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Department : Mathematics

Programme : Mathematical Engineering

JUNE 2007
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T-S BULANIK SİSTEMLER İÇİN GECİKMEYE BAĞIMLI
GARANTİLİ MALİYET DENETİMİ

ÖZET

Bu tezde, Takagi-Sugeno bulanık modeli ile ifade edilen zamanla değişen
gecikmeli nonlineer sistemler için durum geribeslemesi ile gecikmeye bağımlı
garantili maliyet denetim probleminin çözümü yapılmıştır. Çıkış sinyali ile
ölçülen bir garantili maliyet fonksiyonu ele alınmış, uygun bir Lyapunov-
Krasovskii fonksiyoneli tanımlanarak problemin çözümü için yeter koşullar elde
edilmiş, paralel dağıtılmış dengeleyici yöntemi kullanılarak durum geribeslemeli
denetim kuralı tanımlanmıştır. Zamanla değişen gecikmenin üst sınırı ve
garantili maliyetin suboptimal üst sınırı, sırasıyla, genelleştirilmiş özdeğer
minimizasyon problemi (GEVP) ve bir suboptimal değer bulma yöntemi
yardımıyla sunulmuştur. Tüm sonuçlar gecikmenin büyüklüğüne bağlı olarak
lineer matris eşitsizlikleri biçiminde verilmiştir.

İkinci bölümde, bulanık kümeler ve bulanık sistemlerle ilgili kavramlar
açıklanmıştır. Bulanık ‘if–then’ kurallarının değerlendirme yöntemi ve bulanık
akıl yürütmede kullanılan yöntemler verilmiştir. Takagi-Sugeno bulanık
modelinin özellikleri ve yapısı açıklanmıştır. Bulanık sistem modellemesiyle
ilgili temel bilgiler anlatılmış ve iki yöntem bulanık model oluşturmak için
önerilmiştir. Ayrıca, verilen bir nonlineer sistemden bulanık model oluşturulması
örneklendirilmiştir.

Üçüncü bölümde, T-S bulanık modeli için paralel dağıtılmış dengeleme (PDC)
yöntemi ile denetim tasarımı ve kararlılık koşullarının lineer matris eşitsizliği
(LMI) cinsinden ifade edilmesi anlatılmıştır.

Dördüncü bölümde, durum geribesleme denetleyici yapısı temel alınarak zamanla
değişen gecikmeli Takagi-Sugeno bulanık modeli için gecikmeye bağımlı garantili
maliyet denetim yöntemi sunulmuş, bu amaçla, kontrol çıkış sinyali ile belirlenen
bir garantili maliyet fonksiyonu ele alınmıştır. Tanımlanan problemin çözümü
lineer matris eşitsizliği cinsinden verilmiştir.

Son olarak, sunulan yöntemlerin bir uygulaması verilmiş ve sonuçlar literatürdeki
sonuçlar ile karşılaştırılmıştır.

viii



DELAY-DEPENDENT GUARANTEED COST CONTROL FOR T-S
FUZZY SYSTEMS

SUMMARY

In this thesis work, a solution of delay-dependent guaranteed cost control problem
for nonlinear systems with time-varying delay represented by the Takagi-Sugeno
fuzzy model is achieved by the state feedback controller. A guaranteed cost
function that measured by controlled output is considered and the sufficient
conditions for the solution are obtained by defining a suitable Lyapunov-
Krasovskii functional. The state feedback control law is defined via parallel
distributed compensation technique. The upper bound of time-varying delay and
the suboptimal upper bound of the guaranteed cost is presented by generalized
eigenvalue minimization problem (GEVP) method and an suboptimal value
searching method, respectively. All results are presented in terms of linear matrix
inequalities dependent on the size of time delay.

In the second chapter, some concepts about fuzzy sets and fuzzy systems are
explained. The evaluation procedure for fuzzy if-then rules and the methods used
in fuzzy reasoning are given. The properties and the structure of Takagi-Sugeno
fuzzy model is also described. A basic introduction to fuzzy modeling is given,
and two approaches are suggested for the design of fuzzy models. Furthermore,
an example of fuzzy modeling from a given nonlinear system is presented.

In the third chapter, the presentation of the stability conditions in terms of LMIs
and the controller design by PDC for T-S fuzzy models are explained.

In fourth chapter, a delay-dependent guaranteed cost control method for Takagi-
Sugeno fuzzy model with time-varying delay is presented based on the state
feedback controller structure and for this purpose, a guaranteed cost function
that measured by controlled output is considered. The solution of the problem is
given in terms of linear matrix inequalities.

Finally, an application of the presented methods is given and the results are
compared with the results in the literature.
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1. INTRODUCTION

1.1. General Background

The theory of fuzzy logic stems from Zadeh’s work on fuzzy sets in [8]. Since the

basis for fuzzy logic is the basis for human communication, fuzzy logic enables

us to describe complexity and uncertainty in a mathematical form like the way

human can describe complexity and uncertainty with natural language. Thus, by

using fuzzy logic, it is possible to describe a model for systems that are difficult

to be represented by analytical models.

The fuzzy logic technique was first applied to control applications by Mamdani

in [36]. After that some fuzzy control systems design methods have appeared

in fuzzy control field. Among various kinds of fuzzy control methods, Takagi

and Sugeno proposed a fuzzy model in [3] with a design and analysis method for

fuzzy systems. They introduced the concept of representing nonlinear systems

using fuzzy models. After that many researches have focused on this model-based

approach for controlling nonlinear systems.

T-S fuzzy model is described by fuzzy IF–THEN rules which represent local

linear input-output relations of a nonlinear system. In T-S fuzzy model, the local

dynamics of each rule is represented by a linear system model. The overall fuzzy

model of the objective system is achieved by aggregation of the linear models.

For any given control system, the most important question about its various

properties is the stability. The most frequently employed method for stability

analysis of control systems is the well-known Lyapunov method. The idea of

the method is to discuss the stability of a solution of the given system through

the time-derivatives of a Lyapunov function along the trajectories of the given
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system [43]. Thus, it is possible to analyze the stability of a solution of the

systems without solving the associated equations.

A fuzzy control system is a system with fuzzy controller. The control design

is carried out based on the fuzzy model via the so-called parallel distributed

compensation method [18, 23]. The idea is that for each local linear model, a

linear feedback control is designed and the resulting overall controller, which

is nonlinear in general, is aggregation of each individual linear controller. The

appeal of PDC controller design is that the Lyapunov function based techniques

can be directly employed for the stability analysis and control synthesis of T-S

fuzzy models [11, 18].

In classical T-S fuzzy models, there is no delays in the state. However, nonlinear

systems with time-delay are very common in real processes such as chemical

processes, biological systems, network systems and so on. Time-delays are often

a source of instability and degradation in control performance in many control

systems.

In recent years, many authors investigated the stability and control of

nonlinear systems with time-delays by using T-S fuzzy models [1, 2, 46, 47].

The stabilization problems for time-delay systems can be classified into two

types: delay-independent stabilization [48, 49] and delay-dependent stabilization

[50, 51]. Delay-independence, contrary to delay-dependence do not include any

information on the sizes of delays. It is possible that the controller which is

obtained independent of the size of the delay, cannot stabilize a time-delay

system. In this case, a controller designed with the consideration of the size

of the delay may work better. The delay-independent stabilization for linear

time-delay system has been extensively studied, and it is considered more

conservative in general than the delay-dependent case. T-S based fuzzy control

for nonlinear time-delay systems is first considered in [46, 47] which is only for

delay-independent stabilization. There are seldom literatures that consider the

delay-dependent stabilization for T-S fuzzy systems with time-delays because of

the difficulties in controlling the nonlinear dynamics and applying PDC [1].
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The delay-dependent stability for T-S fuzzy systems with delay which is a function

of time is studied under some constraints. Two of the constraints are the model

transformations in the system and the upperbound 1 on the derivative of the

time-delay function. First constraint makes the result conservative and the second

constraint do not allow the solution for fast time-varying delays. Note that, in

this thesis, we don’t use any model transformation and also there is no upper

bound on the derivative of the delay function.

In addition, it can be required to design a control system which is not only

stable but also guarantees an adequate level of performance. An approach to this

problem is the so-called guaranteed cost control approach which is introduced in

[52]. The guaranteed cost control approach provides an upper bound on a given

performance index while stabilizes the system. Thus the system performance

degradation is guaranteed to be less than this bound.

Generally, a time-delay in a system is expressed by a constant, but a time delay

can be a function of time. This type of systems are called time-varying delay

systems and this can be considered as an extension of the constant delay case.

In a control system, there can be time delays in both the state and control of the

dynamic part. But we assume that there is no delay in control part.

1.2. Problem Statement

We consider a nonlinear time-delay system represented by the T-S fuzzy system

with time-varying delays

Rule i :

IF M1(t) is Fi1 and M2(t) is Fi2 and . . . and Mg(t) is Fig

THEN





ẋ(t) = Aix(t) + Adix(t− σ(t)) + Biu(t)

z(t) = Czix(t) + Czdix(t− σ(t)) + Dziu(t)

x(t) = ϕ(t), −σ̄ ≤ t ≤ 0

(1.1)
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where i = 1, 2, . . . , n̄; n̄ is the number of the IF-THEN rules, x ∈ Rn denotes the

state vector; u ∈ Rnu and z ∈ Rnz are the control input and controlled output,

respectively; σ(t) is the time-varying delay in the state and it is assumed to be

0 < σ(t) ≤ σ̄ and σ̇(t) ≤ β < ∞ for β, σ̄ ∈ R; Fij is the fuzzy set, g is the number

of the fuzzy sets Fij and M1(t),M2(t), . . . , Mg(t) are the premise variables.

We consider the following cost function

J =

∫ ∞

0

‖ z(t) ‖2
2 dt =

∫ ∞

0

zT (t)z(t)dt (1.2)

Then the guaranteed cost control is defined as follows.

Definition 1.1. Consider the system (1.1). If there exists a fuzzy control law

u(t) and a scalar δ(σ̄) such that the closed-loop system is asymptotically stable

and the closed-value of the cost function (1.2) satisfies J ≤ δ(σ̄), then δ(σ̄) is said

to be a guaranteed cost and the control law u(t) is said to be a guaranteed cost

control law for (1.1).

Our objective is to provide some sufficient conditions for stability of the T-S fuzzy

system with time-varying delay with a guaranteed cost performance.

1.3. Outline of the Thesis

In the first chapter, a brief introduction to the context of the work is given.

In chapter two, some concepts about fuzzy sets and fuzzy systems are explained.

A basic introduction to fuzzy modeling is given. The properties and the structure

of Takagi-Sugeno fuzzy model is described and two approaches are suggested for

the design of fuzzy models.

In chapter three, the parallel distributed compensation and linear matrix

inequality concepts are explained.

In the fourth chapter, the theorems for the stated problem are proved.

4



In the fifth chapter, an application of the methods is given. After that, conclusion

of the study is summarized.

In this thesis, if not stated, matrices are assumed to have compatible dimensions.

For the matrices S and T , S > 0 means that S is a positive definite matrix and

S > T means that S − T > 0.

5



2. FUZZY SETS AND SYSTEMS

2.1. Fuzzy Set Theory

This chapter contains only the basic information for fuzzy set theory that we will

need in this thesis. For more and detailed information [6 − 8] and [31] can be

referred.

Here, we use the notation A for a classical set A and the notation A for a fuzzy set

A, and X represents the universe of discourse, that is the universe of all available

information on a given problem.

2.1.1. Fuzzy sets

In classic set theory, a set is defined by certain properties and it has unambiguous

boundaries. For this reason, a classical set can only represent certainty like

“positive integers less then 10”, that is {x ∈ Z | x < 10}. Thus an element x

in the universe X is either a member of a set A or it is not as shown in Figure

2.1. For example, the point a in Figure 2.1 is clearly a member of the set A and

its membership in the set can be represented by the value 1 and the point b in

Figure 2.1 is clearly not a member of A and its membership in the set can be

represented by the value 0.

X

A

a

b

Figure 2.1: Diagram for a crisp set
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This binary issue of membership can be represented mathematically with the

characteristic function as follows:

χA =





1, x ∈ A

0, x /∈ A

χA : X → {1, 0}

In fuzzy set theory, a fuzzy set is defined by ambiguous properties; hence it

has ambiguously specified boundaries as shown in Figure 2.2. Thus, a fuzzy set

can represent uncertainties like the linguistic terms “tall”, “very soft” or “hot”.

Elements of a fuzzy set have varying degrees of membership in the set. For

example in Figure 2.2, the point a is clearly a full member of the fuzzy set and

its membership in the set is represented by the value 1. The point b is clearly

not a member of the fuzzy set and its membership in the set is represented by

the value 0. However, the membership of the point c is ambiguous since it is on

the boundary region and its membership is represented by an intermediate value

on the interval [0, 1].

X

A

a

b
c

Figure 2.2: Diagram for a fuzzy set

There, elements of a fuzzy set are mapped to a universe of membership values

using a function which maps elements of a fuzzy set A to a real number interval

[0, 1]. This function is called the membership function and the membership

function of a fuzzy set A is expressed by

µA : X → [0, 1]

7



In fuzzy set theory, standard sets are viewed as exceptional cases of fuzzy sets.

The standard sets are called crisp sets and the word crisp indicates clearly defined

boundaries. The characteristic function χA of a crisp set A corresponds to the

membership function of A. A membership function graphic for the fuzzy set

‘real numbers about a+b
2

’ and the characteristic function graphic for the crisp

set {x ∈ R | a ≤ x ≤ b} are illustrated in Figure 2.3.

a b
0  

0.5

1  

x

µ

(a)

a b
0  

0.5

1

x

χ

(b)

Figure 2.3: A membership function and a characteristic function

Therefore, the definition of a fuzzy set can be given as follows.

Definition 2.1. [8] A fuzzy set A in X is a set characterized by a membership

function µA(x) which associates with each point x in X a real number in the

interval [0, 1], with the value of µA(x) at x representing the grade of membership

of x in A.

2.1.2. Fuzzy set operations

Set operations similar to the crisp sets can be defined for fuzzy sets. But

these operations are not uniquely defined as for crisp sets due to the fact that

membership functions can have any value in the interval [0, 1] for any element in

a fuzzy set. Let us consider the fuzzy sets A, B and C on the universe X. For

a given element x of the universe, the following operations of union, intersection

8



and complement with most common forms are defined for A, B and C on X.

Union : µA∪B(x) = µA(x) ∨ µB(x)

Intersection : µA∩B(x) = µA(x) ∧ µB(x)

Complement : µĀ = 1− µA(x)

where the symbol ‘∨’ denotes the maximum operator and the symbol ‘∧’ denotes

the minimum operator and Ā is the complement of a set A. Also, the intersection

operation for fuzzy sets can be defined by µA∩B(x) = µA(x)µB(x) which is the

multiplication of the two membership grades.

The whole set X, a subset A and the null set ∅ has the following properties:

Containment : A ⊆ X ⇒ µA(x) ≤ µX(x)

For all x ∈ X, µ∅(x) = 0

For all x ∈ X, µX(x) = 1

As seen above, the null set ∅ and the whole set X are crisp sets. Also, if the fuzzy

sets are replaced by some crisp sets and the membership functions are replaced

by characteristic functions of the above equations, the similarity between fuzzy

and crisp set operations can be seen.

De Morgan’s laws hold for fuzzy sets as denoted by

A ∩B = Ā ∪ B̄

A ∪B = Ā ∩ B̄

All other operations on crisp sets also hold for fuzzy sets. Also fuzzy sets

follow the same properties as crisp sets such as commutativity, associativity and

distributivity, except for the excluded middle laws. Since fuzzy sets can overlap,

a set and its complement can also overlap, thus these two laws do not hold for

fuzzy sets. The excluded middle laws for fuzzy sets are expressed by

A ∪ Ā 6= X

A ∩ Ā 6= ∅

9



If the collection of all fuzzy sets and fuzzy subsets on X is denoted as the fuzzy

power set P (X), then the cardinality of P (X) is infinite, based on the fact that

all fuzzy sets can overlap.

Some important definitions for fuzzy sets are given below.

Definition 2.2. The height of a fuzzy set A, hgt(A), is the largest membership

grade obtained by any element in A, that is

hgt(A) = sup
x∈X

µA(x)

A fuzzy set A is called normal when hgt(A) = 1 and it is called subnormal when

hgt(A) < 1.

Definition 2.3. The core of a fuzzy set A, core(A), is the crisp set that contains

all the elements of the universe such that µA(x) = 1, that is

core(A) = {x ∈ X | µA(x) = 1}

Definition 2.4. The support of a fuzzy set A, supp(A), is the crisp set that

contains all the elements of the universe that have nonzero membership grades

in A, that is

supp(A) = {x ∈ X | µA(x) > 0}

If supp(A) is finite, it is called compact support.

Definition 2.5. If, for any elements x1, x2 and x3 in a fuzzy set A, the relation

x1 < x2 < x3 implies that

µA(x2) ≥ min[µA(x1), µA(x3)]

then A is called a convex fuzzy set.

Definition 2.6. A fuzzy set A, a subset of R, is a fuzzy number if the fuzzy set

is convex and normal, membership function is piecewise continuous and the core

consists of one point only. The fuzzy set A with the same restrictions but with a

core that consists of more than one point is called fuzzy interval.

An example of fuzzy number which can be called “about 1” can be given by

µA(x) = e−β(x−1)2 .

10



2.1.3. Fuzzy relations

We consider only the most common case for a relation which is given for two

universes. However, the idea can be extended for more universes, easily. Although

there are other methods [6, 30], we will use the Cartesian product method to assign

values to characterize a fuzzy relation.

The Cartesian product of two universes X and Y is determined as

X × Y = {(x, y) | x ∈ X, y ∈ Y }

which forms an ordered pair of every x ∈ X with every y ∈ Y .

Fuzzy relations map elements of one universe to those of another universe through

the Cartesian product of the two universes. For two universes X and Y , a fuzzy

relation R can be defined as a mapping from the Cartesian space X × Y to the

interval [0, 1] where the strength of the mapping is expressed by the membership

function µR(x, y) of the relation for ordered pairs (x, y) ∈ X × Y .

Let A be a fuzzy set on universe X and B be a fuzzy set on universe Y , then

the Cartesian product between fuzzy sets A and B will result in fuzzy relation R

which is contained within the full Cartesian product space, that is

A×B = R ⊂ X × Y

where the fuzzy relation R has the membership function

µR(x, y) = µA×B(x, y) = µA ∧ µB

The Cartesian product defined A × B = R is not the same operation as the

arithmetic product. It is implemented in the same fashion as is the cross product

of two vectors. Each of the fuzzy sets could be thought of as a vector of

membership values. Each value is associated with a particular element in each

set. Thus, for a fuzzy set A that has n elements and for a fuzzy set B that has

m elements, the resulting fuzzy relation R can be represented by a matrix of size

n×m.
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Let R and S be fuzzy relations on X × Y . Since a fuzzy relation is also a fuzzy

set, then some set operations for the fuzzy relations can be defined as follows:

Union : µR∪S(x, y) = µR(x, y) ∨ µS(x, y)

Intersection : µR∩S(x, y) = µR(x, y) ∧ µS(x, y)

Complement : µR̄(x, y) = 1− µR(x, y)

Similar to the fuzzy sets properties, all the properties of commutativity,

associativity, distributivity, involution and idempotency, except the excluded

middle laws, all hold for fuzzy relations. Since a fuzzy relation R is also a fuzzy

set there is overlap between a relation and its complement, hence,

R ∪ R̄ 6= E

R ∩ R̄ 6= 0

where 0 denotes the null relation and E denotes the complete relation. Also fuzzy

relations has the property of containment as follows:

R ⊂ S ⇒ µR(x, y) ≤ µS(x, y)

2.1.4. Fuzzy composition

For a fuzzy relation R in X × Y and a fuzzy relation S in Y × Z, a relation

can be defined which relates the same elements in universe X that R contains

to the same elements in universe Z that S contains by using the composition

of the relations R and S. There are many forms of the composition operation.

Each of them can be used for different kind of situations or problems. Three

forms of composition operations, the max-min, the min-max and the max-star

compositions, are given below, respectively.

R ◦ S : µR◦S(x, z) =
∨

y∈Y {µR(x, y) ∧ µS(y, z)}
R2S : µR2S(x, z) =

∧
y∈Y {µR(x, y) ∨ µS(y, z)}

R ∗ S : µR∗S(x, z) =
∨

y∈Y {µR(x, y) ∗ µS(y, z)}

where ∗ on the right side of the max-star composition is defined as a binary

operation. For example, if multiplication dot, “•”, is used for the star, the max-
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product composition which is an important composition operation, is obtained.

Also it is straightforward to see that

R2S = R̄ ◦ S̄

We will only use the symbol “◦” for any composition operation in this thesis.

2.1.5. Membership functions

Since the membership function is the underlying power of fuzzy sets, its

description is the essence of a fuzzy property or operation. There are many

methods described on literature to assign membership functions to fuzzy variables

for certain types of problems and for their data or knowledge bases. The

assignment methods are based on intuition ability of human or based on some

algorithmic or logical operations. Some of the methods are intuition, inference,

rank ordering, angular fuzzy sets, neural networks, genetic algorithms, inductive

reasoning, soft partitioning, meta rules and fuzzy statistics [6, 38− 40].

Intuition method is derived from the capacity of humans to develop membership

functions through their own intelligence, understanding and also experience.

Intuition involves semantic knowledge about an issue and linguistic truth values

about this knowledge. For example, if we consider the membership functions for

the fuzzy variable temperature, we can define membership functions for ‘cold’,

‘warm’ and ‘hot’ by using our knowledge according to the range of human comfort

as in Figure 2.4.

In the inference method, we use knowledge to perform deductive reasoning. Thus,

we infer a conclusion for a given knowledge or data. One example of this method

can be given as follows.

Consider an elliptic shape with parameters a and b as in Figure 2.5.

Mathematically, we know that a circle results when a
b

= 1 thus we can infer

a membership function as in Figure 2.5 by using our knowledge.
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Figure 2.4: Example membership functions for temperature
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Figure 2.5: Elliptic shape and membership function for circle

For other methods and the details of these methods, [6], [31], [34] and the

references cited therein can be seen. Here, four mostly used types of membership

functions; singleton, trapezoidal, triangular and Gaussian, are described.

The simplest membership function type is the singleton function which is defined

by

µ(x; x́) =





1, if x = x́

0, otherwise

Trapezoidal membership functions are used when piecewise linear membership

functions are needed. Because of their simplicity and efficiency with respect to

computability, they can be useful in many situations. This function defined by

14



four parameters, a, b, c and d, can be described as follows:

µ(x; a, b, c, d) =





0, x < a , d < x

x−a
b−a

, a ≤ x ≤ b

1, b < x < c

d−x
d−c

, c ≤ x ≤ d

The trapezoidal function with parameters a, b, c and d can be illustrated as in

Figure 2.6

a b c d
0  

1  

µ

Figure 2.6: Trapezoidal membership function

For b = c the trapezoidal function turns in to triangular membership function.

An example of the triangular membership function is illustrated in Figure 2.3.a.

When smooth transitions are required for membership values, which the

trapezoidal functions do not have, functions like Gaussian, bell and sigmoidal

can be used with respect to the parameters of the application. The Gaussian

membership function defined by two parameters σ and c can be characterized by

µ(x; σ, c) = exp(−(x− c)2

2σ2
)

An example for the Gaussian function for σ = 0.05 and c = 1 was illustrated for

the fuzzy set circle in Figure 2.5.
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2.2. Fuzzy Logic

A fuzzy logic proposition P is a statement involving some concept without clearly

defined boundaries like linguistic statements such as “the temperature is very

high” or “the weather is fine”. These statements express subjective ideas but can

be interpreted by anyone.

Generally, a fuzzy proposition is written as

x is A

where A is a fuzzy set and x is called the fuzzy variable. Fuzzy variables are also

called linguistic variables and are expressed in terms of fuzzy sets.

In classical logic, propositions are assigned a value 1 or 0 according to the truth

of the proposition. Similarly, a fuzzy proposition is assigned a truth value. But

in fuzzy logic, the truth value assigned to a fuzzy logic proposition can be any

value on the interval [0, 1]. Suppose fuzzy logic proposition P is assigned to fuzzy

set A, then for a crisp point x the truth value of the proposition P , denoted by

T (P ) is given by

T (P ) = µA(x)

where µA(x) is the grade of membership of x in A and 0 ≤ µA ≤ 1. This

indicates that the degree of truth for the proposition “P : x is A” is equal to the

membership grade of x in the fuzzy set A. If x is a fuzzy set with a membership

function µx, then the truth value of P is defined as

T (P ) = hgt(µx ∩ µA)

Let P and Q be two fuzzy logic propositions on the same universe of discourse.

P defined on fuzzy set A and Q defined on fuzzy set B can be combined using

the following logical connectives to form logical expressions involving the two

propositions:

Negation : P̄ : x is NOT A

T (P̄ ) = 1− T (P )
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Disjunction : P ∨Q : x is A OR x is B

T (P ∨Q) = max(T (P ), T (Q))

Conjunction : P ∧Q : x is A AND x is B

T (P ∧Q) = min(T (P ), T (Q))

Implication : P → Q : x is A THEN x is B

T (P → Q) = T (P̄ ∨Q) = max(T (P̄ ), T (Q))

Note that, these definitions are subject to change and can be customized according

to the field that the fuzzy logic is applied. For example, in T-S fuzzy model

generally product operation is used for conjunction operation. This will be shown

in the next sections. The disjunction and the conjunction operations are also

known as the “OR” and the “AND” operations, respectively.

The implication P → Q can be read as ‘P implies Q’ and can described as (either

“x is not A” OR “x is B”). It can involve two different universes of discourse and

can be also represented by a fuzzy relation R. The given implication operation

above is the one presented by Zadeh in [32]. There are other techniques for

obtaning the implication of two propositions in the literature [6].

The implication connective can be modeled in rule-based form, that is P → Q is

IF x is A THEN y is B

and it is equivalent to the fuzzy relation R such that R = (A × B) ∪ (Ā × Y )

in set-theoretic form where Y is the universe that B belongs. The membership

function of R can be expressed as follows:

µR(x, y) = max[(µA(x) ∧ µB(y)), (1− µA(x))]

When the logical implication is of the compound form

IF x is A THEN y is B ELSE y is C

then the equivalent fuzzy relation, R, is expressed as R = (A × B) ∪ (Ā × C)

whose membership function is expressed by the following formula [6]:

µR(x, y) = max[(µA(x) ∧ µB(y)), (1− µA(x) ∧ µC(y))]
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The if-part of the rule “x is A” is called the antecedent or premise and the the

then-part of the rule “y is B” is called the conclusion or consequence.

Consider the following rule-based format to represent fuzzy information:

Rule 1 : IF x is A THEN y is B

where A and B represent fuzzy sets in universes X and Y , respectively. Now

consider a new rule with a new premise A′ as below:

Rule 2 : IF x is A′ THEN y is B′

Now we can derive the consequent in Rule 2, that is B′, from the information

derived from Rule 1 by using fuzzy compostion. The consequent B′ can be found

from

B′ = A′ ◦R

Note that, if we use the original premise A in the fuzzy composition, generally

we don’t get the original fuzzy consequent B [6].

If we use product implication and max-product composition the membership

value of B′ is given as follows.

µB′(y) = max
x∈X

(µA′(x)µA(x)µB(y)) (2.1)

for an input A′.

2.3. Fuzzy If-Then Rules

Fuzzy logic is a convenient way and a powerful tool to map an input space to an

output space when we need to develop a system to deal efficiently with imprecision

and nonlinearity. The primary mechanism for doing this is the if-then rules which

are also a list of conditional statements and fuzzy reasoning is the basic tool for

a rule-based system.

Consider the following if-then rule:

IF x is A THEN y is B
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Here for a given input variable x the premise returns a single value between 0

and 1 then according to this value the consequent assigns the entire fuzzy set B

to the output variable y.

The premise of an if-then rule can have multiple parts. For example, a rule for a

simple air-conditioning system can be defined as

IF temperature is high AND humidity is normal

THEN cooling is high

In this case, all parts of the premise are calculated simultaneously and resolved

to a single value using the logical operators in the premise as explained in the

previous sections.

Also, the consequent of a rule can have multiple parts such as

IF temperature is high AND humidity is normal

THEN cooling1 is high1

cooling2 is normal2

In this case, all consequents are affected equally by the result of the premises.

The implication operation modifies the fuzzy set, that consequent assigns to the

output, to the degree specified by the premise as mentioned in the previous

section. Two common ways to modify the output fuzzy set are the minimum

function and the product function.

Also, generally there is more than one rule in an if-then rule-based system and

for this reason the output of each rule must be aggregated to obtain the total

system’s output. Generally, ‘OR’ operation is used to aggregate. In multiple

rules case, note that the rules are evaluated in parallel and the order of the rules

is not important. In a multiple rule system, every rule can have a weight which

is a value between 0 and 1 and applied to the number given by the premise.

2.4. Fuzzification

Fuzzification is simply to map a crisp value into a fuzzy set. The fuzzy rule-based

inference systems operate on fuzzy sets to produce fuzzy sets. Generally, the
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inputs to the fuzzy systems are crisp values. Thus, these must be converted to

fuzzy sets. This operation is done by fuzzifiers. A fuzzifier maps a crisp point x

into a fuzzy set A′.

There are two types of fuzzifiers. When an input variable need to be a single

numerical value, the fuzzy set is given by a singleton

µA′(x) =





1, if x = x′

0, otherwise

where x′ is the input. This is called a singleton fuzzifier.

If the input contains noise, uncertainty or inaccuracy, it can be modeled by using

a fuzzy number. This type of fuzzifiers are called nonsingleton fuzzifiers. For

example, a triangular fuzzification which maps a crisp value into a triangular

membership function is a nonsingleton fuzzifier.

Nonsingleton fuzzification methods add computational complexity to the process.

Thus, most often, singleton fuzzification is used because of simplicity. Also we

will use this type of fuzzification in the later sections.

2.5. Defuzzification

In many applications, the output of a fuzzy system must be a crisp value. Since

the outputs of the fuzzy if-then rules are fuzzy sets or values, these must be

mapped into crisp numbers. This is done by defuzzification methods. For a

defuzzification which is a mapping from the set B′ in the universe Y to a point

y′ in Y , some of the methods can be listed as follows.

Consider the following if-then rules and assume that the singleton fuzzifier is

used:

Rule i :

IF x1 isAi1 AND x2 isAi2 . . . AND xr isAir

THEN yi isBi, i = 1, 2, . . . , n
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Center of gravity: y′ =

∫
Y

µB′(y)ydy∫
Y

µB′(y)

This defuzzifier determines y′ as the center of the area under the membership

function µB′(y).

Center average: y′ =

∑n
i=1 wiyi∑n
i=1 wi

where yi is the center of ith output fuzzy set and wi is its height.

For singleton fuzzification of the inputs x′k and by using product inference as in

(2.1), the height of the ith fuzzy set B′
i is obtained as

wi =
∏r

k=1 µAik
(x′k)µBi

(yi)

The advantage of product over minimum operator is the fact that all of the inputs

will have an effect on the output in the case of multi dimensional input space. If

the min operation is used, only one input has effect on the output.

These two methods can be referred by different names in literature. Center

average defuzzifier can be considered as a special case of center of gravity

defuzzifier in the case of symmetric output sets. There are more than two

defuzzification methods in the literature and each of them has various advantages

in different applications [6, 7, 35]. Note that, the given two methods do not just

defuzzify the output sets, but also they aggregate the outputs of all the rules.

2.6. Fuzzy Systems

A fuzzy system can be viewed as a mapping from given inputs to outputs using

fuzzy logic. It is a set of rules and involves all the tools that we explained in the

previous sections. Fuzzy inference systems have been successfully applied in many

fields and it is known by a number of different names such as fuzzy rule-based
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system, fuzzy expert system, fuzzy model, fuzzy associative memory or simply

fuzzy system.

The inputs and outputs values of a fuzzy system can be fuzzy or crisp values.

But we only consider the crisp values case for generality since in this case the

inputs are first fuzzified and the outputs are defuzzified. Also, we explain the

fuzzy inference process for one output for simplicity.

The fuzzy inference process can be described in six steps. Since, the methods are

explained in the previous sections, we only give brief definitions of these steps as

follows:

Step 1 Fuzzification: Since fuzzy inference system operates on fuzzy sets to

produce fuzzy sets, the crisp input values are converted to fuzzy sets by

using a suitable fuzzification method.

Step 2 Proposition matching: The truth values of each proposition in the

premises are determined according to the inputs.

Step 3 Premise conjunction: Using the appropriate operations for the

connectives in the premises, the firing strength of each rule is calculated.

Step 4 Implication: An implication operation is applied from the premise to the

consequent for each rule.

Step 5 Aggregation of the consequents: The outputs of the rules are aggregated

by using the OR operator. Each of the fuzzy output in the consequent of

each rule is evaluated independently.

Step 6 Defuzzification: Since generally the output of a fuzzy system must be

a crisp value, the fuzzy output of the system is defuzzified by using an

appropriate defuzzifier, for example, by using center average defuzzifier.

Simply, a fuzzy system can be illustrated as in Figure 2.7.
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Figure 2.7: Diagram of a generic fuzzy system.

There exist two major types of fuzzy models, Mamdani fuzzy models [36] and

Takagi-Sugeno fuzzy model [3], according to the different output formulations of

the fuzzy rules. In Mamdani type fuzzy models, the consequence of each fuzzy

rule is a fuzzy set. In T-S type fuzzy models, the consequence of each fuzzy rule

is a function of the premise variables of each rule.

Mamdani type fuzzy model is also called linguistic or standard fuzzy model and

it is first presented in [36]. Mamdani model is very useful for human-machine

interfaces, because of its simple linguistic nature [33, 36]. The model rules have

the structure of the form

Rule i :

IF x1 isAi1 AND x2 isAi2 . . . AND xr isAir

THEN yi isBi, i = 1, 2, . . . , n

where Aij and Bi are fuzzy sets in the universes Xj ⊂ R and Y ⊂ R, respectively.

The fuzzy or linguistic variable x = (x1, . . . , xr) is an input to the fuzzy system

and a vector of dimension r in X1× . . .×Xr. yi is the output of the ith fuzzy rule

and a fuzzy variable in Y . For computational tools and examples of Mamdani

type, Matlab fuzzy logic toolbox user’s manual [42] can be referred.

T-S fuzzy model is first proposed in [3]. In the next section the T-S fuzzy model

will be explained.
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2.7. T-S Fuzzy Model Description

The ith rule for the continuous-time Takagi-Sugeno fuzzy system described by

fuzzy IF-THEN rules is of the following form:

Rule i :

IF z1(t) isMi1 and . . . and zp(t) isMip

THEN





ẋ(t) = Aix(t) + Biu(t)

y(t) = Cix(t), i = 1, 2, . . . , r.
(2.2)

Here, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, y(t) ∈ Rq

is the output vector, Mij is the fuzzy set and r is the number of model rules,

Ai ∈ Rn×n,Bi ∈ Rn×m and Ci ∈ Rq×n, z1(t), . . . , zp(t) are known premise variables

that may be functions of the state variables, external disturbances and time. z(t)

is used to denote the vector containing all the individual elements z1(t), . . . , zp(t).

Given a pair of (x(t), u(t)) for the T-S fuzzy system, the final output of the system

is inferred as follows:

ẋ(t) =

∑r
i=1 wi(z(t)){Aix(t) + Biu(t)}∑r

i=1 wi(z(t))

=
r∑

i=1

hi(z(t)){Aix(t) + Biu(t)} (2.3)

y(t) =

∑r
i=1 wi(z(t))Cix(t)∑r

i=1 wi(z(t))

=
r∑

i=1

hi(z(t))Cix(t) (2.4)

where

z(t) =
[
z1(t) z2(t) . . . zp(t)

]

wi(z(t)) =

p∏
j=1

Mij(zj(t))

hi(z(t)) =
wi(z(t))∑r
i=1 wi(z(t))
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for all t. The term Mij(z(t)) is the grade of membership of zj(t) in the fuzzy set

Mij. Since

r∑
i=1

wi(z(t)) > 0,

wi(z(t)) ≥ 0, i = 1, 2, . . . , r,

we have

r∑
i=1

hi(z(t)) = 1,

hi(z(t)) ≥ 0, i = 1, 2, . . . , r, ∀t.

2.8. Design of T-S Fuzzy Systems

Two major applications of fuzzy systems are fuzzy control and fuzzy modeling.

Modeling algorithms have been sufficiently developed for linear systems. But

the most of the real processes are nonlinear and can be approximated by linear

models only locally or, simplifying assumptions are made that all too often

distort the realities of the processes [43, 45]. Also, there exist nonlinear systems

with imprecise data, which cannot be adequately described mathematically or by

analytical or physical models. These issues can be handled by using fuzzy models

because of the nature of the fuzzy theory.

The design of a fuzzy system involves all the methods that explained in the

previous sections and it can be described in the following six steps [37, 45]:

Step 1 Selection of the input and output fuzzy variables.

Step 2 Selection of the appropriate reasoning methods for the formalization of

the fuzzy model.

Step 3 Determination of the universes of discourses.

Step 4 Determination of the fuzzy sets into which the fuzzy variables are

partitioned.
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Step 5 Formation of the if-then rules that represent the relationships between

the input and output variables and determination of each rules weight.

Step 6 Evaluation of the adequacy of the system.

The first five steps can be regarded as the structure identification of the fuzzy

system. Note that, fuzzy system design is completely application-dependent and

an exact general design algorithm cannot be defined. If the adequacy of the

system, which can be measured by a performance index such as root mean square

error, is not as expected then an identification algorithm is also needed to obtain

optimal parameters of membership functions, premise variables and consequent

part of the system. Such an algorithm for parameter identification is given by

Takagi and Sugeno in [3].

The T-S fuzzy model is described by fuzzy IF-THEN rules which represent local

input-output relations of a nonlinear system [3]. The main feature of the T-S

fuzzy model is to express the local dynamics of each fuzzy rule by a linear model.

The overall fuzzy model of the objective system is achieved by fuzzy blending of

the linear models [11].

In general, there are two main approaches for designing fuzzy models as illustrated

in Figure 2.8.

(Takagi−Sugeno)

Fuzzy Model

input−output data
Nonlinear Model

Identification using

Figure 2.8: Fuzzy modeling

First approach is the identification of fuzzy models by using prior knowledge of

some experts and recorded input-output data. Fuzzy identification means the

acquisition or tuning of fuzzy systems by means of data. A number of fuzzy
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modeling techniques which identify a fuzzy model from input-output data of a

nonlinear system have been proposed in [3],[19−22] and [29]. Introduction of T-S

systems in [3] with a least-square method for the identification of parameters was

a very important step in the direction of high-quality identification. This method

is also related to the idea of multidimensional fuzzy reasoning [16] where a fuzzy

implication is improved and reasoning is simplified. In [19] and [22], Sugeno and

Kang extended the T-S procedure to consist both of the structure and parameter

identification. This identification approach for fuzzy modeling is more suitable for

plants that are unable or too difficult to be represented by analytical or physical

models.

The second approach is the derivation of fuzzy models from given nonlinear

system equations. The derivation method utilizes the idea of ‘sector nonlinearity’,

‘local approximation’ or a combination of them to construct fuzzy models. Fuzzy

model construction by using sector nonlinearity method first appeared in [13].

Fuzzy modeling technique via sector nonlinearity concept [13, 14], produces a

special type of fuzzy model which consists of local Takagi-Sugeno fuzzy models.

Sector nonlinearity is based on the following idea [11]. Consider a simple nonlinear

system ẋ(t) = f(x(t)) where f(0) = 0. Then find the global sector such that

ẋ(t) = f(x(t)) ∈ [a1, a2]x(t)

The sector nonlinearity approach is illustrated in Figure 2.9. This aproach

guarantees an exact fuzzy model construction.

However, it is sometimes difficult to find global sectors for general nonlinear

systems. In this case, local sector nonlinearity concept is used, since variables of

physical systems are always bounded.

The local sector nonlinearity is illustrated in Figure 2.10 where two lines become

the local sectors under −d < x(t) < d. Again, the fuzzy model exactly represents

the nonlinear system in the local region, that is −d < x(t) < d.
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1

Figure 2.9: Global sector nonlinearity

−d

2

1 f(x(t))

x(t)

a  x(t)

a  x(t)

d

Figure 2.10: Local sector nonlinearity

Another approach to obtain Takagi-Sugeno fuzzy models is the local

approximation in fuzzy partition spaces. Basically, the approach is to

approximate nonlinear terms by chosen linear terms. This procedure reduces

the number of model rules which is related to complexity of analysis. For other

methods of fuzzy model design [11], [14] and the references cited therein can be

seen.

An example of model derivation from nonlinear equations is given as follows [11]:
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Example 2.1. Consider the following nonlinear system:

ẋ1(t) = −x1(t) + x1(t)x
3
2(t) (2.5)

ẋ2(t) = −x2(t) + (3 + x2(t))x
3
1(t)

For simplicity, it assumed that x1(t) ∈ [−1, 1] and x2(t) ∈ [−1, 1]. Then, equation

2.5 can be written as

ẋ(t) =


 −1 x1(t)x

2
2(t)

(3 + x2(t))x
2
1(t) −1


 x(t)

where x(t) = [x1(t) x2(t)]
T , and x1(t)x

2
2(t) and (3 + x2(t))x

2
1(t) are nonliear

terms. Define z1(t) and z2(t) as

z1(t) = x1(t)x
2
2(t)

z2(t) = (3 + x2(t))x
2
1(t)

Then, we have

ẋ(t) =


 −1 z1(t)

z2(t) −1


 x(t)

Next, the minimum and maximum values of z1(t) and z2(t) are calculated under

x1(t) ∈ [−1, 1] and x2(t) ∈ [−1, 1]:

max
x1(t),x2(t)

z1(t) = 1

min
x1(t),x2(t)

z1(t) = −1

max
x1(t),x2(t)

z2(t) = 4

min
x1(t),x2(t)

z2(t) = 0
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Then, from the minimum and maximum values the z1(t) and z2(t) can be

represented by

z1(t) = M1(z1(t)) · 1 + M2(z1(t)) · (−1)

z2(t) = N1(z2(t)) · 4 + N2(z2(t)) · 0

where M1(z1(t)) + M2(z1(t)) = 1, N1(z2(t)) + N2(z2(t)) = 1. Therefore the

membership functions of the IF–THEN rules can be calculated as

M1(z1(t)) =
z1(t) + 1

2
, M2(z1(t)) =

1− z1(t)

2

N1(z2(t)) =
z2(t)

4
, N2(z2(t)) =

4− z2(t)

4

and we name the membership functions ‘Positive’ , ‘Negative’, ‘Big’ and ‘Small’,

respectively. Figures 2.11 and 2.12 show the membership functions.

0

1

PositiveNegative

1

0−1
1

z (t)

Figure 2.11: Membership functions M1(z1(t)) and M2(z1(t))

1

z (t)
2

0

40 2

BigSmall

Figure 2.12: Membership functions N1(z2(t)) and N2(z2(t))

Then the nonlinear system (2.5) is represented by the following fuzzy model.
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Rule 1 :

IF z1(t) is Positive and z2(t) isBig

THEN ẋ(t) = A1x(t)

Rule 2 :

IF z1(t) is Positive and z2(t) is Small

THEN ẋ(t) = A2x(t)

Rule 3 :

IF z1(t) isNegative and z2(t) isBig

THEN ẋ(t) = A3x(t)

Rule 4 :

IF z1(t) isNegative and z2(t) is Small

THEN ẋ(t) = A4x(t)

where

A1 =


−1 1

4 −1


 A2 =


−1 1

0 −1




A3 =


−1 −1

4 −1


 A4 =


−1 −1

0 −1




The overall output is calculated as

ẋ(t) =
4∑

i=1

hi(z(t))Aix(t)

where

h1(z(t)) = M1(z1(t)) ·N1(z2(t))

h2(z(t)) = M1(z1(t)) ·N2(z2(t))

h3(z(t)) = M2(z1(t)) ·N1(z2(t))

h4(z(t)) = M2(z1(t)) ·N2(z2(t))

This fuzzy model is the exact representation of the nonlinear system (2.5) in the

region [−1, 1]× [−1, 1] on the x1 − x2 space.
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Thus, we have suggested two useful approach to contruct a fuzzy model. In this

thesis, the fuzzy modeling problem is out of our consideration. All the systems

are assumed to have been identified and presented in the form of state space fuzzy

models.
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3. STABILITY OF T-S FUZZY SYSTEMS

In this section, stability will be explained only for continuous-time Takagi-Sugeno

fuzzy models. For discrete time T-S fuzzy model [4], [18] and [23] can be referred.

3.1. Stability and Stability Analysis

For any given control system, the most important question about its various

properties is the stability. An unstable control system is typically useless and

dangerous. A system is described as stable if starting the system somewhere near

its desired operating point implies that it will stay around the point ever after

[43]. For example, the motions of a pendulum starting near the vertical up and

down positions can be given as the unstable and stable behaviour of a system.

A nonlinear non-autonomous dynamic system can usually be represented by a set

of nonlinear differential equations in the form

ẋ = f(x, t)

where f is a n× l nonlinear vector function, and x is the n× 1 state vector. The

number of states n is called the order of the system. The following definitions

are cited from [43].

Definition 3.1. A state xe is an equilibrium point of the system if f(xe, t) = 0,

∀t ≥ t0 where t0 is initial time.

For example, a linear time-varying system ẋ = A(t)x has a single equilibrium

point, the origin 0, unless the matrix A(t) is always singular.

Definition 3.2. The equilibrium point 0 is said to be stable at t0 if, for any

R > 0, there exists a positive scalar r(R, t0), such that if ‖x(t0)‖ < r, then

‖x(t)‖ < R for all t ≥ t0. Otherwise, the equilibrium state is unstable.

33



Stability, which is also called stability in the sense of Lyapunov, means that the

system trajectory can be kept arbitrarily close to the origin by starting sufficiently

close to it.

Definition 3.3. The equilibrium point 0 is asymptotically stable at time t0 if it

is stable, and if in addition there exists some r(t0) > 0 such that ‖x(t0)‖ < r(t0)

implies that x(t) → 0 as t →∞.

The above definitions are formulated to characterize the local behavior of systems.

Global stability concept is given in the following definition.

Definition 3.4. The equilibrium point 0 is globally asymptotically stable if

∀x(t0), x(t) → 0 as t → ∞. This is also called asymptotically stable in the

large.

Here, the parallel distributed compensation is utilized to design fuzzy controllers

to stabilize fuzzy system. The idea of parallel distributed compensation,

abbreviated as PDC, first arised with a model-based design procedure proposed

in [22]. Then the design procedure was improved and the stability of the control

systems was analyzed in [4] and the procedure is defined and named parallel

distributed compensation in [23].

In the PDC design, the idea is that for each local linear model, a linear feedback

control rule is designed and the resulting overall controller, which is nonlinear in

general, is fuzzy blending of each individual linear controller. The designed fuzzy

controller uses the same fuzzy sets with the fuzzy model in the premise parts.

[4]. Thus, for the fuzzy model (2.2) the following fuzzy controller is constructed

by using PDC:

Rule i :

IF z1(t) isMi1 and . . . and zp(t) isMip

THEN u(t) = −Kix(t), i = 1, 2, . . . , r. (3.1)
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Here, for the state feedback case, the fuzzy control rules have a linear controller

in the consequent parts. Instead of the state feedback controllers, also other

controllers such as output feedback and dynamic output feedback can be used

[15]. But we only consider the state feedback controllers in this thesis.

Thus, the overall fuzzy controller is inferred as follows:

u(t) = −
∑r

i=1 wi(z(t))Kix(t)∑r
i=1 wi(z(t))

= −
r∑

i=1

hi(z(t))Kix(t) (3.2)

The fuzzy controller design is to determine the local feedback gains Ki in the

consequent parts. Although the fuzzy controller is constructed using the local

design structure, the feedback gains Ki should be determined using global design

conditions.

3.2. Stability Conditions and Stable Controller Design

First, the stability conditions for a fuzzy system will be given and then the stable

fuzzy controller design for continuous time fuzzy systems will be presented.

A powerful and general approach for studying the stability of linear and

nonlinear systems is the Lyapunov stability theory. This method is based on

the determination of a function V which is called the Lyapunov function. From

the properties of V , we can determine the stability or instability of the system.

The main disadvantage of the Lyapunov functional approach is that it gives only

the sufficient conditions for stability. Furthermore, in general, there is no method

to construct a Lyapunov function. In this thesis, stability conditions of fuzzy

models and fuzzy control systems are given in the sense of Lyapunov.

The following theorem is Lyapunov’s stability theorem for continuous time

systems:
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Theorem 3.1. [44] Consider a continuous time system described by ẋ(t) =

f(x(t)) where x(t) ∈ Rn, f(x(t)) is an n×1 function vector with the property that

f(0) = 0 for all t. Suppose that there exists a scalar function V (x(t)) continuous

in x(t) such that

a) V (0) = 0

b) V (x(t)) > 0 for x(t) 6= 0

c) V (x(t)) →∞ as ‖x(t)‖ → ∞

d) V̇ (x(t)) < 0 for x(t) 6= 0

Then the equilibrium state x(t) = 0 for all t is asymptotically stable in the large

and V (x(t)) is a Lyapunov function.

Now, consider the open-loop system of (2.3), that is,

ẋ(t) =
r∑

i=1

hi(z(t)){Aix(t)} (3.3)

Note that, it is assumed that the premise variables are not functions of the input

variables u(t). However, the stability conditions, that will be given, can be applied

even the case that the premise variables are functions of the input variables u(t).

A sufficient stability condition for the stability of the continuous time open-loop

system (3.3) is given as follows.

Theorem 3.2. [11] The equilibrium of the continuous fuzzy system (2.3) with

u(t) = 0 is globally asymptotically stable if there exists a common positive definite

matrix P such that

AT
i P + PAi < 0, i = 1, 2, . . . , r, (3.4)

that is, a common matrix P has to exist for all subsystems.
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The last theorem’s proof is straightforward by using the respective Lyapunov’s

theorem and the Lyapunov function V (x(t)) = xT (t)Px(t). Also it can be seen

that, this theorem reduces to the Lyapunov stability theorem for linear systems

when r = 1.

A question naturally arises of whether the fuzzy system is stable if all the linear

subsystems are stable. In general the answer is no and this is shown in [23].

By substituting (3.2) into (2.3), we obtain the equation (3.5), that is,

ẋ(t) =
r∑

i=1

hi(z(t)){Aix(t) + Bi{−
r∑

j=1

hj(z(t))Kjx(t)}}

=
r∑

i=1

hi(z(t)){Aix(t)−
r∑

j=1

hj(z(t))BiKjx(t)}

=
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t)){Ai −BiKj}x(t) (3.5)

Now, denote Gij = Ai −BiKj. By using the simple equality

r∑
i=1

r∑
j=1

Gij =
r∑

i=1

Gii +
r−1∑
i=1

r∑
j>i

{Gij + Gji} (3.6)

the equation (3.5) can be represented as the equation (3.7).

ẋ(t) =
r∑

i=1

hi(z(t))hi(z(t)){Gii}x(t)

+2
r−1∑
i=1

r∑
j>i

{Gij + Gji

2
}x(t) (3.7)

By straightforward application of Theorem 3.2 to the equation (3.7), we have the

following stability conditions for the continuous-time fuzzy system.

Theorem 3.3. [11] The equilibrium of the continuous fuzzy control system

described (3.7) is globally asymptotically stable if there exists a common positive
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definite matrix P such that

GT
iiP + PGii < 0 (3.8)

(
Gij + Gji

2
)T P + P (

Gij + Gji

2
) ≤ 0 (3.9)

for i < j ≤ r s.t. hi(z(t))× hj(z(t)) 6= 0 for all z(t).

If for a fuzzy control system, the number of IF-THEN rules, that is r, is very large,

it might be difficult to find a common P satisfying the conditions of Theorem

3.3. Because of this, the relaxed stability conditions for fuzzy systems will be

presented [15, 28].

Theorem 3.4. [11] Assume that the number of rules that fire for all t is less

than or equal to s, where 1 < s ≤ r. The equilibrium of the continuous fuzzy

control system described by (3.7) is globally asymptotically stable if there exist

a common positive definite matrix P and a common positive semidefinite matrix

Q such that

GT
iiP + PGii + (s− 1)Q < 0 (3.10)

(
Gij + Gji

2
)T P + P (

Gij + Gji

2
)−Q ≤ 0 (3.11)

for i < j ≤ r s.t. hi(z(t))× hj(z(t)) 6= 0 for all z(t) where s > 1.

It is assumed that the weight hi(z(t)) of each rule in the fuzzy controller is equal

to the weight of each rule in the fuzzy model for all t. If the assumption does not

hold, the following stability conditions should be used in instead of the conditions

of Theorem 3.3 and Theorem 3.4:

GT
ijP + PGji < 0
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where Gij = Ai −BiKj.

Hence, the fuzzy control design problem is reduced to determine Kj’s for j =

1, 2, . . . , r and a common positive definite matrix P which satisfy the conditions

(3.8) with (3.9) for the fuzzy system.

In the stability analysis of fuzzy systems, most of the time a trial-and-error type

of procedure has been used to find a common positive definite matrix P , that is

to check the stability of fuzzy systems (3.7) [4, 25]. But then it is shown that the

common P problem can be solved via convex optimization techniques for LMIs in

[18],[23] and [26]. To check the stability of the fuzzy systems is to find a common

P or to determine that no such P exists. This is called an LMI problem [17]. The

LMI problems can be solved numerically and efficiently by using the tools in the

mathematical programming literature. In this case, the LMI Control Toolbox in

Matlab software is very useful tool for the solutions of the above LMI problems

[27]. So the origin of the control design is the LMI-based design approach. Now

our objective is to present stable fuzzy controller design via LMIs.

Next, two definition about LMI and the well-known Schur complement will be

given.

Definition 3.5. [17] An LMI is a matrix inequality of the form

F (x) = F0 +
r∑

i=1

xiFi > 0

where xT = (x1, x2, . . . , xr) is the variable and the symmetric matrices Fi = F T
i ∈

Rn×n, i = 0, 1, . . . , r are given.

Definition 3.6. [17] Given an LMI F (x) > 0, the corresponding LMI Problem

is to find xfeas such that F (xfeas) > 0 or to determine that the LMI is infeasible.

This is a convex feasibility problem. Hence, saying ‘solving the LMI F (x) > 0’ is

to mean ‘solving the corresponding LMI problem’.
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Theorem 3.5. [17] (Schur Complement) Given matrices Q(x), R(x) and S(x)

where Q(x) = Q(x)T , R(x) = R(x)T and S(x) depend affinely on x then

R(x) > 0 , Q(x)− S(x)R(x)−1S(x)T > 0

if and only if the LMI


 Q(x) S(x)

S(x)T R(x)


 > 0

holds.

We consider a fuzzy controller design problem for the continuous fuzzy system

using the stability conditions of Theorem 3.3. The conditions (3.8) and (3.9) are

not jointly convex in Ki and P . Multiplying the inequalities on the left and right

by P−1 and defining a new variable X = P−1, we rewrite the conditions as

−XAT
i − AiX + XKT

i BT
i + BiKiX > 0

−XAT
i − AiX −XAT

j − AjX + XKT
j BT

i + BiKjX + XKT
i BT

j + BjKiX ≥ 0

Now define Mi = KiX so that for X > 0 we have Ki = MiX
−1. Thus, by

substituting into the above inequalities the LMI conditions are obtained and we

define a stable fuzzy controller design problem for continuous fuzzy system (3.7)

as follows:

Find X > 0 and Mi, (i = 1, 2, . . . , r), satisfying

−XAT
i − AiX + MT

i BT
i + BiMi > 0

−XAT
i − AiX −XAT

j − AjX + MT
j BT

i + BiMj + MT
i BT

j + BjMi ≥ 0

for i < j ≤ r s.t. hi(z(t))× hj(z(t)) 6= 0 for all z(t) where X = P−1, Mi = KiX.
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We can find a positive definite matrix X and Mi satisfying the LMIs or determine

that no such X and Mi exist.

The feedback gains Ki and the common matrix P can be obtained as P = X−1

and Ki = MiX
−1 from the solutions X and Mi.

By similar way, the fuzzy controller design problem for the continuous fuzzy

system can be defined from the relaxed stability conditions of Theorem 3.4 as

follows.

For the continuous fuzzy system:

Find X > 0, Y ≥ 0 and Mi, (i = 1, 2, . . . , r), satisfying

−XAT
i − AiX + MT

i BT
i + BiMi − (s− 1)Y > 0

2Y −XAT
i − AiX −XAT

j − AjX + MT
j BT

i + BiMj + MT
i BT

j + BjMi ≥ 0

for i < j ≤ r s.t. hi(z(t))× hj(z(t)) 6= 0 for all z(t) where X = P−1, Mi = KiX

and Y = XQX.

The feedback gains Ki, the common matrices P and Q can be obtained as Ki =

MiX
−1, P = X−1 and Q = PY P from the solutions X, Y and Mi.
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4. DELAY-DEPENDENT GUARANTEED COST CONTROL FOR

T-S FUZZY SYSTEMS

We consider a nonlinear time-delay system represented by the T-S fuzzy system

(1.1). It is necessary to define the initial condition ϕ(t) for −σ̄ ≤ t ≤ 0 as a

constant scalar or differentiable function in order to obtain the upper bound of

guaranteed cost performance in the following analysis.

By using center-average defuzzifier, product inference and singleton fuzzifier, the

dynamic fuzzy model (1.1) can be expressed by the following global model:

ẋ(t) = A(t)x(t) + Ad(t)x(t− σ(t)) + B(t)u(t)

z(t) = Cz(t)x(t) + Czd(t)x(t− σ(t))

x(t) = ϕ(t),−σ̄ ≤ t ≤ 0

(4.1)

where

A(t) =
n̄∑

i=1

hi(t)Ai , Ad(t) =
n̄∑

i=1

hi(t)Adi

B(t) =
n̄∑

i=1

hi(t)Bi

Cz(t) =
n̄∑

i=1

hi(t)Czi , Czd(t) =
n̄∑

i=1

hi(t)Czdi

hi(M(t)) denotes the normalized membership function which satisfies

hi(M(t)) =
µi(M(t))

(
∑n̄

i=1 µi(M(t)))

hi(M(t)) ≥ 0 ,

n̄∑
i=1

hi(M(t)) = 1
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where

µi(M(t)) =

g∏
j=1

Fij(Mj(t))

µi(M(t)) ≥ 0

and Fij(Mj(t)) is the grade of membership of Mj(t) in the fuzzy set Fij.

The following two lemmas reduce the computative complexity and play important

roles in obtaining results in this study.

Lemma 4.1. [1] For any real matrices Xi, Yi for 1 ≤ i ≤ n̄, and S > 0 with

appropriate dimensions, we have

2
n̄∑

i=1

n̄∑
j=1

hihjX
T
i SYj ≤

n̄∑
i=1

hi(X
T
i SXi + Y T

i SYi)

2
n̄∑

i=1

n̄∑
j=1

n̄∑

k=1

n̄∑

l=1

hihjhkhlX
T
ijSYkl ≤

n̄∑
i=1

n̄∑
j=1

hihj(X
T
ijSXij + Y T

ij SYij)

where hi, (1 ≤ i ≤ n̄), are defined as

hi(M(t)) ≥ 0
n̄∑

i=1

hi(M(t)) = 1

Lemma 4.2. [5] Let x(t) ∈ Rn be a vector-valued function with first-order

continuous-derivative entries. Then, the following integral inequality holds for any

matrices M1,M2 ∈ Rn×n and X = XT > 0 , and a scalar function h = h(t) ≥ 0:

−
∫ t

t−h

ẋT (s)Xẋ(s)ds ≤ ξT (t)


MT

1 + M1 −MT
1 + M2

∗ −MT
2 −M2


 ξ(t)

+hξT (t)


MT

1

MT
2


 X−1

[
M1 M2

]
ξ(t)
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where

ξ(t) =


 x(t)

x(t− h)




We consider the design of a guaranteed cost controller via state feedback. Also

we consider the guaranteed cost function (1.2) and use the controller structure

expressed in the form

Rule i :

IF M1(t) is Fi1 and M2(t) is Fi2 . . . and Mg(t) is Fig

THEN u(t) = Kix(t) (4.2)

Hence, the overall fuzzy control law is represented by

u(t) =
n̄∑

i=1

hi(t)Kix(t) (4.3)

The design of the guaranteed cost controller is to determine the feedback gains

Ki (i = 1, 2, . . . , n̄) and a positive scalar δ(σ̄) such that the resulting closed-loop

system is asymptotically stable and the closed-loop value of the cost function

(1.2) satisfies J ≤ δ(σ̄).

The closed-loop system of (4.1) with the control law (4.3) can be written as

follows:

ẋ(t) = Ā(t)x(t) + Ad(t)x(t− σ(t))

z(t) = C̄z(t)x(t) + Czd(t)x(t− σ(t)) (4.4)

x(t) = ϕ(t), −σ̄ ≤ t ≤ 0

where

Ā(t) =
n̄∑

i=1

n̄∑
j=1

hihjĀij , C̄z(t) =
n̄∑

i=1

n̄∑
j=1

hihjC̄zij

Āij = Ai + BiKj , C̄zij = Czi + DziKj
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The main result on the guaranteed cost control via state feedback for the T-S

fuzzy model with time-varying delay is given in the following theorem.

Theorem 4.1. For given constants σ̄ and β satisfying 0 < σ(t) ≤ σ̄ and σ̇(t) ≤ β,

respectively and given numbers λ1 and µ1 where µ1 6= 0, if there exist matrices

X > 0 , S̄ > 0, W̄ > 0 and Yi satisfying the following LMI




Φ11 Φ12 σ̄Φ13 0 Φ15 2X

∗ Φ22 σ̄Φ23 2W̄ Φ25 0

∗ ∗ −2σ̄W̄ 0 0 0

∗ ∗ ∗ −2W̄ 0 0

∗ ∗ ∗ ∗ −2I 0

∗ ∗ ∗ ∗ ∗ −2S̄




< 0 (4.5)

where

Φ11 = X(Ai + Aj)
T + (Ai + Aj)X + Y T

j BT
i + Y T

i BT
j + BiYj + BjYi

−2λ2
1µ
−2
1 (1− β)S̄ − λ1µ

−1
1 S̄(AT

di + AT
dj)− λ1µ

−1
1 (Adi + Adj)S̄

Φ12 = 2(X + λ1µ
−1
1 S̄ + λ1µ

−2
1 (1− β)S̄) + µ−1

1 (Adi + Adj)S̄

Φ13 = XAT
i + XAT

j + Y T
j BT

i + Y T
i BT

j − λ1µ
−1
1 S̄AT

di − λ1µ
−1
1 S̄AT

dj

Φ15 = XCT
zi + XCT

zj + Y T
i DT

zj + Y T
j DT

zi − λ1µ
−1
1 S̄CT

zdi − λ1µ
−1
1 S̄CT

zdj

Φ22 = −4µ−1
1 S̄ − 2µ−2

1 (1− β)S̄

Φ23 = µ−1
1 S̄AT

di + µ−1
1 S̄AT

dj

Φ25 = µ−1
1 S̄CT

zdi + µ−1
1 S̄CT

zdj

for 1 ≤ i ≤ j ≤ n̄ then the closed loop system (4.4) is asymptotically stable with

guaranteed cost performance δ(σ̄). Moreover, the controller parameters can be

chosen as Ki = YiX
−1 and the guaranteed cost bound is

δ(σ̄) = ϕT (0)X−1ϕ(0) +

∫ 0

−σ̄

∫ 0

θ

ϕ̇T (s)W̄−1ϕ̇(s)dsdθ +

∫ 0

−σ̄

ϕT (s)S̄−1ϕ(s)ds

Proof. Consider the following Lyapunov function candidate for (4.4)

V (t) = V1(t) + V2(t) + V3(t) (4.6)
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where

V1(t) = xT (t)Px(t)

V2(t) =

∫ 0

−σ̄

∫ t

t+θ

ẋT (s)Wẋ(s)dsdθ

V3(t) =

∫ t

t−σ(t)

xT (s)Sx(s)ds

By differentiating V1(t) we obtain,

V̇1(t) = xT (t)Pẋ(t) + ẋT (t)Px(t)

= 2xT (t)Pẋ(t)

= 2xT (t)P (Ā(t)x(t) + Ad(t)x(t− σ(t))) (4.7)

By differentiating V2(t),

V̇2(t) = σ̄ẋT (t)Wẋ(t)−
∫ t

t−σ̄

ẋT (s)Wẋ(s)ds (4.8)

It is clear that the following inequallity is true:

−
∫ t

t−σ̄

ẋT (s)Wẋ(s)ds ≤ −
∫ t

t−σ(t)

ẋT (s)Wẋ(s)ds

Applying the integral inequality given in Lemma 4.2 for any M1,M2 ∈ Rn×n

yields the following integral inequality:

−
∫ t

t−σ(t)

ẋT (s)Wẋ(s)ds ≤ ηT (t)


MT

1 + M1 −MT
1 + M2

∗ −MT
2 −M2


 η(t)

+ηT (t)


MT

1

MT
2


 W−1

[
M1 M2

]
η(t) (4.9)
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where ηT (t) =
[
xT (t) xT (t− σ(t))

]
. We substitute (4.9) into (4.8) and then

V̇2(t) ≤ σ̄ηT (t)


ĀT (t)

AT
d (t)


 W

[
Ā(t) Ad(t)

]
η(t)

+ηT (t)(


MT

1 + M1 −MT
1 + M2

∗ −MT
2 −M2




+


MT

1

MT
2


 W−1

[
M1 M2

]
)η(t) (4.10)

V̇2(t) ≤ σ̄

n̄∑
i=1

n̄∑
j=1

n̄∑

k=1

n̄∑

l=1

hihjhkhlη
T (t)


ĀT

ij

AT
di


 W

[
Ākl Adl

]
η(t)

+ηT (t)(


MT

1 + M1 −MT
1 + M2

∗ −MT
2 −M2




+


MT

1

MT
2


 W−1

[
M1 M2

]
)η(t) (4.11)

From Lemma 4.1 we obtain,

n̄∑
i=1

n̄∑
j=1

n̄∑

k=1

n̄∑

l=1

hihjhkhlX
T
ijSXkl ≤

n̄∑
i=1

n̄∑
j=1

hihjX
T
ijSXij (4.12)

thus, we have

V̇2(t) ≤ σ̄

n̄∑
i=1

n̄∑
j=1

hihjη
T (t)


ĀT

ij

AT
di


 W

[
ĀT

ij Adi

]
η(t)

+ηT (t)(


MT

1 + M1 −MT
1 + M2

∗ −MT
2 −M2


 (4.13)

+


MT

1

MT
2


 W−1

[
M1 M2

]
)η(t) (4.14)
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By differentiating V3(t) we obtain

V̇3(t) = xT (t)Sx(t)− (1− σ̇(t))xT (t− σ(t))Sx(t− σ(t))

≤ xT (t)Sx(t)− (1− β)xT (t− σ(t))Sx(t− σ(t)) (4.15)

It follows from (4.12) that

zT (t)z(t) =
n̄∑

i=1

n̄∑
j=1

n̄∑

k=1

n̄∑

l=1

hihjhkhlη
T (t)


C̄T

zij

CT
zdi




[
C̄zkl Czdk

]
η(t)

≤
n̄∑

i=1

n̄∑
j=1

hihjη
T (t)


C̄T

zij

CT
zdi




[
C̄zij Czdi

]
η(t) (4.16)

Consequently, the derivative of V (t) can be presented as follows:

V̇ (t) ≤
n̄∑

i=1

n̄∑
j=1

hihjη
T (t)(




ĀT
ijP + PĀij PAdi −MT

1 + M2

+S + MT
1 + M1

∗ −(1− β)S −MT
2 −M2




+σ̄


ĀT

ij

AT
di


 W

[
Āij Adi

]
+


MT

1

MT
2


 W−1

[
M1 M2

]

+


C̄T

zij

CT
zdi




[
C̄zij Czdi

]
)η(t)− zT (t)z(t) (4.17)

V̇ (t) ≤
n̄∑

i=1

n̄∑
j=1

hihjη
T (t)Σijη(t)− zT (t)z(t)

=
n̄∑

i=1

h2
i η

T (t)Σiiη(t) +
n̄−1∑
i=1

n̄∑
j>i

hihjη
T (t)(Σij + Σji)η(t)− zT (t)z(t)

where

Σij = Hij + σ̄ΓT
1ijWΓ1ij + ΓT

2 W−1Γ2 + ΓT
3ijΓ3ij
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for

Hij =


ĀT

ijP + PĀij + S + MT
1 + M1 PAdi −MT

1 + M2

∗ −(1− β)S −MT
2 −M2




Γ1ij =
[
Āij Adi

]

Γ2 =
[
M1 M2

]

Γ3ij =
[
C̄zij Czdi

]

Thus we have

Σij + Σji = Hij + Hji + σ̄ΓT
1ijWΓ1ij + σ̄ΓT

1jiWΓ1ji + 2ΓT
2 W−1Γ2

+ΓT
3ijΓ3ij + ΓT

3jiΓ3ji

By using the Schur complement in Theorem 3.5, Σii < 0 is equivalent to the

following inequality:




Hii σ̄ΓT
1ii ΓT

2 ΓT
3ii

∗ −σ̄W−1 0 0

∗ ∗ −W 0

∗ ∗ ∗ −I




< 0 (4.18)

Similarly, Σij + Σji < 0 is equivalent to the following inequality:




Hij + Hji σ̄ΓT
1ij σ̄ΓT

1ji 2ΓT
2 ΓT

3ij ΓT
3ji

∗ −σ̄W−1 0 0 0 0

∗ ∗ −σ̄W−1 0 0 0

∗ ∗ ∗ −2W 0 0

∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ −I




< 0 (4.19)

for j > i, (i = 1, 2, . . . , n̄− 1), (j = 1, 2, . . . , n̄).
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The inequalities (4.18) and (4.19) could be equivalent to

Ψij =




Hij + Hji σ̄(ΓT
1ij + ΓT

1ji) 2ΓT
2 ΓT

3ij + ΓT
3ji

∗ −2σ̄W−1 0 0

∗ ∗ −2W 0

∗ ∗ ∗ −2I




< 0 (4.20)

for 1 ≤ i ≤ j ≤ n̄ where

Hij =




P (Ai + BiKj) + (Ai + BiKj)
T P PAdi −MT

1 + M2

+S + MT
1 + M1

∗ −(1− β)S −MT
2 −M2




Now we define the two matrices below

M̃ =


 P 0

M1 M2


 (4.21)

Ãij =


Ai + BiKj Adi

I −I


 (4.22)

Thus we have the following equalities

Hij = M̃T Ãij + ÃT
ijM̃ + diag {S,−(1− β)S} (4.23)

M̃T Ãij =


P MT

1

0 MT
2





Āij Adi

I −I




=


PĀij + MT

1 PAdi −MT
1

MT
2 −MT

2


 (4.24)
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ΓT
2 =


MT

1

MT
2




=


P MT

1

0 MT
2





0

I




= M̃T


0

I


 (4.25)

If we let M1 = λ1P and M2 = µ1S where µ1 6= 0, then M̃ is invertible.

M̃ =


 P 0

λ1P µ1S


 (4.26)

M̃−1 =


 P−1 0

−λ1µ
−1
1 S−1 µ−1

1 S−1




=


 X 0

−λ1µ
−1
1 S̄ µ−1

1 S̄


 (4.27)

Now let the matrix T as follows

T =




M̃−1 0 0 0

0 I 0 0

0 0 W−1 0

0 0 0 I




(4.28)

Since

ΓT
1ij =


ĀT

ij

Adi


 (4.29)
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then we have

M̃−T ΓT
1ij =


P−1 −λ1µ

−1
1 S−1

0 µ−1
1 S−1





ĀT

ij

AT
di




=


P−1ĀT

ij − λ1µ
−1
1 S−1AT

di

µ−1
1 S−1AT

di




=


P−1(AT

i + KT
j BT

i )− λ1µ
−1
1 S−1AT

di

µ1S
−1AT

di




=


XAT

i + Y T
j BT

i − λ1µ
−1
1 S̄AT

di

µ−1
1 S̄AT

di


 (4.30)

= ΠT
1ij

where X = P−1, Y T
j = P−1KT

j and S̄ = S−1.

Since

ΓT
3ij =


C̄T

zij

CT
zdi


 (4.31)

we have

M̃−T ΓT
3ij =


P−1 −λ1µ

−1
1 S−1

0 µ−1
1 S−1





CT

zdi + KT
j DT

zi

CT
zdi




=


P−1CT

zi + P−1KT
j DT

zi − λ1µ
−1
1 S−1CT

zdi

µ−1
1 S−1CT

zdi




=


XCT

zi + Y T
j DT

zi − λ1µ
−1
1 S̄CT

zdi

µ−1
1 S̄CT

zdi


 (4.32)

= ΠT
3ij

Now, let us consider the equation

Uij = M̃−T HijM̃
−1

= ÃijM̃
−1 + M̃−T ÃT

ij + M̃−T diag {S,−(1− β)S} M̃−1 (4.33)
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M̃−T ÃT
ij =


X −λ1µ

−1
1 S̄

0 µ−1
1 S̄





AT

ij I

AT
di −I




=


XAT

ij − λ1µ
−1
1 S̄AT

di X + λ1µ
−1
1 S̄

µ−1
1 S̄AT

di −µ−1
1 S̄


 (4.34)

M̃−T diag {S,−(1− β)S} M̃−1 =

=


X −λ1µ

−1
1 S̄

0 µ−1
1 S̄





S 0

0 −(1− β)S





 X 0

−λ1µ
−1
1 S̄ µ−1

1 S̄




=


XSX − λ2

1µ
−2
1 (1− β)S̄ λ1µ

−2
1 (1− β)S̄

λ1µ
−2
1 (1− β)S̄ −µ−2

1 (1− β)S̄


 (4.35)

Thus we have

Uij =


ũ11 X + λ1µ

−1
1 S̄ + µ−1

1 AdiS̄ + λ1µ
−2
1 (1− β)S̄

∗ −2µ−1
1 S̄ − µ−2

1 (1− β)S̄


 (4.36)

where

ũ11 = XAT
ij + AijX + XSX − λ2

1µ
−2
1 (1− β)S̄

−λ1µ
−1
1 S̄AT

di − λ1µ
−1
1 AdiS̄

Pre-and postmultiplying (4.20) by T yields

TΨijT =




Uij + Uji σ̄(ΠT
1ij + ΠT

1ji) 2


0

I


 W−1 ΠT

3ij + ΠT
3ji

∗ −2σ̄W−1 0 0

∗ ∗ ∗ − 2W−1 0

∗ ∗ ∗ −2I




< 0 (4.37)
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Uij + Uji =


ṽ11 2(X + λ1µ

−1
1 S̄ + λ1µ

−2
1 (1− β)S̄) + µ−1

1 (Adi + Adj)S̄

∗ −4µ−1
1 S̄ − 2µ−2

1 (1− β)S̄




where

ṽ11 = X(Aij + Aji)
T + (Aij + Aji)X + 2XSX − 2λ2

1µ
−2
1 (1− β)S̄

−λ1µ
−1
1 S̄(AT

di + AT
dj)− λ1µ

−1
1 (Adi + Adj)S̄

Also we have the following simple equality:

XAT
ij + AijX + XAT

ji + AjiX = X(Aij + Aji)
T + (Aij + Aji)X

= X(Ai + Aj)
T + Y T

j BT
i + Y T

i BT
j

+(Ai + Aj)X + BiYj + BjYi

Thus we obtain by using the inequality (4.37) and by the Schur Complement,




Φ11 Φ12 σ̄Φ13 0 Φ15 2X

∗ Φ22 σ̄Φ23 2W̄ Φ25 0

∗ ∗ −2σ̄W̄ 0 0 0

∗ ∗ ∗ −2W̄ 0 0

∗ ∗ ∗ ∗ −2I 0

∗ ∗ ∗ ∗ ∗ −2S̄




< 0 (4.38)

where W̄ = W−1 and

Φ11 = X(Ai + Aj)
T + (Ai + Aj)X + Y T

j BT
i + Y T

i BT
j + BiYj + BjYi

−2λ2
1µ
−2
1 (1− β)S̄ − λ1µ

−1
1 S̄(AT

di + AT
dj)− λ1µ

−1
1 (Adi + Adj)S̄

Φ12 = 2(X + λ1µ
−1
1 S̄ + λ1µ

−2
1 (1− β)S̄) + µ−1

1 (Adi + Adj)S̄

Φ22 = −4µ−1
1 S̄ − 2µ−2

1 (1− β)S̄

Φ13 = XAT
i + XAT

j + Y T
i BT

j + Y T
j BT

i − λ1µ
−1
1 S̄AT

di − λ1µ
−1
1 S̄AT

dj

Φ23 = µ−1
1 S̄AT

di + µ−1
1 S̄AT

dj

Φ15 = XCT
zi + XCT

zj + Y T
i DT

zj + Y T
j DT

zi − λ1µ
−1
1 S̄CT

zdi − λ1µ
−1
1 S̄CT

zdj

Φ25 = µ−1
1 S̄CT

zdi + µ−1
1 S̄CT

zdj

54



Besides that, we obtain

J =

∫ ∞

0

zT (t)z(t)dtz ≤ V (0)

J ≤ ϕT (0)Pϕ(0) +

∫ 0

−σ̄

∫ 0

θ

ϕ̇T (s)Wϕ̇(s)dsdθ +

∫ 0

−σ̄

ϕT (s)Sϕ(s)ds

= δ(σ̄) (4.39)

Theorem 4.1 can be solved for given scalars σ̄, β, λ1 and µ1. Since there is too

many parameters and the stability of the system is dependent on the value of

σ̄, a method to find the value of σ̄ is needed. In general, the guaranteed cost

depends on the given upper bound σ̄ to some extend. If the estimation of σ̄ is

too large, it must result in very conservative cost bound δ(σ̄). It requires larger

cost to guarantee the desired system performance. So, we desire the delay upper

bound of σ̄, denoted by σ̄max can be estimated, but not given. In this sense, σ̄max

can show the capability of the state-feedback controller (4.3) in stabilizing the

system (4.1) when the conditions in Theorem 4.1 is satisfied. We also desire to

get the suboptimal value of the upper bound of guaranteed cost function with

respect to σ̄max. The following two theorems are given for this purpose.

Theorem 4.2. For any given numbers λ1, µ1 and β where σ̇(t) ≤ β and µ1 6= 0,

there exist an upper bound σ̄max = 1
ξ

such that for any 0 ≤ σ(t) ≤ σ̄max, the

controller (4.2) can stabilize system (4.4) with guaranteed cost performance δ(σ̄),

if the following GEVP is feasible for Y > 0, X > 0, S̄ > 0, W̄ > 0 and real

matrices Yi for 1 ≤ i ≤ n̄

Minimize ξ =
1

σ̄
> 0

subject to





U <


Y 0

0 0




Y < ξV

(4.40)
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for 1 ≤ i ≤ j ≤ n̄ where

U =




0 0 0 0 0 Φ13

∗ 0 0 0 0 Φ23

∗ ∗ 0 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ −2W̄




(4.41)

and

V =




−Φ11 −Φ12 −2X 0 −Φ15

∗ −Φ22 0 −2W̄ −Φ25

∗ ∗ 2S̄ 0 0

∗ ∗ ∗ 2W̄ 0

∗ ∗ ∗ ∗ 2I




(4.42)

Proof. Consider the inequality (4.5). We exchange column 3 with column 6 and

row 3 with row 6. Then we have




Φ11 Φ12 2X 0 Φ15 σ̄Φ13

∗ Φ22 0 2W̄ Φ25 σ̄Φ23

∗ ∗ −2S̄ 0 0 0

∗ ∗ ∗ −2W̄ 0 0

∗ ∗ ∗ ∗ −2I 0

∗ ∗ ∗ ∗ ∗ −2σ̄W̄




< 0

Moreover, we have

U < ξV̄

where

V̄ =


V 0

0 0



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and σ̄ = 1
ξ
.

Then, in order to search the upper bound σ̄max, we formulate the following GEVP

problem to obtain ξmin:

Minimize ξ > 0

subject to U < ξV̄

The GEVP function in Matlab LMI-Toolbox will search proper parameters to

satisfy V̄ > 0. Technically, the positivity of V̄ is not strictly feasible, but there

is simple remedy in Matlab software which consists of replacing the constraints

U < ξV̄ by

U <


Y 0

0 0




Y > 0

and

Y < ξV

Based on Theorem 4.1, we know the T-S fuzzy system (4.4) is asymptotically

stable for any 0 < σ(t) ≤ σ̄max with guaranteed cost performance δ(σ̄) in the form

of (4.39) where the upper bound σ̄max = 1
ξmin

is given by the feasible solution of

the modified GEVP conditions. Thus, the proof is completed.

Now, we are interested in finding the least upper bound of δ(σ̄) in the form of

(4.39). In order to obtain a state-feedback controller (4.2) which can achieve the

least upper bound value of guaranteed cost function with respect to σ̄max, we

should solve the following minimization problem:

Minimize δ(σ̄max)

subject to (4.5)
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However, it is hard to find in general the global minimum of the minimization

problem. So, we are going to present an easy method to find a suboptimal value

δmin(σ̄max) for the bound

Consider

δ(σ̄max) = ϕT (0)X−1ϕ(0) +

∫ 0

−σ̄max

∫ 0

θ

ϕ̇T (s)W̄−1ϕ̇(s)dsdθ

+

∫ 0

−σ̄max

ϕT (s)S̄−1ϕ(s)ds

and let

δ1(σ̄max) = ϕT (0)X−1ϕ(0)

δ2(σ̄max) =

∫ 0

−σ̄max

∫ 0

θ

ϕ̇T (s)W̄−1ϕ̇(s)dsdθ

δ3(σ̄max) =

∫ 0

−σ̄max

ϕT (s)S̄−1ϕ(s)ds

Now, we define three positive-definite matrices z1, z2 and z3:

z1 = ϕ(0)ϕT (0)

z2 =

∫ 0

−σ̄max

∫ 0

θ

ϕ̇(s)ϕ̇T (s)dsdθ

z3 =

∫ 0

−σ̄max

ϕ(s)ϕT (s)ds

By using tr(AB) = tr(BA), we have

δ1(σ̄max) = ϕT (0)X−1ϕ(0)

= tr(z1X
−1)

= tr(z
1
2
1 X−1z

1
2
1 )
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δ2(σ̄max) =

∫ 0

−σ̄max

∫ 0

θ

ϕ̇T (s)W̄−1ϕ̇(s)dsdθ

= tr(z2W̄
−1)

= tr(z
1
2
2 W̄−1z

1
2
2 )

δ3(σ̄max) =

∫ 0

−σ̄max

ϕT (s)S̄−1ϕ(s)ds

= tr(z3S̄
−1)

= tr(z
1
2
3 S̄−1z

1
2
3 )

Now, let Σ1 be a positive-definite matrix variable satisfying

z
1
2
1 X−1z

1
2
1 < Σ1 (4.43)

By the Schur complement (4.43) is equivalent to


−Σ1 z

1
2
1

z
1
2
1 −X


 < 0 (4.44)

If there exists one Σ1 satisfying (4.44), then δ1(σ̄max) < tr(Σ1).

By the same way, to get the upper bound of δ2(σ̄max), we introduce another

matrix variable Σ2 to satisfy


−Σ2 z

1
2
2

z
1
2
2 −W̄


 < 0 (4.45)

so that δ2(σ̄max) < tr(Σ2) holds.
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Similarly, we introduce another matrix variable Σ3 to satisfy


−Σ3 z

1
2
3

z
1
2
3 −S̄


 < 0 (4.46)

so that δ3(σ̄max) < tr(Σ3) holds.

We change the minimization problem of δ(σ̄max) into the minimization problem

Minimize {tr(Σ1) + tr(Σ2) + tr(Σ3)}
subject to (4.5), (4.44), (4.45) and (4.46)

Thus we have proven the following theorem:

Theorem 4.3. For a given constant upper bound σ̄max and some given scalars

µ1 6= 0, λ1 and β, suppose that the optimization problem

Minimize {tr(Σ1) + tr(Σ2) + tr(Σ3)}
subject to (4.5), (4.44), (4.45) and (4.46)

has solutions X > 0, W̄ > 0, S̄ > 0 and Yi for 1 ≤ i ≤ j ≤ n̄ where

z1 = ϕ(0)ϕT (0)

z2 =

∫ 0

−σ̄max

∫ 0

θ

ϕ̇(s)ϕ̇T (s)dsdθ

z3 =

∫ 0

−σ̄max

ϕ(s)ϕT (s)ds

then the guaranteed cost controller (4.2) is suboptimal and the upper bound on

the closed-loop cost function (1.2) is minimal with respect to µ1 and λ1.
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5. APPLICATION

In this chapter, an application of the developed method to a T-S fuzzy model with

time-delay is given. In this model, the time-delay is constant. We set σ(t) = σ,

that is, σ(t) is a constant function. The example is first presented in [1]. It will

be shown in the example that the methods in the previous chapter gives better

results than the methods presented in [1].

Example 5.1. Consider the unstable nonlinear system with the following

differential equation:

s̈(t) + f(s(t), ṡ(t))− 0.1s(t) = F (t)

where

f(s(t), ṡ(t)) = 0.5s(t) + 0.75 sin(
ṡ(t)

0.5
)

Choose the state variable and the input variable as x(t) = [s(t) ṡ(t)]T and

u(t) = F (t), respectively. We assume that the delay state matrix is

Ad =


0.1 0

0.1 −0.2




Also we assign the time-varying delay function as a constant function and assume

that σ(t) = σ = 0.5 is the constant delay assumed to be unknown. Here, we use

the same T-S fuzzy model representation of the system as in [1]:

Rule 1 :

IF x2(t)
0.5

is about 0

THEN ẋ(t) = A1x(t) + Ad1x(t− σ) + B1u(t)

Rule 2 :

IF x2(t)
0.5

is about π or − π

THEN ẋ(t) = A2x(t) + Ad2x(t− σ) + B2u(t)
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where

A1 =


 0 1

0.1 −2


 A2 =


 0 1

0.1 −0.5− 1.5 · α




B1 = B2 =


0

1


 Ad1 = Ad2 := Ad

and α = 0.01
π

. Here, α is used to avoid system matrices being singular.

We choose the other parameters in model (1.1) as follows:

Cz1 = Cz2 =
[
0.02 −0.03

]

Czd1 = Czd2 =
[
0.03 0.01

]
Dz1 = Dz2 = 0.1

The membership functions are set as

h1(t) = (1− 1

1 + exp{−3( x2

0.5
− π

2
)})× (

1

1 + exp{−3( x2

0.5
+ π

2
)})

h2(t) = 1− h1(t)

Table 5.1: Guaranteed cost values

σ̄ δ(σ̄) δmin(σ̄)

Theorem 4.1 [1] Theorem 4.3 [1]

0.5 0.0905 0.3068 0.0037 0.2773

1.5 0.2971 0.3367 0.0085 0.3145

2.5 0.3032 19.9974 0.0840 1.4074

3.0 0.3370 58.2634 0.0975 3.8431

3.7836 1.6279 72.3411 0.2741 10.9987

Table 5.1 shows the comparison results of δ(σ̄) based on Theorem 4.1, Theorem

4.3 and the corresponding methods in [1]. The δ(σ̄) and the δmin(σ̄) in Table

5.1 can be obtained by Theorem 4.1 and Theorem 4.3 for given initial condition

ϕ(t) = [1.8 0.5]T , respectively.
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The parameters that are used to obtain the values in Table 5.1 are given in Table

5.2. Note that, since the delay is a constant function, the values in Table 5.1 are

obtained for β = 0.

Table 5.2: The parameters that are used to find δ(σ̄) and δmin(σ̄).

σ̄ µ1 λ1

0.5 80 -4

1.5 80 -1

2.5 80 -1.3

3.0 80 -1.1

3.7836 80 -1.03

The feedback gains are determined based on Theorem 4.1 for σ̄ = 0.5 and ϕ(t) =

[1.8 0.5]T as follows:

K1 =
[
−0.6453 0.8598

]

K2 =
[
−0.6484 −0.5870

]

The feedback gains are determined based on Theorem 4.3 for σ̄ = 0.5 and ϕ(t) =

[1.8 0.5]T as follows:

K1 =
[
−0.5087 0.2551

]

K2 =
[
−0.5087 0.1199

]

The guaranteed cost values get larger as σ̄ is chosen to be larger. Thus the

system time-response performance can be guaranteed by degradation of some

other performance, such as the cost function J .

Also it can be easily seen in Table 5.1 that the results based on Theorem 4.1,

Theorem 4.3 are better than the results based on the methods in [1].
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Here, the same problem is considered for time-varying delay case. The following

results in Table 5.3 are obtained for β = 2 with the same parameters in Table

5.2:

Table 5.3: The guaranteed cost values for β = 2.

σ̄ δ(σ̄) δmin(σ̄)

0.5 0.1837 0.0062

1.5 0.3151 0.0091

2.5 0.3666 0.0952

3.0 4.7095 0.1103

3.7836 2.1204 0.3635
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6. CONCLUSIONS

In the present study, we consider the delay-dependent guaranteed cost control

problem for nonlinear systems with time-varying delay which can be represented

by T-S fuzzy fuzzy model with time-varying delay. A guaranteed cost function

that measured by controlled output is considered and the sufficient conditions for

the solution are obtained by defining a suitable Lyapunov-Krasovskii functional.

These conditions are presented in terms of LMIs, depending on the size of time

delay. The state feedback control law is defined via PDC technique.

In addition, the upper bound of time-varying delay and the suboptimal upper

bound of the guaranteed cost are given by GEVP method and a suboptimal

value searching method, respectively.

In this study, no model transformation is used and also the restriction β < 1

given on the derivative of the time-varying delay is removed. The removal of this

restriction allows fast time varying delays.

The presented method is also compared with other methods in the literature given

for the constant delay case. It is shown that the results based on the theorems

in this thesis are much better than the previous ones.

Further studies on the stability analysis of delay-dependent cost control for T-S

fuzzy model with time-varying delay may be considered based on the output

feedback controller. Also the studies may be extended to the case of the delay in

the input vectors.
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Mathematics Department at Sakarya University. He is currently pursuing his
M.Sc. degree in Mathematical Engineering at İstanbul Technical University.
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