should encompass the region of
interest given the starting value X. For point X(I), the next
trial point is selected is from X(I) - W(I) to X(I) + WM(I).
Since VM is adjusted so that about half of all points are accepted,
the input value is not very important (i.e. is the value is off,

SA adjusts VM to the correct value). (DP{N))

836 336 T2 T332 AR 2 AT R R R RN I3 2 36260 AR 3 3 A 26 26 62632 26

T RT N3 NT  NEPS EPS MAXEVL IPRINT VM

22 2 36 3 2 23 2 U 32 2 236 3 2 2 00O 3 3 260 2 O 26 36 2 666 062 A 26 06 3 36 638 96 3 36 26 6 2 20 36 36 36 06 96 20 3 30 95 36 %% 3 3 3 363 96 36 36 3 3 %

900 0.95 20 5 4 1.0d-6 500001 1 1.0

SIRIE 363 38 L S0 3. 30 30, 30 06 3C 3, 0. 3620 5K I N, I 30 I 30 30 I 30 3636 30 W I I 3L 30 30 2K, 0 36 3. A0 A 30 36 30 N, I A8 30 30,3030, 3K 30 302, 30 30 3L, 36, 30 30 30 20 3 36 I 30 I 30 2, 3¢, 30 I8 M 30 0 I8 28, N, s
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EREXEXXEXERREEXLELEREEREREREEEREXFERERLEREREREERREL RS ERREREXEEREXEEREERZAREERERERER

* OPTIMIZATION PARAMETERS RELATED TO POLYIOPE ALGORITHM

FERERRXEZEEXFEEEEREXEEEXREEERFEESEREELEREEREREEXEEZEXEFASEEEEEREERXSEEXFREEXRLEREERE

STOPCR SIMP IPRINT IQUAD MAXF1 MAXF2
TR TG T 00T T2 6 T 6000 00T 00000 000 3 TR A6 T 000000 2 2O 00 0 000000 20 23 0 00
1.0D-6 1.0D-20 1 0 800 24000

RN 20T TR NN NN I I 2R 32062 0 0 O 00 0 S 00 6006 0 SR B
EFREFTRERETREZREEEXEFXRRAEAEEEZEEREEAEEREEERFEAERERREFEAEREREEERERERAEREFAEEREERREEER

= NDATASET: NUMBER OF DATA SET
= STDDEV(NDATASET) : STANDARD DEVIATION
FARXEEEFZEEREFAAXREXEXZEEEEZZEERZAEEEREEESEEEXZEFRELLBEREERELZRELERERSLERLERERRRR RS
®=  NDATASET IMATCH
3

236 336 36 95 28 08 206 35 306 46 3606 35 36 35 36 36 36 06 3% JF 26 06 3 3 0 1 00 3 3606 3 36 3 3 60 36 3 30 3 00 0 36 02690 060 26 A 20 36 30 3 06 36 3 360 3 0 0 6 36 36 3 35 36 3 6 3 2 6
#  STDDEV(NDATASET)

2.0e100

0.5 .
EFREEREEXEEXARXRERXEREFAREREZLAREEREELERLEFREZAAZ AR ERRERERXEER X LR REEX XXX EELERERTRRE
If the number of layers equals to 1, standard deviations are written in 1 row
If the number of layers equals to 2, standard deviations are written in 2 row

3.8972100 0.2072

1.9746e100 0.2055

5.62048 0.00564

EREREEXEEREEREREERERXEREXESAEEXEFEREREEAEEEREELEEEREREEEEEXTERERRREEREEAEEREEXERES

* jin this program, we try to estime 10 parameters
* if you want to estimate parameters, take IOPT=1....
* if you want to fix the parameters, take IOPT=0....

I 32T 36 02 2006 26 20 2006 96 36 36 3006 26 303006 36 303020 3600 2 3626 360695 3698 T 36 20 36 22 0600 06 0000 0630 00 0620 06 00 36 0606 06 26 06 060596 36 0% 006 06 26 K R N0 %

REGRESSION PARAMETERS (1) CA (IT TAKES ONLY ONE VALUE FOR ALL RESERVOIR SYST

IN EACH LAYER (2) CO (IT TAKES ONLY ONE VALUE FOR ALL RESERVOIR SYST
(3) PERM
{4) POR
() CT
(6) THICK
(7) SKINA
(8} SKINO
(9) VIS
EEEFAERXEXFEXRZEXREXEXEXRFERERREEREFERZEEEEEXEREEEEBFEREEXZERRERELXEERREERERRLEREREEEXE
* PARAMETER IOPT XINITIAL  LOWERBOUNDARY UPPERBOUNDARY
Lt iy 2ag 222232 d 2122222t 2a22 2ITIIIIEEELETIISITIEITTIELT RS T TTHT IHTTRY LT reeees
1 1 0.0 0.0 10.0
2 1 0.0 0.0 10.0
EXEEERFEEEEXEXRRRAREREERETE R TR L8585 T 385363533655 393698 0536 0005 36 9606 96 269646 30 35 0896 38 06 95 06 366 5 3036 36 2
* Propertiss of Layer 1
I 3606 2 T 06 036 6 00 06 3 32 3 062 0 00 0 0 06 2 6 06 06 2 06 0 3 3 0 0 3 2 0 6 0 0602 06 3506 36 36 26 36 36 2 6 06 05 36 O 3 0 2 0 6 2 6
3 1 100.0 0.10 10000.0
4 1 0.15 0.001 0.50
5 0 1.0e-5 1.0e-8 1.0
b 0 S0 1.0 1000
7 1 5.0 1.0e-3 100
8 1 2.0 1.0e-3 100
9 0 1.0 0.1 20.9
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SERBAREEBREREEEEREEREREESREERLABREEZEEERREFERAREBEFEURBRREREEREAERERRERERAESRLLBREN,

= Properties of Layer 2
09T 0 I 60 2 06 T I O3 O30 20 A 5K B 06 00 T 00006 0 0O 0 O 35 00 S E 050 0 0 2 AR R
10 1 50.0 0.1 10000.0
11 1 0.3 0.001 0.50
12 0 25.0e-5 1.0e-8 1.0
13 ! 100 1.0 1000
14 1 20.0 1.0e-3 100
15 1 10.0 1.0e-3 100
16 0 1.0 0.1 20.0
SREEAREEEREEELERLEEXEER LA ERLERERERAXEXR XA R EREAEXEREREREZERLERRERAREEERAFEXSRAREREARELBES
® Properties of Layer 3
W 36 00 B T 20T 060 0 R T 3K 0 e 2 36 T 6 O G B 6 9 30 T 6 006 6T 6 306 O 0620 36T 3 O 360 06 0 6 26 OE 3 I 0 00 06 0 8
17 1 163.80 0.1 1000.0
18 1 0.268 g.001 1.0
19 0 1.0e-4 1.0e-8 1.0
20 0 30 1.0 1000
21 1 7.60 1.0e-3 100
22 1 87.10 1.0e-3 100
23 0 1.0 p.1 2.0
EXXREREEETFERREESREEEELEERELREEREEXEETEEEEETERE RN EEREEERETEEEEEEEREERE LN REEEEEEEN
= Properties of Layer 4
..................... Properties can be added as much as number of layers ................
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