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SUMMARY

This work is about matrix representations and
characters of group, espectially the symmetric groups of
degree 6 and 7,namely 86 and 87. Chapter I gives a brief
history of the subject. Chapter II gives the very basic
definitions such as group representations, characters,
reducibility and complete reducibility. Most of the
theory was invented by Frobeﬁius, and Schur-Maschke’s
theorem on complete reducibility is slso very important.

After having defined the character notion, in the
previous chapter, chapter I1II gives the important
properties characters which will clarify the importance
of group characters in the study of group
representations.

Then the work goes on with a brief recall of some
basic information on symmetric gfoup and the theory of
group representations linked with symmetric groups by
the generating functions of Frobenius and Schur which
give the value of irreducible characters o¢f symmetric
groups as coefficients. .

The concluding chapter is devoted to the study of
some special Schur functions which will be used to
constrgct the character table of 86 and S7.
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OZET

Sg VE S, NIN KARAKTERLERI

6

Bu tez, pratikte relativite ve kuantum teorisi gibi
alanlarda yvaygin bir sekilde kullanilan matris
temsillerinin grup karakteri yoluyla incelenmektedir.
Tezin amaca, 56 ve S7 simetrik gruplarinin butiin

karakterlerinin elde edilebilecedi karakter tablolarim
tiretmektir.

Konunun hazirlanmasinda kullanilan temel kaynaklar
Ledermann [1] ve Murnaghan [2] tarafindan verilmistir.
Keown [3] wve Littlewood [4] wun vaklasimlara da yol
gosterici olmustur.

G bos olmayan bir grup ve xeG olmak tizere

AGx) = [a; ()] (1,3 = 1,2,...,m)

olacak sekildeki katsayilarin bir K cisminden segildigji
m-inci mertebeden bir singiler olmayan matris
bulunabiliyorsa ve

A(x)A(y) = A(xy), (x,yeG)
sarty sajlamyorsa, A(x) e G nin K #zerinde m-ineci

dereceden bir temsili denir. Simetrik grup izerinde
tanimlayabilecedimiz iki basit temsil asafidadar.

1) &6(x)

n

1, eJer xc¢ift ise
{ 0, efjer x tek ise

Y = _ 1 ejer i = x
2) M=x) = [éx,,j] ? 6X1j - { 0 efjer i & x; °

Bu temsillerden [1] 2Z2-incisine dojal temsil adi verilir.

A(x) ve B(x), G grubunun aym dereceden K cismi
tizerinde tanimli iki matris temsili olsun. Katsayilarin:
K dan alan, singitler olmayan ve

B(x) = T YA(x)T



sartim saflayan bir T sabit matrisi bulunabiliyorsa,
A(x) ve B(x) temsillerini denk kabul edecediz ve bunu

A(x) = B(x)
seklinde gbsterecedjiz.
A(x) bir matries temsili olmak tizere
#(x) = trA(x)

A(x) matrisinin izini verir ve A(x) matrisinin karakteri
diye adlandirilir. Denk temsillerin karakterleri aymdir
ve grup manasinda konjuge olan elemanlarin aym temsil
icin karakterleri aynidirfl]. Bu teorem 2.1 de ifade
edilmistir ve karakterlerin temsillerinin incelenmesinde
tnemli bir rol oynar.

Konu matris temsilleri oldujuna ve matrislerin tggen
formda yazilabilmesinin ©zellikle determinant hesabinda
kolaylik sajladijina gdire, matris temsillerinin bu
sekilde yazalip yazilamadidini bilmenin faydasi agiktir.

Herhangi bir A(x) temsili, eJer uygun sartlardaki bir
T matrisi tarafindan, her xeG icin

Ay £ . [cxx) 0 ]
x) = T IA(x)T =

D(x) E(x)

sekline pgetirilebilirse, A(x) matrisine, KX tzerinde
indirgenebilir, aksi takdirde indirgenemez denir.

Herhangi bir temsil, ya indirgenemezdir ya da kdsegen.
elemanlary indirgenemez temsiller olacak sekilde bir
Ucgen matris seklinde yazilabilir[1). Bu, temeillerin
irdelenmesinde kolaylik sajlayacaktir. Fakat kisegen
disindaki terimler de yok edilebilseydi bu dsha da
faydali olurdu.

Maschke’ nin teoremi, bunun, her zaman olmasa da ¢ok
genel sartlarda bunun mimkin oldujunu gdstermektedir [1].
Bu teoremin dsha genel bir sekli, tam olarak, G bos
olmayan sonlu bir grup, K karakteristigi O ya da |G| ile
aralarinda asal olan bir cieim ise, G nin K ciemi
zerindeki her matris temsilinin bu sekilde
vazilabilecedini gdstermektedir [1].

Grup karakterlerinin szelliklerinin incelenmesi igin,

Cevi-



@(x) ve v(x) karakterleri icin

@, > = —— T x)w(x?)

g xe@G
seklinde tanmimli bir <¢,¥> i¢c carpima tanmimlanmstir.

Eder A(x) ve B(x), bir G grubunun iki indirgenemez
temsili ve x(x) ve x’'(x), sirasiyla, bu temsillerin
karakter fonksiyonlar: ise, birincil dereceden ksarskter
bagintilara

o - 1 eJer A(x) = B(x) ise
XX 2 = { 0 aksi takdirde

seklinde ifade edilir. Bu, temsillerin karakterlerinin
incelenmesinde indirgenemez temsillerin karakterlerinin
ortonormal bir taban olusturdujunu gssterir[l]. Herhangi
bir temsilin karakteri, Fourier analizinde kullanilana
benzer bir teknikle indirgenemez temsillerin
karakterlerinin lineer bir kombinasyonu olarak
vazilsbilir. Bir grubun k tane konJjuge simifar varsa, k
tane denk olmayan temsili vardirfl]. Bu teorem grubun
konjuge simiflara ile temsillerini birbirine bajlar.

n>1 olmak iizere Sn , n-inci dereceden simetrik grubu

temsil etsin. Simetrik gruplar, tizerinde en c¢ok
calisilms grup tiirlerindendir. Sn nin konjuge

samaflarinin sayisi, n sayisinman parcalamslar: sayis:
kadardir{2]. O halde, Sn nin indirgenemez temsillerinin

gayisy n nin parcalamislary sayisina esittir. Bu gergek,
grup temsilleri gibi, nispeten yeni bir konuyu sayilar
kadar eski olan sayilar teorisiyle bajlamaktadir.

Frobenius, grup karakterlerinin 1886 vilinda
bulunmasindan 4 y1l sonra, bulduju treten fonksiyonlar
ile Sn simetrik grubunun karakterlerini en azindan

prensip olarak bulma basarisim g8sterdi. Prensip olarak
diyvoruz, c¢tnki Frobenius’'un fonksiyonlary ¢ok fazla
hesaplama icerirler ve n nin buydk dejerleri ic¢in
hesaplama miktari korkung boyutlara ulasir. Bu sebeple

86 ve S7 nin karakterlerini hesaplamak icin Schur’un
Frobenius’ tan bir kac yal sonra gelistirdigi Schur’un
tireten fonksiyonlar:s (veya s-fonksiyonlari)
kullamilmstar.

Bu metodun tercih sebeplerinden biri de herhangi bir
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n>1 doJjal sayisi igin indirgenemeyen karakterlerin
hesaplanmasinda, dedisik dereceden simetrik gruplarin
karakterlerinin kullanilmasinin gerekmemesidir[4].

Balim 5, S6 ve 87 nin karakterlerini verecek olan

formillerin s-fonksiyonlar: yardimm ile Wretilmesine
ayralmstar.

11k olarak 2 eleman iceren parcalamislary verecek

formitller A pargalamsim (A) = (xi,xz),; A, + XA, = n
olacak sekilde dustinttlecek olursa Schur’un fonksiyonlara
XDH’KZJ karakter fonksiyonunun dejerleri
“\ Y +1
1
-1

determinantinmin agilimindaki katsayilar seklinde elde
edilir. Bu ifadenin

W, W, -~ W w. .
k1 kz 7\1+1 )\z——l

seklinde dusundlerek agilmasy ve gerekli sadelestirme-
lerin yapilmasi sonucu

x 2] a o : a a
1’720 1 n 1 n
X(Q) ) [ T ]...[ T ] ) [ a ] -.-[ a ]

1 n 1 n
)

(7 (o)
ana formulti elde edilir. Burada (o) Xz - 1 inci
mertebeden simetrik gurubun ve (71,12,...,Tn) ise (Kz)

nin bir parcalamis simfidir.

Bu ana formuliin irdelenmesi sonucu

[7\1,7\21 _ 011—20"—1 o o . o o
Xa = -(71—+T— 01“.01\ ﬁz...ﬁn.

(o) ()
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formult elde edilir. Burada (f3) Kz inci dereceden

simetrik gurubun sebit terimsiz bir parcalamsidir.

Bu formulin S6 ve S7 de kargilagsabilecedimiz

durumlara uygulanmasi sonucu iki elemanly parcalamislar
i¢in su formulleri elde ederi=z.

x[n-l,l] =a -1

A28 ——é— a e, - 3) +a, ,

2033 2= Loae, - e, - 5) eyl - 1) v,
208 = = L e (e m1) (a2 (a,-T) + - o (e B)a, 4

1
+ (o, - Loy + —5— o (a, = 1) +a, .

Yukaridaki esitlikler, inceleyecedimiz S6 ve 87
gruplar: icin yeterlidir.

—~33r—



CHAPTER 1

1. Introduction

The three outstanding names in thé theory of group
representgtions are Frobenius, Schur and Weyl.It may be
claimed that Maschke’s theorem and Schur’s lemma are two
pillars on which the edifice of representation pheory
rests. The group characters discovered in 1896 and only
4 years later, Frobenius succeeded in obtalning all the
characters of Sn. More precisely, he constructed a set
of generating functions whose coefficients reveal the
full character table. It must, however, be admitted that
the expansion of the generating functions tends to be
cumbersome. A few years later, Issai Schur developed an
alternative version of the character theory for the
symmetric group. He constructed a set of generating
functions which, in a sense, are‘ dual to those of
Frobenius. Tﬁese Schur Functions have a great deal of
attention as they play an important part in the more
advanced study of the symmetric group.

This abstract is prepared as follows:

Chapter 2 gives some basic information on group
representations and charactefs.

Character 3 gives the e1ementary properties of group

characters to show their importance and simplicity in



the study of group representations.
Chapter 4 introduces the main results of Frobenius
theory and Schur’s functions together with some basic
information on symmetric groups.
Chapter 5 utilizes chapter 4 in order to construct
and S

the full character table of S 7> the symmetric

6
group on 6 and 7 letters. Here we will get some formulae
giving the value of any simple character of Sn in any
c'].aaxss'cot of Sn where o : a, o+ 202 +.n.t ne, = n is =&

partition of n.



CHAPTER 2

2. Group Representations and Characters

2.1. Group Representations

Definition 2.1.1. Let G be a nonempty group and

suppose that with each element x of the group G there is
associated an m by m non-singular matrix
ac) = (a0 ] Gui=1,2,...m (2.1)
wifh coefficients in the field K, in such a way that
A(x)A(y) = A(xy) , V¥x,yeG. (2.2)
Then A(x) is called a matrix representation of G of

degree(dimension) m over K.

Definition 2.1.2. Every group possesses the trivial

representation given by the constant function
A(x) =1 (xeG). (2.3)
Clearly this constitutes a representation.

Definition 2.1.3. A non-trivial example of a linear

representation is furnished by the alternating character

of thé symmetric group Sn (for each n>1). This is
defined by
.o ‘1 if x is even
Cix) = { -1 if x is odd (2.4)

The equation {(x){ (y¥)

{ (xy) expresses a well-known

fact about the parity of permutations.



Definition 2.1.4. (Permutation Representations)

Let G be a permutation group of degree m, that is a

subgroup of Sm-, possibly the whole of Sm , and let
1 2 ... m

% = (2.5)
X X .. X

be a typical element of G where (xi,xz, .- ,xm) is an

ordering of 1,2, ... ,m.
We define a matrix representation

N(x) = [5}:. ] (2.86)

ij
where it means that in the ith row jth element is 1 if
o= xj , else O.

As an example if

.then

=

—

"

A d

fi
leNeol Lo
HOOO
OO0
QOO+

Lemma 2.1. N(x) is a representation,which we call the
natural representation of G [1].

It is easy to find the natural charecter »(x) of G we
will find the trace of N(x). But we get 1 on the trace

iff « = x for some 1 £i<m, that means 1iff i is



fixed by x. Hence here,
v(x) = number of object fixed by x. (2.7)

Definition 2:1.5. (Equivalent Representations)

Let A(x) ‘be a representation of G and suppose that
B(x) = T 'A(x)T (2.8)
where T is a fixed non-singular matrix with coefficients
in K. Clearly

B(x)B(y) = T *A(x)TT *A(y)T

H

TT*A(x)A(V)T. - (2.9)

But since A(x) is a group representation

A(x)A(y) = A(xy) (Yx,¥) (2.10)
So we get
B(x)B(y) = T 'A(xy)T
= B(xy) (2.11)

so that B(x), too, is a representation of G. We say
that the representations A(x) and B(x) are equivalent
over K and we write
A(x) = B(x). (2.12)
As a rule, we do not distinguish between equivalent
representatiéns, that is we are interested in

equivalence classes of representations.



2.2. Characters

Let A(x) = [ 8, (x) ]'be a matrix representation of G
of degree m. We consider the charecteristic polynomial

of A(x), namely

K—a“(x) —am(x) . . eaim(x)
det(MI-A(x)) = "8 (X)  A-a,(x) ... e, (%)
~ah1(x) —amz(x) - e K~amm(x)

This is a polynomial of degree m in A, and when we
expand this determinant, the coefficient of a1 is

equal to

#(x) = a, (x) +a,(x)+ ... +a (x). (2.13)
The right-hand side is called the trace of the matrix
A(x), abbreviated to trA(x),.so that

¢(x) = trA(x). (2.14)

Definition 2.2.1. ¢(x) is a function on G With values
in K, and it is called the charecter of A(x).
‘Now if B(x) = T "A(x)T is a representation equivalent
to A(x), then |
det(AI - B(x)) = det(T 'AIT - T *A(x)T).
Then T*AIT = AI. Hence |
det(\I - B(x)) = det(TIMI - Ax)IT]  (2.15)
= (det T7').(det(AI - A(x)).detT

Since T is non-singular,



So we get
det(AI - B(x)) = det(AI - A(x)).

In particular on comparing the coefficients of A"t in
the above equation, we find that
b (x)+b, (x)+ ... +b_ (x) = g, (x)+a,, (x)+ ... +&a  (x).
That 1is, equivalent representations have the same
character.

Theorem 2.2. Let A(x) be a matrix representation of
G. Then the character ¢(x) = trA(x) has the following
properties [1]:

(1) Equivalent representations have the same

character

(ii) If x and y are conjugate in G, then @(x) = ¢(y).



2.3. Reducibility

Definition 2.3.1 The matrix representation A(x) is

reducible over K if there exists a non-singular matrix T

over K such that

B(x) = T "A(x)T ={

for all xeG.

C(x)
E(x)

e
D(x)

(2.186)

Otherwise, the representation is called irreducible.

Theorem 2.3. Let A(x) be a matrix representation of G

of degree m over K.

Then either A{x) is irreducible or

else
Al(x) 0 0 .- 0
A21(x) Az(x) 0 0

A(x) = A31(X) Asz(x) As(x) .ea 0 (2.17)
Aj(X) Aj,(x) Ajg(x) ... Aj(x)

where Al(x), e s Al(x) are irreducible over K [1].



Z2.4. Complete Reducibility

A reducible matrix representation A(x) can be brought

into the triangular shape

(2.18)

[ C(x) . 0 ]
A(x) = .

E(x) D(x)
But it would be more satisfactory if we could remove the

off-diagonal block E(x) by a further transformation. If

this could be done, then we would have that

c(x) . 0
A(x) = (2.19a)
0 D{x)
or written more concisely
A(x) = diag(C(x),D(x)). (2.19b)

Though not always possible, the diagonal form is
attainable under very general conditions.

Theorem 2.4 (Maschke’ s Theorem)

Let G be a finite group of order G and let K be a
field whose charecteristic is either O or prime to G.

Suppose that A(x) is a matrix representation of G over K

such that

[ C(x) 0 ]
A(x) = ' .

E(x) D(x)
Then [1]

A(x) = diag(C(x),D(x)).
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Definition 2.4.1. A matrix representation A(x) over K

is said to be completely reducible if

A(x) = diag(A (x),A,(X), ... ,A (X))
where A (x) (I = 1,2, - L) are irreducible
representations over K. So we have a more general
version of Maschke’ s theorem.

Theorem 2.5. Let G be a finite group of order g, and
let K be a field whose cﬁarecteristio is zero or else
prime to g. Then every matrix representation of G over K
is completely reducible [1].

Theorem 2.6 (Sohuf‘s Lemma )

Let A(x) and B(x) be two irreducible representations
over K of a group G, and suppose that there exists a
constant matrix T over K such that
| TA(x) = B(x)T
for all xeG. Then

(1) Either T = 0 or

(ii) T ies non-singular so that A(x) = T 'B(x)T ,

which means A(x) and B(x) are equivalent [1].

Corollary to Schur’s Lemma:

Let A(x) be an irreducible matrix representation of G
over an algebraically closed fixed. Then the only
matrices which commute with all the matrices A(x) (x=@G)

are the scalar multiples of the unit matrix.



-11-~

Proof. Suppose that A(x) is irreducible over the
algebraically closed field K , and let T be a matrix
(necessarily square) over K which satisfies

TA(x) = A(x)T
for all xe@G. Then if k is any scalar (element of K) we
have that
(kI - T)A(x) = A(x)(T - kI) (xeG)
where I is the identity matrix.

Since K is algebraically closed there exists a scalar

k_ such that

det(k I - T) =0
because det(k I - T) is a polynomial in K and any
algebraically closed field has at least one root for any
polynomial with coefficients chosen from the field.

So the matrix ka - T is therefore singular. Applying
Schur’s Lemma to ( ) with k = k , we conclude that

T = kI

Conversely, it is obvious that every matrix of the

form kI (keK) commutes with all the A(x) , which

completes the proof.



CHAPTER 3
3. Elementary Properties of Group Characters
3.1. Orthogonality Relations

Definition 3.1.1.

Let ¢(x) and w(x) be functions where xeG with values
in K and write

> = 1 T pxw(x) (3.1)

g xeG

é¢,w> is called the "inner product" for funcﬁions ¢ and
¥ defined on G.

Since the sum is unaltered if we replace x by x =, it
follows that

<P, ¥> = <y,P>. (3.2)

We shall say that the functions ¢ and v are
orthogonal if <¢,y> = O.

Theorem 3.1. (Charecter Relations of the 1st kind)

Let x(x) and x’'(x) be the charecters of the
irreducible representations A(x) and B(x) respectively.

Then [1]

XXT> =1 0 if A(x) # B(x) (3.3)



-13-

Definition 3.1.2.

The charecter of an irreducible representation is
called a "simple charecter” while the charecter of a
reducible representation is termed “compound”

If G is a group of order g, then any group function ¢
on G may be regarded as g-tuple, thus

¢ = (e(x),2(x,), ... ,¢(Xg)), (3.4)
where X o5 X 5 «on s xg are the elements of G
enumerated in some fixed manner.

When viewed as g-tuples, any collection

x(i) , x(z) Y x(ﬂ) (3.5)
of distinct simple charecters is linearly independent.

For suppose that

rex) =0 (3.6)

where the right-hand side denotes the zero g-tuple.

Taking the inner product of this equation with x(j)

where 1 = j £ s , we find that

s . . S

v Ct()(.(t) ,X(J )> = z C.i.éi.j

iz i=1
= o (3.7)
=0

which proves the linear independence.
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It is known from linear algebra that there can be no
set comprising more than g-linearly independent
g-tuples. Therefore s < g , and it follows that a group
of order g can have at most g inequivalent irreducible
representations. For the time being we shall denote the
precise number of irreducible representations by r.

Let

(1) (z) - (r)

x > X 3 ees 3 X
be a complete set of simple charecters, and suppose that
they correspond to the irreducible representations

F(i) , (%) — F(r) (3.8)
which, of course, are determined up to equivalence. The
degrees of the irreducible representations will be

denoted by

£1) (@)

.  aen , £(7) (3.9)
respectively. By Maschke’s theorem, if A is an arbitrary
represgntation then

A = diag(F,F ,F'', ... ) ' (3.10)
where F,F’ ,F'’, ... are irreducible. The constituents of
A need not be distinct. If ¢ is the character of A, then

we can write

o ()
¢ = Ldx J (3.11)
=t

where d, = 0 is the multiplicity of FO) in A. On taking

" the inner product with x(t) we obtain that
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d = <g.x)> G=1,2, ... .1) (3.12)

This 1is analogous to the way in  which the
coefficients of a Fourier series are determined. For
ﬁhis reason (3.11) ie called as the Fourier analysis of
¢ or of A.

Let B be another representation, and suppose that its

character, ¥ has the Fourier analysis

L)
¥ = Eejx (3.13)
i=
so that for i = 1,2,...,r
e = <y, x> (3.14)

1+

We are now in the position to establish the converse
of the elementary result that equivalent representations
have the same character. Indeed, if

?(x) = v(x) (x=G) (3.15)
then (3.12) and (3.13) immediately show that

q'= e, (t = 1,2,...,r). (3.16)
Hence A and B are equivalent to the same diagonal array
of irreducible constituents and are therefore equivalent

to each other.

So we proved the



-16~

Theorem 3.1.2.

Two representations of a finite group of a finite
group over the complex field are equivalent if and only
if they have the same charecter.

In other words, the trace of a representation
furnishes us with complete information  about the
irreducible constituents into which this representation
may be decomposed. In this sense, the character truly
characterizes a representation up to equivalénce.

Now

r r

<#.0> =< Tex) , poxl . (3.17)

=1 j=a

By using the orthogonality relations of the first kind

r
<¢,9> = L (e)". (3.18)
k=1

Now 1f ¢ ies irreducible, then only one of &, (1=k=pr)
is 1 and the others are zero, so if ¢ 18 irreducible,

then <¢,¢> = 1 . So we proved

Proposition 3.1.3.

A representation with character ¢ is irreducible if

and only if <¢,¢> = 1 [1].
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Theorem 3.1.4.

Let G be a group of order g. If G has k conjugacy

classes, then there are, up to equivalence, k distinct

representations over €, say

1) p(2) p(E)

’Y 3 - o ?

If F(i) is of degree f(i) , then [1]

k iy .2
g= L (£f)

iz



3.2. The Character Table

The complete information about the characters of G is
conveniently displayed in a character table, which lists
the values of the k simple characters for all the
elements. We know,by theorem 2.1, that a character is
constant on each of the conjuéacy classes. If xeca s
where Ca is one of the conjugacy classes of G, we put

x(x) = x,. (3.19)
Thus it is sufficient to record the values x, (1fo<k).
Denoting the number of elements in Ca by ha , we have
the class equation

h +h + ... +h = g. (3.20)
Unless the contrary 1is stated, we adhere to the
convention that C1 = 1 and that F(i) is the trivial
representation

F*l(x) = 1 (xe@). (3.21)
As in theorem 3.1.2, the degree of F“) will be denoted
by f(i) , 80 that

28 = £ =2, 0. (3.22)
Table 1 presents a typical character table. The body of
the table is a kxk square matrix whose rows correspond
to the different characters while each column contains
the values of all simple characters for a particular

conjugacy class.
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Table 3.1. Thé oééracter table of G.

G:
. C, ---Cyp ... ¢
h h2 --- b Lol h
[Y
(1> (4>
£ 1 P R |
(23 f(z> (2)> (2> (2>
Xz ...xa -ee X,
Ci (i (i (i) iy
X f x, ce X, .. .
(k> <k (k> (k> (k>
3 xz xa k




CHAPTER 4
4. Permutation Groups
4.1. The Symmetric Group

We recall that each permutation of Sn can be resolved
into a product of disjoint cycles in a unique manner
save for the order of the cycle factors. A cycle
involving a single symbol indicates that this symbol
remains fixed. Two elements of Sn are conjugate if and
only if they have the same cycle pattern. For example,
in 86 the permutations

x = (146)(3b5)(2) and y = (243)(16)(5)
have the same cycle péttern and are therefore conjugate;

indeed,

where

Thus each conjugacy class Ca of Sn is determined by its
cycle pattern comprising, say. o cycles of degree 1, o,

cycles of degree 2 , and so on. Accordingly, the

speciflication of Ca will be described by the formula
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aa + 2a2 + 3a9 + ... + nan =n (4.1)

where A0, ... ,an are non-negative integers.
Alternatively, each permutation of Ca is the product
of, say, u cycles whose degrees, in some order, are P,

P> --- P, respectively. Hence Ca is determined by the

prartition

P:p +p, + ... +p =n, (4.2a)
'which is abbreviated to

Ip| = n. (4.2b)

No distinction is made between partitions that differ
merely by the arrangement of their terms. Hence in order
to achieve uniqueness we may impose the conditions

pizpzz...Z;anO.

Let k be the number of conjugacy classes of Sn. There
is no simple expression for k as a function of n, but in
view of the foregoing discusion we know that k is the
number of solution of a : a + 20, + 30, + ... + no = n
or else that k is the number of solutions of |p| = n and
pizpz?:....Zp z 0.

n
When Ca is specified by a : oi+202+3a9+...+nan,= n s

then
|Ca| = ha , ' (4.3)
where ha is given by Cauchy’ s formula, namely
{
haz o = o - (4.4)
1tat ... na

1 n



4.2. Generating Functions

It is one of the most remarkable achievements of
Frobenius that, only four years after the discovery of
group characters in 1896, he succeeded in obtaining all
the character of Sn », at least 1in principle. More
precisely, he constructed a set of generating functions
whose coefficients reveal the full character table.

The main results of Frobeniue’s theory may be

summarised as follows:

Theorem 4.1.
Let X oKys oo 5Xg be indeterminates and put [1]
_.r r 5 -
8, = X, + X, ...+ x, (r=1,2,...) (4.5)
A= 1 (xt - x.). (4.6)
i <j J

For each partition
> > > > - -
pi-pz"'""'p—O:Ipl—'n
let

p. +n-i
viP) - det[xjt ] i (4.7)
If the conjugacy class Ca is specified by cycle pattern

[+ 3 ol .. =
, + 2 , + Saa + + nou n ,

define -
% “n
Oy T B, B, ... B . (4.8)

Then the values of all simple characters of 5 appear

coefficients in the generating functions
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oaA, - lzaxlgp) V(P) . (4.9)
Moreover,
. n! .H.(pi -p. o+ j - i)
£P) = Xfp) = L&%p. o Ty - (4.10)

1%

Definition 4.2.1 (Schur’s Function or S-Function).

The polynomial

P +n-i

p(P) - det[x ]/det[x‘j‘"‘] | (4.11)

i
J

is called the Schur function, corresponding to the
partition

P, = P, z ..z P, z 0; |p| = n.

These functions were introduced by I.Schur in his
treatment of the symmetric group. We can now write

oA = E xép) v(P)
P
asg

oa - z xép) F(p) . (4.12)
P

Since the character s are real, the orthogonality

relations of the first kind state that

1 (p) (Q) _
AT DRy L X7 =6
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Hence we deduce from oy = x;p) F(p) that

oM

F(<;1)=__1T }:hx;‘no , (4.13)
P

which is Schur”s formula. Thuse whilé the generating
functions of Frobenius furnish the values of all the
characters for a particular class, a Schur function is
assoclated with a particular character and displays its
values for all classes. It is this sense that the two
theories may be described as dual to each other.

Thé problem of determining the characters of Sn has
now been reduced to the algebraic task of expanding the
Schur functions in terms of s ,s,,...

Proposition 4.2.

The Schur function corresponding to the partition

> > > = = = : =
pp=DF = ""'pu>0’ Pu+1 st Pn 0: |P| n

is given by [1]

(p) _ o
FlP) = det[wpi_.wj] (1,i=1,2,...,u) (4.14)
wherg
w. = ¥ x Xx T < , 1S =<u =< ... Su . =n (4.15)
r (2) HoOH, “r 12 r
and
w_ =1, w =01if m < O. (4.16)
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Using these results we have the

Theorem 4.3.
~i) xgn] = 1, that is, x[n] is the trivial character,

- o +o 4+, ., . n
1) 2l = ey 2 ,that 1s, 211 is the

alternating character [1].



4.3. Conjugate Partitions
When zero terms are disregarded a partition
Pp: P, Zp, % ...2p >0, |p|l=n
may be conveniently be decribed by a graph (p). This
consists of p, nodes in the first row, p, nodes in the
second row, ..., b, nodes in the uth row, the initial
nodes in each row being vertically aligned. For example,
the partition
P: 5+3+ 3+ 2+ 1=14
is shown by the graph
0ooo0o0oO
ooo
(p) ooo
oo
o
With every partition p we associate its conjugate
partition p’ obtained by interchanging rows and columns
of the graph (p); in order words the terms of p’ are the
number of nodes in the columns of (p). Evidently, the
conjugate of p’ is p.
In our example
P :5+4+3+ 1+ 1= 14,
A partition which is identical with its conjugate is
said to be self conjugate. For example

34+42+1=286
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is self-conjugate as is seen from its graph
00O
oo
o
Theorem 4.4.
If p and g are conjugate partitions of n then [1]

n
LP) = I ()



CHAPTER 5
5. The Character Table of S6 and 87

5.1. A Formula for Charecters of Partitions

with two Elements

We will find some formulae for two element partitions.
Assume that (M) = (xi,xz) where A+ A, = n.
X, 2,1

By Schur’s study, we know that the values of x 2

can be obtained as coefficients in the expansion of

w. W
ki x1+1

(5.1)

In terms of the lst row, we obtain
W, W - W W. .
ki kz h1+1 kz—l

A typical element of

..,1 1 1i n
L N ga r2) 2] 8, ~--- 8,
t PR, ter ... nPe
1 n
8 eh 8 eh
1
g (2] () ke 69
Mﬂil o e,t...8 !
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Since A1< n , some elements of 91,...,6h are zero.

Similarly a typical element of W, is
2

e () () 69

where (Ti’ - ’Tn) is a class of (hz).

S0, the product Wy oWy is obtained by adding the
1 2

terms of the type

1 Y
e ! ... !« 1 .. 1! 1

0
| ———

over all classes of (&) and (r) of the symmetric group

on K1 and Kz letters, respectively.

91 writing a = 91 T, ea. A= en + T it is
clear that
(o) = (ai, S ,ah) is a class on l1 + kz = n letters.

Hence the coefficient of

1 _S_:!._ 1 Sn n
71! A [ 1 ] Tt n

() any class of the symmetric group on k: letters the

product W, W, is the sum over all classes (t) of the
4 2 :

symmetric group on hz letters of the product
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(we adopt that [ T’ =0 if Tj > aj L)
. i

This follows from the fact that

%! .- 9 L [ia_]“1 [Er_xJ“n] -
] ] - - -
e It e n'Tn a1' .. an! 1 n
- - (#)* - (2)
o, T . et 1 [T - | @ (5.5)

where the R.H.S is the term we have in our expansion.

Similarly for the form,wx +1-W\ -1 the coefficient of
1 2

Q
e
Q
—
kﬂhm
|
»
~
slbm
| S
L
fat

in this product is

> [2) 2] e

(e)
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where (¢) is any class of the symetric group on Kz - 1

letters. §So we get

xi:f)’)\z] =Z [:: ][:2] -Z [::] [Zz] (57)

(T) (o)

Since, when T, z 1, T = (71—1,72, S ,Tn) is a
class (¢) of the symmetric group on kz - 1 letters, we

may combine the terms
0(1 az an 0(1 an
S ] L] [., ][a ] (5.9)
1 2 n 1 n

[ a ] o ! (a0 - & ) o
1 » 1 i i 1 1

01+1 - (a1+1)!(q1—01—1)! 3 (01+ 1y - 01!(d1_01)!

Using

in a more compact way:

[ B - e )R e

We can do this whenever (¢) has at least one fixed

letter. So denoting by () an arbitrary class of the
symmetric group on hz letters which does not contain any

unary cycles, we get the formula:
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[k Py ] a —20 -1
o + 1 'L;] ] (6'6)

(0) (3)

Here the first summation being over all classes (¢) of
the symmetric group on kz - 1 letters, and the second
over those classes (3) of the symmetric group on kz

letters for which Bi = 0.

Using this general formula, we will derive some

fbrmulae

£“-131] - -
I) x(a) = ?7 . This is a special case. Here Xz = 1,
A ~‘1 = 0. But in this case we have to evaluate only

2

F)E) - (3] () (3] o o

.(by the 1lst formula).

I1) xEZ;Z’Zl = 2 .Here A, = 2,
[n-2,2] _ o, 20, ~1) fa, %
X(G) - [ o, + 1 o 1 e, +
]d =1
dz aﬂ
* ﬁz T ﬁh
3=
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[n-3,3] _ 0‘1-20'1-—1 ‘ A “n
X(a) - [ o+ 1 o1 " |e, +
e |=
az ah
+ oo
r,‘2 ﬁn
e

i
—
2
"
N} |
+| N
=N
l
=
o
~—
N8
e
—
o R
—_—
—
o 2
!

a <5 ai(ai—l) o, -1
- -+ o + o

=T33 - T3 T - % "%

Il
|-

5 % (¢ — Li(a = B) +a(a - 1) +a, . (G.‘4)



n
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1 1
4 Oli (aiﬁl)(ai-z)'——s + Oli.Olz

+ (o& - 1)01a

1

-—-2—‘1 Ol‘(Oli—'l)(O(‘—Z)(Ol‘—"?) + 5

(a1 - 1)a3 +

4 —

2

1
2 o‘2(0‘2 - 1)+

1

o&z(a2 - 1) + a,

o -3
1

a
4

a (e -3)ax +
i i 2

(5.18)



5.2. A Formula for Charecters of Partitions

with three Elements

A= (ki,Xz,Xs) , Ki + kz + Ka = n,

W. W. w.
X, N, +1 N, +2
det| w w. w.
N1 ™ x,+1 (5.1¢)
W, W. W.
[ "2 -1 N,

must be expanded.
The determinant is when expanded using the first row:
w w. w. wW.
A K2+1 hz—l k2+1

= wki+l det] +
a - |

W. W.
kz~1 A,

+ w11+2 det .

W. W.
X[xz,xs] - e N A+l

and
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X = det 2 2 (G.l?‘)

Now let us study the coefficient of the second term in

the expansion of our determinant, namely

N -1 w>\2+1

Here we need a lemma.
Lemma
For n = 0,1,2, ... and k= 1,2, ... , n

Sw

k —58—2— =y - (5.18)

Proof . By definition we have

¥n = ?3 T :}..cx! [%‘]1 [%*]mn (5.19)

by diferentiating both esides with respect to sk we get

&
—— W = z
6sk n (a
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Here ak = ak - 1. So

a’ =

1ai+2<xz+...+k(ak-1)+...=n—k.

Hence (o’ ) is a class in n - k. So we proved that

S w =1
ask n k n-k
or 6.21)
4 -
k aBk wn wn-k‘
So
a
\ w. wW. w
kz—l Kz+1 ds kz-l k2+1
det = . (5.22)
wW. wW. w. wW.
xa-z 7\3 65;1 7&9—2 )\a
a [
write it as 3 X meaning that the two rowed
1
: : ™, A1
determinant furnishing x being differentiated

with respect to 8, by differentiating the columns one at

a time.

But by Schur’s formula

X = I x
() “1!"'“n! (r3).

[x, .21 [i

where 3 = (ﬁ&, e ,ﬁn) is an arbitrary class of

S

*n (5.23)

the

symmetric group on Kz + ks letters, so the coefficient

of
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l i aﬂ. 'snA an
a 1...0] [1 ] [H']

A, Al
in the product W, X is

Also

P x[’\z,Ksl - 1 xikz,Ksl[s_i]!?; [s

9s, (3) ﬁié...ﬁh! (8) 1
where B; = ﬁ; - 1 s0 that (B8 ) = (ﬂ;,ﬁz, .. . ,ﬁn) is an
arbitrary class of the symmetric group on kz + ka - 1
letpers. Hence the coefficient of

L (2) - ()
ai'.. an! 1 " n

inv) a x[kz”\sj is T x[kz ’ks] %y | %
: A, 98, () (3) e B

the summation being over ail classes (3°) of the

symmetric group on hz + Ks - 1 letters. Similarly, the

1t
1

o
n

—
1]
—
e
o]
=
(]
ct
=
o

coefficient of —5—
1'-

v R
2
=3
7/~
L}
| —
"

F’n] " (5.24)
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[)\'z"l :7\3"'1]
product WX1+1 x is

the summation being over all classes () of the
symmetric group on kz + ks - 2 letters. Combining these

results, we obtain
et

[kz’Kz’xs] [kz’ks] % “n
% (a) = 5@ B | s
-1 D\z’)\a] A a'n

@) E IR A

i zx[kz—l,Ks.—].] 0(1] [an]
& | e |

The summations on the right being respectively over all
claases (f3) of the symmetric group on Az + A, letters,
all classes (f3’) of the symmetric group on A, + A, - 1
letters, and all classes (¥) of the symmetric group on
A+ xa - 2 letters. -

On seperating, in the first summation, those classes
(3) which contain one more wunary cycles ($,21) and

writing 31 = ﬁ; + 1, we obtain as we did when trying to

find a formula for partition with two terms:
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x[)\t’kz’)\a] =¥ 011—-21?‘1—1) %[Kz ’)\a] %y %n
(o). ) B8, +1 () s, |77 8,
[)\2 ,)\S] o, o '
+ L X e
(&) (&) [62] [6n]
(5.26)

. 5 [x, -1, -1] o a
(y)"(r) rd 'd

where (6) is any class of the symmetric groﬁp on x2+lg
letters, for which & = 0.

As an example, suppose

A,=n -2, 0 =1 =X, .

Then Az + Xa - 1 = 1 and there is only one term in the
first summation, that for which B8, = 1. There is also
only one term in the second summation, that for which
62 = 1 . The third summation has only one term, that for

which all y = 0 and this vields unity.

Hence

ng;Z,l,ll = __é_ (o - 3) -o, + 1. (5.29

: 2 .

Because £, = £, + 1= 2 and xbj2) = 1 whilst 6, = 1 ana
2

x%é)] = - 1 . Using this formula; we get

x%:;z,l,ll - ___é__ (Ol:t - 1)(0&1 - 2) —_ az (6-23)
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5(52-)-3,2:11 = 3o (e - 2)(e, - 4) - a, (529)
xlég-)-él,aal] - _%__O“(al - 1)(0&1 - 3)(a, - 6) +

The formulae we found so far are enough'to write down

all the character table of 86.




k- ]
5.3. A Formula for x[n—S,l 1.

The formulae we found for 86 are éuffioient for all
partitions of 87 except for the partition p: 4+1+1+1
which is self conjugate as its graph implies

000O
o
(p) o
o
In order to find the simple character x[n—S,l{l we

have to expand the fourth order determinant

wn -8 wh -2 wn -4 wn
Yo Y, Yy Ya
0 W W, W, y
0 0 w, w,

If we expand the determinant in terms of first row,

recalling that w, = 1,

wn-a wn-z wh-i wn w W w
Det W, w, v, W, _ et 11 2 3 _
[} 1 2 O 1 W
0 0 w, W 1
1
(5.31)
wn—z wn—:l wh
- 1.Det 1 w, w;
0 1 LA
wi wz wa
But the determinant Det}] 1 w, W, is the one we

0 1 w
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a

[17]

use to get the simple character X and the
wn-zwn—1wn
determinant 1 W, W, is the one we use to get
o 1 w,
the simple character x[n-Z,l,l]. So
8 k- ] 2
x[n—S,l 1 - W,,_ax[l 1 _ x[n—-z,l 1 (5.32)

By Schur’s formula

[13] - 1 [la] __Si 0(1 EQ qn
* ) (5) B T BT X(B) [1 ] ---[n ] (5.33)

where # = (8,,...,8 ) 1s &an arbitrary class of the

symmetric group on 3 1letters. 8o the coefficient of

[1%]
W, X is

o

(Z) XEé?’ [r{]

vy 2T = ;ZF“,:tEéil [ ﬁ;] | ﬁ:] ©.39)
A (30503
x50 (F006) 8 (60
since xt1 = (-1 % ¢ 4y taking n=3, it becomes
x%iz] - 1) % (5.35)
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Inserting these values, we get

[13] a 011 ol ot al
a0 = (5] -2 ([ 2[4
= ._é—{xi(aﬂ. - Doy - 2) -, oy (6'3?)
2
Since we found xt%72:11 - —;— (@, - 1)(a - 2) - a

combining all these we find that

a
x[n 3,171 = --—aé 1(a1 - 1)(0(1 - 2) - oo, + o -

- (o, - 1o, ~2) + o

= ——(o,~1) (&, -2) (&,=3)= (o ~1)at, + o , (5.36)

Now we are ready to construct the character table to S
and S

6
7 -



6.4. The character Table of S6

6 has 11 partitions, namely (1%), (1*2), (1°3),
(1*2%) (1*4), (1 2 3) (1 5) (2*) (2 4) (F) (6).

So every character will be on ll-tuble.

For easy of calculating, it is helpful +to make a

table for all these partitions

S

1° 1*2 13 1%2® 1%°4 123 15 2° 24 & 6
o B 4 3 2 2 1 1. 0 0 0 ©
a, 0 1 0 2 0 1 0 3 1 0 0
af 0 0 1 0 0 1 0 O 0 2 0
a, 0 0 0 0 1 0 0 0 1 0 0
a, 0 0 0 0 0 0 1 0 0 0 0
a, O 0 0 0 0 0 0 0 0 0 1
A6 = o Ind 21 901,1,1,1,1,1,1,1,1)
x[5,1] = x[n—l,l] =a -1
= (5,3,2,1,1,0,0,-1,-1,-1,-1)
L14.21 _ In-2,2] _ _%___ o (o, - 3) + o
= (9,8,0,1,-1,0,-1,3,1,0,0) (529)

2
LJ41T o o In-2,2] | ..%__ (o, = 1), = 2) - o

= (10,2,1,-2,0,-1,0,-2,0,1,1)"
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[3"1 _ ,[n-3,3] _ _1

x 6 o (a-1) (e, =5)~(a ~1)o 4+,

= (5:1,—1:1:-1:']-:0’_3,—1:2’0)

x[321] = X[n—s’z’ll = —%—— a1(d1 - 2)(01 - 4) - oy

= (1650’_230303091:0’O="220)

[16] A Fa o,
b 4 = (-l) = (1:‘1:1’1’-1"‘171”‘1’1719"1)- (e.4'°)

Now, we calculate the other characters in terms of

their conjugates:

a (] 2
L8171 _ 11 14,17

= (103—2’1’—23091:0:2:»0:1:"1)
3

[ 2

NCS It N
= (5,-1,-1,1,1,-1,0,3,-1,2,0) (5.41)
2.2 [
A2 1% [4,2]

n

(9”'370’191’05‘1:"331:0’0)
L2101 _ ,011%1 L 15,1]
= (5,-3,2,1,-1,0,0,1,-1,-1,1).

To find the class sizes, we use
h = n: (5.42)
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Then we get:
h, = (1,15,40,45,90,120,144,15,90,40,120). (5:43)

Hence we have already constructed the character table

for S6



5.5. The Character Table of S7
7 has 15 partitions, namely:
(1"),(1°2),(1*3),  (1’4),(1*2%), (1%23),(1%5), (16), (124),
(128),(25),(233),(34),(7)-
By using the class formula, we find the corresponding
class sizes 1,21,70,210,105,420,504,840,630,105,280,504,

210,420 and 720 respectively. We use

A7 2 fnl

L6-11 _ In-1,1]
L1521 _ ,[n-2,2]
LI5:11 _ ,[n-2,1,1]
L4381 _ ,In-3,3]
L14:2,11 _ ,In-3,2,1]

2 .
x[a ’l] = X[n—4,3’ 1]

to find these characters directly by using our set of

formulae and use the theorem on conjugate partitions to

calculate:
L3271 L1171 18,1
L321°1 _ 1171 [421)
L2111, 143]
L30T _ 1171 15,17
LAZ°1 1271 152
L2001 1171 1811



-49-

)
x[41 ] is

3
x[n—S,l i |

self conjugate and 1s of the type
. By using these relations we are ready to

construct the character table of S7 .



RESULTS AND CONCLUSION

In this thesis, some special .s—functions have been
used to construct the character tables of 86 and S7. The

use of s-functions leads +to some formulae which
evaluates the character in terms of the spesification of
any class of Sn that means the number of repetitions of
any number in the partition which characterizes the
cycle structure of that class.

From this point of view it is clear that s-functions
are very easy to use when the character tables are
needed and this method is self-contained in the sense
that the use of smaller order of symmetric groups is not
necessary, which is not the case for some other methods.

The other methods and different apprcaches can be

found in Refs. [3] and [4].
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