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FOREWORD 

Vehicle powertrain plays an important role in vehicle dynamics. The customers 
expect much better driveability for their vehicles each day. In order to have a fine 
tuned driving feel, vehicle dynamics should be studied. One of the main contributors 
to this work is the vehicle mass. Knowing the vehicle mass, calibrating the torque 
output will lead to superior driveability of the vehicle. In order to refer to this issue, a 
light duty vehicle longitudinal dynamics is studied and with related simulations, a 
vehicle mass estimation algorithm is developed. 
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VEHICLE MASS ESTIMATION WITH LONGITUDINAL DYNAMICS FOR A LIGHT 
DUTY VEHICLE 

SUMMARY 

In this thesis, a mass estimation system for a light commercial vehicle is designed. 
First of all, brief information is given on the vehicle dynamics. Later, a mathematical 
model for the vehicle longitudinal dynamic has been derived. Moreover, actual data 
from a LCV has been acquired and the developed model has been supplied with 
these data. Finally, discussions on model validation, mass estimation and gear 
estimation along with the simulation results are presented in the thesis.  
 
This thesis consists of the following sections. In the first chapter, the purpose and 
the already completed works in the literature have been reviewed. In the second 
chapter, some information regarding the vehicle dynamics has been provided. 
Besides the forces acting on a vehicle are explained. In the third chapter, the 
longitudinal dynamic model is proposed. In the next chapter, real data from the 
vehicle along with the simulation results are presented. Finally, the thesis concludes 
up with the discussions and the recommendations.  

During this thesis, computer simulations are performed using MATLAB/Simulink1 
and ATI VISION2. 

                                                 
1 MATLAB/Simulink, is the registered trademark of Mathworks. 
2 ATI VISION, is the registered trademark of Accurate Technologies. 
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HAFİF TİCARİ BİR ARAÇ İÇİN BOYLAMSAL DİNAMİK MODEL İLE ARAÇ 
KÜTLE TAHMİNİ 

ÖZET 

Bu çalışmada hafif ticari bir araç için ağırlık tahmin etme sistemi geliştirilmiştir. 
Öncelikle, araç dinamiğiyle ilgili temel bilgiler verilmiştir. Sonrasında, araç boylamsal 
dinamiği için bir matematiksel model çıkarılmıştır. Bunun üstüne bir hafif ticari 
araçtan alınan datalar, geliştirilen modele beslenmiştir. Son olarak model 
validasyonu, kütle tahmini ve vites tahmini simülasyonlarının sonuçları yayınlanmış 
ve üzerine tartışmalar yapılmıştır.  
 
Bu çalışmanın bölümleri şu şekilde ayrılmıştır. Öncelikle çalışmanın amacı ve 
yapılmış çalışmalarla ilgili literatür taraması yapılmıştır. İkinci bölümde araç 
dinamiğiyle ilgili bilgiler sunulmuştur. Araca etkiyen kuvetler açıklanmıştır. Üçüncü 
bölümde aracın boylamsal dinamik modeli çıkarılmıştır. Bunu takip eden dördüncü 
bölümde gerçek data ve simülasyon sonuçları verilmiştir. Daha sonra tez tartışma ve 
öneriler ile son bulmuştur. 
 
Bu çalışmada, bilgisayar simülasyonları MATLAB/Simulink1 ve ATIVISION2 
kullanılarak gerçekleştirilmiştir 

                                                 
1 MATLAB/Simulink, Mathworks firmasının ticari bir ürünüdür. 
2 ATI VISION, Accurate Technologies firmasının ticari bir ürünüdür. 
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1. INTRODUCTION    

In this first chapter of the thesis, a general overview to the topic the thesis covers is 

given and the borders of this study have been drawn. A lot of previous studies on 

the topic are examined and the necessity and importance of the topic, vehicle mass 

estimation, has been highlighted. Improvement chances on a commercial vehicle 

have been put forward and the outline of the thesis is given. Considering the 

investments in automotive technology, the study contributes in why and how the 

vehicle mass estimation algorithms should be implemented. 

1.1 Purpose of the Thesis 

Throughout the 21st century, the vehicle technology has vastly improved. 

Electronics has taken control over nearly all commercial vehicles and passenger 

cars. Controlling the engine outputs with ECU, considering the vehicle safety with 

ABS, ESP and TCS like modules are just some part of the novelty, the technology 

has yet to provide. Everyday the technology pushes the limits searching further 

improvements mainly based on engine emissions, fuel economy, vehicle safety, 

driveability and NVH concerns.  

The environment, driver and the vehicle are of utmost interest for transportation. 

Powertrain is the major contributing factor in improving the relation between these 

areas. Development on the powertrain is an on-going process, and there has been a 

lot of research to enlighten on which way to go. With the aid of the electronic control, 

firms invest much more each day in developing new technologies for vehicle 

dynamics. One of the main concerns which yet to be improved is the driveability of 

the vehicle. Generally, it is linked directly with the longitudinal dynamics of the 

vehicle. The scope behind these research is to create an optimised driving feel 

according to the environmental conditions and the driver requests. As stated in [1], 

owners of the vehicles are waiting for a more sensitive torque response from the 

powertrain. Characterization of the drive train differs in HDVs and LDVs due to the 

varying loading properties. 
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From manufacturer’s point of view, adding sensors, actuators or any new 

components to the current system brings complexity and is expensive. Therefore, an 

algorithm that is capable of fulfilling its defined functionalities with the current 

equipments on the vehicle is expected. As LDVs have larger mass variances 

according to being loaded or unloaded like HDVs, predicting the mass online will 

have a big contribution in the vehicle dynamics. Thus, accurate estimation of the 

mass for LDVs will lead to new developing areas for vehicle safety, fuel economy 

and driveability based topics. Mass feedback approach is shown in the below figure. 

MASS FEEDBACK

DRIVER 
INPUTS 
pedal, gear, 
brake,clutch

TORQUE 
MAP

VEHICLE 
MASS

?

?

DRIVEABLITY

FUEL ECONOMY

EMISSIONS

NVH

SAFETY

VEHICLE

DYNAMICS
WHEEL 
SPEED

 

Figure 1.1 : Mass Feedback Effect 

In vehicle dynamics, the system performance is directly effected with the difference 

in mass. Besides, it is a matter of fact that disturbances on the torque flow through 

the powertrain causes the mass to be calculated harder. Moreover, there are 

parameters which are unknown in the dynamic equations, like the gradient of the 

road, drag coefficient, rolling resistances, etc... However, it is always possible to 

make assumptions, prior to begin calculations. In order to follow the mass effect, the 

mass of the vehicle could be left as the only unknown in the equations, which will 

lead and force us to make controlled experiments that are not considering the other 

effects on the longitudinal dynamics. From the paper [2], it is seen that the major 

contributors to longitudinal dynamics are engine braking and inertial forces. 
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Figure 1.2: Comparison of Longitudinal Force Spectral Densities [2] 

The experimental conditions and the entry conditions for the algorithm to estimate 

the mass will be selected as to minimize the exterior effects on the calculations. 

These exterior effects on torque calculations could be; torsional vibrations in drive 

shaft, noise factors in the signals, uncertain dynamic of the engine torque, etc... To 

improve the accuracy of the system these exterior effects will be excluded. To not to 

overcomplicate the system, time periods for the algorithm to enable will be chosen 

and conditioning of the signals will be handled. With an engaged drivetrain, the 

system will be able to estimate the mass during an acceleration move.  

In this study, as explained above, estimating the mass of a LDV from the 

longitudinal dynamics is aimed. For the purpose of this thesis MATLAB/Simulink 

and ATI VISION  software are used along with the vehicle’s present CAN line in 

order to collect real data and to run the model simulation. Afterwards commenting 

on the performance of the system for estimating the vehicle mass will be possible. It 

will be further beneficial to determine how it could be possible to introduce the 

algorithm on the vehicle. For estimating the LDV mass, longitudinal vehicle dynamic 

model is used and validated. Performance reviews are given after processing the 

data. 

1.2 Literature Review 

Vehicle mass estimation can be realized with add-on equipment as well as the on-

board ready hardware. It is aimed to realize a model based approach for estimation. 

Below some of the current already developed and applied mass estimation 

techniques can be found. 
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Stated in the Toyota R&D review, Toyota have chosen a way to simplify the 

longitudinal dynamics and has omitted the road grade effect from the equation with 

a smart identification of the road slope from the vehicle speed and the road profile, 

realizing the mass estimation with a 15% accuracy according to the road data 

collected. It is aimed to reduce the necessity for further instrumentation in order to 

calculate the vehicle mass. This approach only utilizes the current hardware 

equipped on the vehicle. As the models created in the simulations are effected 

adversely by the disturbances caused by the unknown inputs and due to interactions 

with the surroundings, for controlling the signal disturbances, some signal 

processing filtering the noise had been done. An integral calculation method in 

estimating the mass is developed. One contributor to the algorithm is the vehicle 

speed and the second contributor is the acting torque. To calculate the acting torque 

filtered engine out turbine speed is utilized, whereas for the output vehicle speed, a 

speed feedback signal is filtered. [3]  

In their paper, Vinstead and Kolmanovsky benefits from the approach of using an 

extended Kalman filter and the model predictive control. Emphasizing the request of 

the drivers, that an improved powertrain response is expected, a vehicle mass 

estimation algorithm is put forward by the authors as the Ford Motor Company 

Powertrain Research and Advanced engineering division. It is stated that lots of the 

signals on the vehicle are estimates and there are no sensors taking measurements. 

Engine torque is one of the signals being estimated and experiments are conducted 

in cruise control mode in order to control the torque actively. This leads a better 

identifiability for the vehicle mass and road grade estimation; whereas a vehicle 

speed trajectory planning is required for the close loop speed control. The approach 

in model predictive control depends on persistent excitations in calculations. The 

mass estimation is carried out by the extended Kalman Filtering and a receding 

horizon optimization with model predictive control is used to amend the parameter 

environment. Using the extended Kalman filter brings computational advantage in 

estimating the dynamic equations. Estimating the unknown, Kalman filter provides 

reduced calculation load due to the fact that it utilizes just the last known value of 

the estimate in order to calculate the next value. As the Kalman filter is settled on 

linear systems, extended Kalman filtering offering a useful application for the system 

in discussion is used. In the tests realized, vehicle speed limitation constraint is 

added and it is seen that the deviation in estimating the mass is higher in the given 

speed trajectory. Moreover, it is highlighted that one of the main disturbances is the 

uncertainties in engine output torque for the model dynamics.  [1]  
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In the study [4] by Mcintyre et all., a two stage based estimator has been developed. 

In order to estimate the mass of the vehicle, a least square method is used. Ready-

to-use available sensors on the vehicle are preferred and estimations are based on 

the outputs of the current sensors. It is emphasized that for a better vehicle 

longitudinal control and transmission control, vehicle mass estimation is desired by 

the automotive industry. As the road grade itself is varying during estimation, a non-

linear estimator pointing this variation is studied as a second step. The following 

assumptions within the study are made; clutch accepted always in engaged position, 

brakes are never applied during calculation period, the coefficients in the dynamic 

longitudinal dynamic equation are constant with time, the input signals are accepted 

to be measurable and road slope is taken as zero. It is aimed not to overcomplicate 

the system as a whole. Gear shifting and braking is handled with care by processing 

the signals. Whereas the actual coefficient values present in the longitudinal 

dynamic equation are changing in time and can not be known all the time, the basic 

model equations are straightforward. The model created is validated via the engine 

speed, net engine torque and vehicle speed signals taken from the CAN line. One of 

the issues raised is due to clutch engagement in calculations. Before the 

disengagement, latest known estimations are taken and even to enhance the 

estimation, preventing the spikes due to gear change, after the engagement 0.4s of 

data is neglected. Experiments conducted with 12400kg and 14000kg weighing 

vehicles. As the road grade estimation is handled as well with the mass estimation, 

a deviation to the mass estimation is constantly added to the simulations in order to 

determine the sensitivity of the model due to the fact that mass estimation depends 

on the road grade estimation. A significant influence is not seen. Finally a 

robustness check is realized by simulating a trip, beginning with a loaded case and 

then unloading the weight. It is seen that an accurate estimation can be made with 

the model with the aforementioned experimental setups.  

In the papers [5] and [6], Vahidi et all. uses a recursive least square method with 

multiple forgetting in order to overcome the disturbance added due to road grade 

variance in time. Based on the linear relationship in the torque equation function with 

the vehicle mass and road grade, a recursive leas square method is sufficient for 

mass estimation. The forgetting method approach is decreasing the weight of the 

older information used in the estimations, due to time-varying dependability of the 

mass estimation. It is seen that with a single forgetting factor, it is possible to face 

blow-ups and wind-ups in the mass estimation during the gear shifts. This is found 

to be due to the fact that the sum of the errors in the calculations of the vehicle mass 

and road gradient is taken into account as a lumped single scalar term. In return, a 

separation of the errors with the multiple forgetting algorithm is proposed. The 



 6  

performance is found to be quite satisfactory. Additionally, the noise factor is tested 

via adding noisy data onto the engine speed and engine out torque data. A second 

method, a Lyapunov function is used to design a dynamic observer for estimation. 

An upper and lower bound for this approach has to be defined for improved 

convergence. It is highlighted that for improved emissions, increase safety and 

better driveability, online parameter estimation is a key contributor. It is stated that 

the mass estimation algorithms running during gear shifting may defeat due to low 

speed variances between gear changes causing low signal to noise ratio. An 

adaptive filter design is desired, as there can be variances on the requested 

parameters. Experiment data with decreasing vehicle load is acquired. Vehicle 

speed and engine torque data is available and taken from the CAN line of the 

vehicle. It is added that, if the brakes are to be applied, acting pressure on the 

wheels need to be measured in order to convert the force and implement into torque 

equations. For sensitivity analysis of the system on rolling resistance, drag 

coefficient and the wheel radii, simulations are carried out.  

Kober and Hirschberg creates a method benefiting from the idea that the mass can 

be estimated with the air-sprung pressure sensors on HDVs. Measured pressures of 

the vehicle’s air springs utilized with the suspension dynamics can lead to good 

estimates of the mass. As the driving safety in lots of the overturning situations 

comes into first place, it is aimed to inform and help the driver by means of any 

modules within the vehicle by providing the load mass data and by defining the 

center of mass information. The adverse effect of the accidents to public economy 

due to uncontrolled vehicles is also stressed. [7] Basic structure of the payload 

identification system can be seen in the below figure. Roll dynamics of the vehicle is 

utilized for the identification process. A recursive least squares method is 

implemented and various J-turn manoeuvres reveals a fine performance during 

steady state periods.  

 

Figure 1.3: Payload Parameter Identification [7] 
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Pence et all. [8] also uses quarter car suspension model for mass estimation and 

from the linear dynamics of the suspension, they estimate the sprung mass with 

RLS method. Off-road terrain conditions bring uncertainties and adversely affect the 

performance of the mass estimation techniques commonly in use. The paper differs 

from the other studies by the applied base excitation concept. Also, for active and 

semi-active suspension systems, suspension actuator forces are taken as input to 

estimate the mass. Two acceleration signals with the spring displacement 

characteristics are utilized to develop a mass estimation algorithm. Quarter car 

suspension model composes of an unsprung mass and a sprung mass as seen in 

the figure below. Taking the unsprung mass acceleration as the system input, the 

algorithm differs from the ones using the ground displacement signal as the input. 

The acceleration signal is integrated along with the developed filter. The recursive 

least square method estimates vehicle sprung mass and the suspension damping 

coefficient continuously. Various simulations are carried out with the model. Tests 

with signal noise addition for linear suspension dynamics, with changing natural 

frequencies for the filter, with changing damping coefficients for the filter, with 

varying vehicle speed and with varying signal-to-noise ratios are conducted. The 

proposed system is able to offer feasible mass estimation for off-road vehicles.  

 

Figure 1.4: 2 DOF Quarter Car Suspension Model [8] 

In the thesis by Johansson and Höglund [16], an approach analyzing the frequency 

response of the driveline system is utilized to estimate the mass of the vehicle. The 

idea is to model the driveline as a spring mass system for mass estimation. Torsion 

of the springs and the velocity of the inertias are taken as the states of the model. A 

representative scheme for the modelling can be seen in the below figure, where 

some simplifications are to be made later on. 

 

Figure 1.5: Stiffness and Moments of Inertia of the Driveline System [16] 
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Solving the natural frequency of the system for the acquired data from CAN line, a 

rough mass estimation is possible and it is stated that the method is no good than 

the existing methods. The main difficulty is defined as lower gears having low 

resonance frequencies, resulting in low engine speed necessity for estimation, 

whereas engine speed less than idle may be required. On the other hand, higher 

gears have less natural frequency sensitivity to vehicle mass making it harder for 

estimation. 

Lingman and Schmidtbauer further explain the difficulties in calculations in their 

study. Caused by the discontinuous propulsion force due to gear change, high 

frequency oscillations are seen on the flexible driveline. On the other hand, 

estimating the vehicle mass during gear change is not possible for the automatic 

transmission, as the driveline is engaged all the time. Another fact is the inconsistent 

torque maps for the engine out and brake torque. The propulsion torque needs to be 

filtered as well. The input torque to the system is gathered by the engine out speed 

and knowing the fuelling quantity. Having considered these, in the paper it is 

suggested that the acceleration is measured with filtered accelerometer data and an 

extended Kalman filtering is used to estimate the vehicle mass apart from the road 

slope. On top of these, other than gathering reasonable mass estimate with just the 

vehicle speed, introducing an accelerometer is found to be improving the 

calculations. The estimations are stated to be robust and the method applicable. [9] 

In the study carried out by Fathy et all., minimum instrumentation is desired. It is 

stated that over certain types of maneouvers, the vehicle dynamics will be lead by 

the inertial dynamics most depending on the perturbation theory. The properties of 

an industry desired mass estimator is given as follows; being simple to run the 

algorithm in real time, being accurate enough to rely on, being responsive to loading 

as fast action is required on varying loads, being robust to road disturbances and 

variance and finally being inexpensive. A mass estimation literature in terms of 

being event-seeking or averaging is given in the paper. Based on suspension 

dynamics, lateral dynamics, powertrain dynamics, longitudinal dynamics many 

methods can be developed being event based or averaging to estimate the vehicle 

mass. The aim is to estimate the mass without direct measurement of the road 

grade and the aerodynamic force. It is seen that the inertial dynamics contributes 

the most in to the longitudinal behaviour with increasing frequencies and the 

absence of the road grade data definitely changes the speed of mass estimation as 

well. The algorithm is in place when the inertial dynamics dominates the vehicle’s 

motion. For the online mass estimation experiments, Fathy et all. uses the recursive 

least square method based on the longitudinal dynamics excluding the effects of the 
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road gradient from the equations. It is shown that the lack of road grade estimations 

can lead to slower speeds of mass estimation. Therefore without the road slope 

data, it is aimed to estimate the mass. Based on the vehicle yaw rate info, the 

decision if the vehicle motion is longitudinal or not is made. Some entry conditions 

for the vehicle includes minimum exerted longitudinal force, minimum velocity and 

acceleration and slip ratio as well. A lead lag band pass filter is utilized for the high 

frequency components. Lower and upper bounds for mass estimation are also 

introduced as to be benefited in practical implementation. The mass estimation is 

found to be viable.  [2] 

The study carried out in Korea [15] by Lee et all., enlightens the interaction and the 

side benefits of mass estimation to other control modules on the vehicle. This paper 

directly deals with the enhancement of the ESP module. An adaptive approach for 

the ESP module is utilized by means of online mass estimation. Longitudinal 

dynamics along with the empirical rolling resistance and empirical drag force 

calculations gives the estimated mass within 2% accuracy, where the frictional 

losses in the powertrain model were neglected. To further improve the results, 

frictional losses are mapped through tests at different gears. For the mass 

estimation, operating conditions are defined, including min engine speed, min 

acceleration and being between specific gear ratios. Reliable mass estimation could 

be observed within the predefined conditions. In accordance to the mass estimation, 

the ESP algorithm gathers the mass change information simultaneously and 

changes the vehicle reference model parameters as related.  An overview of the 

enhanced ESP system is in the below figure.  

 

Figure 1.6: Overview of the Enhanced ESP system [15] 
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Also a PID gain controller is developed with a look-up table in order to adapt the 

parameter variations. A trajectory optimization is utilized offline for determining the 

gains. Having testing the ESP algorithm in simulation environment, it is seen that the 

vehicle stability can be improved.  

Finally, in the study realized for the roll stability by Huh et all. [17]; longitudinal, 

lateral and vertical dynamics are combined in order to estimate the vehicle mass 

and the height of the center of mass of the vehicle. A unified algorithm of RLS for 

longitudinal estimation, Kalman filtering for lateral estimations with the help of the 

vehicle kinematic equations and a dual RLS method for vertical estimations based 

on the sprung mass is used. Three of the techniques are combined in order to 

estimate the mass in different maneuvers. Also disturbance observer technique is 

desired for the increasing robustness. To get performance from the vehicle control 

modules, as much info of the vehicle inertial parameters as possible should be 

known. It is also stated that lot’s of the vehicle mass estimation methods present are 

based on definite vehicle running conditions and much of these require big vehicle 

models. Modelling the longitudinal dynamics, a lumped disturbance term is added 

and a recursive least square with a disturbance observer method is utilized. During 

acceleration without steering, the filter designed is able to estimate mass against the 

disturbances. Lateral velocity is estimated with a Kalman filter using a 2 DOF bicycle 

model. Due to the proposed system being able to estimate based on cornering 

stiffness coefficient and the longitudinal velocity, it is mostly reliable for low-slip 

range conditions. Finally, a multiple forgetting recursive least square estimation is 

used along with the vertical dynamics for estimating the unsprung mass. A state flow 

chart decides which algorithm to take control for mass estimations according to the 

vehicle driving conditions. All three algorithms have some limiting conditions to take 

start estimations. These include the raw rate, steering angle and the acceleration 

limiting conditions. The simulations are run for a road having bumpers, corners and 

a straight path. The resulting estimates for different driving conditions are in good 

coherence to vehicle mass.   

1.3 Outline 

Within this thesis study, parallel to the studies explained above, mass estimation for 

a light duty vehicle is carried out. Within the first chapter an entrance to the topic 

vehicle mass estimation has been made. Besides the purpose of the thesis and a 

literature review including industrial and academic examples has been given in this 

chapter. In the second chapter, information regarding the basic vehicle dynamics is 
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provided. Third chapter deals with the mathematical model derivation described in 

the literature. In the fourth chapter, there is the experimental study represented from 

the data taken from a LDV at FORD OTOSAN. Acquiring data from the vehicle and 

detailing the principles for the model validation is carried out in this chapter. Also a 

gear estimation algorithm is presented aiming to help mass estimation in future. The 

thesis ends with the conclusions and recommendations section. It should be noted 

that the theoretical studies combined with the practical approach leads to good 

results in terms of improving the vehicle control.   
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2. VEHICLE DYNAMICS   

In automotive industry shortening the response time for new designs to meet the 

market needs is always an important point to success. In order to meet the 

demands, engineers rely on the simulations run by high technology computers 

where the actual vehicle can be represented by dynamic models. As the modelling 

needs to be practically applicable, it needs to be kept as simple as possible while 

being as real as possible. In terms of the effort that will be needed, it is not 

necessary to capture every subsystem during modelling the vehicle dynamics. [10] 

Mainly it is possible to divide the contributors to the dynamics to four: Environment, 

Driver, Vehicle and Loading. 

2.1 Environment 

The environment is in an interactive relation with the vehicle dynamics. It effects the 

vehicle in via road profiles, friction and air resistance. Besides it directly affects the 

driver via traffic density and from visibility point of view. As stated in [11], some of 

the key issues in modelling and simulation of the vehicle are the changing road 

gradient; the friction forces appearing between the road and the tyres and the 

aerodynamic forces acting on the vehicle due to vehicle speed and cross winds. [12] 

The environmental forces on the vehicle are seen in the figure below. 

 

Figure 2.1: External Forces [13] 

From the figure, the rolling resistance, the air resistance and the road slope 

resistance is seen. Rolling resistance is due to the tyre and road contact while the 

vehicle is in motion and can be characterized as; 
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)( 21 vm Froll rr cc +=  (2.1) 

In the equation 2.1, m is the vehicle mass, Froll is the total force exerted to the 

vehicle, v is the speed of the vehicle and cr1 and cr2 are the rolling resistance 

coefficient depending on the tyre and road properties. 

The air resistance is due to the shape of the vehicle and can be formulated as 

follows; 

2vCA
2
 Fair
ρ

=  (2.2) 

In the equation 2.2, Fair is the aerodynamic force acting on the vehicle, ρ is the 

density of air, C is the air resistance coefficient, A is the frontal area of the vehicle 

and v is the vehicle speed. 

The road slope resistance is due to road gradient affecting the gravitational force. 

αsinmg Fslope =  (2.3) 

In the equation 2.3, Fslope is the force occurring as a result of gravitational force on 

the vehicle; m is s the vehicle mass and α is the slope angle. 

2.2 Driver 

The driver supplies the model with lots of inputs. He has the access to acceleration 

pedal, break pedal, clutch pedal and gear shifting. Along with the longitudinal 

dynamics, the driver interferes with the lateral dynamics via steering command. In 

accordance to this relation, driver gets feedback for the vertical, longitudinal and 

lateral dynamics of the vehicle. The driver instinctively gets the sounds from the 

tires, engine and environment as well as temperature and speed data, which in 

return changes his control inputs over the powertrain.  

In order to eliminate subjective results which could occur due to the driver 

characteristics, it is provided that the tests have been conducted several times 

obeying the driving profiles. 
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2.3 Vehicle 

Regarding the ISO 3833 regulations, there are types of vehicles including HDVs, 

passenger cars and LDVs. Creating the equations of motion for any of these single 

type, with validating via real data collected from the vehicle, is an invaluable asset to 

develop technology. 

Vehicle dynamics is affected directly by the vehicle type to be considered as the 

dynamics, including longitudinal, vertical and lateral inevitably depends on the 

vehicle mass distribution and the height of the center of mass. 

The vehicle model will include subsystems, consisting of the components; engine, 

clutch, transmission, propeller shaft, final drive, drive shafts and wheel. In the figure 

below for one dimensional longitudinal dynamics of a vehicle, each component 

within the drive line from engine out to wheels can be seen. 

 

Figure 2.2:  A Vehicular Driveline [14] 

The effect of each component for the LDV differ from other vehicles, as the inertias, 

stiffnesses and frictions in the system changes with changing size of the vehicle. 

The accuracy of the engine output torque, the spring dynamics on the clutch, the 

propeller shaft and drive shaft flexibilities add uncertainties to the model and need to 

be worked out in order not to create big disturbances on the model. 

After all of the components are modelled and simplified according to the purpose of 

this thesis, it will be possible to realize further studies on the driveline. The 

mathematical model to be used in simulations will be driven in the next chapter. 
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2.4 Loading 

Talking about commercial vehicles, they are able to carry loads of four or five times 

their mass for HDVs. There is not such a difference for LDVs as well. The LDVs can 

carry loads of one third or nearly half of their weights. This significantly affects the 

driving behaviour of the vehicles.  

The center of mass along with the mass of the vehicle is a major parameter in 

driveability of the vehicles in terms of dynamics. Knowing the mass of the vehicle 

can lead engineers to improve driving feel of the vehicles by implementing adaptive 

torque management algorithms. A LCV to be considered for the rest of the thesis is 

presented below with courtesy of FORD OTOSAN. 

 

Figure 2.3: Ford Transit Connect 

2.5 Performance Criteria 

As per every physical system, vehicle dynamics has limitations. There are control 

authorities limitations, safety module limitations, in fact there are lots of subsystems 

limitations effecting the torque management.  

Therefore, the simulations run by the data collected from the vehicle needs to be 

valid that the model can be used for mass estimation purposes.  
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Discrepancy in the engine out maps and flexible powertrain based elements’ 

oscillation problems should be considered. Whereas the purpose is to estimate the 

vehicle mass with minimum equipment needs, it should be noted that the systems 

stability and robustness should be provided. In order for that, system performance 

criteria should be defined: 

- Being simple, reliable and cheap 

- Able to estimate accurate 

- Being active when the clutch is engaged 

- If necessary, having the high frequency components filtered 

- Working under no brakes applied condition 

- Firstly, working under no road slope condition 

- There is no steering in place. 

- Determine if the method could be applied 

It will be aimed to meet these criteria as much as possible. Having a simple system 

and a responsive accurate system could be difficult to maintain in the same time. 

Simplifying usually derates the responsiveness and the accuracy. Thereof, the study 

will continue to create an optimum model in an iterative way. 

In the end, it will be understood if good estimates of mass can be done without the 

measurement of the road grade and aerodynamic force. 
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3. MATHEMATICAL MODELING 

For the mass estimation of the LDV Ford Transit Connect, the vehicle’s longitudinal 

dynamics will be studied with model based approximation. The parameters 

representing the current model will be provided by FORD-OTOSAN and will be 

entered in the simulations that will be run in MATLAB software along with the input 

data acquired by ATI VISION software.  

3.1 Longitudinal 1D Vehicle Model 

Below are the subsystems that will be used in characterization of the dynamic 

equations to obtain the complete driveline model are presented. Stiffnesses and 

damping coefficient are taken into account for the subsystems accordingly. Every 

single subsystem will then be merged with each other in order to get the 1D 

longitudinal vehicle model. 

 

Figure 3.1: Powertrain Subsystems [14] 
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For the engine characterization, 

cmfrmm TTTJ −= :-
..

mθ  (3.1) 

For the clutch characterization, 

),(
..

cmcmctc fTT θθθθ −−==  (3.2) 

For the transmission characterization, 

),,,,(
..

: ttccttcmfrttp iiiTTfT θθθθ −−=  (3.3) 

For the propeller shaft characterization, 

),(
..

ptptpfp fTT θθθθ −−==  (3.4) 

For the final drive characterization, 

),,(
..

:, fftpffpmfrffd iiTTfT θθθθ −−=  (3.5) 

For the drive shafts characterization, 

),(
..

wfwfddw fTT θθθθ −−==  (3.6) 

For the wheels characterization, 

sloperollairwheel FFFvmF +++=
.

 (3.7) 

Taking into account all the above subsystems and deriving their equations in detail 

which could be found in [14], the following generalized linearized longitudinal 

dynamic model equations can be used: 

For the engine speed, 

))()((
..

: ttmcttmcmfrmm ibikTTJ θθθθθ −+−−= -
..

m  (3.8) 
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For the transmission speed, 
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For the wheel speed, 
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Finally, the general mass equation will be, 
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θθ

ρθθθθθθ
 (3.11) 

With the deriving of the mathematical model for the mass estimation, the road map 

to follow will be to validate the model with the actual inputs and outputs. Afterwards, 

the mass will be estimated in simulation via feeding the actual values to the model.  
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Figure 3.2: Model Based Estimation Process [18] 
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4.  MASS ESTIMATION SIMULATION 

In this fourth chapter, the simulations will be carried out based on the data gathered 

from the vehicle. Related hardware and software will be presented, real world data 

will be acquired, the data will be processed in the computer environment, the 

developed model will be validated and simulations will take place in order to 

estimate the vehicle mass along with a gear estimation algorithm. Combining the 

gear estimation and the mass estimation methods, a supervisory system deciding 

when and how to estimate the vehicle mass will have been derived. The 

performance discussions are also covered within the chapter. 

4.1 Experimental Setup 

The vehicle mass estimation directly deals with the vehicle longitudinal dynamics, a 

system composed from the engine out torque to the vehicle speed. As the system 

input is the engine out torque, with a system output of the vehicle speed and all the 

measurable quantities within the system are all gathered by the electronic control 

module on the engine, it is valuable to take a look at the engine control system as a 

mechatronic system composing of mechanic, electrical and computational parts 

The system can be defined as the plant, controller, actuator, sensors and the CAN 

line carrying the information. Plant is the engine itself which is the controlled system. 

The engine has itself subsystems consisting of the air path control, fuel path 

control,... etc.  Controller is the system producing the controlling and commanding 

signal according to the feedback coming back from the sensors, which reveal the 

plant’s response to the commanding signal. Actuators are the generators of the 

controlling signal whether it is force or pressure or what is needed to derive the 

system. Hydraulic valves, electrical actuators and hydraulic pumps are the current 

examples of the actuators present on the engines. Lastly sensors are the 

measurement system informing the controller about the plant output and the state 

variables. On an engine exists the pressure measurements, temperature 

measurements, position measurements, velocity measurements, flow rate 

measurements and acceleration measurements.  
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An example schematic of the engine control system can be seen below. The engine 

control unit here is defined as powertrain control unit, the actuator in place is the fuel 

pressure pump, the plant is the engine itself and the sensor carries the fuel pressure 

information back o the controller.   
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Figure 4.1:  Engine System CAN Line 

The communication within and outside of the electronic control unit on the vehicle is 

currently handled mostly by the controller area network systems. Knowing the 

addresses of the required labels one can gather the necessary info from the CAN 

line. The CAN line already carries all the information going to actuators and all the 

signals coming back from the sensors. In this study, listening the CAN line will 

enable to record the experimental data desired. 

Experiments are carried out in Gölcük FORD OTOSAN test track on dry conditions. 

Tests are conducted on the part of the track that has no inclination, which will ease 

the calculation of the mass, independent from the road grade estimation factor.  

The vehicle is already equipped with an on-board diagnostic port available due to 

the regulations. The CAN lines are available through the pins on the port. Therefore, 

acquiring data from the vehicle system will be realized via the pins available on the 

diagnostic port. Accurate Technologies hardwares will be used to transfer the data 

from the engine ECU to our MATLAB environment along with their ATI VISION 

software. The network hub hardware is seen below. 

 

Figure 4.2:  Accurate Technologies Network Hub [19] 
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The ATI Vision software is able to provide the data in MATLAB mat format 

simplifying the processing of the data. The software is triggered to record the pedal 

input, clutch position, gear position, brake position, vehicle speed, indicated engine 

out torque value and engine speed with a sampling time of 20ms. All of the channels 

are already found on the engine control unit. 

4.2 Model Validation 

The required parameters in the longitudinal dynamic equation are gathered from the 

related departments and from the suppliers where necessary. Isolating the model for 

specific parameters, the model is validated. 

There are lots of parameters contributing to the model verification that need to be 

considered. From these, the efficient wheel radius is one of the important ones for 

our model to match the actual vehicle speed data and needs to be validated.  

Isolating the wheel radius equation leads to a reduced relation between the engine 

speed and the vehicle speed. Below the efficient wheel radius equation is seen. 
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Running the simulations for estimating efficient radius results in the following figure. 
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Figure 4.3:   Efficient Wheel Radius Estimation 
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The results are multiplied by a constant due to FORD OTOSAN confidence policies. 

Here it is seen that the resulting value converges to 4.5 which is the number given 

by the supplier. Therefore, the wheel radius is validated and estimations can rely on 

the current model. Leaving the desired parameter on the left side of the equation 

provides us to validate each parameter we are interested in. Thus, the approach is 

used to validate the constants in our model as needed. 

Validating the whole model, simulations will be carried out in two ways. The two 

cases will be the clutch being engaged and disengaged. The accuracy of the model 

is tested in these two phases.  

With the simulations carried out, fed with the data clutch being disengaged, the 

results for the engine speed and torque produced can be seen in below figures with 

the pedal input on them. 
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Figure 4.4:  Neutral Gear Torque Produced 

Simulating the disengaged clutch model will obviously isolate the engine out torque 

and will aid in matching the engine related parameters like the engine inertia and the 

friction term. On the other hand, current electronic control modules on the engines 

drive the engine wisely, that there is an idle speed governor algorithm in place. This 

algorithm automatically increases the desired engine out torque request in order to 

overcome the internal friction and auxiliary torque requests.  
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From figure 4.4, it is seen that the torque output fluctuates outside the ramp pedal 

input periods. This is directly related with the idle governor algorithm discussed.  

Therefore, saturation to the engine speed output is introduced to the system in order 

to simulate the idle governor algorithm as it is in the vehicle. Other than that, during 

the ramp pedal input, there is still some torque mismatch, especially at the 

beginning of the input. This can be explained by the torque discrepancies and not 

correlated friction torque losses. Friction torque is known to be calculated as a 

function of engine speed and temperature.  
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Figure 4.5:   Neutral Gear Engine Speed 

Next in figure 4.5, the engine speed response is seen. The engine speed saturation 

on 800 rpm can be seen to simulate the idle governor algorithm in the vehicle. Also 

engine overspeed protection can be seen as well for the engine speeds over 4750 

rpm in the figure. It is observed that the deviation in the beginning, effects the rest of 

the curve in smooth ramp pedal inputs, whereas for impact like pedal inputs, the 

model is more bias to follow the actual values. However, the response is found 

reasonable to continue.  

It is considered to create a sequence of tests if needed, in order to determine 

whether this mismatch is linear and the difference could be added to the model as 

an input changing with changing speed. This could also be realized by creating 

torque maps according to the engine speed, throttle position and temperature 

values.  
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For the second phase, in gear tests are carried out to simulate drive train model 

dynamics. The current model has the clutch, transmission, propeller shaft, final drive 

and drive shaft with wheel dynamics modelled. All of the components of the system 

bring some complexities and difficulties to the system. It is proposed to simulate the 

real world dynamics as much as possible, trying not to eliminate any of the 

components. In the model studied, there exists a linear assumed clutch model and 

also for the drive shaft exists one torsional flexibility.  

Conducting the tests in first gear, no brakes applied, clutch continuously engaged, 

the driveline dynamics state variables are observed and validated. Below the 

resulting torque output of the engine can be seen according to the pedal input given 

to the electronic control unit. 
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Figure 4.6:   First Gear Torque Produced 

From the figure 4.6, there occur several blow-ups in the torque output of the system 

with respect to the pedal input. This is simply due to overcome inertial and resistive 

forces in order to move and accelerate the vehicle. Nonetheless, the torque signal 

has lots of fluctuations. This is the result of the engine maps providing the indicating 

torque. Further signal processing and filtration may be considered if necessary. The 

trend for the torque is reasonable. 

Calculating the vehicle speed, transmission, shafts and wheel dynamics all need to 

be considered. To provide real world conditions, transmission and wheel dynamics 

have saturation limits to simulate mechanical operating ranges. 
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For the vehicle in first gear, figure 4.7 shows the vehicle actual speed with 

simulation results. It is seen that due to unknown rolling motion friction coefficients, 

the simulated vehicle speed reveals a lag in both accelerating and decelerating. In 

this thesis, proposed numbers from the literature will be used. Regarding the delays 

in the simulated vehicle speed, further discussions are focused on the modelled 

clutch and signal filterization lags.  
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Figure 4.7:   First Gear Vehicle Speed 

The response will be accepted as reasonable to continue for mass estimation.  

Running some tests with the clutch being disengaged to simulate and validate the 

engine dynamics, and running some tests with the clutch being engaged to simulate 

and validate driveline dynamics have been conducted. The results reveal that the 

simple longitudinal vehicle dynamic model derived has reasonable figures in order to 

continue with the estimation of the vehicle mass. Besides, the discrepancies in the 

simulation results are found to be acceptable for mass estimation and are not 

considered as road blocks for an initial estimation of the mass. The trends and limits 

of the outputs of the simulations are found to be reasonable. It should also be noted 

that the mass estimation will be done for pre-defined conditions, which will further 

improve the estimation of the mass.      
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4.3 Mass Estimation 

Vehicle mass estimation with the longitudinal dynamics of a light duty vehicle will be 

carried out in this section. The mass estimation will take place during acceleration in 

1st gear, where the road gradient is zero and no steering occurs. 

With the model validated, the mass will be estimated with the equation derived in 

3.1. The simulink diagram of the process is given below in the figure 4.8. 
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Figure 4.8:  Mass Estimation Simulink Diagram 

In order to estimate the mass, the in gear vehicle’s acceleration is followed and 

mass calculation took place in the time period of acceleration. 
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Figure 4.9:  First Gear Acceleration Mass Estimation Results 
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When the acceleration transients come to a steady state, the mass is observed to 

be estimated. The actual mass of 1470 kg can be calculated for the period between 

the beginnings of the peak in the pedal till the time the pedal begins going to zero 

position. However, there are big jumps in the response which need to be handled. 

Having seen the derivative term effects on the output mass estimate, it is studied to 

exclude the effects of the derivative term. Hence, the resulting mass estimate is 

seen to be a continuous and an accurate estimation for the engine speed above 

3000 rpm on the 1st gear while a ramp throttle input was applied. The proposed 

model is within a 5% accuracy error for the below operating conditions.  
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Figure 4.10:  Running Conditions 
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Figure 4.11:  First Gear Acceleration Mass Estimation Results 
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From the estimation, it is seen that, the derivative term effect is handled while there 

is a significant fluctuation on the mass is seen. This is aimed to be referred by 

simply implementing a filter on the output. Introducing a first order low pass filter to 

the system brings a lag along with a smoothened estimation. It is seen in the below 

figure 4.12, that the steady state value of the estimation is shifted to the right due to 

the time delay of the first order filter 
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Figure 4.12:  Low Pass Filtered Mass Estimation Results 

Experiments carried out and having validated the model with the data acquired, the 

proposed mass estimation algorithm is found to be able to determine the vehicle 

mass within the predefined operating conditions with a low-pass filter.  

Conducting further tests with different loading weights will reveal the proposed 

approach’s convergence accuracy better. Therefore, with different scenarios 

observing the system response should be the next step. 
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4.4 Gear Estimation 

It is aimed to gather the gear number during the vehicle operation in order to decide 

when to run the vehicle mass estimation. No extra vehicle instrumentation is 

desired. Thereby, estimating the gear number from a model is preferred. 

Simply deriving the speed conversion equations from engine out to the wheel speed, 

and leaving the gear ratio on the left side of the equation as the unknown, one finds 

the following gear ration equation in 4.2 
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A smart gear selection system is placed in the model. It is possible to include all the 

constant terms in the upper and lower limits as multipliers as well. Also a curve can 

be defined, whose output could give us the gear selected. In here, a wise addition 

block is used in order to detect in which gear the vehicle is. The principle depends 

on the fact that in the same time just one gear may be selected, so that just one of 

the outputs of the system will be a non-zero value providing the current gear. 
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Figure 4.13:  Initial Gear Estimation Algorithm Simulink Block 

Simulations show that the results are affected by the inertia of the system, as the 

gear selection directly depends on the engine and vehicle speed.  



 34  

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

Time [sn]

G
ea
r 
N
um
be
r

Gear Estimation

 

 

Gear Estimate

Actual Gear Signal

 

Figure 4.14:  Gear Estimation Results 

It is seen that during the gear shifts, the model continues to calculate and seems to 

perceive the selected gear wrongly. Selecting the gear between the gear shifts is 

found to be faulty. Thus, if a clutch switch is added to the system, a more accurate 

estimate of the gear position could be obtained, which in return brings complexity to 

the system. It is proposed not to run the estimation during gear shifts. The updated 

algorithm can be found in figure 4.15 
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Figure 4.15:  Enhanced Gear Estimation Algorithm 

Running the clutch added model, the gear estimation is found to be accurate and 

reliable. The results can be seen in the below figure 4.16. In the results seen in the 
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figure 4.17, the actual gear position is even recalculated during the clutch being 

depressed.  Therefore, it can be said that the proposed algorithm is able to provide 

the current gear while the vehicle is running in a robust and simple way. 
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Figure 4.16:  Gear Estimation Results 
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Figure 4.17:  Gear Estimation Results 
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5. CONCLUSIONS AND RECOMMENDATIONS 

In this study, for a light duty vehicle, the mathematical model for the longitudinal 

dynamics has been given. The model has been validated with real data taken from a 

FORD Transit Connect. The results show that, due to the uncertainties in engine 

output torque and signal noises and delays with the high frequency driveline 

dynamics, the model could be further studied. For these grounds, filterization 

needed to be done and the driveline dynamics has been simplified. 

Using the obtained model, the mass estimation for the predefined condition has 

been realized without any instrumentation. Although the mass estimation for a 

certain period is acceptable, further designs and improvements will be better to have 

a more reliable algorithm. It should be stated that the study is beneficial for the 

realization methodology of vehicle mass estimation. A gear estimation algorithm is 

also provided successfully. Studying different driving scenarios and conducting 

sensibility and robustness checks are needed before the implementation of the 

algorithm into the on vehicle software for conducting online tests along with the 

simulations. Trying developing softwares like this one on the vehicle controlling unit 

can be realized with rapid prototyping like embedded softwares. 

Having compared the actual test data results and the simulation results, it should be 

stated that a more accurate estimation can be realized. Introduction of the algorithm 

to the vehicle control methodology needs to be studied and further driving scenarios 

should be validated. During the thesis, vehicle mass estimation methodology for a 

light duty vehicle has been developed successfully and acceptable results of vehicle 

mass have been obtained. 
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