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EFFECT OF POROUS MEDIUM AND MAGNETIC FIELD ON ENTROPY 
GENERATION OF AN INCOMPRESSIBLE FLOW IN AN INCLINED 
CHANNEL 

SUMMARY 

In this thesis, entropy generation due to a gravity-driven, laminar, viscous 
incompressible fluid flow including viscous dissipation effects through an inclined 
channel in the presence of a uniform porous-medium and magnetic field is 
investigated. Fully developed flow field is solved analytically for a Newtonian fluid. 
Temperature field is numerically obtained by using Finite Difference Method (FDM) 
and the correctness of the method compared with other sources where applicable. 
The boundary conditions are considered at both walls to be both constant 
temperature and constant flux. For the solutions of governing equations certain 
values for some parameters such as Brinkman number ( Br ),  Darcy number ( Da ) 
and Hartmann number ( Ha ) are assigned and these equation’s behaviour under the 
change of the parameters is also investigated. Entropy generation number ( sN ) and 

Bejan Number ( Be ) are derived, and plotted using dimensionless velocity and 
temperature profiles and its change under of the Peclet number ( Pe ), Group 
parameter ( 1Br  ), Darcy number and Hartmann number is studied. The effect of 
heat generation caused by viscous dissipation on the temperature field as well as on 
the entropy generation is included in the analysis and the results are graphically 
presented with physical interpretations. In previous similar studies the entropy 
generation due to viscous dissipation is omitted in inclined channel filled porous 
medium, whereas this study, as the first time, extends the related literature by 
considering and interpreting this effect.   
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EĞİK KANALDA SIKIŞTIRILAMAZ AKIŞTA GÖZENEKLİ ORTAM VE 
MANYETİK ALAN ŞARTLARININ ENTROPİ ÜRETİMİNE ETKİSİ 

ÖZET 

Bu çalışmada kütleçekimi tarafından sürülen, laminer, viskoz, sıkıştırılamaz, viskoz 
yayılma etkileri de gözönüne alınarak tekdüze gözenekli eğimli bir kanalda manyetik 
etkilerin de varolduğu durumda entropi üretimi incelendi. Newtonien akışkan için 
tam gelişmiş akış kabulü altındaki bünye denklemleri analitik olarak çözüldü. 
Sıcaklık alanı Sonlu Farklar Metodu kullanılarak sayısal olarak elde edildi ve 
doğruluğu uygun yerlerde değişik numerik sonuçlar ile kıyaslandı. Sınır koşulları her 
durum için iki tane olmak üzere sabit sıcaklık ve sabit ısı akısı olarak alınarak 
çözüldü. Bünye denklemlerinin çözümü için çeşitli Brikman sayısı ( Br ), Darcy 
sayısı ( Da ), Hartmann sayısı ( Ha ) atandı ve denklemlerin bu parametrelerin 
değişimi sonucundaki davranışı da incelendi. Entropy üretimi sayısı ( sN ) ve Bejan 

sayısı ( Be ) türetildi ve boyutsuz hız ve sıcaklık profilleri kullanılarak Peclet sayısı 
( Pe ), Brinkman grup parametresi ( 1Br  ), Darcy sayısı ve Hartmann sayısı 
altındaki değişimleri incelendi. Viskoz yayılma etkisi hem sıcaklık alanı hem de 
entopi olşumu denklemlerinde hesaba katıldı ve sonuçlar grafikler ve fiziksel 
yorumlar ile birlikte sunuldu. Daha önceki benzer gözenekli ortamın mevcut olduğu 
eğik kanal çalışmalarında viskoz yayılmanın sıcaklık alanı üzerindeki etkisi ihmal 
edilmiştir; burada ise ilk kez mevzubahis etkiler göz önüne alınarak literatüre katkıda 
bulunulmuştur.  
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1.  INTRODUCTION 

Natural convection in porous media has a continuously expanding volume of study 

due to the day by day improvements of thermal engineering applications in industrial 

life. This breath taking industrialization brings shortages in energy sources and waste 

of energy. Therefore last three decades emerged on increased awareness that the 

world energy resources are limited which has caused the political environment 

almost in all countries to re-examine their energy policies. And the governments 

working on it have felt to take drastic measures in eliminating waste. It has also 

started interest in scientific community both to take a closer look at the energy 

conversion devices and to develop new techniques and analysis methods to better 

utilize the existing limited resources. Therefore all the energy producing, converting 

and consuming systems must be re-examined carefully and all possible available-

work destruction mechanisms removed. In the theoretical side this can only be done 

by utilizing Second Law of Thermodynamics, which is related to entropy generation. 

Efficiency calculation of heat transfer systems has been very much restricted to the 

First Law of Thermodynamics. However, calculations using the Second Law of 

Thermodynamics, which is related to entropy generation and efficiency calculation, 

are more reliable than first law-based calculations. As entropy generation takes place, 

the quality of energy decreases. In almost all thermal systems, second law-based 

efficiency can be defined in terms of the ratio of actual thermal efficiency to 

reversible thermal efficiency under same conditions. Therefore, the Second Law of 

Thermodynamics can be applied to investigate the irreversibility in terms of the 

entropy generation.  The determination of entropy generation is also important to 

enhance the system performance because the entropy generation is the measure of 

the destruction of the available work of the system [1]. The entropy generation 

method as a measure of system performance was first introduced by Bejan in 1980 

[2], since then many studies have been published on the Second Law of 

Thermodynamics, entropy generation and the irreversibility of basic arrangements. 

One of such essential basic arrangement is the channel type geometry flow. For 
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horizontal channel case, geometry related boundary and symmetry conditions result 

in having, in most cases, an exact analytical solution. And inclined channel type flow 

field equations also, though little more difficult than horizontal channel, has some 

exact solutions. These types of flow fields find wide application in engineering, 

particularly in heating and cooling areas. In regarding of irreversibility and entropy 

generation mechanisms, in the inclined type geometries the following studies can be 

found in open literature, as a short review, as follows; Saouli and Aiboud-Saouli [3] 

investigated heat transfer of a laminar falling liquid film along an inclined heated 

plate for a Newtonian fluid via Second Law analysis. They considered the upper 

surface of the liquid film free and the lower wall fixed with constant heat flux. In 

another study, Makinde et al. examined the application of Second Law of 

Thermodynamics to laminar flow of an incompressible viscous fluid through an 

inclined channel with isothermal walls [4]. In their study, based on some simplifying 

assumptions and using separation of variables, analytical solutions for the fluid 

velocity and temperature were constructed.  

Makinde investigated heat transfer irreversibility along an inclined plate that is 

subjected to a prescribed uniform wall temperature [1]. Havzalı et. al. are 

investigated entropy generation due to the gravity driven laminar viscous 

incompressible fluid through an inclined channel and  in their study,  detailed flow 

and thermal analysis of the entrance section are also outlined [5]. 

Flow through porous media takes places and the investigation of this phenomenon 

plays a significant role in various applications like, grain storage, drying process [6], 

oil recovery [7], heat exchangers and geothermal energy systems [8]. The recent 

studies in open literature indicate that many researchers and engineers have started 

working on convective flow and heat transfer in a fluid superposed porous medium 

with channel geometry. This type of physical system is encountered in many areas 

like geophysics and engineering applications. The developments in high speed 

technology forced the investigation of porous media for decreasing the temperatures 

of chip environment such as in cooling of electronic systems. Some of the problems 

occur in these applications involve continuous fluid zone and porous zone. In most of 

the investigations, the fluid used is Newtonian since this type of fluid is very 

common in nature and practical applications.  
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In the last two decades, numerous works have been carried out in order to investigate 

the effects of flow parameters on different geometries for natural convection in filled 

porous materials. The following studies are related to the filled porous material 

medium. Baytas [9] studied the natural convection in an inclined porous cavity. In 

this work the heat transfer is analyzed by solving the balance equations of mass 

numerically, momentum and energy by Darcy’s law and Boussinesq-incompressible 

approximation. Mahmud and Fraser presented a non-Darcy model for momentum 

and energy equations in order to calculate the forced convection in a channel filled 

with a fluid-saturated porous medium [10]. Makinde and Osalusi investigated the 

laminar flow through a channel filled with saturated porous media by using the 

Brinkman model. They obtained the velocity and temperature profiles for large 

Darcy numbers [11]. Alkam, Al-Nimr and Hamdan studied the forced convection 

flow inside a channel which has parallel plates and it is filled with two porous layers 

with the same thickness [12]. Nield and Bejan have performed an extensive work on 

convection in porous media [13]. Al-Nimr and Haddad have studied the convective 

flow and heat transfer in vertical channels [14]. Shokouhmand, Jam and  Salimpour 

investigated the effects of various parameters like porous medium thickness and 

Darcy number on the conduit thermal performance accordingly they found that all 

these parameters had significant influence on the thermal performance of the channel 

[15]. Paul and Singh used the Brinkman-extended Darcy model to represent 

momentum transfer in the porous region [16]. 

The natural convection in an inclined geometry filled with porous medium has been 

investigated by many other authors i.e., Vasseur et al. [17], Sen et al. [18], Aydin et 

al. [19].  

Meanwhile a great deal of information is available dealing with the generated 

entropy due to heat and fluid flow in a porous medium [20, 21, 22, 23, 24, 25]. 

Hooman  and Ejlali reported a numerical study by investigating both the First and the 

Second Law of Thermodynamics for thermally developing forced convection in a 

circular tube filled by a saturated porous medium including viscous dissipation 

effects [24]. The entropy generation in a laminar flow through a channel filled with 

saturated porous media is also investigated by Makinde and Osalusi [26]. Tasnim et 

al.  gave a detailed analysis of entropy generation and the source of irreversibility in 

a vertical, porous media with transverse hydromagnetic effect for a mixed convective 
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flow [27]. The problem of entropy generation in a fluid-saturated porous cavity for 

laminar magnetohydrodynamic natural convection heat transfer was analyzed by 

Mahmud and Fraser [28]. In a similar study, Mahmud and Fraser [29] analyzed first 

and second law aspects of fluid flow and heat transfer inside a vertical porous 

channel with a transverse magnetic field.  

1.1 Purpose Of The Thesis 

In the view of the preceding studies it can be easily notice that; the flow, 

temperature, and entropy generation fields in an inclined channel composed of 

porous materials subjected to natural convection with constant flux at the walls, 

additionally including viscous dissipation, have not been all studied in a single work 

yet.  In this study the flow field is modelled for a Newtonian fluid and applying the 

no slip condition at the walls. Then the governing equations of both flow and 

temperature field for a gravity-driven laminar viscous, incompressible fluid through 

an inclined channel are reduced to simple ordinary differential equations. While the 

flow equation is solved analytically, the temperature field equation is solved by the 

Finite Difference Method (FDM).  Despite of the many studies of flow and 

temperature fields for various types of inclined-channel problems, as referred before, 

none of them considered the inclined channel with porous medium and viscous 

dissipation effect interactions.  

Additionally, in this study the evaluation of entropy generation and its characteristics 

depending on the some flow parameters have been presented in great detail. These 

parameters are Darcy number ( Da ), Brinkman number ( Br ) and Peclet number 

( Pe ).  
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2.  THEORY 

2.1  Non-dimensionalizations and Dimensionless Parameters 

The non-dimensionlizations used in this work is given as follows: 

The non-dimensional axial distance: 

 

x
x

Pe h
  (2.1)

Where Pe  is Peclet number and it is detailed in section 2.1.1. 

The non-dimensional normal distance: 

y
y

h
  (2.2)

The non-dimensional velocity: 

max

u
u

u
  (2.3)

Where max @ 0yu u  for clear flow case (see section 2.3.1), or: 

av

u
u

u
  (2.4)

Where 

1
( ) 

( )

h

av

h

u u y dy
h h 


    (2.5)

 for the other cases. The non-dimensional temperature: 

0T T
T

T





 (2.6)
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 where 0T  is the reference temperature, moreover,   

0wT T T    (2.7) 

for Dirichlet boundary conditions and  

qh
T

k
   (2.8) 

for Neumann boundary conditions. Also a dimensionless temperature difference is 

defined as follows: 

0

T

T


   (2.9) 

2.1.1 Peclet Number 

Peclet number is a dimensionless number and is defined as the ratio of advection of 

heat and conduction of heat[30], namely [1]:  

 av pu c h
Pe

k


  or max pu c h

k


  (2.10) 

2.1.2 Brinkman Number 

Brinkman number is a dimensionless group parameter and is defined as the heat 

conduction from a wall to a flowing viscous fluid [31] and it is given as follows [1]: 

 
2

avu
Br

k T





 or 

2
maxu

k T





 (2.11) 

2.1.3 Darcy Number 

Darcy number is a dimensionless parameter used in flows in porous media. It is the 

ratio of permeability of the porous medium and area in which the flow occurs and it 

is defined as follows [10]: 

2

K
Da

h
  (2.12) 
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2.1.4 Hartmann Number 

Hartmann number is related to the ratio of drag forces caused by the magnetic 

induction of the fluid to the viscous forces of the fluid [32] and it is defined as 

follows [33]: 

Ha Bh



  (2.13)

2.2 Continuity Equation 

dz

dx

dy

x

y

z

 u dydz  u u dx dydz
t

    

 

Figure 2.1 : Differential control volume and mass inlet-outlet in x direction 

 

Mass equivalance depending the x ,y and z direciton is tabulated in Table 2.1 below: 

Table 2.1: Inlet and outlet of a differential control volume 

             Inlet                    Outlet 

x-direction:  u dydz   u u dx dydz
x

    
 

y- direction:  v dxdz   v u dy dxdz
y

 
 

  
 

z- direction:  w dxdy    w u dz dxdy
t
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Using the table we can derive the continuity equation for a differential control 

volume as follows [34]: 

      ˆˆ ˆ0 and u v w i j k
t x y z x y z

         
       

      


 (2.14) 

      ( )u v w V
t x y z

       
     

   

 
 (2.15) 

Then the equation of continuity becomes as follows: 

( ) 0V
t

 
 



 
 (2.16) 

In steady state the equation becomes:  

(.)
0 0

t t

 
  

 
 (2.17) 

Under incomressible assumption the equation is as follows: 

0 0
u v w

V
x y z

  
      

  

 
 (2.18) 

Due to the assumptions of the channel being sufficiently deep in z direction and that 

there is no transfer between layers, which can be written as: 

0v w   (2.19) 

 Then the equation of continuity becomes as follows: 

0
u

x





 (2.20) 

2.3 Momentum Equation 

A general form of the momentum equation is as follows [35]: 

ij

dV
g p

dt
    

  
 (2.21) 
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In other words: 

 
gravitation pressure force viscous forces

acting on acting on acing on density  acceleration

unit volume unit volume unit volume

     
             
     
     

 

This vectorel equation can be written in a more open form as follows: 

x-component 

yxxx zx
x

p u u u u
g u v w

x x y z t x y z

  
       

                
 (2.22)

y-component: 

xy yy zy
y

p v v v v
g u v w

y x y z t x y z

  
 

        
                

 (2.23)

z-component: 

yzxz zz
z

p w w w w
g u v w

z x y z t x y z

  
       

                
 (2.24)

Due to the fact that we are concerning about Newtonain fluids the following terms 

will be used for cartesian coordinate system: 

2xx

u

x
  




 (2.25)

2yy

v

y
  




 (2.26)

2zz

w

z
  




 (2.27)

xy yx

u v

y x
  

  
     

 (2.28)

xz zx

u w

z x
          

 (2.29)

yz zy

v w

z y
  

  
     

 (2.30)
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In this case conservation of momentum equation for Newtonian fluids is obtianed as 

follows: 

x-component: 

2 2 2

2 2 2x

p u u u du
g

x x y z dt
 

    
         

 (2.31) 

y-component: 

2 2 2

2 2 2y

p v v v dv
g

y x y z dt
 

    
         

 (2.32) 

z-component: 

2 2 2

2 2 2z

p w w w dw
g

z x y z dt
 

    
         

 (2.33) 

If we assume the channel sufficiently long, then we can ignore entrance end exit 

conditions. With the use of the continuity equation (2.20) the x-component of 

momentum equation, which is 

2 2 2

2 2 2x

p u u u u u u u
g u v w

x x y z t x y z
  

          
                   

 (2.34) 

It can be reduced to: 

2 2

2 2x

p u u u
g

x y z t
  

                
 (2.35) 

Due to steady state assumption the time derivative vanishes. In this case we get the 

following: 

2 2

2 2
0x

p u u
g

x y z
 
   

        
 (2.36) 

With the assumption of one dimensional, fully developed flow, we assume: 

2 2

2 2

u u

y z

 


 
 (2.37) 

Which means ( )u u y . Therefore we obtain the following: 
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2

2
0x

p u
g

x y
 
  

      
 (2.38)

In this work, the flow is created by gravitation and there is no pressure gradient 

otherwise. Then the final form of momentum equation becomes as follows: 

2

2
sin 0

u
g

y
  
 

   
 (2.39)

This is the form of momentum equation for fully-developed, one dimensional, 

incompressible, viscous, laminar flow for a Newtonian fluid inside an inclined 

channel [1]. 

2.3.1 Clear channel 

This is the elementary case of this work. There is netiher a porous medium inside the 

channel nor is there a magnetic field acting on the fluid inside the channel. Again the 

flow is fully developed and therefore one dimensional. The geometry of this case is 

given in Fig. 2.2: 

 

Figure 2.2 : Geomerty of clear channel case 

The walls are at constant unfirom tempeature for the Dirichlet problem and there is a 

unform constant heat flux at the walls for the Neumann problem. 

The boundary conditions for the flow field is given below: 
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  0u h   (2.40) 

Which is no slip condition at the walls and 

0

0
y

du

dy 

  (2.41) 

Which is symmetry condition at the centre of the channel. Any two of these 

conditions is necessary and sufficient to solve the differential equation and the 

solution of  (2.39) is obtained as follows: 

    sin

2
u y h y h y

 


    (2.42) 

To obtain a dimensionless for of the equation the non-dimensionalizations given as 

(2.2) and (2.3) are used together so as to get the dimensionless form of (2.42) as 

follows: 

2( ) 1u y y   (2.43) 

2.3.2 Presence of porous medium 

In this case there is an uniform porous medium inside the channel as seen on Fig. 2.3. 

The third term of the right hand side of (2.44) is related to this phenomenon [26]. 

 

Figure 2.3 : Geometry of the porous case 



 
13

2

2
sin 0

d u
g u

dy K

      (2.44)

When equation (2.44) is solved by the boundary conditions given as (2.40) and 

(2.41) the result is obtained as follows: 

  sin
1 cosh sech

K y h
u y

K K

 


         
    

 (2.45)

Which is non-dimensionalized using (2.2), (2.4), (2.5) and (2.12) to result as follows: 

 
1

cosh cosh

( )
1 1

cosh sinhav

y
u y Da Dau y
u

Da
Da Da

      
    

      
   

 (2.46)

2.3.3 Presence of magnetic field 

In this case there is an uniform magnetic field acting on the fluid inside the channel 

perpendicular to the channel as seen on Fig. 2.4. The third term of the right hand side 

of (2.47) is related to this phenomenon [33]. 

 

Figure 2.4 : Geometry of the magnetic field case 
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2
2

2
sin 0

d u
g B u

dy
       (2.47) 

When equation (2.47) is solved by the boundary conditions given as (2.40) and 

(2.41) the result is obtained as follows: 

  2

sin
1 cosh sechu y B y Bh

B

   
  

    
             

 (2.48) 

Which is non-dimensionalized using,  (2.4), (2.5) and (2.13) to result as follows: 

     
 

1 cosh   sech
( )

tanav

Ha Ha y Hau y
u y

u Ha Ha

    
 

 (2.49) 

2.3.4 Presence of both porous medium and magnetic field 

In this case there is both uniform porous medium inside the channel and a unfirom 

magnetic field perpendicular to the channel as seen on Fig 2.5. 

 

Figure 2.5 : Geometry for both porous and magnetic case 

2
2

2
sin 0

d u
g B u u

dy K

        (2.50) 

 When equation (2.50) is solved by the boundary conditions given as (2.40) and 

(2.41) the result is obtained as follows: 
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2 2

2

sin 1 1
1 cosh sech

g B B
u y y h

K KB
K

   
  

    
                

 
(2.51)

Which is non-dimensionalized using,  (2.4), (2.5), (2.12) and (2.13) and to result as 

follows: 

  2 2 2

2 2

1 1 1
1 cosh sech

( )
1 1

tanhav

y
Da Ha Da Ha Da Hau y

u y
u

Da Ha Da Ha

    
            

 
    

 (2.52)

2.4 Energy Equation 

A general form of energy equation is given in [37] as follows: 

2
p

T
c V T k T q

t
        


  (2.53)

Where the first term in brackets is called energy storage, the second term in brackets 

is called enthalpy convection; the first term on the right hand side of the equation is 

called heat conduction and the second term on the right hand side of the eqaution is 

called heat generation. Here, the term in paranthesis can also be written as follows: 

DT T T T T T
V T u v w

Dt t t x y z

    
      
    


 (2.54)

Which is the material derivative. For a steady state, two dimensional flow with no 

heat generation inside the fluid along with the condition in (2.19) this equation 

reduces to the following: 

2

2

T T
u

x y
 


 

 (2.55)

Which can be non-dimensionalized by (2.1), (2.2), (2.3), (2.6), (2.7) and (2.10) as 

follows: 
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2

2

T T
u

x y

 


 
 (2.56) 

The boundary conditions of the energy equation is given in (2.55) are as seen on 

(2.57) and (2.58). 

For the dirichlet cases, entrance condition: 

(0, ) 0T y   (2.57) 

Unifomly distributed temperature on the wall of the inclined channel is as follows: 

( , ) ( , ) wT x h T x h T    (2.58) 

which are non-dimensionalized with (2.1), (2.2), (2.10) (2.6) and (2.7) as (2.59) and 

(2.60). 

Entrance condition: 

(0, ) 0T y   (2.59) 

Unifomly distributed temperature on the wall of the inclined channel is as follows:  

( ,1) ( , 1) 1T x T x    (2.60) 

As for the Neumann cases, entrance condition: 

(0, ) 0T y   (2.61) 

Unifomly distributed flux on the wall to the inclined channel is as follows:  

( , ) ( , )T x h T x h
k k q

y y

  
   

 
 (2.62) 

which are non-dimensionalized with (2.1), (2.2), (2.10) (2.6) and (2.8) as .(2.63) and 

(2.64) below. 

Entrance condition: 

(0, ) 0T y   (2.63) 

Unifomly distributed flux on the wall to the inclined channel is as follows:  

( , 1) ( ,1) 1T x T x
y y

 
   

 
 (2.64) 
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2.4.1 Clear channel 

For a steady state, two dimensional flow with no heat generation inside the fluid for 

an one dimensional, viscous, incopressible flow with viscous dissipation is given as 

follows: 

22

2
p p

T k T du
u

x c y c dy


 

  
      

 (2.65)

Here the second term of the right hand side of the equation is called the viscous 

dissipation term [33]. Equation (2.65) can be non-dimensionalized with  (2.1), (2.2), 

(2.3), (2.6), and (2.11) along with (2.7) and (2.8) for Dirichlet and for Neumann case 

respectively, as follows: 

22

2

T T u
u Br

x y y

   
      

 (2.66)

2.4.2 Presence of porous medium 

In this case there is a porous medium inside the channel and the last term of the right 

hand side of the following equation is related to porousity inside the channel [25]. 

22
2

2
p p p

T k T du
u u

x c y c dy c K

 
  

  
      

 (2.67)

Equation (2.67) can be non-dimensionalzed with (2.1), (2.2), (2.3), (2.6), (2.11) and 

(2.12) along with (2.7) and (2.8) for Dirichlet and for Neumann case respectively, as 

follows: 

22
2

2

T T u Br
u Br u

x y y Da

   
      

 (2.68)

2.4.3 Presence of magnetic field 

In this case there is a magnetic field perpendicular to the channel and the last term of 

the right hand side of the following equation is related to porousity inside the channel 

[33]. 
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22 2
2

2
p p p

T k T du B
u u

x c y c dy c

 
  

  
      

 (2.69) 

Equation (2.69) can be non-dimensionalzed with (2.1), (2.2), (2.3), (2.6), (2.11) and 

(2.13) along with (2.7) and (2.8) for Dirichlet and for Neumann case respectively, as 

follows: 

22
2 2

2
 

T T u
u Br Ha Br u

x y y

   
      

 (2.70) 

2.4.4 Presence of both porous medium and magnetic field 

In this case there is both a uniform porous medium and a magnetic field 

perpendicular to the channel and the last term of the right hand side of the following 

equation is related to porousity inside the channel. 

22 2
2 2

2
p p p p

T k T du B
u u u

x c y c dy c K c

  
   

  
       

 (2.71) 

Equation (2.67) can be non-dimensionalzed with (2.1), (2.2), (2.3), (2.6), (2.11), 

(2.12) and (2.13) along with (2.7) and (2.8) for Dirichlet and for Neumann case 

respectively, as follows: 

22
2 2 2

2

T T u Br
u Br u Ha Br u

x y y Da

   
       

 (2.72) 

2.5 Entropy Generation 

In Fig. 2.6 there is an open thermodynamic system which is not closed to the effects 

of mass flux, energy transfer and entropy transfer with an area of dx dy . 
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u

v
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x
x

q
q dx

x





y
y

q
q dy

y





u
u dx

x





v
v dy

y





y

y dy

y

xdx  

Figure 2.6 : Local entropy generation by convection heat transfer 

Since the area is small the mass distribution inside it can be assumed uniform, 

therefore unit entropy generation for unit volume is as follows: 

               

            

yx
yx

yx
G

qq q dyq dx qqyxS dxdy dy dx
T T T TT dx T dy
x y

s u r
s dx u dx dx dy

x x x

s v r
s dy u dy dy dx su dy sv dx

y y y



  

       
      

                  
     

               

 
            

s
dxdy

t

 
   

 (2.73)

Here the first four terms in the brackets are entropy transfer related to heat transfer, 

second four terms in the second bracket are related to the entropy transferred inside 

and outside of the system and the last term is the time dependent entropy generation 

inside the control volume. If the relation is divided by dx dy  we get the following 

relation [38]: 
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2

1 1

         

yx
G x y

qq T T s s s
S q q u v

T x y T x y t x y

u v
s u v

t x y x y



   

          
                     

      
            

 (2.74) 

Here the fourth term on the right hand side of the equation is the open form of  

0
D

V
Dt

   


 (2.75) 

and it is equal to zero.Volumetric entropy generation can be written in vectorel form 

as follows:   

2

1 1
G

Ds
S q q T

T T Dt
    

 
 (2.76) 

Using the first law of thermodynamics for any point in an convective medium the 

following can be written: 

  vis

De
q P V

Dt
      


 (2.77) 

Here the internal energy for unit volume is equal to the sum of heat transfer due to 

conduction, work transfer due to compression and work transfer due to viscous 

dissipation for unit volume. Using the following relation: 

 (1/ )de Tds Pd    (2.78) 

we can write the following relation: 

Ds De P D

Dt T Dt T Dt

 


   (2.79) 

Using (2.79) along with (2.74) we can write the following: 

2

1
G visS q T

T T


    


 (2.80) 

If Fourier’s law of heat conduction ( q k T  


) is used for an isotropic medium the 

volumetric entropy generation becomes as follows: 

 2

2G vis

k
S T

T T


     (2.81) 
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Here vis  is as follows [39]: 

2 2 22 2

22

2

2
       

3

vis

u v w u v u w

x y z y x z y

w u u v w

x z x y z

                                                   
                     

 (2.82)

In this case (2.81) for a two dimensional cartesian coordinate becomes as follows: 

2 2 22 2

2
2G

k T T u v u v
S

T x y T x y x y

                                                         
 (2.83)

For our one dimensional problem, (2.83) reduces to the following relation [41]: 

2 22

2
0 0

G

k T T u
S

T x y T y

                      
 (2.84)

2.5.1 Entropy generation number 

Dimensionless entropy generation number is defined as follows [1]: 

2 2
0

2
G

s

h T S
N

k T



 (2.85)

2.5.2 Bejan number 

Bejan number is defined as follows [40]: 

   
x y h

f p m f p m

N N N
Be

N N N N N N


 

   
 (2.86)

Bejan number is the ratio between heat transfer irreversibility to the total 

irreversibility occured within the system. While 1Be   the heat transfer 

irreversibility is dominant. On the other hand if 0Be   irreversibility due to fluid 

friction dominates. If 1/ 2Be   the heat transfer irreversibility and fluid friction 

irreversibility contributes to the system equally. The terms in the paranthesis is 

applied where relevant i.e. there is a porous medium and/or magnetic field. 
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2.5.3 Clear channel 

Entropy generation number for clear channel is given as follows [1]: 

2 22

2
0 0

G

k T T u
S

T x y T y

                      
 (2.87) 

Equation (2.87) can be non-dimensionalized with (2.85) as follows: 

2 22

2

1
s h f

T T Br u
N N N

Pe x y y

      
                

 (2.88) 

Here the third term of the right hand side of the equation comes from viscous 

dissipation term denoted in (2.82) and simplified in (2.84). The Bejan number for 

this case is as follows: 

h

f

N
Be

N
  (2.89) 

2.5.4 Presence of porous medium 

The entropy generation of the porous case is given as follows [27]: 

2 22
2

2
0 0 0

G

k T T u
S u

T x y T y T K

                        
 (2.90) 

Equation (2.90) can be non-dimensionalized with (2.85) as follows: 

2 22

2
2

1 1
s h f p

T T Br u Br
N u N N N

Pe x y y Da

      
                   

 (2.91) 

Here the fourth term of the right hand side of the equation is entropy generation due 

to porousity and will be denoted as PN . The Bejan number for this case is as 

follows: 

h

f p

N
Be

N N



 (2.92) 
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2.5.5 Presence of magnetic field 

The entropy generation of the porous case is given as follows [27]: 

2 22 2
2

2
0 0 0

G

k T T u B
S u

T x y T y T

                        
 (2.93)

Equation (2.93) can be non-dimensionalized with (2.85) as follows: 

2 22

2 2
2

1
s h f m

T T Br u Br
N Ha u N N N

Pe x y y

      
                   

 (2.94)

Here the fourth term of the right hand side of the equation is entropy generation due 

to magnetic field and will be denoted as MN . The Bejan number for this case is as 

follows: 

h

f m

N
Be

N N



 (2.95)

2.5.6 Presence of both porous medium and magnetic field 

The entropy generation of both porous and magnetic field case is given as follows: 

2 22 2
2 2

2
0 0 0 0

G

k T T u B
S u u

T x y T y T K T

                          
 (2.96)

Equation (2.96) can be non-dimensionalized with (2.85) as follows: 

2 22

2 2 2
2

1 1

     

s

h f p m

T T Br u Br Br
N u Ha u

Pe x y y Da

N N N N

      
                  
   

 (2.97)

The Bejan number for this case is as follows: 

 
h

f p m

N
Be

N N N


 
 

(2.98)
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2.6 Solution Methods 

2.6.1 Some analytic solutions 

The solution to (2.55) which is when considered with velocity profile of the clear 

case, (2.43) is same type equation as follows [42]: 

 
2

2
2

1 y a
x y

  
 

 
 (2.99) 

And solution of this equation for the boundary conditions given in (2.59) and (2.60) 

is  given to (2.99) as follows: 

     2

0

, 1 expm m m
m

x y A a x G y 




    (2.100) 

Where: 

  2 21 1 1 1
exp , ;

2 4 4 2m m m mG y y y           
   

;

     
   1

1 ... 1
, ; 1

1 ... 1 !

m

m

m z
z

m m

  
  

  





  
 

   ; 

 4 1.68  0,  1,  2,  ...m m m    ; 

   7 / 6
0 1.2,  1 2.27   m=1, 2, 3, ...

m

m mA A      

Here ,error 0.2%m   and ,error 0.1%mA   has the respective percentage errors. 

Another comparison chance rises for magnetic Neumann case. A similar problem 

analytically solved by Aiboud-Saouli et. al. [43]. The solution for (2.70) is given as 

follows: 

         

  
   

     

2

2

2 2
2

2 2

12

cosh 1
, cosh

2cosh 1

2
              cosh cosh

2cosh 1

1
              cosh 1 cosh 2 1

4

Ha YY
X Y X Ha

HaHa

BrHa Y
Ha Ha

HaHa

Ha Y Ha Y C Y C
Ha


 

    
   


 
 

     

 (2.101) 
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where  , 1C  and C  are constants of integration and are given as follows: 

 
  

 
 

  
     

 
  

  
 

  
 

3 4 1 4 2 3
1

1 2 1 2

1 2

2

3 2

2 2

4 2

2

23 3

, ,

sinh cosh
,

cosh 1cosh 1

2 1
cosh sinh sinh 2 1

2cosh 1

cosh
,

cosh 1

sinh 2
cosh sinh

cosh 1 cosh 1

A A A A A A
C

A A A A

Ha Ha
A A

HaHa Ha

BrHa
A Ha Ha Ha

Ha HaHa

BrHa Ha
A

Ha

Ha BrHa
C Ha

Ha HaHa Ha





 
 

 

 


    
 




 
    

 

    
 

  
2 2

1
23

cosh2
   sinh 2

16 26 cosh 1 6 cosh 1

Ha

BrHa Ha C
Ha

Ha Ha Ha






     

 

2.6.2 The core numerical scheme 

The core implicit method used in this work is presented as follows: 

   , 1, , 1 , , 1 2
2

2i j i j i j i j i j
i

T T T T T
u O x O y

x y
    

    
 

 (2.102)

As it can be seen it is backward in x  direction and central in y  direction. It has a 

first order truncation error in x  direction and second order in y  direction. LU 

decomposition is used for the solution of the set of the equations we obtained using 

this method. This is the energy equation for clear flow case without viscous 

dissipation, namely (2.55).  

This scheme, the core scheme as it is called in this work, is used for comparative 

purposes in terms of approximate error for the cases studied. It is compared both with 

analytical solution given in (2.100) and numerical differential equation solver 

NDSolve integrated within Wolfram Mathematica due to the fact that most of the 

work here is new and there is nothing to compare with in terms of percentage error. 

The schemes used in the calculation of the cases is given below. 

Scheme for the clear case is as follows: 
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2

, 1, , 1 , , 1 2
2

2i j i j i j i j i j
i

i

T T T T T u
u Br O x O y

x y y
      

         
 (2.103) 

Scheme for the porous case is as follows: 

   

, 1, , 1 , , 1

2

2

2 2

2

                    

i j i j i j i j i j
i

i

i

T T T T T
u

x y

u Br
Br u O x O y

y Da

    


 

 
       

 (2.104) 

Scheme for the magnetic case is as follows: 

   

, 1, , 1 , , 1

2

2

2 2 2

2
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Scheme for the both porous and magnetic case is as follows: 
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2.6.2.1 Stability of the core scheme 

Let us apply the Von Neumann stability analysis to the core scheme. If we rearrange 

the FDE we get the following: 

 1, , , 1 , , 12i j i j i j i j i jT T T T T       (2.107) 

Where: 
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x

u y
 



 (2.108) 

Let us take the Fourier transform of the FDE: 
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Where G  is the amplification factor. The stability condition is as follows: 

1G   (2.110)

Therefore the scheme is unconditionally stable for G  will always be smaller than 1. 

2.6.2.2 Consistency of the core scheme 

For the consistency analysis let us expand each term to Taylor series in our FDE: 
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Then the FDE becomes: 
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Let us simplify and replace   to this expression: 
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Here as , 0x y    we get: 

2

2

1

 
j j

i i

T T

x u y

   
          

 (2.111) 

which is our original PDE, therefore we can conclude that our scheme is consistent. 

As being stable and consistent, our scheme is convergent [43]. 
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3.  RESULTS AND DISCUSSION 

There are a total of eight cases to be studied in this section. These are clear channel, 

presence of a porous medium, presence of a magnetic field and presence of both 

porous medium and magnetic field. Each case is studied for Dirichlet and Neumann 

boundary conditions. The last two cases, which are Dirichlet and Neumann problems 

of the case with porous medium and magnetic field, are investigated deeper than the 

others since they are the ultimate goal of the investigation. 

Another point here is, of course, the problem of accuracy. As it is stated before there 

is an analytic solution to (2.56) given as (2.100) which has no viscous dissipation 

term. When the core error of the core code compared to this analytical solution and 

Mathematica’s integrated numerical differential equation solver [NDSolve] the 

following results are obtained: 

 

 

 

 

Figure 3.1 : The error dependance on grid number
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Mean error between NDSolve and core code is  2.56726×10-3 %. 

Mean error between Analytic solution and NDSolve is 4.88676×10-5 %. 

Mean error between Analytic solution and core code is  3.21078×10-3 %. 

 

The error dependance on the grid size of the numerical scheme is plotted on Fig. 3.1 

above. Due to hardware restrictions the grid no further refined. 

As it can be seen here NDSolve gives trustable results and although the errors are 

very small, NDSolve has a smaller error compared to the core code, which in fact can 

be refined by increasing the mesh but would require more computing time. Therefore 

the Dirichlet cases are compared to NDSolve due to the fact that there is no 

analytical solutions for exaclty the same cases as studied here and results are 

tabulated in Table 3.1: 

Clear channel Porous case Magnetic case 
Both porous and 

magnetic case 

2.45745×10-3 % 4.3816×10-3% 4.11922×10-3% 7.25821×10-3% 

 

3.1 Clear Channel 

In this case there is a viscous, laminar and incompressible flow in a clear channel 

with viscous dissipation effects included both energy equation and entropy 

generation equation. The problem geometry is given in Fig. 2.2. 

3.1.1 Dirichlet problem 

The equation (2.43) is plottted in Fig 3.2 below subjected to the boundary conditions 

in (2.40). As it can be seen in the figure the maximum velocity occurs in the centre of 

the channel, whilst it slows down towards to the walls of the channel. 

For the Dirichlet problem the equation (2.66) is plotted in Fig. 3.3 subjected to the 

boundary conditions given as (2.59) and (2.60).  

Table 3.1: Error comparison between NDSolve and the core code for Dirichlet 
problems 



 
31

 

 

As the fluid advances into the channel its temperature rises until there is no 

difference between the walls and the fluid due to the fact that the walls are at 

constant dimensionless temperature and there is no heat generation nor is there 

another phenomenon the cause heat generation inside the fluid. 

 

Entropy generation is acquired from the solution of (2.88). The Fig. 3.4 shows that 

entropy generation decreases sharply towards 0y   since both thermal and velocity 

gradients are zero at this point due to the symmetry of the problem.  

Figure 3.2 : Velocity profile of clear channel

Figure 3.3 : Temperature profile of clear channel for different x  stations at 0.1Br 
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Entropy generation becomes significant in the region close to 1y    since the wall 

has a strong effect on entropy generation because of the sudden change of 

temperature. Notice that entropy generation is dominant near the entrance and 

decreses towards the further regions of x . 

Bejan number is obtained from (2.86) and plotted in Fig. 3.5. Figure shows that the 

irreversibility caused by viscous friction between the walls and the fluid dominates at 

the walls, especially for high values of dimensionless axial distance; on the other 

hand, the heat transfer irreversibility dominates towards the centre of the channel.  

 

Figure 3.4 : Entropy generation at different x  stations at 0.2x  , 100Pe  , 
1 0.1Br           

Figure 3.5 : Bejan number at different x  station at 100Pe  , 1 0.1Br  



 
33

In the vicinity of the centreline of the channel, namely 0y  , Bejan number is equal 

to 1, since the only  contribution at this point comes from the gradient of temperature 

in the x  direction. The gradients of temperature and velocity in the y  direction are 

zero at this point due to the symmetry. Bejan number increases with decreasing x , 

which shows that heat transfer irreversibility is dominant in the entrance region. 

3.1.2 Neumann problem 

Since the fully developed flow is used for the velocity distribuiton the profile given 

in Fig. 3.2 is also valid for this case. 

Again the equation (2.65) is plotted in Fig. 3.6. However, due to the fact that there is 

uniform heat flux conditions, which is given as (2.64) at both of the walls, the 

temperature of the fluid continues to increase with the increasing x . 

 

The entropy generation in this case occurs very rapidly in the entrance and does not 

increase very much with the increasing x . Again the entropy generation in the 

vicinity and towards to 1y    increases for there is both viscous friction between 

the wall and the fluid here as well as heat transfer from the wall as seen on Fig. 3.7 

Figure 3.6 : Temperature profile of clear channel for different x  stations at 0.1Br 
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As it can be seen on Fig. 3.8, despite the fact that entropy generation due to fluid 

friction gains importance towards 1y   , the heat transfer irreversibility dominates.  

 

The smallest Be  is around 0.65 which denotes that the irreversibility favors heat 

generation. 

3.2 Presence of Porous Medium 

In this case there is a viscous, laminar and incompressible flow in a channel with a 

uniform porous medium inside it. The problem geometry is given in Fig. 2.3. 

Viscous dissipation effects included both energy equation and entropy generation 

equation. 

Figure 3.7 : Entopy generation for different x  profiles at 100Pe  , 1 0.1 Br  

Figure 3.8 : Bejan number for different x  stations at 100Pe  , 1 0.1Br    
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3.2.1 Dirichlet problem 

The equation (2.46) is plotted for different Da  numbers in Fig. 3.9. As it can be seen 

with the decreasing Da  numbers, which mean decreasing permeability of the porous 

medium, the velocities in the channel tends to be decreasing reaching 0 due to the 

boundary conditions given as (2.40). 

 

The equation (2.68) is plotted in Fig. 3.10. Unlike the temperature distribution of the 

clear case discussed above as the increasing x , the temperatures exceeds that of the 

walls temperature due to the heat generation caused by viscous effects because of the 

porous medium. 

 

Figure 3.9 : Velocity profiles of the porous case for different Da  

Figure 3.10 : Temperature profiles for different x  stations at 0.1Br  , 0.1Da 
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The equation (2.91) is plotted in Fig. 3.11. Again the entropy generation is larger at 

the entrance region of the channel as seen on Fig. 3.11. However, Fig. 3.12 denotes 

that in this case the fluid friction is the dominant cause of entropy generation because 

of the porous medium. 

 

 

With the increasing x  the importance of the irreversbility caused by heat transfer 

decreases. 

3.2.2 Neumann problem 

Temperature profiles are obtained by solving (2.68) and these distributions are 

plotted in Fig. 3.13 at different stations of x  for 100,Pe  0.1,Br  0.1Da  .  

Figure 3.11 : Entropy generation for different x  stations at 100Pe  , 1 0.1Br   , 
    0.1Da            

Figure 3.12 : Bejan number for different x  stations at 100Pe  , 1 0.1Br   , 
  0.1Da           
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It can be seen from the figure, temperature profiles are symmetrical along the 0y   

axis and the magnitude of temperature increases with increasing x as expected.  

Entropy generation of this case is obtained from (2.91). Fig 3.14 shows that, far from 

the entrance section, entropy generation decreases sharply towards 0y   line since 

both thermal and velocity gradients are zero at this point due to the symmetry of the 

problem. Entropy generation becomes significant in the region close to 1y    since 

the walls have a strong effect on entropy generation because of the sudden change in 

temperature as well as the flow velocity. 

 

Figure 3.13 : Temperature profiles for different x  stations at 0.1Br  , 0.1Da 

Figure 3.14 : Entropy generation for different x  stations at 100Pe  , 1 0.1Br   ,
    0.1Da            
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In this case, again the entropy generation due to fluid friction plays the dominant role 

as seen on Fig. 3.15, especially towards 0y   and relatively in the near regions of 

the walls or in other words 1y   . 

 

3.3 Presence of Magnetic Field 

In this case there is a viscous, laminar and incompressible flow in a channel with a 

magnetic field acting on it. The problem geometry is given in Fig. 2.4. Viscous 

dissipation effects included both energy equation and entropy generation equation. 

3.3.1 Dirichlet problem 

The equation (2.49) is plotted for different Ha  numbers in Fig. 3.16. As it can be 

seen with the decreasing Ha  numbers, which mean decreasing permeability of the 

porous medium, the velocities in the channel tends to be decreasing reaching 0 due to 

the boundary conditions given as (2.40). 

The equation (2.70) is plotted in Fig. 3.17. Unlike the temperature distribution of the 

clear case discussed above as the increasing x , the temperatures exceeds that of the 

walls temperature due to the heat generation caused by viscous effects because of the 

magnetic field acting on the fluid very much like as it is in the porous case. 

 

Figure 3.15 : Bejan number for different x  stations at 100Pe  , 1 0.1Br   , 
  0.1Da           
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The magnetic field acting on the fluid behaves very much like the porous medium in 

terms of entropy generation and the dominant causes of it as it seen on Figs. 3.17 and 

3.18. The entropy generation tends to increase towards to 1y    and decrease with 

increasing x . However, unlike the clear case discussed above the entropy generation 

in the centre of the channel is greater due to the magnetic field. 

Figure 3.16 : Velocity profiles of the magnetic case at different Ha

Figure 3.17 : Temperature profiles for different x  stations at 0.1Br  , 3Ha 



 
40

 

In Fig. 3.19 the Bejan number is plotted at different stations of x . As the fluid travels 

through the channel the irreversbility casued by heat transfer increases, whereas the 

entropy generation due to fluid friction is dominant near the entrance region. 

 

3.3.2 Neumann problem 

Temperature profiles are obtained by solving (2.70) and these distributions are 

plotted in Fig. 3.20 at different stations of x  for 100,Pe  0.1,Br  3Ha  .  

Figure 3.18 : Entropy generation for different x  stations at 100Pe  , 1 0.1Br   , 
    3Ha            

Figure 3.19 : Bejan number for different x  stations at 100Pe  , 1 0.1Br   , 
  3Ha           
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The equation (2.94) is plotted on Fig. 3.21. As seen on the figure entropy generation 

tends to increase with increasing x . At a given x , entropy generation is higher near 

the walls and quickly decreases towards the centre of the channel, where the 

irreversibility occurs mostly because of the viscous friction as Fig. 3.22 denotes. 

 

There is a comparison chance of this case with [33], mentioned before,given in 

(2.101), after a few adjustments to the code. The mean error between the analytical 

solution here and the code is as low as 1.19332×10-15% and it is presented on Fig. 

3.23 below. 

Figure 3.20 : Temperature profiles for different x  stations at 100Pe  , 0.1Br  , 
3Ha           

Figure 3.21 : Entropy generation for different x  stations at 100Pe  , 1 0.1Br   , 
    3Ha            
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3.4 Presence of both Porous Medium and Magnetic Field 

3.4.1 Dirichlet problem 

The velocity profiles ( )u y  are presented in Fig. 3.24 for various values of Da . As 

stated before, an increase in Darcy Number increases the permeability inside the 

channel, this leads to a non-linear distribution of velocity. Decreasing of the Darcy 

Figure 3.22 : Bejan number for different x  stations at 100Pe  , 1 0.1Br   , 
  3Ha             

Figure 3.23 : Comparison of anayltical and numerical results of magnetic neumann 
case          
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number causes to flatten the velocity profile near the centerline region of the channel 

and slows down the movement of the fluid in the channel. 

 

The velocity profiles  u y  are plotted in Fig. 3.25 for various values of the Darcy 

number ( Ha ). The increasing Ha  causes a decrement in velocity especially in the 

vicinity of the centreline. 

 

The temperature profiles for different x  stations is seen on Fig. 3.26. With the 

increasing axial distance the temperature of the fluid exceeds the temperature of the 

wall due to porous and magnetic effects. 

Figure 3.24 : Velocity profile both porous and magnetic case for different Da  at 
  3Ha           

Figure 3.25 : Velocity profile both porous and magnetic case for different Ha  at 
 0.1Da           
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Temperature profiles for different Br  at 0.2x  , 100Pe  , 0.1Da  , 3Ha   is 

plotted in Fig. 3.27. The increment in the Br  causes also the increment of the 

temperature of the fluid. 

 

 

In Fig. 3.28 Temperature profiles for different Da  is plotted. It can be seen that as 

the permeability of the channel decreases, which also mean the decrement of  the 

Figure 3.26 : Temperature profiles for different x  stations at 100Pe  , 0.1Br  , 
0.1Da  , 3Ha          

Figure 3.27 : Temperature profiles for different Br  at 0.2x  , 100Pe  , 0.1Da  , 
    3Ha            
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Darcy number, the temperature of the fluid increses due to the heat generation caused 

by the porous effects. 

 

Like the Darcy number, greater Hartmann numbers increase the temperature of the 

fluid as seen on Fig. 3.29. 

 

Figure 3.28 : Temperature profiles for different Da  at 100Pe  , 0.1Br  , 3Ha 

Figure 3.29 : Temperature profiles for different Ha  at 100Pe  , 0.1Br  , 
0.1Da          
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The entropy generation number is seen on Fig. 3.30. The entropy generation is the 

highest in the entrance. First it tends to decrease for a while as the axial distance 

increases. 

 

The small values of Pe  increases the entropy generation within the channel, 

especially in between the 0.5y    region of the channel due to the fact that seen on 

Fig. 3.31 the main reason of the entropy generation in the vicinity of the walls is 

dominantly fluid friction caused by no slip boundary condition. 

 

Figure 3.30 : Entropy generation for different x  stations at 100Pe  , 1 0.1Br   , 
    0.1Da  , 3Ha          

Figure 3.31 : Entropy generation for different Pe  at 0.2x  , 1 0.1Br   , 
0.1Da  , 3Ha         
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The increasing Brinkman group parameter  increases the entropy generation as it 

increases entropy generated by viscous dissipation as well as porous and magnetic 

effects as given in (2.97) and it can be seen on Fig. 3.32. 

 

In Fig. 3.33 it can be seen that decreasing Darcy number causes a great increment in 

entropy generation. 

 

 

Figure 3.32 : Entropy generation for different 1Br   at 0.2x  , 100Pe  , 
0.1Da  , 3Ha         

Figure 3.33 : Entropy generation for different Da  at 0.2x  , 100Pe  , 
1  0.1Br   , 3Ha        
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The increasing Hartmann number causes the increment of the entropy generation 

especially that of the centre of the channel as seen on Fig. 3.34. 

 

In this case, as it seen on Fig. 3.35, the main cause of entropy generation is heat 

transfer near the entrance region. After 0.3x   the heat transfer irreversbility gains 

importance again due to the entrance effects. 

 

Figure 3.34 : Entropy generation for different Ha  at 0.2x  , 100Pe  , 
1  0.1Br   , 0.1Da        

Figure 3.35 : Bejan number for different x  stations at 100Pe  , 1 0.1Br   , 
  0.1Da  , 3Ha          
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The increasing Pe  causes entropy generation due to heat transfer to lose the relative 

importance against the entropy generation caused by fluid friction, porous and 

magnetic effects for it is related to the velocity of the fluid as seen on Fig. 3.36. 

 

The effect of the group parameter ( 1Br  ) on Bejan number is presented in Fig. 3.37 

for 0.2,x  100,Pe  0.1Da  , 3Ha  . An increase in the Brinkman group 

parameter causes a decrease in Bejan number since the portion of entropy generation 

caused by the fluid friction irreversibility decreases. 

 

Figure 3.36 : Bejan number for different Pe  at 0.2x  , 1 0.1Br   , 0.1Da  , 
 3Ha           

Figure 3.37 : Bejan number for different 1Br   at 0.2x  , 100Pe  , 0.1Da  , 
3Ha           
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For 1 0Br    there is no contribution of viscous dissipation to the irreversibility. In 

this case heat transfer irreversibility dominates ( 1Be  ). For smaller values of group 

parameter Bejan number has larger values near the wall decreasing to a minimum 

value at 0y  , the temperature gradients are almost zero where there is almost no 

heat transfer contribution to the irreversibility. 

Darcy number affects Bejan number as shown in Fig. 3.38. The increment of Darcy 

number causes an increment the fluid friction irreversibility, especially in the centre 

of the channel Bejan numbers approach to the minimum value for here the fluid 

friction dominates. 

 

As seen on Fig. 3.39, the increasing Ha  causes the entropy generation due to heat 

transfer to lose its relative importance.  

In Fig. 3.40 the different causes of entropy generation is plotted separately. As it can 

be seen in the vicinity of the walls the main cause of the irreversbility is fluid friction 

due to no slip condition. The reason of entropy generation in the vicinity of the 

centre region is magnetic effects and heat transfer. The enrtopy generation due to 

porous medium is relatively low for 0.1Da   

 

Figure 3.38 : Bejan number for different Da  at 0.2x  , 100Pe  , 1 0.1Br   , 
3Ha           
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For this case, the viscous dissipation term in energy equation given in (2.72) does not 

cause a great difference in the results of the temperature and entropy generation 

distribution as seen on Figs. 3.41 and 3.42. 

Figure 3.39 : Bejan number for different Ha  at 0.2x  , 100Pe  , 1 0.1Br   , 
0.1Da           

Figure 3.40 : Parts of entropy generation at 0.2x  , 100Pe  , 1 0.1Br   , 
   0.1Da  , 3Ha          
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3.4.2 Neumann problem 

As seen on Fig. 3.43 as the x  increases the temperature of the fluid increases 

symmetrically along the channel. 

The temperature profiles are shown in Fig. 3.44 for various values of the Brinkman 

number ( Br ). 

Figure 3.41 : Effect of viscous dissipation on temperature profiles at 100Pe  , 
   0.1Br  , 0.1Da  , 3Ha        

Figure 3.42 : Effect of viscous dissipation on entropy generation at 100Pe  , 
1   0.1Br   , 0.1Da  , 3Ha        



 
53

 

With increasing Br  number, the magnitude of temperature increases while the 

difference between the temperature at the centerline of the channel and the 

temperature at the walls decreases. 

 

The effect of the Da  number on temperature profiles is presented in Fig. 3.45 for 

100Pe  , 0.2, 0.1x Br   and 3Ha  . Increasing Da  number causes a increment 

on temperature since the decrement in the value of Da  number slows down the 

Figure 3.43 : Temperature profiles for different x  stations at 100Pe  , 0.1Br  , 
0.1Da  , 3Ha          

Figure 3.44 : Temperature profiles for different Br  at 0.2x  , 100Pe  , 0.1Da  , 
    3Ha            
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movement of the fluid in the channel and heat dissipation due to the effect of the 

porosity. 

 

The effect of Ha  on temperature profiles is plotted in Fig. 3.46. As it can be seen in 

the figure that the increasing Ha  numbers causes the temperature throughout the 

channel to increase. 

 

 

Entropy generation is graphically presented in Fig. 3.47 for 1 0.1, 0.1Br Da    

and 100Pe   at different x  locations. The figure shows that, far from the entrance 

section, entropy generation decreases sharply towards 0y   line since both thermal 

Figure 3.45 : Temperature profiles for different Da  at 100Pe  , 0.1Br  , 3Ha 

Figure 3.46 : Temperature profiles for different Ha  at 100Pe  , 0.1Br  , 
0.1Da          
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and velocity gradients are zero on this line due to the symmetry of the problem. 

Entropy generation becomes significant in the region close to 1y    since the walls 

have a strong effect on entropy generation because of the sudden change in 

temperature as well as the flow velocity.    

 

The assumption of no slip on the walls causes stronger velocity gradients take place 

close to the walls. This region is the powerful entropy generator and dominates on 

the total entropy generation. 

 

Figure 3.47 : Entropy generation for different x  stations at 100Pe  , 1 0.1Br   , 
    0.1Da  , 3Ha         

Figure 3.48 : Entropy generation for different Pe  at 0.2x  , 1 0.1Br   , 
0.1Da  , 3Ha         
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The local entropy generation number is presented in Fig.3.48 at different values of 

the Pe  number for 1 0.1, 0.1Br Da   . Fig. 3.49 shows that the entropy 

generation number is changing almost linearly in logarithmic scale for different 

values of Pe  number.  

 

The entropy generation number is presented in Fig. 3.49 at different values of the 

group parameter 1Br   for 0.2,x   100,Pe  0.1Da  . The group parameter has a 

strong effect on entropy generation, it also determines the relative importance of the 

viscous effect. The increase of 1Br   increases the entropy generation number since 

fluid friction is directly related with this parameter.  

The effect of the Da number on entropy generation is presented in Fig. 3.50 for 

0.2,x   1Pe  , 1 0.1Br   . As the Da number increases, which means the 

permeability of the channel increases for a constant height, the entropy generation 

number decreases and a minimum entropy generation appears at the centreline of the 

channel. At the centreline of the channel velocity takes its maximum value and 

temperature has its minimum value. Because of the symmetry of both fields have 

zero gradients as a consequence of this they have no contribution to the entropy-

generation number.  

Figure 3.49 : Entropy generation for different 1Br   at 0.2x  , 100Pe  , 
0.1Da  , 3Ha         
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In Fig. 3.51, entropy generation for different Ha  is plotted. As seen on the figure the 

higher Ha  numbers increase the entropy generation, and after approxiamtely 

around 3Ha  , the effect of magnetic field begins to affect to the centre of the 

channel at a higher rate. 

 

To have a better understanding of the dominancy of the mechanisms which cause 

entropy generation Be numbers should be studied. Bejan number is obtained from 

Figure 3.50 : Entropy generation for different Da  at 0.2x  , 100Pe  , 
1 0.1Br   , 3Ha        

Figure 3.51 : Entropy generation for different Ha  at 0.2x  , 100Pe  , 
1 0.1Br   , 0.1Da        
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(2.98) and plotted in Fig. 3.52 at different x  stations. Fig. 3.52 shows that the 

irreversibility caused by viscous friction between the walls and the fluid dominates. 

 

The gradients of temperature and velocity in y  direction are zero at the centreline of 

the channel, namely 0y  , due to the symmetry. Bejan number decreases with 

decreasing x , which shows that heat transfer irreversibility is dominant in the 

entrance region. 

Fig. 3.53 shows the Bejan number for various values of Pe  number at 0.2,x   

100,Pe   1 0.1Br   , 0.1Da  , 3Ha  . Be number is equal to 1 for small value 

of Pe  number ( 0.1Pe  ) since the only contribution at this point comes from the 

gradient of temperature in the x  direction. 

The effect of the group parameter ( 1Br  ) on Bejan number is presented in Fig. 3.54 

for 0.2,x  100,Pe  0.1Da  , 3Ha   . An increase in the group parameter causes 

a decrease in Bejan number since the portion of entropy generation caused by the 

fluid friction irreversibility decreases.  

For 1 0Br    there is no contribution of viscous dissipation to the irreversibility. In 

this case heat transfer irreversibility dominates ( 1Be  ). For smaller values of group 

parameter Bejan number has smaller values near the wall, first increases then 

decreases to a minimum value at 0y  , the temperature gradients are almost zero. 

There is no heat transfer contribution to the irreversibility. 

Figure 3.52 : Bejan number for different x  stations at 100Pe  , 1 0.1Br   , 
  0.1Da  , 3Ha          
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Darcy number affects Bejan number as shown in Fig. 3.55. An increase in Darcy 

number strengthens the fluid friction irreversibility. Therefore in the centre of the 

channel Bejan numbers approach to the minimum value, where the fluid friction 

dominates. 

 

The Bejan number for different Ha  for 100Pe  , 1 0.1Br   , 0.1Da   is seen on 

Fig. 3.56. 

Figure 3.53 : Bejan number for different Pe  at 0.2x  , 1 0.1Br   , 0.1Da  , 
3Ha           

Figure 3.54 : Bejan number for different 1Br   at 0.2x  , 100Pe  , 0.1Da  , 
3Ha           
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With the increasing Ha  the dominancy of heat transfer entropy generation decreases 

until 0Ha   where there is no contribution of the magnetic effect to the 

irreversbility generated in the channel. 

 

The contribution of each entropy generation mechanisms is investigated and shown 

in Fig. 3.57. While the entropy generation due to the porous effect, pN , and 

magnetic effect, mN , increases, the entropy generation due to the heat transfer 

irreversibility, hN , and entropy generation due to the fluid friction, fN , 

irreversibility decrease towards the centreline of the channel. Because of the fact that 

Figure 3.55 : Bejan number for different Da  at 0.2x  , 100Pe  , 1 0.1Br   , 
3Ha           

Figure 3.56 : Bejan number for different Ha  at 0.2x  , 100Pe  , 1 0.1Br   , 
0.1Da           
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the entropy generation due to the porous effect is proportional to the square of the 

velocity as seen in (2.97). 

 

The effect of viscous dissipation on the temperature field is shown in Fig. 3.58. 

There is a difference between the solutions with and without viscous dissipation 

effect. 

 

The effect of viscous dissipation on the entropy generation number at different x  

stations where 100,Pe  0.1,Br  0.1Da   is shown in Fig. 3.59. The magnitude of 

Figure 3.57 : Parts of entropy generation at 0.2x  , 100Pe  , 1 0.1Br   , 
          0.1Da  , 3Ha          

Figure 3.58 : Effect of viscous dissipation on temperature profiles at 100Pe  , 
  0.1Br  , 0.1Da  , 3Ha        
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entropy generation is higher for the case including viscous dissipation. Both Fig. 3.58 

and 3.59 shows the fact that the viscous dissipation term in energy equation leads to 

a great difference. 

 

 

Figure 3.59 : Effect of viscous dissipation on entropy generation at 100Pe  , 
1 0.1Br   , 0.1Da  , 3Ha        
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4.  CONCLUSION AND RECOMENDATIONS 

In this study, temperature and flow field are investigated analytical-numerical means 

for an inclined channel which contains porous medium and magnetic effects, for both 

Dirichlet and Neumann problems and both together and separately. The flow 

equation of Newtonian fluid is derived analytically into the channel having heated 

walls. The governing equations which are related to flow and thermal fields are 

reduced to dimensionless form by using dimensionless parameters. While the 

reduced equation for flow field is solved analytically and the reduced equation for 

thermal field is solved by using FDM. Graphical results for various parametric 

conditions were comparatively presented and discussed. It was found that the heat 

and mass transfer mechanisms depend strongly on the characteristic parameters; such 

as Darcy number ( Da ), Brinkman number ( Br ), Hartmann number  Ha , 

dimensionless axial distance ( x ), dimensionless normal distance ( y ) , and flow 

characteristics.  

Additionally, in order to investigate entropy mechanisms for such a geometry and 

such boundary conditions, the equation of entropy generation, including viscous 

effects is derived. Then, entropy equation number and Bejan number are plotted for 

different values of the group parameter ( 1Br  ), Darcy number, Peclet number ( Pe ) 

and Hartmann number for different dimensionless axial distances. 

Such a physical system including viscous dissipation, porosity and magnetic effects 

has never been studied before in open literature, to the best of the authors’ 

knowledge. The previous studies, in point of entropy generation view, were either 

inclined channel with fully clear fluid, either vertical or horizontal channel filled with 

fully porous zone or magnetic effects without a porous medium. But in this study, it 

is the first time the entropy generation in an inclined channel filled porous medium 

with magnetic effects is investigated. 

Another importance of this study with which differs from similar studies carried out 

before is the account of viscous dissipation effect. Therefore, inclusion of this effect 
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in energy equation and entropy generation calculation results in a deviation from the 

results calculated without having viscous dissipations. These results are graphically 

presented in Figs. 3.58 and 3.59. Surely, the correct Second-Low based efficiency 

calculation of such fluidic system can only be done by inclusion of dissipation 

effects. This study might encourage the people in this field to consider viscous 

effects for far more realistic calculations.  
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