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TISSUE DENSITY CLASSIFICATION IN MAMMOGRAPHIC IMAGES
USING LOCAL FEATURES

SUMMARY

In this study a breast tissue density classification system is proposed. Tissue density
is known to be in high correlation to the development and diagnosis of breast cancer.
The probability of a malignant mass occuring in some types of breast tissue is higher
than others. Moreover, some tissue types hide the masses in mammographic images.
Thus early detection of cancer, which has a key role in diagnosis, is obstructed.

Computer aided diagnosis (CAD) and content based medical image retrieval (CBMIR)
systems may take advantage of breast tissue density classification since it can augment
the performance, reliability and automaticity of these systems. Automatic abnormality
detection systems get insensitive with increasing breast tissue density since dense
tissue may hide tumors and microcalcifications. CAD systems may use tissue density
information in determining the method for mass detection. CBMIR systems may use
tissue density classification as a pre-elimination step, which decreases the processing
time.

We use the MIAS dataset for our experiments, which is a widely used dataset in
abnormality detection and density classification studies. Another reason for us to
choose this dataset is that it provides a detailed groundtruth with annotations of
density type and abnormality presence, type and location. This dataset contains
mammographic images which are from three tissue density categories, namely fatty,
fatty-glandular and dense-glandular. There are 322 images from 161 subjects in this
dataset.

Mammographic images have a textural structure. Global image characteristics and the
visual content in some images from different density classes are similar while some
images from the same class have different characteristics. For this reason, we use local
image features. We employ the scale-invariant feature transform for the extraction of
local image features and apply a bag-of-features representation in order to model the
data and select the training data optimally.

Classification of the extracted image features are performed using three different
supervised classification methods, namely, Gaussian mixture models, support vector
machines and learning vector quantization. By evaluating these three classifiers, we
look for the optimal classification method for our problem. These methods are used to
design classifiers by parametric, nonparametric and learning based approaches.

Several experiments were performed and different aspects of the system such as
classification accuracy and dependence on the data size were evaluated. Feature based
classification results in a 10-fold cross validation scheme as well as in a separate
training and test sets scheme are reported. The effects of data size is observed and
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reported by using an enlarged dataset. First experiments were performed in a two-class
classification scheme in order to determine which classes are separable and which
classes are hard to separate. Then three-class classification tests were performed and
results are reported in a comparative manner.

Our results are promising that the developed system may be used as a building block
of computer aided diagnosis and content based medical image retrieval systems.
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YEREL ÖZNİTELİKLER İLE MAMOGRAFİ GÖRÜNTÜLERİNDE
DOKU YOĞUNLUĞUNUN SINIFLANDIRILMASI

ÖZET

Bu çalışmada mamografi görüntülerinde göğüs dokusu yoğunluğunun sınıflandırılması
amaçlı bir sistem önerilmiştir. Geliştirilen yöntemle görüntüler üç sınıfa ayrılmakta
olup bu sınıflar yağlı doku, yağlı-bezel doku ve yoğun-bezel dokudur.

Doku yoğunluğunun göğüs kanseri oluşumunda ve kanser tanı sürecinde önemli bir
parametre olduğu bilinmektedir. Yapılan çalışmalarda bazı doku yoğunluğu türlerinde
kanser oluşma olasılığının diğerlerine göre daha yüksek olduğu belirtilmiştir. Bazı
doku younluğu türlerinin de mamografi görüntülerinde tümör ve mikrokalsifikasyon
oluşumlarının görünmesini engellediği, dolayısıyla erken kanser tanısına engel olarak
tedavi sürecini geciktirdiği belirtilmektedir. Meme kanserinde erken tanının önemi
düşünüldüğünde, doku yoğunluğunun sınıflandırılmasının büyük bir öneme sahip
olduğu anlaşılmaktadır.

Mamografi görüntülerinde doku yoğunluğunun sınıflandırılması bilgisayarlı tanı
sistemleri ve içerik tabanlı medikal görüntü arama sistemlerinin performans, doğruluk
ve güvenilirliğini arttıracağı ve otomatikleştirilmesine katkıda bulunacağı için bu
sistemlerde bir ön işlem bloğu olarak kullanılabilir. Otomatik kitle bulma
uygulamalarının hassaslığı artan doku yoğunluğuyla tümör ve mikrokalsifikasyonlar
dokunun içine gizlenebildiği için azalmaktadır. Doku yoğunluğu bilgisi kanser
oluşumu ve tanı süreciyle ilgisinden dolayı bilgisayarlı tanılama sistemlerinde
kullanılarak bu sistemlerin doğruluğu arttırılabilir. İçerik tabanlı medikal görüntü
arama sistemlerinde ise, aranacak görüntü kümesini bir ön arama veya ek bir arama
parametresi olarak azaltacak ve böylece hem arama doğruluğunu arttıracak, hem de
arama getirme iş yükünü ve süresini önemli ölçüde azaltacaktır.

Bu çalışmada göğüs dokusunda kitle sezimi ve doku yoğunluğunun sınıflandırılması
konulu çalışmalarda sıkça kullanılan MIAS görüntü veritabanı kullanılmıştır. Bu
veritabanının kullanılmasındaki bir diğer neden de görüntülerle ilgili ayrıntılı bilginin
veritabanını oluşturan grup tarafından sağlanmış olmasıdır. Bu bilgiler her görüntü için
doku yoğunluğunu, eğer varsa doku içindeki kitlelerin türünü (iyicil ya da kötücül),
büyüklüğünü ve doku içindeki konumunu içermektedir. Bu veritabanındaki görüntüler
yağlı, yağlı-bezel ve yoğun-bezel olarak üçe ayrılmaktadır. Bir kişiden sağ ve sol
olmak üzere iki mamografi görüntüsü alınmış olup bu veritabanında toplamda 322
görüntü vardır.

Mamografi görüntüleri dokusal yapıya sahiptir. Parlaklık, karşıtlık gibi genel görüntü
özellikleri ve görsel içerik farklı sınıftan görüntülerde benzer olabilirken, aynı sınıftan
görüntülerde de bu özelliklerin farklı olabildiği gözlenmiştir. Bir mamografi görüntüsü
incelendiğinde dokudaki dağılımın düzgün olmadığı görülebilir. Bir sınıftaki
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görüntülerin bazıları başka bir sınıfın görsel özelliklerine sahip olabilmektedir. Burada
görsel özelliklerden kast edilen gri düzeyi histogramı ile parlak bölgelerin dağılımı ve
yoğunluğudur.

Mamografi görüntülerindeki sınıf içi çeşitlilikten ve görüntülerin niteliğinden dolayı
global öznitelik çıkarımı yöntemlerinin kullanılması durumunda iyi bir başarım elde
edilemeyeceği düşünülmüş ve yerel öznitelik çıkarımı yöntemlerinin kullanılmasına
karar verilmiştir. Global öznitelik çıkarımı yöntemleriyle doku içindeki dağılım bilgisi
kullanılamayacak, farklı sınıflardaki benzer görsel özelliklere sahip görüntülerin ayırt
edilmesi güçleşecektir.

Yerel görüntü öznitelik çıkarımı için önerilmiş birçok yöntem mevcuttur. Ölçekten
Bağımsız Öznitelik Dönüşümü (SIFT), Hızlandırılmış Gürbüz Öznitelikler (SURF),
Gradyan Histogramı (HOG) gibi birçok yöntem bu amaç için kullanılmaktadır.
Bu yöntemler görüntünün tamamı yerine yerel inceleme yapıp önemli noktalar
bulmaya çalışır. Bulunan her önemli nokta için bir öznitelik vektörü üretilir. Bu
öznitelik vektörlerinin tümü veya seçilmiş bir bölümü görüntünün temsil edilmesi ve
sınıflandırılması için kullanılabilir.

Bu çalışmada Ölçekten Bağımsız Öznitelik Dönüşümü (SIFT) metodu öznitelik
çıkarımı amacıyla kullanılmıştır. SIFT algoritmasıyla bir görüntüden çok sayıda
öznitelik çıkarılabilir. Çıkarılan öznitelik vektörlerinin her biri 128 boyutludur.
Öznitelik çıkarımı için görüntü farklı ölçeklerde incelenerek önemli noktalar bulunur.
Görüntünün farklı ölçeklerde incelenmesi için Gauss’ların Farkı yöntemi kullanılır.
Bu yöntemde görüntüye farklı varyanslı Gauss filtreleri uygulanır. Bu filtrelerin
uygulanmasıyla görüntü farklı miktarlarda bulanıklaştırılmış olur. Bu görüntülerin
farkı alınarak görüntüdeki kenarlar ve köşeler elde edilir. Bu farkların bazı yöntemlerle
elenmesiyle önemli noktalar bulunur. Önemli noktalarda ve komşularında gradyanlar
hesaplanır. Her önemli nokta için bir genlik ve yön bilgisi hesaplanır. Bir Gauss
penceresi kullanılarak önemli noktaya yakın olan noktaların etkisi arttırılırken, uzak
olanlarınki azaltılır. Hesaplanan yön histogramları kullanılarak öznitelik vektörleri
elde edilir.

Optimal öznitelik seçimi sınıflandırıcı tasarımında çok önemli bir adımdır. Öznitelik-
lerin modellenmesi ve sınıflandırıcıların eğitileceği en iyi öznitelik kümesinin seçimi
için öznitelik gruplama yöntemi kullanılmıştır. Bu gruplama öbekleme ile yapılmıştır.
Yüksek bir öbek sayısıyla başlanmış ve yakın olan öbekler birleştirilerek optimum
öbek sayısı elde edilmiştir. Öznitelik gruplama yönteminin kullanılmasındaki amaç
eğitim kümesinin verideki tüm çeşitliliği yansıtabilmesini, her alt gruptan örnekler
barındırmasını sağlamaktır. Böylece sınıflandırıcının verideki çeşitliliğin göz önüne
alınarak tasarlanması ve test başarımının arttırılması sağlanmış olur.

Görüntülerden çıkarılan özniteliklerin sınıflandırılması için üç farklı eğiticili
sınıflandırma metodu kullanılmıştır. Bu metodlar Gauss karışım modeli (GMM),
destek vektör makinesi (SVM) ve öğrenmeli vektör seviyelemedir (LVQ). Üç
farklı yöntem kullanılmasındaki amaç bu problem ve veri kümesi için en uygun
sınıflandırıcının bulunmasıdır. Bu sınıflandırıcılar parametrik, parametrik olmayan
ve öğrenme tabanlı yaklaşımlarla eğitim aşamasında eğitim kümesinden bir model
oluşturur ve sınıflandırma aşamasında hangi sınıftan olduğu bilinmeyen yeni örnekleri
sınıflandırır.
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Gauss karışım modeli yönteminde her sınıf birden çok Gauss dağılımının birleşimiyle
modellenmeye çalışılır. Her karışımın parametreleri, yani ortalama vektörleri ve
kovaryans matrisleri, Beklenti-En Büyükleme (EM) algoritmasıyla kestirilir. Her
sınıf için bir model oluşturulduktan sonra, yeni bir örneğin sınıflandırılması için bu
karışımlar kullanılarak birer olasılık değeri hesaplanır. Gözlem en büyük olasılık
değerinin elde edildiği sınıfa atanır.

Destek vektör makinesi yöntemi iki sınıftaki öznitelik vektörlerinin ortasındaki opti-
mal hiperdüzlemi bulmaya çalışır. Bu yöntem temelde doğrusal olarak ayrıştırılabilen
iki sınıfın sınıflandırılması için önerilmiştir; ancak bazı ek işlemlerle daha çok sınıf
için, çekirdek fonksiyonlarının kullanımıyla da doğrusal olarak ayrıştırılamayan veri
kümelerinde kullanılabilmektedir. Bunun için, doğrusal olarak sınıflandırılamayan veri
bir çekirdek fonksiyonuyla doğrusal olarak sınıflandırılabileceği bir uzaya taşınır.

Öğrenmeli vektör seviyeleme yönteminde tasarım sınıflandırılmış özniteliklerin
öbeklenmesiyle yapılır. Eğitim sırasında özniteliklerin etiketleri bilindiğinden,
öbekleme iteratif olarak tekrarlanarak veri öğrenilir. Her öbek birden çok kodvektörü
ile tanımlanır. Bu öğrenme bir ödül-ceza sistemine dayanır. Eğitim kümesindeki
öznitelik vektörlerinin hangi sınıfa ait olduğu bilindiğinden, bir özniteliğin atandığı
kodvektörü eğer doğru sınıftansa ödüllendirilir, yanlış sınıftansa cezalandırılır.
Böylece, iteratif olarak en uygun öbek yapısına ulaşılmaya çalışılır. Bu yöntemde
bir sınıfın temsil edileceği kodvektörü sayısının ve iterasyon sayısının belirlenmesi
önemlidir.

Çeşitli deneylerle geliştirilen sistemin sınıflandırma doğruluğu ve eğitim kümesinin
boyutuna bağlılık gibi özellikleri sınanmıştır. Dört farklı deney kurgulanmış ve
bunlarla sınıflandırıcıların başarımı değerlendirilmiştir. 10 katlı çapraz geçerlilik testi
ile ayrık eğitim-test kümelerinin kullanıldığı öznitelik tabanlı deneylerin sonuçları
raporlanmıştır. 10 katlı çapraz geçerlilik testinin amacı, verinin her bölümünü eğitim
ve test aşamalarında kullanmak, elde edilen sonuçların ortalamasının alınmasıyla
verideki uç değerlerin etkisini azaltmaktır.

Eğitim kümesinin büyüklüğü daha büyük veri kümeleriyle yapılan deneylerle
gözlenmiş ve raporlanmıştır. Bunun için eğitim kümesine yeni öznitelik vektörleri
eklenmiş ve aynı öznitelik vektörleri tekrar tekrar eğitim için kullanılmıştır.

İki sınıflı sınıflandırma deneyleriyle sınıfların ayrıştırılabilme seviyeleri ile birbiriyle
çokça karıştırılan ve iyi ayrılan sınıflar belirlenmiştir. Üç sınıflı sınıflandırma yapılarak
da genel başarım raporlanmıştır.

Gauss karışım modeli sınıflandırıcısı kullanıldığında elde edilen sonuçlar kabul
edilebilir sınırların altında kalmıştır. Bunun sebeplerinden biri, hesaplama
karmaşıklığı arttığı için bir karışımın oluşturulduğu bileşen sayısı sınırlanmıştır. Bu
da verinin iyi modellenememesine yol açmıştır.

Eğitim kümesindeki öznitelik vektörü sayısı az olduğunda destek vektör makinesi
diğer yöntemlerden daha iyi başarım sağlamıştır.

Öğrenmeli vektör seviyeleme yöntemi eğitim kümesi küçük olduğunda düşük başarım
gösterse de genişletilmiş eğitim kümesi kullanılarak tasarlandığında başarımı oldukça
yükselmektedir. Eğitim kümesi genişletilirken uygulanan veri tekrarlama işlemi
öğrenmeli vektör seviyeleme yönteminin başarımını olumlu yönde etkilemiştir. Daha
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çok sayıda öznitelik vektörünün öğrenilmesi için kodvektörü sayısının ve iterasyon
sayısının da arttırılması gerektiği gözlenmiştir.

Eğitim kümesini genişletmenin destek vektör makinesi yönteminde başarımı çok
değiştirmediği, veri tekrarlamanın öğrenmeli vektör seviyeleme yöntemindeki kadar
etkili olmadığı belirlenmiştir. Gauss karışım modeli ile test süreleri arttığından
genişletilmiş eğitim kümesi kullanılmamıştır.

İki sınıflı sınıflandırıcılarla yapılan testlerden sonra, destek vektör makinesi ve
öğrenmeli vektör seviyeleme yöntemleri kullanılarak üç sınıflı sınıflandırma testleri
yapılmıştır. Bu testler yine genişletilmiş eğitim kümesi üzerinde, 10 katlı çapraz
geçerlilik testi yöntemiyle yapılmıştır. Destek vektör makinesi kullanıldığında başarım
düşerken, öğrenmeli vektör seviyeleme yöntemi kullanıldığında başarımın iki sınıflı
durumda elde edilen sonuçlara yakın olduğu gözlenmiştir.

Deney sonuçları geliştirilen sistemin bilgisayarlı tanılama ve içerik tabanlı medikal
görüntü arama getirme sistemlerinde kullanılabileceği konusunda umut vericidir.
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1. INTRODUCTION

Research and development on computer aided diagnosis (CAD) systems aim to

decrease the need for radiologists to read the medical images by providing fast and

reliable information gathering from these images. Because an erroneous decision may

directly affect a human’s health, CAD systems are used only to assist the radiologists

for the moment [1], while research on such systems is going on.

Tissue density in mammographic images is an important information for CAD systems.

A simple scenario for a CAD system working on mammographic images is the

automatic detection and classification of the cancerous tissue. Such a system extracts

information from the given image and reports whether a tumor exists; and if it exists,

the type, namely benign or malignant, the location and dimensions of the tumor are

also reported. Classifying the tissue density has a big role in the accuracy of these

information.

Additionally, tissue density classification provides the chance of selecting proper

preprocessing steps. Image filters, contrast enhancement methods, segmentation

methods and normalization processes can be applied up to the specific needs of the

image in question.

A decrease in the sensitivity of automatic abnormality detection systems working on

mammographic images with increasing breast tissue density are reported in several

studies [2].

According to the American College of Radiology (ACR) Breast Imaging Reporting

and Data System (BIRADS), breast density is classified into four categories [3]:

• BIRADS I: the breast is almost entirely fatty

• BIRADS II: there is some glandular tissue

• BIRADS III: the breast is heterogenously dense
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• BIRADS IV: the breast is extremely dense.

Breast cancer is the most fatal cancer type among women in the United States as well

as in the European Union [1, 4]. 12% of women develop invasive breast cancer in

their lifetime. In a study in 2010, it is estimated that 207090 new cases of invasive

breast cancer were expected to be diagnosed alongside 54010 new non-invasive cases.

In addition to these numbers, 39840 women in the U.S. were expected to die in 2010

from breast cancer. Pain, skin thickening, nipple discharge, change in breast size or

shape are said to be the symptoms of breast cancer [1].

Computer aided diagnosis systems are being developed to assist radiologists, and

full automatic medical diagnosis systems are still a hot research topic. Available

commercial CAD systems that work on mammographic images try to detect

abnormalities in breast tissue automatically. However, some research have shown

that there is a high relation between the tissue density and the risk of cancer [5].

When looking for cancer in a breast mammogram, the probability of a false-negative

increases with an increase in the density of the parenchymal tissue, because tumors

and microcalcifications can hide inside the dense tissue. Moreover, some research

have shown that the risk of developing cancer in dense tissue is higher than other

tissue types. The positive correlation between increasing breast density with the

risk of cancer and the risk of missing a cancerous tissue makes breast tissue density

classification an important research topic.

There are several studies focused on classifying breast tissue density in mammographic

images. Various local image features such as SIFT features and textons, and global

ones such as singular value decomposition (SVD) and histogram based methods, are

used in the literature. Generally all proposed methods perform some preprocessing

steps, such as contrast enhancement, segmentation and pectoral muscle removal.

Mostly supervised classifiers are used to categorize images.

In [5], Bosch et al. presented a method for modeling and classification of breast

tissue using local image descriptors and a bag-of-words method. They apply a

two-phase preprocessing that consists of segmentation and pectoral muscle extraction.

Their segmentation algorithm computes a global gray level histogram of 8 bins.
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The minimum value in these 8 values is used to threshold the image. The biggest

segment is extracted using a connected component labeling algorithm, and this region

is the union of the breast and the pectoral muscle. By using a polynomial modeling

approach proposed in [6], they get rid of the pectoral muscle and obtain the region of

interest. They compared the performance of different features, namely, textons and

SIFT features. Images are represented as bag-of-words, where the visual vocabulary is

obtained using a k-means based vector quantization. The distribution of different tissue

densities are discovered using probabilistic latent semantic analysis (pLSA). This is an

unsupervised method for latent topic discovery in documents, and in this case, the

topic is the tissue density. The density distributions are then classified using k-nearest

neighbours (kNN) and support vector machine (SVM) classifiers.

In [7], Oliver et al. evaluated different segmentation strategies prior to feature

extraction with the aim of density classification. The images are first segmented

using four different methods, which are segmentation according to the distance

to the skin-line, segmentation through fuzzy c-means, segmentation using fractal

analysis and segmentation via statistical analysis. Morphological and texture features

are extracted from all of these segmented images and from the images without

segmentation. The relative area and the four first histogram moments are used as the

morphological features. As texture features, co-occurance matrices are calculated and

for each of these matrices, contrast, energy, entropy, correlation, sum average, sum

entropy, difference average, difference entropy and homogeneity statistics are used. A

Bayesian classifier which combines a k-nearest neighbours (kNN) classifier and C4.5

decision tree is used for classification. The system was tested on the MIAS dataset and

results are reported as BIRADS categories.

In [8], Oliveira et al. published their work on tissue density classification in the

context of content based image retrieval systems, which employs singular value

decomposition (SVD) as the feature extraction method and support vector machines

(SVM) for classification. Their purpose of using SVD as the feature extraction method

is reducing dimensionality of feature vectors for computational efficiency without

losing the textural information.
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In [9], Petroudi and Brady proposed a new method based on textons. The novelty

they introduced is using a texture descriptor instead of histograms. The texture

descriptor evaluates the spatial dependence between the textons that characterize the

image. Similar to gray level co-occurance matrices, the texton spatial dependence

matrix (TSDM), which can alternatively be called texton co-occurance matrix, is used

to capture both structural and statistical information. From different approaches of

creating texton maps, in the selected one each texton corresponds to a vector, not to a

pixel intensity value or a gradient. The TSDM contains the frequencies or probabilities

of texton co-occurances, thus it provides statistical information. Their classification

model is built by first creating a texton dictionary from clustered Maximum Response

8 (MR8) filter bank responses of all images per each BIRADS class. Then each pixel in

the breast image in the training set is mapped to the closest texton. TSDM matrices for

different displacements are computed for each image and each density class is modeled

by sets of TSDMs. In order to classify a test image, all steps in the training is applied

and the resulting TSDMs are compared to the TSDMs of the learned models. A class

assignment is performed using a chi-square test and k-nearest neighbor rule.

In [10] Wang et al. proposed a new method for constructing the visual vocabulary in

bag-of-features based classification. The most of the methods using the bag-of-features

approach build the vocabulary based on k-means clustering by taking cluster centroids

as the visual words. Considering the arguments that the k-means algorithm does not

select the most informative words, the researchers proposed jointly using learning and

weighting visual words, which they call Joint-ViVo. After segmentation and selecting

the ROI, local features, such as local patches and SIFT descriptors, are extracted. By

clustering the local features in the training set, the visual vocabulary is built, which

consists of cluster centroids as visual words. Histogram of visual word occurances

are bag-level representation of images. These histograms are weighted according to

their discriminant ability. kNN and SVM classifiers are used for classification of the

features.

In this study the aim is to develop an automatic system for classification of

mammographic images into different tissue density classes. The MIAS dataset is

used for the experiments. In this dataset a full groundtruth is provided which includes
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tissue density classes that are fatty, fatty-glandular and dense-glandular [11]. Since

the BIRADS annotation for this dataset is not provided, the given class information

within the groundtruth is used for the experiments. Local image features are extracted

using the Scale-invariant feature transform [12]. A bag-of-features representation is

employed and this is used for selecting data samples from the subclasses of each class

in order to select the optimal training set. Supervised classification using three different

methods, namely Gaussian Mixture Models, Support Vector Machines (SVM) and

Learning Vector Quantization (LVQ), is performed in order to learn the dataset and

to classify an unknown image.

In the next chapter the system is explained. Theoretical details of the SIFT feature

extraction algorithm and the classification methods are given in chapters 3 and 4,

respectively. This is followed by the test results and conclusions.
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2. SYSTEM OVERVIEW

We propose a system for classifying breast tissue density in mammographic images

with the aim of building a part of a bigger system such as computer aided diagnosis

(CAD) or content based medical image retrieval (CBMIR) systems. Determining the

breast tissue density prior to the tumor detection process is an important procedure in

CAD systems working on mammographic images. Similarly, a CBMIR system can

take advantage of the density information in indexing which presents the chance of

searching over smaller data and thus reducing the processing time.

The proposed system mainly consists of some preprocessing steps, local feature

extraction, a training and a test stage. An overview of the system is presented in Figure

2.1. The first three blocks in this figure constitute the preprocessing steps, local feature

extraction and classifier design for the training stage, and the last one constitutes the

test stage where an unknown image is classified in terms of its tissue density.

We used the MIAS database for experiments. The images in this set are annotated

in terms of tissue density type and abnormality type and location if exists. There are

three tissue density classes, which are fatty (Class F), fatty-glandular (Class G) and

dense-glandular (Class D) [11].

In the first step, the images are cropped to get rid of irrelevant regions that are the

pectoral muscle, labels, etc. Then a gray level normalization is applied to images

which will then increase the quality of image features. This normalization scales pixel

intensities into values between 0 and 255.

Mammographic images have a non-uniform textural content with high variations even

in same class of tissue densities. A class may contain images with different visual

content and image characteristics such as contrast, brightness, and size and distribution

of darker and brighter regions. With the thought that local image features are better

for representing such kind of data by modeling the textural content with a minimum
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Figure 2.1: System overview.
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number of bits, we use scale-invariant feature transform (SIFT) for local feature

extraction. SIFT features are commonly used local image features and are extracted

based on the gradient histograms of images with a multiscale analysis. Specifically

SIFT features are extracted at a number of scales and the region of interest within

the mammogram is pointed out with these features named as candidate keypoints.

These candidates are better localized, and the ones with low contrast are eliminated.

Orientation histograms in a region around these keypoints construct the descriptors

[12]. Details of the SIFT algorithm are given in the next chapter. The second block in

Figure 2.1 corresponds to the feature extraction step and examples of localized feature

points are plotted on mammographic images from different classes. Observe that the

density and distribution of descriptors are different for each class.

In the third block of Figure 2.1, first the data is represented using the bag-of-features

method with the aim of optimal training set selection. This is a dictionary-based

method which is influenced by the bag-of-words method used in document

classification where each document is represented by the frequency of words in the

vocabulary. Hence the document is called as a bag and the representation is achieved

independent of the order of words [13]. In bag-of-features definition the words are the

clusters of image features extracted from the visual content [13]. In our problem,

we have used bag-of-features approach to specify similar sub-groups of features

representing each mammographic tissue density class. As it is known, selection of

number of words or number of feature groups included in the dictionary plays the

key role in these approaches. We have applied bag-of-features approach by clustering

the data into subgroups using the ISODATA algorithm with a large initial number of

clusters. Hence the scheme converges to the optimal number of words automatically.

By combining the similar clusters, similar data unites into same clusters. The cluster

centroids constitute the visual vocabulary. By this method, variations in a class are

modeled better, which suits the type of data in mammographic images. For the purpose

of optimal training set selection, we construct the training set by taking the vectors

from each cluster. This procedure ensures that the training set contains samples from

all variations existing in the data.
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In order to evaluate the classification performance achieved by the SIFT descriptors,

we use three classification methods which are Gaussian mixture models (GMM),

support vector machines (SVM) and learning vector quantization (LVQ). These

algorithms are placed in the third block in Figure 2.1.

The characteristics of the data make it suitable to be modeled by Gaussian Mixture

Models (GMM). This is a parametric method where a mixture of Gaussians is fit to

each class by estimating the parameters of the mixture distribution [14]. The idea

behind using a mixture instead of a single Gaussian is that it is better to represent

each sub-population (word) in the data by an individual Gaussian distribution, thus the

mixture can model the entire data (bags-of-features) well.

Support vector machines are used as a second classifier. SVM is a statistical

method and it can be used for supervised binary classification problems [14]. By

using a kernel function, the linearly non-seperable data can be mapped into another

feature space where a maximum-margin hyperplane can be fit between the classes.

Unlike the GMM, the SVM enables us to estimate the probability density function

representing each class. Hence by using the SVM we have examined the mammogram

classification performance with a supervised nonparametric statistical classifer rather

than a parametric classifier as in the GMM.

As the third option in the classifier design, learning vector quantization algorithm

is used [15]. The LVQ is a learning algorithm with similarities and relations to

self-organizing maps and vector quantization except being a supervised algorithm.

This method models the data by a reward-punishment scheme. The data is split into

clusters, and each cluster is represented by a number of codevectors which are the

components of a codebook. This method is suitable for our problem since the data

is examined in detail by representing the sub-groups by different sets of codevectors.

Unlike the first two classifiers, the LVQ does not estimate the density function instead

applies a k-nearest neighbor type classification scheme.

Classification of a new observation referred to as the test image is performed within the

test module which constitutes a separate block in the system, as can be seen in Figure

2.1. Cropping, normalization and local feature extraction operations are applied to
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the test image as in the first two blocks of the training stage. Each feature of the test

image is classified using one of the classifiers which were designed in the training

stage. A decision is made by majority voting of class labels assigned to the features of

the image and the decision is reported as one class label for the image, namely, fatty,

fatty-glandular or dense-glandular.
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3. EXTRACTION OF LOCAL IMAGE FEATURES

In this study the problem is classifying the tissue density in mammographic images.

These images have a textural content and images from different classes may have

similar global image characteristics such as contrast and brightness as well as images

from the same classes may have different characteristics. These reasons led us to use

local image features in order to utilize the texture and capture the local characteristics.

We use Scale-Invariant Feature Transform (SIFT) for feature extraction. SIFT provides

local image features that are invariant to scaling, rotation and partially robust to affine

distortion, change in 3D viewpoint, addition of noise and change in illumination [12].

This algorithm is widely used for image matching and object recognition purposes.

Several features can be extracted from different locations in a single image using

SIFT algorithm. Each feature is represented by four floating point numbers and a

descriptor vector of 128 integers. Using a cascade filtering approach, operations with

high complexity are applied only to image parts that pass the initial elimination steps.

SIFT algorithm searches for potential interest points in different scales of the image.

This approach allows selecting the interest points that exist in different scales, thus

provides scale-invariance of the features.

There are four main operations in SIFT algorithm. First a scale-space is generated and

extremum points are found using the difference-of-Gaussians (DoG) approach. Interest

point candidates which are obtained in this step are then better localized both spatially

and between scales, and in the meantime a keypoint selection/elimination procedure

is performed. An orientation is assigned to each keypoint. Finally, using orientation

histograms, a descriptor is computed for each keypoint. In the rest of this section these

operations are discussed in detail.

13



In order to generate the scale-space, 2D-convolution of the image and a Gaussian

function with variable standard deviation is calculated. This is formulated as follows:

L(x,y,σ) = G(x,y,σ)∗ I(x,y) (3.1)

In (3.1), L(x,y,σ) is the scale space, G(x,y,σ) is the variable-scale Gaussian function,

I(x,y) is the input image and ∗ is the 2D-convolution operator. G(x,y,σ) is defined as

follows:

G(x,y,σ) =
1

2πσ2 e−(x
2+y2)/2σ2

(3.2)

Stable keypoint candidates can be located in scale-space by convolving the scale-space

extrema obtained using the difference-of-Gaussians function with the image [12].

Difference-of-Gaussians function is defined as D(x,y,σ), and it can be computed as

follows:

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ))∗ I(x,y)

= L(x,y,kσ)−L(x,y,σ) (3.3)

In (3.3) difference of two adjacent scales, which are separated by a multiplicative

constant factor k, is convolved with the image. This approach provides efficient

computation since difference-of-Gaussians can be obtained just by subtracting

two smoothed images. Furthermore, difference-of-Gaussians function is a close

approximation to the scale-normalized Laplacian of Gaussian function which is

defined as σ2∇2G. Various studies have shown that scale-invariance requires a

normalization of the Laplacian by a factor, σ2, and that when compared to some image

functions such as the gradient, Hessian and Harris corner function, the extrema of the

scale-normalized Laplacian of Gaussian function provides the most stable features.

Laplacian of Gaussian can be written in a form similar to the heat diffusion equation

as in the following:
∂G
∂σ

= σ∇
2G (3.4)

Using the finite difference approximation method, (3.4) can be written as follows:

σ∇
2G =

∂G
∂σ
≈ G(x,y,kσ)−G(x,y,σ)

kσ −σ
(3.5)
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Using (3.5), difference of two nearby Gaussians separated by a scaling factor of k can

be written as follows:

G(x,y,kσ)−G(x,y,σ)≈ (k−1)σ2
∇

2G (3.6)

Another efficiency that difference-of-Gaussians provides is that it already includes the

normalization factor σ2 which is needed for the scale-invariance, and this can be seen

in (3.6).

In practice, a scale-space is constructed by convolving the image with Gaussians of

variable-scale, and this group of smoothed images is called an octave. The second

octave is obtained by downsampling each image in the first octave. By subtracting the

adjacent images, difference-of-Gaussians for each octave are obtained. This procedure

is highly efficient in computation.

Extrema of the difference-of-Gaussians is detected by comparing each sample point

of a smoothed image to its eight neighbors in the current image and nine neighbors in

the two neighbor scales above and below the current image. If the sample point is the

largest or the smallest one in all these twenty six comparisons, it is considered as an

extremum.

The second major step in SIFT algorithm is localizing keypoints in more detail. This

procedure also provides elimination of keypoint candidates with low contrast which

are sensitive to noise. In order to find the accurate location of an extremum point, an

interpolation is performed by fitting a 3D quadratic function to local sample points.

For this purpose the scale-space D(x,y,σ) is shifted to locate the origin at the sample

point. Then Taylor expansion of D(x,y,σ) up to quadratic terms is applied as follows:

D(x) = D+
∂DT

∂x
x+

1
2

xT ∂ 2D
∂x2 x (3.7)

In (3.7), x = (x,y,σ)T is the offset from the sample point. Let x̂ be the location of the

extremum. Taking the derivative of the function with respect to x in (3.7) and setting

it to zero gives the following equation:

x̂ =−∂ 2D
∂x2

−1
∂D
∂x

(3.8)

Differences of neighboring sample points can be used as approximates of the Hessian

and derivative of D. If the offset x̂ has a value bigger than 0.5 in any dimension, the
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sample point is changed. The interpolated location of the extremum is obtained by

adding x̂ to the location of the sample point.

To eliminate the extrema with low contrast which are unstable because of being

sensitive to noise, equations (3.7) and (3.8) are used together giving the following

equation:

D(x̂) = D+
1
2

∂DT

∂x
x̂ (3.9)

Sample points with low | D(x̂) | values are considered as unstable extrema, thus, are

rejected.

Another procedure to reject unstable extrema is eliminating the sample points that are

localized along the edges in the image. On these locations the difference-of-Gaussians

function has a strong response which causes it to be sensitive to noise. For this

purpose, 2x2 Hessian matrix at the location and scale of the keypoint is calculated

since the eigenvalues of this matrix are proportional to the principal curvatures of the

difference-of-Gaussians function. The principal curvatures of a poorly defined peak in

the difference-of-Gaussians function get large values across the edge and small values

in the perpendicular direction. The Hessian matrix is defined as follows:

H =

[
Dxx Dxy
Dxy Dyy

]
(3.10)

Differences of neighboring sample points can be used as approximates to the

derivatives in the Hessian matrix. Assuming that α and β are the two eigenvalues

of H with the largest and smallest magnitudes, respectively, the sum and product of

these eigenvalues can be computed using the trace and determinant of H, respectively,

as in the following equations:

Tr(H) = Dxx +Dyy = α +β

Det(H) = DxxDyy−DxyDxy = αβ (3.11)

Defining r = α/β and using (3.11), the following equation can be written:

Tr(H)2

Det(H)2 =
(α +β )2

αβ
=

(rβ +β )2

rβ 2 =
(r+1)2

r
(3.12)

From (3.12) it is seen that instead of using magnitudes of the eigenvalues, their ratio

can be used for eliminating principal curvatures with large values. The keypoints which

16



do not satisfy the following condition are eliminated:

Tr(H)2

Det(H)2 <
(r+1)2

r
(3.13)

The third main step in SIFT is the orientation assignment. This is performed in order

to obtain rotation invariant features by representing the keypoint descriptors relative

to their own orientations. The Gaussian smoothed image, L, in the closest scale to

the scale of the keypoint is used in this procedure. A gradient magnitude m(x,y) and

orientation θ(x,y) are computed using pixel differences for each image sample L(x,y)

as formulated in the following:

m(x,y) =
√

(L(x+1,y)−L(x−1,y))2 +(L(x,y+1)−L(x,y−1))2

θ(x,y) = arctan
(

L(x,y+1)−L(x,y−1)
L(x+1,y)−L(x−1,y)

)
(3.14)

Using the gradient orientations assigned to sample points within a region around the

keypoint, a histogram with 36 bins is generated. Prior to the histogram forming, each

orientation is weighted by its magnitude and a Gaussian weighted circular window.

The highest peak in the histogram, and the others within the 80% of the highest one

are used to create keypoints with those orientations, thus there may be keypoints with

same location and scale but different orientations. For better accuracy, a parabola is fit

to the three peaks closest to each peak.

The fourth and last major step in SIFT feature extraction is the descriptor assignment

to each keypoint. In a region around the keypoint, the gradient magnitudes and

orientations are calculated for each image sample and the magnitudes are weighted

by a circular Gaussian window with a scale selected using the scale of the keypoint.

The coordinates of the descriptor and the gradient orientations are rotated relative

to the keypoint orientation and this procedure provides orientation invariance. The

objective in weighting the gradient magnitudes using the Gaussian window is to give

more significance to the gradients that are closer to the descriptor center. Orientation

histograms with eight bins are formed using the weighted orientations and their

magnitudes. A peak in this histogram is the sum of the magnitudes of sample points

whose orientations are members of that bin. Each magnitude in a bin is weighted by

1−d, where d is the distance of the sample from the central value of the bin.
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The descriptor vector is formed using the peaks in the histograms in a 4x4 array, each of

which is formed within a 4x4 region of sample points. Since each histogram has eight

bins, the descriptor vector has 4x4x8=128 elements. This vector is then normalized

to unit length to reduce the effects of changes in illumination. Elements of this vector

is thresholded and renormalized to unit length in order to reduce the effects of large

gradient magnitudes which are caused by non-linear illumination changes.
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4. CLASSIFIER DESIGN

Mammographic images have a non-uniform textural content. In this study we have

used the MIAS dataset in which the images are categorized into three tissue density

classes that are fatty, fatty-glandular and dense-glandular [11]. The challenge in this

problem is that some images from different classes are similar in terms of image

characteristics such as contrast and brightness, and their visual content; and there is

a high variation in each class, in other words, images from the same class may look

different and may have very different image characteristics.

As explained in the previous chapters, we use local image features in order to capture

the in-class variations and local image characteristics. We use scale-invariant feature

transform (SIFT) [12] as the local feature extraction algorithm. The extracted features

are represented by a bag-of-features scheme.

We have evaluated three different supervised classification algorithms which are

classification via Gaussian mixture models, support vector machines and learning

vector quantization. These algorithms are explained in detail in the following sections.

4.1 Classification Using Gaussian Mixture Models

Gaussian mixture models (GMM) are a special case of statistical mixture models where

the model is built by a number of multivariate Gaussian distributions. In this method a

parametric probability density function that is the sum of weighted Gaussian densities

is fit to the data by estimating the parameters of the model [14, 16].

In our problem there are three tissue density classes which may sometimes have

similar image characteristics. The textural structure of the mammographic images

are hard to model and there is a high variation in each class. In order to model these

variations, Gaussian mixture models may be useful since this algorithm tries to fit

several Gaussian distributions over different parts of the data.
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A Gaussian mixture model is parametrized by the mean vectors, covariance matrices

and mixture weights of each component. These parameters are estimated and a mixture

model is built to fit the observations in a class.

In the training phase, a model for each class is built separately by estimating its

parameters using the training data of that class. Each model may include different

number of Gaussians. In our work we modeled each class by using a mixture of eight

Gaussians distributions.

Maximum likelihood (ML) estimation is a method that can be used to estimate the

parameters of the Gaussian mixture models by finding the parameters which maximize

the likelihood of the models.

The form of a finite mixture model is as follows:

p(x) =
g

∑
j=1

π j p(x;θ j) (4.1)

where g is the number of mixture components, π j are the mixing proportions, and

p(x;θ j) are the component density functions for j = 1, ...,g . The mixing proportions,

π j, sum up to 1 and π j ≥ 0. When the mixture components are Gaussians, p(x;θ j)

are multivariate Gaussian distributions and the paremeter set of a distribution is

θ j = {µ j,Σ j}.

For a set of n observations, (x1, ...,xn), and a set of parameters,

Ψ = {π1, ...,πg;θ1, ...,θg}, the likelihood function of the mixture model can be

written as follows:

L(Ψ) =
n

∏
i=1

g

∑
j=1

π j p(x j | θ j) (4.2)

where p(x | θ j) are the component densities with dependence on their parameters.

Generally it is impossible to differentiate L with respect to Ψ, thus the

expectation-maximization (EM) algorithm can be used iteratively to solve this. EM

algorithm was proposed by Dempster et al. in 1977 for missing data estimation.

Let yT = (xT ,zT ) be the complete data that includes class labels, where z is a vector of

class labels which includes 1 in the kth position if x belongs to the category k and zero

20



elsewhere. The likelihood of y is given as follows:

g(y |Ψ) = p(x | z,Ψ)p(z |Ψ)

= p(x | θk)πk (4.3)

and this can be written as

g(y |Ψ) =
g

∏
j=1

[
p(x | θ j)π j

]z j (4.4)

since z j is 1 only if j = k.

The likelihood of x, which is the mixture distribution, can be written as follows:

p(x |Ψ) = ∑
all possible values ofz

g(y |Ψ)

=
g

∑
j=1

π j p(x | θ j) (4.5)

For n observations, the following likelihood can be written:

g(y1, ...,yn |Ψ) =
n

∏
i=1

g

∏
j=1

[
p(xi | θ j)π j

]z ji (4.6)

and by taking the logarithm of this, the following is obtained:

log(g(y1, ...,yn |Ψ)) =
n

∑
i=1

zT
i l +

n

∑
i=1

zT
i ui(θ) (4.7)

where the vector l contains jth component log(π j), ui contains jth component

log(p(xi | θ j)) and zi contains z ji, j = 1, ...,g, where z ji are class labels which are 1

if xi belongs to the group j, and 0 otherwise.

Each iteration in EM algorithm consists of an expectation (E) step, and a maximization

(M) step.

For the E-step, the following equation is formed:

Q(Ψ,Ψ(m)) =
n

∑
i=1

wT
i l +

n

∑
i=1

wT
i ui(θi) (4.8)

where wi = E[zi | xi,Ψ
(m)], with jth component, the probability that xi belongs to the

group j given the current estimates Ψ(m), given by the following:

wi j =
π
(m)
i p(xi | θ (m)

j )

∑
k

π
(m)
k p(xi | θ (m)

k )
(4.9)
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The maximization step maximizes Q with respect to Ψ. The parameters πi and θi are

maximized in turn. Maximizing Q with respect to πi is performed by differentiating

Q−λ

(
∑

g
j=1 π j−1

)
with respect to π j, where λ is a Lagrange multiplier and this

gives the following equation:
n

∑
i=1

wi j
1
π j
−λ = 0 (4.10)

The constraint ∑π j = 1 gives λ = ∑
g
j=1 ∑

n
i=1 wi j = n, and the estimate of π j can be

written as follows:

π̂ j =
1
n

n

∑
i=1

wi j (4.11)

Since θ j = (µ j,Σ j) for Gaussian mixture models, the mean and covariance matrix must

be estimated separately. Estimate of the mean vector is obtained by differentiating Q

with respect to µ j and equating to zero as in the following:

n

∑
i=1

wi j(xi−µ j) = 0 (4.12)

and the estimate of µ j is found as follows:

µ̂ j =

n
∑

i=1
wi jxi

n
∑

i=1
wi j

=
1

nπ̂ j

n

∑
i=1

wi jxi (4.13)

In order to estimate the covariance matrix, Q is differentiated with respect to Σ j and

equated to zero, which gives the following update equation:

Σ̂ j =

n
∑

i=1
wi j(xi− µ̂ j)(xi− µ̂ j)

T

n
∑

i=1
wi j

=
1

nπ̂ j

n

∑
i=1

wi j(xi− µ̂ j)(xi− µ̂ j)
T (4.14)

The next iteration starts using this set as the initial, and this procedure is repeated until

convergence to a local maximum of the likelihood function is reached.

4.1.1 Classification of observed mammograms

In order to predict the classes which a set of sample vectors belong to, probability

distribution functions of each model are evaluated at each sample vector. Let there be

C classes with the estimated parameters Ψ1, ...,ΨC, and s patterns to be classified,
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x1, ...,xs. The likelihood of the observation given each class model, L(xi | Ψ j), is

calculated for i = 1, ...,s and j = 1, ...,C. Therefore, for each observation we assign a

class label by ML estimation with the following rule

ci = argmax
j

{
L(xi |Ψ j)

}
(4.15)

In our problem, there are three classes (C=3) which are fatty, fatty-glandular and

dense-glandular.

4.2 Classification Using Support Vector Machines

Support vector machines are non-probabilistic supervised classifiers which look for the

maximal margin hyperplane, which separates the data best by leaving a gap between

the two classes. By mapping the data vectors to a high dimensional feature space,

support vector machines can be applied to linearly non-separable data [14].

In this section classification using support vector machines will be described. The

model for two linearly separable classes will be given first, and then this will be

extended to linearly non-separable data.

4.2.1 Classification of linearly separable classes

Let xi be the feature vectors of the training set X , where i = 1,2, ...,n, and each input

xi has D attributes. These vectors belong to either of two linearly separable classes, ω1

and ω2 with labels yi = ±1. Here linearly separable means that a line can be drawn

between the classes when D = 2, and when D > 2, these classes can be separated by a

hyperplane. The training set is given as {xi,yi} pairs.

The discriminant function which is used to classify all of the training vectors is

described as follows:

g(x) = wT · x+w0 (4.16)

The decision rule for this discriminant function is given as follows:

wT x+w0

{
> 0⇒ x ∈ ω1, yi =+1
< 0⇒ x ∈ ω2, yi =−1 (4.17)
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All the observations in the training set can be correctly classified if the following

condition is assured [14]:

yi(wT xi +w0)> 0 for all i (4.18)

There may be more than one separating hyperplanes. The maximal margin classifier

chooses the hyperplane with leaving the maximum margin from both sides. It is

assumed that a larger margin will give a small generalization error [14].

A margin b > 0 which satisfies the following condition is needed:

yi(wT +w0)≥ b (4.19)

A solution for which all xi vectors are at a distance greater than b/ | w | can be found,

and when b, w0 and w are scaled, the condition in (4.19) is still satisfied. Assuming

b = 1, the canonical hyperplanes can be defined as follows:

H1 : wT x+w0 =+1

H2 : wT x+w0 =−1 (4.20)

With these hyperplanes, the decision rules become as in the following:

wT xi +w0 ≥+1 for yi =+1

wT xi +w0 ≤−1 for yi =−1 (4.21)

There is the distance, 1/ | w |, between each of these hyperplanes and the separating

hyperplane, g(x) = 0, and this distance is called the margin. The observations closest

to the separating hyperplane, which lie on the canonical hyperplanes, are called the

support vectors.

Maximizing the margin means minimizing | w | with the following constraints:

C1 : yi(wT xi +w0)≥ 1, i = 1, ...,n (4.22)

Objective function for this optimization problem is given as follows:

Lp =
1
2

wT w−
n

∑
i=1

αi(yi(wT xi +w0)−1) (4.23)

where {αi, i = 1, ...,n;αi ≥ 0} are the Lagrange multipliers.
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Finding the saddlepoint of the objective function Lp is equivalent to minimizing wT w

subject to the constraints in (4.22). When finding the saddlepoint, Lp is minimized

with respect to w and w0 and maximized with respect to αi. Differentiating Lp with

respect to w and w0 and equating it to zero gives the following:

n

∑
i=1

αiyi = 0

w =
n

∑
i=1

αiyixi (4.24)

With the objective function Lp, this gives

LD =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jxT
i x j (4.25)

which is the dual form of the Lagrangian and this is maximized with respect to αi

subject to

αi ≥ 0,
n

∑
i=1

αiyi = 0 (4.26)

In (4.25) the dual variables are the Lagrange multipliers, αi, and the number of

parameters equal to the number of patterns, n.

Data points with non-zero Lagrange multiplier are the support vectors since they lie on

the canonical hyperplanes.

4.2.1.1 Classification of a new observation

Having the Lagrange multipliers, w0 can be found using any of the support vectors

from the equation

αi(yi(xT
i w+w0)−1) = 0 (4.27)

or using the average of all support vectors from the equation

nsvw0 +wT
∑

i∈SV
xi = ∑

i∈SV
yi (4.28)

where nsv is the number of support vectors and SV is the set of support vectors. w can

be found by the following:

w = ∑
i∈SV

αiyixi (4.29)
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In order to classify a new observation, x, the sign of wT x+w0 is used. The decision

rule is as follows:

assign x to ω1 if

∑
i∈SV

αiyixT
i x− 1

nSV
∑

i∈SV
∑

j∈SV
αiyixT

i x j +
1

nSV
∑

i∈SV
yi > 0 (4.30)

4.2.2 Classification of linearly non-separable data

In general there is no linear boundary between classes, so a hyperplane for separating

these classes cannot be found. When data is not linearly separable, the support vector

algorithm may be applied in a transformed feature space in which data becomes

linearly separable. Let φ(x) be the transformed feature space. The discriminant

function can be written as follows:

g(x) = wT
φ(x)+w0 (4.31)

The following equation is the decision rule for the discriminant function in (4.31).

wT
φ(x)+w0

{
> 0
< 0 ⇒ x ∈

{
ω1,yi =+1
ω2,yi =−1 (4.32)

The maximum margin can be found by maximizing the Lagrangian. The dual form of

the Lagrangian can be written as follows:

LD =
n

∑
i=1

αi
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jφ
T (xi)φ

T (x j) (4.33)

where yi = ±1, i = 1, ...,n are the class indicators and αi, i = 1, ...,n are the Lagrange

multipliers which satisfy the following for a regularization parameter C:

0≤ αi ≤C
n

∑
i=1

αiyi = 0 (4.34)

The support vectors may be found by maximizing (4.33) under the constraints given in

(4.34) and selecting the non-zero values of αi. w can be written as follows:

w = ∑
i∈SV

αiyiφ(xi) (4.35)

In order to classify a new observation, x, the sign of the following is assigned to x as

the class label:

g(x) = ∑
i∈SV

αiyiφ
T (x)+w0 (4.36)
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where

w0 =
1

NŜV

 ∑
i∈ŜV

yi− ∑
i∈SV, j∈ŜV

αiyiφ
T (xi)φ(x j) (4.37)

In (4.37), SV is the set of support vectors with associated values of al phai satisfying

0 < αi ≤C and ŜV is the set of NŜV support vectors satisfying 0 < αi <C.

A kernel function can be used instead of the scalar products between transformed

feature vectors which the optimization of the dual form given in (4.33) and

classification of a sample given in (4.36) rely on. This kernel function can be written

as follows:

K(x,y)φ T (x)φ(y) (4.38)

Using this kernel function, there is no need to know φ explicitly and the discrimination

function can be written as in the following:

g(x) = ∑
i∈SV

αiyiK(xi,x)+w0 (4.39)

The kernels used with support vector machines are given in the following:

Polynomial: (1+ xT y)d

Radial Basis: exp(− | x− y |2 /σ
2)

Sigmoid: tanh(kxT y−δ )

4.3 Classification Using Learning Vector Quantization

Learning vector quantization is a statistical classification method which has a strong

relation and similarity to vector quantization and self-organizing maps. Its main

difference from these two methods is that it is a supervised learning method while

the other two are unsupervised methods [15].

In our problem, since the data have in-class variations, learning vector quantization

can be used because this algorithm learns the sub-groups in the data iteratively by a

reward-punishment scheme.

In order to define the discriminant functions in relation to the Bayes theory, let all x

vectors be derived from a finite set of classes {Sk}. P(Sk) is the a priori probability of
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class Sk and p(x | x ∈ Sk) is the class-conditional probability density function of x on

Sk. Under these assumptions, the discriminant functions are defined as follows:

gk(x) = p(x | x ∈ Sk)P(Sk) (4.40)

Optimal classification of x samples, which means that the rate of misclassifications

is minimized, is obtained when the discriminant function gets its highest value, as

formulated in the following:

gc(x) = max
k
{gk(x)} (4.41)

where the sample x belongs to the class Sc.

In learning vector quantization, a subset of codebook vectors is assigned to each class

Sk. To classify an observation vector x, the codebook vector mi with the minimum

Euclidean distance to x is selected and it is decided that x belongs to the same class

as mi. Even if the class distributions overlap, it is possible to select the codebook

vectors by placing them without overlapping in feature space. In this method, it is more

important to select the vector mi that minimizes the average expected misclassification

probability in the nearest neighbor rule used for classification.

4.3.1 LVQ1 algorithm

Let the training data consist of x observation vectors, and several codebook vectors, mi,

are assigned to each class of these sample vectors. It is assumed that the observation

vector x belongs to the same class as its closest codebook vector. The index of the

closest codebook vector mi to x is defined as follows:

c = argmin
i
{‖x−mi‖} (4.42)

In (4.42), c is the index of the winner codebook vector from the list of all codebook

vectors. Assuming x is a natural, stochastic, continuous-valued vector, the probability

that more than one minima occurs is zero. In other words, there is only one winner

codebook vector for an observation.

As the learning process, the winner codebook vector is updated iteratively starting with

properly initialized values. Update rules for the LVQ1 algorithm is given in (4.43).
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Here xt is the sample vector and mt
i is the closest codebook vector at iteration t. α t is

called the learning rate, and it takes values between 0 and 1. Generally α t is decreased

in time, and its initial value should be smaller than 0.1.

if x and mc belong to the same class, mt+1
c = mt

c +α
t [xt−mt

c]

if x and mc belong to different classes, mt+1
c = mt

c−α
t [xt−mt

c]

for i 6= c, mt+1
i = mt

i (4.43)

Vector quantization approximates the probability density function of the observation

vector x, p(x), or a monotonic function of it. Considering approximation to a

non-negative density function f (x), let the Bayesian borders be defined by the

discriminant functions in (4.40) and (4.41), and the borders obtained using f (x) be

defined by f (x) = 0 where x belongs to the class Bk, h 6= k, and

f (y) = p(x | x ∈ Sk)P(Sk)−max
h
{p(x | x ∈ Sh)P(Sh)} (4.44)

Optimal Bayesian borders can be seen in Figure 4.1(a) in the case of scalar

observations from three classes, S1, S2 and S3, which are defined by their distributions

p(x | x ∈ Sk)P(Sk) in the horizontal axis. Borders are shown by dotted lines. The

function defined in (4.44) is shown in Figure 4.1(b), and it has zero values at the

Bayesian borders shown in Figure 4.1(a) [15]. When the point density of the mi

that approximates f (x) is defined using vector quantization, this density also has

zero values at all Bayesian borders. With enough number of codebook vectors, f (x)

defined in (4.44) and vector quantization together define the Bayesian borders with

good accuracy [15].

4.3.2 The Optimized-Learning-Rate LVQ1 (OLVQ1) algorithm

In the OLVQ1 algorithm, an individual learning-rate factor α t
i is assigned to each

winner codebook vector mi. Update equations in (4.43) become

if x is classified correctly, mt+1
c = mt

c +α
t
c[x

t−mt
c]

if x is not classified correctly, mt+1
c = mt

c−α
t
c[x

t−mt
c]

for i 6= c, mt+1
i = mt

i (4.45)
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Figure 4.1: (a) Optimal Bayesian borders (b) Another non-negative density function

By defining st = +1 if the classification is correct and st = −1 if the classification is

incorrect, (4.45) can be written as follows:

mt+1
c = [1− st

α
t
c]m

t
c + st

α
t
cxt (4.46)

mt+1
c contains a trace of xt through the last term in (4.46), and traces of the earlier

xt ′, t ′ = 1,2, ..., t− 1 through mt
c. In an iteration, the magnitude of the last trace of xt

is scaled down by the factor α t
c. In the same iteration, the trace of xt−1 is scaled by

[1− stα t
c]α

t−1
c . Since these two scaling factors are identical, the following equation

can be written:

α
t
c = [1− st

α
t
c]α

t−1
c (4.47)

If this condition holds for all t, it can be shown that the traces collected up to iteration

t of all the earlier xt ′ will be scaled down equally; thus the optimal values of α t
i can be

determined as follows:

α
t
c =

α t−1
c

1+ stα t−1
c

(4.48)

4.3.3 LVQ2.1 algorithm

In this algorithm the two closest codebook vectors, mi and m j, one of which belongs

to the correct class and the other belongs to a wrong one, are updated. The observation

vector must be in a zone called window, which is defined around the midplane of the

two closest codebook vectors. Observation x is in the window when the following
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condition is satisfied:

min
(

di

d j
,
d j

di

)
> s where s =

1−w
1+w

(4.49)

In (4.49), w is the relative width of the window, and di and d j are the Euclidean

distances of x from mi and m j, respectively. A recommended width for the window

is between 0.2 and 0.3.

Similar to (4.43), update equations for the LVQ2.1 algorithm are as follows:

mt+1
i = mt

i−α
t [xt−mt

i]

mt+1
j = mt

j +α
t [xt−mt

j] (4.50)

In (4.50), mi and m j are the two closest codebook vectors to the observation x. m j

belongs to the same class as x, and mi belongs to an other class.

LVQ2.1 algorithm is the same as LVQ2 with an improvement that either mi or m j can

be the closest codebook vector.

4.3.4 Multi-pass LVQ

This setting is used to speed-up the learning process. First it uses OLVQ1 algorithm,

and then a long fine tuning pass is made using one of LVQ1, LVQ2.1 or LVQ3

algorithms [17].

4.3.5 Hierarchical LVQ

In this method, first a model is constructed using an LVQ algorithm. The obtained

codebook vectors are considered as cluster centroids, and sub-models are constructed

under each cluster. The sub-models that outperform their parent codebook vectors are

kept as parts of the model [17].
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5. TEST RESULTS

In this section, first we give information about the dataset, then describe the test

methods and report the test results.

The dataset used in the experiments is a subset of the MIAS database. MIAS

set consists of 322 mammographic images of size 1024x1024 pixels with detailed

annotation. These images have one out of the three background tissue types which

are fatty, fatty-glandular and dense-glandular, and some of them contain various types

of benign or malignant abnormalities [11]. Since the problem in this study is just the

tissue type classification and not abnormality detection/classification, the subset was

constructed using only the images without any abnormalities. The used subset has 25

images in the class of dense-glandular (labeled with D), 37 images in the class of fatty

(labeled with F), and 29 images in the class of fatty-glandular (labeled with G) tissues.

Image samples from the MIAS database that belong to the dense-glandular, fatty and

fatty-glandular classes are shown in Figure 5.1 (a), (b) and (c), respectively.

These images are cropped manually. The goal of this procedure is to deal only with the

region of interest (ROI) and extract features from these regions. The resultant images

are saved in an uncompressed image format in order to avoid the data loss arising from

compression and format changes.

The cropped images are normalized before the feature extraction process. This is

performed by finding the minimum and maximum intensity values in the image,

subtracting the minimum from all pixels, multiplying all pixel values by 255 and

dividing them to the difference (maximum - minimum).

SIFT features are extracted from all cropped and normalized images. Several keypoints

are found in an image. The data for a class is constructed combining all the descriptors

from the images which belong to that class. A SIFT descriptor consists of 128 integers
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(a)

(b)

(c)
Figure 5.1: Image samples from the MIAS database which are (a) dense-glandular (b)

fatty (c) fatty-glandular.
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taking values between 0 and 255. SIFT implementation in a software library called

OpenPR [18] was used for feature extraction.

In order to split the data into training and test parts, each class is clustered using the

ISODATA algorithm. This algorithm started from a large number of clusters and

finished with 13 clusters in each class by combining similar clusters. Half of the

samples from each cluster are assigned to the training set. The objective here is to

make the training set contain all types of information that exist in the data. This step

helps minimizing the probability of having a training set which does not represent the

data well. This procedure provides a bag-of-words representation of each class, where

cluster means constitute the codebook of the class. Each image in a class is related to

many code vectors in the codebook of its own class.

The extracted features are classified using support vector machines (SVM), Gaussian

Mixture Models classifiers (GMM) and Learning Vector Quantization (LVQ)

algorithms.

Support vector classification was performed using Weka with LIBSVM package.

Weka, which stands for Waikato Environment for Knowledge Analysis, is a powerful

machine learning and data mining tool which has been developed by University

of Waikato in New Zealand under GNU General Public License. It has a plugin

architecture and it is developed in Java [19]. LIBSVM is an integrated software for

support vector classification [20]. It has interfaces for many programming languages

and software and there is a wrapper for Weka called WLSVM [21].

For Learning vector quantization (LVQ), another Weka plugin called WEKA

Classification Algorithms is used [17]. This plugin provides a collection of algorithms

such as LVQ, self organizing maps and artificial immune system and it is licensed

under GNU General Public License.

A Matlab toolbox, PRTools [22], is used for the GMM classification. This software

package is developed by Delft Pattern Recognition Group in Delft University of

Technology and is free for academic purposes.

Results are reported as the numbers of true and false classified observations and

in terms of precision, recall and accuracy. These are statistical measures that are
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calculated using the number of true positives (tp), the number of true negatives (tn),

the number of false positives (fp) and the number of false negatives (fn). Precision,

recall and accuracy are formulated as in (5.1), (5.2) and (5.3), respectively. Precision

is used for learning the ratio of correct sample assignments over all assignments to a

class. Recall is the ratio of the number of samples of a class that are labeled correctly

over the total predictions of the samples in that class. The information that accuracy

reports is the percentage of the total correct predictions over all predictions.

Precision =
t p

t p+ f p
(5.1)

Recall =
t p

t p+ f n
(5.2)

Accuracy =
t p+ tn

t p+ tn+ f p+ f n
(5.3)

We have evaluated the classification performance in four test cases. First the binary

classification performance is reported by 10-fold cross validation using GMM, SVM

and LVQ classifiers separately. The aim in using 10-fold cross validation was to

eliminate the effects of the outliers that exist in the data.

In the second test case, we have used separate training and test sets in order to evaluate

the size of the test set and make sure that the training and test sets do not overlap.

Again, these tests were performed using GMM, SVM and LVQ classifiers.

In the third case, we have evaluated the size of the training size in SVM and LVQ

classifiers. We have enlarged the dataset by adding new samples and replicating them.

These tests were performed using the 10-fold cross validation scheme.

In the fourth test case we have performed three-class classification tests using the SVM

and LVQ classifiers on the enlarged training set in a 10-fold cross validation scheme.

Table 5.1 reports the 10-fold cross-validation results obtained by using the GMM

classifier. In this test, each class contains 2620 samples and modeled with a mixture of

eight Gaussian components. From Table 5.1 it can be seen that the performance of the

GMM is not acceptable.

Per-class average values calculated from Table 5.1 can be seen in Table 5.2. It can be

seen that the worst separable class is the fatty-glandular class, and the other two have

similar performances.

36



Table 5.1: 10-fold GMM classification results.

D F Precision Recall Accuracy(%)
D 1777 843 0.615 0.678

62.6527F 1114 1506 0.641 0.575
Weighted average 0.628 0.627

G D Precision Recall Accuracy(%)
G 1218 1402 0.487 0.465

48.7595D 1283 1337 0.488 0.510
Weighted average 0.488 0.488

G F Precision Recall Accuracy(%)
G 1419 1201 0.497 0.542

49.7137F 1434 1186 0.497 0.453
Weighted average 0.497 0.497

Table 5.2: Per-class averages for 10-fold GMM classification.

Precision Recall Accuracy (%)
D 0.552 0.594 55.7061
F 0.569 0.514 56.1832
G 0.492 0.504 49.2366

In Table 5.3 the results obtained using support vector machines in the 10-fold

cross-validation scheme are given. In these tests, a polynomial kernel of degree 3

was used, and the cost value of the classifier was set to 100. A normalization was

applied to the data before classification. In this table, there are 1318 samples in class

D, 2839 samples in class F and 1663 samples from class G. From Table 5.3 it can be

seen that SVM results are much better than GMM results. The best classification is

between dense-glandular and fatty classes.

Table 5.3: 10-fold SVM classification results.

D F Precision Recall Accuracy(%)
D 455 863 0.702 0.345

74.5971F 193 2646 0.754 0.932
Weighted average 0.738 0.746

G D Precision Recall Accuracy(%)
G 1394 269 0.603 0.838

60.2482D 916 402 0.599 0.305
Weighted average 0.602 0.602

G F Precision Recall Accuracy(%)
G 450 1213 0.625 0.271

67.0591F 270 2569 0.679 0.905
Weighted average 0.659 0.671
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Table 5.4 presents the per-class averages calculated from Table 5.3. In this table we

can see that the fatty class can be separated best from the other classes.

Table 5.4: Per-class averages 10-fold SVM classification.

Precision Recall Accuracy (%)
D 0.651 0.325 67.4227
F 0.717 0.919 70.8281
G 0.614 0.555 63.6537

Table 5.5 presents the performance achieved by the learning vector quantization

algorithm. A normalization was performed before the LVQ process. The LVQ setting

is the HierarchicalLvq algorithm that employs Olvq1 as the base algorithm. The

submodel algorithm performs a multipass operation using Lvq2.1 algorithm for both

passes. All algorithms have the same learning rate of 0.1, 20 codebook vectors, 5000

training iterations and all of them were initialized using K-Nearest neighbor algorithm.

In this table, there are 1318 samples in class D, 2839 samples in class F and 1663

samples from class G. As can be seen from Table 5.5, LVQ results are lower than

SVM results except when classifying between the fatty and dense-glandular classes

where the difference is very small, and LVQ performs better than GMM.

Table 5.5: 10-fold LVQ classification results.

D F Precision Recall Accuracy(%)
D 646 672 0.618 0.49

74.2122F 400 2439 0.784 0.859
Weighted average 0.731 0.742

G D Precision Recall Accuracy(%)
G 1110 553 0.61 0.667

57.5981D 711 607 0.523 0.461
Weighted average 0.571 0.576

G F Precision Recall Accuracy (%)
G 670 993 0.529 0.403

64.6824F 597 2242 0.693 0.79
Weighted average 0.632 0.647

Per-class average values calculated from Table 5.5 can be seen in Table 5.6. Average

results of the LVQ are similar to the average results of the SVM with a little lower

values.
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Table 5.6: Per-class averages for 10-fold LVQ classification.

Precision Recall Accuracy (%)
D 0.571 0.476 65.9052
F 0.739 0.825 69.4473
G 0.570 0.535 61.1403

From the first test case, it can be seen that the best results are achieved using the SVM

algorithm. According to these results, it can be said that when the size of the training

set is small SVM outperforms other classifiers. In this test case the performance of the

GMM is not acceptable. From the average values, the accuracy of the classification of

the fatty class is the best when using any of the three classifiers, and the fatty-glandular

class has the worst performance.

Results of the second test case are given from Table 5.7 to Table 5.12. In Table 5.7,

test results using GMM classifier with separate training and test sets can be seen. Each

class was modeled using 8 Gaussians. In this table, the training set consists of 1976

samples from each class, and the test set consists of 830 observations from class G,

1404 observations from class F and 659 observations from class D. From Table 5.7 we

can see that the performance of the GMM increased except when classifying between

the fatty and fatty-glandular classes when compared to the results in the first test case.

Still these results are very low.

Table 5.7: GMM results using separate training and test sets.

D F Precision Recall Accuracy(%)
D 493 166 0.504 0.748

68.444F 485 919 0.847 0.655
Weighted average 0.737 0.684

G D Precision Recall Accuracy(%)
G 411 419 0.585 0.495

52.317D 291 368 0.468 0.558
Weighted average 0.533 0.523

G F Precision Recall Accuracy(%)
G 381 449 0.350 0.459

48.1647F 709 695 0.608 0.495
Weighted average 0.512 0.482

In Table 5.8 per-class averages calculated from Table 5.8 can be seen. Average values

in Table 5.8 show the same improvement that can be observed from Table 5.7.
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Table 5.8: Per-class averages for GMM classification using separate training and test
sets.

Precision Recall Accuracy (%)
D 0.486 0.653 60.3805
F 0.728 0.575 58.3044
G 0.468 0.477 50.2409

In Table 5.9, test results using SVM classifier with separate training and test sets can

be seen. In this table, the training set consists of 1318, 2839 and 1663 samples from

classes D, F and G, respectively, and the test set consists of 1311, 2835 and 1654

samples from classes D, F and G, respectively. It can be seen from Table 5.9 that the

SVM classification results are similar to that given in the first test case.

Table 5.9: SVM results using separate training and test sets.

D F Precision Recall Accuracy(%)
D 449 862 0.696 0.342

74.4814F 196 2639 0.754 0.931
Weighted average 0.736 0.745

G D Precision Recall Accuracy(%)
G 1404 250 0.602 0.849

60.2698D 928 383 0.605 0.292
Weighted average 0.603 0.603

G F Precision Recall Accuracy(%)
G 430 1224 0.621 0.26

66.8969F 262 2573 0.678 0.908
Weighted average 0.657 0.669

Per-class average values calculated from Table 5.9 can be seen in Table 5.10. Average

values of the SVM classification results are similar to that reported in the first test case.

Table 5.10: Per-class averages for SVM classification using separate training and test
sets.

Precision Recall Accuracy (%)
D 0.651 0.317 67.3756
F 0.716 0.920 70.6892
G 0.612 0.555 63.5834

In Table 5.11, test results using LVQ with separate training and test sets can be seen.

In this table, the training set consists of 1318, 2839 and 1663 samples from classes D,

F and G, respectively, and the test set consists of 1311, 2835 and 1654 samples from
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classes D, F and G, respectively. Similar to SVM results, there is no significant change

in LVQ results when compared to the first test case, as can be seen from Table 5.11.

Table 5.11: LVQ results using separate training and test sets.

D F Precision Recall Accuracy(%)
D 655 656 0.606 0.5

73.9267F 425 2410 0.786 0.85
Weighted average 0.729 0.739

G D Precision Recall Accuracy(%)
G 1119 535 0.62 0.677

58.8196D 686 625 0.539 0.477
Weighted average 0.584 0.588

G F Precision Recall Accuracy(%)
G 584 1070 0.519 0.353

64.09F 542 2293 0.682 0.809
Weighted average 0.622 0.641

Per-class averages calculated from Table 5.11 are given in Table 5.12. It can be seen

that average values are consistent with the results given in Table 5.11, which means

there is no significant change in the performance of LVQ in this test case.

Table 5.12: Per-class averages for LVQ classification using separate training and test
sets.

Precision Recall Accuracy (%)
D 0.573 0.489 66.3732
F 0.734 0.830 69.0083
G 0.570 0.515 61.4548

From the results of the second test case, we can say that SVM and LVQ results are

consistent to the first test case since there is no significant difference between two

cases. Although the performance of the GMM is improved, these results are still not

acceptable. In the remaining tests we considered not using GMM since it has a high

computational complexity which causes long test durations.

Selection of the optimal training set is an important issue in classification. In the

third test case, we have used different training sets to examine whether the training

sets yield overfitting. The training sets are enlarged by either replicating the data

or including new data into the set. In order to see the effects of enlarging the data

size, 10-fold cross-validation tests were performed on a dataset created by adding new

41



samples and using the same samples many times. The results obtained by the SVM

and the LVQ are reported in Table 5.13 and Table 5.15, respectively. For the SVM,

as before, a polynomial kernel of degree 3 was used. The cost value was set to 100

and a normalization was applied before classification. In Table 5.13 and Table 5.15,

the dataset contains 31500 samples from each class. Since the number of samples

increased, more codewords are needed thus we have used 5000 codewords.

Table 5.13: 10-fold SVM results using the enlarged dataset.

D F Precision Recall Accuracy(%)
D 24603 6897 0.760 0.781

76.7111F 7775 23725 0.775 0.753
Weighted average 0.767 0.767

G D Precision Recall Accuracy(%)
G 20869 10631 0.663 0.663

66.3000D 10600 20900 0.663 0.663
Weighted average 0.618 0.618

G F Precision Recall Accuracy(%)
G 20506 10994 0.674 0.651

66.8095F 9916 21584 0.663 0.685
Weighted average 0.668 0.668

From Table 5.13 we can see that there is no significant improvement except the results

of the classification between the fatty-glandular and the dense-glandular classes.

Per-class average values calculated from Table 5.13 can be seen in Table 5.14. From

this table we can see that the most separable class is the fatty class, and we can see the

improvement in the fatty-glandular class.

Table 5.14: Per-class averages for 10-fold SVM classification using the enlarged
dataset.

Precision Recall Accuracy (%)
D 0.712 0.722 67.0056
F 0.719 0.719 71.7603
G 0.669 0.657 66.5548

It can be seen from Table 5.15 that the performance of the LVQ algorithm highly

increased when using the enlarged dataset.

Per-class average values calculated from Table 5.15 can be seen in Table 5.16. This

table shows that the average classification performances for each class is above 90%.
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Table 5.15: 10-fold LVQ results using the enlarged dataset.

D F Precision Recall Accuracy(%)
D 29609 1891 0.923 0.94

93.0683F 2476 29024 0.939 0.921
Weighted average 0.931 0.931

G D Precision Recall Accuracy(%)
G 29813 1687 0.954 0.946

95.0429D 1436 30064 0.947 0.954
Weighted average 0.950 0.950

G F Precision Recall Accuracy(%)
G 28761 2739 0.886 0.913

89.7587F 3713 27787 0.910 0.882
Weighted average

Table 5.16: Per-class averages for 10-fold LVQ classification using the enlarged
dataset.

Precision Recall Accuracy (%)
D 0.935 0.947 94.0556
F 0.925 0.902 91.4135
G 0.920 0.930 92.4008

It is seen from Table 5.13 that enlarging the training set does not significantly change

the performance of the SVM classifier. It is observed from Table 5.16 that increasing

the number of training vectors significantly increases the performance of the LVQ

algorithm. This is because the LVQ is a learning based scheme that can be affected

from the inadequate number of training data.

As the fourth test case, 3-class classification tests were performed using the SVM and

LVQ classifiers on the enlarged dataset. Same classifier parameters as in the third test

case were used. Results using SVM and LVQ are given in Table 5.17 and Table 5.18,

respectively.

Table 5.17: 3-class SVM classification results using 10-fold cross validation.

D F G Precision Recall Accuracy(%)
D 20064 5926 5510 0.574 0.637

54.6783
F 4623 21167 5710 0.559 0.672
G 10264 10796 10440 0.482 0.331

Weighted average 0.538 0.547

From Table 5.17 we can see that the performance of SVM algorithm significantly

decreased in the three-class classification scheme.
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Table 5.18: 3-class LVQ classification results using 10-fold cross validation.

D F G Precision Recall Accuracy(%)
D 29142 1402 956 0.924 0.925

90.6667
F 1406 27890 2204 0.895 0.885
G 974 1878 28648 0.901 0.909

Weighted average 0.907 0.907

In Table 5.18 we can see that that LVQ gives similar results to the two-class

classification results. LVQ learns the data well with sufficient number of samples

and enough number of codevectors to represent them. According to these results,

dense-glandular density is the best classified one and fatty class is the worst one.

However, the variance in the precision and recall values of different tissue types are

not high.
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6. CONCLUSION

In this study a system is proposed for breast tissue density classification in

mammograms. This system may be considered as a preprocessing step in computer

aided diagnosis systems working on mammograms and content based medical image

retrieval systems.

Breast tissue density is highly related to the risk of cancer development. Furthermore,

the masses in breast may hide in the dense tissue. Thus detection of a malignant mass

becomes a hard task, which may hinder the early detection of cancer and even lead to

death.

We have used a subset of the MIAS dataset which includes mammographic images

from different tissue types and some of these images contain benign or malignant

masses. There are three tissue density classes in this set which are fatty, fatty-glandular

and dense-glandular. These categories have overlapping global and visual image

characteristics. In other words, two images from the same class may have different

image characteristics, and two images from different classes may have similar

characteristics. This structure of the data led us to use local image features. For this

purpose, we have used the scale-invariant feature transform (SIFT) and applied the

bag-of-features method in order to achieve a better representation of the data and to

select the training set optimally.

Using the features extracted from the labeled images, three different classifiers was

designed which are the Gaussian mixture models classifier (GMM), support vector

machines (SVM) and learning vector quantization (LVQ). Our objective in using

different classifiers was to evaluate the performance of them and to find the best method

that is suitable for our purpose.

In our experiments, the performance of the GMM was not acceptable with our settings.

On enlarged datasets we did not test GMM since the duration of these tests got longer.
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We have observed that LVQ is the most efficient method when the computation time is

considered.

The results show that in smaller datasets, SVM outperforms other methods. It is

observed that 10-fold cross validation results are coherent with the results achieved

by using separate training and test sets.

When the dataset is enlarged by adding new samples or replicating the same vectors,

the performance of learning vector quantization highly increases while only subtle

improvements are observed in the performance of support vector machines.

The performance of the SVM algorithm decreased in the three-class classification tests

when compared to the two-class classification tests.

Three class classification using LVQ algorithm gives over 90% accuracy when there

are sufficient number of samples in the training set and enough codewords to model

them. LVQ algorithm learns the data better when the size of the training set is large,

even if the samples are replicated.

According to the results of the three-class classification using LVQ algorithm, the

most separable class is dense-glandular and the least separable one is the fatty class.

However, there is only little differences between the performances in the classification

of different classes.

The developed system may be used in computer aided diagnosis systems since it

contributes to the reliability and automaticity of the CAD systems. Similarly, it can

be used as a part of the content based medical image retrieval systems because it

may reduce the work load and time by reducing the dataset to be searched over while

affecting the accuracy in a positive way.

As future work, we plan using different feature extraction and selection methods and

different datasets including digital mammograms, and reporting our results in terms of

the BI-RADS categories.

46



REFERENCES

[1] Zhang, G., Wang, W., Moon, J., Pack, J.K. and Jeon, S.I., (2011). A Review
of Breast Tissue Classification in Mammograms, Proceedings of the
2011 ACM Symposium on Research in Applied Computation (RACS),
pp.232–237.

[2] Oliver, A., Freixenet, J. and Zwiggelaar, R., (2005). Automatic Classification of
Breast Density, Proceedings of the 2005 IEEE International Conference
on Image Processing (ICIP), volume 2, pp.1258–61.

[3] American College of Radiology, (1998). Illustrated Breast Imaging Reporting and
Data System BIRADS, American College of Radiology, 3rd edition.

[4] Oliver, A., Freixenet, J., Marti, R., Pont, J., Perez, E., Denton, E.R.
and Zwiggelaar, R., (2008). A Novel Breast Tissue Density Classifi-
cation Methodology, IEEE Transactions on Information Technology in
Biomedicine, 12(1), 55–65.

[5] Bosch, A., Munoz, X., Oliver, A. and Marti, J., (2006). Modeling and
Classifying Breast Tissue Density in Mammograms, Prodeecings of the
2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, volume 2, pp.1552–1558.

[6] Ferrari, R., Rangayyan, R., Desautels, J., Borges, R. and Frere, A., (2004).
Automatic Identification of the Pectoral Muscle in Mammograms, IEEE
Transactions on Medical Imaging, 23(2), 232–245.

[7] Oliver, A., Freixenet, J., Marti, R. and Zwiggelaar, R., (2006). A Comparison
of Breast Tissue Classification Techniques, Proceedings of the MICCAI
2006, pp.872–879.

[8] de Oliveira, J.E.E., de Albuquerque Araújo, A. and Deserno, T.M., (2011).
Content-Based Image Retrieval Applied to BI-RADS Tissue Classification
in Screening Mammography, World Journal of Radiology, 3(1), 24–31.

[9] Petroudi, S. and Brady, M., (2011). Breast Density Characterization Using
Texton Distributions, Proceedings of the 2011 IEEE Annual International
Conference of theEngineering in Medicine and Biology Society (EMBC),
pp.5004–5007.

[10] Wang, J., Li, Y., Zhang, Y., Xie, H. and Wang, C., (2011). Bag-of-Features
Based Classification of Breast Parenchymal Tissue in the Mammogram
via Jointly Selecting and Weighting Visual Words, Proceedings of the

47



2011 Sixth International Conference on Image and Graphics (ICIG),
pp.622–627.

[11] Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., Ricketts,
I., Stamatakis, E., Cerneaz, N., Kok, S., Taylor, P., Betal, D. and
Savage, J., (1994). The Mammographic Images Analysis Society Digital
Mammogram Database, Experta Medica International Congress Series,
1069, 375–378.

[12] Lowe, D.G., (2004). Distinctive Image Features from Scale-Invariant Keypoints,
International Journal of Computer Vision, 60(2), 91–110.

[13] Csurka, G., Dance, C.R., Fan, L., Willamowski, J. and Bray, C., (2004). Visual
Categorization with Bags of Keypoints, Proceedings of the International
Workshop on Statistical Learning in Computer Vision (ECCV), pp.1–22.

[14] Webb, A.R., (2002). Statistical Pattern Recognition, John Wiley & Sons, 2nd
edition.

[15] Kohonen, T., (2001). Self-Organizing Maps, Springer-Verlag, 3rd edition.

[16] Reynolds, D.A., (2008). Gaussian Mixture Models, Encyclopedia of Biometric
Recognition, 659–663.

[17] Algorithms, W.C., http://wekaclassalgos.sourceforge.org/, date
retrieved: 3rd April 2012.

[18] OpenPR, http://www.openpr.org.cn/, date retrieved: 15th February
2012.

[19] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten,
I.H., (2009). The WEKA Data Mining Software: An Update, SIGKDD
Explorations, 11(1).

[20] Chang, C.C. and Lin, C.J., (2011). LIBSVM: A Library for Support Vector
Machines, ACM Transactions on Intelligent Systems and Technology, 2(3).

[21] EL-Manzalawy, Y. and Honavar, V., (2005). WLSVM: Integrating LibSVM into
Weka Environment.

[22] van der Heijden, F., Duin, R.P., de Ridder, D. and Tax, D.M., (2004). Clas-
sification, Parameter Estimation and State Estimation - An Engineering
Approach Using Matlab, John Wiley & Sons.

48



CURRICULUM VITAE

Name Surname: Sezer Kutluk

Place and Date of Birth: Ilgın/Konya, 21st February 1985

Address: Istanbul Technical University
Department of Electronics and Communications Engineering
Multimedia Signal Processing and Pattern Recognition Laboratory
34469 Maslak Istanbul Turkey

E-Mail: sezer.kutluk@gmail.com

B.Sc.: Electrical-Electronics Engineering Department, Istanbul University

List of Publications:

Çırakman Ö., Kutluk S., Günsel B., Çalıkuş O., 2012: Mobil Ortamda Ürün
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Conference (SİU), 2010 Diyarbakır, Turkey.

49


