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NOMENCLATURE!

ay : The element of a reciprocal matrix A

A : Reciprocal matrix

A’ : Positive-ideal solution

A : Negative-ideal solution

A; : ith attribute

AA(E) : Average degree of agreement of ith expert

G : ith constraint

G’ : Relative closeness (or similarity)

CC(Ey) : Consensus degree coefficient of ith expert

D : Decision

E; : ith expert

F : Approx. fuzzy number of the fuzzy suitability index of ith alternative
Gi : ith goal

J1 : The set of benefit attributes

J2 : The set of cost attributes

R; : Trapezoidal fuzzy number

Ry, o : Performance rating (or performance score)

Rac : Aggregated fuzzy number for homogeneous group of experts
Rac™" : Aggregated fuzzy number for heterogeneous group of experts
RA(E) : Relative degree of agreement of ith expert

Si : Separation from the positive-ideal solution

S : Separation from the negative-ideal solution

SR Ry) : The degree of agreement (or degree of similarity)
X : The most preferred alternative

Xy : ith alternative

U; : The performance of the ith alternative or fuzzy utility
W : A set of weights of experts or attributes

Wi : Weight of ith expert or attribute

u(x) : Membership function

Hy, (u;) : Membership function of the utility of the ith alternative
B : The relaxation factor of the proposed method

Amax : Maximum eigenvalue of reciprocal matrix A

A : Relative suitability rating

Ay : Overall suitability rating

! Since there is no unified standards in nomenclature in Chapter 4 and related Appendices, the
variables employed by their original contributors have been adopted as they appear in literature. Their
definitions have been provided locally.
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DEVELOPMENT OF A NEW FUZZY MULTIPLE ATTRIBUTE DECISION
MAKING APPROACH AND ITS APPLICATION TO DECISION MAKING
IN SHIP DESIGN AND SHIPBUILDING

SUMMARY

Decision making is the process of determining the best course of action from a finite
set of available alternatives. The major concern is that almost all decision problems
have multiple, usually conflicting criteria. Research on how to solve such multiple
criteria decision making (MCDM) problems has been enormous. These problems are
broadly classified into two categories:

e Multiple Attribute Decision Making (MADM) or multiple attribute analysis, and
o Multiple Objective Decision Making (MODM) or multiple criteria optimisation.

MADM is associated with problems whose number of alternatives has been
predetermined and the MADM methods are management decision aids in evaluating
and/or selecting a desired one from the finite number of alternatives, which are
characterised by multiple attributes. The decision maker is to select/prioritise/rank a
finite number of courses of action (or alternatives).

On the other hand, MODM is not associated with problems in which the alternatives
have been predetermined. The decision maker’s primary concern is to design a most
promising alternative with respect to limited resources. An MADM problem can be
expressed in matrix format as follows:

. Alternatives
Attributes X, R Xn
Ay - Rn Rp | ... Rin
Ay Ry Rn |  ...... Ron
Ag Rxi Rea | .. Rxn

Where X;,i =1, ....., N are possible alternatives; Aj, j =1, ..... , K are attributes with
which alternative performances are measured; R; is the performance score (or
performance rating) of alternative X; with respect to attribute A;.

Current shipbuilding MADM situations are characterised by the following

interrelated problems:

e Imprecise data,

Most of the real world decision making problems involve vagueness and fuzziness
and the decision maker has the difficult task to choose among the many alternatives

Xiv



and to specify the optimal alternative. In many cases the decision maker (or expert)
has inexact information about the alternatives with respect to an attribute. The
classical MADM methods cannot effectively handle problems with such imprecise
information. It is obvious that the R;; value (or rating) cannot be assessed precisely.
The imprecision may come from different sources such as incomplete information,
unquantifiable information, or nonobtainable information etc.

¢ The mixture of fuzzy and crisp data,

In real world decision making problems, decision data of MADM problems are
usually fuzzy, crisp, or mixture of them.

e Involvement of multiple decision makers,

Most of the shipbuilding problems involve the work of a team of experts or
specialists (technology experts, design engineers, ship owners, etc.) and are focused
on an analysis and evaluation of attributes of decision making process.

e Attribute based expert weighting,

In general, the importance of each decision maker against an attribute is not equal.
Sometimes there are important experts in decision group, such as the executive
manager of a shipyard, or some experts who are more experienced than others, the
final decision is influenced by the different importance of each expert.

Hence, a useful decision model is to provide the ability to handle above-mentioned
problems.

It is obvious that much knowledge in the real world is fuzzy rather than precise.
Decision making is one of the subjects to which Fuzzy Set Theory (FST), which was
first introduced by Zadeh to deal with vague, imprecise, and uncertain problems, has
been successfully applied to in the recent years. Various approaches to different
aspects of decision problems with vague data have been published. It has been
proved that FST provides a sophisticated framework for describing and processing
uncertain or imprecise information in decision problems.

Fuzzy Multiple Attribute Decision Making (FMADM) methods have been developed
to solve MADM problems, which contain fuzzy data. FMADM is a subcategory of
Fuzzy Multiple Criteria Decision Making (FMCDM). FMCDM can be classified as
Fuzzy Multiple Objective Decision Making (FMODM) and FMADM,; the former
emphasises on continuous decision making spaces and it mainly deals with multiple
objective mathematical programming problems; the latter mainly deals with discrete
decision making space problems.

The study of FMADM problems is still in its infancy and still has a lot of room for
improvement. After a systematic and critical study of the existing FMADM methods,
the drawbacks of them have been assessed from a practical point of view in this
research. These drawbacks certainly limit their applicability to real world
(shipbuilding) MADM problems.



The objective of this research is to overcome the difficulties found in FMADM
methods and to contribute to the development of an MADM method with multiple
decision makers, capable of working in a fuzzy environment.

The proposed FMADM method is designed to overcome the aforementioned
difficulties so that MADM problems can be meaningfully and efficiently solved in a
fuzzy environment. The basic assumption of the proposed method is that the MADM
problem may contain fuzzy and crisp data and it may consist of multiple decision
maker (or expert) with the difference degree of importance.

The thesis discusses the theoretical background of the proposed method and presents
the application of it to two real shipbuilding case studies, demonstrating the
versatility and potential of the proposed method for solving FMADM problems.

The proposed method is composed of three major states as described below:
e Rating state,

In the rating state of the proposed method, each expert (or decision maker) gives
his/her opinions (or performance ratings) about alternatives with respect to each
subjective attribute. The first state aims to convert fuzzy data into standardised
positive trapezoidal fuzzy numbers. If the fuzzy data are linguistic terms, they are
transformed into fuzzy numbers first by using appropriate conversion scale and then
converted to standardised positive trapezoidal fuzzy numbers.

e Attribute based aggregation state,

In the second state, attribute based aggregation method for heterogeneous group of
experts is employed. Aggregation is necessary only for subjective attributes. After
the weights of attributes and the degree of importance of experts are assigned, under
each subjective attribute all performance ratings are aggregated for each alternative.

e Selection state,

In the last state of the proposed approach, all fuzzy elements of the aggregated
decision matrix are deffuzzified in the deffuzzification phase. The result of this phase
is a decision matrix, which contains only crisp data. Then the alternatives of the
problem are ranked by TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution), which is a classical MADM method.

In this dissertation, two real case studies are carried out. The first one is a system
(propulsion/manoeuvring system) selection under fuzzy environment and the second
one is a component (ship main engine) selection under semi-fuzzy environment.

From the work carried out in this thesis, the two main contributions have been
reached. They are classified as contributions to “multiple attribute decision making
theory” and contributions to “naval architecture” points of views.

Development of a new FMADM method is the first focus and contribution of this
dissertation. From the decision theory point of view, proposed method has the
following achievements:
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It is an entire MADM model which combines FMADM methodologies with
GDM techniques,

The proposed method is very suitable for solving the multiple attributive GDM
problems under fuzzy environment,

The proposed method enables the researchers to incorporate homo/heterogeneous
group of experts with the different degrees of importance into the FMADM
models,

The majority of classical MADM methods are capable of handling large MADM
problems. The proposed approach extends that ability to the fuzzy problems with
multiple experts domain,

It is a new FMADM method that is easy to use and to understand, and the
algorithm of the proposed approach is also easy to be coded into a computer
program due to the stepwise description,

The second concern and contribution of this dissertation is to show the applicability
of the proposed method into the naval architecture MADM problems. From the naval
architecture point of view, the following can be concluded:

As illustrated in the real life examples, the proposed method is a generalised
model which can be applied to great variety of practical problems encountered in
the naval architecture from propulsion/manoeuvring system selection to warship
requirements definition,

As the application grows, the real value of fuzzy decision making tools will find
more widespread use, as most of the :practical problems from design to
production involves the aggregation of rational and fuzzy elements in harmony,

Such an approach will also assist the use of optimisation by placing them within
the correct context in problem solving and hence will avoid sub-system or sub-
attribute optimisation problems.

Finally, the proposed method can efficiently help the decision makers and engineers
to make decisions in real world. And it can provide a useful way to solve the
selection problems in a fuzzy environment. It is a versatile and flexible system,
which covers a vast variety of FMADM problems.

This research also concludes by highlighting future directions for research in this
area.



YENI BiR BULANIK COK OZ-NITELIiKLi KARAR VERME TEKNiGININ
GELISTIRILMESI VE GEMI INSAATI VE DiZAYNI KARAR VERME
PROBLEMLERINE UYGULANMASI

OZET

Karar Verme (KV), glinlik hayatimizin 6nemli bir parcasidir ve sonlu sayidaki
mevcut alternatiflerden en iyisini belirleme prosesidir. Hemen hemen tim KV
problemleri genellikle birbiriyle ¢atigan kriterlere sahiptir. Bu tiir problemler Cok
Kriterli Karar Verme (MCDM) teknikleri olarak adlandirilir.

MCDM teknikleri temel olarak:
o Cok Amach Karar Verme (MODM) ve
e Cok Oz-nitelikli Karar Verme (MADM) yaklagimlari

olmak iizere ikiye ayrilir. Aralarindaki fark, MODM teknikleri sistem dizayn ederken
MADM teknikleri ise karar vericinin 6niindeki &nceden belirlenmis alternatifler
arasindan en iyi alternatifi segmek igin kullanilir.

Bir MADM problemi agagidaki matris formatinda tammlanabilir:ﬁ

o . Alternatifler

Oz-nitelikler X X% | . X
Ay Ru Rp | ... Rin
A R21 R22 ...... RzN
Ax Rk Ree | ... Rin

Burada X; (i = 1, ... , N) ile gosterilenler alternatifleri, Aj G = 1, ... , K) ile
gosterilenler Oz-nitelikleri ve Ry ile gosterilenler ise performans degerlerini
gostermektedir.

Gemi ingaati MADM problemleri dort ana baglhik altinda asagida verildigi lizere
gruplandirilabilir:

o - Belirsiz veri,

Gergek hayattaki KV problemlerinin ¢ogu belirsizlik ve bulamklik igerir ve bu
durumda karar vericinin en iyi alternatifi segmesi zorlasir. Cogu zaman uzman (veya
karar verici), alternatifleri herhangi bir 6z-nitelife gore degerlendirirken eksik
veriyle hareket etmek durumundadir. Klasik MADM teknikleri bu tiir problemlerin
¢oziimiinde yetersiz kalmaktadir. Bu tiir problemlerdeki belirsizlik kaynaklar,
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tamamlanmamuig bilgi, niimerik olarak &lgiilemeyen bilgi veya elde edilemeyen bilgi
vs. olabilir.

e Bulanik ve deterministik verinin karisimu,

Gergek hayattaki MADM problemlerinin  karar verisi genellikle bulanik,
deterministik veya her ikisinin karigimidir.

o Birden fazla karar vericinin probleme katilimi,

Gemi ingaati KV problemlerinin g¢ogu genellikle uzmanlarin, dizayn
miithendislerinin, armatérlerin vs. katilimiyla gergeklesen bir takim ¢aligmasi
gerektirir,

e  Oz-nitelik bazli uzman agirliklandirma,

Genellikle KV problemlerinde uzman agirhiklan egit degildir. Bazen bir tersane
miidiiri  bir problemde isletme miidiiriinden daha deneyimliyken, bir bagka
problemde daha az deneyimli olabilir. Bu gibi durumlarda uzman agirliklarinin 6z-
nitelik bazinda model igerisine katilmasi gerekir.

Boylece, efektif ve yararli bir KV modelinin yukarida bahsedilen problemleri
cozebilecek bir kabiliyete sahip olmas: gerekmektedir.

Zadeh 1965 yilinda Bulanik Kiime Teorisi (FST) nin temellerini atmig ve ilk olarak
Bellman ve Zadeh KV problemlerinin ¢oziimiinde FST’yi kullanmiglardir. KV
bilimi, son yillarda FST’nin basariyla uygulandig: alanlardan biridir ve literatiirde
birgok bulamk MADM ydntemi ortaya atilmigtir. Kamtlanmugtirki, FST KV
problemlerinin belirsiz ve bulamk verisinin tamimlanmasi ve proses edilmesinde gok
6nemli bir teoridir.

Bulamk Cok Oz-nitelikli Karar Verme (FMADM) teknikleri, bulanik veri igeren
MADM yo6ntemlerinin ¢6ziimii i¢in geligtirilmis tekniklerdir ve Bularuk Cok Kriterli
Karar Verme (FMCDM) yaklagimlarimin bir alt smifidirlar. FMCDM yontemleri,
Bulanik Cok Amagh Karar Verme (FMODM) ve FMADM teknikleri olmak iizere

ikiye ayrilirlar.

FMADM c¢aligmalann daha ¢ok yenidir ve gelisimleri i¢in agilmamus birgok kapi
mevcuttur. Bu ¢aligmada, literatiirde mevcut olan FMADM yontemleri sistematik
olarak incelenerek dezavantajlar1 belirlenmigtir. Bulunan bu dezavantajlar, onlart
gercek hayattaki (gemi insaati) problemlere uygulanmalarmi onemli &lgiide
kisitlamaktadir.

Calismanin amaci, yukarida bahsedilen FMADM tekniklerindeki zorluklarin
listesinden gelinmesi ve gok Karar vericili yeni bir FMADM yéntemi geligtirilmesi
olarak belirlenmistir.

Bu ¢aligmada, dnerilen FMADM yaklasiminin teorik altyapisi verilerek ySntemin iki
adet gemi ingaat1 KV problemine uygulamasi gésterilmektedir.



Onerilen FMADM teknigi, asagida verilen {i¢ adet ana safha icermektedir:
e Performans degerlendirme sathas,

Bu safhada, herbir uzman KV probleminin herbir alternatifini herbir 6z-nitelik i¢in
performans agisindan degerlendirmek suretiyle kendi goriislerini belirtir. Sathanin
amaci, bulamuk halde olan goriiglerin standartlagtinlmmg pozitif yamuk bulanik
sayilarina doniigtiiriilmesidir.

o Oz-nitelik bazh toplama safhasi,

Farkli agirliktaki uzman grubu (heterojen uzman grubu) i¢in 6z-nitelik bazli bir
toplama yontemi kullanilmaktadir. Toplama sadece subjektif 6z-nitelikler igin
gereklidir. Oz-nitelik ve uzmanlarin agirliklan belirlendikten sonra bu safhada, herbir
Oz-nitelik bazinda herbir alternatif igin toplama yapilir.

e Sec¢im safhas.

Onerilen yéntemin son safhasinda, toplanmus karar matrisinin tiim bulanik elemanlart
deterministik hale getirilir. Bunun sonucu, tiim elemanlari deterministik olan bir
karar matrisidir. Daha sonra, ¢ok sik¢a kullanilan klasik bir MADM y&ntemi olan
TOPSIS, alternatiflerin siralamasini bulmak i¢in kullamlir,

Vaka galigmasi olarak iki adet gemi ingaati vakasi secilmistir. Bunlardan birincisi,
bulanik bir ortamda sistem (sevk/manevra sistemi) se¢imi, ikincisi ise yan-bulanik
bir ortamda eleman (gemi ana makine) segimidir.

Geligtirilen ybntemin uygulama sonuglar itibariyle, MADM Kkarar teorisi ve gemi
ingaat1 miihendislii olmak {izere iki 6nemli alana katki sagladig g6riilmiistiir.

Yeni bir FMADM yonteminin geligtirilmesi bu tezin ilk odak noktasi ve katkisi
olmustur. Karar teorisi agisindan, Onerilen ydntem agafida verilen bagarimlan
kazanmugtir:

o QGeligtirilen yontem, FMADM metodolojileriyle Grup Karar Verme (GDM)
tekniklerini birlestiren bir yontemdir,

o Geligtirilen y6ntem, bulanik bir ortamda g¢ok 6z-nitelikli GDM problemlerinin
¢Oziimil i¢in ¢ok uygun bir ydntemdir,

e Yontem, farklh agihiktaki uzman grubunun FMADM KV modeli igerisine
katilmasina imkan veren bir yontemdir,

e MADM tekniklerinin birgogu, biiyilkk boyuttaki KV problemlerinin ¢6ziimii igin
gelistirilmiglerdir. Gelistirilen yontem bu 6zelligi, ¢ok karar vericili bulamk KV
yOntemi boyutuna ¢ekmigtir.

e QGelistirilen yontem, kullanimi ve anlasilmasi gok kolay bir ydntem olup

bilgisayarda kodlanmas: da, adimlar halinde tanimlanmig algoritmas: sayesinde
oldukga basittir.



Calismanin ikinci katkisi, gelistirilen yéntemin gemi ingaati MADM problemlerine
uygulanabilirligini gostermektir. Gemi insaat mithendisligi agisindan, elde edilen en
Onemli bagarim agagida verilmektedir:

e Vaka caliymalarindan goriilebilecegi iizere, gelistirilen yontem, savas gemisi
gereksinim tanimindan sevk/manevra sistemi segimine kadar olan genis bir
alanda gemi ingaatinda pratikte karsilagilan problemlerin  ¢dziimiinde
kullanilabilecek genellestirilmis bir modeldir,

Son olarak, Onerilen yontem, bulamik ortamda g¢ok karar vericili MADM
problemlerinin ¢6ziimiinde kullamlabilecek ¢ok yonlii ve esnek bir yontemdir. Bu
yoniiyle, karar vericilere ve miihendislere KV problemlerinde 6nemli bir destek
saglayacag: gbzitkmektedir.

Arastirma ayrica, bu alanda gelecekte yapilabilecek ¢aligmalara da 1s:1ik tutacak
yo6nleri belirlemistir.
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1. INTRODUCTION

A decision maker working in the areas of engineering or social sciences is quite often
faced with the problem of selecting an alternative from a given set of finite number
of alternatives. The chosen alternative is an optimal or a compromise option that
meets certain predefined objectives/goals.

Due to the categorical classification of variable types in engineering, there are
basically two types of approaches for tackling any decision problem : a deterministic
and a stochastic (or probabilistic) approach. In the deterministic approach, the
parameters and the constraints are precisely known. In the stochastic approach, the
parameters and the constraints are modelled as random variables and are not crisp. In
this case, the decisions are taken under risk, and results are given with confidence
levels.

Advancements in science and technology have made engineering and social
problems quite complex. Many of our activities and the systems with which we deal
each day cannot be modelled easily with the known classical tools and methods
available in the aforementioned categories (deterministic or probabilistic). These
conventional methods, both deterministic and random processes, tend to be less
effective in conveying the imprecision and vagueness characteristics.

In fact, the human brain possesses some special characteristics that enable it to learn
and reason in a fuzzy environment. It has the ability to arrive at decisions based on
imprecise qualitative data, in contrast to formal and classical mathematical methods
based on quantitative data. This has led to the development of Fuzzy Set Theory
(FST) by Zadeh (1965), who proposed that the key elements in human thinking are
not numbers but labels of fuzzy sets.

FST is a powerful tool to handle imprecise data. Fuzzy expressions are more natural
for humans than rigid mathematical rules and equations. The fuzzy reasoning system
makes no global assumptions about the data.

Zadeh (1965) formulated the initial statement of FST. Since then, this mathematical
discipline has gone through substantial theoretical development. Correspondingly,
there has been a proliferation of applications of this basic mathematical framework to
a variety of fields.



Ordinary Set Theory (OST) principles underlie modern mathematics. Fundamental to
basic set theory is the notion that an item is either a member or is not a member of a
set. However, the fact is that in the real world, membership in a set is not always so
well-defined. FST is based on recognition that certain sets imprecise boundaries.
Fuzzy sets are those ill-specified and nondistinct collections of objects with unsharp
boundaries in that the transition from membership to nonmembership in a subset of a
reference set is gradual rather than abrupt.

Typically, we speak of tall men or expensive homes. Membership in such sets or
classes of objects is not characterised by either/or, but are sets in that membership
can be adequately considered in terms of degrees. A fuzzy set is characterised by a
membership function, defined as a real number in the interval [0, 1]. For example, a
membership measure pa(x;) = 0.8 suggests that member x; of set X is a member of
the fuzzy set A to a degree 0.8 on a scale where zero is no membership and one is
complete membership. It should be clear that FST can be reduced to OST by
constraining membership to the extremes of the range 0 to 1.

Before continuing, a fundamental clarification should be made that concerns how the
imprecision of FST (or possibility theory) differs from the imprecision dealt with by
probability theory. Basically, the difference is that probability theory deals with
randomness of future events, whereas possibility theory deals with the imprecision of
current or past events. Randomness deals with the uncertainty regarding the
occurrence or non-occurrence of some event, while the imprecision of fuzzy sets
deals with the membership or nonmembership of an object in a set with imprecise
boundaries.

A typical probabilistic statement is “There is a 10 percent chance that the next person
to enter the room will be over 1.70 m. tall”. A typical possibilistic statement is
“Aykut is tall”. The probabilistic statement refers to a precise set of people over 1.70
m. The imprecision in this case has to do with the event relating to the next person in
the room. The fuzzy statement is not imprecise about the event in question; it is
“Aykut”. The imprecision here has to do with the vagueness of the concept of “tall”
itself.

In the study of the decision-making problem, the multiple objective, multiple
attribute and multiple criteria decision models are useful. The multiple objective
decision-making (MODM) consists of a set of goals that generally cannot be satisfied
simultaneously. It also usually involves solving a problem on continuous space via a
mathematical programming model, while multiple attribute decision-making



(MADM) deals with the problem of choosing an alternative from a set of candidate
alternatives which are characterised in terms of some attributes.

In an MADM problem, a set of alternatives (or courses of action), or decisions, are
considered. The performance rating (or performance score) of each alternative on
each of a given set of attributes is the basis for final decision. These performance
values on the attributes involved for each alternative are aggregated to form a
preference rating and the alternative with the highest preference, indicating the best
overall performance, is identified.

Multiple attribute, multiple alternative decision problems, which require the ranking
of a set of alternatives, are of importance in a variety of fields including engineering,
economics, etc. It is assumed that each alternative can be characterised by a set of
attributes, that associated with each attribute is a weight which is a measure of its
relative importance, and that each alternative can be rated with respect to each
attribute. Frequently, such decision problems are encountered in the presence of
uncertainty.

For a review of the various MADM methods the reader is referred to, for example,
Hwang and Yoon (1981), Chen and Hwang (1992) and Yoon and Hwang (1995).

Real world decision making problems are defined in a domain which is shown in
Figure 1.1.

Since the subjectivity, imprecision and vagueness in the estimates of a given quantity
enter into MADM problems, FST, is helpful in dealing with the fuzziness of human
judgement quantitatively.

FMADM methods have been developed due to the lack of precision in assessing the
performance ratings of alternatives with respect to an attribute.

1.1 Statement of the Problem

The most of the shipbuilding MADM situations have the common problems as
follows:

e Imprecise data,

In the real world, decisions are made every day and humans deal naturally with
subjective or fuzzy information.



The most of the real world decision making problems involve vagueness and
fuzziness and the decision maker has the difficult task to choose among the many
alternatives and to specify the optimal alternative. The uncertainty of subjéctive
judgement is present when this process is carried out.

Typically, military command and control, by its nature, deals extensively with
imprecise knowledge and subjective goals. The state of a battlefield situation is
usually not well known. There is never enough information or time to completely
analyse a situation in order to make a decision. Yet humans tend to perform
reasonably well under such circumstances, arriving at good decisions in spite of
ambiguity and confusion.

The imprecision comes from a variety of sources such as i) Unquantifiable
information, ii) Incomplete information, iii) Nonobtainable information, iv) Partial
ignorance (Chen and Hwang (1992)). In many cases the decision maker (or expert)
has inexact information about the alternatives with respect to an attribute. The
classical MADM methods cannot effectively handle problems with such imprecise
information.

Non-Fuzzy Envw ment Increasing explicit knowledge

i I
Complete | . : Lack of
Quantifiable | oomTuZZY 1 o antifiable
Environment
Knowledge : ! Knowledge

! (Fully implicit stage)

Fuzzy I;nvironment

Decreasing explicit knowledge

Figure 1.1 Real world decision making problems domain




e The mixture of fuzzy and crisp data,

One of the most crucial problems in many decision making methods is the precise
evaluation of the pertinent data. Very often in real life decision making applications
data are imprecise and fuzzy. For example, how can one quantify statements such as
“What is the performance rating of the second propulsion system alternative in terms
of manoeuvrability attribute?” A decision maker may encounter difficulty in
quantifying and processing such linguistic statements. Therefore, it is desirable to
develop decision making methods which use fuzzy data.

In real world decision making problems, decision data of MADM problems are
usually fuzzy, crisp, stochastic? or mixture of them.

Hence, a useful decision model is to provide the ability to handle both fuzzy and
crisp data.

o Involvement of multiple decision makers,

The most of the shipbuilding problems involve the work of a team of experts or
specialists (technology experts, design engineers, shipowners, etc.) and are focused
on an analysis and evaluation of attributes of decision making process. Consequently,
they are, in fact, cases of multiple attribute based group decision making problems.

Human opinions often conflict because of group decision making in fuzzy
environment. The important issue of fuzzy group decision making is to aggregate
conflicting opinions.

e Attribute based expert weighting,

In general, the importance of each decision maker or expert against an attribute are
not equal. Sometimes there are important experts in decision group, such as the
executive manager of a shipyard, or some experts who are more experienced than
others, the final decision is influenced by the different importance of each expert.

Therefore, a good method of aggregating multiple expert opinions must consider the
degree of importance of each expert in the aggregation procedure.

? In most cases stochastic variables are reduced to crisp values through the use of expected value,
significant value and design equivalent or can be converted to fuzzy variables by the choice of
appropriate scales.



1.2 Objectives and Scope of the Research

This research is devoted to solve the aforementioned problems. Research objectives
have been identified at two stage. In the first stage, it was assumed that existing
FMADM (Fuzzy Multiple Attribute Decision Making) methods in the literature were
adequate to handle the types of problems mentioned before. Our review revealed that
this assumption was incorrect.

In the second stage, therefore, research objectives have been changed and have been
redefined as follows:

The aim of this study is to develop a method which combines the FMADM concepts
with Group Decision Making (GDM) methodologies and to apply it in typical
shipbuilding decision making problems.

To fulfil this aim the following objectives are identified:

i) To review critically the existing FMADM methods in order to identify their major
advantages and shortcomings,

ii) To propose a new method which combines FMADM methodologies with GDM
Techniques,

iii) To conduct real case studies to illustrate how the proposed method can be applied
in shipbuilding decision problems.

iv) To make recommendations for the future research.

1.3 Thesis Organisation

The thesis consists of seven chapters and four appendices.

The first chapter is an introduction to explain the background of the MADM
problems and to explain the objectives and the motivation of the research. The
problem statements, the goal and the objectives of the research are given in this
chapter.

A review of relevant literature is summarised in the second chapter. Chapter 2
discusses and reviews the literature and background knowledge of this research.
Several concepts such as Decision Making, Fuzzy Ranking methods, and FMADM
methods are described and some previous applications of MADM and fuzzy decision
making (FDM) approaches are also given in this chapter.

T.C. YOKSEXOCRETIM KURULY
'ON MERKEZL



The third chapter introduces the concepts of Multiple Objective Decision Making
(MODM) and Multiple Attribute Decision Making (MADM) problems and presents
the differences between MODM and MADM problems. This chapter also discusses
the basic elements of MADM problems and a classification of the existing MADM
methods is given. Fuzzy Set Theory (FST) needs for MADM problems is discussed
in the last section of the chapter.

In Chapter 4, most of the existing FMADM methods in the literature are given and
described in more detail. The classification of them is also given in this chapter.

The conceptual model of the proposed approach is given in the fifth chapter.
FMADM methods, described in the fourth chapter, are reviewed and the drawbacks
of them are presented in this chapter. Proposed method’s states are explained and an
illustrative selection problem is shown to demonstrate the computational process of
the proposed method.

In Chapter 6, two real shipbuilding case studies are used to validate the proposed
methodology and demonstrate its application.

Finally, Chapter 7 summarises this research and suggests future directions for further
research.

Basic concepts of fuzzy sets, linguistic variables and linguistic hedges are explained
with examples in Af)pendix A. Some special techniques and algorithms used in
FMADM methods, discussed in Chapter 4, are given in Appendix B. Detailed
aggregation state calculations and their figures of the first and second cases are given
in Appendix C and Appendix D respectively.



2 LITERATURE REVIEW

The literature review is carried out for establishing a background for the proposed
research. The review may be classified into six groups as follows.

The first attempt at applying FST (Fuzzy Set Theory) to multiple attribute decision
analysis was conducted by Bellman and Zadeh (1970), who outlined one possible
route toward fuzzy decision making. Another important approach was by Zadeh
(1973) who outlined the possibility of using the max-min rule to combine relational
matrices. Kickert (1978) summarised FST applications in relation to MADM
problems. An in depth summary of FST and its application was completed by Dubois
and Prade (1980). They classified the fuzzy MADM into a fuzzy rating phase, in
which the fuzzy utility of each alternative was obtained, and a fuzzy ranking phase,
in which the fuzzy utilities were compared. In addition, both fuzziness and
randomness were accounted for as one of the possible fuzzy applications to decision
analysis.

2.1 Fuzzy Set Theory

The FST was introduced by Zadeh (1965) to deal with vague, imprecise, and
uncertain problems. The lack of data is the reason for uncertainty in many daily
problems.

FST which was first proposed by Zadeh (1965) has been useful for dealing with
vagueness or ambiguity, and has made remarkable development.

Some basic definitions of fuzzy sets (Zadeh (1972), (1973), (1975a), (1975b),
Kaufmann (1975), Dubois and Prade (1980), Kandel (1986), and Zimmermann
(1987), (1991)), linguistic variables and hedges (Zadeh (1972), Zimmermann
(1987)), fuzzy numbers (Kandel (1986), Kaufmann and Gupta (1991)), and the
traditional fuzzy arithmetic operations of fuzzy numbers (Schmucker (1983)) have
been reviewed. As noted by Dubois and Prade (1980), the extension principle was
introduced by Zadeh.

Basic concepts of fuzzy sets, linguistic variables and linguistic hedges are explained
with examples in Appendix A.



The concept of using fuzzy sets in the formulation of decision problems under
certainty appeared in the work of Bellman and Zadeh (1970) and also in Fung and Fu
(1974).

A number of authors (Buckley (1985a), Kacprzyk (1986), Juan (1988), Roubens
(1989), Zahariev (1987), Li (1999)) have provided interesting results on group
decision making with the help of FST. The representations of the fuzzy individual
preferences provided by those authors can be classified as the following three levels :
fuzzy choice set, fuzzy preference relation, and fuzzy utility function. To obtain the
fuzzy group preference from the fuzzy individual preferences, different aggregating
methods have been used on the basis of consensus pooling, satisfying a number of
conditions, such as reciprocity and max-min transitivity for group as well as
individual preferences.

Contributions of FST to group decision making have been made in several directions.
Blin (1974) proposed to represent a relative group preference as a fuzzy preference
matrix from individual preferences. Fung and Fu (1975) discussed the aggregation of
individual preferences into a group preference from an axiomatic point of view.
Orlovsky (1978) introduced two types of linearity of a fuzzy relation and studied the
equivalence of crisp nondominated alternatives. He showed that crisp nondominated
solutions to the decision making problem exist if the original fuzzy relation satisfies
some topological requircments. Kuz’min and Ovchinnikov (1980) introduced an
appropriate distance in the space of fuzzy relation matrices and studied GDM on its
basis. Nurmi (1981) developed ways of determining the best alternative(s) on the
basis of a fuzzy preference relation and of deriving a (nonfuzzy) group preference
relation from fuzzy individual preference relations.

2.2 Decision Making

Decision making has been studied in many domains. Classical decision making
theory generally deals with a set of alternative actions comprising the decision space,
a set of outcomes comprising the outcome space, a relation indicating the outcome to
be expected from each alternative action, and an objective (utility) function which
orders these outcomes according to their desirability. Several approaches exist for
solving decision making problems. These include

1. Statistical decision theory,

2. Mathematical programming (linear or non-linear),
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3. Multiple criteria decision making theory and,

4, Decision making in a fuzzy environment in which the outcome values as well as
input parameters are fuzzy.

A decision is said to be made under certainty when the outcome for each action can
be determined and ordered precisely. On the contrary, a decision is said to be made
under uncertainty (risk) when the available information for the outcome is
incomplete or imprecise. It is worth noting that real world decision making problems
usually comprise fuzzy information, and the decision must thus be made under
uncertainty. As Fang and Chen (1990) have stated, uncertainties are better handled
by fuzzy sets and fuzzy arithmetic. To deal with real world problems, the fourth
approach (decision making in a fuzzy environment) stated above embedded in FST
has proven to have the ability to handle uncertain information and is more
appropriate than the other approaches.

In the field of decision making, FST is very helpful in dealing with fuzziness of
human judgement quantitatively, and a number of results have been published. The
study of decision making in a fuzzy environment has gained much interest in the past
few years. Briefly, fuzzy decision making problems may be subdivided into three
aspects :

1. Converting linguistic terms to fuzzy sets,
2. Employing FMADM methods,
3. Ranking techniques.

Since converting between linguistic terms and fuzzy sets varies from circumstance to
circumstance, existing work on this topic is few and appear to be quite arbitrary. As a
result, the review in the following sections is restricted to the FMADM methods and
ranking techniques only.

2.2.1 Classical Multiple Attribute Decision Making (MADM) Methods

Chen and Hwang (1992) classified fourteen classical MADM methods as follows :
1. Dominance (Hwang and Yoon (1981)),
2. Maximin (MacCrimmon (1968), Hwang and Yoon (1981)),

3. Maximax (Hwang and Yoon (1981)),
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4. Conjunctive method (or satisfying method) (Hwang and Yoon (1981)),

L

. Disjunctive method (Hwang and Yoon (1981)),

13

Lexicographic method (Hwang and Yoon (1981)),

~

Lexicographic semiorder (Hwang and Yoon (1981)),
8. Elimination by aspects (Hwang and Yoon (1981)),
9. Linear assignment method (Hwang and Yoon (1981)),

10. SAW (Simple Additive Weighting) method (Churchman and Ackoff (1954),
Hwang and Yoon (1981)),

11. ELECTRE (Elimination and (et) Choice Translating Reality) (Roy (1971),
Hwang and Yoon (1981)),

12. TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)
(Hwang and Yoon (1981)),

13. Weighted product,
14. Distance frofn target.

Some of them are simple and easy to use and understand. However, there are some
disadvantages, such as noncompensatory trade-off among attributes. Therefore, the
most widely used method TOPSIS is used to apply in this research (see Section
5.2.3.2.1).

2.3 Fuzzy Ranking Methods

Fuzzy ranking techniques have been studied extensively. Basically, the techniques
are roughly divided into four categories : fuzzy preference relation, fuzzy mean and
spread, centroid index, and linguistic expression. Techniques of applying fuzzy
preference relation include those developed by Baas and Kwakernaak (1977),
Baldwin and Guild (1979), Yager (1978), and Buckley and Chanas (1989). Fuzzy
mean and spread, as proposed by Lee and Li (1988), uses a generalised mean and
standard deviation based on the probability measures of fuzzy events to rank the
fuzzy numbers. Centroid index measures the geometric centre of the fuzzy set. This
technique has been heavily utilised to defuzzify/decode an inferred control action as
studied in fuzzy control. All the ranking techniques mentioned above involve

11



transforming the fuzzy sets or fuzzy numbers into a crisp scale. Some researchers
have pointed out that these mathematical ranking procedures may generate counter-
intuitive results during the defuzzification process. Therefore, linguistic rating
methods should suffer less from this problem. One approach, proposed by Tong and
Efstathiou (1982), uses the final fuzzy numbers to generate the dominance set, and
based on this dominance set, to carry out rating.

In MADM applications, when the final ratings are fuzzy, it is very difficult to
distinguish the best possible course of action from the mediocre ones, or even the
worst one. To resolve this problem, many researchers have proposed fuzzy ranking
methods that can be used to compare fuzzy numbers. In Table 2.1, twenty eight
ranking methods are classified by Chen and Hwang (1992) into four major classes
according to the means (or media) of each method used. Included in the chart are the
“preference relation” methods, the “fuzzy mean and spread” method, the “fuzzy
scoring (or direct comparison)” methods, and “linguistic” methods. Each main class
is further divided according to the techniques used. For instance, methods using
“degree of optimality” is a subclass of “preference relation”, methods using “centroid
index” is a subclass of “fuzzy scoring”, and methods using “linguistic
approximation” is a subclass of “linguistic expression”. The following review is a
summary of the ranking methods related with this research.

2.4 Fuzzy Multiple Attribute Decision Making (FMADM) Methods

The widely recognised classical work on FMADM was proposed by Baas and
Kwakernaak (1977). It is known as the SAW method. Originally, this method was
used to solve continuous functions only. Later, Baas and Kwakernaak utilised the a-
cut to approximate the utility of the alternatives, p (u;), and thus enabled the
computer to solve the problem in a discrete format. Before the SAW method was
proposed, the first attempt to solve the FMADM problem using FST was made by
Bellman and Zadeh (1970) who defined the fuzzy decision as the fuzzy set D
resulting from the intersection of the goals and constraints. That is, given the fuzzy
goals, G;, i = 1, ... , m, and the constraints, Cj, j = 1, ... , n, solution D can be
determined using

D=GIX)nGX)N...."nGuX) " CiX) N CX) N ..... N Ca(X)
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Table 2.1 Classification of fuzzy ranking methods by Chen and Hwang (1992)

Comparison | Technique Approaches
Medium involved

Degree  of | Baas and Kwakernaak,
optimality Baldwin and Guild,

Watson et al.,
Hamming Yager,
distance Kerre,
Nakamura,
Preference Kolodzijezyk,
Relation | %-cut Adamo,
Buckley and Chanas,
Mabuchi,
Huang,
Yuan,
Comparison | Dubois and Prade,
function Tsukamoto et al.,
F ~ | Delgado et al.,
Ranuzkziz Fuzzy mean | Probability | Lee and Li,
€ | and spread | distribution
Proportion to | McCahone,
optimal
Left/right Jain,
score Chen,
Fuzzy Kim and Park,
scoring Chen et al.,
Centroid Yager,
index Murakami et al,
Area Yager,
measurement | Choobineh and Li,
Intuition Efstathiou and Tong,

Linguistic | Linguistic Tong and Bonissone,
expression | approximatio
n

The best decision is chosen from the maximum of the goals and the constraints. This
method is the forerunner of the Maximin method (Hwang and Yoon (1981)). A
modification to this method (Bellman and Zadeh) was proposed by Yager (1978).
The modification involves utilising a decision matrix to facilitate the decision
making process. Mathematically, a simple decision matrix with N alternatives, X;,
and K attribute, Aj, via a set of performance score (rating), Rj;, is defined as
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Alternatives
Attributes
Xy X2 0 XN
Ay Ry ' R | ... Rin
As Ry Ry | ... Ron
AK RKI RKZ ...... RKN

One of the approaches that relies heavily on the decision matrix was proposed by
Saaty (1978) and is classified as the Analytic Hierarchy Process (AHP) method. This
method uses pairwise comparison between alternatives X; for each attribute in a
hierarchy, and also between atiributes. The eigenvector method is used to solve the
K+1 positive pairwise comparison matrices with a set of ratios, a;;, representing the
relative importance of X; over Xj. Since this method uses crisp numbers only,
Laarhoven and Pedrycz (1983) extended the method using both triangular fuzzy
numbers and logarithmic least square method to obtain the fuzzy utilities, Ui.
Buckley (1985b) also extended Saaty’s method to incorporate fuzzy comparison
ratios, and geometric means to derive fuzzy weights and performance scores.

There are two important ways to arrive at the decision outcome — alternative

acceptance and alternative ranking. To dichotomise alternatives into acceptable/not

acceptable categories, the fuzzy conjunctive/disjunctive method was proposed by

Dubois et al. (1988). Since the data and attribute values used in decision making are

fuzzy, the match between standard levels and attribute values become vague. To -
measure the fuzziness, the possibility measure and certainty (necessity) measure

were used to compute the degree of matching, and acceptance is determined by the

computed values. On the other hand, to compare the final rating of fuzzy numbers or

fuzzy sets, fuzzy ranking must be used.

A thorough literature review on the existing methods of FMADM can be found in
Chen and Hwang (1992). The application of fuzzy set theory to decision making can
be found in (Bellman and Zadeh (1970), Zadeh (1994), Zimmermann (1987)).

All of the FMADM methods in the literature will be discussed in a separate chapter
(chapter 4) to criticise them for the proposed research.
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2.5 Fuzzy Number Aggregation

To reach a group consensus for aggregating these estimates ratings to a common
opinion is an important issue in handling multiple attribute based group decision
making problems.

Some researchers (Bardossy et al. (1993), Chen and Lin (1995), Chen et al. (1989),
Hsu and Chen (1996), Ishikawa et al. (1993), Kacprzyk and Fedrizzi (1988),
Kacprzyk et al. (1992), Lee (1996), Nurmi (1981), Xu and Zhai (1992), Chen (1997))
have focused on the fuzzy opinion aggregation problem in the multiple attribute
based group decision making environment to combine the individual opinions of
experts, where each expert usually has his/her own opinion or estimated rating under
each attribute for each alternative.

Kacprzyk et al. (1992) showed how fuzzy logic with linguistic quantifiers can be
used in group decision making. Tanino (1984) discussed some use of fuzzy
preference orderings in group decision making. Bardossy et al. (1993) represented
expert opinions or imprecise estimates of a physical variable by using fuzzy numbers
and proposed five aggregation techniques for combining these fuzzy numbers into a
single fuzzy number estimate; namely crisp weighting, fuzzy weighting, minimal
fuzzy extension, convex fuzzy extension and mixed linear extension method. The
guidelines for the choice of combination technique are also provided. Ishikawa et al.
(1993) proposed the max-min Delphi method and fuzzy Delphi method via fuzzy
integration. Xu and Zhai (1992) presented extensions of the Analytic Hierarchy
Process in a fuzzy environment, where each expert represents his/her subjective
judgement by an interval value rating of each attribute for each alternative.

Lee (1996) presented a method for GDM using FST for evaluating the rate of
aggregative risk in software development. Nurmi (1981) presented some approaches
to collective decision making with fuzzy preference relations. Hsu and Chen (1996)
proposed a similarity aggregation method for aggregating individual fuzzy opinions
into a group fuzzy consensus opinion, where the estimates of experts are represented
by positive trapezoidal fuzzy numbers.

2.6 Typical Published Applications of MADM and FDM Methods

A large amount of literature is available on applications of MADM and Fuzzy
Decision Making (FDM) techniques.
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Liang and Wang (1991) proposed a decision algorithm to solve the facility site
selection problem under fuzzy environment. By utilising this algorithm, the decision
makers’ fuzzy assessments with various rating attitudes and the trade-off among
various selection attribute can be taken into account in the aggregation process.
Liang and Wang (1993) also applied this algorithm to the robot selection problem
under fuzzy environment. Karsak (1998) proposed a two-phase decision method for
robot selection problems. In the first phase of the method, Data Envelopment
Analysis is used to determine technically efficient robot alternatives. In the second
phase of the method, Liang and Wang’s approach is utilised to rank the robots
according to both objective and subjective attributes of the problem.

Machacha and Bhattacharya (2000) proposed a system based on fuzzy logic and
applied it to the problem of selection for database software packages.

Chen (1994) developed a method for handling multiple attribute fuzzy decision
making problems, in which the characteristics of the alternatives are represented by
interval-valued fuzzy sets. Chen (1997) presented a new method to solve the tool
steel materials selection problem under fuzzy environment, where the importance
weights of different criteria and the ratings of various alternatives under different
criteria are assessed in linguistic terms represented by fuzzy numbers.

Chang and Chen (1994) proposed a decision algorithm based on the FST and
hierarchical structure analysis to solve the technology transfer strategy selection
problem, where the linguistic variables and fuzzy numbers are used to aggregate the
decision makers’ subjective assessment about attribute weightings and
appropriateness of alternative transfer strategies versus selection attribute to obtain
the final scores called fuzzy appropriateness indices.

Ravi and Reddy (1999) used Yager’s FMADM approach to rank both coking and
non-coking coals of India for industrial use. In this study, three different kinds of
membership functions in conjunction with four kinds of aggregators were used and
the results were compared.

Wang (1997) modelled the imprecise preference structure of decision making in
conceptual design based on the outranking approach and fuzzy preference relations
and a valve selection problem was used to illustrate the concept. Wang (1999)
considered the Quality Function Deployment (QFD) planning as a multiple criteria
decision making problem and proposed a new fuzzy outranking approach to prioritise
design requirements recognised in QFD and used an example of a car design to
illustrate the proposed approach. Giingdr and Arikan (2000) compared and ranked
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natural gas, imported coal, and nuclear power plant alternatives in terms of long term
Turkish production economy. In this study, they used a fuzzy outranking approach
(Wang’s approach) for Turkish energy policy planning.

Maeda and Murakami (1988) proposed a new FMADM technique and applied it in a
company choice problem under fuzzy environment. This new method’s main features
are the use of fuzzy connectives to represent the decision maker’s preference
structure and fuzzy probability to express imprecise and uncertain outcomes.

.Perego and Rangone (1998) gave a reference framework for the application of a
FMADM approach to Advanced Manufacturing Technologies (AMTs) selection. In
particular, the implied conjunction methodology, the fuzzy linguistic model and the
fuzzy hierarchical model based on pairwise comparisons were compared with respect
to their application to AMTs selection.

Azzone and Rangone (1996) proposed a new framework of Manufacturing
Competence (MC) and suggested a consistent measurement framework derived from
fuzzy set theory. Their proposed fuzzy approach was applied to measure the MC of a
company that operates in the plastic industry.

Ekel (1999) proposed a general approach to solving a wide class of optimisation
problems with fuzzy coefficients in objective functions and constraints. This
approach has been applied within the context of fuzzy discrete optimisation models.

Yoon and Hwang (1985) employed five developed MADM methods for different
versions of manufacturing plant site selection problems. Kirkwood (1982) used
MADM methods to evaluate and rank candidate sites for a nuclear power plant as
well as water sources.

Jones et al. (1990) developed a multiple attribute value model, adapted from SMART
(Simple Multi-Attribute Rating Technique) technique, to study UK energy policy
options.

Vlacic et al. (1997) proposed an algorithm which can support the process of GDM
relating to industrial automation, especially involving the selection of control and
instrumentation equipment.

Tavana et al. (1996) proposed a group decision support system which combines the
AHP with Delphi principles and applied it to rank the nurse manager candidates at a
hospital in the United States.
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Kuei et al. (1994) used AHP and adjusted priority method to evaluate and rank the
advanced technologies.

Liberatore (1987) developed an AHP modelling framework for the Research and
Development project selection decision and it was linked to a spreadsheet model to
assist in the ranking of a large number of project alternatives.

Bard and Sousk (1990) identified the three next generation of rough terrain cargo
handlers for the U.S. army and used AHP to rank and select them.

Korpela and Tuominen (1996) demonstrated how AHP could be used for supporting
logistics benchmarking and applied AHP for three steps of the logistics generic
benchmarking process.

Tadisina et al. (1991) examined the application of AHP for selecting a doctoral
programme.

Rangone (1998) discussed the applicability to small and medium sized firms of
major MADM methods (scoring method, and AHP) to advanced manufacturing
technologies assessment and selection.

Stewart (1991) described the development of a multiple attribute decision support
system for the selection of a portfolio of Research and Development projects, which
was carried out for a large electricity utility corporation. '

Bellehumeur et al. (1997) applied three multiple attribute decision making techniques
(weighted sum, ELECTRE, and fuzzy set method) to an environmental (sewage
sludge) management problem where various solutions are compared on the basis of
several attributes.

Dyk and Smith (1990) developed a new MADM method QualScal and applied it to
the problem of selecting an extramural Fisheries R&D portfolio in the Ministry of
Agriculture, Fisheries and Food in England.
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3. MULTIPLE ATTRIBUTE DECISION MAKING

This chapter is divided into three sections. The first section presents the differences
between Multiple Objective Decision Making (MODM) and Multiple Attribute
Decision Making (MADM) problems. The second section provides an overview of
the underlying concepts and theories of MADM. FST needs for MADM problems
are discussed in the third section.

3.1 Multiple Criteria Decision Making

Decision making is the process of determining a best course of action from a set of
available alternatives. The major concern is that almost all decision problems have
multiple, usually conflicting criteria. Research on how to solve such multiple criteria
decision making (MCDM) problems has been enormous. These problems are basicly
classified into two categories :

1. Muitiple Attribute Decision Making (MADM) or multiple attribute analysis, and
2. Multiple Objective Decision Making (MODM) or multiple criteria optimisation.

MADM is associated with problems whose number of alternatives has been
predetermined. The decision maker is to select/prioritise/rank a finite number of
alternatives (or courses of action). On the other hand, MODM is not associated with
problems in which the alternatives have been predetermined. The decision maker’s
primary concern is to design the most promising alternative with respect to limited
resources. Table 3.1 shows the differences between these two classes.

3.2 Overview of Multiple Attribute Decision Making Problems

Multiple-attribute decision making (MADM) is the study of techniques that can be
used by a decision maker to select the best alternative from a finite number of
alternatives when faced with conflicting objectives.

In MADM the decision maker evaluates the alternatives based on several attributes
which best characterise the alternatives. The decision maker chooses one or more
alternatives from the set based on the assessments of the alternatives on the attribute
and the relative importance of the attribute in his or her mind. The decision maker



determines his or her preference structure and studies the characteristics of the
available alternatives to select the suitable ones. An MADM problem with N
alternatives and K attributes requires the decision maker to process data of an (NxK)
— dimensional space. Thus a huge amount of information is involved in MADM.

Table 3.1 MODM vs. MADM

Criteria MADM MODM
(Attributes) (Objectives)

Objective Implicit (ill defined) Explicit

Attribute Explicit Implicit

Constraint Inactive (incorporated into | Active
attributes)

Alternative Finite number, discrete | Infinite number,
(prescribed) continuous (emerging as

Process goes)

Interaction with decision | Not much Much

maker

Usage Selection / Evaluation Design

MADM deals with the problem of choosing an alternative from a set of alternatives
which are characterised in terms of their attributes. Usually MADM consists of a
single goal, but this may be of two different type.

The first type of goal is to select an alternative from a set of scored ones based on the
values and importance of the attributes of each alternative.

The second type of goal is to classify alternatives, using a kind of role model or
similar cases. The use of past cases to deduce answers or explanations is a recent
field of research, termed case-based reasoning.

MADM is a qualitative approach due to the existence of attribute subjectivity. Both
type of goals require information about the preferences among the instances of an
attribute and the preferences across the existing attributes. The assessment of these
preferences is either provided directly by the decision maker or based on past
choices.

MADM refers to making selections among some courses of action in the presence of
multiple, usually conflicting, attributes. Problems dealing with MADM are common
occurrences in the real world. An MADM problem can be concisely expressed in
matrix format as shown in Table 3.2.
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Table 3.2 Decision Matrix

Alternatives
Attributes
XI Xz ...... XN
Ap R R | ... Rin
Ay Ros Rn | ... Ron
Ax Rx; Repe | ... Rxn

Where X;, i =1, ....., N are possible course of actions (referred to as alternatives);
A;, j=1, ....., K are attributes with which alternative performances are measured; R;;
is the performance score (or performance rating) of alternative X; with respect to
attribute A;.

It is obvious that the Rjj value (or rating) cannot be assessed precisely. The
imprecision may come from different sources such as incomplete information etc.

MADM methods are used for selecting an alternative from a small, explicit list of
alternatives, while MODM methods are used for an infinite set of options defined
implicitly by the constraints. The various MADM methods have been reviewed
extensively by Yoon and Hwang (1995).

3.2.1 Common Characteristics of MADM Problems

Methods and applications of MADM and MODM regarding a single decision maker
have been thoroughly and systematically reviewed and classified by Hwang and
Yoon (1981), (1995). The MADM problems considered here share the following
common characteristics (Chen and Hwang (1992)):

1. Alternatives : A finite number of alternatives, from several to thousands, are to be
screened, selected and ranked. Alternatives are mutually exclusive with each
other.

2. Attributes : Attributes should provide a means of evaluating the levels of an
objective. Each alternative is characterised by a number of attributes. The number
of attributes can be very large. A decision maker must generate relevant attributes
for each problem setting. Performance measures, components, characteristics are
synonyms for attributes.
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3. Conflict among attributes : Multiple attributes are usually in conflict with each
other. For example, in selecting a ship, the higher voyage range might reduce the

cargo carrying capacity.

4. Decision matrix : An MADM problem can be concisely expressed in a matrix
format called a decision matrix. The decision matrix is constructed with
information on the values of the attributes for alternatives. A decision matrix ‘D’
is an (KxN) matrix whose elements Ry indicate the performance rating of
alternatives 1, X, with respect to an attribute j, A; (see Table 3.2).

5. Incommensurable units : Each attribute has a different unit of measurement. In
the ship selection case, fuel consumption is expressed in tons per mile, cargo
capacity is expressed by cubic feet, cost is indicated by dollars, safety may be
indicated in an non-numerical way, etc.

6. Decision weights : Almost all MADM problems require information regarding
the relative importance of each attribute. The relative importance is usually given
by a set of weights W={w; | =1, 2, ..., K}, where K is the number of attributes
and weights are generally normalised such that their total sum is equal to one.
The assignment of weights plays a key role in the MADM process.

3.2.1.1 Attributes

MADM begins with the generation of attributes that should provide a means of
evaluating goal accomplishments. All attributes are not likely to be considered
equally important. The role of weight serves to express the importance of each
attribute relative to the others. Hence, the assignment of weights plays a key role in
the MADM process and may vary from decision maker to decision maker. Weights
should reflect the purpose of the evaluation. Direct assignment, Weighted Evaluation
Technique (WET), eigenvector method, entropy method, and minimal information
method are some of the weighting techniques that are most widely used.

3.2.2 Classification of MADM methods

There has been no single, widely adopted classification of MADM methods. For
generic classification of MADM approaches, several schemata have been proposed.
For instance, Teghem et al. (1989) used six criteria to categorise MADM methods.
Yoon and Hwang (1995) classified a group of 17 methods according to the type and
salient features of information received from the decision maker. Sen and Yang
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(1998) proposed a specific classification framework for application of MADM

methods in engineering design. This framework is shown in Table 3.3.

Table 3.3 Classification of MADM Methods (Sen and Yang (1998))

Type of Information Method Preference Information
Dominance
No Information Maximin
Maximax
Standard Levels Cf)l}]unc?we
Disjunctive
Direct Assignment
Least Square Pairwise Comparisons of
. . Eigenvector All Attributes
Weight Assignment Entropy
MITA Appropriate Comparisons
of All Attributes
Lexicographic Ranking of All Attributes
Simple Weighting
TOPSIS Definition of Ideal and
Weight Given Beforehand +— : Negatige.ldeal.boints
Linear Assignment
Relative Positive Pairwise Comparisons of
Estimation All Attributes
ELECTRE
AHP Pairwise Comparisons of
All  Alternatives &
Weight Given Beforehand Attributes
LIMAP Pairwise Comparisons &
Ideal Points
Weight to be Generated | UTA Ranking of a Subset of
Alternatives
Local Utility Function [ ILUTA Pairwise Comparisons of
Some Alternatives
Implicit Utility Function | EDMCM Pairwise Comparisons &

Trade-off Questions

3.3 The Need for Fuzzy Set Concepts in MADM Problems

As presented earlier, an MADM problem can be expressed in a matrix format. In

most of the real world problems, some of the decision data R; can be precisely

assessed while others cannot. Real (crisp) numbers are used to represent data which
can be precisely measured. For those data which cannot be precisely assessed,
Zadeh’s fuzzy sets (numbers) are used to denote them. The use of FST allows us to
incorporate unquantifiable information, incomplete information, nonobtainable

information, and partially ignorant facts into the decision model.
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Frequently, real world decision making problems are ill defined, i.e., their objectives
and parameters are not precisely known. The obstacles of lack of precision have been
dealt with using the probabilistic approach. But, due to the fact that the requirements
on the data and on the environment are very high and many real world problems are
fuzzy by nature and not random, the probability applications have not been very
satisfactory in a lot of real world cases. On the other hand, the application of FST in
real world decision making problems has given very good results. Its main feature is
that it provides a more flexible framework, where it is possible to solve many of the
obstacles of lack of precision satisfactorily.

FMADM methods have been developed due to the lack of precision in assessing the
w; and R;j values. The imprecision may come from a variety of sources such as (Chen
and Hwang (1992)):

1. Unquantifiable information : The price of a new ship can be easily determined
while the safety or comfort of a ship is not easily quantifiable. Safety and comfort
are usually expressed in linguistic terms such as good, fair, poor, etc. They are
qualitative data (subjective judgement by an individual).

2. Incomplete information : The noise of a ship can be measured by some
equipment as “about 65 dB” but not “exactly 67.11 dB”. Such data may be
represented as a fuzzy set because of incomplete information.

3. Nonobtainable information : Sometimes crisp data is obtainable but the cost is
too high and the decision maker may wish to get an “approximation” of that crisp
data. When the data is very sensitive (e.g. an individual’s bank account, or a main
engine price), some “approximated” data or linguistic descriptions are used. The
information is fuzzy because of its unavailability.

4. Partial ignorance : Some fuzziness is attributed to partial ignorance of the
phenomenon since one knows only part of the facts.

The classical MADM methods cannot effectively handle problems with such
imprecise information. To solve this difficulty, FST, first introduced by Zadeh
(1965), has been used and is one of the focuses of this research.

- e B
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4. FUZZY MULTIPLE ATTRIBUTE DECISION MAKING (FMADM)
METHODS

The general multiple attribute decision making (MADM) model is described as
follows:

Let X = {Xj|j=1, ... , N} be a finite set of alternatives (courses of action, candidates)
and A = {A; | i=1, ... , K} be a finite set of attributes according to which the
desirability of an alternative is to be judged. And let R = {R; | i=l, ... , K; j=1, ...,
N} be the KxN decision matrix, where Rj is the performance rating of alternative X
with respect to attribute A; and w; values {i=1, ... , K} are the weights of attributes.

The aim of MADM is to determine the optimal alternative with the highest degree of
desirability with respect to all relevant attributes. The classical (or crisp) MADM
techniques assume all R;; and w; values are crisp numbers. In real world MADM
problems, R; values can be crisp and/or fuzzy (linguistic terms, fuzzy numbers) data.

Fuzzy Multiple Attribute Decision Making (FMADM) methods have been developed
to solve MADM problems which contain fuzzy data. FMADM is a subcategory of
Fuzzy Multiple Criteria Decision Making (FMCDM). FMCDM can be;f classified as
Fuzzy Multiple Objective Decision Making (FMODM) and FMADM,; the former
emphasises on continuous decision making spaces and it mainly deals with multiple
objective mathematical programming problems; the latter mainly deals with discrete
decision making space problems.

A large number of articles in the literature on decision making analysis have
addressed the FMADM methods. Zimmermann (1987), Dubois and Prade (1980),
Chen and Hwang (1992), Ribeiro (1993), Ribeiro and Baldwin (1995) and Ribeiro
(1996) have indicated that the FMADM methods basically consist of two phases :

Phase (I) The aggregation of the performance ratings (or the degree of satisfactions)
with respect to all attributes for each alternative, and

Phase (II) The ranking of the alternatives according to the overall aggregated
performance ratings.



The methods for solving phase (II) problems are referred to as “fuzzy ranking
methods”, and methods for solving phase (I) and/or both phases of MADM problems
are referred to as “fuzzy multiple attribute decision making (FMADM) methods™.

Riberio (1996) concentrated on phase (I) of FMADM methods and classified them
into five categories. These are “non-fuzzy methods”, “fuzzy hierarchical aggregation
methods”, “conjunction implication methods”, “weighted average aggregation
methods”, and “weighted average aggregation with criteria assessment methods”.

Perego and Rangone (1998) grouped FMADM techniques into four major categories,
namely “fuzzy goal methodology”, “fuzzy linguistic models”, “fuzzy hierarchical
models based on pairwise comparisons”, and “heuristic models based on fuzzy
logic™.

The best one of the good surveys is done by Chen and Hwang (1992). They make
distinctions between fuzzy ranking methods and FMADM methods. Chen and
Hwang (1992) have reviewed and analysed most of the known FMADM methods.

In this research, FMADM methods are classified based on the classical MADM
techniques used in these FMADM methods. This classification is given in Table 4.1.
In the following, most of the existing FMADM methods in literature, related to this
research, are given. They are described in more detail even though the proofs will be
. omitted because they are of more mathematical interest.

4.1 Non-Fuzzy Approaches

The methods in this category do not represent a survey of non-fuzzy approaches,
they simply form the basis for later methods.

4.1.1 Kahne’s Approach

Weighted average rating rule is used in Kahne’s model (Kahne (1975)). This
approach considers that the weights and criteria are stochastic variables and then uses
random variables and Monte Carlo simulation to determine the optimal solution. This
method does not deal specifically with fuzzy multiple attribute problems.

In Kahne’s model, the w; and the R;j values are assumed to be stochastic variables
and the optimal alternative is determined by using Monte Carlo simulation.
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Table 4.1 Classification of the FMADM methods in the literature

Performance Attribute
FMADM ] . Result of the
Approaches Ratings Weights Phase I GbM
Crisp | Fuzzy | Crisp | Fuzzy .
Baas & Kwak. N N Fuzzy X
Kwakernaak J J Fuzzy X
Dubois & Pra. v J Fuzzy X
Cheng & Mcl. J N Fuzzy X
Bonissone J J J v Fuzzy X
Laarh. & Pedr. J v Fuzzy J
Buckley J J Fuzzy J
Ruon. & Xiao. J J Fuzzy J
Chang v J Fuzzy v
Roy N v Crisp X
Siskos et al. v N Crisp X
Brans et al. v v Crisp X
Takeda v v Crisp X
| Wang J v Crisp X
Bell.& Zadeh J Crisp X
Yager J v Crisp X
Liang & Wang J v Fuzzy v
Chang & Chen J J Fuzzy J
Wang &Chang J J Fuzzy J
Chen J v Fuzzy J
 Rangone J v Fuzzy X
Efstathiou v Fuzzy J
Dubois et al. v J Crisp X
Negi J v v Crisp X
Chen&Hwang v v v Crisp X

Where FMADM : Fuzzy Multiple Attribute Decision Making,

GDM : Group Decision Making

v : Enable

X : Not enable
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4.1.2 Saaty’s Approach

Saaty (1977), (1978) states that there are two types of fuzziness :
¢ Fuzziness in perception, and
e Fuzziness in meaning

The first one is caused by complexity of objects or. ideas which cannot be
apprehended at once. The second one is attributed to relativism of meaning, i.e., the
meaning of objects is tied to what function those objects perform in the fulfilment of
different purposes. When the objects are decomposed, they appear fuzzy because
they have different meanings according to the context of the decomposition.

Saaty proposed a method to give meaning to both kinds of fuzziness. This method
measures relative fuzziness by structuring the criteria and objectives of a system,
hierarchically, in a multiple attribute framework. In order to rate the alternatives,
Saaty uses a hierarchical pairwise comparison between attributes and/or objectives
and then solves them with eigenvectors of the reciprocal matrices.

Saaty developed a procedure for obtaining a ratio scale of importance for a group of
p elements based upon paired comparisons.

Assume we have p objects, and we want to construct a scale, rating these objects |
with respect to each other. The objects could be the attribute and/or constraints

characterising a decision problem. The decision maker compares the objects in

paired comparisons. When comparing object i with object j, the decision maker is

asked first to make a decision, which object is more important?. Having made that

decision, s/he is then asked to assign a value taken from the scale 1 to 9 to the more

important objects domination over the less important object. These scale values are

given in Table 4.2 below with verbal hints on how to apply them. If object i

dominates object j, the assigned value is denoted as ajj. The paired comparison matrix

has an interesting reciprocal property given by:

i = I/aji.

This property allows easy generation of a paired comparison matrix of dimension p
by p, A, whose elements are

aij = 1, and a; = 1/ a; for i #j.
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Table 4.2 Judgement Scale used in Saaty’s approach

ImportanceValue Definition

Equal Importance

Weak importance of one over the other

Strong importance of one over the other

Demonstrated importance of one over the other

Wiajuwn|wof—

Absolute domination of one over the other

2,4,6,8 Intermediate values between the two adjacent judgements

In Analytic Hierarchy Process (AHP), the eigenvector method (Saaty (1980)) is a
very common method in deriving the priority vector from the matrix of pairwise
comparisons. The eigenvector method that can be used to generate the relative
importance of attributes and the performance scores can be found in Saaty (1980).

Saaty showed that the eigenvector corresponding to the maximum eigenvalue
associated with A is a cardinal ratio scale for the elements compared.

Given that A is the matrix of pairwise comparison values, in order to find the priority
vector, we can determine the vector W by solving the equation

AW=Anx W

Where Amax is the maximum eigenvalue of A, and the eigenvector W corresponding
to Amax can be used as the weight of elements wi, W, ... , Wp. Saaty’s eigenvector
method is explained in Appendix B.

4.2 Simple Additive Weighting (SAW) Based FMADM Approaches

The classical Simple Additive Weighting (SAW) method was mathematically
determined by Churchman and Ackoff (1954), MacCrimmon (1968), Keeney and
Raiffa (1976) and Hwang and Yoon (1981). Several approaches based on the
extension principle (Zadeh (1975)) have been proposed to solve the problems, when
both the rating, R; of alternative X; with respect to attribute A; and importance of
attribute j, w;, are fuzzy sets (Baas&Kwakernaak (1977); Kwakernaak (1979),
Cheng&Mclnnis (1980), Dubois&Prade (1983) and Bonissone (1982)).

The first four approaches utilise the a-cut technique to approximate . (u;),

membership function of the utility of alternative X;. On the other hand, Bonissone
(1982) assumes that all piecewise continuously differentiable fuzzy numbers can be
approximated by L-R type trapezoidal fuzzy numbers and applies special fuzzy
arithmetic functions to calculate the fuzzy utility U; for alternative X;. Bonissone’s
approach is much easier to use than the other approaches in this category.
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The classical SAW method is mathematically defined as follows. Suppose the
decision maker assigns a set of weights, w = (w, ... , wy) to the attributes A;, j =1,
..., .. The performance of alternative, X;  is calculated as:

Where 1; is the rating of the ith alternative under the jth attribute with a numerically
comparable scale. This is the simplest form in Multiple Attribute Utility Theory. The
most preferred alternative, X*, is then selected such that

X' = {Xil magUi}

When both wj and r;; are fuzzy sets defined as:

W; = 1055 bwj (3D} Vs

and
T = {(Xij’ Mrij (xlj))}9 Vi’j’

Where y; and x;; take their numbers on the real line R and py; (y;) and pryj (x5) take
values in [0, 1], the utility of alternative Xi, U; = {(u;, pui (1))}, can be calculated as
follows. The variable u; takes its value on the real line R and can be obtained using

n

Zijij

u. = i<l ) (4. 1)

1 n

2V

=1

The membership function pyi (u;) can be calculated using

Hui(8) = sup {[;\1 uw,-(y,-)] A [J/\l uﬁj(xf,-)]}

where v = (y1, ... , ¥n, Xil, «-. » Xin). The membership function p, (u;) is not directly
obtainable when py; (y;) and ps; (x;) are piecewise continuously differentiable
functions. To resolve that difficulty and preserve the simplicity of the SAW method,
several approaches have been proposed by various authors as follows.
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4.2.1 Baas and Kwakernaak’s Approach

Baas and Kwakernaak’s work was a reaction to a probabilistic suggestion by Kahne.
This is the first approach for extending the classical weighted average rating formula
to fuzzy numbers and has already become a “classic” in FMADM models.

Baas and Kwakernaak (1977) proposed a method to deal with multiple-aspect
decision making in the presence of uncertainty. The method is based on a
straightforward rating and ranking method, where the weights and ratings are fuzzy

variables.

Further, they also recognise that their non-linear programming solution is equivalent
to the max-min solution given by the extension principle of Zadeh. They also address

the problem of comparing fuzzy sets for ranking of alternatives.

Baas and Kwakernaak identified the computational problem in calculating py, (u;),

membership function of the utility of alternative X;. To overcome this difficulty, they
proposed the use of the a-cut technique to obtain the fuzzy utility U;. An oy value for

Hy; (1) is assigned first. The corresponding u; value(s) are then calculated using

Equation (4.1). By setting different oy values and repeating Baas and Kwakernaak’s
algorithm, an approximated fuzzy utility U; can be obtained. Steps of the Baas and
Kwakernaak’s algorithm are given in Appendix B.

Baas and Kwakemaak’s approach was the first to use fuzzy variables with the
weighted average rating method. It gives exact solutions but it is quite cumbersome
and computationally inefficient.

4.2.2 Kwakernaak’s Approach

Kwakernaak’s approach is a modification of Baas and Kwakernaak’s approach.
Kwakernaak (1979) pointed out that the use of trial-and-error to identify the desired

u; values was not efficient. Therefore, an improved algorithm was proposed.

Given fuzzy weights w; = {(yij,uwj (y j))} and fuzzy attribute 1; = {(xij,u,u. (xij))} for
alternative X;, steps, described in Appendix B, are used to derive fuzzy utility
U; = {(ui’u'Ui (ui))}-
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4.2.3 Dubois and Prade’s Approach

Dubois and Prade (1983) pointed out that Baas and Kwakernaak’s approach can only
effectively solve two-attribute problems. Since the trial-and-error technique, which
was used in Bass and Kwakernaak’s approach to derive fuzzy utilities, was not
efficient, an alternative approach was proposed.

Dubois and Prade’s approach also uses the a-cut technique, but provides a more
efficient search procedure for obtaining u; values. The algorithm assumes that ail
fuzzy weights w; and fuzzy rating r;; are normalised fuzzy numbers. Given an a level,
an o-level set for each fuzzy weight and fuzzy rating can be obtained. The a-level
sets are used to derive fuzzy utilities based on the classical SAW method. This
approach’s algorithm is also given in Appendix B.

4.2.4 Cheng and Mclnnis’s Approach

Cheng and Mclnnis (1980) developed an algorithm, which is capable of handling
large decision making problems, based on the concepts presented by Baas and
Kwakernaak (1977). Instead of considering continuous functions, they discretise the
membership functions, and the ranking function is obtained as the composite of the
piecewise constant weight and rating membership functions. This approach leads to a
simple computational algorithms.

They pointed out that continuous membership functions of r; and w; are the cause of
the complexity of obtaining fuzzy utilities. To avoid such difficulty, they suggested
to first convert the continuous membership functions to discrete ones and then to
compute the fuzzy utilities.

Cheng and Mclnnis’s stepwise discrete membership functions can represent fuzzy
information better than the simple piecewise linear membership functions as many
pointed out that fuzzy data can be best described by either trapezoidal or triangular
shaped fuzzy numbers. Also many approximated arithmetic operations can be easily
applied to obtain approximated fuzzy utilities. The computational requirements are
even less. This approach’s algorithm is also explained in Appendix B.

425 Bonissone’s Approach

Bonissone (1982) assumed that fuzzy/crisp information in decision problems can be
approximated by a parameter-based representation. It is called the L-R type
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trapezoidal fuzzy number (a,b,a,B) (see Figure 4.1). It is this family of fuzzy
numbers which allows approximated arithmetic operations on fuzzy numbers.

Figure 4.1 L-R type trapezoidal fuzzy number (for a=5,b=7,0=1,p=2)

With the help of the approximated algebraic operations, we can quickly compute the
performance of alternative X; with respect to attributes, Aj, j=1, ..., n, using
U; = FZIW,-I},-

where w;j and r; may be crisp or fuzzy numbers represented in the L-R trapezoidal
fuzzy number format.

Bonissone’s approach is much simpler to use than other SAW based FMADM
methods. It is applicable only when fuzzy concepts are represented by trapezoidal or
triangular numbers. If that assumption does not hold, then other approaches
discussed earlier may be appropriate. In addition, Bonissone’s approach generates
less precise fuzzy utility, i.e., the spreads generated by Bonissone’s approach are
larger than those which were generated by other SAW based FMADM methods.

Since L-R trapezoidal fuzzy number provides satisfactory explanations to fuzzy
concepts, Bonissone’s approach may be an appropriate method to use when larger
spreads are tolerable. This approach is recommended for its simplicity.
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4.3 Analytic Hierarchy Process (AHP) Based FMADM Approaches

The Analytic Hierarchy Process (AHP) developed by Saaty (1977) allows the
decision makers to visually structure a complex problem in the form of a hierarchy
having at least two levels : objectives (attributes for evaluation) and activities
(alternatives, courses of action, etc.). Each factor or alternative on a given level can
be identified and evaluated with respect to other related factors. This ability to
structure a complex problem and then focus attention on specific components
broadens one’s decision making capabilities. Another advantage of AHP is its
simplicity.

In the classical AHP method, the decision maker is asked to supply ratios aj; for each
pairwise comparison between alternatives Aj, A, ... , Ap for each attribute in a
hierarchy, and also between attributes. This results in n+1 positive pairwise
comparison matrices, where n is the number of attributes. Each matrix is represented

as:
- o -
a,; a8, .. 8, w/w, o w/w, o ow/w,
a, a, D wy/w, wy/w, L W W,
A= =
(8, @ . ay | (W w o ow /w, Low /w ]

which is a ‘reciprocal matrix’ with all a; being positive. The ratio a; represents, for
the decision maker, the relative importance of A; over A;. For example, when the
decision maker considers A; more important than As, a;s might equal 3/1, or 5/1, or
7/1, or 9/1. Since the numbers for the ratio are usually taken from the set {1, 2, ...,
9}, a1s could be sy/s; where sy, 53 € {1, 2, ..., 9}. Note that if a;s= 3/1, then as; must
be 1/3. This is why matrix A is called a ‘reciprocal matrix’.

The AHP method uses the pairwise comparison matrices for each attribute to
compute the performance score of alternative A; with respect to attribute X, r;. The
pairwise comparison matrix for the attributes is used to compute the weights of the
attributes. The performance scores and weight set are organised as:
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where 1;j and wj, Vi, j, take their numbers on the real line R. The classical SAW
method is used to find the utilities of A;, U;, Vi:

U =3wr /3w, (4.3)

=l =

The AHP method was first proposed by Saaty (1977), (1978). In Saaty’s approach,
the pairwise comparison ratios ajj, Vi, j, are real numbers. Each pairwise comparison
matrix is solved using the eigenvector method. The resulting weights and
performance scores are also crisp, real numbers. The classical SAW method is used
to calculate the alternatives’ utilities.

Saaty’s AHP method was extended by Laarhoven and: Pedrycz (1983). They argue
that if a person considers A; more important than As, then the ratio a;s might be
“approximated 3 to 1,” or “about 5 to 1,” or “between S to 1 and 7 to 1”. These
linguistic expressions are expressed by triangular fuzzy numbers. That is, a; is a
triangular fuzzy number. In addition, Laarhoven and Pedrycz allow several decision
makers to express their ratios on the same pair of alternatives (or attributes). In this
case, the pairwise comparison ratio may be represented by ajjx (k=0, 1, ... , pjj). The
term pj denotes the number of experts who expressed their comparison ratios.

There are many methods one can use to derive performance scores and attributes’
weight. According to Laarhoven and Pedrycz, because of the presence of fuzzy,
multiple comparison ratios for the same pair of alternatives (or attributes), the most
suitable method for their approach is Lootsma’s logarithmic least square method.
Once the fuzzy performance scores r;j and the fuzzy weights w; have been derived,
fuzzy arithmetic operations that are suitable for triangular fuzzy numbers are used to
obtain the fuzzy utilities, Uj, Vi, where rj;, wj, and U, are triangular fuzzy numbers.
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Buckley (1984), (1985b) also extends Saaty’s AHP method to the case in which
decision makers can express their i)reference in fuzzy ratios instead of crisp ratios.
The fuzzy ratios a;; are given as a trapezoidal number (a, b, ¢, d) where 0 <a<b<c
< d as shown in Figure 4.2. The geometric mean method is employed to calculate
the fuzzy weights w; and the fuzzy performance scores r;;. Note that the derived w;
and rj may not be trapezoidal fuzzy numbers anymore. In this case, special fuzzy
arithmetic formulas are needed in order to add and/or muiltiply them. Buckley (1984)
has developed some special fuzzy arithmetic formulas for that purpose.

AHP has been developed to incorporate the difficulties to quantify criteria into the
decision making process. One shortcoming of these methods is the -failure to
realistically represent the imprecision of the decision makers' judgements. In this
aspect, the use of fuzzy logic and linguistic variables have attracted some attention.

The aim of these AHP based FMADM techniques is to include fuzzy concepts within
a hierarchical decision making framework. In particular, fuzzy extensions of Saaty’s
priority theory are considered (Laarhoven and Pedrycz’s Approach (1983), Buckley
(1985b), Ruoning and Xiaoyan (1992)). These techniques are mainly based on the
concept of a fuzzy judgmental matrix. Decision makers are asked to express pairwise
comparisons of attribute and alternatives in fuzzy terms, resulting in a judgmental
matrix. To derive priorities from the fuzzy judgmental matrix specific algorithms are
introduced, i.e. logarithmic regression (Laarhoven and Pedrycz’s Approach (1983))
and altered gradient eigenvector (Ruoning and Xiaoyan (1992)).

4.3.1 Laarhoven and Pedrycz’s Approach

Laarhoven and Pedrycz (1983) concentrate on the Phase (I) of FMADM - that is, on
the determination of fuzzy ratings for the decision alternatives, which can then be
used for the ranking in Phase (II) of FMADM.

Laarhoven and Pedrycz (1983) proposed an algorithm which is a direct extension of
Saaty’s AHP method. In this extended version of AHP, the elements in the reciprocal
matrix are represented by triangular fuzzy numbers. The computation steps are the
same as those in AHP. The Lootsma’s logarithmic least square method (see
Appendix B for more details) is used to derive fuzzy weights and fuzzy performance
scores. The arithmetic operations for fuzzy triangular numbers are applied to
compute fuzzy utilities. The opinion of multiple decision makers can also be
modelled in the reciprocal matrix.
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Figure 4.2 Trapezoidal fuzzy number (for a=4, b=3, c=7, d=9)

The main difference from the classical approach is that the weights are all considered
to be fuzzy numbers and that the eigenvector of Saaty’s reciprocal matrix also
consists of fuzzy numbers.

This approach is characterised by three features:

o They use fuzzy numbers with triangular membership functions to simplify the
calculations.

e [t is possible to handle decision situations in which there is either no information
or multiple information available for certain pairs of factors.

o Using the principle of hierarchic composition, the authors apply priority theory
on two levels: in assigning weights to the attribute and for weighting the
alternatives under each of their attribute separately.

According to Laarhoven and Pedrycz’s technique, the following steps are to be
performed :

Step 1. The relative importance weightings W; of attributes =1, 2, ... , m, withm =
number of criteria) are obtained on the basis of fuzzy pairwise comparisons. Each

pairwise comparison is a triangular fuzzy number. To pass from these fuzzy pairwise
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values to fuzzy estimates of the suitability ratings, the method of logarithmic
regression is used, properly extended to fuzzy version by means of the extension

principle and simplified operation rules on triangular fuzzy numbers,

Step 2. The relative suitability ratings #; of the alternatives with respect to each
attribute (i=1, 2, ... , n, with n = number of alternatives) are attributed following the

same procedure as that described in step 1,

Step 3. The overall suitability ratings A; of the alternatives are finally calculated by
weighting the suitability ratings relevant to each attribute with the corresponding
importance weightings, on the basis of Zadeh’s extension principle and the operation
rules on triangular fuzzy numbers. Since the overall suitability ratings are fuzzy
numbers, the ‘maximising and minimising sets’ algorithm is used to rank the
alternatives (Liang and Wang (1993), (1994)). Laarhoven and Pedrycz’s algorithm is

also given and explained in Appendix B.

4.3.2 Buckley’s Approach

Buckley (1985b) also extended Saaty’s method to incorporate fuzzy comparison
ratios a;. He pointed out that Laarhoven and Pedrycz’s method is subject to two
problems. First, the linear equations of Laarhoven and Pedrycz’s method do not
always have a unique solution. Secondly, they insist on obtaining triangular fuzzy
numbers for their weights. Since algebraic operations on triangular fuzzy numbers do
not necessarily produce a triangular fuzzy number, Laarhoven and Pedrycz are
forced to employ approximate methods to preserve the shape of the fuzzy number.

To overcome these difficulties, Buckley uses the geometric mean method (see
Appendix B) to derive fuzzy weights and performance scores. This method is used
since it is easy to extend to the fuzzy case and guarantees a unique solution to the
reciprocal comparison matrix. Instead of using a triangular fuzzy number, Buckley
uses a trapezoidal fuzzy number (a,b,c,d) (see Figure 4.2) to represent the fuzzy ratio
expressed by the decision makers.

For example, in Figure 4.3, (3, 4, 6, 7) represents the fuzzy ratio “between 4 to 1 and
6 to 1” and (2, 3, 3, 4) represents the fuzzy ratio “about 3 to 1”. The fuzzy utilities,
however, are not restricted to trapezoidal shape. Buckley believed that his approach
avoids all the problems found in Laarhoven and Pedrycz’s approach. Buckley’s
algorithm is also given in Appendix B.
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4.3.4 Chang’s Approach

Chang (1996) introduced a new approach for handling fuzzy AHP problems, which
is different from the above mentioned AHP based methods. But the ordering of a
permutation with respect to elements is quite the same.

Triangular fuzzy numbers are also used for a pairwise comparison scale of fuzzy
AHP.

4.4 Outranking Relation Based FMADM Approaches

Outranking relation

Given two alternatives A and B, the statement ‘A outranks B’ signifies that the
decision maker has enough reasons to admit that A is at least as good as B. Through
the successive assessments of the outranking relations of the other alternatives, the
dominated alternatives defined by the outranking relation can be eliminated. To
derive outranking relation between pairs of alternatives is the key issue in classical
outranking method.

Fuzzy Outranking relation

A fuzzy outranking relation can be characterised by a degree of outranking (or
. membership function) which indicates the degree of outranking associated with each
pair of alternatives A and B. The ranking of alternatives is conducted using the fuzzy
outranking relations.

Roy (1977), Takeda (1982), Siskos et al. (1984), and Brans et al. (1984) have
developed various procedures in deriving fuzzy outranking relations.

Roy (1977) used the degree of concordance and discordance to derive fuzzy
outranking relations; Siskos et al. (1984) followed Roy’s approach but used different
formulas and threshold values in deriving the degree of concordance and
discordance. Takeda (1982) proposed an interactive approach for building fuzzy
outranking relations from which the decision maker’s preference structure could be
extracted as a fuzzy multilevel graph. Brans et al. (1984) proposed a method with six
different formulas for computing the degree of outranking.

The Brans et al.’s approach is probably the simplest one (in terms of computational
requirement) in this category.
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4.4.1 Roy’s Approach

The use of fuzzy outranking relations in MADM is first seen in Roy (1977). It is
considered a fuzzy edition of the classical ELECTRE method. Roy (1977) proposed
the use of the degree of concordance and the degree of discordance to construct
fuzzy outranking relations.

ELECTRE (Roy (1971)) is a MADM method. This method consists of pairwise
comparisons of alternatives based on the degree to which evaluations of the
alternatives and preference weights confirm or contradict their pairwise dominance
relationship.

4.4.2 Siskos et al.’s Approach

Siskos et al. (1984) present a fuzzy outranking method that is similar to Roy’s
approach. There are two major differences between these approaches. The formulas
used in deriving concordance and discordance relations are different. Siskos et al.
build a fuzzy dominance relation and subsequently a fuzzy nondominance relation.
The alternative with the highest degree of nondominance is said to be the best.

4.4.3 Brans et al.’s Approach

Brans et al. (1984) presented a family of outranking methods called PROMETHEE
(Preference Ranking Organisation Methods for Enrichment Evaluation).

PROMETHEE 111 is an outranking method and can result in the partial preordering
of alternatives (PROMETHEE I) or the complete preordering of alternatives
(PROMETHEE II).

The PROMETHEE methods consist of three steps: construction of generalised
criteria or preference functions, calculation of the multiple criteria preference index,
and determination and evaluation of an outranking relation to give an answer to the
multiple-attribute problem of interest.

4.4.4 Takeda’s Approach
Takeda (1982) proposed an interactive procedure for building fuzzy outranking

relations from which the decision maker’s preference structure could be extracted as
a fuzzy multilevel graph, of which a vertex corresponds to an alternative.
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Similar to Roy’s approach, Takeda used concordance and discordance relations to
obtain fuzzy outranking relation. The difference is that Roy assumes that in
concordance analysis certain a priori weights about attributes are available. This
assumption is not valid for many cases since the decision maker may not be certain
about the weights. To resolve the difficulty, Takeda proposed an interactive
procedure to obtain the weights of attribute.

4.4.5 Wang’s Approach

Wang (1997) pointed out that most of the fuzzy outranking approaches (Roy et al.,
Siskos et al., and Brans et al.) developed for multiple attribute decision making
problems are limited to evaluating the alternatives with a quantitative form for the
performance of each attribute. To overcome this difficulty, Wang (1997) proposed an
outranking approach to modef the imprecise preference structure. Wang’s approach
is able to handle the linguistic representation of each attribute that is one of the major
characteristics of MADM problems.

According to Wang (1997), the fuzzy preference relation is used to represent the
imprecise preference relations between alternatives. Based on the outranking
approach, three preference models are developed to discriminate the nondominance
set from a set of alternatives for further development. These models are ‘pseudo-
order preference model’, ‘semi-order preference model’, and ‘complete-preorder
preference model’.

The pseudo-order preference model discriminates the set of alternatives into
nondominance and dominance sets without the information on relative importance
among various attribute. If the information on relative importance is known, the
semi-order preference model is used. The complete-preorder preference model is
used to rank the set of alternatives in a complete order. The most promising ‘best’
alternative is selected.

The task of design evaluation in conceptual design is important, since a poor
selection of design concept can rarely be compensated at later design stages. At that
stage, it is difficult to determine the ‘best’ design alternatives, because information
collected is too subjective or too incomplete to make a judgement. Wang’s approach
is more applicable in the imprecise and uncertain design environment.
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4.5 Implied Conjunction Methods

The implied conjunction methods, also called maximin methods, don’t handle fuzzy
weights and the solution represents the support for each alternative. The best support
corresponds to the alternative with higher support.

The classical maximin method is used to select an alternative A~ such that

A =iA*‘| miaxmjmxy; j=1,..,mi=1,...,m.

where x;’s are in a common scale.

The term “maximin” signals the selection of the maximum (across alternatives) of
the minimum (across attributes) values. In this situation, where the overall
performance of an alternative is determined by the weakest or poorest attribute, a
decision maker would examine the attribute values for each alternative, note the
lowest value for each alternative, and then select the alternative with the most
acceptable value in its lowest attribute. In general, this method would be reasonable
only if the decision maker is assumed to have a pessimistic nature in the decision
making situation (Hwang and Yoon (1981)).

The decision matrix for the maximin method is given as:

Xi .. A

A —}ll(xl) e (X)) p’l(xn)—

A (1R e pi(xg) e m(xy)

Am _ul(xl) b ‘P‘m(xj) Ao p’m(xn)_

where pi(x;) € [0,1] is interpreted as how well A; satisfies attribute X;. It represents a
subjective judgement of the decision maker, and hence, is fuzzy. The best alternative
A’ is determined as:

A ___iAil m?xm}nyi(x)j; j=l,.,mi=1,.,m.
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In a classical MADM problem, values of different attributes may be measured in
different units. The values must be normalised such that interattribute values are
comparable. However, in a fuzzy case, the values in the decision matrix are all given
as degrees of “how one alternative satisfies a certain attribute.” There is no need for
normalisation when the decision data are fuzzy. The decision data p(x;) in the
decision matrix is referred to as the fuzzy singleton (Zadeh (1973)).

The concept of maximin applied in a fuzzy environment was first seen in Bellman
and Zadeh (1970). Although its original intention was for general fuzzy decision
making, this concept is readily applicable to fuzzy multiple attribute decision making
problems. Yager (1977), (1978) utilises this concept and develops an algorithm for
FMADM problems with unequal weights.

4.5.1 Bellman and Zadeh’s Approach

Bellman and Zadeh (1970) asserted that in the conventional approach to decision
making, the principal ingredients of a decision process are:

1. aset of alternatives,
2. aset of constraints on the choice between different alternatives, and

3. a performance function which associates with each alternative the gain (or loss)
resulting from the choice of that alternative.

In a fuzzy environment, the performance function may be replaced by the concept
“fuzzy goal”. A fuzzy goal, G, may be represented by a fuzzy set {(x,ug(x)) | xeU}
where U is the universe of the fuzzy set G. pg(x) is the membership function of the
fuzzy goal and takes its values in [0,1].

The x value that makes the highest pug(x) value is the preferred one. Clearly, the
membership function serves the same purpose as a conventional performance
function. Furthermore, pug(x) may be considered a normalised performance function.
Such normalisation provides a common denominator for the various fuzzy goals and
fuzzy constraints and thereby makes it possible to treat them alike. This line of
reasoning explains why it is perfectly appropriate to regard the concept of the “fuzzy
goal” —rather than the performance function- as one of the major components for
decision analysis in a fuzzy environment. Similar remarks can be made to fuzzy
constraints.
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The above definitions of goals and constraints in a fuzzy environment (i.e., when
both sets are fuzzy) make it appropriate to treat the fuzzy goals and fuzzy constraints
identically in the formulation of a decision. By contrast, in the conventional approach
to decision-making, the use of Lagrangian multipliers and penalty functions makes it
apparent that there is an intrinsic similarity between performance functions and
constraints. This similarity is made explicit in the formulation of fuzzy decision
analysis.

Thus, a fuzzy decision may be stated as the fuzzy set D resulting from the
intersection of the goals and constraints. That is, given the fuzzy goals, G;, i= 1,...,m,
and the constraints, C;, j= 1, ..., n, we can determine the solution D, using

D=Gin..nGnNnCiNn..C,
Its membership function is defined as:
Up(x)= g (X)Nec i (X) O pre (KOO pi (%)

The selection of the most appropriate x value for fuzzy set D is then given as:

B (x)=maxp,(x),xeKcl,

= () elsewhere

where K is the set of points in U on which pp(x) attains its maximum, if it exits. Note
that pps(x) is the optimal decision and any x in the support of D* will be referred to
as a maximising decision.

4.5.2 Yager’s Approach

Bellman and Zadeh (1970) defined the concept of “decision” in a broad sense, as the
confluence of goals and constraints. According to Yager (1977), (1978) the decision
is the intersection of all fuzzy goals raised to powers w; and is given as follows :

D=G" NG N...Gn'm

Where w; (=1, 2, ... , m) is the weight attached to the goal/criterion G; =1, 2, ...
, m) depending on its importance and the optimal alternative is defined as that
achieving the highest degrée of membership in D. This approach is used when the
goals or objective attributes as well as the constraints are not of equal importance to
the decision-maker.
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Yager (1977), (1978) proposes a method based on the idea of assigning to each
attribute in a MADM problem a number indicating its importance to the decision
maker. An exponential weighting method is used for weighting the importances of
the decision components and the weights are obtained using a method of paired
comparisons developed by Saaty (1977). This form of weighting make the fuzzy
decision process more responsive to real-world needs.

When the fuzzy decision takes place, the performance data under all attributes for
each alternative are raised to their appropriate power and the alternative that satisfies

max min (i;(x;)™)

is preferred.
Algorithm of the Yager’s approach is given as follows:
A fuzzy MADM problem is given as:

Xy .. X ... X

A, (%) H(x) o B(x,) ]
A Bi(x)) - :p'i(xj) e B(Xg)

A

a (P o Ba(X) o pa(x)|

where ; (x;) € [0,1] indicates how well alternative A; satisfies criteria x;. p; (X;) is a
measure of subjective judgement. The selection of the best alternative is done using
the following steps:

Step 1. Compute the relative importance for each attribute. Saaty’s method is used to
calculate weight, w;, Vj.

Step 2. Obtain the weighted decision matrix. The weights are used to modify the
decision matrix. A weighted decision matrix is:
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where pi= pi(X;) and wj is the weight obtained in Step 1.

Step 3. Select a compromise alternative. Ideally, our goal is to select the alternative
which has the highest membership values with respect to all the criteria, Xj, Vj.
However, this rarely happens, because one alternative that has the highest
membership value with respect to X; does not necessarily have the highest
membership value under other criteria. Since an alternative must be chosen, some
forms of compromise are to be made. In this case, Yager proposed the use of the max
and the min operators to select the best alternative. The selected alternative is said to
maximise the minimum membership values over all the criteria, i.e.,

maxfmin 47
4.6 Fuzzy Linguistic Approaches

Models in this category are the techniques that have already been proposed in the
literature (Liang and Wang (1991), (1993), Chang and Chen (1994), Wang and
Chang (1995), Chen (1997), Rangone (1998)). These models are based on the
concept of linguistic variables.

These models require the use of two linguistic variables for assessing the importance
weightings of the attributes and for assessing the suitability rating of the alternative
with respect to each attribute.

According to the fuzzy linguistic approaches in the literature, the evaluation attribute
can be distinguished into two categories: subjective and objective attributes.

47



4.6.1 Liang and Wang’s Approach

Liang and Wang (1991), (1993) proposed an algorithm based on the concepts of FST
and the hierarchical structure analysis to aggregate decision makers’ linguistic
assessments about attribute weightings and suitability of alternatives versus various
selection attribute to obtain fuzzy suitability indices.

Two preference rating systems are used for assigning the importance weight of the
attribute and the suitability of the alternatives versus the attribute. Decision makers
employ a weighting set W, W = {Very Low (VL), Low (L), Medium (M), High (H),
Very High (VH)}, to evaluate the importance of each attribute. The linguistic set S, S
= {Very Poor (VP), Between Very Poor and Poor (B.VP&P), Poor (P), Between
Poor and Fair (B.P&F), Fair (F), Between Fair and Good (B.F&G), Good (G),
Between Good and Very Good (B.G&VG), Very Good (VG)}, are used to evaluate
the suitability of alternatives versus various subjective attribute. The fuzzy numbers
used in linguistic sets W and S are shown in Table 4.3.

Table 4.3 Linguistic variables and their corresponding fuzzy numbers used in Liang

and Wang’s approach
Linguistic set W Fuzzy numbers Linguistic set S Fuzzy numbers
VL Trap (0, 0, 0, 0.3) VP Trap (0, 0, 0, 0.2)
L Trap (0, 0.3, 0.3, 0.5) B.VP&P Trap (0, 0, 0.2, 0.4)
M Trap (0.2, 0.5,0.5,0.8) | P Trap (0, 0.2, 0.2, 0.4)
H Trap (0.5, 0.7, 0.7, 1) B.P&F Trap (0, 0.2, 0.5, 0.7)
VH Trap (0.7, 1, 1, 1) F Trap (0.3, 0.5, 0.5, 0.7) |
B.F&G Trap (0.3, 0.5, 0.8, 1)
G Trap (0.6, 0.8, 0.8, 1)
B.G&VG Trap (0.6,0.8,1, 1)
VG Trap (0.8,1,1,1)

Where Trap indicates a trapezoidal fuzzy number

Attribute weightings assigned by decision makers are then pooled to obtain their
aggregated weightings. Similarly, decision makers’ assessments for each alternative
with respect to each attribute are aggregated to get the aggregated fuzzy ratings of an
alternative under each attribute.

Finally, aggregated weightings and aggregated fuzzy ratings are aggregated to get the
fuzzy suitability indices of all alternatives. The fuzzy suitability indices’s ranking
values are calculated and then ranked to select the best alternative.

They applied this approach to robot and facility site selection problems (Liang and
Wang (1991), (1993)).
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Karsak (1998) extended this approach for robot selection problems. He proposed a
two phase methodology. In the first phase, data envelopment analysis is used. In the
second phase of the proposed method, Liang and Wang’s approach is employed to
select the best alternative.

4.6.2 Chang and Chen’s Approach

Chang and Chen (1994) proposed a FMADM algorithm based on the concepts of
FST and the hierarchical structure analysis.

The authors used the concepts of hierarchical structure analysis with two distinct
levels in their study. The first level is to evaluate fuzzy importance of the decision
attribute and the second level is to assign ratings to various alternatives under each
attribute.

The linguistic variables and fuzzy numbers are used to aggregate the decision
makers’ subjective assessment about attribute weightings and appropriateness of
alternatives versus selection attribute to obtain the final scores called fuzzy
appropriateness indices. Since the final scores of alternatives are fuzzy numbers, they
also proposed a revised method for ranking fuzzy numbers with index of optimism
which was proposed by Kim and Park (1990).

This revised fuzzy numbers ranking method is based on the stage of data input for
computing the total index of optimism in GDM problem, instead of giving the index
of optimism independently by a decision maker on the stage of information output.

4.6.3 Wang and Chang’s Approach

Wang and Chang (1995) presented a fuzzy linguistic approach to solve the tool steel
materials selection problem under fuzzy environment, where the importance weights
of the attribute and the performance ratings of attribute assessed by the decision
makers are described in linguistic terms represented by fuzzy numbers.

The importance weights of the attribute are assessed in linguistic terms represented

by fuzzy numbers, such as Very Low (VL), Low (L), Medium (M), High (H), Very
High (VH), and the membership functions of the five linguistic terms are shown in

Figure 4.1.

They also assumed that the decision makers can assign the ratings of different
alternatives under different selection attribute using linguistic terms represented by
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fuzzy numbers, such as worst (W), Poor (P), Fair (F), Good (G), and the Best (B),
where the membership functions of the five linguistic terms are shown in Figure 4.2.

The n decision makers’ opinions are aggregated by
Wi=(1mM@Wyu @ Wup@® ...0 Wy),t=1,2, ...,k

Where W, is the aggregated weighting for attribute t, Wy, is the importance weight
given by decision maker n to attribute t, k is the number of attribute, © and ® are the
addition operator and the multiplication operator of fuzzy numbers, respectively.

If the ratings are assigned by different decision makers, then their opinions can be
aggregated by

Ri=(1m)® Rt ®Rin® ... ® Ryy),

Wherei=1,2, ..., m t=1,2, ..., k, Ry is the aggregated rating of alternative i
under attribute t, Ry, is the assigned rating of alternative i under attribute t by
decision maker n. After the weights and ratings have been assigned and aggregated,
Ri; can further be weighted by the aggregated weight W, to obtain the final rating F;,

Fi = (1/1() ® [(Ril ® Wl) @ (Riz ® Wz) ®..8 (le ® Wk)],

Where F; is the approximated fuzzy number of the fuzzy suitability index of
alternative i. Finally, they used Chen’s method (Chen (1985)) of maximising set and
minimising set to rank the final ratings of different alternatives.

4.6.4 Chen’s Approach

Chen (1997) also proposed a fuzzy linguistic approach to solve the tool steel
materials selection problem under fuzzy environment. He pointed out that the
method presented in Wang and Chang’s approach is not efficient enough due to the
fact that it needs to perform the complicated aggregation and ranking operations of
fuzzy numbers to determine the most suitable alternative. Thus, he developed a more
efficient fuzzy linguistic approach by using simple arithmetic operations rather than
the complicated aggregation and ranking operations of fuzzy numbers mentioned in
Wang and Chang (1995).

He considered the same linguistic terms shown in Figure 4.1 and Figure 4.2, where
the linguistic terms and their corresponding quadruple representations of fuzzy
numbers are shown in Table 4.4.
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The methodology is the same as Wang and Chang’s approach. However, the main
difference is that he introduced a deffuzzification method of trapezoidal fuzzy
numbers and used it to defuzzify all weightings and ratings before aggregation and
ranking operations. Thus, Chen’s approach yields simpler calculations than Wang
and Chang’s approach.

Table 4.4 Linguistic terms and their corresponding fuzzy numbers used in Chen’s

approach

- Linguistic terms Fuzzy numbers
Very Low (VL) Worst (W) Trap (0, 0, 0, 0.3)
Low (L) Poor (P) Trap (0, 0.3, 0.3, 0.5)
Medium (M) Fair (F) Trap (0.2, 0.5, 0.5, 0.8)
High (H) Good (G) Trap (0.5,0.7,0.7, 1)
Very High (VH) Best (B) Trap (0.7, 1,1, 1)
Where Trap indicates a trapezoidal fuzzy number

4.6.5 Rangone’s Approach

Rangone (1998) used two linguistic sets similar to Liang and Wang’s approach. The
first one, W = {Very Low (VL), Low (L), Medium (M), High (H), Very High (VH)},
is used for assessing the importance weighting of the attribute. Second set A, A =
{Very Poor (VP), Poor (P), Fair (F), Good (G), Very Good (VG)}, is used for
assessing the suitability ratings of the alternatives with respect to every attribute. The
fuzzy numbers used in linguistic sets W and A are all triangular fuzzy numbers.

According to Rangone’s approach, the steps are performed as follows:
1. The relative weightings of the attribute are measured using the linguistic set W,

2. The assessments of the alternatives with respect to each attribute are made using
linguistic set A,

3. The overall suitability rating A; of each alternative is derived from a numeric
operator that calculates the mean of the fuzzy linguistic assessments given in step
2, taking into account of the fuzzy linguistic weightings attributed in step 1.

Since A; are fuzzy numbers, they must be converted into numeric values. This can be
done by using any ranking algorithm proposed in the literature (e.g. Azzone and
Rangone (1996)).
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4.7 Miscellaneous FMADM Methods

Techniques in this category cant be classified as above techniques because of their
different structure.

4.7.1 Heuristic Approach Based On Fuzzy Decision Rules

Approaches in this category are based on the concepts of linguistic (fuzzy) decision
rules (Dubois and Prade (1984), Lee (1990)), which are of the form :

IF (a set of conditions are satisfied) THEN (a consequent can be inferred).
Models based on fuzzy decision rules consist of the following major steps:

1. A set of fuzzy decision rules is developed which converts all possible
combinations of fuzzy linguistic values of performance variables into the fuzzy
linguistic values of the overall level of support to the company’s goals. Various
authors have suggested heuristic guidelines to obtain the set of fuzzy rules (e.g.
Efstathiou and Rajkovic (1979)).

2. Each decision alternative is assessed with respect to performance variables and
these assessments, if crisp, have to be converted into fuzzy measures
(fuzzification).

3. The overall suitability rating of each decision alterhative is calculated. It is
necessary, for each alternative, to consider all those fuzzy rules whose
antecedents correspond to the fuzzy assessments of step 2 and to translate the
consequence of these rules into a crisp value suitable for ranking of alternatives
(defuzzification).

Efstathiou (1979) and Efstathiou and Rajkovic (1979) argued that the Multiple
Attribute Utility Function (MAUF) cannot be practically obtained by the
combination of single attribute utility functions because of the dependency among
attributes. Therefore, a heuristic approach is needed to define the MAUF. Since
decision data may be numerically and/or linguistically expressed, fuzzy set theory
must be incorporated in this heuristic approach. The utility function is represented in
the “IF ... THEN...” decision rule format and the algorithm may be summarised by
the following steps:

Step 1. Identify interest groups of people involved in the decision environment.
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Step 2. Identify attributes and establish a universe of discourse for each attribute.

Step 3. Interact with the decision makers to identify their heuristics and ideal
solutions for each interest group.

Step 4. Construct the utility relation for each group. The rules are constructed
according to the heuristics obtained in Step 3.

Step 5. List all alternatives and assess them with respect to the attributes.
Step 6. Calculate the utilities of individual alternatives for each group.
Step 7. Rank alternatives on the basis of calculated utilities.

The decision makers are actively involved in the decision process in this method. For
example, in Step 3 heuristic information is obtained through a question-and-answer
system, where dialogue between the decision makers and analysts takes place; and in
Step 4, where the decision rules are constructed through serious discussions between
the decision makers and analysts.

The major drawbacks of Efstathiou and Rajkovic’s approach are

e It is extremely time consuming to construct the decision rules, even with the help
of the decision maker’s heuristics. For a small problem, it may be useful to use
this method. However, when the problem size increases to 10 attributes, each
having four values in its universe of discourse, there will be a total of 4" decision
rules, and even with the help of the decision maker’s heuristics, the number of
rules is still high. That makes the algorithm impractical for application to large
real world problems.

e The involvement of the decision maker is tremendous. The discussion between
the decision makers and the analysts is time consuming. When the decision
makers are not available for consultation, this approach is not applicable.

4.7.2 Fuzzy Conjunctive/Disjunctive Method

The classical conjunctive method is an intuitive approach used to dichotomise
alternatives into acceptable/not acceptable categories (Hwang and Yoon (1981)). The
decision maker sets up the minimum attribute values (standard levels) s/he will
accept for each of the attributes. Any alternative which has an attribute value less
than the standard level will be rejected (not acceptable).
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The classical disjunctive method, on the other hand, is one in which an alternative is
evaluated based on its greatest value of an attribute.

Dubois et al. (1988) pointed out that when data in a decision problem are fuzzy, the
match between standard levels provided by the decision maker and attribute values
becomes vague and, naturally, a matter of degree. The degree of matching is
computed using the possibility measure and the necessity measure. The alternative
that has the highest degree of matching is considered the best.

Dubois et al. (1988) proposed the fuzzy version of the conjunctive and disjunctive
methods. They pointed out that when data in a decision matrix and the decision
maker’s standard levels are fuzzy, the matching between these two fuzzy data
becomes vague and, naturally, a matter of degree. (see Appendix B for more details
of this method)

4.7.3 Negi’s Approach

Negi (1989) proposed a fuzzy multiple attribute decision making problem where the
rating of alternatives and relative weights of criteria are modelled using fuzzy
numbers.

In this research, methodologies to solve the linear programming, linear multiple
objective decision making, multiple attribute decision making and queuing problems
with fuzzy parameters, are presented. Modelling of uncertainty is achieved by using

fuzzy numbers.

He provides methods for fuzzification of four already existing crisp methods: Simple
Additive Weighting, Linear Assignment, Technique for Order Preference by
Similarity to Ideal Solutions (TOPSIS), and Elimination et Choice Translating
Reality (ELECTRE).

In addition, the proposed approach is very general and can be applied to any type of
MADM problem involving fuzzy data.

4.7.4 Chen and Hwang’s Approach

Chen and Hwang (1992) proposed an efficient approach to deal with fuzzy and crisp
data together. They pointed out that the existing FMADM methods share one or
more of the following pitfalls:

o Size of the MADM problems,
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e Fuzzy versus crisp data, and
e Fuzzy singleton.

They overcame the above difficulties in their approach. The basic assumption of this
approach is that MADM problem may contain fuzzy and crisp data. This method
enables the MADM problem to involve fuzzy data as linguistic terms or fuzzy
numbers. The proposed approach consists of two major phases. The first phase
converts fuzzy data into crisp data. In the second phase of the method, classical
MADM methods can be utilised to specify the ranking order of alternatives. TOPSIS
method is used for ranking of alternatives in this method.

This method’s main drawback is that the proposed method does not enable multiple
experts participation into the MADM problems.
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5. PROPOSED METHOD AND ITS METHODOLOGY

In this chapter, the arguments for a new approach to FMADM shall be summarised
and shall be explained how it intends to use Fuzzy Set Theory (FST). Proposed
method and its methodology shall be explained and discussed and shall be illustrated
with an illustrative example. Real case studies will be given in the latter chapter.

5.1 Review of the Existing FMADM Methods

The study of FMADM problems is still in its infancy and still has a lot of room for
improvement. After a systematic and critical study of the existing FMADM methods,
as described in Chapter 4, the drawbacks of them have been assessed from a practical
point of view as follows :

1. Unnecessary fuzzifying of crisp data,

Most approaches of the existing FMADM methods, such as all of the fuzzy linguistic
approaches, Baas and Kwakernaak (1977), Dubois and Prade (1983), Bonissone
(1982), Laarhoven and Pedrycz (1983), etc., require unnecessary fuzzifying of crisp
data so that the each element of the decision matrix must be represented in a fuzzy
format, even though they are crisp in real world.

Such an assumption violates the original intent of FST to cope with human subjective
judgement. If the data is precisely known, there is no subjectivity involved in the
decision problem. Such data should never be represented in any fuzzy format. Too
much (or unnecessary) fuzzification does not imply better modelling of reality, on
the contrary, many times it can be counterproductive. Over fuzzification can create
unnecessary complexity and the fuzzifying of crisp data increases the computational
requirements. This makes these methods cumbersome to use and incapable of
solving many large decision making problems.

2. Excessive fuzzification,

Since the results of the Phase (I) of the majority of approaches of the FMADM
methods are fuzzy, they concentrate on Phase (II) of the FMADM problems. In
Phase (II), when the overall aggregated performance ratings are fuzzy numbers, a
more sophisticated ranking procedure is required. When final results are crisp



numbers, selecting the best alternative or ranking of the alternatives is simple. The
best alternative will be the one with the highest overall alternative rating (OAR)
value.

Therefore, the need for complex algorithm due to excessive fuzzification of the result
of the Phase (I) for ranking of the alternatives could be considered an important
drawback.

3. Cumbersome computations, and size of the MADM problem,

The majority of the existing approaches, such as AHP based methods and Takeda
(1982), require cumbersome computations and complicated computer programming
due to the above mentioned problems. The computational requirements for some of
the existing FMADM approaches are tremendous. Therefore none of them is suitable
for solving large decision making problems. This reduces the approaches’
applicability to MADM problems in which there are approximately more than 10
attributes and more than 10 alternatives. For example, in AHP based approaches,
exhaustive pairwise comparison is time consuming if there are many attributes in the
MADM problem.

4. Little research on FMADM methods with GDM problems,

There has been little research on FMADM methods with multiple experts. All of the
SAW based methods, outranking based techniques, and implied conjunction
methods, and Rangone (1998), Dubois et al. (1988), Negi (1989), Chen and Hwang
(1992)’s approéches don’t handle fuzzy multiple attributive GDM problems.
Although on the occasion of making an engineering decision, multiple experts’
judgements are frequently required for a correct decision. |

5. Outranking relation based FMADM approaches’ drawbacks

All of the fuzzy outranking methods require involved and complex computations.
They are suitable only during evaluation process for early product design stages, but
not for all types of MADM problems.

6. Heuristic approach based on fuzzy decision rules’s drawbacks

Most of the effort required by the application of fuzzy decision rules based models is
due to the development of the set of fuzzy decision rules. Such a task can be reliably
performed only if the attribute that have to be included in the decision are only a few,
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due to the limited capability of human beings to handle several items of information
at once. Hence, these models are especially effective in decision contexts where:

e There aren’t too many attributes to consider,

e Several decisions have to be taken on the basis of the same attribute. Hence,
having once developed the set of fuzzy rules, each decision can be easily
supported.

However, in decision contexts with many attributes to consider, developing the
whole set of fuzzy decision rules would be hardly possible.

7. Fuzzy singleton,

Some approaches, such as Yager (1977), etc. , assume that fuzzy datum can be
represented by a fuzzy singleton, which is a fuzzy set of only one element with its
membership value € [0,1]. Such an assumption is not practical. If a fuzzy singleton
is only a real number in [0,1] then its fuzzy matrix is no fuzzier than a normalised
decision matrix in the classical MADM study domain. Yager’s method is not fuzzy
at all.

These drawbacks certainly limit their applicability to real world MADM problems.

The proposed FMADM method is designed to overcome the aforementioned
difficulties so that MADM problems can be meaningfully and efficiently solved ina
fuzzy environment. The basic assumption of the proposed method is that the MADM
problem may contain fuzzy and crisp data and it may consist of multiple expert with
the difference degree of importance. The conceptual model of the proposed method
is illustrated in Figure 5.1

5.2 States of Proposed Methodology

The proposed method is composed of three major states and the new algorithm will
be developed in the following major states :

1. Rating state,
2. Attribute based aggregation state,

3. Selection state.

59



due to the limited capability of human beings to handle several items of information
at once. Hence, these models are especially effective in decision contexts where:

e There aren’t too many attributes to consider,

e Several decisions have to be taken on the basis of the same attribute. Hence,
having once developed the set of fuzzy rules, each decision can be easily
supported.

However, in decision contexts with many attributes to consider, developing the
whole set of fuzzy decision rules would be hardly possible.

7. Fuzzy singleton,

Some approaches, such as Yager (1977), etc. , assume that fuzzy datum can be
represented by a fuzzy singleton, which is a fuzzy set of only one element with its
membership value € [0,1]. Such an assumption is not practical. If a fuzzy singleton
is only a real number in [0,1] then its fuzzy matrix is no fuzzier than a normalised
decision matrix in the classical MADM study domain. Yager’s method is not fuzzy
at all.

These drawbacks certainly limit their applicability to real world MADM problems.

The proposed FMADM method is designed to overcome the aforementioned
difficulties so that MADM problems can be meaningfully and efficiently solved ina
fuzzy environment. The basic assumption of the proposed method is that the MADM
problem may contain fuzzy and crisp data and it may consist of multiple expert with
the difference degree of importance. The conceptual model of the proposed method
is illustrated in Figure 5.1

5.2 States of Proposed Methodology

The proposed method is composed of three major states and the new algorithm will
be developed in the following major states :

1. Rating state,
2. Attribute based aggregation state,

3. Selection state.
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In the rating state of the proposed method, each expert (or decision maker) gives
his/her opinions (or performance ratings) about alternatives with respect to each
subjective attribute. For the subjective attributes these ratings can be fuzzy data. The
fuzzy data can be linguistic terms or fuzzy numbers.

The first state aims to convert fuzzy data into standardised positive trapezoidal fuzzy
numbers. If the fuzzy data are linguistic terms, they are transformed into fuzzy
numbers first by using appropriate conversion scale and then converted to
standardised positive trapezoidal fuzzy numbers.

In the second state, attribute based aggregation method for homo/heterogeneous
group of experts is employed. Aggregation is necessary only for subjective attributes.
After the weights of attributes and the degree of importance of experts are assigned,
under each subjective attribute all performance ratings are aggregated for each
alternative.

In the last state of the proposed approach, all fuzzy elements of the aggregated
decision matrix are deffuzzified in the deffuzzification phase. The result of this phase
is a decision matrix which contains only crisp data. Then the alternatives of the
problem are ranked by using any classical MADM method such as TOPSIS and
SAW.

There are basically two types of attributes, namely subjective and objective
attributes. If an assessment for an alternative with respect to an attribute is crisp and
identical for all experts of the problem, this attribute is called an “objective
attribute”.

The main assumption of the proposed method is that experts’ opinions for each
alternative with respect to each objective attribute are all the same and crisp numbers
since subjectiveness is not involved into the MADM problem for these attributes.
Therefore there is no need to aggregate (or to combine) experts’ opinions for the
objective attributes of the MADM problem.

5.2.1 Rating State

In this state, each expert expresses his/her opinions or estimated performance ratings
(or performance scores) for each alternative with respect to each subjective attribute.
This can be carried out by questionnaires applied to the experts. The questionnaires
are used for soliciting expert opinions for each alternative with respect to each
subjective attribute.

61



The estimates of experts of a subjective attribute for an alternative involve
subjectiveness, imprecision, and vagueness. For example, these opinions can be
linguistic terms such as good, medium, fair etc. or sentences such as “at least two”,
“the cycle time is about two weeks”, or “approximately between 200 and 300”. FST
can provide us with a useful way to deal with the fuzziness of human judgements.

‘When experts are not able to give exact numerical values to express their opinions or
when the subjectiveness and vagueness involves into the decision problem, then, a
more realistic alternative option is using linguistic or fuzzy assessments instead of
numerical values. In such a situation, for each variable of problem domain an
appropriate linguistic label set is chosen and used by experts who participate in the
decision making process to express their opinions. This setting is known as the
linguistic setting.

The concept of linguistic variable is very useful in dealing with situations which are
too complex or too ill-defined to be reasonably described in conventional
quantitative expressions (Zadeh (1975)). A linguistic variable is a variable whose
values are not numbers but words or sentences in a natural or artificial language
(Zimmermann (1991)). Linguistic values can be words such as very high, low,
medium etc. or they can be represented as triangular or trapezoidal fuzzy numbers by
the approximate reasoning of FST.

5.2.1.1 Semantic Modelling of Linguistic Terms

The vague information in fuzzy environment can be frequently expressed in
linguistic setting. Linguistic terms are not mathematically operable. To cope with
that difficulty, each linguistic term is associated with a fuzzy set or a composition of
fuzzy sets which represents the meaning of that linguistic term.

Since the meaning of each linguistic term varies from -circumstance(s) to
circumstance(s), to assign a fuzzy set to a linguistic term is a constant challenge.
Existing studies on this topic are few and quite arbitrary. The determination of the
membership functions of fuzzy numbers to match the linguistic variables is crucial
for solving FMADM problems. It seems difficult to accept that all experts would
agree on the same membership function associated to linguistic terms, and therefore
there are not any universality in distribution concepts.

An environment is considered where experts can discriminate perfectly the same
term set under a similar conception, taking into account that the concept of a
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linguistic variable serves the purpose of providing a means of approximated
characterisation of imprecise preference information.

5.2.1.2 Converting Linguistic Terms to Fuzzy Numbers

If the decision matrix of the problem contains fuzzy data, which may be expressed in
linguistic terms or as fuzzy numbers, linguistic terms must first be transformed into

fuzzy numbers.

In the proposed method, a numerical approximation system proposed by Chen and
Hwang (1992), which may be considered as the first step to a systematic and rational
approach to associate fuzzy sets with linguistic terms, is used to systematically
convert linguistic terms to their corresponding fuzzy numbers. This system, which
was synthesised and modified from several authors’ works contains eight conversion
scales (see Figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9). There are generic verbal
terms (ranging from 2 to 11) in this system where Scale 1 contains only two verbal
terms and Scale 8 contains 11 verbal terms. The meaning of each generic verbal term
is represented by a fuzzy number.

The principle of this system is to pick a Scale that matches all the linguistic terms in
a row (attribute) of the decision matrix and use the fuzzy sets on that scale to
represent the meaning of these linguistic terms. The system is used on all rows which
contain linguistic terms, one by one.

The linguistic terms used in those conversion scales and their corresponding
representations of fuzzy numbers are given in (Table 5.1).

Note that even when the number of terms allowed is the same, the actual verbal
terms may be slightly different. It is also worth noting that even when the same term
such as “high” is used, the fuzzy numbers graphed are quite different from figure to
figure. This reflects the fact that the same linguistic term may possess different
meanings for different occasions.

As an example, assume the decision maker gives terms (medium, very high). Figure
5.4 (Scale 3) should be used because Figure 5.4 contains the terms medium and very
high. Or assume the terms (medium, high) are used by a decision maker. Although
all the scales contain these two terms, the simplest Scale (Scale 1 (Figure 5.2)) is
chosen to be our conversion scale. If the terms (medium, high, excellent) are used,
Figure 5.9 (Scale 8) is the only figure which matches all the terms given by the
decision maker and should be used as the conversion scale.
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The verbal terms used in these scales are in the universe U = {excellent, very high,
high to very high, high, fairly high, mol.high, medium, mol.low, fairly low, low, low
to very low, very low, none t. This universe of verbal terms may be appropriate to
describe the reliability of a ship propulsion system but certainly is not suitable for
describing the distance of two places or two objects. Fortunately, this system does
not confine itself to that universe. Rather, the universe can be adjusted to fit the
nature of attributes used in a decision problem. For example, if price is one of the
attributes, the possible universe will be (extremely expensive, very expensive, ..... ,
fair price, fairly cheap, ..... , extremely cheap). Or if size is one of the attributes, the
possible universe will be (extremely small, very smal, ..... , medium, medium large,
..... , extremely large). For any type of the attributes, it can be always found that a
pair of words that represents extreme meanings, such as high vs. low, good vs. poor,
small vs. large, and so on.

Ultimately, the standard scales system is capable of converting linguistic terms into
fuzzy numbers in a systematic manner. Such characteristics guarantee the
consistency of translating linguistic terms to fuzzy numbers.

The determination of the number of conversion scales in this conversion system is
rather intuitive. Too few conversion scales provide no more help than previous
research results, while too many conversion scales may make the system too
complex to be practical (Chen and Hwang (1 992)).

This conversion system is employed in the proposed approach since this system is
simple enough to be understood by the decision maker, and easy to use by engineers.

5.2.2 Attribute Based Aggregation State

Aggregation means to combine or to pool the experts’ opinions.

In the MADM with GDM problems generally there arise situations of conflict and
agreement among the experts as each expert has his/her own opinion or estimated
rating under each attribute for each alternative. Hence, finding a group consensus
function of aggregating these estimated ratings to represent a common opinion is an
important issue. The purpose of this state is to establish a procedure to combine a
group of experts’ opinions to form a group consensus opinion.

Sometimes, one may admit that the various individuals that give the opinions are not
equally important (e.g. reliable). In such a case, it is called heterogeneous (non-
homogeneous) group decision making problem and, otherwise, homogeneous group
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decision making problem. One way of modelling this aspect is to consider the
existence of a manager (or moderator) that assigns a weight to each expert.

In general, the relative importance of each decision maker or expert may not be
equal. Sometimes there are important experts in decision  group, such as the
executive director of a shipyard, or some experts who are more experienced than
others on the evaluation one or more attributes, the final decision is influenced by the
different importance of each expert.

Therefore, a good method of aggregating multiple expert opinions must consider the
degree of importance of each expert in the aggregation procedure.

" In this state, an aggregation approach for homo/heterogeneous group of experts
under each subjective attribute is employed. Since the aggregation is based on each
subjective attribute, expert weighting is also determined separately for each
subjective attribute. This yields more accurate and reliable models. When more than
one expert involve into the selection problems, each expert must have a different
weight. For ex: An expert, who is very experienced on finance, may not give good
assessments for technical attributes as in finance. For that reason attribute based
expert weighting is a necessity.

5.2.2.1 Trapezoidal Fuzzy Number Aggregation

In the aggregation state of the proposed approach, the method presented in Chen
(1998) is used for dealing with fuzzy opinion aggregation with GDM problems. This
algorithm essentially is a modification of the study proposed in Hsu and Chen
(1996). Chen (1998) overcame the drawbacks of the study presented in Hsu and
Chen (1996) due to the fact that

1. The experts’ estimates do not necessarily have a common intersection at the o
level, where ae(0, 1]. Thus, it is more flexible than the one presented in Hsu and
Chen.

2. It does not need to use the Delphi method to adjust trapezoidal fuzzy numbers
given by experts.

3. It can perform fuzzy opinion aggregation in a more efficient manner, since it can
calculate the degree of similarity between the subjective estimates of experts in a
more efficient manner.
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Let U be the universe of discourse, U=[0, m]. Assume that each expert E; (i=1, 2, ...,

M) constructs a positive trapezoidal fuzzy number R;=(a;, b;, ci, d;) to represent the

subjective estimate of the rating to a given attribute and alternative, where 0< a; < b;

< ¢; £ d; £ m. Furthermore, assume that the degree of importance of expert E; (i=1, 2,
M

..., M) is w;, where wi[0, 1]and ) w, =1.

i=1

In some cases, the relative importance of experts is widely different. Some are more
important than others, such as the production manager of a shipyard and productivity
experts are more important than others, if the problem is determination of a
shipbuilding startegy. Therefore, the relative importance weight of each expert is
considered. First, the most important person is selected among experts and weight
one is assigned him/her, i.e. r;=1. Then the kth expert is compared with the most
important person and a relative weight for the kth expert r, k=1, 2, ... , M, is
obtained. So we have max{r;, 13, ... , im}=1 and min{ry, rs, ... , ny}>0. Finally, the
degree of importance w; is defined as follows:

wo= ! (5.1)

If the importance of each expert is equal then w; = w, = ... = wym = /M.

The aggregation algorithm for homo/heterogeneous group of experts is presented as
follows :

Step 1. Translate each trapezoidal fuzzy number Ri=(a;, b;, ¢;, di) given by expert E;
into standardised trapezoidal fuzzy number R;(i=1, 2, ... , M), where

R;=(a/m, by/m, c/m, dy/m) = (a;", bi", ¢i", di") (5.2)

and 0< ai‘ < bi*' < Ci‘ < di‘ <1.

Step 2. Calculate the degree of agreement (or degree of similarity) S(R;, R;) of the
opinions between each pair of experts E; and E;, where S(R;, R;) €[0, 1], 1 <i<M, 1
<j<M, and i#j.

A new method introduced by Chen and Lin (1995) is used for measuring the degree
of similarity between trapezoidal fuzzy numbers. According to this new approach, let
A and B be two standardised trapezoidal fuzzy numbers,
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A = (a;, 2, a3, a4) and
B= (bl’ b2y b3: b4)

where 0 €a; <ap<az<as<1and 0 <b; <by <b; <bs < 1. Then the degree of
similarity between the standardised trapezoidal fuzzy numbers A and B can be
measured by the similarity function S,

|al —b,(+|a2 —-b2l+[a3 —b3|+|a‘4 —b4|

S(4,B= 1-
(4, By "

(5.3)

where S(A, B) e [0, 1]. Larger the value of S(A, B), greater the similarity between
the standardised trapezoidal fuzzy numbers A and B. It should be noted that S(A, B)

=SB, A).

Step 3. Construct the agreement matrix (AM), after all the agreement (or similarity)
degrees between experts are measured,

(1 8, .. S, Sy, |
AM= | S, S, . S, S,
Sur Suz - S 1 |

Where S; = S(R;, R)), if i#j and S;; = 1, if i=j. By the definition of S(R;, R;), the
diagonal elements of AM are unity.

Step 4. Calculate the average degree of agreement AA(E;) of expert E; (i<, 2, ...,
M) by using the AM of the problem, where.

M
AA(E,) = _1\711?1" 3 S®R,.R)) .4)
P

J#

Step 5. Calculate the relative degree of agreement RA(E;) of expert E; (i=1, 2, ...,
M), where
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AA(E))

ZAA(E,-)

RA(E)) = (.3)

Step 6. Calculate the consensus degree coefficient CC(E;) of expert E; (i=1, 2, ... ,
M), where

CCE)= Bw,+ (I-P)RA(E) (56)

where B (0 < B < 1) is a relaxation factor of the proposed method. It shows the
importance of the w; over RA(E;). When B = 0, the problem is a homogeneous group
of experts problem as shown below.

b= 0, Homogeneous Group of Experts
" o< B<1 Heterogeneous Group of Experts

The consensus degree coefficient of each expert is a good measure for evaluating the
relative worthiness of each expert’s opinions.

Step 7. The aggregation result of the fuzzy opinions is Rag as

Rug=CC(E1) ® R; ® CC(E;) ® Ry ® ... ® CC(Eng) ® Ryt .7)

Where operators ® and @ are the fuzzy multiplication operator and the fuzzy
addition operator, respectively.

The proposed method is independent of the type of membership functions being
used. Some other membership functions, for example triangular membership
functions, are also applicable.

The reason of using trapezoidal or triangular fuzzy numbers is that it is intuitively
easy to be used by the decision makers.

5.2.2.1.1.1 Properties of the Aggregation Approach

The aggregation method, which is used for the proposed approach, preserves some
important properties. These properties are as follows:

(1) Agreement preservation (Bardossy et al. (1993)). If R; =R, for all i, j, then Rag =
R; (or R;). In other words, if all estimates are identical the combined result should be
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the common estimate. Agreement preservation is a consistency requirement. Proof of
this property can be found in Hsu and Chen (1996).

(2) If the fuzzy opinions of all experts can be represented by a positive trapezoidal
fuzzy number, then the membership function of the combination is also a positive
trapezoidal fuzzy number. This property reduces the complexity of mathematical
analysis process in group decision making.

(3) The common intersection area of all experts’ estimates is included in the

M
aggregation result. It means that { |R, < R,; . Proof of this property can also be
4G

i=l

found in Hsu and Chen (1996).
(4) If an expert’s estimate is far from the others, then his estimate is less important.

(5) Order independence (Bardossy et al. (1993)). Obviously, the results of the
aggregation method would not depend on order with which individual opinions or
estimates are combined.

(6) Individual versus overall (combination) uncertainty (Bardossy et al. (1993)). Let
the uncertainty measure H(R;) of each expert estimate’s R; be defined as the area
under its membership function

HR) = [pe, (x)dx

The uncertainty measure H defined in above equation fulfils the following equation :

HR )= i“CCi xH(R,)

i=l

This means that the uncertainty after combination is a mean of the uncertainties of
each- expert. Therefore, the uncertainty of the aggregation result can be computed
between the uncertainties of all experts, i.e. min; H(R;) £ HRag) < max; H(R;). This
is a reasonable result for combining the opinions of all experts.

5.2.3 Selection State

Up to this state, we have aggregated all experts’ performance ratings for each
alternative under each subjective attribute. In order to rank the alternatives of the
problem, we have to defuzzify all aggregated trapezoidal fuzzy numbers so that all
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components of the aggregated decision matrix are all crisp numbers and any classical
MADM method can be used.

The selection state consists of two major phases. They are defuzzification, and
ranking phases respectively.

5.2.3.1 Defuzzification Phase

This phase allows fuzzy numbers to be translated to crisp values early on, so that the
arithmetic process of the proposed approach becomes easy.

Defuzzifying (or transforming) approaches (Chen and Hwang (1992), Kim and Park
(1990), Tseng and Klein (1992)), which transform the fuzzy data into numeric data,
have been developed so that MADM problems can be meaningfully and efficiently
solved in a fuzzy environment.

Chen and Klein (1997) proposed an approach using six defuzzifying methods for the
FMADM problems. The computational effectiveness and efficiency of six
defuzzifying methods combined with the SAW method were evaluated based on a
comparison to the IFWA (Improved Fuzzy Weighted Average) followed by four
fuzzy ranking methods. Numerical examples were also discussed to demonstrate the
implementation and effectiveness of the methods.

In this phase of the proposed approach, all the aggregated fuzzy numbers (or fuzzy
sets) of linguistic terms (or ratings) are transformed into numeric ratings using
assigned crisp scores approach (Chen and Hwang (1992)) as explained below. The
result of this phase is a decision matrix which contains only numeric ratings or crisp
data.

In general, mathematical computations are reduced to a minimum. The easy to use
and easy to understand characteristics of this defuzzifying approach make it valuable
to management and system analysts (Chen and Hwang (1992), Mabuchi (1988)).

A fuzzy scoring method proposed by Chen and Hwang (1992) converts fuzzy
numbers to crisp scores. This method is a modification of Chen (1985)’s fuzzy
ranking approach. The crisp score of a fuzzy number B is obtained as follows .

x,0<x<1

Hmax(X) = { (5.8)

0, otherwise
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1-x,05x <1

Hmin(X) = { (.9

0, otherwise

The right score of B can be determined using .

1r(B) = suplst,, (X)A Lty (%)) (5.10)

The left score of B can be determined using .

uL(B) = suplssy, (¥)A gy, (%)] (5.11)

Given the left and right scores of B, the total score of B can be computed using

ur(B) = [ (B) +1-p (B))/2 (5.12)

5.2.3.2 Ranking Phase

In the ranking phase of the selection state, classical MADM methods can be utilised
to determine the ranking order of the alternatives. “Technique for Order Preference
by Similarity to Ideal Solution” (TOPSIS) method is used in this phase because of its
general and broad acceptability in many problem domains. TOPSIS gives cardinal
order of the alternatives. ~

TOPSIS is quite effective in identifying the best alternative quickly. The underlying
logic premise of the TOPSIS method is that an alternative that is more like an ideal
alternative (the best that could be imagined) and more unlike a negative-deal
alternative (the worst that could be imagined) should be preferred. In the TOPSIS
method, the ideal alternative is constructed out of exclusively the best attribute
values attainable and therefore it is usually an “invented’ alternative. The negative-
ideal alternative is also usually an invented alternative that is constructed out of
exclusively the worst attribute values attainable. The relative. closeness (similarity) of
each alternative to the ideal alternative is rated on the basis of its distances from both
the ideal and the negative- ideal alternatives simultaneously. Finally, the preference
order of the alternatives is obtained by their rank on a descending order of those
ratings. The computational procedure of the TOPSIS method is quite straightforward.
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5.2.3.2.1 TOPSIS

Hwang and Yoon (1981) developed the TOPSIS method based on the concept that
the chosen alternative should have the shortest distance from the positive-ideal
solution and the longest distance from the negative-ideal solution. '

TOPSIS defines an index called similarity (or relative closeness) to the positive-ideal
solution by combining the proximity to the positive-ideal solution and remoteness
from the negative-ideal solution. Then the method chooses an alternative with the
maximum similarity to the positive-ideal solution. TOPSIS assumes that each
atfribute takes either monotonically increasing or monotonically decreasing utility.
That is, the larger the attribute outcome, the greater the preference for benefit
attributes and the less the preference for cost attributes (Yoon and Hwang (1995)).

According to TOPSIS, following steps are to be performed:

Step 1. Calculate Normalised Ratings. This step tries to transform various attribute
dimensions into the non-dimensional attribute, which allows comparison across the
attributes. The vector normalisation technique is used for computing the element (r;)
of the normalised decision matrix, which is given as

L = S i=1,2,...,m;j=1,2,...,n. (5.13)

where x;; is the value of alternative i with respect to attribute j.

Step 2. Calculate Weighted Normalised Ratings. A set of attribute weights assessed
from the decision maker is accommodated to the normalised decision matrix in this
step. The weighted normalised decision matrix can be calculated by multiplying each
row of the normalised decision matrix with its associated attribute weight w;. An
element of the weighted normalised decision matrix is calculated as

v, = wr, ,i=1,2,...,m;j=12,..,n (5.14)

g 7'y

where wj is the weight of the jth attribute.

There are many methods for assigning attribute weights such as weighted evaluation
technique (WET), eigenvector method, entropy method, etc. In the proposed method,
WET is used for finding the attribute weights. WET is a conventional and highly
useful weighting technique.
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According to WET, the moderator (or manager) begins by rank ordering attributes
and attribute relative importances are assigned on a zero to 100 scale. The attribute
perceived as most important is assigned a weight of 100; all other attribute relative
importances are assigned relative to that.

The final step of the weighting procedure is to normalise the relative importances,
{r1, 13, ... , 1M}, to obtain the weights {w;, W, ... , wi}. The standard normalisation
is

w,= —,i=12,..,M, (5.15)

M
where 0<w; < 1 and Zwi =1.

i=l

Step 3. Identify Positive-Ideal and Negative-Ideal Solutions. Let the positive-ideal
solution, A, and the negative-ideal solution, A”, be defined in terms of the weighted
normalised values :

* *» »* * ”
A ={Vi,V2,...,Vj, ..., Vq }, Where

v = {miaxvu,je I miinv,.j,je JZ} (3.16)

ij

A- ={vi, V2, ..., Vj, ..., Vn }, Where

v = fminv,,jeJ;; maxv,,jeJ,f (5.17)

where J; is the set of benefit attributes (the larger, the more preference) and J; is the.
set of cost attributes (the larger, the less preference).

Step 4. Calculate Separation Measures. Separation (distance) between alternatives
can be measured by the n-dimensional Euclidean distance. Separation of each
alternative from the positive-ideal solution is then given by

S,,‘ = Z(vy. —vj')2 i=1,2,...,m (5.18)
ijl

Similarly, separation from the negative-ideal solution is then given by
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n

S~ = Z(vy-—vj_)2 i=1,2,...,m (5.19)
=1

Step 5. Calculate Similarities to Positive-ldeal Solution. Relative closeness (or
similarity) of A; with respect to A* is defined as

C'l= = ,0<C <Li=12,...,m (5.20)
S, +5,

1 !

When C;’ is close to 1, the alternative is regarded as ideal; and when C;’ is close to 0,
the alternative is regarded as non-ideal.

Step 6. Rank Preference Order. Choose an alternative with the maximum C;" or rank
alternatives according to Ci' in descending order. It is clear that an alternative A, is
closer to A" than to A as C;” approaches 1.

The proposed algorithm contains the following steps:

1. Form a committee of experts (or decision makers), then identify the selection
attributes and list all possible alternatives to choose from them.

2. Collect each expert’s opinion in linguistic, fuzzy or crisp settings and establish a
decision matrix for each expert. This can be achieved by using questionnaires.

3. Transform the fuzzy data (linguistic expressions and fuzzy assessments) into
standardised positive trapezoidal fuzzy numbers attribute by attribute by using
Equation (5.2). The process continues until all linguistic terms under every
attribute have been converted to standardised positive trapezoidal fuzzy numbers.

4, Define the attribute types (cost or benefit), and assign the relative importances of
experts and attributes, and then calculate the weights of them by using Equations
(5.1) and (5.15) respectively.

5. Under each subjective attribute, aggregate all experts’ fuzzy opinions for each
alternative by using the Equations (5.3), (5.4), (5.5), (5.6), and (5.7). This step
gives us aggregated matrices for homo/heterogeneous group of experts.

6. Deffuzzify these matrices by applying Equations (5.8), (5.9), (5.10), (5.11), and
(5.12) on every fuzzy number in question. Up to this point, we have transformed
the aggregated decision matrices with fuzzy elements into ones with crisp
numbers.
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7. Construct the normalised ratings, and weighted normalised ratings of the
deffuzzified matrices by using Equations (5.13) and (5.14).

8. Then calculate positive-ideal and negative-ideal solutions, seperation measures,
and similarities of each alternative by using Equations (5.16), (5.17), (5.18),
(5.19), and (5.20).

9. Order or rank the alternatives according to the Overall Alternative Rating (OAR)
values (C; values) and select the alternative with the maximum OAR value as
the best alternative.

Based on the above stepwise algorithm, this methodology has been coded into an
interactive PC-based computer program incorporating two modules. The rating and
aggregation states of the proposed method is included in the first module of the
computer program. For the first module of the program, Microsoft Excel has been
used. Second module uses MATLAB 5.2 with its Fuzzy ToolBox to make the
necessary calculations for the selection state of the proposed method. The output of
the first module is the input of the Second module.

5.3 Illustrative Example

An illustrative selection problem is designed to demonstrate the computational
process of the proposed method presented in this chapter.

Let E be the set of experts, let A be the set of attributes, and let X be the set of
alternatives, where E = {E;, E;, E3}, A = {A), A, A3, Ay}, and X = {X, X, X3}. E,
A, and X sets are all non-empty and finite sets.

Assume that three experts (E;, E, E3) are based on the four selected attribute (A1, Ay,
A3, Ay) in choosing the most appropriate alternative among the three alternatives (X,
X3, X3). Let Rijk, 1<k<3,1<i<4andl <j <3, be the assigned rating of
alternative X; with respect to attribute A; by the expert Ex.

5.3.1 Rating State Calculations

Attributes are classified as subjective and objective attributes. Let subjective
attributes be A, Az, and A3 and the objective attribute be A4. The experts utilise
either the eight scales which contain linguistic rating sets described in Section 5.2.1.2
or fuzzy numbers by directly giving the triangular or trapezoidal type of fuzzy
number to assess the rating of alternatives under each of the subjective attribute.
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Experts’ opinions are collected by the questionnaires and then decision matrices of

‘each expert are formed. The ratings of alternatives versus each attribute given by
each expert are presented in Tables 5.2, 5.3, and 5.4. Remember that since A4 is an
objective attribute, ratings for this attribute will be the same for each expert.

Table 5.2 First expert’s evaluation of three alternatives under the four attributes

Xl X2 X3
Aj Very good Poor Fair
A; Approximately equal | Approximately equal | Approximately equal
to 50 to 45 10 48
Az Approximately Approximately Approximately
between 150 and 170 | between 155 and 165 | between 150 and 175
Ay 1000 700 850
Table 5.3 Second expert’s evaluation of three alternatives under the four attributes
Xy X5 Xs
Ay Good Poor Fair
As Approximately equal | Approximately equal | Approximately equal
to 49 to 49 to 47
Az Approximately Approximately Approximately
between 145 and 175 between 145 and 160 | between 150 and 175
Ay 1000 700 850
Table 5.4 Third expert’s evaluation of three alternatives under the four attributes
Xi X5 X3
A Poor Good Good
Ar Approximately equal { Approximately equal | Approximately equal
to 47 10 48 to 49
Az Approximately Approximately Approximately
between 140 and 155 | between 150 and 170 | between 160 and 165
Ay 1000 700 850

‘Approximately equal to 45’ can be represented by the triangular fuzzy number of
(44, 45, 46) or by the trapezoidal fuzzy number of (44, 45, 45, 46) and also
‘approximately between 140 and 155° can be represented by the trapezoidal fuzzy
number of (135, 140, 155, 160).

Since the ratings under A; are linguistic terms, they must be transformed into fuzzy

numbers by using appropriate scale described in Section 5.2.1.2. For the first
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attribute, we match the linguistic terms with scale 3. The results are given in Tables
5.5,5.6,and 5.7.

Table 5.5 First expert’s decision matrix with fuzzy numbers

X, Xa X3
Al (08,009, 1, 1) (0.1,0.25, 0.4) (03, 0.5, 0.7)
A; (49, 50, 51) (44, 45, 46) (46, 48, 49)
Aj (149, 150, 170, 175) (150, 155, 165, 170) (145, 150, 175, 180)
A4 1000 700 850

Table 5.6 Second expert’s decision matrix with fuzzy numbers

X X» X;
A (0.6, 0.75, 0.9) (0.1, 0.25, 0.4) (0.3, 0.5, 0.7)
Az (48, 49, 51) (47, 49, 51) (46, 47, 48)
As (140, 145, 175, 180) | (140, 145, 160, 165) | (145,150,175, 180)
Ay 1000 700 850

Table 5.7 Third expert’s decision matrix with fuzzy numbers

X, Xa X3
As (0.1, 0.25,0.4) (0.6, 0.75, 0.9) (0.6, 0.75, 0.9)
As (45, 47, 48) (47, 48, 49) (47, 49, 52)
Az (135, 140, 155, 160) (145, 150, 170, 175) (155, 160, 165, 170)
Ay 1000 700 850

For the second and third attributes, all non-standardised fuzzy numbers must be
converted to standardised trapezoidal fuzzy numbers by using Equation (5.2). These
converted fuzzy numbers are shown in Tables 5.8, 5.9, and 5.10.

Table 5.8 First expert’s decision matrix with standardised trapezoidal fuzzy numbers
X X5 X3

Ay (0.8,09,1,1) (0.1, 0.25, 0.25, 0.4) (0.3, 0.5,0.5,0.7)

A; (0.94, 0.96, 0.96, 0.98) | (0.85, 0.87,0.87, 0.88) | (0.88, 0.92,0.92, 0.94)
As (0.81, 0.83, 0:94, 0.97) | (0.83,0.86,0.92,0.94) | (0.81,0.83,0.97,1)
Ay 1000 700 850
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Table 5.9 Second expert’s decision matrix with standardised trapezoidal fuzzy

numbers
X, Xz X3
A 0.6, 0.75, 0.75, 0.9) (0.1, 0.25, 0.25, 0.4) (0.3,0.5, 0.5, 0.7)
A; (0.92, 0.94, 0.94, 0.98) | (0.90, 0.94, 0.94, 0.98) | (0.88, 0.90, 0.90, 0.92)
Az (0.78,0.81,0.97,1) | (0.78,0.81,0.89,0.92) | (0.81,0.83,0.97, 1)
Ay 1000 ‘ 700 850
Table 5.10 Third expert’s decision matrix with standardised trapezoidal fuzzy
numbers
X3 X X3
Ay (0.1,0.25,0.25,0.4) | (0.6,0.75,0.75,0.9) (0.6, 0.75, 0.75, 0.9)

Az | (0.87,0.90,0.90, 0.92) | (0.90, 0.92, 0.92, 0.94) | (0.90, 0.94, 0.94, 1)
As | (0.75,0.78, 0.86, 0.89) | (0.81, 0.83, 0.94, 0.97) | (0.86, 0.89, 0.92, 0.94)
Ay 1000 700 850

5.3.2 Aggregation State Calculations

The manager (or moderator) evaluates the importance weights and types of each
selection attribute. The importance weight of each attribute is obtained by WET. The
moderator also defines the degree of importance of each expert under each subjective
attribute. Table 5.11 shows the weights of attributes and experts and type of
attributes.

Table 5.11 Experts and attributes’ weights and type of attributes

Attributes E, E, E;
Type RL w. RIL w. RIL w. R.IL w.
Ay Cost 20 0.1 02 | o.11 | 0.53 0.7 { 037
A; Benefit 40 0.2 03 | 0.17 0.5 0.28 1 0.:56
A; Cost 100 0.5 1 057 { 035 { 020 | 04 0.23
Ay Benefit 40 0.2
Where R.I : Relative Importance
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Since we have three subjective attributes, we aggregate the estimate ratings of
experts for each alternative under each subjective attribute. Attribute based
aggregation calculations are given in Tables 5.12, 5.13, and 5.14. In these Tables,
Ragt™ values are aggregated fuzzy numbers for homogeneous group of experts and
Rag™" values are aggregated fuzzy numbers for heterogeneous group of experts.

Remember that B is taken as 0.4 in this illustrative case. Experts’ opinions for each
alternative with respect to each subjective attribute and their aggregation calculations
and results for homo/heterogeneous group of experts are given in Figures 5.10, 5.11,
5.12,5.13,5.14, 5.15, 5.16, 5.17, and 5.18.
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Table 5.12 Aggregation under the first attribute (A;)

X1 X, X3
E; (0.8,09,1, 1) (0.1, 0.25,0.25, 0.4) (0.3,0.5,0.5,0.7)
E; (0.6, 0.75, 0.75, 0.9) (0.1,0.25,0.25,0.4) (0.3,0.5,0.5,0.7)
E; (0.1, 0.25,0.25, 0.4) (0.6, 0.75, 0.75, 0.9) (0.6, 0.75, 0.75, 0.9)
Degree of Agreement (S)
Si2 0.825 1.000 1.000
Si3 0.325 0.500 0.750
Sa3 0.500 0.500 0.750
Average Degree of Agreement (AA)
AA(E)) 0.575 0.750 0.875
AA(E;) 0.663 0.750 0.875
AA(E3) 0.413 0.500 0.750
Relative Degree of Agreement (RA)
RA(E;) 0.348 0.375 0.350
RA(E2) 0.402 0.375 0.350
RA(E;3) 0.250 0.250 0.300
Consensus Degree Coefficient (CC)
CC(Ey1) 0.251 0.267 0.252
CC(Ey) 0.451 0.436 0.421
CC(Es3) 0.297 0.297 0.327
Rac™ | (0.54,0.68,0.71, 0.81) | (0.23, 0.38, 0.38, 0.53) | (0.39, 0.58, 0.58, 0.76)
Rac™ | (050, 0.64, 0.66, 0.78) | (0.25, 0.40, 0.40, 0.55) | (0.40, 0.58, 0.58, 0.77)
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Table 5.13 Aggregation under the second attribute (A3)

X, X X3
E, (0.94, 0.96, 0.96, 0.98) | (0.85, 0.87, 0.87, 0.88) | (0.88,0.92, 0.92, 0.94)
E; (0.92, 0.94, 0.94, 0.98) | (0.90, 0.94, 0.94, 0.98) | (0.88, 0.90, 0.90, 0.92)
E; | (0.87, 0.90, 0.90, 0.92) | (0.90, 0.92, 0.92, 0.94) | (0.90, 0.94, 0.94, 1)
Degree of Agreement (S)
S12 0.985 0.924 0.985
Si 0.936 0.944 0.970
Sa3 0.951 0.980 0.956
Average Degree of Agreement (AA)
AA(Ey) 0.961 0.934 0.978
AA(Ep) 0.968 0.952 0.970
AA(E3) 0.944 | 0.962 0.963
Relative Degree of Agreeiﬁent @A)
RA(E)) 0.334 0.328 0.336
RA(E,) 0.337 0.334 0.333
RA(E3) 0.328 0.338 0.331
Consensus Degree Coefficient (CC)
CC(E) 0.267 0.263 0.268
CC(E2) 0.313 0.312 0.311
CC(Es) 0.419 0.425 0.421
Rac™ | (0.91,0.94, 0.94, 0.96) | (0.88, 0.91, 0.91, 0.93) | (0.89, 0.92, 0.92, 0.95)
RAGI'fT (0.90, 0.93, 0.93, 0.95) | (0.89, 0.91, 0.91, 0.94) | (0.89, 0.93, 0.93, 0.96)
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Table 5.14 Aggregation under the third attribute (A3z)

X, X3 X3
E; (0.81, 0.83, 0.94, 0.97) | (0.83, 0.86,0.92,0.94) | (0.81,0.83,0.97, 1)
E, (0.78,0.81,0.97,1) | (0.78,0.81,0.89,0.92) | (0.81,0.83,0.97, 1)
E; (0.75, 0.78, 0.86, 0.89) | (0.81, 0.83, 0.94, 0.97) | (0.86, 0.89, 0.92, 0.94)
Degree of Agreement (S)
Siz 0.972 0.958 1.000
Si3 0.931 0.972 0.944
Sas 0.931 0.958 0.944
Average Degree of Agreement (AA)
AA(E)) 0.951 0.965 0.972
AA(Ey) 0.951 0.958 0.972
AA(E3) 0.931 0.965 0.944
Relative Degree of Agreement (RA)
RA(E) 0.336 0.334 0.337
RA(E) 0.336 0.332 0.337
RA(E;) 0.328 0.334 0.327
Consensus Degree Coefficient (CC)
CC(ED 0.430 0.429 0.430
CC(Er) 0.281 0.279 0.282
CC(E3) 0.288 0.292 0.288
Rac™ | (0.78, 0.81,0.93,0.95) | (0.81, 0.83, 0.92, 0.94) | (0.82, 0.85, 0.95, 0.98)
Rac™T | (0.78, 0.81,0.93, 0.96) | (0.81, 0.84, 0.92, 0.94) | (0.82, 0.85, 0.96, 0.98)
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Table 5.14 Aggregation under the third attribute (A3z)
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Table 5.14 Aggregation under the third attribute (A3z)
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E, (0.78,0.81,0.97,1) | (0.78,0.81,0.89,0.92) | (0.81,0.83,0.97, 1)
E; (0.75, 0.78, 0.86, 0.89) | (0.81, 0.83, 0.94, 0.97) | (0.86, 0.89, 0.92, 0.94)
Degree of Agreement (S)
Si2 0.972 0.958 1.000
Si3 0.931 0.972 0.944
Sas 0.931 0.958 0.944
Average Degree of Agreement (AA)
AA(E)) 0.951 0.965 0.972
AA(Ey) 0.951 0.958 0.972
AA(E3) 0.931 0.965 0.944
Relative Degree of Agreement (RA)
RA(E) 0.336 0.334 0.337
RA(E2) 0.336 0.332 0.337
RA(E;) 0.328 0.334 0.327
Consensus Degree Coefficient (CC)
CC(ED 0.430 0.429 0.430
CC(Er) 0.281 0.279 0.282
CC(E3) 0.288 0.292 0.288
Rac™ | (0.78, 0.81,0.93,0.95) | (0.81, 0.83, 0.92, 0.94) | (0.82, 0.85, 0.95, 0.98)
Rac™T | (0.78, 0.81,0.93, 0.96) | (0.81, 0.84, 0.92, 0.94) | (0.82, 0.85, 0.96, 0.98)
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5.3.3 Selection State Calculations

Aggregated decision matrices are deffuzzified according to sixth step of the proposed
approach.The results are shown in Tables 5.17, and 5.18.

Table 5.17 Defuzzified aggregated matrix for homogeneous group of experts

X X, X3
Ay 0.668 0.391 0.563
Ay 0.924 0.900 0.908
Aj; 0.856 0.865 0.892
Aq 1000 700 850

Table 5.18 Defuzzified aggregated matrix for heterogeneous group of experts

X, X X3
A 0.630 0.412 0.569
A; 0.918 0.903 0.911
A; 0.859 0.867 0.892
Ay 1000 700 850

The normalised and weighted normalised ratings for homo/heterogeneous group of
experts are constructed according to the seventh step of the proposed approach.
Tables 5.19, 5.20, 5.21 and 5.22 show the complete results of the normalised and
weighted normalised decision matrices for homo/heterogeneous group of experts
respectively.

Table 5.19 Normalised ratings for homogeneous group of experts

X1 X2 X3
Ay 0.6979 0.4085 0.5882
Ay 0.5858 0.5706 0.5756
Az 0.5673 0.5733 0.5912
Ay 0.6723 0.4706 0.5714
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Table 5.20 Normalised ratings for heterogeneous group of experts

Xi X X
A, 0.6676 0.4366 0.6030
A 0.5820 0.5725 0.5775
Aj 0.5682 0.5735 0.5901
Ay 0.6723 04706 0.5714

Table 5.21 Weighted normalised ratings for homogeneous group of experts

X, X3 X3
A 0.0698 0.0409 0.0588
Ay 0.1172 0.1141 0.1151
Aj 0.2837 0.2866 0.2956
Ay 0.1345 0.0941 0.1143

Table 5.22 Weighted normalised ratings for heterogeneous group of experts

X X, Xs
A 0.0668 0.0437 0.0603
Ay 0.1164 0.1145 0.1155
Az 0.2841 0.2868 0.2950
A4 0.1345 0.0941 0.1143

Determination of the positive-ideal solution can easily be made by taking the largest
element for each benefit attribute and the smallest element for each cost attribute.
The negative-ideal solution is just the opposite formation of the positive-ideal
solution.

Positive and negative ideal solutions for homo/heterogeneous group of experts are
given in Tables 5.23 and 5.24 respectively.

Table 5.23 Positive and negative ideal solutions for homogeneous group of experts

Positive-Ideal Solution Negative-Ideal Solution
A; 0.0409 0.0698
Ay 0.1172 0.1141
Az 0.2837 0.2956
Ay 0.1345 0.0941
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Table 5.24 Positive and negative ideal solutions for heterogeneous group of experts

Positive-Ideal Solution Negative-Ideal Solution
A 0.0437 0.0668
A 0.1164 0.1145
Az 0.2841 0.2950
Ay 0.1345 0.0941

Table 5.25 and 5.26 show the separation measures and the relative closenesses to the
positive-ideal solution.

Table 5.25 Relative closeness to the positive-ideal solution for homogeneous group

of experts
S/ Rank S Rank G Rank
X 0.0289 1 0.0422 0.5930 1
X 0.0406 3 0.0303 2 0.4275 3
X3 0.0296 2 0.0230 0.4371 2

Table 5.26 Relative closeness to the positive-ideal solution for heterogeneous group

of experts
Si’ Rank Si Rank G Rank
X1 0.0231 1 0.0418 1 0.6442 1
X5 0.0405 3 0.0245 2 0.3775 3
X3 0.0283 2 0.0212 3 0.4279 2

Three different rankings can be made based on S;’, S;, and C;” respectively : higher
ranking is given to an alternative which has smaller value of S;', and larger values of
Si, and C;". The preference ranking based on the positive-ideal alternative differs
with the one based on the negative-ideal alternative. This conflict can be resolved by
taking the C;" value. The TOPSIS ranking based on C;" is as follows :

Finally, according to last step of the proposed approach, the OAR values for each
alternative can be obtained, and then the following overall ranking of alternatives for
the decision is given as follows:

The ranking is X; > X3 > X, for homogeneous group of experts and

The ranking is also X; > X3 > X, for heterogeneous group of experts.
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The ranking of alternatives for homo/heterogeneous group of experts are shown in
Figures 5.19 and 5.20 respectively.

The alternative X is the best alternative to choose. It should be realised that the
ranking of alternatives can only be obtained and it can’t be said that how much X is
better than X3 and X,.
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Figure 5.20 Ranking of alternatives for heterogeneous group of experts (for p=0.4)
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6. CASE STUDIES

This chapter is intended to show that the proposed method can be applied to real
world shipbuilding decision problems. In this chapter, two real case studies are
carried out. The first one is a system (propulsion/manceuvring system) selection
under fuzzy environment and the second one is a component (ship main engine)
selection under semi-fuzzy environment.

For the first case originated from a feasibility evaluation of Turkish Maritime Lines
(TDI) for Karakdy — Haydarpasa — Kadikdy route, and the data was taken from a
research project titled “Choice of Propulsion System for a Double Ended Ferry
(Odabast et al. (1992))”.

In the second case, Furtrans Shipping Incorporation was seeking an objective method
for the selection of main engine for their new chemical tanker fleet, and the decision
data was collected in a post-graduate thesis (Yaras (1999)) and in an undergraduate
study (HerisCakar (1999)).

6.1 Case 1 - Multiple Attribute Evaluation of Propulsion/Manoeuvring System

Alternatives

There has been growing interest in the assessment and selection of
propulsion/manoeuvring system alternatives.

An inappropriate propulsion/manoeuvring system selection based on an
inappropriate evaluation can lead to losses in propulsion/manoeuvring system
capacity. There is a necessity to use logical or analytical decision support tools,
especially when dealing with propulsion/manoeuvring systems, which are worth
thousands of dollars in investment and more during the operations.

Propulsion/manoeuvring systems cannot be evaluated solely on the basis of one
attribute such as cost and manoeuvrability. Multiple attribute evaluation procedures
are required to structure, to focus and to improve the evaluation process. Proposed
FMADM technique is a good evaluation procedure for that reason.

Imprecise and vague information in the multiple attribute evaluation must also be a
consideration. It is a major flaw in human judgement and decision making, In



particular, the FST seems to offer MADM techniques that fit well with the specific
features of the assessment and selection of propulsion/manoeuvring system, as the
vagueness and imprecision of many relevant effects can be explicitly considered.

The propulsion/manoeuvring system selection is based on the study that has been
conducted for the selection of propulsion/manoeuvring system of a double ended
passenger ferry to operate across the Bosphorus in Istanbul with the aim of reducing
the journey time in highly congested seaway traffic (Insel and Helvacioglu (1997)).
In this case, the appropriate propulsion/manoeuvring system from among three
alternatives, namely, conventional propeller and high lift rudder, Z drive and
cycloidal propeller are being tried to choose. They are given in Figures 6.1, 6.2, and
6.3 respectively.

Figure 6.1 Conventional Figure 6.2 Z drive (2x2) Figure 6.3 Cycloidal
propeller and high lift propeller (2x1)
rudder (2x1)

Where 2x2 means two propulsion units at both ends, 2x1 means one propulsion unit
at both ends.

6.1.1 Attribute Generation

Multiple attribute decision analysis starts with the generation of the attributes. These
attributes should be complete and exhaustive, contain mutually exclusive items and
be restricted to performance attributes of the highest degree of importance.

In more detail, there are seven subjective attributes to be considered in choosing
among the above three alternative propulsion/manoeuvring systems. The subjective
attributes, which are critical for the selection of propulsion/manoeuvring system of a
double-ended passenger ferry, are the following:

99




1. Investment costs (IC),

2. Operating costs (OC), including handling, repair and maintenance costs,

3. Manoeuvrability (MV),

4. Vibration and noise (VN),

5. Reliability (RL), including mechanical safety, redundancy, service experience, .

6. Propulsive Power Requirement (PPR), including ship geometry, ship resistance,
power requirement, propulsion efficiency,

7. Propulsive Arrangement Requirement (PAR), including required propulsion
engine.

It is useful to develop a hierarchical structure showing the overall objective, the
attributes and alternatives. The hierarchy for the propulsion/manoeuvring system
evaluation problem is shown in Figure 6.4.

Objective Attributes Alternatives
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Figure 6.4 Decision hierarchy of Case - 1
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(It should be noted that here the possibility of other intermediate levels of sub
attribute between attributes and decision alternatives arent considered.)

Propulsion/manoeuvring system alternatives, attributes, and their abbreviations are
shown as follows :

The set (of alternatives) X for the first case is given by:

X = { X, (Conventional propeller and high lift rudder (2x1)), X; (Z drive (2x2)), X3
(Cycloidal propeller (2x1)) }.

The attributes of the decision are given by :
A =1IC, A;=0C, A3=MV, A4 =VN, As =RL, A¢=PPR, A;=PAR,

For this case, attributes’ properties such as type of attributes and type of assessments
are summarised in Table 6.1.

Table 6.1 Attributes’ properties of Case - 1

Attribute properties
Attributes Type of assessment Type of attribute
Investment cost Fuzzy (as interval) Cost Subjective
Operating costs Fuzzy (as “approximately Cost Subjective
equal to”)

Manoeuvrability Linguistic Benefit Subjective
Vibration & Noise Linguistic Cost Subjective
Reliability Linguistic Benefit Subjective
Propulsive Power Linguistic Cost Subjective
Requirement

Propulsive Arrangement Linguistic Cost Subjective
Requirement
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6.1.2 Rating State Calculations

The alternatives are evaluated by a group of experts (managing director, designer,
and operator) with respect to the seven subjective attributes as shown in Tables 6.2,
6.3, and 6.4. Note that all assessments for A; and A, attributes are in thousands of

dollars.

Table 6.2 First expert’s evaluation of three alternatives under the seven attributes

E; (Managing Director)
X X, X3

Ay Approximately Approximately Approximately

between 70 and 72 between 75 and 79 between 120 and 125
Az Approximately equal | Approximately equal | Approximately equal

10 6.6 to 7.2 to11.4
Az Good Very Good Excellent
Ay Low Medium Very Low
As Good Good Good
As Very Low Very Low Very Low
A7 Very Low Medium Medium
Table 6.3 Second expert’s evaluation of three alternatives under the seven attributes
E; (Designer)
Xi Xs X3

Ay Approximately Approximately Approximately

between 72 and 74 between 78 and 80 between 125 and 127
Az Approximately equal | Approximately equal | Approximately equal

t0.6.8 to 7.4 to11.8

A3 Good Mol. Good Good
Ay Low Mol. Low Low
As Good Good — Very Good Very Good
Ag Low Low Very Low
Ay Low Medium Low
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Table 6.4 Third expert’s evaluation of three alternatives under the seven attributes

E; (Operator)
Xi X, X3

A “Approximately Approximately Approximately

between 70 and 75 between 75 and 80 between 118 and 124
Ay Approximately equal | Approximately equal Appi'oximately equal

t0 6.8 t0o 7.2 to11.3

A; Fair Mol. Good Good
Ay Medium Low Very Low
As Fairly Good Good Fairly Good
Ag Fairly Low Low Low
A, Very Low Low Medium

Experts’ fuzzy assessments for the first and second attributes are first converted to
fuzzy numbers. For example, ‘approximately between 70 and 72’ can be represented
by the trapezoidal fuzzy number of (69, 70, 72, 73) and also ‘approximately equal to
6.6’ can be represented by the trapezoidal fuzzy number of (6.4, 6.6, 6.6, 6.8).

For the rest of the attributes, experts’ linguistic assessments are transformed into
fuzzy numbers by using appropriate Scale described in Section 5.2.1.2. Linguistic
terms are matched with Scale 8 (for A3), Scale 6 (for As), Scale 7 (for As), Scale 5
(for Ag), and Scale 3 (for As). These transformed fuzzy numbers are shown in Tables
6.5,6.6,and 6.7. |

Table 6.5 First expert’s decision matrix with fuzzy numbers

E| (Managing Director)

Xy

X

X3

(69, 70, 72, 73)

(74,75, 79, 80)

(119, 120, 125, 126)

A

(6.4, 6.9, 6.6, 6.8)

(7.0,72,72,7.4)

(11.2,114,114,11.6)

A3

(0.5,0.7,0.7, 0.9)

(0.8, 0.9, 0.9, 1.0)

(0.9, 1.0, 1.0, 1.0)

(0.1,0.2,0.2,0.3)

(04, 0.5,0.5,0.6)

(0.0, 0.0, 0.1, 0.2)

As

(0.6, 0.8, 0.8, 1.0)

(0.6, 0.8, 0.8, 1.0)

(0.6,0.8,0.8,1.0)

(0.0, 0.0, 0.0, 0.2)

(0.0, 0.0, 0.0, 0.2)

(0.0, 0.0, 0.0, 0.2)

Ay

(0.0, 0.0, 0.1, 0.2)

(0.3,0.5,0.5,0.7)

(0.3,0.5,0.5,0.7)
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Table 6.6 Second expert’s decision matrix with fuzzy numbers

E; (Designer)
X X, X3
Ay (71,72,74,75) (77, 78, 80, 81) (124, 125, 127, 128)
Ay (6.6,6.8,6.8,7.0) (7.2,74,74,7.6) (11.6,11.8,11.8, 12)
Az (0.5,0.7,0.7,0.9) (0.5, 0.55, 0.55, 0.6) (0.5,0.7,0.7,0.9)
Ay (0.1,02,0.2,0.3) (0.2,0.3,04, 0.5) (0.1,0.2,0.2,0.3)
As (0.6,0.8,0.8,1.0) (0.7,0.9, 1.0, 1.0) (0.8,1.0,1.0,1.0)
Ag (0.0,0.2,0.2,0.4) (0.0,0.2,0.2,0.4) (0.0, 0.0, 0.0, 0.2)
Ay (0.1, 0.25, 0.25, 0.4) (0.3,0.5,0.5,0.7) (0.1, 0.25, 0.25, 0.4)
Table 6.7 Third expert’s decision matrix with fuzzy numbers
E; (Operator)
X, X, X3
Ay (69, 70, 75, 76) (74, 75, 80, 81) (117, 118, 124, 125)
Ay (6.6, 6.8, 6.8, 7.0) (7.0,72,72,7.4) (11.1,11.3,11.3, 11.5)
A; (0.3,0.5,0.5,0.7) (0.5, 0.55, 0.55, 0.6) (0.5,0.7,0.7, 0.9)
A4 (04,05, 0.5, 0.6) (0.1,0.2,0.2,0.3) (0.0,0.0,0.1,0.2)
As (0.5, 0.65, 0.65, 0.8) (0.6,0.8,0.8,1.0) (0.5, 0.65, 0.65, 0.8)
Ag (0.2, 0.4, 0.4, 0.6) (0.0,0.2,0.2,0.4) (0.0,0.2, 0.2, 0.4)
A (0.0, 0.0, 0.1, 0.2) (0.1, 0.25, 0.25, 0.4) (0.3,0.5,0.5,0.7)

Then for the first and second attributes, all non-standardised fuzzy numbers are
converted to standardised fuzzy numbers. Results for each expert are given in Tables
6.8, 6.9, and 6.10.

Table 6.8 First expert’s decision matrix with standardised trapezoidal fuzzy numbers

E; (Managing Director)
X1 X X3
Ay (0.54, 0.55, 0.56, 0.57) | (0.58, 0.59, 0.62, 0.63) | (0.93, 0.94, 0.98, 0.98)
A (0.53, 0.55, 0.55, 0.57) | (0.58, 0.60, 0.60, 0.62) | (0.93, 0.95, 0.95, 0.97)
Az (0.5,0.7,0.7, 0.9) 0.8,0.9,0.9, 1.0) (0.9,1.0, 1.0, 1.0)
Ay (0.1,0.2,0.2, 0.3) (0.4, 0.5, 0.5, 0.6) (0.0, 0.0, 0.1, 0.2)
As (0.6,0.8,0.8, 1.0) (0.6,0.8,0.8,1.0) (0.6,0.8,0.8,1.0)
Ag (0.0, 0.0, 0.0, 0.2) (0.0, 0.0, 0.0, 0.2) (0.0, 0.0, 0.0, 0.2)
Ay (0.0,0.0,0.1, 0.2) (0.3,0.5,0.5,0.7) (0.3,0.5,0.5,0.7)
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Table 6.9 Second expert’s decision matrix with standardised trapezoidal fuzzy

numbers
E; (Designer)
X X X3

A (0.55, 0.56, 0.58, 0.59) | (0.60, 0.61, 0.63, 0.63) | (0.97, 0.98, 0.99, 1.00)
A, (0.55, 0.57, 0.57, 0.58) .| (0.60, 0.62, 0.62, 0.63) | (0.97, 0.98, 0.98, 1.00)
A (0.5,0.7,0.7,0.9) (0.5, 0.55, 0.55, 0.6) (0.5,0.7,0.7,0.9)
Ay (0.1,0.2,0.2,0.3) (0.2,0.3,04,0.5) (0.1,0.2,0.2,0.3)
As (0.6,0.8,0.8, 1.0) (0.7,0.9, 1.0, 1.0) (0.8,1.0,1.0,1.0)
As (0.0,0.2,0.2, 0.4) (0.0,0.2,0.2, 0.4) (0.0, 0.0, 0.0, 0.2)
Ag (0.1,0.25,0.25,0.4) (0.3,0.5,05,0.7) (0.1, 0.25, 0.25, 0.4)

Table 6.10 Third expert’s decision matrix with standardised trapezoidal fuzzy

numbers
E; (Operator)
Xy X, X3

Ay (0.54, 0.55, 0.59, 0.59) | (0.58, 0.59, 0.63, 0.63) | (0.91, 0.92, 0.97, 0.98)
Az (0.55, 0.57,0.57, 0.58) (0.58, 0.60, 0.60, 0.62) | (0.93, 0.94, 0.94, 0.96)
Az (0.3,0.5,0.5,0.7) (0.5, 0.55, 0.55, 0.6) 0.5,0.7,0.7,0.9)
Ay (04,0.5, 0.5, 0.6) 0.1,0.2,0.2,0.3) (0.0,0.0,0.1,0.2)
As (0.5, 0.65, 0.65, 0.8) (0.6, 0.8, 0.8, 1.0) (0.5, 0.65, 0.65, 0.8)
Ag 0.2,04,04,0.6) 0.0,0.2,0.2,0.4) (0.0,0.2,0.2,04)
Ay (0.0,0.0,0.1, 0.2) (0.1,0.25,0.25,04) (0.3,0.5,0.5,0.7)

6.1.3 Aggregation State Calculations

In the aggregation state of the proposed method, all ratings are aggregated under
each subjective attribute by taking into account the attribute based expert weights.
Before aggregation, it is necessary to identify the weights of attributes and experts.

Therefore, manager (or moderator) of the decision problem, TDI (as Ship Owner),
assigns relative importances of attributes and experts. Then weights of them are

easily calculated. The relative importances and weights for attributes and experts are
given in Table 6.11.

During the whole process of the aggregation state, B, showing the moderator’s

dominance on the problem, is taken as 0.4.
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Table 6.11 Weights of attributes and experts

Attributes E; E; E3
R.L w. RL | w. | RL| w. [RL ]| w
A 63 0.22 1 0.5 ] 0.70 [ 0.35 { 0.30 ) 0.15
Ay 37 0.13 1 0.5 | 0.70 | 0.35 | 0.30 | 0.15
As 100 0.35 0.30 | 0.17 | 0.50 | 0.28 1 0.55
Ay 11 0.04 0.30 | 0.16 1 0.53 { 0.60 | 0.31
As | 57 0.20 05 ] 0231]0.70 | 0.32 1 0.45
Ag 11 0.04 0.2 | 0.12 1 0.63 1 040 | 0.25
A 6 0.02 0.2 {011 1 0.56 | 0.60 | 0.33

Where R.L : Relative Importance.

Detailed aggregation calculations related with this state and their figures are all given
in Appendix C. These calculations involve attribute based necessary aggregation
calculations, such as degree of agreement, relative degree of agreement of each
expert, etc. After aggregation calculations,
homo/heterogeneous group of experts can be constructed easily as shown in Tables

aggregation matrices for

6.12 and 6.13 respectively.

Table 6.12 Aggregated matrix for homogeneous group of experts

X, X, X3
Ar | (0.54,0.55,0.58,0.58) | (0.59, 0.59, 0.62, 0.63) | (0.94, 0.95, 0.98, 0.99)
Ay | (0.54,056,0.56,0.58) | (0.59,0.61,0.61,0.62) | (0.94,0.96, 0.96, 0.97)
As | (0.44,0.64,0.64, 0.84) | (0.58, 0.65, 0.65, 0.71) | (0.61, 0.78, 0.78, 0.93)
As | (0.19,0.29,0.29,0.39) | (0.23,0.33, 0.37, 0.47) | (0.04, 0.07, 0.14, 0.24)
As | (0.57,0.75,0.75,0.94) | (0.63,0.83, 0.86, 1.00) | (0.63, 0.81, 0.81, 0.93)
Ag (0.06, 0.20, 0.20, 0.40) | (0.00, 0:14, 0.14, 0.34) | (0.00, 0.07, 0.07, 0.27)
Ay (0.03, 0.08, 0.15, 0.26) | (0.24, 0.43, 0.43,0.61) | (0.23,0.41, 0.41, 0.60)
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Table 6.13 Aggregated matrix for heterogeneous group of experts

X, X; Xs
A | (0.54,0.55,0.57,0.58) | (0.59,0.59, 0.62, 0.63) | (0.94, 0.95, 0.98, 0.99)
A; | (0.54,0.56,0.56,0.58) | (0.59,0.61, 0.61, 0.62) | (0.94, 0.96, 0.96, 0.98)
As | (0.42,0.62,0.62,0.82) | (0.57,0.63,0.63,0.69) | (0.59,0.77,0.77, 0.92)
As | (0.19,0.29,0.29,0.39) | (0.22,0.32, 0.36, 0.46) | (0.04, 0.08, 0.14, 0.24)
As | (0.56,0.74,0.74,0.93) | (0.63, 0.83, 0.87, 1.00) | (0.63, 0.81, 0.81, 0.92)
As | (0.06,0.21,0.21,041) | (0.00,0.15, 0.15, 0.35) | (0.00, 0.06, 0.06, 0.26)
A; | (0.04,0.10,0.16,0.28) | (0.24,0.42, 0.42, 0.61) | (0.21, 0.39, 0.39, 0.57)

6.1.4 Selection State Calculations

Up to this state, experts’ fuzzy and linguistic assessments have been transformed into
standardised trapezoidal fuzzy numbers and then aggregated under each subjective
attribute. In order to rank the alternatives, aggregated matrices’ fuzzy elements
should be defuzzified. Defuzzified aggregated matrices for homo/heterogeneous
group of experts are shown in Tables 6.14 and 6.15 respectively.

The TOPSIS technique is applied to rank the alternatives for homo/heterogeneous
group of experts.

Table 6.14 Defuzzified aggregated matrix for homogeneous group of experts

X, X2 X3
Ay 0.563 0.607 0.959
Ay 0.560 0.604 0.951
Aj 0.615 0.640 0.741
A4 0.307 0.364 0.141
As 0.713 0.787 0.760
As 0.253 0.201 0.144
Ay 0.155 0.437 0.426
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Table 6.15 Defuzzified aggregated matrix for hetefogeneous group of experts

Xy X X3
Ay 0.563 0.607 0.960
A; 0.559 0.604 0.952
Aj 0.599 0.625 0.728
Ay 0.309 0.355 0.151
As 0.707 0.787 0.755
Ag 0.261 0.213 0.138
Ay 0.174 0.434 0.408

The defuzzified aggregated matrices are normalised to transform the measurement in
various unit into nondimensional measurements which allow comparison across the
attributes. Table 6.16 shows the normalised values of each attribute for homogeneous
group of experts and Table 6.17 shows the normalised values of each attribute for
heterogeneous group of experts.

Table 6.16 Normalised ratings for homogeneous group of experts

X X5 X3
A 0.4444 0.4791 0.7570
Az 0.4451 0.4801 0.7559
Az 0.5319 0.5535 0.6409
Ay 0.6182 0.7330 0.2839
As 0.5460 0.6027 0.5820
Ag 0.7152 0.5682 0.4071
Az 0.2462 0.6940 0.6766
Table 6.17 Normalised ratings for heterogeneous group of experts

X X3 X3
A 0.4441 0.4788 0.7573
Ay 0.4442 0.4800 0.7565
A; 0.5296 0.5526 0.6436
Ay 0.6252 0.7182 0.3055
As 0.5440 0.6055 0.5809
Ag 0.7169 0.5851 0.3791
Az 0.2804 0.699%4 0.6575
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Weighted normalised ratings of each attribute can be calculated by multiplying each
attribute with its associated weight: (w;, wa, w3, Wy, Ws, wg, wy) = (0.22, 0.13, 0.35,
0.04, 0.20, 0.04, 0.02). Tables 6.18 and 6.19 show the weighted normalised values
for homo/heterogeneous group of experts respectively.

Table 6.18 Weighted normalised ratings for homogeneous group of experts

Xi X X3
A 0.0978 0.1054 0.1665
Az 0.0579 0.0624 0.0983
Az 0.1862 0.1937 0.2243
Ay 0.0247 0.0293 0.0114
As 0.1092 0.1205 0.1164
As 0.0286 0.0227 0.0163
Ay 0.0049 0.0139 0.0135

Table 6.19 Weighted normalised ratings for heterogeneous group of experts

X, X, X
Ay 0.0977 0.1053 0.1666
A, 0.0577 0.0624 0.0983
As 0.1853 0.1934 0.2253
Ay 0.0250 0.0287 0.0122
As 0.1088 0.1211 0.1162
As 0.0287 0.0234 0.0152
A 0.0056 0.0140 0.0131

Determination of the positive-ideal solution can easily be made by taking the largest
element for each benefit attribute and the smallest element for each cost attribute.
The negative-ideal solution is just the opposite formation of the positive-ideal
solution. Positive and negative ideal solutions are given in Table 6.20 for
homogeneous group of experts and in Table 6.21 for heterogeneous group of experts.
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Table 6.20 Positive and negative ideal solutions for homogeneous group of experts

Positive-Ideal Solution Negative-Ideal Solution

Ay 0.0978 0.1665

Ay 0.0579 0.0983

Az 0.2243 0.1862

Ay 0.0114 0.0293

As 0.1205 0.1092

Ag 0.0163 0.0286

Ay 0.0049 0.0139

Table 6.21 Positive and negative ideal solutions for heterogeneous group of experts
Positive-Ideal Solution Negative-Ideal Solution

Ay 0.0977 0.1666

Ay 0.0577 0.0983

Az 0.2253 0.1853

Aq 0.0122 0.0287

As 0.1211 0.1088

Ag 0.0152 0.0287

Ay 0.0056 0.0140

The separation measures of each alternative from positive-ideal and negative-ideal
solutions can be calculated by the n-dimensional Euclidean distance. Table 6.22
shows the values of separation measures and relative closeness to the positive-ideal
solution for homogeneous group of experts and Table 6.23 shows the values of
separation measures and relative closeness to the positive-ideal solution for
heterogeneous group of experts.

Table 6.22 Values of separation measures and relative closeness to the positive-ideal
solution for homogeneous group of experts.

Xi X, X;

Si 0.0437 0.0382 0.0803
Si 0.0804 0.0724 0.0445
oY 0.6476 0.6547 0.3566




Table 6.23 Values of separation measures and relative closeness to the positive-ideal

solution for heterogeneous group of experts

Xi X3 X3
Si" 0.0457 0.0388 0.0805
Si 0.0805 0.0727 0.0459
Ci 0.6377 0.6520 0.3630

Finally, propulsion/manoeuvring system alternatives are ranked on the basis of C;’
values.

For homogeneous group of experts, according to the descending order of C;', the
preference order is X; > X; > X3, where the second alternative is the leader and the
third alternative is the last contender.

Similarly, for heterogeneous group of experts, ranking of alternatives based on the
C;’ values is given as X, > X; > Xs. Figure 6.5 shows the ranking of alternatives for
homogeneous group of experts and Figure 6.6 shows the ranking of alternatives for
heterogeneous group of experts.

For homo/heterogeneous group of experts, the second alternative (Z drive) is ranked
in the first position among the others and the first alternative’s performance is ranked
in the second position.

6.1.5 Sensitivity Analysis

Sensitivity analysis is performed to see the B effect on the OAR values. B values are
taken as the range between 0.1 and 1 as shown in Table 6.24. In Table 6.24, OAR
values with respect to each P value are also given.

According to the sensitivity analysis performed, this case is not sensitive for 8
coefficient. As shown in Figure 6.7, while the B values grow, ranking of alternatives
doesn’t change.

111



6.5 Ranking of alternatives for homogeneous group of experts
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Table 6.24 OAR values with respect to § values

B Coefficient Xy X2 X3

0 (Homogeneous) 0.6476 0.6547 0.3566
0.1 0.6447 0.6534 0.3585
0.2 0.6429 0.6532 0.3595
0.3 - 0.6401 0.6530 0.3613
0.4 0.6377 0.6520 0.3630
0.5 0.6349 0.6501 0.3649
0.6 0.6321 0.6480 0.3671
0.7 0.6278 0.6481 0.3705
0.8 0.6249 0.6466 0.3726
0.9 0.6221 0.6447 0.3746
1 0.6198 0.6425 0.3765

0.5
£ 04
4 _ = -
> P - 1
14
< 0.3
O
0.2 —e—First Altemative (X1) |
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Beta Coefficient

Figure 6.7 Sensitivity due to  coefficient
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6.2 Case 2 - Ship Main Engine Selection

Choosing the main engines of the 6500 DWT chemical tankers fleet, projects of
which were produced by Delta Marine between 1997-1999, is designated as main
problem. The way of choosing these tankers’ and others’ main engines is formed by
the help of some people who are experts on this subject. Consequently, building a
model that is made up by asking to those experts who have different ideas and
approaches with various positions on this work is aimed.

The data on attributes is obtained from direct interview with experts. An additional
way to obtain data on the attributes, especially for objective attributes, is to look at
published references and manufacturer’s catalogue.

6.2.1 Attribute Generation

Two alternatives, namely MAN B&W 5S35MC and MAN B&W 8L32/40, have
been designated for this case. After alternatives have been articulated, the next task is
to develop a list of attributes by which each alternative could be evaluated. Although
several factors were considered in this process, all of them were eventually grouped
into nine attributes:

1. Price (Ay),

2. Running costs (A;), including annual fuel bill (inc. lub. oil), spare part,
maintenance and overhaul costs, the cost of manning, the ship’s requirement for
electrical power and heat,

3. Reliability and maintainability (A3), including spare part availability, overhaul
period, service, the number of cylinders,

4. YVibration, noise and other signatures (A4),

5. Ease of operation (As),

6. Required power (Ag),

7. Weight (A7),

8. SFOC (Specific Fuel Oil Consumption — Ag),

9. SLOC (Specific Lubrication Oil Consumption — Ay),
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Attributes’ properties such as type of attributes and type of assessments are given in
Table 6.25.

Table 6.25 Attributes’ properties of Case - 2

Attribute properties
Attributes Type of assessment Type of attribute
Price (capital cost) Fuzzy (as interval) Cost Subjective
Running (operating) costs Linguistic Cost Subjective
Reliability and Linguistic Benefit Subjective
maintainability
Vibration, noise and other Linguistic Cost Subjective
signatures
Ease of operation Linguistic Benefit Subjective
Required power Crisp Cost Objective
Weight Crisp Cost Objective
SFOC Crisp Cost Objective
SLOC Crisp Cost Objective

For the main engine selection case, the decision hierarchy of objective, attributes,
and alternatives is shown in Figure 6.8.

Objective | Attributes l Alternatives

Running Costs

Refiability

ation Lk Noise

|Selection of main-engine Ease of instaflation

Required power

SFOC

SLOC

Figure 6.8 Decision hierarchy of Case - 2
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6.2.2 Rating State Calculations

The alternatives of the second case study are evaluated by a group of experts
(managing director, designer, and operator) with respect to the five subjective
attributes as shown in Tables 6.26, 6.27, and 6.28. Note that all assessments for A;
attribute are in thousands of dollars.

Table 6.26 First expert’s evaluation of two alternatives under the five subjective

attributes
E; (Managing Director)
X3 X2

A Approximately between 950 and Approximately between 900 and

1100 1000
Ay Medium Medium
Az Good Fair
Ay Low Low
As Poor Fair

Table 6.27 Second expert’s evaluation of two alternatives under the five subjective

attributes
E; (Designer)
X, X2

Ay Approximately between 1100 and | Approximately between 1000 and

1150 1050
A Medium High
A3 Very Good Fair
A4 Medium Medium
As Good Good
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Table 6.28 Third expert’s evaluation of two alternatives under the five subjective

attributes
E3 (Operator)
Xy X

Ay Approximately between 1100 and | Approximately between 1000 and

1200 1100
Ay Very High High
Aj Mol. Poor Mol. Good
Ay Fairly Low Mol. Low
As Very Good Good - Very Good

For the objective attributes of the problem, performance ratings for the alternatives
have been obtained from their suppliers and all performance ratings are shown in
Table 6.29. Remember that these values are all crisp numbers and they don’t differ
from one expert to other.

Table 6.29 Crisp ratings of two alternatives under the four objective attributes

X X
Ag 3500 Kw 3520 Kw
A; 61.5¢ 44t

Ag : 175 g/Kwh 182 g/Kwh
Ao " 1g/Kwh 1 g/Kwh

Experts’ fuzzy assessments for the first subjective attribute (A;) are all converted to
fuzzy numbers. For example, ‘approximately between 1100 and 1200’ can be
represented by the trapezoidal fuzzy number of (1050, 1100, 1200, 1250).

For the rest of the attributes (A3, A3, A4, and As), experts’ linguistic assessments are
transformed into fuzzy numbers by using appropriate Scale described in Section
5.2.1.2. Linguistic terms are matched with Scale 3 (for A,), Scale 6 (for A3), Scale 8
(for A4), and Scale 7 (for As). These transformed fuzzy numbers are shown in Tables
6.30, 6.31, and 6.32.
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Table 6.30 First expert’s decision matrix with fuzzy numbers

E; (Managing Director)

X X
A (900, 950, 1100, 1150) (850, 900, 1000, 1050)
Ay (0.3,0.5,0.5,0.7) (0.3,0.5,0.5,0.7)
A; (0.7,0.8,0.8,0.9) (0.4,0.5,0.5,0.6)
Ay (0.1,0.3,0.3,0.5) (0.1,0.3, 0.3, 0.5)
As (0.0,0.2,0.2,0.4) (0.3,0.5,0.5,0.7)

Table 6.31 Second expert’s decision matrix with fuzzy numbers
E, (Designer)

X1 X2
A (1050, 1100, 1150, 1200) (950, 1000, 1050, 1100)
Az (0.3,0.5,0.5,0.7) (0.6, 0.75, 0.75, 0.9)
Az (0.8,0.9, 1.0, 1.0) (0.4,0.5, 0.5, 0.6)
Ay (0.3,0.5,0.5,0.7) (0.3,0.5, 0.5, 0.7)
As (0.6, 0.8, 0.8, 1.0) (0.6,0.8, 0.8, 1.0)

Table 6.32 Third expert’s decision matrix with fuzzy numbers
E; (Operator)

X, X2
A (1050, 1100, 1200, 1250) (950, 1000, 1100, 1150)
Az (0.8,0.9, 1.0, 1.0) (0.6, 0.75, 0.75, 0.9)
A3 (0.2,0.3, 0.4, 0.5) (0.5, 0.6, 0.7, 0.8)
Ay (0.3,0.4, 0.4,0.5) (0.4, 0.45, 0.45, 0.5)
As (0.8, 1.0, 1.0, 1.0) 0.7, 0.9, 1.0, 1.0)

Then for the first attribute, all non-standardised fuzzy numbers are converted to
standardised fuzzy numbers. Results for each expert are given in Tables 6.33, 6.34,

and 6.35.
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Table 6.33 First expert’s decision matrix with standardised trapezoidal fuzzy

numbers
E; (Managing Director)
X X3
Ay (0.72, 0.76, 0.88, 0.92) (0.68, 0.72, 0.80, 0.84)
Ay (0.3,0.5,0.5,0.7) (0.3,0.5,0.5,0.7)
Az (0.7,0.8, 0.8, 0.9) (0.4,0.5,0.5, 0.6)
Ay (0.1,0.3, 0.3, 0.5) (0.1,0.3,0.3, 0.5)
As 0.0,0.2,0.2,0.4) (0.3,0.5,0.5,0.7)
Table 6.34 Second expert’s decision matrix with standardised trapezoidal fuzzy
numbers
E; (Designer)
Xi X>
Ay (0.84, 0.88, 0.92, 0.96) (0.76, 0.80, 0.84, 0.88)
Ay (0.3,0.5,0.5,0.7) (0.6, 0.75, 0.75, 0.9)
Az (0.8,0.9, 1.0, 1.0) (0.4,0.5, 0.5, 0.6)
Ay (0.3,0.5,0.5,0.7) (0.3,0.5,0.5,0.7)
As (0.6,0.8,0.8,1.0) (0.6,0.8,0.8, 1.0)

Table 6.35 Third expert’s decision matrix with standardised trapezoidal fuzzy

numbers
E; (Operator)
X X>

Ay (0.84, 0.88, 0.96, 1.00) (0.76, 0.80, 0.88, 0.92)
Az (0.8,0.9, 1.0, 1.0) (0.6, 0.75, 0.75, 0.9)
Az (0.2,0.3,04, 0.5) (0.5, 0.6,0.7, 0.8)
Ay (0.3,0.4,0.4, 0.5) (0.4, 0.45, 0.45, 0.5)
As (0.8, 1.0, 1.0, 1.0) (0.7,0.9, 1.0, 1.0)
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6.2.3 Aggregation State Calculations

In this state, all ratings of decision matrices are aggregated under each subjective
attribute by taking into account the attribute based expert weights.

The relative importances of attributes and experts are assigned according to
importance observed through interview with manager (or moderator). In this case,
Ship Owner has also been chosen as moderator. Then weights for attributes and
experts are determined such that the sum of all weights is 1. The relative importances
and weights of attributes and experts are given in Table 6.36.

Table 6.36 Weights of attributes and experts

Attributes E; E; E;

R.IL W. RL | w. |RL}| w. | RL | w
A 100 0.30 1.00 | 0.32 | 0.70 | 0.19 | 0.30 | 0.09
A; 67 0.20 1.00 | 032 | 0.70 | 0.19 | 0.30 | 0.09
As 50 0.15 030 | 0.10 | 0.50 | 0.14 | 1.00 | 0.31
Aq 33 0.10 030 | 0.10 | 1.00 | 0.28 | 0.60 | 0.19
As 17 | 005 05 |016] 07 | 019 1.0 | 031
As 17 | 005
A7 17 0.05
Ag 17 0.05
Ao 17 0.05

Where R.I. : Relative Importance.

During the whole process of the aggregation state, B, showing the moderator’s
dominance on the problem, is taken as 0.4.

Detailed aggregation calculations related with this state and their figures are all given
in Appendix D. These calculations involve attribute based necessary aggregation
calculations, such as degree of agreement, relative degree of agreement of each
expert, etc. After aggregation calculations, aggregation matrices for
homo/heterogeneous group of experts can be constructed easily as shown in Tables
6.37 and 6.38 respectively.
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Table 6.37 Aggregated matrix for homogeneous group of experts

X X,
A (0.801, 0.841, 0.920, 0.960) (0.734, 0.774, 0.840, 0.880)
Az (0.434, 0.607, 0.634, 0.780) (0.510, 0.675, 0.675, 0.840)
Az (0.603, 0.703, 0.765, 0.830) (0.431, 0.531, 0.563, 0.663)
Ay (0.235, 0.400, 0.400, 0.565) (0.270,0.418, 0.418, 0.567)
As (0.543, 0.743, 0.743, 0.870) (0.545, 0.745, 0.780, 0.911)
Ag 3500 3520
Ay 61.5 44
Ag 175 182
Ag 1 1

Table 6.38 Aggregated matrix for heterogeneous group of experts

Xy Xz
Ay (0.793, 0.833, 0.915, 0.955) (0.728, 0.768, 0.835, 0.875)
Az (0.410, 0.588, 0.610, 0.766) (0.486, 0.655, 0.655, 0.824)
A; (0.542, 0.642, 0.712, 0.780) (0.441, 0.541, 0.582, 0.682)
A4 (0.248, 0.415, 0.415, 0.581) (0.282, 0.432, 0.432, 0.582)
As (0.548, 0.748, 0.748, 0.867) (0.558, 0.758, 0.797, 0.920)
Ag 3500 3520
A 61.5 44
Ag 175 182
Ay 1 1

6.2.4 Selection State Calculations

Up to this state, experts’ fuzzy and linguistic assessments have been transformed into
standardised trapezoidal fuzzy numbers and then aggregated under each subjective
attribute. In order to rank the alternatives, aggregated matrices’ fuzzy elements
should be defuzzified. Defuzzified aggregated matrices for homo/heterogeneous

group of experts are shown in Tables 6.39 and 6.40 respectively.
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Table 6.39 Defuzzified aggregated matrix for homogeneous group of experts

X, X2
A 0.866 0.795
A 0.599 0.650
Az 0.709 0.543
Ay 0.414 0.429
As 0.696 0.713
Ag 3500 3520
Ay 61.5 44
Asg 175 182
Ay 1 1

Table 6.40 Defuzzified aggregated matrix for heterogeneous group of experts

X X5
A 0.859 0.790
A; 0.581 0.633
A3 0.657 0.556
Ay 0.427 0.441
As 0.699 0.725
Ag 3500 3520
Ay 61.5 44
Ag 175 182
Ao 1 1

TOPSIS procedure is applied to the two alternatives to obtain their OAR values and
ranking orders. First, the defuzzified aggregated matrices are normalised. Table 6.41
shows the normalised values of each attribute for homogeneous group of experts and
Table 6.42 shows the normalised values of each attribute for heterogeneous group of
experts.
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Table 6.41 Normalised ratings for homogeneous group of experts

X X
Ay 0.7367 0.6763
Ay 0.6777 0.7354
Az 0.7939 0.6080
A4 0.6944 0.7196
As 0.6985 0.7156
Ag 0.7051 0.7091
Ay 0.8133 0.5819
As 0.6931 0.7208
Ay 0.7071 0.7071
Table 6.42 Normalised ratings for heterogeneous group of experts
X X
Ay 0.7361 0.6769
Ay 0.6762 0.7367
A - 0.7633 0.6460
As 0.6956 0.7184
As 0.6941 0.7199
Ag 0.7051 } 0.7091
A 0.8133 | 0.5819
Ag 0.6931 0.7208
Ay 0.7071 0.7071

Weighted normalised ratings of each attribute can be calculated by multiplying each
attribute with its associated weight: (w), w», w3, wa, Ws, Wg, W7, Wg, Wg) = (0.30, 0.20,
0.15, 0.10, 0.05, 0.05, 0.05, 0.05, 0.05). Tables 6.43 and 6.44 show the weighted
normalised values for homo/heterogeneous group of experts respectively.
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Table 6.43 Weighted normalised ratings for homogeneous group of experts

X X
Ay 0.2210 0.2029
A; 0.1355 0.1471
Aj 0.1191 0.0912
Ay 0.0694 0.0720
As 0.0349 0.0358
As 0.0353 0.0355
A7 0.0407 0.0291
Ag 0.0347 0.0360
Ay 0.0354 0.0354

Table 6.44 Weighted normalised ratings for heterogeneous group of experts

X3 Xz
A 0.2208 0.2031
A; 0.1352 0.1473
A; 0.1145 0.0969
Ay 0.0696 0.0718
As 0.0347 0.0360
Ag 0.0353 0.0355
A7 0.0407 0.0291
Ag 0.0347 0.0360
Ay 0.0354 0.0354

Positive and negative ideal solutions are given in Table 6.45 for homogeneous group

of experts and in Table 6.46 for heterogeneous group of experts.
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Table 6.45 Positive and negative ideal solutions for homogeneous group of experts

Positive-Ideal Solution

Negative-Ideal Solution

A 0.2029 0.2210
Ay 0.1355 0.1471
Az 0.1191 0.0912
Ay 0.0694 0.0720
As 0.0358 0.0349
As 0.0353 0.0355
A7 0.0291 0.0407
Ag 0.0347 0.0360
Ag 0.0354 0.0354
Table 6.46 Positive and negative ideal solutions for heterogeneous group of experts
Positive-Ideal Solution Negative-Ideal Solution
Ay 0.2031 0.2208
Ay 0.1352 0.1473
A; 0.1145 0.0969
Ay 0.0696 0.0718
As 0.0360 0.0347
Ag 0.0353 0.0355
Ay 0.0291 0.0407
Ag 0.0347 0.0360
Ao 0.0354 0.0354

Table 6.47 shows the values of separation measures and relative closeness to the

positive-ideal solution for homo/heterogeneous group of experts.

Table 6.47 Values of separation measures and relative closeness to the positive-ideal

solution for homo/heterogeneous group of experts

S Si oy
Homog. | Heterog. | Homog. | Heterog. | Homog. | Heterog.
X 0.0215 0.0212 0.0303 0.0215 0.5849 0.5037
Xa 0.0303 0.0215 0.0215 0.0212 0.4151 0.4963

Finally, main engine alternatives are ranked on the basis of C;* values. For
homogeneous group of experts, according to the descending order of C;', the
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preference order is X; > X,, where the first alternative is the leader and the second
alternative is the last contender.

Similarly, for heterogeneous group of experts, ranking of alternatives based on the
Ci' values is given as X; > X,.

Figure 6.9 shows the ranking of alternatives for homogeneous group of experts and
Figure 6.10 shows the ranking of alternatives for heterogeneous group of experts.

For homogeneous group of experts, the first alternative is ranked in the first position
among the others and the second alternative’s performance is ranked in the second
position.

6.2.5 Sensitivity Analysis

Sensitivity analysis is performed to see the B effect on the OAR values. B values are
taken as the range between 0.1 and 1 as shown in Table 6.48. In Table 6.48, OAR
values with respect to each P} value are also given.

Table 6.48 OAR values with respect to B values

B Coefficient Xy X>

0 (Homogeneous) 0.5849 0.4151
0.1 0.5694 0.4306
0.2 0.5480 0.4520
0.3 0.5238 0.4762
0.4 0.5037 0.4963
0.5 0.4738 0.5262
0.6 0.4500 0.5500
0.7 0.4238 0.5762
0.8 0.4031 0.5969
0.9 0.3859 0.6141
1 0.3763 0.6237
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6.9 Ranking of alternatives for homogeneous group of experts
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7. CONCLUSIONS

This chapter summarises the achievements of the foregoing research. It brings
together the elements discussed in previous chapters and shows how problems posed
at the start of the thesis are addressed by the system constructed. It places the system
in context, discussing the achievements and shortcomings of the proposed method.
Finally, it points the way for further research in this area.

The problem statements, the goal and the objectives of the research were given in
Chapter 1, the conceptual model of the proposed approach was given in Chapter 5. A
review of related literature was summmarised in Chapter 2.

Human beings are constantly making decisions in their daily activities. For this
reason, the study of decision making processes has always been a field of great
interest to many researchers.

Decision making is the process of determining the best course of action from a finite
set of available alternatives. The major concern is the fact that almost all decision
problems have multiple, usually conflicting criteria. Research on how to solve such
multiple criteria decision making (MCDM) problems has been enormous. These
problems are broadly classified into two categories :

1. Multiple Attribute Decision Making (MADM) or multiple attribute analysis, and
2. Multiple Objective Decision Making (MODM) or multiple criteria optimisation.

MADM is associated with problems whose number of alternatives has been
predetermined. The decision maker is to select/prioritise/rank a finite number of
courses of action (or alternatives). The MADM methods are management decision
aids in evaluating and/or selecting a desired one from the finite number of
alternatives, which are characterised by multiple attributes. On the other hand,
MODM is not associated with problems in which the alternatives have been
predetermined. The decision maker’s primary concern is to design the most
promising alternative with respect to limited resources.

Frequently, real world decision making problems are ill defined, i.e., their objectives,
constraints, and parameters are not precisely known. These obstacles of lack of



precision have been dealt with using the probabilistic approach. But, due to the fact
that the requirements on the data and on the environment are very high and that many
real world problems are fuzzy by nature and not random, the probability applications
have not been very satisfactory in a lot of cases.

FST (Fuzzy Set Theory) is an alternative approach to solving MADM problems
where available sources of information are inaccurate, unquantifiable, incomplete,
nonobtainable, subjectively interpreted or uncertain.

This thesis discussed MADM problems under fuzzy environment for solving GDM
(Group Decision Making) problems. The most important approaches and basic
concepts were introduced. Since the focus is on FMADM (Fuzzy Multiple Attribute
Decision Making) problems, a detailed discussion of the most important methods for
solving these problems was presented and a new multiple attributive GDM method
under fuzzy environment was developed.

7.1 Contributions of the Research

From the work carried out in this thesis, the two main contributions have been
reached. They are classified as contributions to “multiple attribute decision making
theory” and contributions to “naval engineering” points of views.

Development of a new FMADM method is the first focus and contribution of this
dissertation. From the decision theory point of view, the proposed method has the
following achievements that will be given in the states of the proposed method :

In General

o It is an entirr MADM model which combines FMADM methodologies ‘with
GDM techniques,

e The proposed method is very suitable for solving the multiple attributive GDM
problems under fuzzy environment,

e The proposed method enables the researchers to incorporate homo/heterogeneous
group of experts with the different degrees of importance into the FMADM
models,

o The majority of classical MADM methods are capable of handling large MADM
problems. The proposed approach extends that ability to the fuzzy problems with
multiple experts domain,
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It is a new FMADM method that is easy to use and understand. The algorithm of
the proposed approach is also easy to be coded into a computer program due to
its stepwise description,

Rating State

It is capable of solving large, real world MADM problems which possibly
contain a mixture of fuzzy and crisp data,

The method is flexible enough to handle both fuzzy and non fuzzy information.
The proposed approach allows MADM problems to take data in the forms of
linguistic terms, fuzzy numbers, and/or crisp numbers. This yields more realistic,
accurate and reliable decision models than the existing ones,

The concepts of fuzzy numbers and linguistic variables are used to evaluate the
subjective attributes in such a manner that the viewpoints of an entire MADM
body can be expressed without any constraints,

The proposed method is independent of the type of membership functions being
used. Some other membership functions, for example triangular membership
functions, are also applicable,

Aggregation State

° :'Through the use of FST and positive trapezoidal fuzzy numbers, the aggregation

method provides a systematic way to aggregate the expert opinions in GDM,
which may be objective or quasi-subjective depending on the preferences of the
moderator,

In addition, by using this aggregation procedure, one can obtain the consensus
information and construct the judgement matrix for MADM with GDM
problems,

It is the only method that enables the attribute based aggregation for
heterogeneous group of experts. In the proposed method, expert weights are
assigned by a moderator (or manager) for each attribute to reflect the reality of
the selection problems,

Using B coefficient, moderator is included into consensus process of the method,
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Selection State

e The proposed method gives the decision maker the flexibility of selecting of any
other classical MADM methods such as SAW, SMART etc.,

e The proposed method eliminates the difficulties resulting from ranking of fuzzy
numbers by deffuzzification of fuzzy OAR values.

The second concern and contribution of this dissertation is to show the applicability
of the proposed method into the naval engineering MADM problems. From the naval
engineering point of view, the following can be concluded:

o As illustrated in the real life examples, the proposed method is a generalised
model which can be applied to great variety of practical problems encountered in
the naval engineering from propulsion/manoeuvring system selection to warship
requirements definition,

e As the application grows, the real value of fuzzy decision making tools will find
more widespread use, as most of the practical problems from design to
production involves the aggregation of rational and fuzzy elements in harmony,

o Such an approach will also assist the use of optimisation by placing them within
the correct context in problem solving and hence will avoid sub-system or sub-
attribute optimisation problems.

However no decision support tool will have universal applicability nor will any
system be able to represent all categories of problems fully. Hence, the proposed
method has a number of shortcomings. These can be summarised as follows :

e Objectivity of the decision cannot be assured, since the moderator’s view does
have significant effect on the outcome. Similarly, the choice of experts, their
degree of importances as well as the weight selection of the attributes are quasi-
subjective,

e Due to the limitations of time, other possible techniques which could be
incorporated into the general frame of the approach have not been tested. Hence,
their influence on the recommended outcome are not known,

e While possible, probabilistic attribute has not been included.
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7.2 Recommendations for Future Research

This research provided a theoretical and practical foundation for carrying out future
research and development on more powerful and mature systems. It can be seen from
the above that the proposed approach is open for improvement. Some of the-
improvements that may enhance the proposed methodology include the following:

e Semantic modelling of linguistic terms,

Since the meaning of each linguistic term varies from circumstance(s) to
circumstance(s), assessing a fuzzy number or numbers to a linguistic term is a
constant challenge. Existing works on this topic are few and seem quite arbitrary.
Assigning an appropriate fuzzy number to a set of linguistic terms is a curious
problem. Therefore, research may be further extended as follows :

Explore methods for constructing appropriate linguistic models for the semantic
conversion systems. Matching fuzzy numbers with linguistic terms will be very
difficult.

e Aggregation of expert’ opinions under different assessment settings for the same
subjective attribute,

Although each expert expresses his/her opinions under the same assessment settings
in the proposed method, they may use different assessment settings (linguistic, fuzzy
or crisp settings) in some selection problems to give his/her opinions (or performance
ratings) about the alternatives with respect to each subjective attribute. Therefore, the
extension could be to as follows :

Extend the research for solving the situations where experts express their opinions
under different assessment settings for the same subjective attribute.

e Systematic investigation for different types of weighting, defuzzification and
ranking techniques,

Further studies may be undertaken to investigate the effect of different weighting,
defuzzification techniques on the final rankings as well as to examine the
computational efficiency in terms of computing time of different aggregation
operations of fuzzy sets. These will require extensive computer programming efforts.

Finally, from the case studies, it can be seen that the proposed method can efficiently
help the decision makers and engineers to make decisions in real world. It can
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provide a useful way to solve the selection problems in a fuzzy environment. It is a
versatile and flexible system which covers a vast variety of FMADM problems.
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APPENDIX A. BASICS OF FUZZY SET THEORY AND LINGUISTIC
VARIABLES AND LINGUISTIC HEDGES

In the following sections, we will review some basic definitions of fuzzy sets from a
mathematical perspective. Also, linguistic variables and hedges, the fuzzy numbers

such as S fuzzy numbers, I fuzzy numbers, L-R fuzzy numbers, triangular fuzzy
numbers, and trapezoidal fuzzy numbers, and the extension operations of fuzzy
numbers will be introduced. The Extension Principle introduced by (Zadeh (1972);
(1975a), (1975b)) is used to generalise non-fuzzy (crisp) mathematical concepts into
fuzzy quantities. An important field of applications for the Extension, Principle is
found in arithmetic operations such as addition, subtraction, multiplication and
division. We will review the definition of the Extension Principle first and extend
from it to fuzzy arithmetic operations.

A.1 Basic Concepts of Fuzzy Sets

The basic concepts of fuzzy set theory can be found in the following (Zadeh (1972),
(1973), (1975a), (1975b), Kaufmann (1975), Dubois and Prade (1980), Kandel
(1986) and Zimmermann (1987), (1991)):

Definition A.1

Let U be a universe of discourse (or domain), a fuzzy set (or fuzzy sﬁbset) X of Uis
characterised by a membership function p.:U — [0,1], which associates with each

element x of U and a number p_(x) in the interval [0,1]. X is denoted as
o colxev).

Obviously, the characteristic function of ordinary set theory is a special case of the
membership function. Let U be an ordinary set and X be the subset of U. The
characteristic function of X can be defined as p_ :U — [0,l]. Whether or not an

element in U belongs to X is determined by the value of the characteristic function (1
or 0). In general, fuzzy set theory is a generalisation of ordinary set theory; the
definition, theorems and proofs for a fuzzy set always hold for the classic set.

Definition A.2

The support S(f(), of a fuzzy set X is the set of points in X at which p_(x) is

positive, i.e.,



S(f() = {xlx € 5(, p_(x)> O} (A.1)
Definition A.3

The height h_(x) of a fuzzy set X is the supremum of p_(x) over X ,l.e.,

h.(x) =Supp. (x). (A2)

XEX

Definition A.4

A fuzzy set X is said to be normal if its height is unitary, that is if Supp.(x)=1.

Xex

Otherwise, X is non-normal.

Definition A.5

IfX isa fuzzy set of universe U, then an a-level set or a-cut of X isa non-fuzzy
set denoted by Xa , which comprises, all elements of U whose grade of membership
in X is greater than or equal to a, i.e.

Xa = {xl B0 2 a} (A3)
D;eﬁnition A6

A fuzzy set is )~( convex if only if Vx, € 5( , Vx, € )~( ,and VA e [0,1],

u;(?uxl +(1-?»)X2)->-min(u;(xx),u;(xz)) (A.4)
Definition A.7

A fuzzy singleton is a fuzzy set whose support is a single point x in U, Suppose X is
a fuzzy singleton whose support is the point x. We then express X as

X =p/x,

where p is the grade of membership of x in X.
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However, if X has finite support, say Xj, X3,...,Xy, and for each i = 1,2,...,n; y; is the

grade of membership of x; in )~(, then X may be represented symbolically as a
combination of fuzzy singletons by

5( = ui/XH/Xat. . e/ Xpe

or more completely, by

)~(=ip.i/x,. .

i=1
A similar notation may be used in the case where the support is countable infinite. If

the support is a continuum, then X may be denoted by
X = fobi 7%

Let X and Y be fuzzy subsets of a universe U, with membership functions px and
py. Three of the major set operations are defined as follows:

Definition A.8
The complement of )~( , denoted by — 5( or 5( , is defined by

~X=X=,(1-p,(x)/x,forallx € U. (A.5)

Definition A.9

The union of X and Y , denoted by XuUY , s defined by

XuY=] {max[uN(x),w (x)},}/x, forall x e U. (A.6)

b4
Definition A.10
The intersection of X and Y , denoted by XY , is defined by

XY = L{mm[p. (), p;(x)],}/x, forallx e U. (A7)

The union corresponds to the connective “OR” while the intersection corresponds to
the connective “AND” the operation of complementation corresponds to negation.

So, X ANDY=XNY
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XORY=XUY.
Definition A.11
X contains S}, denoted as X o Y ifand only if

p.(x)zp_(x),forallx e U.
¥

X

And, X and Y are equal, denoted by X = Y, if and only if

p.x)=p_(x),forallx e U.
x Y

Definition A.12

The product of X and Y , denoted by X (x) Y , 1s defined by

5((x){[ = f{l—k (x)x u~(x)}/x, forallx e U.

~ 0
Thus, X , where n is any positive number, is defined by

X =ju[u~(x)] /x, forallx e U.

Definition A.13

The operation of concentration is defined as:

2

CON (X)=X

(A.8)

(A.9)

Applying this operation to X results in a fuzzy subset of X such that the reduction

in magnitude of the grade of membership of x in X is relatively small for those x
which have a high grade of membership in X and relatively large for these x with

low grade of membership.
Definition A.14

The operation of dilation is defined by

05

DIL(X =X

The effect of this operation is the opposite of that concentration.
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The operations of concentration and dilation are useful in the representation of
linguistic hedges (see Section A.2.2).

Definition A.15

Let S be an interval in R. The Hamming distance between two fuzzy subsets X and
Y in'S is defined by

D(X,Y\S) = LS'p; (0~ (x)dx. (A.11)

IfFS=R, the D(X, Y \R)=D(X, Y).
A.2 Linguistic Variables and Hedges (Zadeh (1972), Zimmermann (1987))

A variable is normally thought of as a notion that can be specified by assigning
certain numerical values to it. If we define the variable x to mean “SPEED” and
specify 0 < x < 100, we know that the variable x can have all numbers between 0 and

100 assigned to it. The notion of a linguistic variable, X, is to regard it either as a
variable whose numerical values are “fuzzy numbers”, or as a variable whose range
is not defined by numerical values, but by linguistic terms. In the following section,
we will define linguistic variables and their relative terms.

A.2.1 Linguistic Variables
Definition A 16

A linguistic variable is characterised by the quintuplet (5( > I( X ) U, G, M()~( ) in
which 5( is the name of the variable. T(f() denotes the term-set of 5( , that is, the set

of names of “linguistic values” of X , with each value being a fuzzy variable denoted
generically by x and ranging over a universe of discourse U. The variable G is a
syntactic rule (which usualily has the form of a grammatical element) for generating

the name, X for values of X . M is a semantic rule for associating a meaning with

-each X; M(X), which is a fuzzy subset of U, is characterised by a membership
function (or compatibility function), p_ :U — [0,1] (i.e., a fuzzy restriction of U). A

particular X , that is, a name generated by G; is called a term. It should be noted that
the base variable x can also be-vector valued (Zadeh (1978a), (1978b)).

Example A.1

Let 5( be a linguistic variable with the label “SPEED” with U= [0,100]. Terms,
T(f( ), of this linguistic variable, which are again fuzzy sets, could be called “high”,
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“medium”, “low”, and so on. The base variable x is the speed in miles per hour of a

car driving on a highway. M()~() is the rule that assigns a meaning, that is, a fuzzy
set, to these terms.

Mhigh)= {(unign(x)[x €[0,100]}
0, for 0<x<65,

Where u,.. (x) = ’
s 09 {{1+[(x—65)/5]-2}‘ for 65 <x <100,

T(f() will define the term set of the variable )~( . In this case, 5(= “SPEED”, then
T(SPEED)= {very low, low, medium, high, very high}

Where G is a rule which generates the (labels of) terms in the term set.
A.2.2 Linguistic Hedges

A linguistic hedge, or modifier, is an operation, which modifies the meaning of a
term, or more generally, of a fuzzy set. Linguistic hedges are usually adjectives, such
as “very”, more or “less”, “rather”, and “approximately”. By means of the above
mentioned operations on fuzzy sets, the linguistic hedges can be defined. A typical
example is the interpretation of the “very” hedge in terms of the concentration
operation on [0,1]. This is generally defined as:

- .2
very X=X
where X is a fuzzy subset of a universe U. Example A.2 illustrate the concept of a
linguistic hedge.

Example A.2

If 5( = “close to 0.5”, with

0; x<0.3,
= [1-(0.5-x)0.2]; 0.3<x<05,
Haomewos V=1 (x-0.5)/02]; 0.5<x<0.7,
0; x20.7.
then
0; x<0.3,
1-(0.5-x)/0.2F; 03<x<0.5,
l“l'veryclosetoo.s (X) = [ P

[1-(x-0.5)/02F; 0.5<x<0.7,
0; x=0.7.
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On the other hand, the linguistic hedges, “rather”, “more or less”, or “approximately”
may be defined by the dilation operation.
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APPENDIX B. TECHNIQUES AND ALGORITHMS USED IN FMADM

METHODS

In this Appendix, some special techniques and algorithms used in FMADM methods,

discussed in Chapter 4, are given as follows:
B.1 Saaty’s Eigenvector Method

Let the positive reciprocal matrix A be

all a'lz sae aln
azl a22 XX azn
A=
| 8y 8pa i
where

a;j> 0 and a; =1/ a;;, Vi, j,

2= ai / aje

a= wi / W,

Matrix A is called a ‘reciprocal matrix’.

Multiplying A by w = (w,, W,,...,w,)" yields

w,/w, wi/w, .. w/w, |[w

w,/w, wy/w, . ow,/w | w,
Aw=

| w./wy, owoiw, L ow/w | w
or
(A-n D=w=0

=Nnw

(B.1)

(B.2)
(B.3)
(B.4)

(B.5)

(B.6)

Due to the consistency property of Equation (B.3), the system of homogeneous linear
equation, Equation (B.6), has only trivial solutions.



In general, the precise values of wi/w; are unknown and must be estimated. In other
words, human judgements cannot be so accurate that Equation (B.3) be satisfied
completely. We know that in any matrix, small permutations in the coefficients
imply small permutations in the eigenvalues. If we define A’ as the DM’s estimate of

A and w' corresponds to A’, then

Aw'=A_ W ®B.7)

where Amax is the largest eigenvalue of A’. w' can be obtained by solving the system

of linear equations, Equation (B.7). The consistency of the estimates in the matrix,
A, is guaranteed when Ap. = n. When Apax is not close to n, we must modify the
estimates in A so that consistency is preserved.

The comparison scale uses ranges 1 to 9, each representing fuzzy entries as follows:

Table B.1 Judgement Scale

ImportanceValue Definition

Equal Importance

Weak importance of one over the other

Strong importance of one over the other

Demonstrated importance of one over the other

O [~J[N]|WI]r—=

Absolute domination of one over the other

2,4,6,8 Intermediate values between the two adjacent judgements

Given any ajj, the reciprocal value a;= 1/a;;. Obviously, a;i= 1 is always true.
Hierarchical Decision Structure

A hierarchy structure can be best described by the following example. Three job
offers are considered by a new Ph.D. The attributes considered are research, growth,
benefits, colleagues, location, and reputation. Since the entries of this MADM
problem are only vaguely known, we cannot form a MADM decision matrix. To
resolve this problem, a three-level hierarchy is constructed. The data of this MADM
problem can be derived from this hierarchy decision structure.

The first level consists of a single objective, to have a successful career. The
importance of it is assumed unity. The second level consists of six attributes. Their
relative importance is determined using the eigenvector method with respect to the
objective in the first level. The third level consists of the three jobs being considered.
Their relative performances are derived using the eigenvector method with respect to
each attribute. The weights and performance scores are then combined using the
SAW method. The results are the final ratings of the three jobs. The job with the
highest final rating can best fulfil the ultimate goal (successful career).

Formal Hierarchy : It is essentially a formalisation in terms of partially ordered sets
of our intuitive understanding of the idea. It has levels: the top level consists of a
single element and each element of a given level dominates or covers (serves as a
property of a purpose for) some or all of the elements in the level immediately
below. The pairwise comparison matrix approach may then be applied to compare
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elements in a single level with respect to a purpose from the adjacent higher level.
The process in repeated up the hierarchy and the problem is to compose the resulting
priorities (obtained by the eigenvector method) in such a way as to obtain one overall
priority vector of the impact of the lowest elements on the top element of the
hierarchy by successive weighting and composition.

Let the symbol Ly represent the k™ level of a hierarchy of h levels. Assume that
Y=(y1, ¥2, --., Yx) € Lk and that X= (X;, X, ..., Xk+1) € Lx+1. Also assume that there
is an element z € Ly such that Y is covered by z. We can then consider the priority
functions

w=Y — [0, 1] and wy: X - [0, 1] (B.8)
We construct the “priority function of the elements in X with respect to z” denoted
w,w: X = [0, 1] by
k
W) = 3 Wy, () W, (¥, =12,k +1, B9)
J=

It is obvious that this is no more than the process of weighting the influence of the
element y; on the priority of x; by multiplying it with the importance of y; with
respect to z.

The algorithms involved will be simplified if one combines the Wy, (x;) into a matrix
B by setting by= w,,(x;). If we further set wi= w (x;) and W, =w,(y,), then the

above formula becomes
k :
w; =X byw,,i=1,2,.. k+1. (B.10)
=l
Thus, we may speak of the priority vector w and, indeed, of the priority matrix B;
this gives the final formulation W=BW".

A hierarchy is complete if all xeLy are dominated by every element in Ly, k = 2,
..., h. Let H be a complete hierarchy with lowest element b and h levels. Let Bi be
the priority matrix of kKM leveL k=1,2, ..., h. f W’ is the priority vector of the pth
level with respect to some element z in the (p-1)* level, then the priority vector w of
the qth level (p < q) with respect to z is given as:

W=BBq1 ... BpuW’. (B.11)
Thus, the priority vector of the lowest level with respect to the element b is given as:
W= BhBh.l BzW’. (B.IZ)

If L; has a single element, as usual, W’ is just a scalar; if it has more elements, it is a
vector.
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B.2 SAW Based FMADM Methods

In the following, Baas and Kwakemaak’s Algorithm, Kwakernaak’s Algorithm,
Dubois and Prade’s Algorithm, and Cheng and Mclnnis’s Algorithm are given.

B.2.1 Baas and Kwakernaak’s Algorithm

It is assumed that R, (y;)and By (x;) are normalised membership functions. We

can determine the approximated fuzzy utility v; for alternative A;, Vi, using the
following steps :

Step 1. Set an o, level for py;, (u;).
Step 2. After setting py, (u;) = o, identify the y; and x;; values that satisfy
b (V) = By () =, Vi, B.13)

There may be more than one y; value for Hy;(¥;) = &, and more than one xjj value

for B (x3) =ay.

Step 3. There are many u; values such that p,. (u;)=a,. We want to know the
extreme ones, u; . and u; _ . For example, given two fuzzy attributes and two fuzzy
weights, there will be a total of 2*= 16 u; values, i.e., 16 possible combinations of Yj
and xy, 1,j= 1,2. We simply pick the highest u;, u; _ ,and the lowest u;, u; ., and

1 1

drop all other u;’s.

If the size of the problem increases, such as six attributes and six weights, there will
be 2'%= 4096 v; values. When problem size increases to 10 attributes and 10 weights,
there will be over a million u; values. Again, it is impossible to identify u; _and

u; . values without the help of a computer.

To avoid calculating all the u; values such that p,, (v;) = a, Baas and Kwakernaak

suggest the following. Given a set of real numbers ():,,..., ;rn,;,,,...,;m) such that

K, ,(xi) and [u'wj (yj)/(xij—ui)], Vi, j, where

By (x;) =du, (x;)/dx, (B.14)
and
Mo (¥;) = du, (y,)/ dy, (B.15)
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have the same sign, the resulting u; will either be u; _and u, _ . Step 3 is complete
when both u; _ and u; . have been found.

To check if }Lq'(;ij) and [P:w,- (;/j)/(;(ij—ui)],Vi, j» have the same sign, one would

A A A A
have to use the set of numbers (X,....X;,, ¥, ¥, ) t0 compute its corresponding u;

A A A

value using Equation (4.1). Consequently, the values (;u seesXinsYsees ¥, ) aT€ Used in
Equations (B.14) and (B.15). If p, '(xs) and [p'wj ) (X~ )}, have the same

sign, i.e.,, both are either positive or negative, the u; value determined by
A A

(;i,,...,xh,y],...,;'“) will be U and u . If the signs are not the same, the
corresponding u; would be dropped.

The algorithm loops back to Step 1 for another a value. One must give general o
values in order to get an approximated p, (u;) function. The number of o values

needed to construct p (u;)is a subjective matter. If more o values are given, the

approximated function will be closer to the real one but will require much more
computational effort.

B.2.2 Kwakernaak’s Algorithm

Step 1. Choose an aq level.

Step 2. For alternative A;, determine the following real numbers:

x; = minfx; R | p, (x;) 20, § Vi, (B.16)
x; =max{x; €R| u,. (x;) 2, } Vi, (B.17)
y; =miny; eR| 1, (7;) 200} Vi, (B.18)
¥, =max{y, €R| 4, () 22} Vi, B.19)

Step 3. At the oy level, the r;; may be represented by [xi} ,xi'j]. Put x;,Vj, in an order

ij?
such that
m; Sm; <..<m,, (B.20)
where m; =minx; and m, =maxx;. The corresponding y; values will also be

] J
put in an order such that
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7, £7; 2.5z (B.21)

o
Similarly, x;j are rearranged in an order such that
m; <m; <...<m_, (B.22)

where m; =minx; and m, =maxx; . The corresponding y; will be put in an order
i i
such that

2, <z,£..57.. (B.23)

Step 4. Let fuzzy utility U; at the g level be ¢, = [a . ] a, and b,_are defined
as:

J 8 ]
Y zmi+ Y zm;
a, = min|*— —— 5 (B.24)

%o 0gj<n i, ., L
PRI
k

k=1 =j+1

j — * ] L *
2z,m + X z,m,

b, = max| <= keptl ) 25
ag
0<js<n ZJ: 3 L I
Z, + ) Z,
k=1 k=j+l

The lower bound a, is computed according to the following concept. Since xjj
appears only in the numerator of the function,

u; = Zn:ijij DR (B.26)

=1 =

the minimum of u; is quaranteed when xy, Vj, take x; as their values. Thus, we need

only be concerned with the combinations of y; and y; such that y; is minimum.
Similar remarks can be applied to Equation (B.25).

The algorithm may be applied several times to different o levels. Eventually, an
approximated fuzzy utility U; can be obtained.

Kwakernaak finds that by taking the maximum values of x;;, we are guaranteed to
have a maximum u;. Similarly, by taking the minimum of x;, we get 2 minimum wu;.
However, since w; appears both in the numerator and denominator, a2 maximum w;
does not guarantee a maximum u; and a minimum w; does not guarantee a minimum
u;. Hence, the number of possible combinations one needs to test is C.2" instead of
2%" as in Baas and Kwakernaak’s approach where n is the number of weights.

For example, for a problem with five attributes and five weights, Baas and
Kwakernaak’s approach requires 2!9=1024 tries, while Kwakernaak’s approach
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needs only Cs'%=252 tries. For a problem of 10 attributes and 10 weights, Baas and

Kwakernaak’s approach requires a maximum of 1,048,576 tries while Kwakernaak’s
approach requires 184,756 tries. The improvement is obvious.

B.2.3 Dubois and Prade’s Algorithm

Step 1. Set an a-level and determine a-level sets for w; and r;; to be:
Wia = [y;-,yz]a vj s (B,27)
rija = [X;},X;],Vj, J (B28)

Step 2. Compute normalised fuzzy weights, Pj, V;. Given the a-level sets of wj,
[y;,y}] , j=1,...,n, we can obtain n a-level sets j‘,p;] of the normalised fuzzy
weights P;, V;, as:

;=Y + 2y (B.29)
]
and
Py =y (y; + Z¥e) (B.30)
k=j

Letg; e [p;,p;] , Vj, the condition,

2q; =1 B.31)

must hold.

Step 3. For alternative, A;, the rating r; may be represented by an a-level set as in
Equation (B.28). That is,

[ S I
I'iju = Xu,xu ,J'—' 1, vee ,n.

*

y?

We are going to order x; and x;, Vj, respectively, as:

m; <m; <..<m; (B.32)

in which m] =minx; and m; =maxx; ,and
J J

m; <m, <..<m, (B.33)

in which m; =minx; and m; =maxx; .Equations (B.32) and (B.33) facilitate
J J

the construction of Equations (B.32) and (B.33) in the later steps.
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Step 4. The smallest upper and the largest lower bound of Uj, I.Uimm ,UimaxJ , are
computed as:
&1, Y[, 2, a2 7 _ = _ _
Ui =| 2pm; [+]1-3p;— X pj Img + X pjm; (B.34)
J= | el j=d#1 7 j=d+1
e-1 N i el n ‘_ . n . s
Ul =(.ij_mj)+ 1-3pj— X p; m.+ X p;m; (B.35)
=1 L = jme+l | j=etl

The only unknowns in Equations (B.34) and (B.35) are parameters d and e. The
parameter d can be determined when condition,

d-1 . n .
-0~ Y0 =z, < [pipi] (B.36)

=1 j=d+1

is satisfied. The search process is carried out in the following manner. By
substituting d with 1, the value of z; can be obtained. We can easily determine if

z, € lp,‘,p;J is true. If the answer is yes, we can set d=1 and compute U, . using
Equation (B.34); otherwise, we need to substitute d with 2 and compute a z, value.
Again, we need to determine if z, € [p{,p{]. The search process goes on with the

value of d increasing by one each time until the condition Equation (B.36) is met.
The resulting z4 will be the value assumed by weight wy, and

d-1 , n

ij+ > p; =24 =1

j=l j=dl

which satisfies Equation (B.31). Dubois and Prade have shown that there is only one
value of d such that condition (B:36) is satisfied. Similarly, we can determine the
value of e when the condition,

e-1

1-> ;- by =z <[poni] (B37)
j=1 j=e+l

is satisfied. The resulting e value is used in Equation (B.35) to compute U, _ . The

value assumed by w;, Vj, must satisfy Equation (B.31), i.e.,

e-1

Tp;+ X p;+2z, =1

j:i j=e+1

Step 5. At any o level, the fuzzy utility U; can be represented by the interval
I.Uimin Ui J The DM can set several o levels and repeat the algorithm several

times to derive an approximated fuzzy utility U;.
The total number of testing for this algorithm is 2n at most. Comparing this number
with (2)* (in Baas and Kwakemaak’s approach) and C,* (in Kwakernaak’s

approach), we conclude that this algorithm is the least time-consuming one. For
example, we need to test 1024 combinations for a five attributes, five weights
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problem using the Baas and Kwakernaak’s algorithm. It takes 252 tries using the
Kwakernaak’s algorithm, while only 10 tries are needed using the Dubois and Prade
algorithm.

B.2.4 Cheng and Mclnnis’s Algorithm

The following steps are taken for deriving fuzzy utilities.

Step 1. The continuous membership function is converted to a discrete one. This is
done by having the DM specify the number of o levels s/he wants to use. The width
of intervals is determined according to the DM’s preference.

Step 2. For each a-level, we need to perform steps 3 and 4. The first a level to be
considered is the largest one among all the w; and r; graphs.

Step 3. Given o, we can obtain the a-level set for each r; and each w; as:

et = [x5,x;] Vi, j (B.38)
and
Wig, = ly;,y}lvj- (B.39)

That is, at o, 1j; can take any value in the interval [xg,xi;] and wj; can take any value

in [y7,y}]-

Step 4. Given the upper and lower bounds of r;; and wj at the o, level as shown in
Equations (B.38) and (B.39), we can compute the upper and lower bounds of the
fuzzy utility at oo, U;, = lUi‘nin Ui L using the following process.

Step 4.1. Compute Uimax . To obtain the upper bound of Uj at the o, level, Uimx , the
must be used. Taking the equation

*

ij?

upper bound of rj;, Vj, i.e., x
U =Xyx;/Xy;, (B.40)
J J

since the x;; value appears only in the denominator, a higher x; value will guarantee a
larger U; value; on the other hand, since yj, Vj, appear in both numerator and
denominator, increasing y; may not give a larger U; value. Thus to maximise u;, we
must decide whether y; or y; should be used.

Cheng and McInnis proposed a search process to test whether y} or y; should be

used by comparing the maximum values of all r. First of all, x;, Vj, are rearranged

ij?

m <m; <..<m, (B.41)

158



. - * - * » * * * .
in which m, = minx; and m = MaX X Assume m, =X, , the corresponding wy

should take y; as its value. Assume m, =x;, the corresponding w; should take y;
as its value. For some m, such that m; <m_ <m,, if the condition

n
i W, g}‘, wir; +(w, +A)r,
e : (B.42)

n n
j}a:le jzl:wj+(wp+?»)
J=p

where A is any positive real number, holds, then the upper bound of wy, i.c., y;,

should be selected. Otherwise, y, is selected.

Given the right combinations of y; and yj, Vj, we can easily compute u; _ using
Equation (B.40).

Step 4.2. After finding u;__ ,u
for all r;. Secondly, for those w; whose upper bounds were used for deriving u; _ ,

i C2D be easily identified. First of all, we will use x;

i
we will use their lower bounds in computing u; . and vice versa.

Steps 3 and 4 are used for the next largest a-level until all o levels are exhausted.
The resulting fuzzy utilities are also discrete and have several “steps™ in it.

B.2.5 Bonissone’s Fuzzy Arithmetic Operations

Here, the formulas shall only be listed regarding the addition, subtraction,
multiplication, and division operations. Let the fuzzy numbers M= (a,b,a,$), and
N=(c,d,y,8), M>0 and N>0. Their arithmetic operations can be displayed as:

M(+)N= (a+c, btd, aty, p+5)
M(')N= (a"d? b"C, G,+8, B+‘Y)
M()N = (ac, bd, ay+ca-ay, bd+dp+Bd)

M) [a b ad+da by+c[3)

d’c’d@d+8)" e(c-v)
B.3 AHP Based FMADM Methods

In the following, Lootsma’s Logarithmic Least Square Method, Laarhoven and
Pedrycz’s Algorithm, Geometric Mean Method, and Buckley’s Algorithms are given.
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B.3.1 Lootsma’s Logarithmic Least Square Method

This weight-assessing method was chosen because it is suitable for handling multiple
decision maker’s opinions and is easily extended to the fuzzy case.

Let the positive reciprocal matrix A be represented as

ay ap e Ay,
aZ, azz vee azn
A=
_an, anz ves am i

where a; are real numbers. The estimated vector w =(w,,w,,...,w_) is derived by

minimising

¥ (Ina, —In(w, / w,))>. (B.43)

i<j

When there are multiple decision makers, the weight vector w is derived by

minimising

P
> 3 (nay —In(w,/w,)>. (B.44)

i<j k=l

where aj, k= 1,2,...,p;, are p; estimates for wi/w;. Note that p; can be 0 (if no
comparison ratios are expressed), equal to one, or greater than one, in which case
there are several decision makers who have expressed their comparison ratios.

If we put yik= In ajjk, zi= In w;, and z= In w;, we can minimise

Yix—2z: + Zj))z' (B.45)

B
=1

I
i<j k
by solving the associated normal equations

n n n Pj .
Z; 2Py —2PyZ; =2 XV Vi (B.46)
=l =l =l k=t

J=l =l i

for z. Taking the exponentials of the z; and normalising them, we can obtain
estimates for the weight vector w = (w,,W,,...,w_).
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B.3.2 Laarhoven and Pedrycz’s Algorithm

The algorithm is shown in the following steps.

Step 1. Consult with the decision makers and obtain n+1 fuzzy reciprocal matrices
that take the following form.

Where A, Are fuzzy ratios estimated by multiple decision makers. Note that p;; may

be 0 when no decision makers express their comparison ratios or greater than 1 when
more than one DM expresses his/her comparison ratios.

Step 2. Let z= (1;, m;, u;). Solve the following linear equations:

n n n Pjj .
LEp)-Spe =3 Sl ]vi B47)
R Bl b
n n n Bij .
m,(3p;)-5pym, =3 ¥ [inmy Vi, (B.48)
j=1 j=1 =1 k=1
# 7 3l
n n n Pjj .
wGp)-Spily =5 Ylnug i, (B.49)
= = =l k=

31 3=l =l

As In(lj) and In(u;x) are lower an upper values of In(aji)= -In(ajik), the following
must hold true.

In(lii) + In(lju)= In(ui) + In(uja)= 0, Vi, j, k.

Thus Equations (B.47) and (B.49) are linear dependent. The same holds for Equation
(B.48). Generally, a solution for Equations (B.47), (B.48), and (B.49) is given as

zZ= (li+ty, mytty, urtty), Vi (B.50)
where t; and t; can be chosen arbitrarily.

Step 3. Recall that in the above linear system, all right hand sides have taken
logarithmic operations. We have to take exponentials on 1;, m;, and u; and compute
the fuzzy weight, w, as follows:

wi= (A1 exp(l), Az exp(my), A3 exp(wy)), (B.51)
where

1

A =(§exp(ui))- s Ay =(§1exp(mi))-l,

-1

Ay = (g exp(l; ))
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Equation (B.51) can also be used to determine the performance score ;.

Step 4. Steps 1 through 3 are repeated several time until all reciprocal matrices have
been solved. With the fuzzy weights and performance scores, we can compute the
fuzzy utility for alternative A; as

j=1
Note that the multiplication and summation of two triangular fuzzy numbers are
based on Equations (B.53) and (B.54), respectively.

B.3.2.1 Arithmetic Operations for Triangular Fuzzy Numbers

Triangular fuzzy numbers are assumed throughout Laarhoven and Pedrycz’s
approach. Some arithmetic operations performed on triangular fuzzy numbers, such
as addition and multiplication are presented here to facilitate the computation of

fuzzy utilities.

Assume that we have two triangular fuzzy numbers M;= (1;, my, u;) and M= (1, m3,
uy). Their multiplication and addition are defined as:

(1, my, wy) () (2, my, uz)= (1113, mumy, ujuy) (B.53)

(11, my, wy) () (Lo, mo, uz)= (I1+l2, my+my, urtuy) (B.54)
B.3.3 Geometric Mean Method

This weight assessing method is chosen for its simplicity and ease in its application
to the fuzzy case.

Given the positive comparison matrix as:

a; ap ay
a; ap s
A=
_anl anz ann ]

The geometric mean of each row is calculated as:

1/n

a =

j=1

The weight w; is calculated as:
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wi= zif (Zi+. . .+Zn), Vi.

To facilitate the calculation of fuzzy weights, fuzzy performance scores, and fuzzy
utilities, the following arithmetic operations are presented.

B.3.4 Buckley’s Algorithm

The algorithm may be applied to single or multiple decision makers. A Single DM is
assumed for the following steps. The case of multiple decision makers shall be
explained in the Note section.

Step 1. Consult the DM and obtain the comparison matrix A whose elements

aj =(2;,b;

i>Cij>

d;), Vi, j, are trapezoidal fuzzy numbers.

Step 2. The fuzzy weights w; can be calculated as follows. The geometric mean for
each row is determined as:

- - 1/n
Z, = (au 0.0 am) , Vi, (B.55)

where the sign © represent fuzzy multiplication. The fuzzy weight w; is given as:
wi=z,0Z® ... 0 z,)" (B.56)
where the sign @ is for fuzzy addition.

The following will detail the derivation of fuzzy weight w;. Let the left leg and right
leg of ;.ij be defined as:

a 1/n
f(a)= [_,;I((bij ~a;)o+ aij)] ,ael0,1], (B.57)
J:
a 1/n
6= (6, -d)a+b))| aepal, ®.58)
respectively, Furthermore, let
a i/n
a; = ':.7': aijjl s (B.59)
=1
and
a=Ya.. (B.60)

i=1

Similarly, we can define b; and b, ¢; and ¢, and d; and d. The fuzzy weight w; is
determined as:
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w, =(_i. b ._) vi, (B.61)
a

where membership function p,, (x) is defined as follows. Let x be a real number on

the horizontal axis. The p,, (x) can be summarised as:

X Hy, (X)
< (ai/dy) 0
> (di/a) 0
[bi/c, ci/b] 1
[ai/d, bi/c] aef0,1)
[ci/b, di/a] aef0,1]

When x € [ai/d, bi/c], the x is calculated as:
x= fi(o)/g(o); (B.62)

and when € [ci/b, di/a], the x is determined as:

x= gi(@)/f(a); (B.63)
where

f(2) =$:f,(0) (B.64)
g(a) =§gi (@) (B.65)

Step 2 is repeated until the fuzzy performance scores rj, Vi, j, are obtained in a
similar manner.

Step 3. The fuzzy weights and fuzzy performance scores are aggregated as a fuzzy
MADM problem. The fuzzy utilities Uj, Vi, are obtained based on

U, = 3w, Vi (B.66)
=

The multiplication and addition of fuzzy numbers is done according to the equations
presented earlier.
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B.3.4.1 Fuzzy Arithmetic on Trapezoidal Fuzzy Numbers

Assume that the comparison ratios a;,Vi,j take trapezoidal fuzzy numbers (ajj, by,
cij, dj;). Their addition and multiplication are defined in this section.

Let M= (a;, by, 1, d;) and M= (a3, by, ¢;, d3) be two trapezoidal fuzzy numbers.

1. Addition

Q= M, + My= (art+ay, bytby,ci+cy,ditdy). (B.67)
po(x) is still a trapezoidal fuzzy number.

2. Multiplication

Q=M, x My=[a(L,,L,),b,c,d[Ri,R2) (B.68)
Where a= aja, b= b;b,, c= c;c;, d=d;d;,

Li= (bi-ay) (b2-22), Lo= ax(bi-a1) + ai(bz-a2),

Ri= (d;~¢1) (da-¢2), Ro= -[dy(d;-¢y) + di(d2-c2)].

pQ(x) is no longer a trapezoidal fuzzy number and is defined as follows. For any
unique x on the horizontal axis, po(x) can be:

X uo(x)
<a 0

>d 0

b<x<c 1

a<x<b ael0,1]
csx<d ael0.1]

when a < x <b, x defined as follows, Given x;= [a;,b;] and x,= [a,,b,] where
xi=(bi—a) o +a,i= 1,2, (B.69)
the product x= x;x; will take the form of

x=Ljo? + Lya + a, o € [0,1] (B.70)
Similarly, when ¢ < x £ d, we can define

x=Ria> + Ry +d, o € [0,1] (B.71)

165



Fuzzy Addition of (a, [L“, L, l, b,,c;,d, [Ril , Rn]) Fuzzy Numbers
Fuzzy addition involving fuzzy numbers taking the form of

(ai[Lit, Li2], bi, €, di [Ri1, Ri2]), can be determined as follows.

Let two fuzzy numbers Q; and Q; be:

Q1= (a1[L11, L12]; br,c1,di[ Ry, Ryz])

Q2= (22[L21, Laz], ba,c2,d2[ Ra1, Ra2)).

The addition of Q; and Q, is defined as:

Q’= {(a1 + a3) [Lir+Las,LiatLa], (brtbo)(citea),(ditd)[RutRa,RtReo])}  (B.72)

The membership function pig(x) is defined as follows. Let x be some real numbers
on the horizontal axis. ug(x) is defined as:

x Lox)
< (artay) 0
> (dy+dy) 0
(bi+by) <X < (crtey) 1
(artaz) <x < (br+by) ael0,1]
(crtes) Sx < (ortey) ael0,1]

When (a;+a;) < x < (b;+b,), x is determined as follows, Since

xi= Lo + Lpa +ay, i= 1,2,

the addition x= x; + X3 will take the form

x=(L11 + La1) of + (Liz+ L) & + (a1 + 2). (B.73)
Similarly, when (c;+c;) < x < (dj+d,), X is calculated as:

x= R+ Ra1) & + Riz+ Ryp) o + (di + dy). (B.74)
B.4 Dubois, Prade, and Testemale’s Approach

The degree of matching is measured by the following membership function:

el q(e)=sup {mo(x) | up(x)=a }, Vau. (B.75)

where no(x) represents the degree of possibility that x is the (unique) value which
describes an object modelled by Q: p,(x) is the degree of compatibility between the
value x and the meaning of P. Thus, p,|q(ct) denotes the degree of compatibility of Q
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with respect to P. Equation (B.75) was first introduced by Zadeh who interpreted
Hplo(e) as the fuzzy truth value of predicate P, given a referential predicate Q
describing a true state of facts.

Although the interpretation is clear from a theoretical point of view, Dubois et al.
Believed that Equation (B.75) is not easily understood by users, and difficult to
manipulate at an operational level. As a consequence, two scalar indices are used to
approximate the p,{q(cr)

Measure so that compatibility between fuzzy sets can be estimated. The two indices
are (1) the possibility of matching n(P;Q), and (2) the necessity of matching N(P;Q).

Possibility and Necessity of Matching
The possibility of matching is defined as:

(P;Q) = sup min (i, (x), ko (X)) (B.76)

which estimates to what extent it is possible that P and Q refer to the same x value. In
other words, the possibility of matching is the degree of overlapping of he fuzzy set
of values compatible with P, with the fuzzy set of possible values of Q.

The necessity of matching is defined as:
N(P;Q) = inf max(p, (x),1 — po (X)) B.77)

which estimates to what extent it is certain that the value to which Q refers is among
the ones compatible with P. In other words, the necessity of matching is the degree of
inclusion of the set of possible values of Q into the set of values compatible with P.

The necessity of an event corresponds to the impossibility of the opposite event, i.e.,

N(P;Q) =1-n(P;Q) (B.78)

where u;(x) =1-p,(x) is the membership function of the complement of the fuzzy
set of values compatible with P. Clearly, we always have

n(P;Q) 2 N(P; Q). (B.79)
Generally, if Q is a crisp umber, then n(P;Q)=N(P;Q)= 1,(Q) which is also a crisp
number in [0,1]. When both P and Q are fuzzy, then the following relation holds
(given 7 is a modal where ppg(t)=1):

NEP;Q <t=n(P;Q) (B.80)

This relation is constructed based on the following equations:

7(P; Q) = Supmin (x, (X)) = min(t, b, (M) =, (B.81)
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and

N(P;Q) = inf max (X, o (X)) £ Max(t1 ~ y o (1) =, (B.82)

Hence [N(P;Q), n(P;Q)] is bracketing of t, which provides information about the
imprecision of u,(Q). We may conclude this section by stating that n(P;Q) and
N(P;Q) together are reasonable approximations of p,(Q).

Equations (B.75) and (B.76) can only be used in single-attribute conditions. When
there are multiple attributes involved, as in most real world problems, Equations
(B.75) and (B.76) can be modified using the min operator:

(A% A,) = min n(x], X (B.83)
F=h...n

N(A%;A,) = min N(x},x; (B.84)
j=h..n

where A° =(xX{,.,X]), A;=(Xy,..Xy), and x{ and x{ are defined on the

same domain U. The vector A® is the cut-off vector specified by the DM, while A;, i=
1,...,m, is the vector that contains the performance scores of the ith alternative under
all attributes.

Equations (B.83) and (B.84) suggest that the matching is done attribute by attribute.
These matching results are to be aggregated using the min operator to preserve the
respective semantics of possibility and necessity of the indices. Equations (B.83) and
(B.84) implicitly suggest that all attributes are of equal importance. If unequal
weights are used, one of the following formulas can be used.

S =min max (1-w;,S;), (for conjunctive case) E (B.85)
)

S =max min (w;, S;), (for disjunctive case) (B.86)
J

where wj denotes the relative importance of the attributes and

max

j=1,.,n " (B.87)

i.e., the most important attributes are rated 1; and S expresses to what extent we are
certain that the fuzzy set of importance is included in the fuzzy set.of requirements

xj.’ possibly (or necessarily) satisfied by the performance score x; defined by the

equation

S, =n(x),%,), j=l..n, (B.88)
or

S; =N(x,%X;), j=L...n, (B.89)
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Thus, for the conjunctive case, Equation (B.85) may be rewritten (given different
S;’s) as the aggregated n and N indices:

minmax(l - w,n(x};x;)) = ©(A%A,), (B.90)
)

minmax(l - w;,N(x};x;)) = N(A%;A), (B.91)
J

For the disjunctive case, Equation (B.86) may be rewritten as the aggregated m and N

indices:

m?xmin(w,-,n(xg;xﬁ)) = n(A%A,), (B.92)
max min(w ;, N(wj;x;)) = 7(A"A,)), (B.93)

The reason for constructing Equations (B.85) and (B.86) is as follows. In the case of
aggregation via the arithmetic mean, importance can easily be accommodated in the

aggregation (given Py, ...,P, fuzzy sets) through
B, (x)= lejppj x),VxelU (B.94)
J=:

Note that Equation (B.94) does not have the intersection or union operations. In order
to get a weighted counterpart of the minimum and maximum operation, we view
Equation (B.94) as the probability of a fuzzy event ®, defined on the crisp set
{1,...,n}. @y is the fuzzy set of P;’s containing x, and the w;’s define a probability
allocation on the crisp set {1,...,n}. Hence

Bp(X)= Prob(dy) . (B.95)

Changing probability into a possibility or a necessity measure leads us to consider
the following analogs of Equation (B.94), namely,

Poss(®,) = maxmin (i, (x), W), (B.96)
Ness(®,) = mjmmax (upj (x), 1-w;), B.97)

It is clear that Equation (B.96) yields a weighted disjunction of the P;’s while
Equation (B.97) yields a weighted conjunction. Thus Equations (B.95) and (B.96) are
the direct applications of Equations (B.90), (B.91), (B.92), and (B.93) respectively.

Generally, the ideal ordering is used to rank the alternatives according to the
following:
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If Then

[n(A%A;) > 1 A%A)) and N(A%A) > N( A%AD] A; > A; (B.98)
[n(A%A) > n( A%A;) and N(A%A;) 2 N( A%A)] Ai> A (B.99)
[n(A%A) 2 n( A%A)) and N(A%A) > N(A%A)] A > A (B.100)

[n(A%A;) - N(A%A) <n(A%A) - N(A%A)] Ai> A

However, when the stated rule is not followed, we can’t say that A; > A;j or A; > A;.
Also note that the necessity index, N, is more important than the possibility index, =,
because when the N index is positive we can be certain that he alternative (more or
less) matches the requirements set by the DM.
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APPENDIX C. AGGREGATION STATE CALCULATIONS OF CASE -1

In this Appendix, detailed aggregation state calculations for the first case study
discussed in the sixth Chapter are given in Tables and Figures as follows.

Aggregation state calculations of case — 1 under each subjective attribute are shown
in Tables C.1, C.2, C3, C4, CS5, C.6 and C.7 respectively. In each Table,
trapezoidal fuzzy number type of experts’ opinions for each alternative and their
related aggregation calculations for homo/heterogeneous group of experts are also
given. Last two rows of each Table are aggregated trapezoidal fuzzy numbers for
homo/heterogeneous group of experts respectively. For each attribute, they are
shown in Figures C.1, C.2, and C.3 (for A;), in Figures C.4, C.5, and C.6 (for A), in
Figures C.7, C.8, and C.9 (for A3), in Figures C.10, C.11, and C.12 (for Ay), in
Figures C.13, C.14, and C.15 (for As), in Figures C.16, C.17, and C.18 (for Ag), and
in Figures C.19, C.20, and C.21 (for Ay). In each Figure, trapezoidal fuzzy number
type of experts’ opinions (upper drawing of that figure) and their aggregated fuzzy
numbers for homo/heterogeneous group of experts (lower drawing of that figure) are
shown in different colours.



Table C.1 Aggregation under the first attribute (A;)

Xi X; X3
E, (0.54, 0.55, 0.56, 0.57) | (0.58, 0.59, 0.62, 0.63) | (0.93, 0.94, 0.98, 0.98)
E; (0.55, 0.56, 0.58, 0.59) | (0.60, 0.61, 0.63, 0.63) | (0.97, 0.98, 0.99, 1.00)
E; (0.54, 0.55, 0.59, 0.59) | (0.58, 0.59, 0.63, 0.63) | (0.91,0.92, 0.97, 0.98)
Degree of Agreement (S)
Si2 0.984 0.984 0.973
Si3 0.988 0.996 0.988
Sa; 0.988 0.988 0.961
Average Degree of Agreement (AA.)
AAE) 0.986 0.990 0.980
AA(Ey) 0.986 0.986 0.967
AA(E3) 0.988 0.992 0.975
Relativé Degree of Agreement (RA)
RA(E)) 0.333 0.334 0.336
RA(Ey) 0.333 0.332 0.331
RA(E3) 0.334 0.334 0.334
Consensus Degree Coefficient (CC)
CC(E)y) 0.400 0.400 0.201
CC(E) 0.340 0.339 0.199
CC(Es) 0.260 0.261 0.200
Rac (0.54, 0.55, 0.58, 0.58) | (0.59, 0.59, 0.62, 0.63) | (0.94, 0.95, 0.98, 0.99)
Rac™ | (0.54,0.55,0.57,0.58) | (0.59,0.59, 0.62 0.63) | (0.94, 0.95, 0.98, 0.99)
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Table C.2 Aggregation under the second attribute (Az)

X X X3
E; (0.53, 0.55, 0.55, 0.57) { (0.58, 0.60, 0.60, 0.62) { (0.93, 0.95, 0.95, 0.97)
E; (0.55, 0.57, 0.57, 0.58) | (0.60, 0.62, 0.62, 0.63) | (0.97, 0.98, 0.98, 1.00)
E3 (0.55,0.57, 0.57, 0.58) | (0.58, 0.60, 0.60, 0.62) { (0.93, 0.94, 0.94, 0.96)
Degree of Agreement (S)
Sz 0.983 0.983 0.967
Si3 0.983 1.000 0.992
Sa3 1.000 0.983 0.958
Average Degree of Agreement (AA)
AA(Er) 0.983 0.992 0.979
AA(Ey) 0.992 0.983 0.963
AA(E;) 0.992 0.992 0.975
Relative Degree of Agreement (RA)
RA(E)) 0.331 0.334 0.336
RA(Ez) 0.334 0.331 0.330
RA(E3) 0.334 0.334 0.334
Consensus Degree Coefficient (CC)
CC(ED 0.399 0.401 0.201
CC(E2) 0.341 0.339 0.198
CC(Es) 0.261 0.261 0.201
Rac™ | (0.54,0.56, 0.56, 0.58) | (0.59, 0.61, 0.61, 0.62) | (0.94, 0.96, 0.96, 0.97)
Rac™ | (0.54,0.56,0.56, 0.58) | (0.59, 0.61, 0.61, 0.62) | (0.94, 0.96, 0.96, 0.98)
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Table C.3 Aggregation under the third attribute (A3)

X X2 X3
E, (0.50, 0.70, 0.70, 0.90)- | (0.80, 0.90, 0.90, 1.00) | (0.90, 1.00, 1.00, 1.00)
E, (0.50, 0.70, 0.70, 0.90) | (0.50, 0.55, 0.55, 0.60) | (0.50, 0.70, 0.70, 0.90)
E; (0.30, 0.50, 0.50, 0.70) | (0.50, 0.55, 0.55, 0.60) | (0.50, 0.70, 0.70, 0.90)
Degree of Agreement (S)
Si2 1.000 0.650 0.725
Si3 0.800 0.650 0.725
S23 0.800 1.000 1.000
Average Degree of Agreement (AA)
AA(Ey) 0.900 0.650 0.725
AA(E;) 0.900 0.825 0.863
AA(E3) 0.800 0.825 0.863
Relative Degree of Agreement (RA)
RA(E)) 0.346 0.283 0.296
RA(E2) 0.346 0.359 0.352
RA(E3) 0.308 0.359 0.352
Consensus Degree Coefficient (CC)
CC(Er) 0.274 0.236 0.178
CC(Ey) 0.319 0.326 0.211
CC(E3) 0.407 0.437 0.211
Rac™ | (0.44, 0.64,0.64, 0.84) | (0.58, 0.65, 0.65, 0.71) | (0.61, 0.78, 0.78, 0.93)
Rac™ | (0.42,0.62,0.62, 0.82) | (0.57, 0.63, 0.63, 0.69) | (0.59, 0.77, 0.77, 0.92)
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Table C.4 Aggregation under the fourth attribute (A4)

X1 X X3
E; (0.10, 0.20, 0.20, 0.30) | (0.40, 0.50, 0.50, 0.60) | (0.00, 0.00, 0.10, 0.20)
Es (0.10, 0.20, 0.20, 0.30) | (0.20, 0.30, 0.40, 0.50) | (0.10, 0.20, 0.20, 0.30)
E; (0.40, 0.50, 0.50, 0.60) | (0.10, 0.20, 0.20, 0.30) | (0.00, 0.00, 0.10, 0.20)
Degree of Agreement (S)
S12 1.000 0.850 0.875
Si3 0.700 0.700 1.000
Sa3 0.700 0.850 0.875
Average Degree of Agreement (AA)
AA(E) 0.850 0.775 0.938
AA(Ey) 0.850 0.850 0.875
AA(E3) 0.700 0.775 0.938
Relative Degree of Agreex;nent (RA)
RA(E)) 0354 0.323 0.341
RA(E;) 0.354 0.354 0.318
RA(E;) 0.292 0.323 0.341
Consensus Degree Coefficient (CC)
CC(E1) 0.276 0.257 0.205
CC(Ey) 0.423 0.423 0.191
CC(Es) 0.301 0.320 0.205
Rac™ | (0.19,0.29, 0.29, 0.39) | (0.23, 0.33, 0.37, 0.47) | (0.04, 0.07, 0.14, 0.24)
Rac™T | (0.19,0.29, 0.29, 0.39) { (0.22, 0.32, 0.36, 0.46) | (0.04, 0.08, 0.14, 0.24)
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Table C.5 Aggregation under the fifth attribute (As)

X X2 X3
E, (0.60, 0.80, 0.80, 1.00) | (0.60, 0.80, 0.80, 1.00) | (0.60, 0.80, 0.80, 1.00)
E; (0.60, 0.80, 0.80, 1.00) | (0.70, 0.90, 1.00, 1.00) | (0.80, 1.00, 1.00, 1.00)
E; (0.50, 0.65, 0.65, 0.80) | (0.60, 0.80, 0.80, 1.00) | (0.50, 0.65, 0.65, 0.80)
Degree of Agreement (S)
Si2 1.000 0.900 0.850
Si3 0.850 1.000 0.850
Sa3 0.850 0.900 0.700
Average Degree of Agreement (AA)
AA(E) 0.925 0.950 0.850
AA(E) 0.925 0.900 0.775
AA(E;) 0.850 0.950 0.775
Relative Degree of Agreement (RA)
RA(E)) 0.343 0.339 0.354
RA(E?) 0.343 0.321 0.323
RA(E;) 0.315 0.339 0.323
Consensus Degree Coefficient (CC)
CC(Ey) 0.296 0.294 0.213
CC(Ez) 0.333 0.320 0.194
CC(Es) 0.371 0.385 0.194
Rag™ | (0.57,0.75,0.75, 0.94) | (0.63, 0.83, 0.86, 1.00) | (0.63, 0.81, 0.81, 0.93)
Rac" | (0.56,0.74, 0.74,0.93) | (0.63, 0.83, 0.86, 1.00) | (0.63, 0.81, 0.81, 0.92)
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Table C.6 Aggregation under the sixth attribute (Ag)

Xy X5 X3
E; (0.00, 0.00, 0.00, 0.20) | (0.00, 0.00, 0.00, 0.20) | (0.00, 0.00, 0.00, 0.20)
E; (0.00, 0.20, 0.20, 0.40) | (0.00, 0.20, 0.20, 0.40) | (0.00, 0.00, 0.00, 0.20)
E;3 (0.20, 0.40, 0.40, 0.60) | (0.00, 0.20, 0.20, 0.40) | (0.00, 0.20, 0.20, 0.40)
Degree of Agreement (S)
Si2 0.850 0.850 1.000
Si3 0.650 0.850 0.850
Sa3 0.800 1.000 0.850
Average Degree of Agreement (AA)
AA(EY) 0.750 0.850 0.925
AA(Ey) 0.825 0.925 0.925
AA(E;) 0.725 0.925 0.850
Relative Degree of Agreement (RA)
RA(E)) 0.326 0.315 0.343
RA(E) 0.359 0.343 0.343
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Table C.7 Aggregation under the seventh attribute (A7)
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