

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

JUNE 2013

MULTI-AGENT BASED LARGE SCALE TRAFFIC FLOW SIMULATION

OF INTELLIGENT TRANSPORTATION SYSTEMS

Oğuz Ali Ekinci

Department of Mechanical Engineering

Mechatronics Engineering Programme

JUNE 2013

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

MULTI-AGENT BASED LARGE SCALE TRAFFIC FLOW SIMULATION

OF INTELLIGENT TRANSPORTATION SYSTEMS

M.Sc. THESIS

Oğuz Ali EKİNCİ

 (518091056)

Department of Mechanical Engineering

Mechatronics Engineering Programme

Thesis Advisor: Asst. Prof. Pınar BOYRAZ

HAZİRAN 2013

İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ

AKILLI TAŞIT SİSTEMLERİNDE TRAFİK AKIŞININ

ÇOKLU AJAN YAKLAŞIMIYLA BÜYÜK ÖLÇEKTE BENZETİMİ

YÜKSEK LİSANS TEZİ

Oğuz Ali EKİNCİ

(518091056)

Makina Mühendisliği Anabilim Dalı

Mekatronik Mühendisliği Programı

Tez Danışmanı: Yrd. Doç. Dr. Pınar BOYRAZ

v

Thesis Advisor : Asst. Prof. Dr. Pınar BOYRAZ

 İstanbul Technical University

Jury Members : Prof. Dr. Şeniz ERTUĞRUL

İstanbul Technical University

Asst. Prof. Dr. Mustafa F. SERİNCAN

İstanbul Bilgi University

Oğuz Ali Ekinci, a M.Sc. student of ITU Graduate School of Science Engineering

and Technology student ID 518091056, successfully defended the thesis/dissertation

entitled “MULTI-AGENT BASED LARGE SCALE TRAFFIC FLOW

SIMULATION OF INTELLIGENT TRANSPORTATION SYSTEMS”, which he

prepared after fulfilling the requirements specified in the associated legislations,

before the jury whose signatures are below.

Date of Submission : 3 May 2013

Date of Defense : 5 June 2013

vi

vii

To my parents,

viii

ix

FOREWORD

Firstly, I would like to thank all people who have helped and inspired me during my

M.Sc. study. I especially want to thank my supervisor Asst. Prof. Pınar Boyraz for

her guidance and endless support during this thesis.

I am thankful and dedicate my thesis to my family, who are the references of my

accomplishments. Their support has encouraged me to work hard and reach the best

in my life.

May 2013

Oğuz Ali EKİNCİ

x

xi

TABLE OF CONTENTS

Page

FOREWORD ... ix
TABLE OF CONTENTS .. xi
ABBREVIATIONS ... xiii

LIST OF TABLES ... xv
LIST OF FIGURES ... xvii

SUMMARY ... xix
ÖZET .. xxi
1. INTRODUCTION .. 1

1.1 Purpose of Thesis ... 5

2. BACKGROUND .. 7
2.1 Intelligent Transportation Systems (ITS) ... 7
2.2 Route Finding Algorithms Review .. 8

2.2.1 Dijkstra's algorithm ... 10
2.2.2 A-star algorithm .. 11

2.3 Agent Development Environments .. 13

2.3.1 Able (agent building and learning environment) 13
2.3.2 Agent builder ... 13

2.3.3 Aglets .. 14

2.3.4 Fipa-os ... 14

2.3.5 Jade (java agent development framework) ... 15

3. METHODS AND EXPERIMENTS ... 21
3.1 Overview of the Architecture of the Simulation .. 21
3.2 Road Map ... 24

3.3 Agents ... 26
3.3.1 Agent types ... 31

3.3.1.1 Autonomous vehicle agent ... 31
3.3.1.2 Manual vehicle agent ... 32

Aggressive driver ... 34

Cautious driver ... 35
Drivers with weak reflex .. 35

3.3.1.3 ITS center agents (global center agent) .. 36
3.3.1.4 Local centre agent .. 37

3.3.1.5 Plotter agent ... 39
3.3.2 Agent behaviors .. 39

3.3.2.1 Communication behavior ... 40

3.3.2.2 Message handling behavior .. 40
3.3.2.3 Route planning behaviors ... 42
3.3.2.4 Velocity update behavior ... 46
3.3.2.5 Route following behaviors ... 48
3.3.2.6 Logging behavior ... 50

xii

3.4 Visualization ... 51

4. TEST RESULTS AND FINDINGS .. 53
4.1 Testing Environment .. 53
4.2 Limitations .. 53

4.3 Map Building .. 54
4.4 Test Cases ... 55
4.5 Test Results .. 56
4.6 Findings .. 60

5. CONCLUSIONS AND RECOMMENDATIONS ... 63
5.1 Future Work.. 63
5.2 Conclusion .. 64

REFERENCES ... 65
CURRICULUM VITAE .. 69

xiii

ABBREVIATIONS

ABLE : Agent Building and Learning Environment

ACL : Agent Communication Language

AID : Agent Identifier

AMS : Agent Management System

DARPA : Defense Advanced Research Projects Agency

DF : Directory Facilitator

ETC : Electronic Tool Collection

FIBA : The Foundation for Intelligent Physical Agents

IA : Intelligent Agent

IDE : Integrated Development Environment

IEEE : The Institute of Electrical and Electronics Engineers

IP : Internet Protocol

ITS : Intelligent Transportation Systems

JADE : Java Agent Development Environment

JAVA SE : Java Standart Edition

JDK : Java Development Kit

JVM : Java Virtual Machine

MAS : Multi-Agent System

MATLAB : Matrix Labrotary

SQL : Structured Query Language

V2I : Vehicle to Infrastructure

V2V : Vehicle to Vehicle

xiv

xv

LIST OF TABLES

Page

Table 3.1 : Adjacency matrix A .. 25

Table 3.2 : Coordinates of nodes matrix xy .. 25

Table 3.3 : Agent types and properties .. 36

Table 3.4 : Dijktra’s node list and calculations ... 44

Table 3.5 : A* node list and calculations .. 46

Table 4.1 : Test cases and proportions .. 55

Table 4.2 : Recorded speed profiles .. 56

Table 4.3 : Average velocities in simulations ... 58

Table 4.4 : Average delays in percentage ... 59

Table 4.5 : Dangerous actions ... 60

xvi

xvii

LIST OF FIGURES

Page

Figure 2.1 : Basic flow chart of Dijkstra’s algorithm ... 9
Figure 2.2 : Containers and platforms ... 16
Figure 2.3 : Agent thread path of execution [36] .. 17
Figure 3.1 : Simulation architecture and platform communications 22

Figure 3.2 : Generated sample map .. 25

Figure 3.3 : Base map of ITS simulation road map .. 26

Figure 3.4 : Simple reflex agent .. 27
Figure 3.5 : Internal structure of vehicle agent ... 28
Figure 3.6 : Message handling behavior flow chart .. 38
Figure 3.7 : Message handling behavior ... 41

Figure 3.8 : Flow diagram of communication behavior for vehicle agents 42
Figure 3.9 : Example path planning on ITS road map .. 43

Figure 3.10 : Dijkstra vs A* algorithm for same destination 45
Figure 3.11 : Velocity update behavior flow chart ... 47
Figure 3.12 : Route following behavior of autonomous cars in simulation 49

Figure 3.13 : Route following behavior of manual cars in simulation 50
Figure 3.14 : Visualization of instant agent positions on urban map 52

Figure 4.1 : Sample city map .. 54

Figure 4.2 : Recorded velocities (units per step) .. 57

Figure 4.3 : Average velocities of vehicle groups. ... 58

xviii

xix

MULTI-AGENT BASED LARGE SCALE TRAFFIC FLOW SIMULATION

OF INTELLIGENT TRANSPORTATION SYSTEMS

SUMMARY

In modern urban life, automobile traffic and collisions lead to endless frustration as

well as significant loss of life, time, and productivity. Recent advances in artificial

intelligence suggest that autonomous vehicles may soon be a reality. There are many

studies on intelligent transportation systems including autonomous vehicles,

intelligent routing, and intelligent road infrastructure. These approaches alleviate

many traditional problems associated with human inattention, in terms of both safety

and efficiency. However, all these systems rely on all vehicles being equipped with

the same technology and all of them are autonomous vehicles. Implementing such

systems in the real world is extremely difficult, there would be a transition period

and this period may be a chaotic or well organized. To observe that intelligent

transportation systems would help to solve traffic congestion or improve safely

travelling, this transition period must be analyzed.

In this study, we dwell on a simulation to allow autonomous vehicles and manually

driven vehicles in same traffic environment. The developed software platform is able

to simulate urban traffic with different proportions of autonomous vehicles over

manually driven vehicles. Also manually driven vehicles are considerad as three

main groups, aggressive drivers, cautious drivers and delayed drivers. All vehicles

are defined as software agents, to gain decision-making capabilities and

unpredictable behaviors in traffic. All vehicles calculate their own routes, make their

own chooses and follow their own paths with the help of multi agent approach. An

agent has specific properties according to limitations like its average velocity and

driver skill level.

The work is fully implemented and tested in developed custom simulator, and we

present detailed experimental results attesting to its effectiveness. Furthermore, we

show that as the number of autonomous vehicles on the road increases, they travel in

traffic more comfortable, faster, safer and delays caused by traffic jam decrease

monotonically.

xx

xxi

AKILLI TAŞIT SİSTEMLERİNDE TRAFİK AKIŞININ ÇOKLU AJAN

YAKLAŞIMIYLA BÜYÜK ÖLÇEKTE BENZETİMİ

ÖZET

Kentsel yaşamın günümüzde en temel problemlerinden biri yoğun trafik, trafikte

meydana gelen kazalar ve trafikte yaşanan zaman, can ve mal kaybıdır. Şehir

yaşantısında herkes yoğunluktan, ve bu yoğunluğa bağlı olarak ulaşımdaki

zorluklardan şikayetçidir. Nüfustaki yoğunluktan ve özellikle mesai öncesi ve sonrası

oluşan uzun kuyruklu trafik bir çoğumuzun zamanını çalmakta ve yaşam kalitemizi

önemli ölçüde düşürmektedir. Zaman kaybının yanı sıra, trafikte geçirilen uzun

bekleyişlerden sonra sürücülerin dikkatinin dağılmasından yada sabırsız

davranışlarından kaynaklanan can ve mal kayıpları da olabilmektedir.

Elektronik, yazılım, mekanik ve kontrol alanlarındaki ilerlemeler sayesinde

sürücüsüz araçlar üzerinde yapılan araştırmalar hız kazandı. İlk olarak sürücüye

yardımcı olan sistemler gelişmeye başladı. Hız sabitleme sistemleri, erken uyarı

sistemleri, sürüş kontrol sistemleri ve otomatik park sistemleri araçlara entegre olan

ilk akıllı teknolojilerdi. Bu teknolojiler sayesinde yarı-otonom araçlar gündeme geldi.

Özellikle karar verme konusunda yardımcı olabilecek tüm sistemler yarı-otonom araç

teknolojisine hizmet etmektedir.

Karar destek mekanizmalarının yanında kendi kendine karar verebilen teknolojiler de

gelişmeye başlamıştır. Böylece tam otonom araçlar gündeme gelmiştir. Tam otonom

araçlar yüksek teknolojiyle donatılmış, kendi kendine seyredebilen araçlardır.

Üzerinde konum belirleyiciler, ivme ölçerler, akustik algılayılar, mesafe sensörleri

gibi birçok sensörü barındıran ve bu bilgileri kullanarak araç kontrolünü sağlayan

yapay zeka ile donatılmışlardır.

Otonom araçların elektromekanik araştırmalarının yanında, otonom araçların trafikle

olan iletişimi üzerine de birçok çalışma yapılmıştır. Dinamik olarak değişen şehir

trafiğinde anlık bilgiye ulaşmak ve bunu yorumlamak çok önemlidir. Özellikle akıllı

taşıt sistemlerinin ve ulaştırma mühendislerinin üzerinde durduğu konular araçların

trafikte optimum şekilde seyretmesidir. Otonom araçlar kadar trafikte araçların

yönlendirilmesi de önemlidir.

Bahsedilen bütün teknolojiler, Akıllı Ulaşım Sistemleri adı altında toplanmaktadır,

ve hepsi aynı amaca hizmet etmektedir; trafik kazalarını ve buna bağlı can ve mal

kaybını önlemek, trafikteki seyir rahatlığını arttırmak, araç kullanım sayısını ve yakıt

tüketimini azaltarak karbondioksit salınımını engellemektir.

Bu gelişmelerden de anlaşıldığı gibi yakın gelecekte otonom araçların şehir trafiğine

karışacaklarını düşünmek hayal olmayacaktır. Google‘ın üzerinde çalıştığı insansız

araçlar (Toyota Prius) Amerika’nın Nevada eyaletinde ehliyetlerini almışlardır ve

prototipler şehir trafiğinde aktif olarak seyir etmektedir. Projenin gidişatına bakılırsa

otonom araçların amaca yönelik olarak insanlara trafikte büyük katkıda bulundukları

görülmektedir.

xxii

Gün geçtikçe otonom araçların sayısının artacağı düşünülüyor, ancak otonom araçlar

trafiği insan sürücülerle paylaşmak zorundalar ve bu beklenmedik sonuçlar

doğurabilir. Karmaşaya benzeyen trafik ortamına daha da fazla karışıklık

getirebilirler. O nedenle otonom araçlarının sayılarının artmasıyla birlikte, trafikteki

etkileri analiz edilmelidir. Insanlar öyle bir noktaya geleceklerdir ki, otonom araç

almanın ne zaman mantıklı olacağını düşüneceklerdir. Bu durumu yaşamadan önce

benzetim programlarıyla bu durum analiz edilmelidir.

Trafiği simule etmek için birçok yazılım geliştirilmiştir. Ancak bu yazılımların çoğu

tüm araçların aynı karakterde, aynı teknolojiyle donatılmış ve hepsinin otonom

olduğu varsayılan benzetim ortamlarıdır. Aynı davranışı sergileyen, aynı şekilde

seyir eden araçların paylaştığı bir trafk ortamı simule edilmeketedir. Ancak böyle bir

trafikte araçları otnom olanlar ve otonom olmayanlar diye ikiye ayırmak yeterli

olmayacaktır.Ayrıca otonom araçların sayısı trafik ortamında dün geçtikçe artan bir

orana sahip olacaktır.

Geçiş dönemini simule etmek için trafik ortamına insan sürücüleri de dahil etmek

gerekir. Çünkü trafikte beklenmeyen davranışları insan sürücüler sergilemektedir.

Bazıları trafik kurallarına harfiyen uyar, bazıları uymak istemelerine ragmen

sürücülük yetenekleri zayıf olduğu için uyamazlar ve bazıları da uymak

istemeyebilir. Bu nedenle insan davranışlarının modellenmesi ve benzetim ortamına

alınması büyük önem arzetmektedir.

Bu çalışmada, otonom ve manual araçların aynı trafikte olduğu bir benzetim üzerine

durulmuştur. Geliştirilen yazılım platformu farklı oranlarda manual ve otonom

araçların aynı şehir trafiğinde benzetilmesini sağlamaktadır. Manual kullanılan

araçlar, agresif sürücü, dikkatli sürücü ve gecikmeli sürücü olmak üzere üç farklı

grupta ele alınmıştır.Tüm araçlar trafikte kendi karalarını verebilmesi ve tahmin

edilemeyen davranışalara sahip olabilmeleri için birer yazılım vekili olarak

tanımlanmıştır. Vekil yaklaşımıyla, tüm araçlar kendi rotalarını hesaplayabilir, kendi

tercihlerini yapabilir ve rotalarını takip edebilirler. Her vekilin kendine özgü hız

limiti, ortalama hızı ve sürücü kabiliyeti gibi özellikleri vardır.

Benzetim ortamı oluşturulmak için ağırlıklı olarak Java programlama dili

kullanılmıştır. Eclipse yardımıyla Java kodu geliştirilip farklı ortamalarla beraber

çalışması sağlanmıştır. Şehir haritası oluşturmak için MATLAB ortamı kullanılmış

ve Java yazılımıyla control edilmiştir. Özellikle haritanın MATLAB’te

oluşturulmasının sebebi araçların rotalanması ve bu rotaların optimize edilmesi

konusunda MATLAB’in güçlü bir ortam olduğu içindir. MATLAB’ın farklı

fonksiyonları kullanılarak farklı boyutlarda yapay şehir haritaları oluşturulmuş,

karmaşıklığı ise simule edilmek istene duruma göre değiştirilmiştir. İlk testlerin

yapılması için küçük haritalar kullanılmıştır. Haritanın üzerinde araçların

tanımlayabilmek ve ilk davranışlarını test etmek için yaklaşık 25 aracın rahat hareket

edebileceği test haritaları kullanılmış, araçlar programlandıktan sonra ise harita

kademeli olarak büyütülmüştür.

Harita üzerinde otonom ve manuel olmak üzere iki temel araç tipi oluşturulmuştur.

Her bir araç bir özerk vekil olarak tanımlanmış ve trafikteki normal birer sürücü gibi

davranmaları için programlanmışlardır. Otonom araçların karakteristikleri birbirinin

aynısıdır, ancak manuel sürücüler; agresif sürücüler, dikkatli sürücüler ve zayıf

tepkili sürücüler olmak üzere üç temel gruba ayrılmıştır.

Akıllı vekiller (araçlar) JADE platformunda oluşturulmuş ve hepsine yol takip

davranışları, hız profilleri ve tepki süreleri gibi sürücü davranışları kazandırılmıştır.

xxiii

Bu sürücü davranışları belli toleranslar içinde değişkenlik gösterebilmektedir.

Örneğin, agresif sürücüler dikkatli sürücülere nazaran daha yüksek hız profillerine

sahiptir ve kendi içlerinde de bir miktar değişiklik gösterebilir. Bu değişiklikler

tamamen rastlantısal olarak oluşturulmaktadır.

JADE ortamında programlanan tüm araçlar, verdikleri kararları, aldıkları yol

durumlarını, seçtikleri hızları v bu gibi sürücü davranışlarını MySQL veri tabanına

kaydetmişlerdir. Bu kayıtlar üzerinden sorgular oluşturularak trafikteki durum analiz

edilmeye çalışılmıştır. Bulunan sonuçlar detaylı bir şekilde incelenmiş ve sonuç

olarak, otonom araçların sayısı arttıkça trafikteki seyirleri daha rahat, hızlı ve güvenli

hale gelmiştir ve trafik sıkışıklığından kaynaklan gecikmeler azalmıştır.

xxiv

1

1. INTRODUCTION

Nowadays, traffic congestion is one of the main problems for all countries in the

world, especially in developing countries because of the rapid increase in urban

population and the number of cars. This brought about the increase in number of

traffic accidents and has negative impact on society and human life directly because

of time and energy loss in traffic. This might also point to an inefficient

infrastructure and traffic control strategy.

Human behavior remains the main factor in determining the number of traffic

accidents and transportation trends even in the modern times. To minimize traffic

accidents there are established traffic rules and signals to guide drivers for organized

traffic flow and these rules also limit human behaviors while guiding them. With

these limitations, in the current system, assumed that all humans behave in same

driver profile and drives safely. However, this is not necessarily true.

It is not so easy to limit people behaviors especially in a chaotic situation like traffic

jam; also, characteristics of human behavior may vary both in normal and stressful

conditions. This causes more complexity in traffic flow. Due to the variation

amongst the driver behavior and human errors, the safety on roads still depends on

the human behavior no matter how advanced are the safety systems in today’s

vehicles.

In order to reduce human related errors and misconducts in traffic, there are

suggested improvements in vehicle technology such as driver assistant systems. The

degree of the assistance may range from vehicles with high technology controller

units to more sensitive warning systems. However, this is not adequate to prevent or

eliminate the effect of human behavior on traffic flow.

Autonomous ground vehicles are one-step further when compared to driver assistant

systems and autopilot drivers. . An autonomous ground vehicle is a vehicle that

navigates and drives entirely on its own with no human driver intervention and no

remote control. Using various sensors and positioning systems, the vehicle senses all

2

the characteristics of outer environment and its own dynamics such as acceleration,

velocity and position.

At the extreme end of the spectrum for intelligent vehicles, the research area in

autonomous vehicles is getting more interest. For instance, one of the latest

developments of autonomous vehicles is Google’s self-driving car [1], which is

modification of a Toyota Prius. The car is a project of Google Inc., which has been

working in secret but in plain view on vehicles that can drive themselves, using

artificial-intelligence software that can sense anything near the car and mimic the

decisions made by a human driver.

In this project, seven test cars have driven more than 1000 miles (about 1600

Kilometer) in autonomous mode without human intervention. In addition, there were

experienced technicians in driver and passenger seats and ready for action if

necessary. Test cars have driven in highways and sometimes in crowded city traffic.

The only accident while testing, engineers said, was when one Google car was rear-

ended while stopped at a traffic light by an elderly driver.

Autopilots react faster than human drivers do; they have 360-degree perception

capabilities and do not get distracted, sleepy or intoxicated when compared with

human drivers. These technologies could double the capacity of roads by allowing

cars to drive more safely while closer together like queuing and travelling together.

Because the robot cars would eventually be less likely to crash, they could be built

lighter, reducing fuel consumption. However, to be truly safer, the cars must be far

more reliable than first prototypes.

The car may be programmed for different driving personalities from cautious, in

which it is more likely to yield to another car, to aggressive, where it is more likely

to go first.

In urban traffic tests of Google’s car, Carnegie Mellon University robotics scientist,

Christopher Urmson was in the driver seat but not driving it. To gain control of the

travelling car, driver has to do one of three things: hit a red button near the right

hand, touch the brake or turn the steering wheel. He had this situation two times,

once when a bicyclist ran a red light and again when a car in front stopped and began

to back into a parking space. However, the car seemed likely to have prevented an

accident itself.

3

The project is the innovation of Sebastian Thrun, the director of the Stanford

Artificial Intelligence Laboratory, a Google engineer and the co-inventor of the

Street View mapping service of Google Maps. He announced the project in 2010 and

the newbie autonomous vehicle program recently passed its driver's license test in

Nevada in May 2012, the first license of its kind in the United States.

This is just a beginning, there are more researches about autonomous vehicles, and

there was a prize competition for driverless cars named DARPA Urban Challenge in

2007 [2].

The DARPA Urban Challenge was an autonomous vehicle research and development

program. This program’s goal was to spur the development of technologies needed to

create the first fully autonomous ground vehicles capable of completing a substantial

off-road course within a limited time. The Urban Challenge features autonomous

ground vehicles maneuvering in a mock city environment, avoiding obstacles,

executing simulated military supply missions while merging into real traffic.

The program is managed as a series of qualification steps leading to a competitive

final event. DARPA is offering monetary reward of $2M for the fastest qualifying

vehicle, and $1M and $500,000 for second and third place.

All Urban Challenge teams come from across the United States and around the

world, and have a passion for the advancement of machine intelligence and robotic

technology. This multi-disciplinary group includes teams from different research

areas like academia, the robotics, automotive, and defense industries. Each team

works to develop an autonomous vehicle to complete the 60-miles (approximately

100 Kilometers) urban route in less than six hours.

As mentioned before, this technology interests the robotics as well, and some

researchers has been working on it. Daniela Rus, Professor of Electrical Engineering

and Computer Science and Director of the Computer Science and Artificial

Intelligence Laboratory (CSAIL) at MIT publish one of the latest papers related with

this topic.

Control theory is another approach for traffic congestion and distributed control

approach is applicable on autonomous vehicles and their optimal routing. A study

proposes a method for multi-agent path planning on a road network in the presence

of congestion and a distributed method to find paths [3] for multiple agents is

4

suggested. This distributed method uses probabilistic path choice to achieve global

goals like social optimal. Proposed approach shows that the global goals can be

achieved by local processing using only local information, can be parallelized and

speed up using parallel processing. This study implemented on a group of robots and

it was tested in laboratory environment to coordinate their movements. It is a good

approach, but a group of robots would not enough to simulate real, crowded urban

traffic. In macro scale, it is a very efficient work.

There are many studies on intelligent traffic routing to reduce traffic jam and it is one

the most important technology. This technology may be based upon different route

traffic data. One of the work is about using loop detectors and a fleet of taxis to

gather real traffic data to develop a traffic congestion model. Two different goals are

considered, one of them is to optimize individual travel times and the other is to

achieve the social optimum regarding to travel time over all the drivers in the system.

Using this approach, the study [4] claims to improve the total travel time by 15%.

However, the method could be applicable to only limited situations where there is a

distributed sensor network infrastructure. Gathering traffic data from specific group

of vehicles my not reflect the real traffic congestion, this system must be

implemented all routes and all vehicles in traffic. Moreover, it is difficult to

implement in real life.

It is hard to develop a solution to complex traffic environment, but testing this

solution or model is an important step to develop insight on the feasibility of the

proposed solution. It would not be safe directly implementing solutions; first, the

system should be simulated to see the pitfalls. That is why we need a specific

simulation environment for modelling real traffic environment. In this work [5], it is

analyzed that which simulators is suitable for implementing autonomous vehicles.

Primarily, robotics simulators provide a suitable test environment for autonomous

vehicles to experiment new methodologies such as long-term navigation algorithms,

intelligent routing etc. However, when it concerns the deployment and validation of

such vehicles in a larger scale urban traffic scenario, robotics simulators do not seem

to provide the required functionality for road traffic analysis, or inter-vehicular

communication infrastructure, as they seem present in today’s traffic simulators.

These features have key importance in simulation environment to assess the real

urban traffic when an intelligent system is introduced. José Luis Ferrás Pereira

5

implemented autonomous vehicles in different simulation environments and

critically reviewed the feasibility of the integrations.

There are many projects in the area autonomous vehicles and their implementations

in simulation environments, here only a few of them are mentioned. As technologists

said, autonomous ground vehicles are inevitable in the future and they may

participate in real city traffic in next 20-30 years. In addition, there will be a

transition period for switching from manual vehicles to autonomous vehicles, and

this period should be analyzed in large scale in terms of feasibility. This period will

be chaotic, or steadier than expected depending on how the transition is planned. To

the best of knowledge of the author, there is no study on mixed traffic flow including

different autonomy levels of vehicles and ITS in simulation or real traffic

environment. Google’s Toyota Prius is travelling in real traffic but if the numbers of

autonomous vehicles are increased to form a certain percentage of the existing fleet,

it is not clear that, what will be the portrait of the traffic flow or if they are as

effective as they are claimed to be in reducing the number of accidents.

In addition, there must be a clue for customers who consider having an autonomous

car. When will be this purchase is safer, or with rise of autonomous cars, will traffic

jam reduce.

This thesis aims to analyze the mixed traffic when autonomous vehicles meet

manually driven vehicles in urban traffic. This must be accomplished using a

simulation environment, where both manually driven vehicles and autonomous

vehicles can be defined at the same time. Ultimate goal of the project is developing a

successful simulation environment to simulate population of different vehicle groups

and analyze the mixed urban traffic. The selected approach envisions the integration

of different software environments for simulation, visualization and logging.

1.1 Purpose of Thesis

This thesis tries to predict or develop insight on answering the question if the ITS

technology will help solving congestion/traffic jam and accident problems in near

future as expected. We propose an ITS structure to see if such a technology would be

beneficial in transitory period where some certain percentages of vehicles are fully

autonomous while the rest of the fleet is semi-autonomous or manually controlled.

6

7

2. BACKGROUND

2.1 Intelligent Transportation Systems (ITS)

Intelligent Transportation System (ITS) [6] applies advanced technologies of

electronics, communications, artificial intelligence, sensing and control in all fields

of transportation in order to improve driver and pedestrian safety, driving comfort

and real-time information sharing. Intelligent Transportation System is architecture

for both commercial users and the public.

ITS Technologies are applied to roadways and vehicles to perform navigation,

sensing, monitoring, communications, data processing, traffic control, surveillance

and various other functionalities. These functionalities are just in their beginning

stages. After autonomous cars rise, there will be new and more effective functions

like intelligent routing, accident warning systems, traffic flow optimization etc.

Moreover, ITS technology will be more valuable while world population grows.

Several ITS components that are actively used in developed countries today,

although they are not actively connected to each other to form a super-system of ITS

yet:

• Electronic toll collections (ETC) [7]

• Freeway and incident Management [8]

• Vehicle to Vehicle (V2V) [9] [10] or Vehicle to Infrastructure (V2I) [11]

• Intelligent Routing [12] [13]

• Traffic density monitoring etc. [14] [15] [16]

In the next section, the route finding algorithms are reviewed since they are the

backbones of the intelligent transportation systems providing an optimization for

routing of the vehicles in a complex net of roads with possible bottlenecks and

incomplete information on the dynamic situation of the network.

8

2.2 Route Finding Algorithms Review

A path finding method searches a graph by starting at one vertex and exploring

adjacent nodes until the destination node is reached, generally with the intent of

finding the shortest route. These algorithms are used in many fields such as mobile

robotics, game programming, logistics and similar areas.

These algorithms can also be used in Intelligent Transportation Systems. There are

many different graph search and path planning algorithms in computer science

literature to be adopted for use in ITS development. Some of them [17] [18] [19] are

aiming to find the shortest path between two points in the least possible computation,

some other are aiming to find an acceptable path by pruning the related search tree to

decrease computation cost in exchange for least possible distance.

In addition, there are more algorithms specific to topological characteristic of road

architectures and connections. Likewise, there are heuristic search methods to

increase computational efficiency of shortest path algorithms like [21] [22] [23].

It is not easy to use heuristic search methods in vehicle navigation, different heuristic

strategies such as limiting the search area, decomposing search problem, limiting the

searched links in graph and their combinations must be examined.

In any type of path finding method, the algorithm searches a graph by starting a

specific vertex and exploring adjacent nodes until the destination node is reached.

Usually this search ends up with possible shortest path. Thought graph searching

methods such as a breadth-first search would find a route if given enough

computation time, other searching methods, that explore the graph, would head the

destination sooner. An analogy would be an individual walking cross the street;

instead of examining every possible route in advance, the individual would generally

walk in the direction of the destination and only diverge from the path to avoid an

obstacle.

There are two primary problems in path finding, one is finding the path between two

nodes in a graph and the other one is finding the shortest path. Fundamental

algorithms such as breadth-first and depth-first search address the first problem by

exhausting all possibilities; starting from the given node, they iterate over all

9

potential paths until they reach the destination node. On the other hand finding the

optimal path is the most complicated problem. The exhaustive approach in this case

is known as the Bellman-Ford Algorithm [20], but it is not necessary to examine all

possible paths to find the optimal one. Algorithms such as A-Star [21] and Dijkstra

[17] strategically eliminate paths, either through heuristics or through dynamic

programming.

All path-planning algorithms have same goal, reaching destination point from start

point. Moreover, path-planning algorithms generally have similarities on their flow

charts; calculations are made recursively until destination point is reached. Figure 2.1

shows the general flow chart of Dijkstra’s algorithm.

Figure 2.1 : Basic flow chart of Dijkstra’s algorithm

START

Identify start and destination node S and

D

Is T-node equal to D?

Set S as T- node

Set T-node's label to "permanent" and

update neighbour's status record set.

Identify the tentative node linked to S that

has the lowest weight and set it as T-

node

Based on information in status record set,

do this until you reach D. This string of

nodes represents the best route.

END

NO

YES

10

2.2.1 Dijkstra's algorithm

A widespread example of graph-based path finding algorithm is Dijkstra’s algorithm

[17]. This commonly used algorithm begins with a start node and an “open list” of

adjacent candidate nodes. Every step, the node in the open set which is the closest to

instant node is examined. The examined node is marked as “closed”, and all nodes

adjacent to it are added to the open list if they have not already been visited. This

cycle continues until a path to the destination has been found. Since the lowest

distance nodes are visited first, the first time the destination is found, the path to it

will be the shortest path.

Dijkstra's Shortest Path Algorithm is an algorithm to find shortest paths in a graph

with weighted edges. It was developed by Dutch computer scientist Edsger Wybe

Dijkstra in 1959 and is still widely used today, e.g. in routing and robotics.

Basically it computes the shortest paths from a source node to all reachable nodes. It

only requires all edge weights to be positive, and works for undirected as well as

directed graphs. If the graph is not connected, i.e. there are unreachable nodes, their

distances are set to infinite initially and are marked as not reachable. Algorithm

never fails, until weights are negative. Below, the algorithm for a graph G= (nodes,

edges) is shown in pseudo code[26].

1 for each node n in nodes

2 distance[n]:= infinite

3 distance[s]:= 0

4 visited: = {}

5

6 while exist nodes not in visited

7 n: = node with smallest distance[n] which is not in visited

8 if distance[n] = infinite

9 break

10 visited: = visited union {n}

11

12 for each node m with (n, m) in edges which is not in visited

13 d: = distance[n] + weight (n, m)

14

15 if d < distance[m]

16 distance[m]:= d

11

2.2.2 A-star algorithm

A-Star is one of the general search algorithm which is easy to understand and simple

to implement and also competitive and as powerful as other search algorithms [17]

[18] [19]. As mentioned, search algorithms have a wide variety of usage ranging

from artificial intelligence planning problems to sentence parsing in any language.

Therefore, an effective search algorithm provides us to solve a large number of

problems easily.

The problems that A-star is best used for are those that can be represented as a state

space. In a suitable problem, you must represent the initial conditions of appropriate

initial state and the goal conditions as the goal state. For each action, generate

successor states to represent the effects of the action. If you continue doing this and

at some point, one of the generated successor states is the goal state, and then the

path from initial to goal state is the solution of related problem.

A-star is a variant of Dijkstra's algorithm commonly used in game development. A-

star designates a weight to each open node equal to the weight of the edge to that

node plus the approximate distance between that node and the destination node. This

can be classified as a heuristic distance that is the minimum possible distance

between that node and the destination node. This allows the algorithm to eliminate

longer paths once an initial path is found. If there is a path of length L between the

start node and destination node, and the minimum distance between a node and the

destination is greater than L, that node need not be visited.

A* uses this heuristic to improve on the behavior according to Dijkstra's algorithm.

When the heuristic equals to zero, A* generates same solution as Dijkstra's

algorithm. As the heuristic approximate to the real distance, A* still finds optimal

path, but computes faster. While the value of the heuristic is exactly the real distance,

A* visits the fewest nodes. While the value of the heuristic increases, A* visits fewer

nodes but no longer guarantees an optimal path. In application, especially in game

development and simulations, it is acceptable to keep algorithm less processor

hungry.

Briefly, A* algorithm searches all possible routes from a starting node until it finds

the shortest path or cheapest cost to a destination node. Shortest path and cheapest

12

cost terms refer to a general notion. It could be called any alternative term depending

on the problem. For graph search or map problems the cost refer to the term distance.

This may decrease the obligation to search all the possible paths in a search space,

and improve computation cost. A* evaluates nodes by considering g (n) and h (n).

General formulation for A* is

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

The aim of this equation is to obtain the lowest f score in a given path-planning

problem. n being node number crossed until the final node, f(n) is the total search

cost, g(n) is actual lowest cost(shortest distance traveled) of the path from initial

start point to the node n, h(n) is the estimated of cost of cheapest(distance) from the

node n to a goal node. This part of the equation is also called heuristic

function/estimation.

At each node, the lowest f value is chosen to be the next step to expand until the goal

node is chosen and reached for expansion. Whenever the heuristic function satisfies

certain conditions, A* search is both complete and optimal. Pseudo code for A*

algorithm [38] is shown below

1 Create open list of nodes, at the beginning open list contains only our starting node

2 Create the closed list of nodes, initially it is empty

3 WHILE (we have not reached our goal) {

4 Consider the best node in the open list (the node with the lowest f value)

5 IF (this node is the goal) {

6 Then we are done

7 }

8 ELSE {

9 Move the current node to the closed list and consider all of its neighbors

10 FOR (each neighbor) {

11 IF (this neighbor is in the closed list and our current g value is lower) {

12 Update the neighbor with the new, lower, g value

13 Change the neighbor's parent to our current node

14 }

15 ELSE IF (this neighbor is in the open list and our current g value is lower) {

16 Update the neighbor with the new, lower, g value

17 Change the neighbor's parent to our current node

18 }

19 ELSE this neighbor is not in either the open or the closed list {

20 Add the neighbor to the open list and set its g value

21 } ENDIF

22 } ENDFOR

23 } ENDIF

24} ENDWHILE

13

2.3 Agent Development Environments

There are a few Java-based agent development environments such as ABLE [27],

AgentBuilder [28], Aglets [29], FIPA-OS [30], JADE [31], JATLite [32]. In this

thesis, JADE is chosen as the agent development environment due to its Open-

Source license and well prepared documentation. Powerful and user friendly plug-in

for Eclipse [33]. It is very difficult to debug agents while they are running and not

possible with standard IDEs, there is a powerful Eclipse plug-in named EJADE for

JADE platforms. The brief descriptions about JADE and other agent development

environments are mentioned in the following sections.

2.3.1 Able (agent building and learning environment)

ABLE [27] is a Java library, framework and toolkit for developing intelligent agents

with power of reasoning and machine learning. The ABLE framework was

developed by IBM Watson Research Center. Able framework provides JavaBean

components called AbleBeans to increase reusability, flexible interconnection

methods to create working software agents. In addition provides a graphical user

interface for interactive development environment.

ABLE has following major components:

 A Java framework for intelligent agents with messaging, event queuing and

operation capabilities

 Machine learning agents for forecasting, prediction and classification

 A reasoning component which includes rule engine

 An agent platform that provides agent management and communication

across a network

2.3.2 Agent builder

AgentBuilder [28] is an integrated software toolkit for software developers for

quickly and easily building intelligent software agents and multi agent based

applications. It is developed and supported by Reticular Systems Inc. There are two

version of AgentBuilder toolkit as AgentBuilder Lite and AgentBuilder Professional.

The Lite version is suitable for building single-agent standalone applications and

small agencies and the other one has all features of Lite plus an advanced suite of

14

tools for debugging, testing and building multi-agent systems. This toolkit uses

agent-oriented programming language and provides graphical tools for configuring

agents and their behaviors. AgentBuilder aim at developers who have no artificial

intelligent background to build agent based intelligent applications. In addition to

agent-level development and debugging tools, it provides a set of project

management and domain analysis tools.

2.3.3 Aglets

Aglets [29] is a Java mobile agent library and platform which provides development

of agent based intelligent applications. Aglets was originally developed at the IBM

Tokyo Research Laboratory. Now it is open source and is distributed under IBM

Public License.

Aglets is completely made in Java, and ensures high portability of both agents and

the agent platform.

Aglets includes:

 Java mobile agent platform

 Tahiti stand-alone server

 Library that allows developer to build mobile agents

2.3.4 Fipa-os

FIPA [34] is an IEEE Computer Society standards organization that promotes agent-

based technology and the interoperability of its standards with other technologies.

FIPA-OS [30] is a FIPA compliant agent development environment which is fully

implemented in Java. FIPA-OS supports the majority of the FIPA Experimental

specifications and growing under Open Source Community project.

Two alternative distributions are available, Standard FIPA-OS and Micro FIPA-OS.

First one contains code developed directly from FIPA-OS codebase without

modifications and the second one is an extension to JDK version of FIPA-OS and

was developed by the University of Helsinki. Both editions are free and distributed

with source codes.

15

2.3.5 Jade (java agent development framework)

JADE [31] is an open source software framework that is distributed by Telecom

Italia. Agent Development framework is fully implemented in Java programming

language. It simplifies the implementation of multi-agent systems through a middle-

ware that complies with the FIPA specifications and through a set of graphical tools

that supports the debugging and deployment phases. Distributed platform

architecture is a big plus for sharing process load to different machines without

operating system constraint. Agent platforms can be controlled remotely,

configurations can be even changed at run-time and it is possible to move or copy

one agent from one machine to another. JADE is completely implemented in Java

language and the minimal system requirement is the version 1.4 of JAVA (the run

time environment or the JDK).

In details, a platform is a layer where multi-agent system launches on JADE. A

platform is composed of agent containers which can be distributed on different

computers over any network. A container is JAVA environment which provides the

JADE run-time engine and services needed by agents to live. It is possible to create

more than one container in same platform for different types of process or agents.

Many agents can be placed in a single container or distributed to different containers.

Agents can communicate over different platforms or different containers easily

according to FIPA specifications. There are two options for creating a container. If

an IP address is given, the container joins to an existing platform which is hosted on

the computer having that given IP address. Otherwise, the container becomes a main

container, which is the bootstrap point of a new platform. To create a new agent

platform, firstly a main container should be launched and then the other containers

should register to main container.

Two agents are automatically started when main container comes alive, which are

Agent Management System (AMS) and Directory Facilitator (DF). The AMS

provides white-page and life-cycle services, maintaining a directory of agent

identifiers (AID). DF is the agent that provides the default yellow page services in

the platform [35]. Agents can find the Agent Identifiers of other agents by requesting

information from Directory Facilitator. Architecture of container and platforms is

depicted in Figure 2.2

16

Figure 2.2 : Containers and platforms

Custom or user defined agents can be implemented by extending class

“jade.core.Agent”. An instance of any class derived from “jade.core.Agent” class is

able to join any agent container and live there. An agent can be created while

container is starting or after container started. There is a fundamental method called

“setup()” in “jade.core.Agent” class, which should be overridden after extending.

This method acts like constructor of an agent and initial definitions filled or specified

while creating instances of an agent. Every agent has a local name in joined

container, and a global name in the main container. Local name is given by the

programmers; global name is automatically given by the main container.

An agent is able to execute several behaviours simultaneously. However, it is

important to note that the scheduling of behaviours in an agent is cooperative. When

a behaviour is scheduled for execution its “action()” method is called and runs until it

returns. Therefore, the programmer defines when an agent switches from the

17

execution of one behaviour to the execution of another. This approach often creates

difficulties for inexperienced JADE developers and must always be kept in mind

when writing JADE agents. The path of execution of the agent thread is depicted in

Figure 2.3.

Figure 2.3 : Agent thread path of execution [36]

JADE provides an easy to use messaging mechanism, which enables the programmer

to establish communication between the agents over network or internet.

Programmers do not have to know about any socket programming to send messages

between the agents. Messaging objects are created as an instance of “ACLMessage”

setup()

Agent has been killed

(doDelete() method called) ?

Get the next behaviour

from the pool of active

behaviors

b.action()

b.done()?

Remove currentBehaviur

from the pool of active

behaviors

takedown()

Agent "life" (execution of behaviors)

Initilizations

Addition of initial

behaviors



Clean-up operations

Programmers have to

implement methods

which are writen in

italic

YES

YES

NO

NO

18

class in JADE that contains two types of content in it. First one is a pure string and

second one is a serializable (the conversion of an object to a series of bytes) java

object. Every ACLMessage has a performative, which can be manually set by the

programmer. INFORM, AGREE, CONFIRM, PROPOSE, REQUEST, REFUSE are

basic examples to most common performatives. These performatives have formal

semantics defined by the FIPA specification. Briefly, these performatives are used to

distinguish the message types, and then messages are processed according to its

semantic by the receivers. Once the ACLMessage instance is created, message

content and performative is set, Agent Identifiers of the receivers are specified and

the message is sent by the methods provided by agent interface.

Every agent has some set of behaviors, which are programmed to perform

independent or dependent actions. Generally, these behaviors need to run

simultaneously such that, when a behavior is performing a long task, another

behavior should perform a different task. Some tasks are performed just for once,

some are repeated periodically, and some are repeated continuously. Also, all related

tasks should be able to run independently. That’s why agents should be multi-

threaded and behaviors should be defined as JAVA threads. Agent life cycle states

and synchronizations of these threads should be treated carefully.

Standard JADE package comes with a set of abstract behavior classes, which can be

used to adapt commonly used task types. Programmer choose an appropriate abstract

behavior class and extend it by implementing the abstract methods “action()” and

“done()” which are derived from the abstract class. After a behavior class is extended

from related abstract class, it is wrapped by a threaded behavior factory and becomes

a threaded behavior that is independent than other behaviors. All synchronization,

blocking and state transition operations of behavior threads are handled by JADE.

In order to add a behavior to an agent, an instance of a behavior class can be created

in agent’s constructor method which is called “setup()” and after that this behavior

added to this agent’s behavior pool. All added behaviors execute immediately after

the setup method reaches the end. Some abstract behavior classes which are

commonly used in the implementation phase of this thesis are explained below.

19

OneShotBehaviour is an abstract behavior class that can be extended from

“jade.core.behaviours.OneShotBehaviour” class by the programmer to implement

operations which will be executed just for once.

CyclicBehaviour is another abstract behavior class which can be extended from

“jade.core.behaviours.CyclicBehaviour” and used to implement tasks which will

never be completed. This behavior type is useful for reactive tasks such as message

listening and replying. Because of it is execution type (lasts forever), this behavior

should be handled carefully. Cyclic behaviors may cause other behaviors no to do

their jobs when they enter infinite loops.

TickerBehaviour is also an abstract behavior class which is suitable to implement the

operations that repetitively waiting a given period after each execution.

20

21

3. METHODS AND EXPERIMENTS

In this section, design and architecture of multi-agent based traffic simulation is

explained. This simulation has been designed and developed to analyze the effect of

manually driven vehicles and semi-autonomous vehicles when autonomous vehicles

are introduced in the traffic flow.

3.1 Overview of the Architecture of the Simulation

In this simulation software, JAVA was chosen as the programming language. JAVA

SE (JAVA Standard Edition) has many advantages; it is powerful, platform free and

stable. There is also a free and ready-to-use agent development framework written in

JAVA, named as JADE (Java Agent Development Environment) and JAVA has a

flexible MATLAB control library. MATLAB has been used in this thesis for

generating complex graph based random map and path planning. Moreover it has an

easy-to-use plot function. In short periods, position of the manual, autonomous and

semi-autonomous cars are plotted on main map graph which is called from

MATLAB. Another reason for using JAVA is that there are some professional and

free IDE’s (Integrated Development Environment) such as Eclipse and Net Beans. In

this thesis Eclipse is used during software development and implementation. Layer

platform for combining JADE, MATLAB and MySQL is written in Eclipse. Last but

not least, JAVA has powerful collections framework. Hash maps, vectors, array lists

are frequently used in agent development and these objects are sent between the

agents according to FIPA standards for communication and information sharing.

Since these classes in JAVA are serializable, it is possible to send their instances to

other agents over network or joined agent platforms.

Eclipse is the most powerful Java integrated development environment (Ide), this

environment used for Java code development, controlling other software and

software tools. General overview of simulation software and roles of Eclipse, JADE

and Matlab are depicted in Figure 3.1.

22

Simulation starts in eclipse, and continues step by step until it ends. First, MATLAB

proxy object is created, and becomes ready to use over Eclipse. City map is

generated in MATLAB. To start a simulation over this map, initial parameters must

be given. Number of agents in simulation, proportion of agents (autonomous / elderly

/ cautious / aggressive) and agent specific properties (Start Node, destination,

average velocity, speed profile, detection radius etc.) are input parameter for

simulation.

Figure 3.1 : Simulation architecture and platform communications

When agents are created as a software object, path planning algorithm runs in

background (this is an agent behavior, agents call algorithm that is developed in

MATLAB). In addition, than agent calculates two different paths; one of them is the

Start

Simulation

Call

MATLAB

Proxy

Create

Random City

Map

Create JADE

Runtime

Create ITS

Platform

Create Agents

MySQL

Global

Center

Agent

Manual

Vehicles

Autonomous

Vehicle

Logger

Agent

Plotter

Agent

City

Map

Traffic

Condition

A*

Algorithm

Dijkstra's

Algorithm

Plotting

Function

Platform Workspace

Simulate City

Traffic

End Simulation

Traveling Car

MySQL

YES

NO

JADE ECLIPSE MATLAB

23

shortest path according to Dijkstra’s algorithm and the other one is shortest path plus

heuristic function based A* algorithm and it uses initial route density information.

Some nodes traffic density already known from early simulations. A* calculates

most efficient (route that has minimum cost) path for travelling in crowded traffic

simulation instead of Dijkstra’s shortest path. After route calculation driver knows

how to reach destination point and estimated travel time. All these process done

when agent objects are created on java runtime engine. Creating an agent object does

not mean that agent is alive. When object is created, agent gains identification and

driving behavior characteristics. Nevertheless, all agents live in a platform which is

held by JADE (Java Agent Development Framework). Multi-Agent systems need

communication and Jade supplies a communication protocol that is compatible FIPA

(The Foundation for Intelligent physical Agents) specifications.

After Jade agent platform is created all agents born one by one and joins related Jade

platform, in this case ITS platform.

Autonomous cars search for a server agent to communicate about route’s instant

traffic condition; manual cars do not have access to this information since it is

assumed that this type of cars is not equipped with ITS devices. If autonomous car

cannot find accepted server connection or losses the connection, driver type

automatically switches to Semi-autonomous mode, else it is ready for travelling.

When route’s instant traffic condition differs from expected, route calculation runs

again. All route calculation algorithms run on MATLAB.

According to driver type (Autonomous, aggressive, cautious, and delayed) and

driver’s behavior, agents start travelling. Mentioned behaviors generate different

results or travelling profiles because of randomness in simulation. All aggressive or

autonomous driven cars do not act like each other. In this thesis, behaviors of these

different driver types are analyzed. So every step and every decision of all drivers are

logged in to MySQL database. Start point, destination point, instant position, instant

velocity etc. are logged to generate simulation output results.

The design has five main components:

 Road Map

 Agent Platform

24

 Agents

o Agent Types

 Manual Vehicle Agent

 Autonomous Vehicle Agent

 ITS Center Agents

o Agent Behaviors

 Communication Behavior

 Message Handling Behavior

 Route Planning Behavior

 Route Following Behavior

 Velocity Update Behavior

 Logging

 Visualization

3.2 Road Map

In order to develop the simulation software and test the multi-agent system in action,

it is required to generate a road map. For this purpose, a road map storage format is

constructed and a sample road map is generated using that format in MATLAB. A

complex map was generated to cause some difficulties in simulation runtime, this is a

non-constrained map with many connections between nodes.

Two main matrixes are defined, A and xy. A is n*n matrix, which stores adjacencies

and xy is nx2 matrix, which stores coordinates of each points. Here, n is number of

points in map. Delaunay [37] function in MATLAB is very useful for generating

adjacencies; this function creates 2D Delaunay triangulation of the points.

“Delaunay” function creates a Delaunay triangulation of a set of points in 2-D or 3-D

space. A 2-D Delaunay triangulation ensures that the circumcircle associated with

each triangle contains no other point in its interior. This definition extends naturally

to higher dimension.

Adjacency matrix A and coordinates of points are listed in Table 3.1 and Table 3.2.

Matrix A stores all neighbourhood, and adjacency between two different nodes are

represented as 1.

25

Table 3.1 : Adjacency matrix A

Adjacency Node 1 Node2 Node 3 Node 4 Node 5

Node 1 0 1 1 0 0

Node 2 0 0 1 1 0

Node 3 1 1 0 1 1

Node 4 0 0 1 0 1

Node 5 1 0 1 0 0

This table shows adjacencies between points, one means they are adjacent, zero

means they are not adjacent. According to this table Node 1 and Node 3, Node 1 and

Node 5 etc. are adjacent.

Table 3.2 : Coordinates of nodes matrix xy

Coordinates x y

Node 1 1,621823082 6,019819414

Node 2 7,942845407 2,629712845

Node 3 3,11215042 6,540790985

Node 4 5,285331355 6,892145031

Node 5 1,656487295 7,481515928

Another useful function for generating maps is gplot function in MATLAB. This

functions expect two input parameters. One is adjacency matrix and the other is point

coordinates. Generated map using gplot function in MATLAB with A and xy matrix

inputs is plotterd in Figure 3.2

Figure 3.2 : Generated sample map

26

As it seen from the figure, gplot function generates a simple map. According to

adjacency matrix A, Node 1 and Node 3, Node 1 and Node 5 are a few samples of

adjacent nodes.

In the scope of this study, different road maps are developed for different purposes.

Smaller maps are developed for testing performance and debugging agents which

behaves like real drivers. However this generated maps are too small to simulate

more than hundred cars simultaneously, thus a bigger map is generated which has

more than hundred nodes. Briefly, a little complex city or village is generated

randomly and Figure 3.3 shows plotted virtual city. In future works, this map can be

generated from Google Maps or any other map providers automatically and easily.

Figure 3.3 : Base map of ITS simulation road map

In simulation, all agents start from a start node and travels to destination node. All of

these processes are random; an agent travels from new start node to new destination

node in each simulation. This is designed for randomization in simulation. After start

node and destination node are defined, path planning calculates the shortest path and

returns detailed path.

3.3 Agents

In artificial intelligence, an intelligent agent (IA) is an autonomous entity, which

observes through sensors, acts upon an environment using actuators, and directs its

activity towards achieving goals. Intelligent agents may also learn or use knowledge

27

in order to achieve their goals. They may be very simple or very complex: a reflex

machine such as a thermostat is an intelligent agent, as is a human being, as is a

community of human beings working together towards a goal. Simple reflex agent

[39] model is depicted in Figure 3.4

Figure 3.4 : Simple reflex agent

In this study, all vehicles are represented as agents, some are autonomous, some

semi-autonomous and some are manually driven. Autonomous cars are represented

by one type, and manual cars are represented by three main types; aggressive,

cautious and elderly driver.

Two different object types were inherited from Jade agent class and have riched with

other parameters that they generate a characteristic for a vehicle. These parameters

are inputs for some equations like route following, choice of speed or vehicle

following distance.

All agents were programmed with simple reflex agent pattern to mimic human

behaviors and to simplfy driver skills. More complicated design pattern are available

in literature, but they are difficult to implement in traffic simulation and some of

them are far away from mimicking human driver’s behaviors. In this case, simple

reflex design pattern is enough for our simulation platform.

28

Simply, all of them are represented by agent class, programmed with simple reflex

design and they have specific behaviors. Internal structure of vehicle agent is shown

in Figure 3.5

Figure 3.5 : Internal structure of vehicle agent

All vehicle agents and server agent are using the same abstract road map, actually

vehicle agents are only interested in their routes and other vehicles agents on their

routes. Road map is at the bottom level of vehicle agent architecture, when agent’s

“setup” method is called, random start node and random end node are chosen. After

start point and destination point are defined, detailed route points are calculated by

path calculator engine in MATLAB. This function uses Dijkstra or A* path finding

algorithm to calculate node list to visit while travelling from start point to destination

point. This path contains only node list to visit, after node list generated, this node

list must be detailed into tiny pieces. User defined MATLAB path detailer engine

serves for this purpose.

Every vehicle agent report their instant positions and velocity to central server and

receive instant route information. Every step, vehicle agent calculates its next

movement and stores instant position in a hashtable. This process never stop until

vehicle agent reaches its destination node. Hashtable object which includes vehicle’s

instant properties like position, velocity, direction and path is sent periodically to

Server Agent

Communication

MATLAB

Get Route

Information

MySQL

Communication

Behaviors

Joining Central

Server

Road Status

Request

Instant Properties

Reporter

Initial Route

Calculation

Report

Position &

Velocity

Road Following

Behavior

Instant Position

Calculation

Movement

Behaviors

Choose Velocity

Log instant status

Logging Behavior

29

joined central servers. At the same time, vehicle agent waits for replying message

which includes instant traffic information especially nearest vehicle agent’s positions

and velocities.

 MatlabProxy is a proxy object driven from MatlabControl library that is

used for controlling Matlab run-time engine and also creating Matlab

statements.

 AgentName is an argument which determines agent local name. Agents that

share same container, reach other agent by their local names. This argument

generated programmatically with a simple notation like “CarType_(generated

Order)” for instance “AutonomousCar_(23)” is given for autonomous car

agent which is generated as 24th agent in container (remember index in Java

starts with 0).

 AgentType is an argument that determines the type of the car agent, this

argument can take below values:

o Autonomous Driver

This driver type represents autonomous cars in traffic.

o Semi-Autonomous Driver

This driver type represents autonomous cars in traffic.

o Aggressive Driver

This driver type represents aggressive drivers in traffic, they have

good driving skills but unpredictable behaviors.

o Cautious Driver

This driver type represents cautious drivers in traffic, they have

standard driving skills and they are closest to autonomous drivers.

o Drivers with weak reflex

This driver type represents who do not have good reflex for driving

skills so this cause unexpected actions in traffic flow. They have low

speed profile.

Autonomous drivers may switch to semi-autonomous mode when some

emergency situations occurs. But when creation of the agent, it always takes

“Autonomous Driver” as driver type parameter. While simulation starts,

every autonomous vehicles are in auto-pilot mode, and they switch to semi-

autonomous if necessary.

30

 StartNodeId is an argument to place the agent at a specific node when

simulation starts. The value must be a valid node id in the map. This node is

randomly chosen while agent starts as destination node. For manual agents,

only start node id is given as parameter.

 DestinationNodeId argument is used to set a destination for the car agent.

The value must be a valid node id in the map. Car agent travels from start

node to destination node. For manually driven agents, only start node id is

given as parameter, and then a neighbor node is chosen randomly as

destination node, when manually driven agent reaches destination point,

destination point becomes new start point and manually driven agent picks a

new neighbor node as destination point. This cycle continues until all

autonomous driven agents terminate and simulation ends.

 MaxVelocity argument is used to set a maximum speed limit for the car

agent. This is also generated randomly around speed limit for urban city. For

manual car agents there is floating in speed profile while autonomous cars

have stable speed profile.

 SimulationName argument is necessary for logging mechanism, intelligent

transportation center creates a logging record in MySQL database and after

this step all logging records are inserted with that simulation name.

 Connection argument is necessary for logging mechanism, like MatlabProxy

object MySQL connection object is initialized when simulation starts and this

connection object is given as input parameter for all car agents.

When a vehicle agent is created, setup method firstly parses input arguments

explained above, some of them internally declared as constructor. These paramaters

are inputs for some calculations and some communication behaviors. For example

MaxVelocity parameter is input for an equation that calculates speed for next step

using traffic conditions.

Then it searches for the server agents by using the Directory Facilitator provided by

the main container. When the agent identifications of the server agents are found,

they are stored for later communication. Finally, the behaviors are defined, created

and agent becomes ready to run.

31

3.3.1 Agent types

There are two types of vehicle agents available in this scenario such as autonomous

vehicle agent and manual vehicle agent. These agents are classified according to

driver types. One of them is autonomous agent that is equipped with all latest

technology in ITS field and automotive industry and the other one is manual car,

which is driven by only human skills and it is assumed to have no technology like

server communication, route planning etc.

Classifying vehicles in two groups is not enough to analyze traffic flow behavior

when mixed traffic because driving characteristics differ from driver to driver.

Autonomous cars may be assumed as identical and in this thesis, it is assumed that

all autonomous vehicles meet the minimum requirement of autonomous driving.

Defining manual vehicles in simulation is harder than defining autonomous cars. All

drivers in city traffic has unique characteristic and behaviors may vary according to

traffic situation. Generally, three type of manual vehicle defined; having aggressive

driver, cautious driver and elderly driver. Moreover, driver type’s proportion may

vary from city to village or from city to another city. To simulate worst scenario,

crowded city traffic profile is chosen as base city traffic simulation.

3.3.1.1 Autonomous vehicle agent

Autonomous vehicles are equipped with high technology such as driving control

systems, communication systems, and warning systems. This type of vehicle (agent)

has a long range communication, early warning systems for accident prevention,

conjugate communication with local center servers and large detection radius while

car following mode.

The autonomous car agent starts from a node and moves to a selected destination

node. This agent firstly calculates the route between these two nodes and follows that

route until it reaches to destination node. In this study, these types of agents are

especially tracked, their behaviors, delays, actions in simulation environment are key

points for answering our research quest. Using these logs, a report is generated at the

end of the simulation.

As a software object, vehicle first takes its parameters and load them as its

characteristics, calculates path to travel from start node to end node according to

32

suitable path planning algorithm A* or Dijkstra and gets ready to travel along

calculated path. In constructor part of object, all heavy load processes are done and

all necessary communications are established to increase simulation performance.

Also joining agent platform, which is served by JADE, is done in constructor part.

All vehicle (agent) objects get ready and wait for travelling.

After all construction processes ended and join process succeeded, agents become

alive. Nevertheless, agent (vehicle) does not starts travelling; agents becoming alive

method that is named “setup” must be called. After all agents are ready, eclipse

environment calls all agents “setup” method.

Agents start travelling, behaviors that are necessary for route following run in cyclic

manner and every next movement of autonomous car is calculated in constraint to

route and traffic condition. In addition, car types in detection radius are important for

making decisions especially for selecting the proper velocity profile.

If any dangerous situation occurs near autonomous car, it warns passenger and waits

for an approval to switch to semi-autonomous driving mode. In this mode, car assists

to driver but does not control cars movement behaviors as primary controller and acts

more like a manual vehicle.

Every cycle, the agent (vehicle) controls its position, if it has reached its destination

point, the agent reports this to the center server agent and terminates itself. The

simulation does not stop until there is no remaining agent stays active/alive in

platform.

3.3.1.2 Manual vehicle agent

In this thesis, the aim was analyzing that how proportion of manual cars affect the

autonomous car’s behaviors, the general traffic flow and travel profiles. In simulation

environment, autonomous cars perceive manual cars as disturbance. Manually driven

car’s behaviors are difficult to predict and a human driver has not a stable speed

profile or route following behavior. On the other hand, a human driver does not trust

to an autonomous vehicle when following it although the leader is a high tech car.

Therefore, there must be a huge gap between autonomous cars and manual cars while

they are following each other.

33

Manual vehicle agents behave very differently according to their driver types and in

differently than other vehicle agents in same group. For example, aggressive driver

group behaves more independent to traffic than cautious driver group and an

aggressive driver behaves different than another aggressive behavior because there is

some randomly generated parameters in driver behaviors. One aggressive car may

behave like cautious driver in some simulation steps as well, but fundamentally it is

an aggressive driver and most of its behaviors are aggressive. This gives

unpredictable movements to aggressive type vehicles.

Manual vehicle agents are not equipped with technological driver assistant systems

and all route following behavior depends on driver characteristics. They may have

weak reflexes, unexpected movements and low driving skills. They generally have

limited detection capacities and do not have conjugate communication with local or

global center agent. For simulation necessities, they report instant positions and

velocity information to its center agent (server) and does not receive any route

information about server. To calculate next movement in traffic, its server sends only

ahead vehicle’s last known position and velocity.

The agent starts to travel from selected start node and picks one of its neighbors

randomly as a destination node. After reaching to the destination node, another

random neighbor is selected as new destination node and instant node becomes a

start node. Agent repeats this behavior as long as it is alive in the active platform.

Agent platform will be deactivated when all autonomous agents reached their

destination nodes.

As a software object, manual vehicle agent first takes its parameters and load them as

its characteristics, travel from start node to end node according to random strolling

behavior. Manual vehicle agents do not have a path planning algorithm in this case,

route of a manually driven vehicle is not known even in a simulation. That is why

they do not need a complex path planning algorithm, manual driver makes its own

route planning and follows it. They may be stuck in a traffic jam, may choose the

longest route or pass the same node more than once. As autonomous vehicle agents,

all this processes run in constructor part too and must join a living platform which is

served by JADE to participate simulation. After all of this processes ends, manual

vehicle object (agent) become ready and wait for travelling.

34

After all of this processes ends, manual vehicle object (agent) becomes alive, waits

for travelling. But manual vehicle agent does not start travelling, agents becoming

alive method that is named “setup” must be called. After all agents are ready, eclipse

environment calls all agents “setup” method as mentioned before.

Manual vehicle agents start travelling, behaviors that are necessary for route

following run in cyclic manner and every next movement of manually driven car is

calculated in constraint to route and traffic condition. Also the type of the car in

detection radius is important for making decisions especially for velocity profile.

There are some differences like cruise control, detection area and decision making

capabilities between manually driven and autonomous vehicles.

It is assumed that manual vehicles are not equipped with any ITS technology system

for worst case simulation scenario. If any dangerous situation, driver is on his own

and has to sense the danger and deal with the problem. Autonomous cars can sense

this type of dangerous situations before manual cars and take precaution like putting

a larger gap between ahead vehicles and slowing.

Every cycle, agent (vehicle) controls its position, if it has reached its destination

point, agent reports this to the center server agent and picks a new destination node

to travel. This cycle runs until simulation ends. Simulation needs manual vehicles in

city traffic to generate complexity in traffic conditions.

Aggressive driver

This driver type has high speed profile, wide range detection circle and usually

unpredictable dangerous actions in urban traffic. Most drivers has this profile in

crowded city traffic, even the cautious drivers. Drivers who have sportive driver

skills also have similar capabilities. For example taxi drivers are in this group in

Turkey, they spent a lot of time in traffic, they have enough experience but behave

unexpected in city traffic. Drivers must be careful while a taxi is around.

Actually they have better driving skills than others but they are impatient while

driving and want to go their destination as soon as possible. Therefore, this type of

driver is dangerous every time, and the other vehicles must be cautious when they are

in the vicinity of them even the other vehicles have an auto-pilot mode.

Like the other manual agent types, this type of manual vehicle agent takes starting

arguments restricted to aggressive driver profile. This type of manually driven

35

vehicles is usually speeding, has rarely unstable speed profile, brakes suddenly and

has wide range detection capabilities.

These group is dangerous for other drivers in city traffic, because of their impatient,

they cause some difficulties in traffic like line changing unexpectedly.

Cautious driver

This driver type has average speed profile, middle range detection circle and usually

predictable actions in urban traffic. Cautious drivers are the closest to autonomous

car agents. Cautious driver has good driving skills too, different from aggressive or

sportive drivers, they have middle range detection area and low speed profile. This

type of drivers wants to reach their destination point safely, they generally travel

with at least one family member or a friend. This type of vehicles acts like

autonomous car friendly in urban traffic.

Like the other manual agent types, this type of manual vehicle agent takes starting

arguments restricted to cautious driver profile. This type of manually driven vehicles

do not exceed urban city speed limit, have stable speed profile, brake gradually and

have middle range detection capabilities.

Family guy is a good example for this group, imagine a father traveling with his

family in city traffic and avoid dangerous actions while driving. He will have stable

speed profile and will obey all of traffic rules not to endanger his family.

Drivers with weak reflex

This driver type has floating speed profile, short range detection circle and usually

unpredictable actions in urban traffic, however they are not as dangerous as

aggressive drivers. Long for short elderly driver used instead of driver with weak

reflex.

Inexperienced, elderly and intoxicated drivers are in this group and they do not have

good driving skills. In dangerous or unexpected traffic situations, they respond early

or lately. Autonomous cars must be cautious when any elderly or delayed driver

around and must follow them with a big gap.

This type of manual vehicle agent takes starting arguments restricted to delayed

driver profile. This type of manually driven vehicles do not exceed urban city speed

limit, do not have stable speed profile, brake suddenly, unexpectedly and have short

range detection capabilities.

36

This group is also dangerous for other vehicles but not as much as aggressive drivers.

They unintentionally cause some unexpected behaviors in urban traffic and may

leave other drivers in the lurch.

Summary of all vehicle types and their behavior comparison is shown in Table 3.3.

Table 3.3 : Agent types and properties

Agent Type
Autonomous

Agent

Manual

Aggressive

Manual

Cautious

Manual

Delayed

Average Speed

Profile
medium high medium Low

Cruise Control high low medium Low

Car Following

Behavior
high medium medium Low

Communication

Capabilities
high no comm. no comm. no comm.

Driving Skills high high medium Low

Coverage Area high medium low Low

3.3.1.3 ITS center agents (global center agent)

Another agent type is central ITS server, which collects traffic data and processes

them. Every autonomous vehicle has to connect the center agent for route and

positions information before they start journey. Otherwise, autonomous vehicle will

not have enough knowledge about real city traffic data, it will just sense what is in

detection area. All agent’s data is processed and analyzed by center, obtained results

are sent to each autonomous vehicle agents.

For this simulation environment its center agent has the key importance. All

localization process is dependent on its center agent, this center knows every agents

position and instant properties, and also autonomous agent’s travelling route and

broadcast instant route data. To improve accuracy, its center agent sends all

autonomous and known manual vehicle’s positions to autonomous vehicles.

This agent is necessary for simulation to localize all vehicles, based on this

localization agent, all the vehicle fleet senses and knows the environment. This is

37

like obtaining all other agents exact position on map in defined detection radius. It

was mentioned before, detection radius is a parameter for a driver and it changes

from driver to driver according to their driving skills, ages and experiences. All

agents connect this center to report their positions, otherwise it is not possible to

define a vehicle in simulation environment. Also agent cannot travel in this map

unless it connect to its center agent.

Its center collects all vehicles instant properties objects and stores them in a suitable

object. When every message handling behavior runs, this object is created again to

hold updated properties. Message handling behaviour has the same flow mechanism

like other agents. It checks inbox for a message and if there is any, it processes

receiver car (agent) identity and stores instant properties to share with related other

agents.

Three main behavior of this agent are Behavior_JoinRequestHandler that handles the

connection requests received from vehicles to participate in simulation,

Behavior_RouteRequestHandler that handles the route request received from

autonomous cars in autonomous driving mode and

Behavior_PositionVelocityHandler that gathers all instant properties of all vehicles

(agents) in simulation and sends back related vehicle’s positions.

All localization and communication process is performed on its center agent. For

simulation frameworks this is necessary, especially if of the cost of the localization

algorithm is needed to be reduced.

Its center agent is also a local center agent and capable of doing all the job of local

center agent as well.

3.3.1.4 Local centre agent

Local center agents are located on bottle neck points of the road infrastructure. These

points are very important, imagine a corner in city, more than three roads converges

on a route. They affect traffic flow in that area in a negative way. Local center agents

know traffic density inside their coverage area and broadcast this information to all

connected vehicles inside communication range.

They gather instant positions of vehicles that are inside detection range by querying

MySQL. As mentioned before, all agents report their positions and record them into

38

the MySQL database. Instant positions of all agents recorded with simulation

identity, vehicle identity, simulation step, exact position and also driver type. In this

thesis, only number of vehicles in range is used for density calculations. For future

work, specific driver types may be used for density and according to situation,

autonomous vehicles can be guided to more appropriate routes. This can be

considered some kind of of intelligent routing, however not developed to its full

potential yet.

In this simulation framework, local densities are used for route calculation and

information gathering. Autonomous car may change its route when any overload in

local center points is sensed /estimated.

Message handling behavior flow for local centre agent is depicted in Figure 3.6.

Figure 3.6 : Message handling behavior flow chart

Start Behavior

Is there any

messages?

Check

Message Box

Check Performative

Handle Join

Requests and Store

Connection

Store Vehicle

Instant Properties

Return Route

Density Information

NO

YES

INFORM

JOIN

REQUEST

REQUEST

ROUTE

39

When simulation starts, local center agents are created, they settle on desired

locations and become ready for connection. Local center agents have two behaviors,

one behavior is for communication establishment which is named as

Behaviour_JoinRequestsHandler and the other one is for instant density calculation

that is named as Behaviour_UpdateLocalDensity.

3.3.1.5 Plotter agent

This agent helps visualization of instant positions for all moving agents. It calls a

MATLAB script which takes all instant positions from MySQL database and plot

them on a MATLAB-based figure. This agent is a helper tool for simulation, it only

plots the instant agent positions. Plotting feature developed with multi agent

architecture and written according to Singleton software pattern [41] to improve

performance. The singleton pattern involves only one class which is responsible to

instantiate itself, to make sure it creates not more than one instance. In this case the

same instance can be used from everywhere, being impossible to invoke directly the

constructor each time.

For early simulations, every agent was creating its own logger and it takes more than

five minutes to draw all agent’s positions on map. After Singleton pattern applied for

plotter agent, it took only seconds.

Agent plots autonomous vehicle positions as diamond shape in MATLAB and

manually driven vehicles as circle shape. To improve visualization while simulation

running, plotter agent colorize manual vehicle with red to take attention and colorize

autonomous vehicles with blue.

Plotting cycle is changeable, if there is any concern about performance issues, one

should use ten seconds as maximal interval. Vehicle agents all instant step by step

positions are recorded in MySQL database, therefore, more detailed report may be

prepared from querying related database. Plotting agent works only for graphical

visualization.

3.3.2 Agent behaviors

Behavior types existing in JADE are explained previously, mentioned behavior types

are valid only for software inheritance. New vehicle behaviors developed over this

base behavior models and new features are added in this study. Behavior types are

40

only a template for coding and they all have their calling methods. When an agent is

born, “setup” method is triggered from eclipse environment and necessary behaviors

are added one by one according to precondition order. For example, route following

behavior runs after path planning behavior finishes its work.

In a vehicle agent, there are four different behaviors implemented which are

explained in the following chapters.

3.3.2.1 Communication behavior

The most useful feature of JADE platform is communication. For this study, every

agent does not communicate with each other, but all agents inform server agents.

Communication architecture is based on standards of FIPA [34] agent

communication language specifications. When an agent is created, behaviors start

simultaneously in order of declaration. Firstly, vehicle agent tries to find server

agents. After server agents found in Directory Facilitator, vehicle agent requests to

join these servers and waits for a reply.

Agents are also have a communication with MATLAB for generating route in city

map. This part of the process is handling in generated MATLAB route finding

engine. But this communiation is not developed as behavior, an agent is programmed

for this purpose using singleton software pattern. With help of singleton, platform

gain a huge performance improvement.

Same architecture was applied for logging mechanism too while writing logs in

MySQL database.

3.3.2.2 Message handling behavior

This behavior may be the most important behavior, and also reflects the power of

JADE environment or multi agent programming. Even simple reflex agent has to

know about outside environment to make decisions. Messaging between agents

provides knowledge sharing in same agent platform or other known agent platforms.

All this communication occurs according to FIPA standards. Basic flow diagram of

message handling behavior shown in Fig 3.7

41

Figure 3.7 : Message handling behavior

All messages have a format in communication, also FIPA offers a language called

ACL (Agent Communication Language). This a communication protocol, so it gives

programming freedom in different languages. It is possible to develop agents in

different programming languages like Java, C#, C++ and make these platforms

communicate with each other.

Every message has a sender, receiver and content. Same template and different

performatives like REQUEST, INFORM, CONFIRM are generally used. And java

objects are sent as content. Every receiver checks it’s performative and processes the

message if it is necessary.Vehicle’s positions are sent to global center agent that

gathers all traffic information and all vehicles instant positions and velocities. Every

autonomous vehicle has to send connection request to global center agent when they

are born. Server can accept or reject communication request on the authority of

server load or distance for healthy communication. If autonomous agent cannot make

connection with server agents, it switches to semi-autonomous mode. Therefore,

Any Message?

Check Inbox

block()

Start Behavior

Check Conversation Id

Process Message

END

NO

YES

42

communication is the key feature for autonomous cars in simulation environment

Flow diagram of communication is shown in Figure 3.8.

Figure 3.8 : Flow diagram of communication behavior for vehicle agents

3.3.2.3 Route planning behaviors

This behaviour calculates an initial route using two input parameters, one of them is

start node ID and the other one is destination node ID. There is at least one route

between two points in a map, results may vary according to the path planning

algorithm.

When agents born, they take start node and destination node parameters. Using these

points, agent calculates its first route according to known node traffic densities.

Route Planning behaviour calls path planning engine in MATLAB and waits for

calculated route. After node list is calculated, behaviour calls MATLAB path

planning engine and have it sliced into tiny pieces for simulation steps. While using

this route planning engine, MATLAB is also communicates with MySQL database to

Start Behavior

Search for
ITS center

agent

ITS center
agents found

NO

Request to
join

ITS center
approved

NO

YES

Send initial
route

information

Request
instant route

data

Data received
from ITS center

NO

YES

Store data
for route
following
behaviorYES

43

get initial node densities. This initial route densities are calculated from last

simulations and gives an input for Dijkstra’s algorithm.

In MATLAB, user defined path planner engine uses two different algorithms for

calculation. A* and Dijkstra path planning algorithms are very similar, actually

Dijkstra algorithm is the special case of A* algorithm. While Dijkstra algorithm

always calculates the shortest path, A* algorithm calculates the most efficient path

between given two points. A* uses heuristics, in Dijkstra algorithm heuristic is

always zero. A* uses Euclidean distance plus heuristic value.

Inner structure of vehicle agent, path, cost and detailed path are stored in different

objects, especially in hashtables. Detailed path is a kind of planned route, if

everything goes as expected, vehicle agents will follow the detailed steps on abstract

map.

After initial route is calculated, agent car sends this information to the ITS center,

this information is very valuable input for intelligent routing applications and it is

useful statistical data.For instance, calculated path for a travelling vehicle agent from

node 37 to destination node 49 is shown below. This path was generated by Dijkstra

algorithm. Dijkstra’s solution from node 37 to node 49 is plotted in Figure 3.9.

Figure 3.9 : Example path planning on ITS road map

Algorithm takes Node 37 as start node and searches shortest path to destination node

in this case Node 49. All nodes which are related with this sample path finding

process and distances between nodes are shown in Table 3.4.

44

Table 3.4 : Dijkstra’s node list and calculations

Visit

Order

Node

Id
x y

Distance

(Unit)

Node

Density

(factor)

Heuristic

Distance

(Unit)

START 37 0,068461 1,020938

1 28 0,258533 1,943551 0,941989 0,727665 1,627442

2 29 1,37563 2,214528 1,149493 0,941416 2,231644

3 97 2,733544 2,498528 1,387294 0,897555 2,632466

4 17 3,032216 3,074959 0,649214 0,832001 1,189360

5 10 3,408015 3,403937 0,499451 0,951344 0,974600

6 41 3,605828 3,724355 0,376559 0,968305 0,741183

7 101 5,000000 5,000000 1,889706 0,938958 3,664060

8 21 6,389436 6,176702 1,820758 0,713361 3,119615

9 3 6,945368 6,240993 0,559636 0,927324 1,078600

10 64 7,998314 7,391522 1,559619 0,701701 2,654005

END 49 8,597923 8,851172 1,578008 0,904163 3,004785

 Cost: 12,41173 22,917761

As mentioned before, Dijkstra’s path finding algorithm finds shortest path, and if you

feed this algorithm with heuristic feedback, it becomes A* path finding algorithm.

Actually Dijkstra’s path finding algorithm is the special case of A* algorithm with

heuristic function is always equal to zero. To compare Dijkstra and A* algorithm,

same two points are selected as start and destination node. Dijkstra finds the shortest

path between two points and A* calculates another path because of known or if

necessary, instant traffic density.

As it is shown in graph, path calculated by A* is longer than Dijkstra’s solution.

Total distance for Dijkstra’s path is about 12.4 units where A* path is about 13.2

units. Dijkstra never calculates heuristic costs, to compare Dijkstra versus A*

algorithm, instant node densities that are Dijkstra’s solution are used to calculate

heuristics manually. Dijkstra’s calculated cost with heuristics is about 23 unit length

and the path that A* offers is 19 unit length, detailed calculations are shown in Table

3.5 and Table 3.6. To compare two different paths, Figure 3.10 shows us both paths.

45

Figure 3.10 : Dijkstra vs A* algorithm for same destination

Two calculated paths are shown above. Node 101 is the center of the city as it seen,

seven roads cross at the same point. This is where generally bottle neck occurs. City

map below is simulated more than fifty times and initial densities updated after every

simulation ended.

These shows that, city center (node number 101) has a higher initial node density

because of earlier simulations. May be a bottleneck was generated in some of the

simulatons at this node. Because that node has seven connections with other nodes.

So traffic flow on this point may be different than others if all neighbours have traffic

jam in their area.

Dijkstra’s algorithm cannot sense this traffic density, because it searches shortest

path without considering their traffic conditions. But A* algorithm uses node

densities as input to calculate real shortest path in urban traffic.

Detailed calculation for A* route finding algorith is shown in Table 3.5. Same

destination with Dijkstra’s algorithm is selected to compare two algorithm’s

performance. They have same number of nodes to visit, but generates different

routes.

46

Table 3.5 : A* node list and calculations

Visit

Order

Node

Id
x y

Distance

(Unit)

Node

Density

(factor)

Heuristic

Distance

(Unit)

START 37 0,0685 1,0209

1 28 0,2585 1,9436 0,942059 0,511184 1,423624

2 29 1,3756 2,2145 1,149478 0,331676 1,530733

3 97 1,1695 3,784 1,582974 0,526868 2,416993

4 17 2,2654 4,4214 1,267784 0,444598 1,831438

5 10 3,3404 5,1352 1,290401 0,400369 1,807037

6 41 4,2625 5,5108 0,995662 0,421705 1,415537

7 101 5,2444 5,863 1,043155 0,452397 1,515075

8 21 5,877 6,2741 0,754444 0,545660 1,166114

9 3 6,8527 7,8154 1,82417 0,558704 2,843341

10 64 7,3979 8,8802 1,196262 0,463818 1,751110

END 49 8,5979 8,8512 1,20035 0,430764 1,717418

 Cost: 13,24674 19,418420

In this simulation environment, all chosen paths and instant traffic densities are

logged. So every node in a city map has an initial traffic density which was obtained

from early simulations. A vehicle may use this data for path planning when starting

journey. This is a general human behavior while we haven’t started journey yet and

we are at the planning stage. If a driver wants to go from point A to point B, first him

or her draws the path in his/her mind according to distance or traffic density and in

this simulation environment this real driver behaviors are simulated as well.

In any situation in traffic, an autonomous vehicle is able to recalculate its route

according to local center agent’s advice. This is a useful capability in urban traffic

environment like taxis in traffic, they always communicate with other taxi drivers

and related taxi center.

3.3.2.4 Velocity update behavior

This is a common behavior for vehicles. None of the vehicles in traffic has stable

limit profile and it is assumed that this speed profile has a normal distribution [42].

47

For simulating drivers choose of speed, mean of speed and variance parameters are

chosen randomly in specific range. These ranges differ from driver to driver.

Every cycle, vehicle checks nearest cars or cars in range, and according to the result,

vehicle updates its speeds, Figure 3.11 shows this process. If there is no vehicle

around, it choses its speed regarding to related distribution, else it changes its speed

to follow ahead vehicle or lower it to take a precaution.

Figure 3.11 : Velocity update behavior flow chart

After velocity is updated, route following behavior will use this speed to calculate

next position and store in agent specific object in every cycle. According to [40],

driver speed chooses has a normal distribution characteristics, in this behavior, driver

tries to choose it’s velocity according to below calculations. If there is no dangerous

situations around or road is empty, driver choose vehicles speed accordin to him/her

START

Is there any car in range

Scan detection area

for other vehicles

Choose velocity regarding to

speed profile (free strolling

mode)

Choose velocity regarding to

situation (vehicle following,

precaution mode etc.)

END

Update instant velocity

NO YES

48

driver level plus a variance in speed. If it has good driving skills, change in speed

will be very small in next calculation cycle. 𝑣(𝑖+1) represents next speed choose, 𝑣(𝑖)

is instant speed when calculating and DriverSkillCoef is between 0 and 1.

𝑣(𝑖+1) = 𝑣(𝑖) ± ∆𝑣

∆𝑣 = (1 − 𝐷𝑟𝑖𝑣𝑒𝑟𝑆𝑘𝑖𝑙𝑙𝐶𝑜𝑒𝑓) × 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑛𝑔𝑒

𝑣(𝑖) ≅ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

When vehicle is following mode, that means some one is leading the vehicle and it

have to follow it. In this case, vehicle chooses a speed between maximumSpeed and

its defined average speed plus or minus deviation. Equation for this choose is

detailed below.

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑆𝑝𝑒𝑒𝑑 ± ∆𝑣 ≤ 𝑐ℎ𝑜𝑜𝑠𝑒 𝑜𝑓 𝑣(𝑖+1) ≤ 𝑚𝑖𝑛(𝑎ℎ𝑒𝑎𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑆𝑝𝑒𝑒𝑑, 𝑣(𝑖+1))

3.3.2.5 Route following behaviors

Major difference between autonomous and manual vehicles is the route following

behaviour. Manual vehicle agents generally have unpredictable behaviors in traffic

whereas autonomous vehicle agents have smooth driving behaviors. If you imagine

an urban traffic in low scale, this behavior variation may not affect overall traffic, but

when scale is getting larger, nobody can predict its effects easily. In this study,

simulation results will give us such a clue or first insights on a mixed traffic flow

with multi-agent structure. Every microscopic movement may have effect on

macroscopic scale, however deriving general rules on how this affect evolves is out

of the scope of this thesis.

After initial route is calculated and server is informed, vehicle agent starts its

movement. Every small step was calculated and agent starts to follow this detailed

path. Vehicle agent moves “v” number of steps in every tick where “v” represents

vehicle agent’s velocity.

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖+1) = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖) + 𝑣(𝑖)

It occurs actually in normal circumstances which mean there is no traffic or other

vehicle agents in detection circle. Unless any vehicles are around, vehicle agent

49

identifies their driver types and calculates next moves. Simplified route following

behavior flow chart is shown Figure 3.12.

Figure 3.12 : Route following behavior of autonomous cars in simulation

It is not possible to integrate all traffic rules in simulation environment like priority

at crossing edges when vehicles come face to face. Therefore, to define priority, a

procedure is implemented in route following behavior. First, born agent takes priority

at crossing edges and the other vehicle waits for prioritized vehicle move to calculate

next step. Every decision or route following behavior result written to database and

are stored in vehicle’s instant properties object. To remind agent’s instant properties

object is send to center server agent in every reporting cycle.

Manually driven vehicles route following behavior is different than autonomous

vehicles and represent human behavior variance in simulation and they are used to

generate disturbances for our approach. Destination points of all manually driven

vehicles are unknown and they have unpredictable behaviors.

START

Use instant speed to

calculate traveled distance

Destination

reached

END

Check instant position

Inform center server and

terminate yourself
Update instant position

YES NO

50

For manually driven car, simulation picks a point to start and places manually driven

car at that point but never knows where this journey will end. Manually driven

vehicle picks a random point which is start points neighbor and picks another point

when it reached destination. And then destination point becomes the new start point

and the update cycle goes on like this until simulation ended. The random strolling

behavior of a manually driven vehicle is shown in Figure 3.13 [43]

Figure 3.13 : Route following behavior of manual cars in simulation

3.3.2.6 Logging behavior

All events in simulation is logged by user defined logger class in simulation

framework. MySQL is the world's most used open source relational database

management system and is chosen for database instance in simulation framework.

And MySQL Workbench is a next-generation visual database design application that

can be used to efficiently design, manage and document database schemata. It is

available as both, open source and commercial editions.

Start Behavior

Start node is given

Locate to start node

Select a

random start

node

Select random neighbour

Set current

node as start

node

Move to

selected

neighbour

Determine driving speed

and update speed report

YES

NO

51

Events below are logged in database

 Vehicle Agent instant positions

 Accidents

 Any extraordinary situations in route, overloaded routes

 Heavy traffic on route

 Vehicle’s planned routes, and any forced changes

 Vehicle’s start point, destination point, desired travel time, delays on this

path

All these events are inserted in related tables in database named ITS with simulation

step and instant timestamp by every agent and some cases are logged by local and

global center agents like high density traffic. Delays are logged in delays table,

positions are logged in positions table.

Logger agent serves for this purpose and it is written using Singleton design pattern

to increase performance. For handling log request at MySQL site, routines in

MySQL database is created, these routines expect input parameters to insert or

update related tables. First, a simulation is created in simulation table with a given

simulation name and now simulation has unique identity, and all other events will be

logged with this ID. This join may be named as foreign key.

After simulation ended, all relational records are grouped to generate conclusion

results.

3.4 Visualization

Asdad In order to track vehicles behaviors in simulation environment, plotter agent is

developed and implemented. As mentioned in agent behavior section, this agent

serves for plotting process. Agent runs the MATLAB script periodically that gets all

instant positions and vehicle types of all alive agents and plot them using MATLAB

internal plot function. And only dynamic parameters while simulation starts are

number of agents. So there is no need to an interactive user interface, showing instant

positions is enough for tracking an agent’s behaviors. In every five seconds, agents

instant positions are plotted on city map with their unique properties like their

identities. In this simulation, agent born orders are used to identify them on city map.

52

MATLAB built-in plotting function is used to generate sample screenshot of city

map and agent positions are shown in Figure 3.14.

Figure 3.14 : Visualization of instant agent positions on urban map

Above image is a zoomed in MATLAB figure, to distinguish autonomous vehicles

and manually driven vehicles, different shapes are used when plotting. Diamond

shaped objects represent autonomous vehicles and tiny circles represent manually

driven vehicles. Also to take attention, circles are plotted in red color and

autonomous vehicles are plotted in blue. To track specific vehicle and not to

scramble up with others, agent’s identity number is also plotted near vehicle.

53

4. TEST RESULTS AND FINDINGS

In order to analyze the effect of manually driven cars proportion in mixed traffic

flow with multiple agent types (i.e. autonomous, semi-autonomous, and manually

driven) in an urban scenario, several tests are conducted on the simulation platform

developed based on JADE. In this section, the testing environments, limitations, test

cases, results and major findings are given.

4.1 Testing Environment

All simulation environments and components are developed on a laptop that gives a

reasonable performance. Also debugging made on same computer with not more

than 50 agents. If this limit exceeded, some performance problems occurred.

During the tests a high performance workstation is used. All simulation and

simulation components (JAVA, JADE, MATLAB, MySQL, Agent Platforms, and

Agents) are executed on a powerful workstation computer having the following

configurations:

 Intel Xeon CPU E31240 3.30 GHz processor,

 16 gigabytes of RAM, and

 Windows 7 Professional 64 bit operating system.

In all machines, Java Runtime Environment Version 7 is used.

4.2 Limitations

In the real-life scenario, each agent is assumed to run its own device as embedded

systems. In this simulation, all agents including global center, vehicle, plotter agents,

MATLAB run time engine, MySQL, JADE framework are executed on the same

computer during the tests using single CPU. Because of this, there appeared some

limitations in the number of agents in the simulation and size of city map used. In

JADE framework, each behavior runs a separate JAVA thread and the agent itself is

54

another thread so that each vehicle agent creates multiple threads in the Java Virtual

Machine (JVM). As the number of active threads in JVM increases, it is more likely

to face thread synchronization problems and deadlocks appear in the JAVA runtime.

Therefore, it is limited to 300 complex agents on the same container not to cause

some threads of JADE to get blocked. When this happens, communication platform

of JADE overloads and some delays and loses occurs.

4.3 Map Building

In the scope of the study, apart from the simulation of real city map, a generic map

drawing engine has been developed in MATLAB. During the tests, an imaginary

road map is generated as shown in the Figure 4.1. Topology of the generated map has

complex and can be considered as a grid structure with Delaunay principles. There

are about 100 nodes in total and more than 220 edges between these nodes. These

edges are suitable for round trip, they all have two separated ways for going and

returning. The reason of this limitation is to not to allow overtake, which makes the

simulation environment more complex.

Figure 4.1 : Sample city map

Proportion of 85 percent is used for best scenario and 15 percent is used for worst

scenario. First case represents the entrance of autonomous vehicles in urban city

55

traffic and last case represents the dominant times of autonomous vehicles.

Remaining cases are used for representing transitional periods.

4.4 Test Cases

All cases simulated using stochastic approaches. As mentioned before, simulation

and all objects take random parameters which obey normal distribution. For example,

manually driven vehicle 1 travels from node 67 to node 23 in first simulation, but

second simulation it travels from node 45 to node 89, and also initial parameters like

initial velocity, driving skills are initialized in a range from simulation to simulation

randomly.

Every day, city traffic changes randomly and it does not follow a pattern, that is why

everything in simulation has random parameters. To analyze effect of manually

driven vehicles on full autonomous cars, different proportions are used for simulation

input. Same proportions simulated more than one times to obtain statistically

meaningful data and to obtain generic trends that are not dependent on randomness.

For example, in one of the simulation every car may start from same neighborhood

and travels to same region and this may cause a high traffic density for manual cars.

Number of agents in simulation is limited to 300 because of performance issues, and

proportion of different driver types in total manual drivers is kept the same in every

simulation. For example, half of the drivers in urban traffic act like aggressive

drivers.

All test cases and proportion of agents in these cases are shown in Table 4.1.

Table 4.1 : Test cases and proportions

 %15 Auto. %25 Auto. %50 Auto. %75 Auto. %85 Auto.

autonomous 45 75 150 225 255

aggressive 128 113 75 38 23

cautious 77 68 45 23 14

delayed 51 45 30 15 9

Number of

Total

Cars:

300 300 300 300 300

56

4.5 Test Results

Every test case was simulated five times to get better results and reduce chance or

randomness effect in results. In addition to obtain some results, average of all five

simulation results is used. Table below shows the instantaneous speeds of randomly

chosen vehicles for first 120 simulation steps. Every vehicle is picked from different

vehicle types to show characteristics of speed control and to reflect the real city

traffic, this sample speed profiles queried from the simulation result that has low

proportion of autonomous vehicles in it. Values are in units per step that is about 50

km/hour in real urban traffic. That is also urban speed limit and autonomous car

travels without exceeding it. If autonomous vehicle’s detection area is suitable for

speeding, it travels nearly at 50 unit/step in simulation environment. That means in

one simulation step vehicle travels 50 units. Recorded velocities of sample vehicles

are shown in Table 4.2.

Table 4.2 : Recorded speed profiles

Simulation

Step

Delayed

(unit/step)

Cautious

(unit/step)

Aggressive

(unit/step)

Autonomous

(unit/step)

10 32 38 53 50

20 32 35 53 50

30 32 37 50 48

40 32 37 50 48

50 35 37 50 50

60 31 37 50 47

70 29 36 50 47

80 33 36 53 49

90 33 36 53 49

100 29 34 54 49

110 29 38 47 48

120 26 40 52 48

As seen above autonomous vehicles has more stable velocity profile than others as

expected. Autonomous vehicle never exceeds urban speed limit and travels at

57

maximum allowed speed if all conditions are convenient for speeding. Also an

aggressive driver has a stable speed profile when compared with others but they are a

bit impatient if urban speed limit is considered. Its driving skills may be better than

autonomous vehicle but this does not mean that it can speeding. Cautious type driver

has the most desirable speed profile I think, stable and not close to urban speed limit.

One random vehicle was chosen from every group and first 120 simulation steps are

recorded. Graphical representation of this speed profiles are shown in Figure 4.2.

Figure 4.2 : Recorded velocities (unit per step)

As shown in graph, velocity records of vehicle groups are as expected, these shows

that vehicle agents behaves according to their characteristics.

For all test cases, instantaneous velocities of all vehicles are logged and SQL queries

are written to obtain average velocity of all vehicle types according to changeable

proportion of autonomous vehicles. All choices and behaviors are logged in to tables

and some relations are defined between tables to store different kind of datas with

same simulation identity and vehicle identity. To gather different datas from different

tables, some sql built in functions are used.

20

25

30

35

40

45

50

55

60

10 20 30 40 50 60 70 80 90 100 110 120

K
m

/h

Simulation Step

Average Velocities

Delayed

Cautious

Aggressive

Autonomous

58

Average velocities per driver types are calculated using results of five different

simulation runs, Table 4.3 shows average velocities of related driver types.

Table 4.3 : Average velocities in simulations

 %15 Auto. %25 Auto. %50 Auto. %75 Auto. %85 Auto.

aggressive 39,12 40,09 39,48 40,23 39,87

autonomous 22,23 24,88 31,18 41,53 43,82

cautious 34,31 35,36 35,95 36,27 36,33

delayed 26,05 27,37 32,09 32,67 29,02

Every vehicle had their own routes in every simulation and this was based on

randomness. Most probably every vehicle has different routes in every new

simulation and also different than other vehicles. There is 101 nodes in simulated

city map, and one chosen point can be a start node or end node, so traveling from A

to B is not equal to traveling from B to A. These are two different routes and also

choosing 2 different points from city map is a combination

𝐶(101, 2) ∗ 2 = 10100 𝑟𝑜𝑢𝑡𝑒𝑠

Five different simulation gives another combination. Therefore, pulling same route in

every simulation from this combination list has very low probability. So it is

assumed that every vehicle travels different route in every simulation. And average

speed of all this simulation runs are shown in Figure 4.3.

Figure 4.3 : Average velocities of vehicle groups

20

25

30

35

40

45

15% 25% 50% 75% 85%

K
m

/h

Proportion of Autonomous Vehicles In Traffic

aggressive

autonomous

cautious

delayed

59

To summarize, for first case that is worst one with 15 percent proportion,

autonomous vehicles has the lowest speed average in five different simulation run.

Proportion of autonomous vehicles increases, their journey in simulation

environment gets easier and more comfortable while the others remains nearly same.

It is interesting that, cautious driver’s journey in simulation also getting more

comfortable.

Also time of vehicle’s born and die events in simulation are logged to calculate real

travel time. It differs from expected, according to traffic situations and especially

other car’s behaviors. Using SQL built-in function avg() all delays are calculated by

grouping them according to their driver types. Table 4.4 shows average delays.

Table 4.4 : Average delays in percentage

Autonomous Vehicle’s Proportion In

Traffic

Autonomous vehicle’s average

delay in percentage

%15 Autonomous 28,93 %

%25 Autonomous 25,67 %

%50 Autonomous 16,13 %

%75 Autonomous 7,94 %

%85 Autonomous 7,12 %

As it seen, while proportion of autonomous vehicles in traffic increases, average

delay times decreases. Delay in steps does not reflect the real delay, so percentage

delay is used. Every vehicle calculates its estimated travel time while route-planning

behavior runs. Moreover, at the end of the journey, vehicles log real travel time too.

In this case, delay is the difference between estimated and real travel time. Only

delay of autonomous vehicle’s journey may be calculated in this simulation, because

manually driven vehicles cannot calculate estimated travel time.

To detect the situation they may cause an accident, relevant data are logged in

MySQL, if an autonomous car is surrounded with manually driven cars and they are

closer than following distance, this is logged as dangerous attraction. In addition,

following an aggressive or being followed closer by an aggressive driver are

identified to be dangerous. These dangerous attractions are logged and average

dangerous events per vehicle is shown in table 4.5.

60

Table 4.5 : Dangerous actions

Autonomous Vehicle’s Proportion In

Traffic

Average of Dangerous Events

per Autonomous Vehicle

%15 Autonomous 8,17

%25 Autonomous 7,79

%50 Autonomous 5,41

%75 Autonomous 3,26

%85 Autonomous 1,83

4.6 Findings

When the result summaries of these five configurations are compared, there are

several findings observed depending on the proportion of autonomous cars in

simulation. Every configuration simulated five times and then a general observation

is done by considering all results.

First, speed profiles show that choosing velocity behavior close to expected,

autonomous vehicles has a stable profile unless elderly does not. Delayed or elderly

driver has difficulties while controlling vehicles speed. Cautious driver’s speed

profile also reflects a cautious human driver, does not have instantaneous peaks in

profile. The best, autonomous cars cruise control technology mimics a very

experienced, cautious driver profile.

While proportion of autonomous cars in simulation rises, their travels become more

comfortable. Average speed profile of every configuration proves this. In the first

configuration, that has the lowest autonomous car proportion, all autonomous car’s

average speed is about 22 unit/step. And while proportion increases, average speed

also increases. In the last configuration, which is the best scenario for autonomous

vehicle, average speed reaches about 43 unit/step. This shows that, with the

increasing number of autonomous cars in the traffic, travelling becomes easier and

less time consuming.

Recorded delays also support last finding, every autonomous vehicle have an

expected travel time before starts journey, and after vehicle reaches its destination

point, end of journey is logged. Delays for autonomous cars are becoming shorter

61

from first configuration to last. Therefore, autonomous vehicles get familiar to traffic

environment while proportion of them increases.

It is observed that, with ITS technology implementation, number of dangerous

attractions in urban traffic decreases. Autonomous vehicles are safer than manually

driven ones, and they are equipped with high technology sensors and warning

system. These features make autonomous vehicle’s detection capabilities wider than

human drivers.

62

63

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Future Work

In this study, imaginary city map is generated to simulate urban city traffic. This

imaginary map increases complexity in path planning and route following behavior.

Every single node connects to at least two other nodes in map. So there are always

alternative paths between two points in the city. This map would be changed with a

real city map taken from Google Maps or new drawn real map to analyze real

situations in urban traffic.

Three main driver types for manual vehicles are implemented in this simulation,

aggressive, cautious and elderly. New driver types would be add in simulation

environment like beginner, intoxicated, incautious etc. This would increase variety in

driver characteristics in traffic. Also number of behaviors would be increased to

mimic real human driver.

All cases simulated on a workstation and because of performance problems, at most

300 vehicle agents are added in this traffic environment. In a high performance

computer, more than 100.000 vehicle agents would be simulated and result would be

analyzed again. Another approach may be useful, synchronizing all agents and

computation of every agent’s behavior one by one according to others.

Intelligent routing or optimal routing algorithms would be implemented and tested in

this environment. Vehicles may be taken as a group, and reaching destinations must

be assumed like a group goal. This feature may be a good solution for autonomous

vehicles to stay out of traffic jam.

As for future perspectives, these simulations should be tested in a real case study,

which will thereby determine the real practicality of this study. One suggested work

is to study new coordination methods for autonomous vehicles within common urban

traffic scenarios. And another goal is to make software agents more like human

drivers except autonomous ones.

64

5.2 Conclusion

Traffic simulation for urban traffic is a complex and unpredictable environment in

which all conditions may change instantaneously and cause another effects.

Autonomous cars will be available in near future, and a transition period is

inevitable. This period must be well analyzed and prepared for both human drivers

and autonomous vehicles. It is possible that traffic may be a chaotic environment

when autonomous vehicles meet manually driven vehicles.

In this study, a multi agent simulation is designed and developed in which

autonomous vehicles and manually driven vehicles share same environment and

travel on same routes. Traffic data is collected and broadcasted by central server

agents, all autonomous agents used this data to know real traffic situation and other

vehicles positions. Autonomous vehicle’s all behaviors are logged in to database and

related results are obtained.

Results show that, route following behavior of autonomous vehicles is directly

related with its proportion in urban city traffic. Autonomous vehicles travel freely,

organized, faster and safer while they become dominant in traffic. Their speed profile

becomes more stable, average travel speed increases and delay in expected travel

time decreases. In addition, their increased percentage improves the cautious driver’s

speed profile. This means, autonomous vehicles may overcome the congestion

problem.

By the help of ITS structure we propose, it is observed that ITS technology would

solve congestion and traffic safety problems in near feature.

65

REFERENCES

[1] Url-1

<http://www.nytimes.com/2010/10/10/science/10google.html?pagewanted=all&_r=0

>, date retrieved 15.03.2013.

[2] Url-2 <http://www.darpa.mil/>, date retrieved 17.03.2013.

[3] Sejoon Lim and Daniela Rus, 2012, Stochastic Distributed Multi-Agent

Planning and Applications to Traffic.

[4] Javed A. and Sejoon L. and Daniela R., 2012, Congestion-aware Traffic

Routing System Using Sensor Data.

[5] José Luis Ferrás Pereira, An Integrated Architecture for Autonomous Vehicles

Simulation, Phd Thesis, PORTO University, Portugal

[6] Url-3 <http://sites.ieee.org/itss/>, date retrieved 17.03.2013

[7] Url-4 <http://en.wikipedia.org/wiki/Electronic_toll_collection>, 17.03.2013

[8] Bertini, Robert L. and Monsere Christopher M., 2005. Benefits of Intelligent

Transportation Systems Technologies in Urban Areas: A Literature

Review, Final Report, Portland State University, Portland.

[9] Xue Y. and Jie L. and Feng Z., A Vehicle-to-Vehicle Communication Protocol

for Cooperative Collision Warning

[10] Schagrin M., Vehicle-to-Vehicle (V2V) Communications for Safety,

<http://www.its.dot.gov/research/v2v.htm>, date retrieved 01.04.2013

[11] Schagrin M., Vehicle-to-Infrastructure (V2I) Communications for Safety,

<http://www.its.dot.gov/research/v2i.htm>, date retrieved 02.04.2013

[12] Claes R. and Holvoet T., 2011, A Decentralized Approach for Anticipatory

Vehicle Routing Using Delegate Multiagent Systems

[13] Ghiani G. and Guerriero F., 2003, Real-time vehicle routing Solution

concepts, algorithms and parallel computing strategies

[14] Chem S., Sun Z. and Bridge B., 1997. Automatic Traffic Monitoring by

Intelligent Sound Detection, In Proceedings of the IEEE Conference

on Intelligent Transportation Systems.

[15] Forren J. and Jaarsma D., 1997. Traffic Monitoring by Tire Noise. In

Proceedings of the IEEE Conference on Intelligent Transportation

Systems.

[16] Nishizawa S., Cheok K., Young W. and Zhao W., 1997. Traffic Monitor

Using Two Multiple-beam Laser Radars. In Proceedings of the IEEE

Conference on Intelligent Transportation Systems.

http://www.nytimes.com/2010/10/10/science/10google.html?pagewanted=all&_r=0
http://www.nytimes.com/2010/10/10/science/10google.html?pagewanted=all&_r=0
http://www.darpa.mil/

66

[17] Url-5 <http://en.wikipedia.org/wiki/Dijkstra's_algorithm>, 22.03.2013

[18] Url-6 <http://en.wikipedia.org/wiki/Floyd–Warshall_algorithm>, 23.03.2013

[19] Url-7 <http://en.wikipedia.org/wiki/Johnson's_algorithm>, 22.03.2013.

[20] Url-8 <http://en.wikipedia.org/wiki/Bellman–Ford_algorithm>, 25.03.2013.

[21] Url-9 <http://en.wikipedia.org/wiki/A*_search_algorithm> 23.03.2013.

[22] L. Fu, D. Sun, L.R. and Rilett, Heuristic shortest path algorithms for

transportation applications: State of the art, Computers & Operations

Research, 33, 11, 2006: 3324-3343.

[23] Guzolek J. and Koch E. Real-time route planning in road network. Proceedings

of VINS,September 11–13,1989. Toronto, Ontario,Canada, pp. 165–9.

[24] Hart, P.E. Nilsson, N.J. Raphael, B. A Formal Basis for the Heuristic

Determination of Minimum Cost Paths, Systems Science and

Cybernetics, IEEE Transactions , 4, 2, 1968: 100-107.

[25] Url-10 <http://www.docstoc.com/docs/11896525/Simulation-of-Dijkstra-

Routing-Algorithm>, 03.04.2013.

[26] Klasen Volker, 2010, Verifying Dijkstra's Algorithm with KEY, Master Thesis,

Koblenz University, Germany

[27] Bigus, J.P. (2000). Agent Building and Learning Environment. Proceedings of

the International Conference on Autonomous Agents 2000,

Association for Computing Machinery, p108-109. Barcelona, Spain.

[29] Lange, D. B. and Mitsuru, O., 1998. Programming and Deploying Java Mobile

Agents Aglets. 1st. Addison-Wesley Longman Publishing Co., Inc.

[30] Poslad, S., Buckle, P. and Hadingham R., The FIPA-OS agent platform: Open

Source for Open Standards, 2000: 55 .

[31] Url-11 <http://jade.tilab.com/> , 30.04.2013

[32] Jeon H., Petrie C., Cutkosky M., JATLite: A Java Agent Infrastructure with

Message Routing, , IEEE Internet Computing, 4,2, 2000.

[33] Url-12 <http://www.eclipse.org/> , 03.03.2013.

[34] Url-13 <http://www.fipa.org/specs/fipa00037/SC00037J.html>, 30.03.2013.

[35] Url-14 <http://jade.tilab.com/doc/programmersguide.pdf>, 22.03.2013.

[36] Bellifemine F., Caire G. and Greenwood D., 2007. Developing Multi-Agent

Systems with JADE, p. 59.

[37] Url-15 <www.mathworks.com/help/matlab/ref/delaunay.html>, 27.04.2013.

[38] Url-16

<http://en.wikibooks.org/wiki/Artificial_Intelligence/Search/Heuristic_search/Astar_

Search>, 22.04.2013.

[39] Stuart Russell and Peter Norvig (2009). Artificial Intelligence: A Modern

Approach (3rd Edition), Prentice Hall

http://en.wikipedia.org/wiki/Johnson's_algorithm
http://en.wikipedia.org/wiki/Bellman–Ford_algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm
http://jade.tilab.com/doc/programmersguide.pdf
http://en.wikibooks.org/wiki/Artificial_Intelligence/Search/Heuristic_search/Astar_Search
http://en.wikibooks.org/wiki/Artificial_Intelligence/Search/Heuristic_search/Astar_Search

67

[40] Demir M., Developing intelligent agents for traffic education, Phd Thesis, Gazi

University, Ankara

[41] Url-17 <http://www.oodesign.com/singleton-pattern.html>, 17.02.2013.

[42] Ko Joonho, 2004, Characterization of Congestion Based on Speed Distribution

- A Statistical Approach Using Gaussian Mixture Model.

[43] Öcal K., A-Star Based Route Planning Using Real-Time Road Traffic Density

Data, Master Thesis, Atılım University, Ankara

http://www.oodesign.com/singleton-pattern.html

68

69

CURRICULUM VITAE

Name Surname: Oğuz Ali Ekinci

Place and Date of Birth: Burdur, 1986

Address: İstanbul

E-Mail: oguzaliekinci@gmail.com

B.Sc.: System Engineer/ Automation and Control Engineer

