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ANALYTICAL MODELS AND CROSS-LAYER
DELAY OPTIMIZATION FOR RESOURCE ALLOCATION

OF NOMA DOWNLINK SYSTEMS

SUMMARY

5G is introduced by 3rd Generation Partnership Project (3GPP) to satisfy the stringent
delay and reliability requirements of 5G services such as industrial automation,
augmented and virtual reality, and intelligent transportation. Non-orthogonal multiple
access (NOMA) is one of the promising technologies for low latency services of 5G,
where the system capacity can be increased by allowing simultaneous transmission of
multiple users at the same radio resource. The resource allocation in NOMA systems
including user scheduling and power allocation determine the mapping of users to radio
resource blocks and the transmission power levels of users at each resource block,
respectively.

In this thesis, we first propose a genetic algorithm (GA) based multi-user radio
resource allocation scheme for NOMA downlink systems. In our set-up, GA is used
to determine the user groups to simultaneously transmit their signals at the same time
and frequency resource while the optimal transmission power level is assigned to each
user to maximize the geometric mean of user throughputs. The simulation results show
that the GA based approach is a powerful heuristic to quickly converge to the target
solution which balances the trade-off between total system throughput and fairness
among users.

The most of the resource allocation studies for NOMA systems including our GA
based approach assumes full buffer traffic model where the incoming traffic of each
user is infinite while the traffic in real life scenarios is generally non-full buffer. As the
second contribution, we propose User Demand Based Proportional Fairness (UDB-PF)
and Proportional User Satisfaction Fairness (PUSF) algorithms for resource allocation
in NOMA downlink systems when traffic demands of the users are rate limited and
time-varying. UDB-PF extends the PF based scheduling by allocating optimum power
levels towards satisfying the traffic demand constraints of user pair in each resource
block. The objective of PUSF is to maximize the network-wide user satisfaction by
allocating sufficient frequency and power resources according to traffic demands of
the users. In both cases, user groups are selected first to simultaneously transmit their
signals at the same frequency resource while the optimal transmission power level
is assigned to each user to optimize the underlying objective function. In addition,
the GA is employed for user group selection to reduce the computational complexity.
When the user traffic rate requirements change rapidly over time, UDB-PF yields better
sum-rate (throughput) while PUSF provides better network-wide user satisfaction
results compared to the PF based user scheduling. We also observed that the GA based
user group selection significantly reduced the computational load while achieving the
comparable results of the exhaustive search.

The low latency objectives of URLLC services such as industrial control and
automation, augmented and virtual reality, tactile Internet and intelligent transportation

xxi



requires delay analysis which cannot be possible using the rate limited traffic demands.
The packet based traffic model with random inter-arrival times and packet sizes
have to be utilized. New analytical models using packet based traffic model with
random inter-arrival times and packet sizes are of paramount importance to develop
high performance resource allocation strategies satisfying the challenging latency
requirements of 5G services. As the third contribution, we propose an analytical
model to characterize the average queuing delay for NOMA downlink systems by
utilizing a discrete time M/G/1 queuing model under a Rayleigh fading channel.
The packet arrival process is assumed to be Poisson distributed while the departure
process depends on network settings and resource allocation. The average queuing
delay results of the analytical model are validated through Monte Carlo simulation
experiments. One of the main results is that the ergodic capacity region of NOMA
is a superset of OMA indicating that the NOMA can support higher service rate and
lower latency using the same resources such as transmission power and bandwidth.
Furthermore, the proposed analytical model is applied for the performance evaluation
of the 5G NR concept when the NOMA is utilized. The model accurately predicts
that the average queuing delay decreases when wider bandwidth and shorter time slot
duration are employed in 5G NR.

The outage probability becomes an important metric that should be minimized to
address the reliability aspect of the URLLC services. We utilize the common outage
condition such that the user fails either decoding its own signal or performing SIC for
the signals of other users at the receiver when the SINR is lower than a predefined
outage threshold. As the fourth contribution, the optimum power allocation for a
single resource block that minimizes the system outage probability under Rayleigh
fading channel, where a common signal to interference plus noise ratio (SINR) level is
utilized as an outage condition, is provided as a closed form expression. The accuracy
of the proposed optimum power allocation model is validated by the Monte Carlo
simulations. The numerical results show that the outage probability of OMA with the
fractional power allocation is lower than NOMA with the optimum power allocation.
The results indicate that the trade-off between the outage and spectral efficiency in
NOMA should be carefully controlled to meet higher throughput and lower latency
objectives of 5G.

The last contribution considers the reliability and latency aspects jointly such that the
discrete time M/G/1 queuing model of a NOMA downlink system is extended by taking
the outage condition into account. The departure process of the queuing model is
characterized by obtaining the first and second moment statistics of the service time
that depends on the resource allocation strategy and the packet size distribution. The
proposed model is utilized to obtain the optimum power allocation that minimizes the
maximum of the average queuing delay (MAQD) for a two-user network scenario.
The Monte Carlo simulation experiments are performed to numerically validate the
model by providing MAQD results for both NOMA and orthogonal multiple access
(OMA) schemes. The results demonstrate that the NOMA achieves lower latency
for low SINR outage thresholds while its performance is degraded faster than OMA
as the SINR outage threshold increases such that OMA outperforms NOMA beyond
a certain threshold. Another important result is that the latency performance of
NOMA is significantly degraded when the 5G NR frame types having wider bandwidth
are utilized. The results provide powerful insights for 5G ultra-reliable low-latency
communication (URLLC) services.
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AŞAĞI YÖNLÜ NOMA SİSTEMLERİNDE
KAYNAK TAHSİSİ İÇİN ANALİTİK MODELLER VE

KATMANLAR ARASI ETKİLEŞİMLİ GECİKME OPTİMİZASYONU

ÖZET

3GPP tarafından tanımlanan 5G standartlarında endüstriyel kontrol ve otomasyon,
artırılmış ve sanal gerçeklik ve akıllı ulaşım gibi düşük gecikme ve yüksek
güvenilirlik gerektiren servisler öne çıkmaktadır. Dikgen olmayan çoklu erişim
(NOMA) teknolojisi ile aynı radyo kaynağında birden fazla kullanıcının aynı anda
iletilmesine olanak sağlayarak sistem kapasitesi artırılabilir. Böylece NOMA,
5G’nin düşük gecikmeli servislerini destekleyebilecek önemli teknolojilerden birisi
olarak değerlendirilmektedir. Aynı radyo kaynağına atanacak kullanıcı gruplarının
belirlenmesi ve her bir kullanıcı grubu içerisindeki güç tahsis seviyelerinin
belirlenmesi ile tanımlanan NOMA sistemlerindeki radyo kaynak yönetimi ile,
kullanıcıların veri çıktısı ve gecikme seviyeleri belirlenebilmektedir.

Bu tezde, ilk olarak aşağı yönlü NOMA sistemlerinde kaynak yönetimi için genetik
algoritma (GA) tabanlı çok kullanıcılı radyo kaynağı tahsis şeması önerilmiştir.
Önerilen yöntemde genetik algoritma, aynı zaman ve frekans kaynağını paylaşmak
üzere seçilen kullanıcı gruplarının belirlenmesinde kullanılırken, her bir kullanıcı
grubu içerisinde kullanıcı veri çıktılarının geometrik ortalamasını en üst düzeye
çıkaran en uygun iletim gücü seviyesi atanmaktadır. Simülasyon sonuçları, GA
tabanlı yaklaşımın, toplam veri çıktısı ile kullanıcılara tahsis edilen veri çıktıları
arasındaki adaleti birlikte değerlendirerek hedef çözüme verimli bir şekilde ulaşmada
kullanılanılabilecek güçlü bir sezgisel yöntem olduğunu göstermektedir.

Önerdiğimiz GA tabanlı yaklaşım da dahil olmak üzere, NOMA sistemleri için kaynak
tahsisi için literatürde önerilen çalışmalarının çoğu, baz istasyonunda kullanıcılara
iletilmek üzere sonsuz trafik olduğunu varsaymaktadır. Pratik uygulama alanlarında
kullanılmak üzere radyo tahsis şemaları önerebilmek için kullanıcıların trafiğinin
sonlu olduğu durumlar göz önüne alınmalıdır. Tez çalışmasındaki ikinci katkı
olarak, kullanıcıların trafik talepleri sınırlı ve zaman içinde değiştiği durumda,
aşağı yönlü NOMA sistemlerinde kaynak tahsisi için iki yeni kaynak tahsis
algoritması önerilmiştir. Bunlar, kullanıcı talebine dayalı oransal adalet (UDB-PF) ve
orantılı kullanıcı memnuniyeti adaleti (PUSF) algoritmaları olarak isimlendirilmiştir.
UDB-PF, literatürde önerilmiş olan oransal adalet (PF) tabanlı tahsis algoritmasını
her kaynak bloğundaki kullanıcı çiftinin trafik talebi kısıtlamalarını göz önüne alarak
optimum güç seviyeleri tahsis edilmesi şeklinde tanımlanmaktadır. PUSF yönteminde
ise, kullanıcıların trafik taleplerine göre radyo kaynakları tahsis edilerek, kullanıcıya
atanan kapasitenin kullanıcı talebine oranı olarak tanımlanan kullanıcı memnuniyet
parametresi, orantısal adaletli bir şekilde en üst düzeye çıkarılmaktadır. Her iki
yöntem de, sinyallerini aynı radyo kaynağında iletecek kullanıcı gruplarını belirleme
ve kullanıcı grubu içerisindeki güç tahsis oranlarını birlikte değerlendirerek en uygun
atamayı gerçekleştirir. Ayrıca, işlem yoğunluğunu azaltmak amacıyla kullanıcı grubu
seçimi için genetik algoritma (GA) yaklaşımı önerilmiştir. Simülasyon sonuçları
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göstermektedir ki, kullanıcı trafik gereksinimleri zaman içinde hızla değiştiğinde,
UDB-PF daha yüksek veri çıktısı oluştururken, PUSF, ağ genelinde en iyi kullanıcı
memnuniyeti sonucu sağlamaktadır. Önerilen GA tabanlı kullanıcı grubu seçiminin,
kapsamlı arama ile gerçekleştirilen grup seçimine göre benzer performans sonuçlarına
ulaşırken hesaplama yükünü önemli ölçüde azalttığı gözlenmiştir.

Kullanıcı veri gereksinimlerinin sınırlı olduğu trafik modeli kullanılması, URLLC
servislerinin gecikme dinamiklerinin araştırılması için yeterli olmadığından, paket
tabanlı, rastgele varış süreleri ve farklı paket uzunluklarının göz önüne alındığı
trafik modeli kullanılarak NOMA sistemleri incelenmelidir. 5G hücresel haberleşme
sistemlerinde gecikme dinamiklerini karakterize edebilen yeni analitik modeller, 5G
hizmetlerinin zorlu gereksinimlerini karşılayan yüksek performanslı kaynak tahsis
stratejileri geliştirmek için büyük önem taşımaktadır. Bu nedenle, tez kapsamında
üçüncü olarak, Rayleigh solma kanalı altında ayrık zaman ayrık durum M/G/1
kuyruklama modeli kullanarak aşağı yönlü NOMA sistemleri için ortalama kuyruk
gecikmesini belirleyen analitik model önerilmiştir. Bu modelde, paket varış süreci
Poisson dağılımlı varsayılırken, ayrılma süreci ağ koşullarına ve kullanılan kaynak
tahsis yöntemine bağlı olarak belirlenmiştir. Analitik model ile elde edilen ortalama
kuyruk gecikme sonuçları Monte Carlo simülasyon deneyleri örtüşmektedir. Sonuçlar,
NOMA’nın dikgen çoklu erişimden (OMA) daha yüksek kapasite bölgesine sahip
olması ile, daha yüksek servis hızını ve daha düşük gecikmeyi destekleyebileceğini
göstermektedir. Ek olarak, önerilen analitik model, 5G yeni radyo (NR) parametreleri
altında NOMA kullanıldığı durum için performans değerlendirmeleri sunulmuştur.
Buradaki sonuçlara göre önerilen analitik model, 5G NR ile daha geniş bant genişliği
ve daha kısa zaman aralığındaki çerçeve yapıları için, hem OMA hem de NOMA için
ortalama kuyruk gecikmesinin azaldığını doğru bir şekilde tahmin etmektedir.

Hücresel şebekelerde güvenilirliğe duyarlı uygulamaların ve hizmetlerin çoğalmasıyla,
gelişmiş kablosuz haberleşme sistemlerinde yüksek güvenilirlik gereksinimini
desteklemek için kesinti olasılığı, en aza indirilmesi gereken önemli bir ölçüt
haline gelmektedir. Tez kapsamında dördüncü olarak, ortak sinyal girişim artı
gürültü oranı (SINR) seviyesi göz önüne alınarak Rayleigh solma kanalı altında
aşağı yönlü NOMA sistemlerinde kesinti olasılığı analiz edilmektedir. Ayrıca,
tek bir kaynak bloğu için sistem kesintisi olasılığını en aza indiren optimum güç
tahsisi kapalı form şeklinde sunulmuştur. Önerilen analitik model Monte Carlo
simülasyonları ile doğrulanırken, optimum güç dağılım yönteminin performans
analizleri gerçekleştirilmiştir. Sayısal sonuçlarda kesinti olasılığının güç tahsisine
göre değişimi raporlanırken, önerilen yöntemin diğer güç ataması algoritmalarına göre
en iyi sonucu verdiği gösterilmektedir. Bunun yanında, NOMA için optimum güç
tahsis algoritması kullanıldığında bile OMA’ya göre daha kötü performans verdiği
gözlenmiştir. Sonuçlar, NOMA’daki kesinti ve spektral verimlilik arasındaki dengenin,
5G sistemlerde daha yüksek verim ve düşük gecikme hedeflerini karşılamak için
dikkatle kontrol edilmesi gerektiğini göstermektedir.

Tez kapsamında son olarak, aşağı yönlü NOMA sistemlerinde, kullanıcının kendi
sinyalini çözme veya ardışık girişim giderici (SIC) gerçekleştirebilmesi için gerekli
olan SINR kesinti seviyesini göz önüne alan, genişletilmiş ayrık zaman ayrık
durum M/G/1 kuyruk modeli önerilmiştir. Önerilen genişletilmiş kuyruk modelinin
ayrılma süreci, kaynak tahsisi stratejisine ve paket büyüklüğü dağılımına bağlı olarak
servis süresinin birinci ve ikinci moment istatistiklerinin elde edilmesiyle karakterize
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edilmektedir. Ayrıca, iki kullanıcılı bir ağ senaryosu için önerilen model kullanılarak
en büyük ortalama kuyruk gecikmesinin (MAQD) tek bir noktada en az olduğu
ispatlanmıştır. Bununla birlikte, altın bölüm arama (golden section search) yöntemi
kullanılarak en düşük MAQD değerini sağlayan optimum güç tahsisi elde edilmiştir.
Monte Carlo simülasyon deneyleri ile hem NOMA hem de OMA için MAQD sonuçları
elde edilerek önerilen genişletilmiş analitik yöntemin doğrulaması gerçekleştirilmiştir.
Sonuçlar göstermektedir ki, düşük SINR kesinti eşikleri için NOMA ile daha düşük
gecikme değerleri elde edilirken, SINR kesinti eşiği arttıkça gecikme süresindeki artış
OMA ile kıyaslandığında fazla olmaktadır. Bunun sonucu olarak, belirli bir SINR
eşik seviyesi üzerinde OMA ile elde edilen gecikme, NOMA kullanıldığı duruma göre
daha düşük olmaktadır. Daha geniş bant genişliğine sahip 5G NR çerçeve tipleri
kullanıldığında NOMA ile elde edilen gecikmenin önemli ölçüde artması bir başka
önemli sonuç olarak raporlanmıştır. Tez kapsamında geliştirilen analitik modeller,
5G ultra güvenilir düşük gecikmeli iletişim (URLLC) hizmetleri için zorlu gecikme
ve güvenilirlik ihtiyaçlarını karşılayan radyo kaynağı yönetimi için önemli bilgiler
sağlamaktadır.
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1. INTRODUCTION

The complexity of 5G network is expected to be significantly higher due to its

inherent support for billions of Internet of Things (IoTs) devices enabling new services

with stringent delay and reliability requirements. Three broad categories of 5G

services considered by 3GPP are enhanced mobile broadband (eMBB), ultra reliable

low latency communication (URLLC), and massive machine-type communications

(mMTC). While the eMBB and mMTC services focus on the capacity and scalability

aspects of 5G, respectively, URLLC is critical for enabling remote control of time

and mission-critical services. Non-orthogonal multiple access (NOMA) is a promising

technology for 5G systems due to its higher spectral efficiency potentially yielding

lower latency and higher scalability results by allowing simultaneous transmission

of multiple users at the same resource block. New analytical models which can

characterize the latency dynamics of 5G are of paramount importance to develop high

performance resource allocation strategies satisfying the challenging requirements of

5G services.

In NOMA systems, simultaneous transmission of multiple users at the same radio

resource is allowed since signals of multiple users can be overlapped at the transmitter

by assigning appropriate power levels. For example, assuming the total power of two

users is fixed, a user with lower channel quality is assigned a higher power. The

combined received signal of multiple users is separated at the receiver using successive

interference cancellation (SIC). The performance of a NOMA downlink system with

an SIC based receiver is reported to be around 30% higher than orthogonal multiple

access (OMA) using power domain multiplexing [1–3].

User scheduling and power allocation in NOMA systems determine the mapping of

users to radio resource blocks and the transmission power levels of users at each

resource block, respectively. The procedures and algorithms used in the decision

making process directly affect the performance of NOMA in terms of its spectral

efficiency and computational power requirements. The objective of maximizing the
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geometric mean of user throughputs in cell provide the optimal trade-off between

total system throughput and fairness among users as stated in [4]. To achieve this

objective, in this thesis, we first propose genetic algorithm (GA) based multi carrier

NOMA downlink scheme which considers user grouping, user group to resource

block matching and power allocation at each resource block. The simulation results

demonstrate that the results our GA based approach can achieve the same performance

results of exhaustive search method. Considering the computational load of exhaustive

search, GA is an efficient way to converge to the best solution.

The proportional-fairness (PF) based approaches [5–7] have been widely used for

resource and power allocation in NOMA systems. The objective of the PF based

scheduler is to assign radio resources to users in such a way that the PF metric,

which is the product of average user throughputs over a time window, is maximized.

This objective provides a good compromise between the sum-rate of all users (i.e.,

network-wide throughput) and the fairness among users. In [5], the user pairing

corresponding to the highest PF metric is selected among all possible user pairing

combinations. Since this approach requires prohibitively expensive computational

power, [6] and [7] propose simplified PF based algorithms which require significantly

lower computational power while yielding comparable results to the optimum solution.

Another approach [8, 9] to resource allocation for NOMA systems aims to maximize

the sum-rate of all users at each time epoch after satisfying certain constraints such as

the minimum power allocation and throughput of each user. All of the above PF based

resource allocation studies for NOMA systems assumes full buffer traffic model which

does not correspond to real life traffic scenario. The traffic model in a real network

setting is generally non-full buffer where the traffic demand for each user is limited to

a certain application rate.

In this thesis, we secondly propose two user scheduling and power allocation methods

employing PF based objective functions for NOMA downlink systems under non-full

buffer traffic models. Although the existing PF based user scheduling in NOMA

systems has been demonstrated to significantly improve the system capacity when

the user traffic model is full buffer, it does not perform well when user traffic

rates are limited and time-varying. In User Demand Based Proportional Fairness

(UDB-PF) algorithm, the PF based scheduling is extended to take time varying user
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traffic demands into account in addition to allocating optimum power levels towards

satisfying the traffic demand constraints of user pair in each resource block. The main

contribution in UDB-PF is to provide the optimum power allocation under user rate

constraints. In other words, when the optimum power level of a user provides higher

rate than its rate constraint, the excessive power is reallocated to the other user(s) in the

same NOMA group. The objective of Proportional User Satisfaction Fairness (PUSF)

algorithm is to maximize the network-wide user satisfaction which is the product of

average satisfaction values of all users for a given time window. Note that the highest

network-wide user satisfaction is achieved when the resources are sufficient to carry

traffic demands of all users. In the PUSF approach, the user satisfaction objective for

the user grouping and power allocation optimization is defined by us for the first time.

However, the maximization of the product of average user satisfaction is similar to

PF based methods. As in the UDB-PF approach, the PUSF can also reallocate the

excessive power to the other users in the same NOMA group. In both UDB-PF and

PUSF algorithms, user groups are selected first to simultaneously transmit their signals

at the same frequency resource while the optimal transmission power level is assigned

to each user to optimize the underlying objective function. These proposed algorithms

evaluate all user group possibilities to select the best user group allocation at each

resource block. However, the computational complexity becomes an important issue

when the number of users gets higher, especially to meet the real time requirements of

the scheduling decisions. We also present a Genetic Algorithm (GA) heuristic to find

the user group at each resource block with a relatively low computational load. The

UDB-PF and PUSF algorithms with the GA extensions are named as UDB-PF-GA and

PUSF-GA, respectively.

One of the main objective of 5G is to satisfy the lower latency requirements of URLLC

services such as industrial control and automation, augmented and virtual reality,

tactile Internet and intelligent transportation [10, 11]. The latency contribution of the

user plane end-to-end (E2E) delay of a packet transmission in 5G can be divided into

three main parts: radio access, mobile core, and cloud. The radio access latency

between a base station and user equipment includes over-the-air transmission and

propagation, queuing, processing, and re-transmission delays [12]. A cross-layer

resource allocation approach considering not only wireless channel characteristics
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in the physical layer but also traffic arrival and queue occupancy information at

the link layer should be employed to achieve the challenging latency objectives of

5G [13]. An opportunistic NOMA downlink approach is presented in [14] such

that they propose two queues with different priority levels at the base station for all

users. The performance limitations of NOMA in short packet communication for

URLLC services is studied by analytically deriving the effective-bandwidth in [15].

The performance of NOMA in short-packet communications is studied in [16] and

the optimal power allocation scheme is presented to provide fairness among users’

throughput while satisfying QoS requirements of URLLC. The effective capacity of

NOMA under statistical delay guarantees has been studied in [17, 18]. In another

study [19], a cross-layer approach using integer linear programming is proposed to

minimize the average delay for NOMA applications of delay sensitive communication.

In our second contribution, the rate limited traffic demands are considered instead of

packet based traffic model with random inter-arrival times and packet sizes so that the

delay dynamics can not be studied. New analytical models which can characterize

the latency dynamics of 5G are of paramount importance to develop high performance

resource allocation strategies satisfying the challenging requirements of 5G services.

As the third contribution of the thesis, we propose an analytical model to characterize

the average queuing delay for NOMA downlink systems by utilizing a discrete time

M/G/1 queuing model under a Rayleigh fading channel. The packet arrival process

is assumed to be Poisson distributed while the departure process depends on network

settings (e.g., transmit power, bandwidth, and channel model) and resource allocation

(e.g., power allocation). We provide an approximation for the service time statistics

under a certain packet size distribution by utilizing the random sums of independent

and identically distributed (i.i.d.) random variables. Pollaczek Khintchine formula

and Little’s Law are applied to obtain the queuing dynamics such as the average

queuing delay. Extensive simulations are carried out to validate the accuracy of the

proposed analytical model for both NOMA and OMA under different network settings

including bandwidth, traffic arrival rate, and packet size distribution. The results show

that the ergodic capacity region of NOMA is a superset of OMA and the NOMA

supports higher arrival rates. The numerical results of the analytical model are close

to the results of the simulation experiments indicating that the proposed analytical
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model provides a tight approximation for the average queuing delay. Furthermore, the

proposed analytical model is applied to evaluate the performance improvements of the

5G NR concept when the NOMA is utilized with the 5G NR frame types.

The outage probability analysis has been taken considerable attention to study the

reliability of wireless cellular networks. The outage event can be defined for

cellular systems using various performance metrics such as maximum delay, minimum

throughput, minimum BER, and minimum SINR levels. As the forth contribution,

we investigate the outage probability of NOMA downlink systems under the Rayleigh

fading channel model by taking the SINR outage constraint into account to successfully

perform both decoding and SIC processes at the receiver. The system outage

probability is provided as a closed form expression. Then, we derive the the

optimum power allocation that minimizes the system outage probability for two-user

scenario. The accuracy of the theoretical derivations are validated with the Monte

Carlo simulations. In addition, the proposed power allocation method is compared

with fixed NOMA and fractional NOMA and OMA power allocation methods [20].

The results demonstrate that the proposed optimum power allocation method yields

the minimum outage probability among all the power allocation schemes of NOMA.

However, the outage probability of OMA with the fractional power allocation is lower

than NOMA with the optimum power allocation. Note that the spectral efficiency of

NOMA is higher since the bandwidth can be utilized by multiple users. These results

indicate that the trade-off between the outage and spectral efficiency in NOMA should

be carefully controlled to meet higher throughput and lower latency objectives of 5G.

As the fifth contribution, we extend the proposed analytical model by taking the

outage event into account such that the user fails either decoding its own signal or

performing SIC for the signals of other users at the receiver when the SINR is lower

than a predefined outage threshold. The first and second moment statistics of users’

service rate under the SINR outage constraint are derived for a NOMA downlink

system simultaneously serving K users sharing a single resource block. We propose

the optimum power allocation framework by utilizing the extended analytical model

such that the maximum of average user queuing delays (MAQD) are minimized for a

single resource block simultaneously serving two users.
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The extended analytical model including the approximation of the second moment of

the service time is validated by performing the Monte Carlo simulation results. In the

first set of experiments, the ergodic capacity region of NOMA and OMA is reported

for all possible power allocations. The results show that the ergodic capacity region

of NOMA is a superset of OMA for lower SINR outage thresholds while OMA yields

higher ergodic capacity when the SINR outage thresholds is high. For the second

set of experiments, the delay performance of NOMA and OMA is reported using

the proposed delay optimization method under various network settings such as SINR

outage threshold, user arrival rates and distances. The results show that when the SINR

outage threshold is disabled the maximum average queuing delay (MAQD) of NOMA

is lower than OMA due to its higher spectral efficiency. The effect of white noise is

higher for NOMA compared to OMA since each NOMA user has larger bandwidth.

As the SINR outage threshold increases, the MAQD increases for both NOMA and

OMA; however, the rate of increase for NOMA is higher than OMA due to the white

noise effect. The MAQD of NOMA becomes higher than OMA beyond a certain SINR

threshold which depends on the network settings.

In addition, the optimization framework using the extended analytical model is applied

for the performance evaluations of the 5G NR concept when the NOMA is utilized.

The numerical results show that when the SINR outage thresold is disabled the MAQD

performance of NOMA outperform OMA for all 5G NR frame types. However, for the

5G frame types having wider bandwidth, when the SINR constraint enabled and set to

higher levels, OMA becomes more preferable than NOMA due to higher noise effect

over wider bandwidth.

1.1 Main Contributions

The main contributions of this thesis, which is summarized in Figure 1.1, can be

described as follows:

1. We investigate the radio resource allocation problem for NOMA downlink systems

and propose the joint user grouping and power allocation mechanism under full

buffer traffic and perfect CSI at the base station in Chapter 3. The objective of the

multi-user resource allocation scheme is to maximize the geometric mean of the
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Figure 1.1 : The summary of the thesis.

user throughputs to achieve the optimal trade-off between total system throughput

and fairness among users within a single metric as stated in [4].

(i) Genetic algorithm (GA) based user grouping heuristic is proposed while

providing the optimal transmission power levels at each user group.

(ii) For each candidate user grouping, an iterative gradient ascent-based power

allocation method (IGAM) is utilized to maximize the geometric mean of user

throughputs.

2. The new proportional fairness (PF) based multi-user grouping and power allocation

schemes are proposed for NOMA downlink systems under perfect CSI and non-full

buffer traffic model where the traffic demand for each user is limited to a certain

application rate in Chapter 4.
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(i) User Demand Based Proportional Fairness (UDB-PF) resource allocation

scheme is proposed as an extension of a PF based scheduling to take time

varying user traffic demands into account. In addition, the optimum power

levels are allocated towards satisfying the traffic demand constraints of user

pair in each resource block.

(ii) Proportional User Satisfaction Fairness (PUSF) resource allocation scheme is

proposed to maximize the network-wide user satisfaction which is the product

of average satisfaction values of all users for a given time window. The user

satisfaction objective for the resource allocation optimization is defined by us

for the first time.

(iii) The simulation results show that UDB-PF yields higher sum-rate (throughput)

while PUSF provides higher network-wide user satisfaction results compared

to the conventional PF based user scheduling. The performance gains of the

proposed methods increase as the variation of user traffic demands increases

over time.

(iv) Due to the high computational load of the proposed PF-based algorithms (i.e.,

UDB-PF and PUSF), GA heuristic is utilized to find the user group at each

resource block with a relatively low computational load. The complexity

analysis of PF based algorithms and their GA accelerated extensions reported.

When the number of users in the network gets higher, the GA heuristics

provide the performance gain on the computational load while the throughput

and user satisfaction results are only slightly degraded.

3. An analytical model to characterize the average queuing delay for NOMA downlink

systems is proposed in Chapter 5 by utilizing a discrete time M/G/1 queuing

model when the statistical channel information is known at the base station. The

packet arrival process is assumed to be Poisson distributed with various packet size

distributions while the departure process depends on power allocation for a given

network setting.

(i) The first and second moment statistics of the user service capacities are

formulated for a single resource block using transmit power, bandwidth, and

channel model and power allocation coefficients.
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(ii) We utilize the random sums of independent and identically distributed (i.i.d.)

random variables approach to provide an approximation for the service time

statistics under a certain packet size distribution.

(iii) Pollaczek Khintchine formula and Little’s Law are applied to obtain the

average queuing delay using the derived service time statistics.

(iv) Extensive simulations are carried out to validate the accuracy of the proposed

analytical model under different network settings including bandwidth, traffic

arrival rate, and packet size distribution.

(v) The proposed analytical model is applied to evaluate the performance

improvements of the 5G NR concept when the NOMA is utilized with the 5G

NR frame types. The results confirm that the 5G NR significantly improves

the delay performance as the frame type having wider bandwidth and shorter

duration is employed.

4. The optimum power allocation that minimizes the system outage probability in

NOMA downlink systems is proposed in Chapter 6 when the statistical channel

information is known at the base station and without considering any traffic

information.

(i) The system outage probability is derived under the Rayleigh fading channel

model when the common SINR outage threshold is used as the outage

condition.

(ii) The optimum power allocation that minimizes the system outage probability is

provided as a closed form expression for two-user NOMA downlink systems.

(iii) The accuracy of the theoretical derivations are validated with the Monte Carlo

simulations. The results show that the proposed optimum power allocation

yields the minimum system outage probability among all the power allocation

schemes of NOMA. However, the outage probability of OMA with the

fractional power allocation is lower than NOMA with the optimum power

allocation. These results indicate that the trade-off between the outage and

spectral efficiency in NOMA and OMA should be carefully controlled to meet

higher throughput and lower latency objectives of 5G.
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5. The proposed analytical model in Chapter 5 is extended to characterize the queuing

delay of NOMA downlink systems under the SINR outage constraint and presented

in Chapter 7 with the following contributions:

(i) The first and second moment statistics of the users service rates are are derived

for a NOMA downlink system simultaneously serving K users sharing a single

resource block under a common SINR outage threshold which is the minimum

required level to successfully perform both of the SIC and decoding processes.

Similar to the queuing model proposed in Chapter 5, for a given probability

distribution of the packet size, a fairly close analytical approximation of the

first and second moment statistics for the users’ service time is obtained.

The underlying queuing system with Poisson traffic arrivals becomes M/G/1,

where the Pollaczek Khintchine formula of the residual service approach

together with the Little’s Law are utilized to obtain the average queuing delay.

(ii) Utilizing the analytical model, we prove that the maximum of average queuing

delays for two-user NOMA and OMA systems is a unimodel function with a

single minimum point for the power allocation yielding stable queues. The

optimum power allocation framework is proposed by using the M/G/1 queuing

model such that the maximum of average queuing delays is minimized for a

single resource block simultaneously serving two users.

(iii) The delay performance of NOMA and OMA is reported using the proposed

delay optimization method under various network settings such as SINR

outage threshold, user arrival rates and distances. The numerical results show

that without considering the SINR outage constraint, the ergodic capacity

region of NOMA is always a superset of OMA due to its higher spectral

efficiency as demonstrated in Chapter 5. As the SINR outage threshold

increases, the average queuing delay increases for both NOMA and OMA;

however, the rate of increase for NOMA is higher than OMA due to the white

noise effect over larger bandwidth. The proposed model in this paper show

that NOMA can yield higher delay when the SINR outage threshold is set to

higher levels.

(iv) The delay optimization framework is applied for the 5G NR concept when

the NOMA is utilized. The results demonstrate that OMA becomes more
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preferable than NOMA due to higher noise effect over the 5G NR frame

types having wider bandwidth for higher outage thresholds. For a given

network scenario including the SINR outage threshold that satisfy reliability

requirement of 5G URLLC services, our proposed model is capable of

determining the frame type that achieves the lowest delay performance for

both NOMA and OMA.

1.2 Organization of the Thesis

Following this introductory chapter, Chapter 2 provides an overview of NOMA

resource allocation concept for both user grouping and power allocation in addition

to summarizing the related studies. The genetic algorithm based NOMA downlink

resource allocation scheme is presented in Chapter 3, where the user traffic

requirements are not taken into account. In Chapter 4, the rate limited user traffic

demands are introduced and two novel resource allocation mechanisms are proposed

to maximize either the proportional fairness among user service rates or proportional

fairness among user satisfactions. Chapter 5 is devoted to the presentation of the

analytical model which characterizes the average queuing delay of NOMA downlink

systems when the statistical channel state information is known at the base station. The

outage probability analysis and the optimum power level assignment minimizing the

system outage probability is presented in Chapter 6, where a common SINR outage

threshold is utilized as the outage condition. In Chapter 7, the extended analytical

model by taking the SINR outage condition into account is presented to evaluate the

queuing delay dynamics of NOMA downlink systems. In addition, the optimum power

allocation framework is proposed by using the derived analytical models such that the

maximum of average queuing delays is minimized. Finally, Chapter 8 concludes the

thesis and includes suggestions for future work.
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2. RELATED WORK FOR NOMA RESOURCE ALLOCATION

Radio access technologies for cellular communications are characterized by multiple

access schemes to share a finite amount of radio resources to multiple users

simultaneously. As cellular technology has advanced different multiple access

schemes have been standardized and used to satisfy the technological requirements.

The different multiple access technologies employed in the cellular systems

are Frequency-division Multiple Access (FDMA) for the first generation (1G),

Time-division Multiple Access (TDMA) for the second generation (2G), Code-division

Multiple Access (CDMA) used by both 2G and the third generation (3G), and

Orthogonal Frequency division Multiple Access (OFDMA) for 4G. These conventional

multiple access schemes share the radio resources to the multiple users providing

the orthogonality in either time, frequency, or code domain to prevent the multiple

access interference. Therefore, they categorized as orthogonal multiple access (OMA)

technologies [21]. Illustrative examples of conventional multiple access schemes are

given in Figure 2.1.

Three broad categories of 5G services considered by 3GPP are enhanced mobile

broadband (eMBB), ultra reliable low latency communication (URLLC), and massive

machine-type communications (mMTC). Non-orthogonal multiple access (NOMA) is

a promising technology for 5G systems due to its higher spectral efficiency potentially

yielding lower latency and higher scalability results by allowing simultaneous

transmission of multiple users at the same resource block.

2.1 Conventional Multiple Access Technologies

Frequency-division Multiple Access (FDMA) technology is used to support multiple

analog voice calls at the same base station for the system named Advanced Mobile

Phone Service (AMPS) [22]. It was the first cellular concept to reuse the frequency

spectrum between cells. At each base station, calls are assigned to different frequency

13



Figure 2.1 : Conventional multiple access schemes.

channels. In FDMA, the spectrum is partitioned into non-overlapping channels which

can accommodate traffic of a particular user.

In Time-division Multiple Access (TDMA) systems, radio resources are partitioned in

time domain into multiple time slots which can be independently assigned to users. At

each time slot the frequency and power resources are only available for the assigned

users and time domain orthogonality is provided. The analog system is replaced by

Global System for Mobile Communication (GSM) [23] where Time-division Multiple

Access (TDMA) is used as a multiple access scheme. The digitized voice packets are

transmitted over TDMA’s allocated slots in addition the earliest form of mobile data

services.

To satisfy the larger mobile data service requirements Code-division Multiple Access

(CDMA) based systems were developed to be deployed in cellular systems. In 3G

systems, CDMA is introduced to obtain more degrees of freedom in terms of resource

partitioning such that multiple users can utilize the same resource both in time and

frequency domain by user specific orthogonal code signatures. Each mobile terminal

has an unique spreading codes to isolate corresponding signal received from base

station. The major advantage of CDMA over TDMA systems was the superior

statistical multiplexing at the radio signal level. Since every conversation alternates

periods of speaking and listening with interspersed periods of silence, in TDMA
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Figure 2.2 : An illustration of NOMA.

systems these periods of silence result in wasted resources since time slots are assigned

for entire session [21]. Universal Mobile Telecommunication System (UMTS) and

CDMA 2000 are the standards of the 3G era utilizing the CDMA as a multiple access

technology [24].

Orthogonal Frequency-division Multiple Access (OFDMA) is the multi carrier

multiple access scheme employed in 4G communication systems. The orthogonal

subcarriers in the frequency domain and the time slots in the time domain are the

resource allocation units to be assigned to users. OFDMA is more flexible than the

other conventional multiple access schemes as it allows transmitter to divide radio

resources into both the time and the frequency domain. Orthogonal Frequency Division

Multiplexing (OFDM) is the one of the key difference between 4G and 3G systems to

satisfy the high data rate requirements. OFDM is the technology that emerged to achive

high data rates. Long Term Evolution (LTE) which is designed to increase the capacity

and speed of cellular networks, brings the mobile communication to 4G era [25]. LTE

utilizes OFDMA at the downlink transmission to allow that multiple users can receive

their traffic over OFDM.

2.2 Non-orthogonal Multiple Access (NOMA)

The conventional multiple access schemes mentioned in the previous section are

categorized as orthogonal multiple access (OMA) technologies, where different users

are allocated to orthogonal resources in either time, frequency, or code domain.

Although these multiple access schemes provide enough capacity to the users until

the 4G era, the use of non-orthogonal multiple access (NOMA) techniques can be
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instrumental in meeting 5G requirements such as, high system throughput, low latency

and massive connectivity using the readily available frequencies. Sharing the same

time and frequency resource with different power levels is the main idea behind the

NOMA technology which is a candidate multiple access scheme for 5G standards

[1,2]. An illustration of the NOMA scheme is given in Figure 2.2, where the same time

and frequency resources are assigned to multiple users. Power domain multiplexing

at the transmitter and signal separation at the receiver using successive interference

cancellation (SIC) are key elements of NOMA.

A 5G new radio (5G NR) access technology is introduced with shorter frame duration

and wider bandwidth to satisfy the lower latency requirements of URLLC services such

as industrial control and automation, augmented and virtual reality, tactile Internet

and intelligent transportation [10, 11]. The Multi-User Superposed Transmission

(MUST) has been proposed by the pioneering technology companies such as Huawei,

Qualcomm, NTT DOCOMO, Nokia, Intel, Alcatel Lucent to 3GPP in order to

standardize the NOMA, which has been studied in 3GPP Releases 13 and 14 and

is under consideration at the standardization activities for 5G NR, can be another

instrument to potentially decrease the radio access latency for URLLC services [26–

29]. For example, the application of 5G URLLC services for autonomous vehicular

networks and road safety applications has been an active research topic [13, 30, 31].

Non-orthogonal multiple access (NOMA) may be a candidate technology for 5G NR

due to its higher spectral efficiency potentially yielding lower radio access latency

by allowing simultaneous transmission of multiple users at the same resource block

[2, 26, 27, 32]. The system-level performance evaluation of NOMA shows that, it has

been a promising multiple access technology due to its high spectral efficiency, massive

connectivity, low latency, and high user fairness [3].

The recent NOMA solutions can be classified into two main categories such that code

domain and power domain NOMA techniques. The code domain NOMA schemes

including Low Density Spreading (LDS) [33], Sparse Code Multiple Access (SCMA)

[34], Pattern Division Multiple Access (PDMA) [35], Multiuser Shared Access

(MUSA) [36], etc, utilizes user-specific spreading sequences to provide separation at

the receiver [37]. On the other hand, power domain NOMA (PD-NOMA) exploits

the power domain to serve multiple users in the same time and frequency resources,
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Figure 2.3 : The summary of the related studies.

and performs successive interference cancellation (SIC) at users with better channel

conditions [3]. In this thesis, PD-NOMA is utilized as the NOMA technology while

investigating the resource allocation mechanisms in addition to the analytical models.

The studies in [1] and [2] present the concept and practical consideration about NOMA

with an SIC based receiver, where the system level performance of NOMA can be

30% higher than orthogonal multiple access (OMA). In [38], it is demonstrated that

NOMA can achieve better outage performance compared to OMA if the user rates and

power levels are appropriately selected but NOMA does not provide much gain when

channel qualities of users are low. The comparison of NOMA with other candidate

multiple access schemes for 5G standards show that NOMA can improve downlink

throughput by more than 30% using power domain multiplexing at the expense of

higher complexity at the receiver [3].

2.3 Resource Allocation for NOMA

User scheduling and power allocation in NOMA systems determine the mapping of

users to radio resource blocks and the transmission power levels of users at each

resource block, respectively. The procedures and algorithms used in the decision

making process directly affect the performance of NOMA in terms of its spectral

efficiency and computational power requirements. The literature review presented in
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this thesis is classified into four categories as resource allocation domain, underlying

objective function, utilized technologies, and cross-layer approaches. Figure 2.3 gives

the summary of the related studies for NOMA resource allocation.

2.3.1 Domains

The power allocation is one of key factors that affect the performance of NOMA

and it is generally considered as an independent problem and solved either after

user scheduling or as a sub-task of the user scheduling algorithm. The fixed power

allocation method uses pre-defined constant power allocation ratios among users

with low and high quality channels [5, 20]. The fractional power allocation method

distributes power among users as inversely proportional to their channel qualities [5].

Iterative and non-iterative water filling algorithms [5, 39] are proposed to allocate the

power among NOMA users sharing the same resource block. In our methods, we use

a modified version of the optimum power allocation strategy presented in [40] to take

non-full buffer user traffic model into account.

In [41], a power allocation scheme is proposed to maximize the sum rate under

the constraints of total power and minimum rates for the NOMA system with one

transmitter and two receivers. [42] presents two sub-optimal power allocation schemes

which target to maximize the sum rate while guaranteeing the minimum rate condition

with a low computational load. Power allocation can also be used to provide

proportional fairness among users by adjusting the transmission power levels of users

in NOMA [43].

For the user grouping of multi-user NOMA system, if the members of a group

occupying the same time and frequency resource are not carefully selected, the system

performance may be severely degraded due to the interference effect. The performance

gain of NOMA over OMA can be significantly improved if users whose channel

conditions are more distinctive are selected as a group [20, 44, 45]. For example,

in [44], it is shown that the performance gain of NOMA over OMA can be significantly

improved if users whose channel conditions are more distinctive are selected as a

group. In another user grouping strategy proposed in [46], two far users having similar

gains with a single near user are grouped together to maximize the spectral efficiency.

In addition, matching theory-based algorithms [39, 47], are widely used to determine
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the user group selection for NOMA systems due to its lower complexity. In another

user scheduling strategy [48], an optimal user grouping algorithm is proposed to

maximize the sum-rate after guaranteeing a certain minimum rate for a particular user.

These studies focus on multi-user scheduling and user grouping without optimizing the

power allocation while our proposed schedulers optimize the power allocation within

each group after the users are grouped and mapped to resources.

Some studies in the literature consider joint optimization of multiuser scheduling and

power allocation for NOMA systems [9,49]. In [49], multi-user scheduling and power

allocation for the NOMA system are considered jointly to satisfy proportional fairness

among users. In order to maximize both fairness and throughput of users in a cell,

[50, 51] presents both multi-user scheduling and power allocation per frequency block

by maximizing the product of the average user throughput. In another study [52],

a game-theory based joint power allocation and user grouping for NOMA downlink

system is proposed which maximize sum rate and reduce the outage probability of the

mmWave-NOMA.

Energy efficient dynamic resource and power allocation for NOMA networks is

investigated in [53] under the QoS constraints, the queue stability, and the power limits

for non-full buffer traffic. These objectives are jointly optimized during the resource

and power allocation by utilizing the Lyapunov optimization method for stochastic

traffic arrivals. Similarly, we consider non-full buffer stochastic traffic arrivals for

NOMA downlink systems. However, we propose to PF based algorithms to consider

both fairness and throughput and a GA based heuristic to reduce the computational

load. An optimal resource allocation method jointly considering power allocation, user

scheduling, and rate allocation is proposed in [54] with the use of imperfect channel

state information and QoS requirements informations of user terminals. In [55], quality

of experience based NOMA system is proposed using a cross-layer approach under

finite buffer traffic model. The system level performance of NOMA downlink system is

investigated using non-full buffer traffic models in [56] reporting that NOMA provides

higher performance gain over OMA especially for small packet sizes. Similar to [56],

our PF-based schedulers are designed for non-full buffer traffic. However, we have

systematically investigated the effect of traffic demand variations on the performance

of NOMA in Chapter 4 when traffic demand rates of users are independently selected
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and change over time. We also employ optimum power allocation within each NOMA

group while pre-defined power allocation levels are used in [56].

NOMA can achieve better outage performance compared to OMA if the user grouping

together with their power levels are appropriately selected [38]. However, NOMA

does not provide much gain when channel qualities of users grouped in the same

resource block are low. Cooperative NOMA can decrease the outage probability of

users having bad channel conditions since users with higher quality channels can be

used as relay nodes to forward other users’ data [57]. The usage of NOMA supporting

MIMO systems is reported in [58]. NOMA is integrated with beamforming systems

with multiple users in [59] such that users are classified into multiple groups and users

in each group share a beamforming vector. The usage of NOMA in energy harvesting

systems transferring wireless power provides advantages in terms of the transmitted

data and the harvested energy [60, 61]. In another set of applications [62–64], NOMA

is used for improving the physical layer security. In [64], secure resource allocation

has been studied for NOMA two-way relay wireless networks and novel matching and

power allocation methods are presented to improve the secrecy energy efficiency.

In a cognitive radio based power allocation method [65], the user with lower channel

quality is considered as the primary user and the other user is allocated a power only if

the requested service quality of the primary user is not adversely affected. The power

allocation method proposed in [66] guarantees the total data rate of all users sharing the

same resource in NOMA to be at least the data rate of OMA. In [41], a power allocation

scheme is proposed to maximize the sum rate under the constraints of total power and

minimum rates for the NOMA system with one transmitter and two receivers. [42]

presents two sub-optimal power allocation schemes which target to maximize the sum

rate while guaranteeing the minimum rate condition with a low computational load.

Power allocation can also be used to provide proportional fairness among users by

adjusting the transmission power levels of users in NOMA [43]. In [49], multiuser

scheduling and power allocation for a NOMA system are considered jointly to satisfy

proportional fairness among users. The proposed PF-based methods in Chapter 4 not

only provide the proportional fairness by utilizing the similar approach but also take

the user traffic variations into account using non-full buffer traffic model.
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2.3.2 Objectives

The total power consumption can be minimized for NOMA systems under QoS

requirements to improve energy efficiency the due to its spectral efficiency. The

subchannel assignment and power allocation are jointly optimized in [67] to maximize

the energy efficiency where the CSI is perfectly known at the base station. Since it a

challenging task to obtain the perfect CSI, [68] presents the joint resource allocation

scheme which maximize the energy efficiency with imperfect CSI. In [69], an

optimum power allocation that minimizes the transmit power under the throughput

outage constraint is proposed. In another study [70], an optimum power allocation for

minimizing the transmit power (i.e., energy efficiency) under the outage constraint is

proposed.

The achievable rate regions of the NOMA downlink systems under the outage

constraints are presented in [71] using the channel statistics based SIC ordering.

In [66], the expressions of the average user throughput is provided for both NOMA

downlink and uplink systems under a Rayleigh fading channel model by considering

target data rates as constraints. The outage probability and ergodic capacity

expressions are derived for a two-user NOMA uplink system such that the same

spectrum is shared by multiple device-to-device (D2D) user pairs [72]. In addition,

the average user throughput for a Rayleigh fading channel model is formulated to

analyze the secrecy capacity for NOMA downlink systems [73]. Since these studies

focus on only modelling of the throughput, they do not provide higher order statistics

of the service rates. In this thesis at Chapters 5 and 7, the first and second moments

of the service rate statistics are derived for the objective of characterizing the latency

dynamics of both NOMA and OMA users under a Rayleigh fading channel model.

The proportional-fairness (PF) based approaches [5–7] have been widely used for

resource and power allocation in NOMA systems. The objective of the PF based

scheduler is to assign radio resources to users in such a way that the PF metric,

which is the product of average user throughputs over a time window, is maximized.

This objective provides a good compromise between the sum-rate of all users (i.e.,

network-wide throughput) and the fairness among users. In [5], the user pairing

corresponding to the highest PF metric is selected among all possible user pairing

combinations. Since this approach requires prohibitively expensive computational
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power, [6] and [7] propose simplified PF based algorithms which require significantly

lower computational power while yielding comparable results to the optimum solution.

Another approach [8, 9] to resource allocation for NOMA systems aims to maximize

the sum-rate of all users at each time epoch after satisfying certain constraints such

as the minimum power allocation and throughput of each user. All of the above PF

based resource allocation studies for NOMA systems assumes full buffer traffic model

which does not correspond to real life traffic scenario. In Chapter 4, the non-full buffer

traffic model is utilized, where the traffic demand for each user is limited to a certain

application rate.

The outage probability is an important metric that can be used to characterize the

reliability and latency of wireless networks. For example, the hybrid automatic repeat

request (HARQ) is heavily utilized to re-transmit lost data in outage causing additional

overhead and latency [74]. The outage event can be defined for cellular systems using

various performance metrics such as maximum delay, minimum throughput, minimum

BER, and minimum SINR levels. The outage analysis is provided in [38, 66, 71, 75]

when each user has a different rate constraint. A closed-form formulation of individual

user’s outage probability under the Nakagami-m channel together with the optimum

power allocation in terms of power efficiency is presented in [76]. The outage

probability and ergodic capacity expressions are derived for two-user NOMA uplink

system, where the same spectrum is reused by the device to device NOMA user

pairs [72]. In [77] and [71], a system outage occurs if any or both of the users are

in the outage state. We have utilized this definition in the same Chapter 6 and provided

the optimum power allocation coefficients as a closed form expression which minimize

the system outage probability.

The study in [78] investigates the outage probability of OMA downlink transmission,

in which the transmitter knows the probability distributions of the fading. In [66],

the expressions of the average user throughput is provided for both NOMA downlink

and uplink systems under the Rayleigh fading channel model by considering target

data rates as a QoS constraints. A closed-form formulation of individual user’s outage

probability under the Nakagami-m channel considering energy constraint is presented

in [79]. The SINR outage constraint is considered in [73] to analyse the individual

and system outage probabilities in addition to the secrecy capacity of the NOMA
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system under Rayleigh fading channel. These studies assume that the transmitter

has the probability distributions of the fading coefficients instead of their realizations.

By following a similar approach, the proposed models in Chapters 6 and 7 takes the

SINR outage constraint into account for both of the decoding and SIC processes at the

receiver. On the other hand, the aforementioned studies focus on only modelling of

the throughput, they do not provide higher order statistics of the service rates under the

outage constraint. In Chapter 7, the first and second moment statistics of the service

rate are derived by considering the SINR outage constraint to characterize the latency

dynamics of individual users for both NOMA and OMA systems under the Rayleigh

fading channel.

In [66], the expressions of the average user throughput is provided for both NOMA

downlink and uplink systems under the Rayleigh fading channel model by considering

target data rates as constraints. A closed-form formulation of individual user’s outage

probability under the Nakagami-m channel considering energy constraint is presented

in [79]. The study in [78] investigates the outage probability of OMA downlink

transmission, in which the transmitter knows the probability distributions of the fading.

The SINR outage constraint is considered in [73] to analyse the individual and system

outage probabilities in addition to the secrecy capacity of the NOMA system under

Rayleigh fading channel. The study in [80] investigates the outage probability of OMA

downlink transmission, in which the transmitter knows the probability distributions of

the fading. By utilizing the similar approach, in Chapter 6 we analyzed the outage

probability of the NOMA downlink transmission under the Rayleigh fading channel

model. Further, we present the optimum power allocation that minimizes the NOMA

system outage probability under the assumption that the transmitter knows only the

probability distributions of the fading coefficients.

In [81], the power control policy for NOMA is studied to meet the delay objectives

deriving the effective capacity formulation when the channel state information (CSI) is

known. Their delay results are obtained only using the simulations while in this thesis

we analytically expressed the average queuing delay for NOMA downlink systems

when the probability distribution of the underlying channel is known. In general,

NOMA resource allocation studies focused on achieving maximal sum-rate capacity,

fairness or minimizing latency. Quality of experience (QoE) is one of the key metric
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that provide perceptual quality of service (QoS) from the user’s perspective [55, 82].

In [55], upper-layer impact of NOMA on the user side is investigated and cross-layer

NOMA frameworks for QoE provisioning is presented. They also provide an optimal

user clustering scheme to minimize the average QoE loss with dynamic scheduling

technique. In another study [83], both sub-channel assignment and power allocation

scheme is presented improve the user QoE for multi-cell NOMA networks.

2.3.3 Technologies

NOMA can be applied to different communication scenarios such as device-to-device

(D2D), multiple-input multiple-output (MIMO), and cooperative communication.

Several relay nodes are used to support a source while transmitting the information to

the receiver in cooperative communications. Therefore, the integration of cooperative

communications with NOMA can further improve system efficiency in terms of

capacity and reliability [84]. NOMA has been enabled for a two-way relay network

and its superiority over conventional time division multiple access (TDMA) based

scheme is presented by providing the closed form expression of ergodic capacity [85].

The impact on relay selection for NOMA is investigated in [86]. They propose

the two-stage relay selection algorithm to maximize the diversity gain in addition to

minimize the outage probability. In [87], the secrecy capacity of a cooperative NOMA

system is analyzed and the condition of NOMA to outperform OMA is presented.

They also provide the optimal power allocation method to maximize the secrecy rate.

Besides, beamforming and cooperative relaying systems are considered with NOMA

to provide low latency transmission by maximizing the spectral efficiency [88].

Beamforming is the signal processing technique that allows directional communication

of wireless communication systems. Enabling beamforming with multi-user cellular

systems, the same radio resources can be reused at each beams to increase the

system level capacity. Multiple-input multiple-output (MIMO) communications with

multi-user beamforming have been widely investigated while NOMA is used as a

multiple access scheme. The users are grouped as clusters in MIMO-NOMA and

a single beam is utilized by all the receivers of a cluster. In [89], the users with

different receive antennas are grouped as a clusters and each cluster of MIMO-NOMA

is served by a single MIMO beam. They have also provide a power allocation
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method for both inter-cluster and intra-cluster power level assignment in addition

to the user clustering algorithm which maximize the total system throughput. A

joint user pairing and power allocation scheme is proposed to maximize the energy

efficiency multiple-input multiple-output (MIMO) NOMA downlink system in [90].

Their proposed approach utilize the median and the euclidean norm of the MIMO

channels to reach the corresponding objective. The co-existence of NOMA and

mmWave solutions are investigated in [91] relying on random beamforming. They

evaluate the potential line-of-sight (LOS) blockages of mmWave systems by utilizing

the stochastic geometry model.

Simultaneous wireless information and power transfer (SWIPT) can also be integrated

into NOMA systems. For example, [92] investigate the SWIPT concept in cooperative

NOMA systems and provide a framework to increase energy efficiency. In [93],

power allocation framework is utilized for power transfer assisted cooperative NOMA

systems and the capacity results are provided as closed form expressions. Furthermore,

a novel communication scheme including user clustering algorithm is proposed in [94]

such that beamforming, energy harvesting, and cooperative NOMA technologies are

combined. They also provide the outage probability analysis where the required SINR

level is selected as the outage condition.

The application of NOMA in Visible Light Communication (VLC) has been an

active research topic as it is a potential candidate for next-generation wireless

communications. The comparison between NOMA and OMA for VLC and the

superiority of NOMA in terms of the achievable capacity is emphasized in [95]. In

[96], the power allocation for NOMA-VLC is studied to maximize the sum of data rates

while satisfying the required SINR levels of users. The user grouping and the power

allocation for NOMA VLC networks are proposed in [97], where the network-wide

sum rate is maximized while the minimum throughput is utilized as a QoS constraint.

Recent studies in the literature present the hybrid multiple access schemes, where

NOMA and OMA are jointly utilized according to the network conditions [98–101].

For example, a hybrid NOMA and OMA scheme is proposed at the uplink to enhance

the fairness among users by utilizing the Jain’s index as a performance criterion [98].

In another study of uplink [99], NOMA is integrated into OMA to provide energy

efficiency. To achieve this objective, a joint user grouping and power allocation scheme
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is proposed while guaranteeing the minimum rate requirement of each user. The

buffer-aided relay selection method is presented to main the sum-rate of the network

for hybrid NOMA and OMA scheme [100]. They also investigate the power level

assignment of the hybrid scheme in terms of the outage probability according to the

user rate requirements. In [101], dynamic power allocation scheme is proposed for

hybrid downlink NOMA systems such that when the strong user’s channel gain is lower

than a threshold, which is determined by the weak user’s predefined rate requirement,

OMA is utilized.

2.3.4 Cross-layer approaches

Non-orthogonal multiple access (NOMA) may be a candidate technology for 5G NR

due to its higher spectral efficiency potentially yielding lower radio access latency

by allowing simultaneous transmission of multiple users at the same resource block

[2, 26, 27, 32]. The user plane end-to-end delay of packet transmission can be divided

into three main parts: radio access, mobile core, and cloud, where the radio access

latency between a base station and user equipment includes over-the-air transmission

and propagation, queuing, processing, and re-transmission delays [12]. The outage

probability analysis has also been taken considerable attention to study the reliability

of wireless networks. New analytical models, which can characterize the radio access

latency dynamics by taking the outage event into account, are of paramount importance

to evaluate the NOMA suitability for URLLC services of 5G NR.

A cross-layer resource allocation approach considering not only wireless channel

characteristics in the physical layer but also traffic arrival and queue occupancy

information at the link layer should be employed to achieve the challenging latency

objectives of 5G [13]. The effective capacity approach in [102] is used to accurately

predict several link-level QoS metrics such as delay bounds for admission control

and resource reservation in wireless communication systems. In [81], the sub-optimal

power allocation policy for NOMA is studied to meet the delay objectives deriving the

effective capacity formulation when the channel state information (CSI) is known at the

transmitter.. The performance limitations of NOMA in short packet communication for

URLLC services are studied by analytically deriving the effective-bandwidth in [15].

The effective capacity of NOMA guaranteeing the statistical delay requirements under
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fading channels has been studied in [17, 18, 103]. The bisection-based cross-layer

power allocation scheme is proposed in [103], where the max-min effective capacity

of NOMA is selected as the optimization objective. Another NOMA downlink study

considering short packet transmission for the IoT applications is presented in [104]

such that they employ particle swarm optimization technique to minimize the system

energy consumption while maintaining a certain level of effective-throughput.

An opportunistic NOMA downlink approach is presented in [14] such that they

propose two queues with different priority levels at the base station for all users.

The performance limitations of NOMA in short packet communication for URLLC

services is studied by analytically deriving the effective-bandwidth in [15]. The

performance of NOMA in short-packet communications is studied in [16] and the

optimal power allocation scheme is presented to provide fairness among users’

throughput while satisfying QoS requirements of URLLC. Another NOMA downlink

study considering short packet transmission for the IoT applications is presented in

[104] such that they employ particle swarm optimization technique to minimize the

system energy consumption while maintaining a certain level of user throughput.

The effective capacity of NOMA under statistical delay guarantees has been studied

in [17, 18]. In another study [19], a cross-layer approach using integer linear

programming is proposed to minimize the average delay for NOMA applications of

delay sensitive communication. These studies consider the outage condition as a delay

violation constraint while this thesis presents an analytical model in Chapter 5 to

characterize the average queuing delay. Furthermore, Chapter 7 presents the extended

analytical model for average queuing delay by taking the SINR outage constraint into

account.

In [105], the authors utilize the stochastic network calculus approach to study the

resource allocation problem for uplink NOMA systems by minimizing the delay

violation probability. They stated that NOMA with the SIC decoding may not be

suitable for low latency system under realistic system effects such as imperfect CSI.

We have also achieved a similar result for two-user NOMA downlink systems when

the SINR outage constraint is set to higher levels in Chapter 7.

Stable throughput regions for uplink NOMA systems under unsaturated traffic are

investigated using the queuing theory approach, where traffic arrival for each user is
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assumed to be independent Bernoulli process [106]. Similarly, the delay analysis of

NOMA is studied using the queuing theory approach in this thesis; however, we focus

on downlink channels. [107] investigates the average delay minimization problem for

two-user OMA networks and show that the optimal resource allocation policy needs to

equalize the queue lengths of both users. We present the optimum cross-layer power

allocation framework minimizing the maximum of average queuing delays in two-user

NOMA downlink system in Chapter 7. Consistent with the proposal in [107], we

have analytically shown that the optimal power allocation method yields the minimum

average queuing delay by minimizing the difference between the average queuing

delays of both users. The queuing analysis of block Rayleigh fading channels for

conventional OMA system is presented in [108] by utilizing the discrete time discrete

state D/G/1 queuing model. They drive the probability distribution of packet service

time by taking advantage of the channel distribution of the low SNR regime. In

another study [109], a general state space Markov chain model is proposed to calculate

the throughput regions of OFDMA users under a Rayleigh fading channel by taking

the scheduling algorithms into account. The buffer overflow probability providing

insights for buffer dimensioning problems is obtained assuming that each user has

finite traffic arrival and queue capacity. In Chapters 5 and 7, we adopt a similar system

model for the NOMA downlink such that each user has a dedicated queue with the

packet based random traffic arrival model and the departure process of each queue is

determined by the NOMA resource allocation parameters in addition to the Rayleigh

fading channel. Since we focus on the latency analysis for the URLLC services, we

utilize a discrete-time M/G/1 queuing model to obtain the average queuing delays of

both NOMA and OMA downlink systems by taking both arrival and departure models

into account. In [110], theoretical queuing analysis and system-level simulations are

performed to study the system design principles of 5G NR. They emphasize that the

queuing effect has an important contribution on the URLLC latency. They emphasize

that the queuing delay has an important contribution on the URLLC latency. Although

they study both uplink and downlink models for 5G NR, the NOMA technology is

not considered in their model. The average queuing delay of 5G NR frame types for

both NOMA and OMA downlink systems has been evaluated using our discrete-time

M/G/1 queuing model proposed in this thesis.
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3. GENETIC ALGORITHM APPROACH FOR NOMA RESOURCE
ALLOCATION

In this chapter, genetic algorithm (GA) based multi carrier NOMA downlink radio

resource allocation scheme is proposed to reach a target solution which balances the

trade-off between total system throughput and fairness among users. In [4], the authors

state that the criterion of a single metric (i.e., maximizing the geometric mean of

user throughputs) can achieve the optimal trade-off between total system throughput

and fairness among users. Inspired from this study, our objective function is set to

maximize the geometric mean of user throughputs in a cell. Our GA based allocation

scheme considers not only the transmission power levels of users at the same radio

resource but also user grouping to satisfy the maximum geometric mean of user

throughputs in a cell. The GA approach is used to determine the user groups for the

NOMA downlink system while the optimal transmission power level assignment is

applied for each user group. In other words, power allocation and user grouping are

jointly considered in our GA based resource allocation approach.

3.1 NOMA System Model

The main principle of NOMA with SIC is illustrated in Figure 3.1, where two users are

sharing the same bandwidth with distinct power levels. BS represents a base station

transmitting the signals of UE1 and UE2 simultaneously. In this example, the signal

of UE2 has more power level than the signal of UE1. It is assumed that UE1 as a near

user can first decode the signal of UE2 from the received combined signal by applying

SIC process. Then, UE1 can decode its own signal by removing the decoded signal

of UE2. Although the signal of UE1 interferes with the signal of UE2, UE2 can still

decode its own signal since the signal of UE2 has more power level than the signal of

UE1.

For the NOMA example in Figure 3.1, the transmitted signal x is the sum of x1 =
√

p1.s1 and x2 =
√

p2.s2, where s1 and s2 represent signals to be transmitted to UE1
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Figure 3.1 : NOMA with SIC concept for two UE receivers in downlink.

and UE2 at the BS while p1 and p2 are power levels of s1 and s2, respectively. At

the receiver side, r1 = r11 + r12 and r2 = r21 + r22 represent the received signals while

h1 and h2 are the channel response for UE1 and UE2, respectively. Finally, w1 and

w2 represent the channel noise for UE1 and UE2, respectively. UE1 first employs an

SIC process to remove r12 from r1 so that r11 can be successfully decoded. For the

error-free SIC process and the transmission bandwidth of 1 Hz, R1m and R2m represent

throughputs of UE1 and UE2 at the subcarrier m, respectively:

R1m = log2

(
1+

p1k |h1m|2

W0,1m

)
,

R2m = log2

(
1+

p2m |h2m|2

p1m |h2m|2 +W0,2m

)
.

(3.1)

The generalized form of the throughput for an arbitrary user k at the subcarrier m is:

Rkm = log2

(
1+

pkm |hkm|2

∑
n−1
i=1 pim |hkm|2 +W0,km

)

s. t.
|hkm|2

W0,km
>

∣∣h0,(k+1)m
∣∣2

W0,(k+1)m
.

(3.2)
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3.2 Multi-user Resource Allocation for NOMA

In this chapter, we consider OFDM based NOMA downlink systems, where each

OFDM subcarrier can be assigned to multiple users with distinct power levels. Let

Nmax and M be the maximum number of user per subcarrier and the number of

subcarriers, respectively. A resource allocation map represents the assigment of user

groups and their corresponding subcarriers. Then, the number of allocation blocks in

the resource allocation map is Nmax×M. In other words, the resource allocation map

shows the assignment of the users to Nmax×M allocation blocks in a cell. When the

number of connected users in a cell is represented as K, the number of all possible

resource allocation maps is:
M

∏
1

Nmax

∑
i=1

(
K
i

)
. (3.3)

Our objective is to maximize the geometric mean of user throughputs in a cell when the

NOMA technology is employed. Towards reaching this objective, one should decide

both resource allocation map and the power assignment of users in each subcarrier

which require an exhaustive search within a prohibitively huge search space. The

optimal user group assignment map (Iopt) and power (Popt) assignment yielding the

maximum geometric mean of user throughputs can be defined as follows:

(P, I) = arg max


[

K

∏
n=1

Rk

]1/K
 (3.4)

s. t. Rk = ∑
M
m=1 Rkm, I =

⋃M
m=1 Im, P =

⋃M
m=1 Pm,

Pm =
⋃

i∈Im
pim and 1 = ∑i∈Im pim

where P, pim, Im, and I represent a power assignment vector, the power level of ith

member of user group at the subcarrier m, user group at the mth subcarrier, and the

resource allocation map including the information of user groups for all subcarriers,

respectively.

3.3 Genetic Algorithm Based Allocation Scheme

In this section, we present a multi-user resource allocation scheme to assign available

radio resources to the users assuming that the NOMA technology is utilized. The

objective is to find the resource allocation which maximizes the geometric mean of

user throughputs, where there is a prohibitively huge search space. Genetic Algorithm
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(GA) is a population based powerful meta-heuristic for exploring a huge search space

in complex optimization problems [111].

In this chapter, the definition of the NOMA resource allocation problem is given for

the generic case, where there is no constraint for the number of users, the number of

allocation blocks and each user can be assigned to multiple allocation blocks. However,

we propose a GA based NOMA resource allocation scheme inspired from the traveling

salesman problem (TSP). In the TSP concept, a traveling salesman must plan his trip

with a minimum cost assuming that he visits every city in his trip exactly once and

the costs of traveling between each pair of cities are known [112]. The TSP version

of the GA can be directly applied to NOMA resource allocation problem when the

number of users (K) is equal to the number of allocation blocks (Nmax×M) and each

user is assigned to only one allocation block. The search space includes (Nmax×M)K

solutions for the generic case and (Nmax×M)! solutions for the special condition

studied in this chapter.

The work flow of the proposed GA is depicted in Figure 3.2. A certain number of

chromosomes corresponding to the number of individuals in the population is initially

created. The crossover operation on the current population periodically updates this

solution set by generating new offspring, and hence, explores the search space of all

possible solutions. After the crossover operation, the selection process is performed

to determine surviving individuals according to their fitness values. This process is

continued until the stopping criteria is met [111]. Using the same procedure, we

propose a GA based NOMA-OFDM multi user allocation scheme to maximize the

geometric mean of user throughputs. The details of the proposed scheme are given in

the following sections.

3.3.1 Chromosome structure and initialization

Methods for the chromosome structure of TSP such as adjacency, ordinal, and path

representations are presented in [112]. We consider that the path representation

is the most suitable method for NOMA radio resource allocation because other

representations increase the complexity of the problem. Each path in TSP can

correspond to the user groups and their corresponding subcarriers in the NOMA

resource allocation case. Figure 3.3 shows an example chromosome representing
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Figure 3.2 : Flow chart of genetic algorithm.

Figure 3.3 : Chromosome structure.

an allocation map solution for the NOMA-OFDM system having 6 allocation blocks

when the maximum number of user per subcarrier, Nmax, the number of subcarriers,

M, and the number of users, K are set to 2, 3, and 6, respectively. Each

chromosome is composed of 6 genes and each gene corresponds to an allocation

block. The assignment of an allocation block to users is shown with a user id

(e.g., UE1,UE2,...,UE6), where each id uniquely defines the corresponding user. P

individuals are randomly created at the initialization phase, then update and selection

processes are repeated at the main loop until the stopping criteria is reached.

3.3.2 Cross-over process

In GA applications, generating new individuals by the cross-over process ensures

the search diversity. The order-based cross-over presented in [113] is employed as

the cross over process of the GA algoritm. This operation randomly selects several

positions in a chromosome vector and the users in the selected positions in the first

parent is imposed on the corresponding allocation blocks in the second parent. Figure

3.4 shows an example of the cross-over process. The randomly generated integer

numbers 4 and 2 represent the locations of the users in the allocation blocks. The
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users corresponding to these positions in the second parent are UE2 and UE6. These

users are ordered as UE6 and UE2 and this order is imposed to the the first parent in

order to generate a new offspring. Imposing process is defined as changing the value

of the allocation blocks with new ordered users in the first parent. The same process is

applied for the second parent so that a solution diversity is provided by generating two

child chromosomes.

Figure 3.4 : Cross-over process.

3.3.3 Selection and fitness function

The selection operation is performed for 2×P chromosomes consisting of P initial

parents and P offspring. The first P individuals with the highest fitness values are

selected to form the new population. The fitness of each chromosome is evaluated

using a fitness function presented in Table 3.1, in which the geometric mean of user

throughputs for a candidate allocation map (i.e., chromosome) is calculated. Note that

the power levels of the users at each subcarrier is determined using power optimization

described in the next section.

3.4 Power Optimization

Power allocation at the NOMA process directly affects a user’s SINR value and hence

is a key parameter for determining the throughput value of each user. Flexibility of

controlling the power allocation level at the base station can be used as an effective tool

to determine the total throughput level of cell and fairness among users. Maximizing

the geometric mean of user throughputs, which is based on proportional fairness, can

achieve optimal trade-off between total user throughput and user fairness with a single
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Table 3.1 : Fitness function of GA.

input: allocation map
output: fitness value
for each subcarrier (m) in allocation map

Im : get user group in the subcarrier m
gm : get normalized channel gains for Im
Pm : find optimal power levels for gm
Rm : calculate user throughputs (Pm,gm)

end
fitness value = calculate geometric mean of all users

metric [4]. Equation (3.5) provides optimal power levels for users at the subcarrier m

while Nmax, Rkm, and Pm = (p1m, p2m, . . . , pNmaxm) representing the maximum number

of users per subcarrier, user throughput value, and optimal power levels, respectively.

Pm = arg max

{
Nmax

∏
i=1

Rim

}
. (3.5)

The processed channel capacities can be calculated using the normalized channel

gains gkm = |hkm|2
W0,km

and power levels pkm. Therefore throughput formulations can be

reconstructed using normalized channel gains and power level values for each user.

It is assumed that the user channel conditions are ordered as gkm > g(k+1)m, so, the

inequality of power level values satisfy the condition of pkm < p(k+1)m where the

total power of each subcarrier m is equal to one (1 = ∑
Nmax
i=1 pim). For Nmax = 2, user

throughputs are:

R1m = log2 (1+ p1m.g1m) ,

R2m = log2

(
1+g2m

1+ p1mg2m

)
s. t. p1m ∈ (0,1/2) and p2m = 1− p1m .

(3.6)

For Nmax = 3, user throughputs are:
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R1m = log2 (1+ p1m.g1m) ,

R2m = log2

(
1+(p1m + p2m).g2m

1+ p1m.g2m

)
,

R3m = log2
(

1+g3m

1+(p1m + p2m).g3m

)
s. t. p1m ∈ (0,1/3), p2m < (1− p1m)/2,

p3m = 1− p1m− p2m .

(3.7)

3.5 Simulation Results

When the geometric mean of user throughputs is numerically calculated for Nmax is 2

and 3, its distribution forms a convex curve and has only one maximum value under

given power constraints. Iterative gradient ascend method (IGAM) is suitable to solve

this type of convex optimization problem. Therefore, in this chapter, we employ IGAM

to find the optimum power allocations for each user group. There are several power

allocation methods proposed in the literature such as fixed power allocation (FPA) [5]

and fractional transmission power control (FTPC) methods [1]. The FPA does not take

channel qualities into account and determines power levels of users using a pre-defined

parameter. On the other hand, FTPC is inspired from LTE uplink transmission power

control to equalize the user channel variations.

The optimized power allocation which satisfies the maximum geometric mean of user

throughputs for different user channel qualities is evaluated and compared with FPA

and FTPC. The simulation setup is configured for one subcarrier and two users for

all experiments. While one of the user’s SNR value is constant and set to 0 dB, the

second user’s SNR value varies from 0 dB to 50 dB. These SNR values are calculated

before the power allocation process by using normalized channel gains. Figure 3.5

represents the behavior of geometric mean of user throughput values formulated as
√

R1.R2 where R1 and R2 represent the throughput value of first and second users. The

proposed NOMA power optimized method satisfies the best geometric mean of user

throughput for all SNR variations. For all power allocation methods, the performance

improvement of NOMA over OMA increases as the difference between user channel

gains gets higher.

The performance of GA based NOMA-OFDM multi user allocation scheme is

evaluated and compared with OMA, Random NOMA and Exhaustive Search allocation
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Figure 3.5 : Geometric mean values for two-user case.

schemes. The OMA scheme satisfies that each subcarrier is assigned to only one user.

Therefore, when the number of subcarriers is equal to the number of users then each

user has one subcarrier to satisfy the maximum cell geometric mean. Random NOMA

allocation scheme randomly selects user groups to be assigned to subcarriers while the

power level optimization is employed for each user group. Exhaustive search provides

the best allocation map among all possible allocation map solutions. This scheme

satisfies the best allocation map because of comparing all possible solutions with each

other. However, huge computational power requirement makes this allocation scheme

prohibitively expensive for practical implementations.

For the simulations, one base station and uniformly distributed user locations in a

cell is used. The number of individuals of GA is set to 8 and the maximum number

of iterations of 50 is selected as the stopping criteria. The rest of the simulation

parameters are given in Table 3.2. For all NOMA multi user allocation algorithms,

power optimization among user groups is applied for both Nmax = 2 and Nmax = 3. The

simulation results are reported as the average of 1000 experiments for each algorithm.

Figure 3.6 shows the geometric mean variations while the number of users in a cell

increases. The first result from this figure is that, even if user grouping in NOMA
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Table 3.2 : Simulation parameters for GA based resource allocation.

Parameter Value
Transmission Bandwidth 1 MHz

Path Loss Exponent 3
Transmit Power 10 dBm

Receiver Noise Density -169 dBm/Hz
Shadowing standard deviation Lognormal with 8 dB

Fading Model Rayleigh Fading
Cell Radius 1 km

Nmax 2,3
Number of users 6,12,18,24,30

Number of subcarriers
OMA 6,12,18,24,30

Nmax = 2 3,6,9,12,15
Nmax = 3 2,4,6,8,10

Figure 3.6 : Geometric mean of user throughput versus the number of users.
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executed randomly, NOMA has better performance than OMA. Secondly, although it

is clear that exhaustive search NOMA has the best performance, GA based NOMA

achieves the same performance of exhaustive search allocation scheme. Considering

the computational load of exhaustive search, GA is an efficient way to converge to the

best solution. Note that, simulations for exhaustive search algorithm are only applied

when the number of user is set to 6 and 12 because of higher computational load

when the number of users is higher. Finally, it can be said that when the maximum

number of users per subcarrier Nmax increases, the geometric mean of user throughputs

increases if the optimized power levels are in use. These results are obtained under the

assumption that receivers perfectly execute successive interference cancellation (SIC)

process.

3.6 Summary

In this chapter, a downlink radio resource management for wireless NOMA system is

studied from the multi-user scheduling perspective towards maximizing the geometric

mean of user throughputs. Genetic algorithm (GA) approach is proposed to reach

the best resource allocation solution, where the power level optimization is employed

for each candidate user group. Simulation experiments show that the proposed method

quickly converges to the target solution that balances the trade-off between total system

throughput and fairness among users.

Another performance criterion which provides a good compromise between the

sum-rate of all users (i.e., network-wide throughput) and the fairness among users is

Proportional Fairness (PF) metric. The proposed resource allocation approach in this

chapter assumes full buffer traffic model which does not correspond to real life traffic

scenario. The traffic model in a real network setting is generally non-full buffer where

the traffic demand for each user is limited to a certain application rate. In the next

chapter, we have investigated the NOMA downlink resource allocation to maximize

the PF metric by taking the rate limited user traffic demands in to account.
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4. PROPORTIONAL FAIR NOMA RESOURCE ALLOCATION UNDER
RATE LIMITED TRAFFIC

The most of the resource allocation studies for NOMA systems including our Genetic

Algorithm approach presented in the previous chapter assumes full buffer traffic model

where the incoming traffic of each user is infinite while the traffic in real life scenarios

is generally non-full buffer The objective of the PF based scheduler is to assign radio

resources to users in such a way that the PF metric, which is the product of average

user throughputs over a time window, is maximized. This objective provides a good

compromise between the sum-rate of all users (i.e., network-wide throughput) and the

fairness among users. This objective is utilized for NOMA downlink systems without

considering the user traffic demands [5–8]. In [5], the user pairing corresponding to the

highest PF metric is selected among all possible user pairing combinations. Since this

approach requires prohibitively expensive computational power, [6] and [7] propose

simplified PF based algorithms which require significantly lower computational power

while yielding comparable results to the optimum solution. All of the above PF based

resource allocation studies for NOMA systems assumes full buffer traffic model which

does not correspond to real life traffic scenario. The traffic model in a real network

setting is generally non-full buffer where the traffic demand for each user is limited to

a certain application rate.

In this chapter, two user scheduling and power allocation methods employing PF based

objective functions for NOMA downlink systems under non-full buffer traffic models

are proposed. Although the existing PF based user scheduling in NOMA systems

has been demonstrated to significantly improve the system capacity when the user

traffic model is full buffer, it does not perform well when user traffic rates are limited

and time-varying. In User Demand Based Proportional Fairness (UDB-PF) algorithm,

the PF based scheduling is extended to take time varying user traffic demands into

account in addition to allocating optimum power levels towards satisfying the traffic

demand constraints of user pair in each resource block. The main contribution in

UDB-PF is to provide the optimum power allocation under user rate constraints. In
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other words, when the optimum power level of a user provides higher rate than its

rate constraint, the excessive power is reallocated to the other user(s) in the same

NOMA group. The objective of Proportional User Satisfaction Fairness (PUSF)

algorithm is to maximize the network-wide user satisfaction which is the product of

average satisfaction values of all users for a given time window. Note that the highest

network-wide user satisfaction is achieved when the resources are sufficient to carry

traffic demands of all users. In the PUSF approach, the user satisfaction objective for

the user grouping and power allocation optimization is defined by us for the first time.

However, the maximization of the product of average user satisfaction is similar to

PF based methods. As in the UDB-PF approach, the PUSF can also reallocate the

excessive power to the other users in the same NOMA group. In both UDB-PF and

PUSF algorithms, user groups are selected first to simultaneously transmit their signals

at the same frequency resource while the optimal transmission power level is assigned

to each user to optimize the underlying objective function. These proposed algorithms

evaluate all user group possibilities to select the best user group allocation at each

resource block. However, the computational complexity becomes an important issue

when the number of users gets higher, especially to meet the real time requirements of

the scheduling decisions. We also present a Genetic Algorithm (GA) heuristic to find

the user group at each resource block with a relatively low computational load. The

UDB-PF and PUSF algorithms with the GA extensions are named as UDB-PF-GA and

PUSF-GA, respectively.

We performed simulation experiments by assuming a single input single output

antenna for multi-carrier systems and the base station has a perfect knowledge of

channel state information of users. The performance evaluation has been done by

varying the number of users and traffic characteristics of each user and sum-rate

(throughput) and user satisfaction results are reported. The results show that both

algorithms consistently perform better than the PF based user scheduling and converge

to the same results if user traffic demands remain constant with time. When user

traffic demands change rapidly over time, UDB-PF yields better sum-rate while PUSF

provides better network-wide user satisfaction results compared to the PF based user

scheduling. UDB-PF-GA and PUSF-GA provide the same performance results with

the UDB-PF and PUSF algorithms, respectively when the number of users is relatively
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low. When the number of users in the network increases, the performance gain on the

computational load significantly increases compared to the UDB-PF and PUSF, while

the throughput and user satisfaction results are only slightly degraded.

4.1 System Model

In this section, firstly a NOMA downlink system model and ergodic capacities for

user terminals are introduced for a single resource block. Then, the multi user multi

resource block NOMA downlink resource allocation system model is presented under

the constraint that user traffic rate requirements are limited with a certain data rate. Let

us consider a downlink NOMA system consisting of a single base station and multiple

users. Compared to the case of a single user allocation to each radio resource block

(i.e., frequency subband) in OMA, multiple users can be assigned to each resource

block at the same time epoch in NOMA. Assuming that K users are allocated to each

frequency subband, the combined signal transmitted from the base station to users can

be represented as follow:

x =
√

p1s1 +
√

p2s2 + · · ·+
√

pKsK (4.1)

where sk and pk represent the data symbol per unit energy of kth user and the amount of

power allocated for this user, respectively (1≤ k≤ K). The total power allocated to all

users should be equal to the amount of power allocated for this subband (p1+ ...+ pK =

Psb). Assuming that the system is single-input single-output (SISO), the signal of the

kth user is:

yk = hk
√

pksk +hk

k−1

∑
i=1

√
pisi +hk

N

∑
i=k+1

√
pisi +wk (4.2)

where hk is the channel gain between the base station and the kth user, wk is additive

white Gaussian noise including both inter-cell and inter-channel interferences, and

W0,k represents the spectral power density of the noise. The users should apply SIC

procedure to decode their corresponding signals. Since the users with lower channel

qualities are allocated more power in the NOMA system, the users with high channel

qualities first decode the signals of the users with lower channel qualities and then the

decoded signal is subtracted from the combined received signal to obtain their own

signal.
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Figure 4.1 : User demand based NOMA resource allocation concept.

Assume that the channel qualities of the users are arranged in descending order. In this

case, the kth user will remove the signals of the users having k+1 or higher index (i.e.,

the third term in equation (4.2) after the equality sign) using the SIC method.

Assuming that the channel information of all users are known at the base station, the

role of the base station is to decide the allocation of users to radio resources and their

transmission power levels. The detailed expressions of the NOMA concept is proposed

in [111].

Figure 4.1 shows the concept of user demand based NOMA resource allocation

scheme at the base station. The system model is designed for a single cell NOMA

downlink system with M resource blocks and K user terminals. Each resource block

m∈{1,2...M} is composed of one subcarrier at the frequency domain and one time slot

at the time domain. The proposed NOMA resource allocation scheme takes the user

traffic demand requirements (Ω1, Ω2, ..., ΩK) and the channel state information (h1,m,

h2,m, ..., hK,m, where m ∈ {1,2...M}) into account during the allocation of resources

to users such as user grouping and user power assignment are jointly considered to

optimize the underlying objective. Assume that the channel state information of UEs

are perfectly known at the base station.
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Assuming that perfect SIC is employed at the user terminals, the throughput of kth user

is represented as Rk:

Rk =
M

∑
m=1

Rkm,

s.t. Rkm = B× log2(1+
|hkm|2 pkm

|hkm|2 ∑
k−1
i=1 pim +W0,k

),

Rk ≤Ωk, and
K

∑
i=1

pim = 1 .

(4.3)

B represents the bandwidth of a resource block and the maximum throughput, the

channel gain and the amount of power allocated for the user k at the resource block m

are represented as Rkm, hkm, and pkm, respectively. Note that kth user throughput Rk

can not be greater than kth user traffic demand Ωk.

4.2 User Demand Based Resource Allocation for NOMA Systems

In this section, we present two PF based user scheduling and power allocation

algorithms, namely UDB-PF and PUSF, for the NOMA downlink systems to decide

which user(s) shall be assigned to a particular resource block together with power

allocation coefficients. These algorithms provide resource allocations based on rate

limited user traffic and channel state information in each time frame. We also

propose the GA based heuristics to speed up UDB-PF and PUSF for the NOMA user

scheduling.

4.2.1 User Demand-Based Proportional Fairness (UDB-PF)

The UDB-PF user scheduling is based on the well-studied proportional-fairness (PF)

algorithm [5] which provides a good compromise between user fairness and total

throughput (sum-rate) [114]. The algorithm provides the optimum power allocation

under user rate constraints while user user groping approach is similar to other PF

based solutions apart from the rate constraint. It essentially aims to maximize the

product of average user throughputs calculated over a time window by determining the

user groups and their power level assignments:
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argmax
I

K

∏
k=1

Rc
k[n]

s.t. Rk[n]≤Ωk[n]

(4.4)

I is the set of users scheduled at time frame n. Ωk[n] and Rk[n] are the kth user traffic

demand and throughput at the time frame n, respectively. Rk in the ergodic capacity

form without time frame is given in equation (4.3) including the power constraint.

Rc
k[n] is the average throughput of user k over a time window, which is characterized

by the time constant tc, and is defined as:

Rc
k[n] =

{
tc−1

tc
Rc

k[n−1]+ 1
tc

Rk[n], k ∈ I
tc−1

tc
Rc

k[n−1], k /∈ I
(4.5)

Rk[n] is the kth throughput (data rate) at time frame n, and calculated using

equation (4.3) at this time instant. Within the context of this chapter, the term time

window should not be confused with time frame, such as a time window is usually one

or a few hundred times larger than a time frame. Note that the solution to equation (4.4)

can be obtained by solving the following optimization problem [115]:

Iopt = argmax
I

∑
k∈I

Rk[n]/Rc
k[n]

s.t. Rk[n]≤Ωk[n]
(4.6)

In the brute-force approach, for all resource blocks, the user set that yields

the maximum PF metric is selected among all user allocation setups (i.e., M ×((K
1

)
+ ...+

( K
Nmax

))
different possibilities) as shown in equation (4.6). K is the total

number of users, and Nmax is the maximum number of users that can be assigned to a

single resource block. The power allocation between the selected users can either be

fixed for all combinations [5], or selected optimally to maximize the PF metric for a

given user set [40].

In our proposed method, the scheduling algorithm is the same as the PF-based methods,

however, the power allocation method in [40] is slightly modified to take non-full

buffer traffic (user traffic demands) into consideration. In [40], assuming Nmax=2,

the optimum power allocation coefficients are calculated using Karush-Kuhn-Tucker

(KKT) conditions:

pxm = (wymgym−wxmgxm)/(gxmgym(wxm−wym)), pym = 1− pxm (4.7)
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where users x and y are grouped for the current resource block m, x is the near user

while y is the far user. wxm and wym are the weights associated with users x and y,

and they are given by wxm = 1/Rc
x[n] and wym = 1/Rc

y[n]. gxm = |hxm|2/W0,x and gym =

|hym|2/W0,y are the normalized channel gains for users x and y. When the first-order

derivative of the PF-metric calculated at both pxm=0 and pxm=1 are negative, then pxm

is set to 0 and pym is set to 1. Similarly, when the first-order derivative of the PF-metric

calculated at both pxm=0 and pxm=1 are positive, then pxm is set to 1 and pym is set to

0 [40].

In our proposed power allocation method, first, the optimum power allocation factors

are calculated as described above. The optimum power level of a user provides higher

rate than its rate constraint, the excessive power can be reallocated to the other users

in the same NOMA group. Now, let define kth user traffic demand for the current

time frame as Ωk[n] and the total rate that kth user has been obtained until the current

resource block within the current time frame as Rprev
k [n]. Within the time frame,

user throughput can not be greater than this users’s traffic demand, so the following

constraints for users x and y should hold:

Rprev
x [n]+Rxm ≤Ωx[n], Rprev

y [n]+Rym ≤Ωy[n] (4.8)

Inserting these conditions into the optimization problem using Lagrange multipliers

complicates the calculations, so we propose a heuristic such that after optimally

calculating the power allocation coefficient for user x, if its total throughput for the

current time frame exceeds its demand, then the power level for user x is reduced to

the required level and the excessive power is given to user y. In this case, the reduced

power level for user x and the corresponding power level for user y can be found using

the following formulation:

Rxm = log(1+ pxmgxm)=Ωx[n]−Rprev
x [n] =⇒ pxm =

2Ωx[n]−Rprev
x [n]−1

gxm
, pym = 1− pxm

(4.9)

Similarly, if the total throughput for the time frame exceeds the demand for user y,

then its power level is reduced and the excessive power is given to user x. The reduced
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Table 4.1 : Summary of UDB-PF algorithm.

For each time frame,
. Given: Channel gains for user k at each resource block m and noise power
|hkm|2,W0,k. For a user, it can vary between time frames as well as
between resource blocks.
. Given: User demands for the current time frame (Ωk). For a user,
it can vary between time frames.
. Update average throughputs as if no one has received a resource
in the current time frame: Rc

k[n] =
tc−1

tc
Rc

k[n−1] .
. Set Rprev

k [n] = 0 for all users.
. For each resource block m within the time frame,
• User group selection:
◦ For each possible user combination (x,y) such that x,y ∈ 1, . . . ,K,

· Compute the power allocation factors pxm and pym using the method
described above, and compute the instantaneous rates Rxm and Rym.
· Compute and store the PF index: PF(x,y) = Rxm

Rc
x[n]

+
Rym
Rc

y[n]
.

◦ Choose the user pair (x,y) that has the maximum PF index.
• For the chosen pair, update the Rprev

k [n] values as
Rprev

x [n] = Rprev
x [n]+Rxm and Rprev

y [n] = Rprev
y [n]+Rym .

• If Rprev
x [n] = Ωx[n], then remove user x from the search space.

Do the same for user y.
• For the chosen pair, update the average throughputs by

Rc
x[n] = Rc

x[n]+Rxm/tc and Rc
y[n] = Rc

y[n]+Rym/tc .
• Proceed to the next resource block.

. Proceed to the next time frame.

power level for user y and the corresponding level for user x can be found using the

following formulation:

Rym = log(
(1+gym)

(1+ pxgym)
) = log(

(1+gym)

(1+(1− pym)gym)
) = Ωy[n]−Rprev

y [n] =⇒

pym =
1+gym

gym
(1− 1

2(Ωy[n]−Rprev
y [n])

), pxm = 1− pym

(4.10)

Based on the above discussion, the summary of the user-demand based proportional

fairness (UDB-PF) algorithm for Nmax = 2 is given in Table 4.1. The extension of the

method to more than two users per resource block (Nmax > 2) is straightforward and is

not shown here.
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4.2.2 Proportional User-Satisfaction Fairness (PUSF)

The PF-based user scheduling method maximizes the product of average user

throughputs and it assumes that each user aims to get as much data as possible, which

corresponds to the full-buffer case. In reality, each user demands a limited data rate and

there is no point allocating more resources whose rate is higher than this user’s traffic

demand. In the UDB-PF method, which is described above, the PF-based algorithm is

modified to reflect the limited nature of user demands. In this sub-section, we propose

a new method, namely the Proportional User-Satisfaction Fairness (PUSF) algorithm,

that aims to maximize the average user satisfaction.

The user satisfaction can be defined as the ratio of a user’s downlink traffic rate to its

demand in a time frame [116]. It is a number between zero and one. It can not be larger

than 1, because a user can not get more data rate than its demand. Mathematically, it

can be stated as follows:

ϒk[n] =

{
Rk[n]
Ωk[n]

, Rk[n]≤Ωk[n]

1, otherwise
(4.11)

Rk[n] is the total data rate that user k receives at time frame n. The ergodic

capacity form without time frame n (Rk) is given in equation(4.3) including the power

constraint, and Ωk[n] represents the demand of the user k for that time frame. Assume

that resource blocks are processed within a time frame one-by-one, then for a particular

resource block m, Rk[n] can be defined as Rk[n] = Rprev
k [n]+Rkm, where Rprev

k [n] is the

total data rate that the user has been obtained from m = 1 to the current resource block

within the current time frame, and Rkm is the calculated throughput for the resource

block m.

In our method, we aim to maximize the product of average satisfaction of the users

that are calculated over a time window similar to the PF-based methods. Maximizing

the product penalizes the cases when a user gets an extremely low satisfaction value,

hence it provides fairness among users. Average satisfaction of a user can be defined

as:

ϒ
c
k[n] =


(

tc−1
tc

)
ϒc

k[n−1]+ 1
tc

ϒk[n], k ∈ I(
tc−1

tc

)
ϒc

k[n−1], k /∈ I
(4.12)
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I is the set of users chosen for the current time frame, and tc is the constant that specifies

the length of the averaging window. Similar to the PF-based methods, for a particular

resource block, the underlying optimization problem can be stated as follows:

Iopt = argmax
I

{
K

∏
k=1

ϒ
c
k[n]

}

= argmax
I

{
log

(
K

∏
k=1

ϒ
c
k[n]

)}

= argmax
I

{
K

∑
k=1

log(ϒc
k[n])

} (4.13)

In equation (4.13), the fact that taking the logarithm of the objective function does

not change its optimum point is utilized. If we define the objective function as J =

∑
K
k=1 log

(
ϒc

k[n]
)

and use equation (4.12):

J =
K

∑
k=1

log(ϒc
k[n]) = ∑

k/∈I
log
[(

tc−1
tc

)
ϒ

c
k[n−1]

]
+∑

k∈I
log
[(

tc−1
tc

)
ϒ

c
k[n−1]+

1
tc

ϒk[n]
]

= ∑
k/∈I

log
[(

tc−1
tc

)
ϒ

c
k[n−1]

]
+∑

k∈I
log
[(

tc−1
tc

)
ϒ

c
k[n−1]

(
1+

ϒk[n]
(tc−1)ϒc

k[n−1]

)]
= ∑

k/∈I
log
[(

tc−1
tc

)
ϒ

c
k[n−1]

]
+∑

k∈I
log
[(

tc−1
tc

)
ϒ

c
k[n−1]

]
+∑

k∈I
log
[(

1+
ϒk[n]

(tc−1)ϒc
k[n−1]

)]

=
K

∑
k=1

log
[(

tc−1
tc

)
ϒ

c
k[n−1]

]
+∑

k∈I
log
[(

1+
ϒk[n]

(tc−1)ϒc
k[n−1]

)]
.

(4.14)

The first part of the expression does not depend on the scheduling set I, and we can

omit it in the optimization process. Also, because tc is large, the term ϒk[n]
(tc−1)ϒc

k[n−1] is

most probably small. Using the property that for small x, log(1+ x)≈ x, the objective

function becomes:

J = ∑
k∈I

ϒk[n]
(tc−1)ϒc

k[n−1]
. (4.15)

By inserting equation (4.11) into equation (4.15) and by omitting the constant term

(tc−1), we have

J = ∑
k∈I

Rprev
k [n]+Rkm

Ωk[n]ϒc
k[n−1]

= ∑
k∈I

Rprev
k [n]

Ωk[n]ϒc
k[n−1]

+∑
k∈I

Rkm

Ωk[n]ϒc
k[n−1]

(4.16)
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Again, the first term is independent of the selection of I, and the corresponding

optimization problem can be stated as follows:

Iopt = argmax
I

∑
k∈I

Rkm

Ωk[n]ϒc
k[n−1]

s.t. Rk[n]≤Ωk[n]
(4.17)

Table 4.2 : Summary of PUSF algorithm.

For each time frame,
. Given: Channel gains for user k at each resource block m and noise power
|hkm|2,W0,k. It can vary between time frames as well as between resource blocks.
. Given: User demands for the current time frame (Ωk). For a user,
it can vary between time frames.
. Update average satisfactions as if no one has received a resource

in the current time frame: ϒc
k[n] =

(
tc−1

tc

)
ϒc

k[n−1] .
. Set Rprev

k [n] = 0 for all users.
. For each resource block m within the time frame,
• User group selection:
◦ For each possible user combination (x,y) such that x,y ∈ 1, . . . ,K,
· Compute the power allocation factors pxm and pym using the method
described above, and compute the instantaneous rates Rxm and Rym.
· Compute and store the PUSF index:

PUSF(x,y) = Rxm
Ωx[n]ϒc

x[n]
+

Rym
Ωy[n]ϒc

y[n]
.

◦ Choose the user pair (x,y) that has the maximum PUSF index.
• For the chosen pair, update the Rprev

k values as
Rprev

x [n] = Rprev
x [n]+Rxm and Rprev

y [n] = Rprev
y [n]+Rym .

• If user x has reached the maximum satisfaction level of 1,
i.e. Rprev

x [n] = Ωx[n], then remove user x from the search space.
Do the same for user y.

• For the chosen pair, update the average user satisfaction values by
ϒc

x[n] = ϒc
x[n]+ (1/tc)Rx[n]/Ωx[n] and ϒc

y[n] = ϒc
y[n]+ (1/tc)Ry[n]/Ωy[n] .

• Proceed to the next resource block.
. Proceed to the next time frame.

Note that the problem turned out to be the same as PF with Rc
k[n] replaced by

Ωk[n]ϒc
k[n− 1]. Hence, a similar brute-force approach can be used to solve the

problem. Also note that the non-linearity in the definition of ϒk[n], i.e. limiting

the total throughput of a user to its demand within a time frame, is ignored when

transforming equation (4.15) into equation (4.16). This non-linearity is handled in the

power allocation step just like the UDP-PF method. Because the formulation is pretty
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Figure 4.2 : Genetic Algorithm flow chart.

much alike, the optimum power allocation factors can be found by using equation (4.7)

and the discussion below equation (4.7) with the only difference in the definitions of

wx and wy such that wx = 1/(Ωx[n]ϒc
x[n−1]) and wy = 1/(Ωy[n]ϒc

y[n−1]) . The case

when one of the users gets more rate than its demand is handled just like in the UDB-PF

method. As in the UDB-PF approach, the PUSF can also reallocate the excessive

power to the other users in the same NOMA group. Based on the above formulation

and discussion, the summary of the PUSF algorithm is given in Table 4.2.

4.2.3 Genetic Algorithm approach for user group selection

The optimum user group selection at each resource block can be achieved by evaluating

all possible user group combinations with the exhaustive search. This type of brute

force method significantly increases the computational complexity when the number

of users is high. GA is a powerful heuristic for exploring prohibitively huge search

spaces. In this section, we present GA based search heuristics for both UDB-PF and

PUSF algorithm to reduce the computational complexity.

In the previous chapter, the GA approach is used for NOMA downlink resource

allocation, where, the user group selection for all resource blocks are determined at

the same time. Therefore, the size of the search space increases not only with the

number of users but also with the number of resource blocks. However, in this chapter,

UDB-PF and PUSF algorithms perform user group selection per resource block and

exhaustive search is applied within each resource block. Instead of the exhaustive
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Table 4.3 : User group selection with GA in UDB-PF algorithm.

• User group selection with GA:
◦ Employ Genetic Algorithm to find best user (x,y) such that x,y ∈ 1, . . . ,K,
In the GA fitness function:
· Compute the power allocation factors pxm and pym using the method
described above, and compute the instantaneous rates Rxm and Rym.
· Calculate minus PF index as a fitness value:

PF(x,y) = Rxm
Rc

x[n]
+

Rym
Rc

y[n]
.

◦ GA selects the best user pair (x,y) among the possible solutions.

Table 4.4 : User group selection with GA in PUSF algorithm.

• User group selection with GA:
◦ Employ Genetic Algorithm to find best user (x,y) such that x,y ∈ 1, . . . ,K,
In the GA fitness function:
· Compute the power allocation factors pxm and pym using the method
described above, and compute the instantaneous rates Rxm and Rym.
· Calculate minus PUSF index as a fitness value:

PUSF(x,y) = Rxm
Ωx[n]ϒc

x[n]
+

Rym
Ωy[n]ϒc

y[n]
.

◦ GA selects the best user pair (x,y) among the possible solutions.

search for the user group selection in Tables 4.1 and 4.2, the GA is applied within

each resource block to select the user group, where the computational complexity is

significantly decreased. The pseudo codes of the the user group selection using the GA

approach are shown in Tables 4.3 and 4.4 for UDB-PF and PUSF, respectively.

Figure 4.2 presents the flow chart of the proposed GA approach. First, a certain number

of individuals corresponding to the candidate solutions in the population is randomly

created. Each individual (i.e., chromosome of the GA) corresponds to one of possible

user group solutions (e.g., [UE1 UE2] in Figure 4.3). The fitness of each individual is

evaluated using a fitness function such that a higher fitness value indicates a preferable

user group. Note that two different fitness functions are used for UDB-PF and PUSF

algorithms. The individuals with higher fitness values are selected as elites and directly

passed to the next generation. To provide the diversity in the population, the remaining

individuals are divided into two groups for cross-over and mutation operations such

that new offspring and mutants are created for the next generation. The number of

individuals for the cross-over operation is determined by the cross-over rate and the rest
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Figure 4.3 : An example of cross-over and mutation operations.

of the individuals processed by the mutation operation. The same procedure continues

until the stopping criteria is met.

An example of the cross-over and mutation operations are depicted in Figure 4.3 where

two users are allocated for each resource block in NOMA downlink system. The

offspring ([UE1 UE4] and [UE3 UE2]) are generated by combining the elements of

a pair of parents ([UE1 UE2] and [UE3 UE4]) with the use of cross-over process. In

another diversity operation, a random change is applied to the second element of the

parent([UE1 UE2]) with the mutation process, and hence a new mutant ([UE1 UE3])

is created.

4.2.4 Complexity analysis of the proposed algorithms

The best user group selection at one resource block can be provided by evaluating all

user group combinations with the exhaustive search in UDB-PF and PUSF algorithms.

Let the number of users and the maximum number of users per resource block are K

and Nmax, respectively. The number of all possible user sets is
(K

1

)
+
(K

2

)
+ . . .+

( K
Nmax

)
.

For K�Nmax,
( K

Nmax

)
determines the asymptotic behavior of the number of all possible

user sets. Since the evaluation function will run for
( K

Nmax

)
= K×(K−1)×...(K−Nmax+1)

1×2×...Nmax
.

Therefore, the complexity order can be stated as O(KNmax).

In the GA approach, the computational complexity mainly depends on the population

size (initial solutions), the length of the chromosome and the selection function. The

formal complexity analysis of the GA is beyond the scope of this chapter. However,
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we will discuss the approximate computational load of the GA approach to indicate

the improvement over the exhaustive search. Let the population size, the length of the

chromosome, and the selection process be L, Nmax, and stochastic uniform selection,

respectively. At each generation (iteration), the fitness function for candidate solutions

is calculated for a population size (L). Therefore, the GA algorithm totally evaluates

(G×L) candidate solutions, where G represents the maximum number of generations.

In this chapter, G is defined as G = max(10,K), where K represents the number of

users. Since the total number of candidate solutions explored is (G× L = K × L)

and L is the constant, the complexity order of the GA approach can be simplified as

O(K). Comparing to the complexity order of the exhaustive search (O(KNmax)), the GA

heuristics can provide significant reduction on the computational complexity. Note that

the GA approach does not guarantee for reaching the global optimal solution since all

the solution space may not be explored. However, the results in this chapter show that

the throughput and user satisfaction performance of the GA heuristics are comparable

to the exhaustive search.

4.3 Simulation Results

The performance of the proposed UDB-PF, PUSF and their GA versions UDB-PF-GA

and PUSF-GA methods is evaluated and compared with the power optimized

proportional fair (PF) method [40] in various network settings using the MATLAB

simulation tool. In the simulation experiments, the users are uniformly distributed

over a cell with 1 km radius. A base station located at the center of the cell allocates

radio resources to the users by employing NOMA as the multiple access scheme. The

resource block is the minimum unit that can be allocated to users and defined as one

subcarrier at the frequency and one time slot. The maximum number of users per

resource block in the NOMA is set to 2 for all experiments. The parameters used for

the simulations are given in Table 4.5. The results are obtained as the average of 1000

experiments for each network setting.

MATLAB optimization toolbox is used to employ the GA heuristics proposed in this

chapter. The number of individuals, the number of elites, and the cross-over fraction

are set to 10, 2, and 0.8, respectively. Therefore, (10−2)×0.8≈ 6 offspring are created

by the cross-over function and 10− 2− 6 = 2 mutants are generated by the mutation
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function at each iteration. The stopping criteria is selected as the maximum number of

generations (G) and it is configured as G = max(10,K) where K is the number of users

in the network.

Table 4.5 : Simulation parameters for PF based resource allocation.

Parameter Value
Subcarrier Bandwidth 180 KHz

Receive/Transmit antenna SISO
Path Loss Exponent 3

Subcarrier Power 10 dBm
Receiver Noise Density -169 dBm/Hz

Shadowing standard deviation Lognormal with 8 dB
Fading Model Rayleigh flat fading
Cell Radius 1 km

Max # of users per resource block 2
Time window size (tc) 100 time frames

We report two performance metrics, namely the average sum-rate (network-wide

throughput) and the average user satisfaction. We define the user satisfaction metric

specifically for non-full buffer traffic scenario as the ratio of carried traffic rate to

offered traffic rate (i.e., traffic demand) for a particular user. For time n, when Rk[n]

represents the kth user throughput value and there are K connected users at the cell, the

sum-rate value is equal to ∑
K
k=1 Rk[n]. The average sum-rate is calculated by taking the

average of sum-rate values over the simulation time. Similarly, the user satisfaction

metric ϒk[n] can be calculated as Rk[n]/Ωk[n], where Ωk[n] represents the kth user

traffic demand for time n. The average user satisfaction is calculated by taking the

average of user satisfaction values over the simulation time.

4.3.1 Effects of traffic loadings and demand variations

In this section, the effects of traffic loadings and user demand variations over the

system performance are reported. For the experiments in this section, the number

of users and the number of resource blocks are set to constant values of 5 and 2,

respectively, while each user traffic demand varies at each time frame according to

the uniform distribution with a given mean (µ) and the standard deviation (σ ). An

example of uniformly distributed user traffic demand is shown in Figure 4.4 when the
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Figure 4.4 : Example uniform user traffic demand distributions.

mean value µ is set to 3 Mbps and standard deviations are set to σ = µ/2 , σ = µ/8,

and σ = 0.

Figure 4.5 illustrates the average sum-rate with respect to the mean value of uniformly

distributed user traffic demands using the standard deviation σ of 0, µ/8, and µ/2.

The results show that the average sum-rate increases until it reaches to the maximum

sum-rate as the user traffic demand increases for all cases. Note that the user traffic

demand varies from 0.36 Mbps to 4.32 Mbps and there are only two subcarriers within

180 kHz bandwidth. As observed in the figure, the UDB-PF method provides the

highest average sum-rate for all user traffic demands. The sum-rate performance of

the PUSF method decreases as the user traffic demand variations increase from 0 to

µ/2 since it focuses on maximizing the average user satisfaction. The PF algorithm

always yields lower sum-rate compared to UDB-PF and PUSF since it does not

consider the user traffic demands in its calculations. We observed higher traffic drops

(lower sum-rate) even under low traffic demands in the PF method because it allocates

resource blocks to users by considering the full buffer traffic model and may not use

the entire resource block effectively if the total user traffic demands are lower than the

capacity of the allocated resource blocks.
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Figure 4.5 : Average sum-rate under various traffic demands.
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Figure 4.6 : Average satisfaction under various traffic demands.
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Figure 4.6 shows the average user satisfaction with respect to the mean value of

uniformly distributed user traffic demands using the standard deviation σ of 0, µ/8,

and µ/2. The user satisfaction decreases with the increase of user traffic demands

since there are limited radio resources. As observed from the figure, the PUSF method

ensures the highest user satisfaction for all user traffic demands. In addition, the

performance of PUSF increases as the user traffic demand variation increases from

0 to µ/2.

It is an important result that when the user traffic demand remains constant over time

(i.e., σ = 0), the UDB-PF and PUSF methods yield the same performance results in

terms of both sum-rate and user satisfaction. The reason for this result is that the

objective function will converge to the same function for both UDB-PF and PUSF

when the user traffic demand remains constant over time.

Another significant inference is that when the user traffic demands are significantly

high and the standard deviation is zero (emulating the full buffer traffic condition),

all three methods (PF, UDB-PF, and PUSF) converge to the same performance results

in terms of both sum-rate and user satisfaction. The reason for this result is that the

UDB-PF algorithm ignores the user traffic requirements under the full buffer traffic

condition, and hence it will be the same as the PF method. Similarly, the PUSF

method converges to the PF method since the PUSF will be the same as the UDB-PF

method when user traffic demands go to infinity (i.e., the full buffer traffic condition)

according to equation (4.17). We also provide the results of the GA heuristics, namely

UDB-PF-GA and PUSF-GA, in Figures 4.5 and 4.6. Since the number of users K is

set to a lower value of 5, the sum-rate and the satisfaction results of the GA heuristics

are the same as the UDB-PF and PUSF algorithms.

4.3.2 Effect of the number of users

In the second part of the simulation results, the experiments are performed to evaluate

the proposed allocation schemes with respect to the number of connected users in a

cell. While the number of users are varied from 5 to 45, the number of resource blocks

are set to a constant value of 5. Each user traffic demand varies over time according

to the uniform distribution with the mean of 5 Mbps and the standard deviation of 2.5

Mbps.
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Figure 4.7 : Average throughput with respect to the number of users.
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Figure 4.8 : Average user satisfactions with respect to the number of users.
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Figure4.7 shows that as the number of users increases the UDB-PF method ensures

the highest sum-rate since it maximizes the average user throughputs in a given time

window by taking user demand requirements into account. The average sum-rates of

all five methods increase as the number of users increases from 5 to 20. When the

number of users is beyond 20, the average sum-rates of both PF and UDB-PF remain

almost constant. However, the sum-rates of the PUSF and PUSF-GA methods slightly

decrease as the number of users increases beyond 20 since it is harder to meet the

user satisfaction objective when there are more users demanding the limited resources.

A significant result from the figure that, the UDB-PF-GA and PUSF-GA algorithms

provide almost the same performance with the the UDB-PF and PUSF algorithms

while the number of users is set to 5 and 10. Beyond that, a slight performance

degradation can be observed when the GA heuristics are employed. However, the

GA approach significantly reduces the computational complexity (see Figure 4.9 for

the details). The similar result can be observed from Figure 4.8.

The average user satisfaction with respect to the number of connected users in a cell

is illustrated in Figure 4.8. The PUSF method ensures the highest user satisfaction

for all number of user settings. When the number of users increases, the average user

satisfaction decreases for all five methods as expected because the limited resources

are not sufficient to support the demand requirements of higher number of users.

Figure 4.9 shows the total number of candidate solutions explored by all five algorithms

with respect to the number of users in a cell. Note that the number of resource blocks

in the cell is set to 5 for all experiments and the results in the figure correspond

to all resource blocks. The results in this figure confirm the complexity analysis in

Section 4.2.4 such that the computational complexity of the PF, UDB-PF, and PUSF

methods exponentially increases with the number of users. However, the total number

of evaluated candidate solutions in the GA heuristics linearly increase as given in the

complexity analysis.

As depicted in Figure 4.9, the GA heuristics explore more candidate solutions when K

is less than 20; but the computational complexity is not an issue since the number

of candidate solutions explored are low for all algorithms. Beyond K is 20, the

computational load is significantly lower for the GA heuristics compared to the

exhaustive search based algorithms. When the number of users in a cell is 45, the
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Figure 4.9 : The number of explored candidate solutions.

GA heuristics provide more than 50% improvement on the computational load while

the performance degradation is only about 1.2%.

4.4 Summary

In this chapter, two user scheduling and power allocation schemes, namely UDB-PF

and PUSF, are proposed for NOMA downlink systems under non-full buffer traffic.

UDB-PF extends the PF based scheduling by allocating optimum power levels to

satisfy user traffic demand constraints while PUSF maximizes the network-wide user

satisfaction. In both schemes, the optimal power level assignment is calculated

together with the best user pair selection at each resource block for a given objective

function. The GA heuristic is also employed for user group selection at each

resource block to reduce the computational complexity. The performance is evaluated

by varying the number of users and traffic characteristics of each user. The

simulation results show that UDB-PF yields higher sum-rate (throughput) while PUSF

provides higher network-wide user satisfaction results compared to the PF based user

scheduling. The performance gains of the proposed methods increase as the variation
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of user traffic demands increases over time. In addition, when the number of users

in the network gets higher, the GA heuristics provide the performance gain on the

computational load while the throughput and user satisfaction results are only slightly

degraded.

The performance evaluation on this chapter has been carried out using only simulation

experiments rate limited traffic demands are considered instead of packet based traffic

model with random inter-arrival times and packet sizes. In the next chapters, we

will investigate the Poisson traffic arrivals for the downlink resource allocation and

investigate the queuing dynamics through the analytical models. Furthermore, we will

include the statistical channel state information (i.e., Rayleigh fading) instead of the

assumption of perfect CSI at the base station.
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5. ANALYTICAL MODEL FOR QUEUING DELAY OF NOMA DOWNLINK
SYSTEMS

In the previous chapters, we have presented user grouping and power allocation

strategies for downlink NOMA systems under both full and non-full buffer traffic

models also published as [117–119]. The performance evaluation of these approaches

has been carried out using only simulation experiments such that the CSI is perfectly

known at the transmitter and rate limited traffic demands are considered instead of

packet based traffic model with random inter-arrival times and packet sizes. In this

chapter, we propose an analytical model to characterize the average queuing delay for

NOMA downlink systems by utilizing a discrete time M/G/1 queuing model when the

probability distribution of channel is known. The packet arrival process is assumed

to be Poisson distributed while the departure process depends on network settings and

resource allocation.

The complexity of 5G network is expected to be significantly higher due to its

inherent support for billions of Internet of Things (IoTs) devices enabling new services

with stringent delay and reliability requirements. Three broad categories of 5G

services considered by 3GPP are enhanced mobile broadband (eMBB), ultra reliable

low latency communication (URLLC), and massive machine-type communications

(mMTC). While the eMBB and mMTC services focus on the capacity and scalability

aspects of 5G, respectively, URLLC is critical for enabling remote control of time and

mission-critical IoT services. Non-orthogonal multiple access (NOMA) is a promising

technology for 5G systems due to its higher spectral efficiency potentially yielding

lower latency and higher scalability results by allowing simultaneous transmission

of multiple users at the same resource block. New analytical models which can

characterize the latency dynamics of 5G are of paramount importance to develop high

performance resource allocation strategies satisfying the challenging requirements of

5G services.
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The latency contribution of the user plane end-to-end (E2E) delay of a packet

transmission in 5G can be divided into three main parts: radio access, mobile core, and

cloud. The radio access latency between a base station and user equipment includes

over-the-air transmission and propagation, queuing, processing, and re-transmission

delays [12]. A 5G new radio (5G NR) access technology is introduced with shorter

frame duration and wider bandwidth to satisfy the lower latency requirements of

URLLC services such as industrial control and automation, augmented and virtual

reality, tactile Internet and intelligent transportation [10, 11]. NOMA, which has been

studied in 3GPP Releases 13 and 14 and is under consideration at the standardization

activities for 5G NR, can be another instrument to potentially decrease the radio access

latency for URLLC services [26, 27]. The analytical model proposed in this chapter

is directly utilized for quantifying the latency improvements of the 5G NR with the

NOMA.

In [105], the authors utilize the stochastic network calculus approach to study the

resource allocation problem for uplink NOMA systems by minimizing the delay

violation probability. Stable throughput regions for uplink NOMA systems under

unsaturated traffic are investigated using the queuing theory approach, where traffic

arrival for each user is assumed to be independent Bernoulli process [106]. Similarly,

the delay analysis of NOMA is studied using the queuing theory approach in this

chapter; however, we focus on downlink channels. In [81], the power control policy

for NOMA is studied to meet the delay objectives deriving the effective capacity

formulation when the channel state information (CSI) is known. Their delay results are

obtained only using the simulations while in our study we analytically expressed the

average queuing delay for NOMA downlink systems when the probability distribution

of the underlying channel is known.

In [108], a queuing analysis for discrete time discrete state D/G/1 queuing model is

presented under a Rayleigh fading channel in the low SNR regime for OMA systems.

In another study [109], a general state space Markov chain model is proposed to

calculate the throughput regions of OFDMA users under a Rayleigh fading channel

by taking the scheduling algorithms into account. The buffer overflow probability

providing insights for buffer dimensioning problems is obtained assuming that each

user has finite traffic arrival and queue capacity. In this chapter, we adopt a similar
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Figure 5.1 : The summary of modelling approach.

queuing formulation for the NOMA downlink system such that each user has its

corresponding queue with the packet based random traffic arrival model and the

departure process is determined according to the NOMA user service rates under a

Rayleigh fading channel. Since we focus on the latency analysis for the URLLC

services, we utilize a discrete-time M/G/1 queuing model to obtain the average queuing

delay.

In [110], theoretical queuing analysis and system-level simulations are performed to

study the system design principles of 5G NR. They emphasize that the queuing delay

has an important contribution on the URLLC latency. Although they study both uplink

and downlink models for 5G NR, the NOMA technology is not considered in their

model. The average queuing delay of 5G NR frame types for both NOMA and OMA

downlink systems has been evaluated using our discrete-time M/G/1 queuing model

proposed in this chapter.

In this chapter, an analytical model to characterize the average queuing delay for

NOMA downlink systems is proposed. The model utilizes a discrete time M/G/1

queuing model where the packet arrival process is assumed to be Poisson distributed.

The departure process depends on network settings and resource allocation. The

summary of the proposed analytical modelling approach is depicted in Figure 5.1.

First, the network settings such as transmit power, bandwidth, and channel model are

used to calculate the first and second moment statistics of the user service capacities.
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Next, we provide an approximation for the service time statistics under a certain

packet size distribution by utilizing the random sums of independent and identically

distributed (i.i.d.) random variables. Finally, Pollaczek Khintchine formula and

Little’s Law are applied to obtain the queuing dynamics such as the average queuing

delay. Extensive simulations are carried out to validate the accuracy of the proposed

analytical model for both NOMA and OMA under different network settings including

bandwidth, traffic arrival rate, and packet size distribution. The results show that the

ergodic capacity region of NOMA is a superset of OMA and the NOMA supports

higher arrival rates. The numerical results of the analytical model are close to the

results of the simulation experiments indicating that the proposed analytical model

provides a tight approximation for the average queuing delay. Furthermore, the

proposed analytical model is applied to evaluate the performance improvements of

the 5G NR concept when the NOMA is utilized with the 5G NR frame types. The

results confirm that the 5G NR significantly improves the delay performance as the

frame type having wider bandwidth and shorter duration is employed.

5.1 System Model

The system model of downlink transmission including one base station (BS) and K

user equipments (UEs) is shown for both non-orthogonal multiple access (NOMA)

and orthogonal multiple access (OMA) schemes in Figure 5.2. In this model, Power

Domain-NOMA (PD-NOMA) is utilized as the NOMA technology while Orthogonal

Frequency Division Multiple Acces (OFDMA) is used as the OMA technology. The

same radio resources consisting of bandwidth, transmit power, and time slot duration

are utilized for both multiple access schemes. In OMA, the bandwidth is equally

divided into K subcarriers and each subcarrier is assigned to one UE. The power level

of each subcarrier can be determined arbitrarily by the base station by obeying the

total transmission power constraint. In NOMA, the whole bandwidth is allocated to all

UEs while the total transmission power can be arbitrarily distributed among the UEs.

The NOMA concept including the SIC procedure for the full buffer traffic scenario is

described in [32].

In the physical layer model considering K-user PD-NOMA downlink system in which

all users are allocated to the same frequency subband, the combined signal transmitted
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Figure 5.2 : OMA and NOMA downlink system model.

from the base station to users can be represented as
√

p1s1 +
√

p2s2 + · · ·+
√

pKsK ,

where sk and pk represent the data symbol per unit energy of kth user and the amount of

power allocated for this user, respectively (1≤ k≤K ). The sum of the allocated power

levels of all users should be equal to 1
(

K
∑

k=1
pk = 1

)
. For a single-input single-output

(SISO) system, the received signal of the kth user:

yk =

(
√

pksk +
k−1
∑

i=1

√
pisi +

K
∑

i=k+1

√
pisi

)
×

hk
√

Pt
√

PL(dk)+wk

(5.1)

where wk represents white Gaussian noise ∼N (0,N0) while dk and hk represent the

distance and the channel gain coefficient between the base station and the kth user,

respectively. Pt is the transmit power of the base station. PL(dk), which is the path

loss of the kth user, is calculated using the non-singular path loss model: PL(dk) =

1/(1+dβ

k ), where β is the path loss exponent [120]. The kth user removes the signals

of the users having k+1 or higher index by employing the SIC method corresponding

to the third term in equation (5.1). Assuming that the perfect SIC is performed at the

receiver, the signal to interference plus noise ratio (SINR) of the kth user is:

SINRk =
PL(dk)Pt |hk|2 pk

PL(dk)Pt |hk|2
k−1
∑

i=1
pi +W0,k

s.t.
K

∑
k=1

pk = 1

pk < pk+1 k ∈ [1,2, ..K] ,

(5.2)
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where, W0,k (W0,k > 0) represents the noise power which is calculated according to

the double sided white noise such as W0,k = B×N0/2. Here, B and N0 represent the

bandwidth and noise spectral density, respectively.

If the transmit power of the base station (Pt) is completely assigned to user k, the

received power at the user k will be PRk = PtPL(dk). Equation (5.2) can be simplified

by defining a new variable θk =W0,k/PRk as follows:

SINRk =
PRkXk pk

PRkXk
k−1
∑

i=1
pi +W0,k

=
Xk pk

Xk
k−1
∑

i=1
pi +θk

,
(5.3)

where Xk = |hk|2 is the power of the channel gain coefficient.

Let us calculate the SINR equations for OMA. As depicted in Figure 5.2, each UE in

OMA is assigned to a separate subcarrier with an equal bandwidth. The power level of

each subcarrier can be determined arbitrarily by the base station while the sum of the

allocated power coefficients are equal to 1
(

K
∑

k=1
pk = 1

)
. As there is no interference

effect among subcarriers, UEs can directly decode their corresponding signals without

employing the SIC procedure at the receiver side. For a single-input single-output

(SISO) system, the received signal of the kth user is:

yoma
k =

√
pkskhk

√
Pt
√

PL(dk)+wk . (5.4)

Since the entire communication bandwidth is equally divided into K subcarriers,

the width of each user subcarrier is equal to Boma = B/K for OMA as depicted in

Figure 5.2. Note that the noise power of the kth user is equal to W oma
0,k = BN0/(2K) due

to the double sided white noise. Then, the SINR equation of the kth user is expressed

as:

SINRoma
k =

PL(dk)Pt |hk|2 pk

W oma
0,k

=
Xk pk

θ oma
k

. (5.5)

where θ oma
k = W oma

0,k /PRk. The received power at the user k is PRk = PtPL(dk)

assuming that transmit power of the base station (Pt) is completely assigned to user

k. We have the following two assumptions for the physical layer models:

Assumption 1: The block (slow) fading Rayleigh channel model is assumed, where

the channel gain remains constant at a given time interval nTs. The channel gain

coefficients hk[1], hk[2], ..., hk[n] are i.i.d. sequence of random variables with the

Rayleigh distribution which have a finite mean and a finite variance ∀ k,n. Therefore,
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the channel power gain (Xk = |hk|2) is exponentially distributed with the mean value of

E
[
|hk|2

]
= 1/λ and its probability density function (PDF) and cumulative distribution

function (CDF) are:

fX(x) =

{
λe−λx x≥ 0
0 o.w.

FX(x) =
∫ x

−∞

ft(t)dt =
∫ x

0
λe−λ tdt = 1− e−λx .

(5.6)

Assumption 2: The NOMA users are assumed to be ordered for the SIC procedure

according to their distances (d1 < d2.. < dk) from the base station instead of their

instantaneous channel gains. This assumption is reasonable for practical systems as it

is a challenging task to obtain the exact instantaneous users’ channel gains at the base

station for the SIC ordering. In addition, the perfect SIC procedure is assumed in this

chapter.

5.2 Service Capacity Statistics

In this section, the first and second moments of the user service capacity statistics

are presented for a single resource block NOMA downlink system under a Rayleigh

fading channel. The power allocation coefficients are considered as resource allocation

parameters which determine the SINR levels of users, and hence the service capacity

statistics.

The capacity in the Rayleigh fading channel can be written as a function of a

random variable X , which is exponentially distributed with the density functions

in equation (5.6). The instantaneous channel capacity (i.e., instantaneous service

capacity) of the kth user is represented as Ck(X) = Blog2 (1+SINRk (X)) . For a

K-user NOMA downlink system, UEk represents the kth user, where dk < dk+1. The

service capacity of the kth user is:

Ck (X) = Blog2

1+
pkX

X
k−1
∑

i=1
pi +θk

 . (5.7)
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The first moment of the Ck (x) represents the average service capacity of the user k:

E [Ck (X)] =

∞∫
0

Ck (x) fX (x)dx

=

∞∫
0

Blog2

1+
x pk

x
k−1
∑

i=1
pi +θk

λe−λxdx

=
1

log(2)
B

 e

λθk
k−1

∑

i=1
pi Ei

− λθk
k−1
∑

i=1
pi

− e

λθk
k−1

∑

i=1
pi+pk Ei

− λθk
k−1
∑

i=1
pi+pk




(5.8)

where the function Ei(z) represents the exponential integral function as Ei(z) =

−
∫

∞

−z
e−t

t dt. Performing the similar approach, the second moment of the Ck (X) is:

C2
k = E

[
C2

k (X)
]
=

∞∫
0

C2
k (x) fX (x)dx

=

∞∫
0

Blog2

1+
pkx

k−1
∑

i=1
pix+θk




2

λe−λxdx .

(5.9)

Upto this point, the service capacity statistics are expressed for K-user NOMA. We

now consider the two-user NOMA downlink system, where UE1 and UE2 represent

the near and far users, respectively (d1 < d2 ). The first and second moments of the

service capacity can be expressed with special mathematical functions by organizing

the equation (5.8) and equation (5.9). First, let us derive the service capacity statistics

of the near user UE1, where interfering signals are removed with the perfect SIC

process. The instantaneous service capacity of UE1:

C1 (X) = Blog2

(
1+

p1X
θ1

)
. (5.10)

The first moment of the C1 (X) representing the average service capacity of the near

user can be expressed as:

E [C1] = E [C1 (X)] =

∞∫
0

Blog2

(
1+

p1x
θ1

)
λe−λxdx

=−
Be

λθ1
p1 Ei

(
−λθ1

p1

)
log(2)

.

(5.11)
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Similarly, the second moment of C1 (X) is:

C2
1 = E

[
C2

1 (X)
]
=

∞∫
0

C2
1 (x) fX (x)dx

=

∞∫
0

(
TsBlog2

(
1+

p1x
θ1

))2

λe−λxdx

=

2Ts
2B2e

λθ1
p1 G3,0

2,3

(
λθ1
p1

∣∣∣ 1,1
0,0,0

)
log2 (2)

.

(5.12)

where, Gm,n
p,q

(
z
∣∣∣∣ a1, ..,an,an+1, ..,ap

b1, ..,bm,bm+1, ..,bq

)
is the Meijer’s G-function [121]. The

instantaneous service capacity of the far user UE2 is:

C2 (X) = Blog2

(
1+

p2X
p1X +θ2

)
. (5.13)

Then, the first moment of the C2 (X) representing the average service capacity of the

far user is calculated as:

E [C2] = E [C2 (X)] =

∞∫
0

Blog2

(
1+

p2x
p1x+θ2

)
λe−λxdx

=
1

log(2)
B
(

e
λθ2
p1 Ei

(
−λθ2

p1

)
− e

λθ2
p1+p2 Ei

(
− λθ2

p1+p2

) )
.

(5.14)

Similarly, the second moment of the far user service capacity:

C2
2 = E

[
C2

2 (X)
]
=

∞∫
0

C2
2 (x) fX (x)dx

=

∞∫
0

(
Blog2

(
1+

p2x
p1x+θ2

))2

λe−λxdx .

(5.15)

The derivation of the service capacity statistics for the OMA is not presented since it

can be readily obtained by following the similar approach used for the nearest NOMA

users with the perfect SIC process. Thus, for the user k in OMA, the first and second

moments expressions of the service capacities are:

E[COMA
k ] =−

BOMA
k e

λθOMA
k
pk Ei

(
−λθ OMA

k
pk

)
log(2)

C2
k,OMA = 2

(
BOMA

k
log(2)

)2

e
λθOMA

k
pk G3,0

2,3

(
λθk

pk

∣∣∣∣ 1,1
0,0,0

)
.

(5.16)
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5.3 Queuing Analysis

In our MAC layer model, each user has an infinite First-in-First-out (FIFO) queue

at the base station, where incoming packets are stored and forwarded. Similar to the

queuing model in [109], for user k, the number of packets in the time slot n represented

as qk[n] can evolve as follows:

qk[n+1] = (qk[n]+Ak[n]−Dk[n])
+ (5.17)

where (x)+ is an operator defined as max{0,xk}. The random variable Dk[n] represents

the number of packet departures while the random variable Ak[n] represents the number

of packet arrivals at the time slot n with the duration of Ts. The service distribution

depends on the employed multiple access scheme and power allocation. We have the

following assumption for the traffic arrival model:

Assumption 3: The incoming traffic at each queue is assumed to be a Poisson arrival

process therefore, Ak[1], Ak[2], ..., Ak[n] are i.i.d. sequence of random variables which

have a finite mean and a finite variance ∀ k,n. The random variable Ak[n] is operated

for each time interval of nTs to form K independent Poisson process with the mean

value of Λk. Furthermore, the packet size is assumed to be an i.i.d. random variable

with a finite mean and a finite variance.

The underlying queuing model for downlink multiple access schemes is M/G/1 since

the arrival process is Poisson distributed and the departure process is characterized as

General distributed, where its statistical information depends on the network settings

(e.g., channel model, distance, etc.) and resource allocation decisions (e.g., power

allocation, subcarrier assignment, etc.). Let us consider the evolution of the queue size

defined in equation (5.17), where the random variable Ak[n] representing the number

of arrived packets within one time slot for the user k. The departure process is defined

by the random variable Dk[n] representing the number of packets served within one

time slot.

Let Sk,m be an integer valued random variable representing the kth user service time

in terms of the number of time slots required to serve the mth packet with the size of

Lk,m. Rk[n], which represents the amount of served bits within the time slot n, can

be calculated by multiplying the channel capacity Ck[n] within the time slot n and the
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time slot duration Ts as Rk [n] = TsCk[n]. Note that the channel capacity Ck[n] remains

constant at nth time interval from Assumption 1.

Assuming that Rk[n] is independent and identically distributed, it is a strongly

stationary process and its statistical information is independent of time n. Thus the

process (Rk[n];n ∈ Z+) is the joint distribution function of the vector (Rk[n+1],Rk[n+

2], ..,Rk[n + j]) is equal with the one of (Rk[1],Rk[2], ..,Rk[ j]) for any finite set of

indices 1,2, .., j ⊂ Z+ and any n ∈ Z+. The first and the second moment of Rk are:

E [Rk] = Ts×E [Ck] (5.18)

R2
k = E

[
R2

k
]
= T 2

s ×C2
k (5.19)

where E[Ck] and C2
k are defined in equation (5.8) and equation (5.9), respectively.

Therefore, the variance of the number of bits transmitted within one time slot can

be calculated using the equation Var(Rk) = R2
k−E [Rk]

2.

Since Rk[ j] is finite and Ts is greater than zero, the service time Sk,m requires at least

one time slot (i.e., Sk,m≥ 1) to serve a packet having a finite size of Lk,m. The following

equation demonstrates the relation among Lk,m, Sk,m, and Rk[ j] (1≤ j ≤ Sk,m):

Sk,m−1

∑
j=1

Rk [ j]< Lk,m ≤
Sk,m

∑
j=1

Rk [ j] (5.20)

When the sum of service capacities within the window of Sk,m is greater than the packet

size Lk,m, we assume that it takes Sk,m time slots to serve this packet. Yk,m represents

the total service capacity within the window of Sk,m time slots and can be expressed as:

Yk,m =
Sk,m

∑
j=1

Rk [ j] . (5.21)

Similar to the approach employed in [108], after the packet m is successfully served,

the remaining service capacity at the last time slot Uk,m is utilized to serve a portion of

the next packet (m+ 1). Note that the remaining service capability is zero (Uk,m = 0)

at the beginning. Yk,m can be expressed as follows:

Yk,m = Lk,m +∆Uk,m , (5.22)

where ∆Uk,m =Uk,m −Uk,m−1 ,∀m ∈ Z+.
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Considering when the number of m packet is successfully served, the first moment of

Yk can be calculated using equation (5.22) for m packets:

m
∑

i=1
Yk,i =

m
∑

i=1

(
Lk[i]+∆Uk,i

)
(5.23)

Since
m
∑

i=1
∆Uk,i =Uk,m, the expected value of E [∆Uk] is equal to zero according to the

law of large numbers when m→ ∞. Then, the first moment of Yk is:

E [Yk] = E [Lk] . (5.24)

The second moment of Yk can be calculated using the sum of squares of equation (5.22)

for m packets:
m

∑
i=1

(
Yk,i
)2

=
m

∑
i=1

(
Lk[i]+∆Uk,i

)2
. (5.25)

Using the law of large numbers when m→ ∞ in (5.25), the second moment of Yk is:

E
[
Yk

2]= E
[
Lk

2]+2E [Lk∆Uk]+E
[
∆Uk

2] . (5.26)

Note that E [Lk∆Uk] = E [Lk]E[∆Uk]+Cov(Lk,∆Uk) =Cov(Lk,∆Uk) since E[∆Uk] = 0,

where Cov(Lk,∆Uk) represents the covariance of Lk and ∆Uk. Then, equation (5.26)

becomes:

E
[
Yk

2]= E
[
Lk

2]+2Cov(Lk,∆Uk)+E
[
∆Uk

2] (5.27)

In this chapter, we assume that the packet size (Lk) is significantly higher than the

amount of served bits within one time slot (Rk) so that the remaining service capacity

Uk can be neglected compared to Lk. Therefore, we can assume that E
[
∆Uk

2] and

Cov(Lk,∆Uk) can be negligible to find the following approximation:

E
[
Yk

2]≈ E
[
Lk

2] . (5.28)

For the sake of simplicity, the amount of served bits for the kth user at the time slot j

(Rk[ j]) will be denoted as R j. Furthermore, for the mth packet, the service time Sk,m, the

total service capacity within the time window of Sk,m (Yk,m), and the packet size Lk,m

will be represented as random variables S, Y , and L, respectively. Then, equation (5.21)

can be expressed as random sums of i.i.d. random variables defined in [122]:

Y =
S

∑
j=1

R j . (5.29)
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The first and the second moments of service time are derived in Appendix A and

expressed as:

E [S] =
E [Y ]
E [R]

. (5.30)

E
[
S2]= S2 =

E
[
Y 2]−E [Y ]

(
Var(R)

E[R]

)
E[R]2

. (5.31)

Substituting equation (5.24) and equation (5.28) into equation (5.31) the second

moment of the service time can be approximated in terms of the statistics of the random

variables R and L as:

S2 ≈
E
[
L2]−E [L]

(
Var(R)

E[R]

)
E[R]2

. (5.32)

The average service rate of the queue in terms of packets/slot is µ = 1/E [S] =

E [R]/E [L]. The average arrival rate of the queue Λ packets/slot . The Pollaczek

Khintchine formula of the residual service approach together with the Little’s Law

[123] can be utilized to obtain the average queuing delay of the M/G/1 queuing system

in terms of number of time slots:

E [Q] =
ΛS2

2(1−ρ)
+1/

µ (5.33)

where ρ represents the utilization of the queue, which is the ratio of the mean arrival

rate over the mean departure rate (ρ = Λ/µ). Assuming that the arrival traffic

is Poisson with the mean arrival rate of Λ, ρ can be calculated using the mean

departure rate in equation (5.8) and equation (5.16) for NOMA and OMA, respectively.

Therefore, substituting equation (5.32)) into equation (5.33), the average queuing delay

can be obtained for both NOMA and OMA downlink schemes.

5.4 Numerical Results

In this section, the numerical results of the proposed analytical model and Monte Carlo

simulation experiments are provided under various network settings such as power

allocation rate, bandwidth, traffic arrival rate, and packet size distribution for both

NOMA and OMA downlink systems. The performance metrics include individual user

service rates and average queuing delays. Unless otherwise is stated, the parameters

used for the experiments are given in Table 5.1. We consider two-user scenario, where

the transmission bandwidth is 180 KHz for both users in NOMA while it is set to 90
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Table 5.1 : Simulation parameters for queuing analysis of NOMA.

Parameter Value
Transmission Bandwidth 180 KHz

Receive/Transmit Antenna SISO
Path Loss Exponent (β ) 4

Transmit Power (Pt) 0 dBW
Noise Spectral Density (N0) -160 dBm/Hz

Rayleigh Fading Parameter (λ ) 1
Noise Model Double-sided White Noise

Path Loss Model Non-singular Path Loss
Time Slot Duration (TSD) 0.5 ms

Simulation Duration 108 TSD
Number of users 2
User distances d1 = 400m, d2 = 1200m
Packet Size (L) Constant 4096 bits

User Arrival Rates 2.048×105 bps (50 packet/s)

KHz for each user in OMA. Assuming that the total transmit power of the base station

is Pt , the transmit power of UE1 is p1×Pt while the transmit power of the UE2 is

p2×Pt where p2 = 1− p1. The distances of UE1 and UE2 from the base station are

set to d1 = 400 m and d2 = 1200 m, respectively. The numerical results of the average

user service capacity and queuing delay are reported for both the analytical model and

Monte Carlo simulation experiments.

In the first set of experiments, we focus on the ergodic capacity regions of both NOMA

and OMA systems which are calculated by taking all possible power allocations into

account, are shown in Figure 5.3. Any vector of arrival rates of UE1 an d UE2 lying

inside of the ergodic capacity region can yield stable queuing dynamics if the proper

power allocation is performed. This demonstrates that NOMA is a superset of OMA in

terms of ergodic capacity region. These results indicate that one needs to set the power

allocation ratio to an appropriate value to satisfy low latency requirements.

Figure 5.4 shows the average queuing delays of the individual users when the power

allocation ratio of UE1 (p1) is varied from 0 to 1 for both NOMA and OMA. As p1

increases, the average queuing delay of UE1 decreases for both OMA and NOMA

while the average queuing delay of UE2 increases. In addition, when p1 is higher

than 0.42 and 0.94 for NOMA and OMA, respectively, the queuing delay of UE2
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Figure 5.3 : The ergodic capacity regions of OMA and NOMA.
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Figure 5.4 : The effects of power allocations on the average queuing delays.
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Figure 5.5 : The average queuing delay of the UE1 versus the UE1 arrival rates.

exponentially increases since the arrival rate of 2.048× 105 bps cannot be satisfied

using these power allocation ratios.

Figure 5.5 demonstrates the average queuing delays of UE1 when the arrival rate of

UE2 is remained constant at 2.048×105 bps and the arrival rate of UE1 is varied from

2.048× 105 bps to 2.048× 106 bps with the steps of 2.048× 105 bps as represented

by the blue squares in Figure 5.3. The results are obtained for three different power

allocation ratios of 0.05, 0.2, and 0.4. The queue of UE1 is stable when the arrival rate

is below the ergodic capacity region shown in Figure 5.3. For example, when the arrival

rates of UE1 and UE2 are set to 6.144×105 and 2.048×105 bps, respectively, a stable

solution is obtained for both NOMA and OMA. However, when the arrival rates of UE1

and UE2 are set to 1.2288× 106 and 2.048× 105 bps, respectively, the finite average

queuing delay results are obtained only for NOMA. Using the analytical model, we

obtain that the arrival rates of UE1 yielding a stable queue are 1.254×106, 1.609×106

and 1.788×106 bps for NOMA and 7.155×105, 8.942×105 and 9.839×105 bps for

OMA when p1 is set to 0.05, 0.2, and 0.4, respectively.
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Table 5.2 : 5G NR frame types.

Frame Subcarrier RB Time Slot
Type Spacing (KHz) Bandwidth (KHz) Duration (ms)

0 15 180 0.5
1 30 360 0.25
2 60 720 0.125
3 120 1440 0.0625
4 240 2880 0.03125

5.4.1 Numerical results for 5G NR

The 5G NR, which is based on orthogonal frequency-division multiplexing (OFDM),

provides flexibility on the frame structure to support low latency communication. Since

a time slot is defined as a fixed number of OFDM symbols, a higher subcarrier spacing

leads to a shorter slot duration [124]. The minimum resource allocation unit in LTE is a

resource block (RB) and it is composed of 12 consecutive subcarriers and 6 or 7 OFDM

symbols corresponding to one time slot with the duration of 0.5 ms. By mapping the

similar approach to the 5G NR frame types, when the subcarrier spacing varies as 15

KHz, 30 KHz, 60 KHz, 120 KHz and 240 KHz, the corresponding RB parameters

including time slot durations are listed in Table 5.2. Without loss of generality, the

same carrier frequency and channel model are used for all experiments in this section.

The effects of higher carrier frequencies for wider subcarrier spacing as described

in [124] is not within the scope of this work and will be studied as a future work.

Excluding the bandwidth and time slot duration values, the simulation parameters are

provided in Table 5.1. For the sake of simplicity, the fixed power allocation ratio is

employed for both NOMA and OMA. Considering the fairness between UE1 and UE2

in terms of the average queuing delays, the p1 value of 0.05 is selected for further

experiments employing the 2.048×105 bps of arrival rates for both users as depicted

in Figure 5.4.

Figure 5.6 shows the individual average user service rates (bps) for different 5G NR

frame structures under the Rayleigh fading channel for NOMA and OMA downlink

systems. When the RB bandwidth increases, the SINR values of both users decrease

due to the white noise. Therefore, the average user service rates for a single time slot

decreases when the frame type varies from 0 to 4. Since the number of time slots per
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Figure 5.6 : The average user service rates of different 5G NR frame types.

second increases when the time slot duration decreases, the average user service rates

increase in terms of bits per second when the frame type varies from 0 to 4.

The service rate of UE1 are significantly higher when the NOMA is in use for all 5G

NR frame structures. However, when the RB bandwidth increases, the rate of average

service rate increase for NOMA is lower than OMA for UE1. For example, the ratio of

the average service rate of NOMA over OMA for UE1 decreases from 1.753 to 1.581

when the frame type varies from 0 to 4. Furthermore, as the noise power increases

as a result of the RB bandwidth increase, the rate of average service rate increase for

NOMA is higher than OMA for UE2. For instance, when the frame type varies from

0 to 4, the ratio of the NOMA UE2 service rate over OMA UE2 service rate increase

from 1.171 to 1.295.

The average queuing delays of individual NOMA and OMA users decrease when 5G

NR frame type changes from 0 to 4 as depicted in Figure 5.7. The results indicate

that the proposed model and simulation experiments can accurately predict the delay

improvements of 5G NR for supporting URLLC services. For example, the delay of

less than 1 ms can be achieved for both NOMA users when the 5G NR frame type 4

82



0 1 2 3 4

5G NR frame type

100

101

A
v
e
ra

g
e
 q

u
e
u
in

g
 d

e
la

y
 (

m
s
)

OMA-UE
1

OMA-UE
2

NOMA-UE
1

NOMA-UE
2

Simulation

Figure 5.7 : The average user queuing delays of different 5G NR frame types.
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Figure 5.8 : Packet size versus average user queuing delays.
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Figure 5.9 : Packet size distribution versus average user queuing delays.

is utilized. Furthermore, the average queuing delays of UE1 and UE2 are lower for

NOMA compared to OMA users for all 5G NR frame types.

Figure 5.8 shows the effects of packet size on the average queuing delays for OMA

and NOMA schemes when the 5G NR frame type 4 is employed. The packet size

increases from 64 to 1518 bytes while the user arrival rates are set to the constant

value of 2.048× 105 bps. Without loss of generality, the packet size is an important

factor such that the average queuing delay increases with the packet size. NOMA can

support higher packet sizes than OMA to provide the same average queuing delay. For

example, the results show that the maximum packet size that can result in the average

queuing delay of less than 1 ms is 4100 bits for NOMA while it is 3700 bits for OMA.

Figure 5.9 demonstrates the effects of packet size distribution on the average queuing

delay of UE1 for the 5G NR frame type 4 when the arrival rate of UE1 is varied

from 8.192× 105 bps to 1.024× 106. The mean packet sizes for three different

distributions, namely constant, exponential, and uniform are set to 4096 bits. The

standard deviations for exponential and uniform distributions are set to 4096 and 2000,

respectively. The numerical results of the analytical model and simulation experiments

are close to each other indicating that the proposed analytical model provides a tight
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approximation for the average queuing delay for all three packet size distributions. For

both NOMA and OMA, when the variance of the packet size is relatively high as in the

exponential distribution, the average queuing delay becomes higher compared to the

other distributions. When the arrival rate increases, we observe that the effect of packet

size distribution on the average queuing delay becomes more visible. Furthermore, the

stable queue region is different for OMA and NOMA and independent from the packet

size distributions. For example, NOMA can provide a stable queue when the arrival

rates of UE1 is lower than 9.402×106 bps while it is 5.948×106 bps for OMA.

5.5 Summary

In this chapter, an analytical model utilizing a discrete time M/G/1 queuing model

is proposed to characterize the average queuing delay for NOMA downlink systems.

The first and second moment statistics of the service time are derived using both packet

size and service rate statistics under a Rayleigh fading channel to express the average

queuing delay. We perform extensive Monte Carlo simulations and the results verify

the accuracy of the proposed analytical model under various network scenarios for both

NOMA and OMA schemes. Numerical results show that the ergodic capacity region

of NOMA is a superset of OMA indicating that the NOMA can support higher arrival

rate and lower latency. Furthermore, the proposed model is applied to demonstrate

that the 5G NR frame types having wider bandwidth and shorter duration considerably

improves the latency performance. These are promising results such that employing

the NOMA technology within the 5G NR concept is a potential enabler to satisfy

the challenging latency requirements of time-critical services. For a given set of

network parameters including the packet size distribution, the analytical model can

be an effective tool for developing the resource allocation techniques that can satisfy

the latency requirements of URLLC services.

The outage condition is another important criterion that can needs to be utilized while

characterizing the reliability and latency of wireless networks. In the next chapters,

we will investigate the outage analysis of NOMA downlink schemes and extend the

proposed analytical model by taking the outage constraint into account.
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6. OUTAGE PROBABILITY OPTIMIZATION OF NOMA DOWNLINK
SYSTEMS

In previous chapters, we have investigated joint power allocation and user grouping

for either full buffer or non-full buffer traffic when the CSI is perfectly known at

the transmitter. In addition, an analytical model which characterize the queuing

delay dynamics for NOMA downlink schemes is presented when the BS has the

statistical CSI of the user equipments. In this chapter, we particularly focus the

outage analysis of NOMA by providing the closed form expressions of individual

user outage probabilities in addition to the system outage probability. Furthermore,

the system outage is minimized by optimizing the power allocation among users. The

next chapter will study how to control the trade-off between the outage and spectral

efficiency in NOMA so that higher throughput and lower latency objectives of 5G can

be simultaneously satisfied.

The outage probability is an important metric that can be used to characterize the

reliability and latency of wireless networks. For example, the hybrid automatic repeat

request (HARQ) is heavily utilized to re-transmit lost data in outage causing additional

overhead and latency [74]. The outage event can be defined for cellular systems using

various performance metrics such as maximum delay, minimum throughput, minimum

BER, and minimum SINR levels. The outage analysis is provided in [38, 66, 71, 75]

when each user has a different rate constraint. In [73], the individual and system outage

probabilities are used to analyze the secrecy capacity of the NOMA system, where the

system outage probability is defined as if both users are in the outage. However, in [77]

and [71], a system outage occurs if any or both of the users are in the outage state. We

adapt the same definition used in in [77] and [71] for the system outage. The study

in [80] investigates the outage probability of OMA downlink transmission, in which the

transmitter knows the probability distributions of the fading. By utilizing the similar

approach, we analyzed the outage probability of the NOMA downlink transmission

under the Rayleigh fading channel model. Further, we present the optimum power
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allocation that minimizes the NOMA system outage probability under the assumption

that the transmitter knows only the probability distributions of the fading coefficients.

In this chapter, we propose the optimum power allocation that minimizes the system

outage probability in PD-NOMA downlink systems. First, the analytical model of

the system outage probability is provided as a closed form expression under the

Rayleigh fading channel model. Second, we utilize expression to solve the optimum

power allocation that minimizes the system outage probability. The proposed power

allocation method is compared with fixed NOMA and fractional NOMA and OMA

power allocation methods [20]. The accuracy of the theoretical derivations are

validated with the Monte Carlo simulations. The results demonstrate that the proposed

optimum power allocation method yields the minimum outage probability among all

the power allocation schemes of PD-NOMA. The numerical results show that the

outage probability depends on the power allocation and the outage probability of OMA

with the fractional power allocation is lower than NOMA with the optimum power

allocation. However, the spectral efficiency of NOMA is higher since the bandwidth

can be utilized by multiple users. These results indicate that the trade-off between the

outage and spectral efficiency in NOMA should be carefully controlled to meet higher

throughput and lower latency objectives of 5G.

6.1 System Model

The system model of downlink transmission including one base station (BS) and two

user equipments (UEs) is shown for both non-orthogonal multiple access (NOMA) and

orthogonal multiple access (OMA) schemes in Figure 6.1. In this model, PD-NOMA

is utilized as the NOMA technology while Orthogonal Frequency Division Multiple

Access (OFDMA) is used as the OMA technology. In OMA, the bandwidth is equally

divided into two subcarriers and each subcarrier is assigned to one UE. The power

level of each subcarrier can be determined arbitrarily by the base station by obeying

the total transmission power constraint. However, the whole bandwidth is allocated to

both UEs in NOMA while the total transmission power can be arbitrarily distributed

among the UEs. The near user (UE1) employs the SIC procedure to decode its own

signal. The far user (UE2) directly decodes its corresponding signal by considering the

signal of UE1 as interference. The details of the NOMA concept can be found in [32].
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Figure 6.1 : OMA and NOMA downlink system model.

Assuming that PD-NOMA with K users allocated to the same frequency subband, sk

and pk represent the data symbol per unit energy of kth user and the amount of power

allocated for this user, respectively. For a single-input single-output (SISO) system,

the received signal of the kth user is:

yk =

(
√

pksk +
k−1

∑
i=1

√
pisi +

K

∑
i=k+1

√
pisi

)
×

hk
√

Pt
√

PL(dk)+wk

s.t. 1 =
K

∑
k=1

pk

(6.1)

where wk represent the white Gaussian noise ∼N (0,N0) while dk and hk represents

the distance and the channel gain coefficient between the base station and the kth user,

respectively. Pt is the transmit power of the base station. PL(dk) is the path loss of

the kth user calculated according to the non-singular path loss model [120]: PL(dk) =

1/(1+dβ

k ), where β is the path loss exponent.

Assume that the channel qualities of the users are arranged in descending order. The

kth user removes the signals of the users having k+1 or higher index using the SIC

method ( equation (6.1)). The signal to interference plus noise (SINR) ratio of the kth
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user is:

SINRk =
PL(dk)Pt |hk|2 pk

PL(dk)Pt |hk|2 ∑
k−1
i=1 pi +W0,k

s.t. 1 =
K

∑
k=1

pk ,

pk < pk+1 k ∈ [1,2, ..K] .

(6.2)

In this equation, W0,k represents the noise power calculated according to the double

sided white noise such as W0,k = B×N0/2, where B and N0 represent the bandwidth

and noise spectral density, respectively.

The users with high channel qualities first decode the signals of the users with lower

channel qualities and then the decoded signal is subtracted from the combined received

signal to obtain their own signal because the users with lower channel qualities are

allocated more power in the NOMA system (pk < pk+1). During the SIC procedure,

the SINR level of the lth user’s signal at the user k is:

SINRSIC
k→l =

PL(dk)Pt |hk|2 pl

PL(dk)Pt |hk|2
(
∑

K
i=l+1 pi

)
+W0,k

. (6.3)

We consider slow Rayleigh fading channel with the channel coefficient hk in our

system model. It is assumed that each users’ channel coefficient hk (k ∈ [1,2, ...K])

is independent and identically distributed (i.i.d.) random variables with the Rayleigh

distribution. The channel power gain (xk = |hk|2) is exponentially distributed with

the channel mean power of E
[
|hk|2

]
= 1/λ . The following cumulative distribution

function (CDF) and probability density function (PDF) will be used in the outage

probability analysis in section 6.2.

FXk(xk) = 1− exp(−xkλ )

fXk(xk) = λ exp(−xkλ )
(6.4)

6.2 Outage Probability Analysis of NOMA

In this section, the outage probability analysis of the NOMA system is presented. We

define a common SINR threshold (τth) as the minimum required level for successful

communication. If the SINR level of a user is greater than or equal to τth (τth > 0),

it can decode the corresponding signal in both SIC and decoding processes, otherwise

the outage event occurs. The predefined SIC order indicates that the near user needs

to employ the SIC process to decode its own signal while the far user will receive
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near users’ signals as interference during the decoding process. For a two-user NOMA

scenario, where UE1(k = 1) and UE2(k = 2) representing the near user and far user of a

NOMA downlink system (d1 < d2). The outage SINR condition of user k is represented

as γk and will be defined below separately for both near and far user according to the

SINR threshold τth.

If the transmit power Pt of the base station were completely assigned to user k, the

received power at user k would be PRk =PtPL(dk). To simplify the SINR equations, we

define a new variable θk =W0,k/PRk. Then, we obtain the following SINR equations:

SINRSIC
1→2 =

p2PR1x1

p1PR1x1 +W0,1
=

p2x1

p1x1 +θ1
(6.5)

SINR1 =
p1PR1x1

W0,1
=

p1x1

θ1
(6.6)

SINR2 =
p2PR2x2

p1PR1x2 +W0,2
=

p2x2

p1x2 +θ2
(6.7)

where p1 and p2 represent the power allocation ratios at the base station for UE1 and

UE2, respectively.

First, let us focus on the outage probability of UE1. The outage event for UE1

occurs if the required SINR level cannot be reached in neither SIC nor decoding

processes. These two conditions are represented as SINRSIC
1→2 < τth and SINR1 < τth.

The outage condition γ1 for UE1 is defined as either the condition SINRSIC
1→2 < τth or the

condition SINR1 < τth is occurred. The SINRSIC
1→2 < τth and SINR1 < τth conditions

are dependent (overlapping) events as the same random variable of channel power

gain (x1) is used for their SINR calculations. Thus, the outage probability of UE1 by

considering the probabilities of these two conditions can be calculated as follows:

P(γ1) =P(SINR1 < τth∪P(SINRSIC
1→2 < τth)

=P(SINR1 < τth)+P(SINRSIC
1→2 < τth)−

P(SINR1 < τth∩P(SINRSIC
1→2 < τth) .

(6.8)

The first term in equation (6.8) represents the probability of UE1 to decode its own

signal. The CDF of this condition is given as:

FSINR1(τth) = P(SINR1 < τth)

= 1− exp
(
−λθ1τth

p1

)
.

(6.9)
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The probability of UE1 to decode the signal of UE2 in the SIC procedure corresponds

to the second term in equation (6.8). The CDF of this condition is given as

FSIC1→2(τth) = P(SINRSIC
1→2 < τth)

=

{
1, p2

p1
≤ τth

1− exp
(
−λθ1τth
p2−p1τth

)
, o.w .

(6.10)

The third term in equation (6.8) denotes the joint probability that both SIC procedure

and decoding process of UE1 is in the outage and it is given as:

= P(SINR1 < τth∩P(SINRSIC
1→2 < τth)

=

1− exp
(
−λθ1τth

p1

)
, p2

p1
< τth +1

1− exp
(
−λθ1τth
p2−p1τth

)
, o.w .

(6.11)

When we place Eqs. 6.9,6.10, and 6.11 into equation 6.8, the outage probability of

UE1 (γ1) becomes:

P(γ1) =
1, p2

p1
≤ τth

1− exp
(
−λθ1τth
p2−p1τth

)
, τth <

p2
p1

< τth +1

1− exp
(
−λθ1τth

p1

)
, p2

p1
≥ τth +1 .

(6.12)

The outage event for UE2 occurs when the SINR level of UE2 is lower than the outage

SINR threshold (SINR2 < τth). This event is represented by the γ2 condition and hence

the outage probability of UE2 is the same as the probability of meeting the γ2 condition

which is formulated as follows:

FSINR2(τth) = P(γ2) = P(SINR2 < τth)

=

{
1− exp

(
−λθ2τth
p2−p1τth

)
, p2

p1
≥ τth

1, o.w .

(6.13)

Finally, the system outage can be defined as either one or both of the users is in the

outage state. This corresponds to the common outage definition in [77]. Since the

outage events γ1 and γ2 for UE1 and UE2, respectively, are independent, the system

outage probability can be calculated as follows:

Pout = 1− (1−Pγ1)(1−Pγ2)

=


1, p2

p1
≤τth

1−exp
(
−λτth

(
θ2+θ1

p2−p1τth

))
, τth<

p2
p1
<τth+1

1−exp
(
−λτth

(
θ1
p1
+ θ2

p2−p1τth

))
, p2

p1
≥τth+1 .

(6.14)
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The OMA system outage probability analysis can be performed similar to the NOMA.

As OMA user signals are transmitted at the base station in different frequency

sub-bands, the SIC process and additional interference effects will not be considered.

Therefore, the individual outage probability of kth user is calculated according to the

γOMA
k = SINROMA

k < τth condition. For the OMA system with two users, the system

outage probability can be formulated as:

POMA
out = 1− (1−POMA

γ1
)(1−POMA

γ2
) = 1− exp

(
−λτth

(
p1θ OMA

2 + p2θ OMA
1

p1 p2

))
.

(6.15)

where θ OMA
k =W OMA

0,k /PRk corresponds to the ratio of the noise to the received power

for OMA, where PRk is defined in the NOMA outage probability analysis above. Since

the length of each user subcarrier is equal to the half of the whole bandwidth (BOMA =

B/2) in the OMA system as depicted in Figure 5.2, the noise power of the kth user for

OMA is W OMA
0,k = B×N0/4.

6.3 Minimizing the Outage Probability

In the previous section, the analysis of the NOMA outage probability is performed

and the closed-form expression is obtained in equation 6.14 for two-user NOMA

downlink system under the slow Rayleigh Fading channels. In this section, we will

utilize the analytical model of the outage probability to calculate the optimum power

allocation that minimizes the NOMA system outage. For the NOMA system with two

users, it is clear that p2 = 1− p1 and the system outage probability in equation (6.14)

can be reorganized and simplified to a single variable of p1 so the power allocation

optimization problem can be stated as follows:

popt
1 = arg min

p1

{Pout}

s.t. 0 < p1 < 0.5
(6.16)

In this equation, it can be shown that the system outage probability corresponding to

the conditions 1
p1
≤ τth+1 and τth+1< 1

p1
< τth+2 are non-convex. We numerically

evaluate the system outage probability corresponding to the condition 1
p1
≥ τth + 2

using different parameters of λ , τth, N0, d1, d2, etc. and observe that it is convex

when the parameters are selected appropriately. We assume in this chapter that the
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appropriate parameters yielding the convex shape are used for the condition 1
p1
≥ τth+

2. Then, the optimum power level (popt
1 ) can be found where the equation of partial

derivation of Pout with respect to p1 is equal to zero:

0 =
∂Pout

p1→ popt
1

=



0, 1
p1
≤τth+1

1
(−1+p1+p1τth)2×

exp
(

λτth

(
θ2+θ1

−1+p1+p1τth

))
×

λτth(1+ τth)(θ2 +θ1), τth+1< 1
p1
<τth+2

−exp
(

λτth

(
θ1
p1
+ θ2

1−p1−p1τth

))
×

λτth

(
θ1

(p1)2 +
θ2(1+τth)

(−1+p1+p1τth)2

)
, 1

p1
≥τth+2 .

(6.17)

The optimum position of power allocation coefficient (popt
1 ) is the roots of the third

part of equation(6.17):

0 =−exp

(
λτth

(
θ1

popt
1

+
θ2

1− popt
1 − popt

1 τth

))
×

λτth

(
θ1

(popt
1 )2

+
θ2(1+ τth)

(−1+ popt
1 + popt

1 τth)2

)
.

0 =
θ1

(popt
1 )2

+
θ2(1+ τth)

(−1+ popt
1 + popt

1 τth)2
.

(6.18)

After simplifying equation (6.18), the closed form expression of the optimum power

allocation becomes:

popt1,2
1 =

θ1 +θ1τth∓
√

θ1θ2 +θ1θ2τth

θ1−θ2 +2θ1τth−θ2τth +θ1τ2
th

,

s.t.
1

popt
1
≥ τth +2 .

(6.19)

6.4 Numerical Results

In this section, the individual and system outage probabilities for three NOMA and

one OMA power allocation mechanisms are presented using the proposed analytic

model and simulation experiments. Opt-NOMA corresponds to the optimum power
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allocation that minimizes the system outage probability, Fix-NOMA corresponds to

the fix power allocation such that p1 is 0.2 and p2 is 0.8, and Frac-NOMA corresponds

to the fractional power allocation based on the received power levels PR1 and PR2 for

UE1 and UE2, respectively (i.e., p1 = PR2/(PR1 +PR2) and p2 = 1− p1). Unless

otherwise is stated, the parameters used for the experiments are given in Table 6.1.

Table 6.1 : Simulation parameters for outage analysis of NOMA.

Parameter Value
Transmission Bandwidth 1 Hz

Receive/Transmit Antenna SISO
Path Loss Exponent (β ) 4

Transmit Power (Pt) 1 dB
Noise Spectral Density (N0) −100 dBm/Hz
Outage SINR Threshold (τth) 1 dB

Rayleigh Fading Parameter (λ ) 1
User Distances (d1,d2) 300 m, 800 m

Number of Simulation Trials 106

Noise Model Double-sided White Noise
Path Loss Model Non-singular Path Loss
Number of users 2

Figure 6.2 shows the outage probabilities of UE1 and UE2 when the fractional power

allocation is employed for both NOMA and OMA. The power level of UE1 (p1) is

varied from 0 to 1 for OMA while it is varied from 0 to 0.5 for NOMA since it is not

practical to set p1 beyond 0.5 for NOMA. The results show that the outage probability

of each user is always higher for NOMA compared to OMA for all possible power

allocations. The outage probability of UE1 decreases when p1 increases from 0 to 0.3

while it is exponentially increases when p1 increases beyond 0.3 and reaches 1 when

p1 is around 0.45. Having p1 beyond 0.3 increases the SIC failure probability at UE1

for NOMA and hence the outage probability of UE1 increases. For OMA, the outage

probability of UE1 decreases while the outage probability of UE2 increases when p1

increases since p2 (1-p1) decreases. For all experiments, the results of the model match

with the simulation results indicating the correctness of the analytical model.

Figure 6.3 shows the system outage probability (Pout) when p1 is varied from 0 to 0.5

for NOMA and from 0 to 1 for OMA. Note that the system is in outage state if any

user or both users are in outage state. For all experiments, the analytical and simulation
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Figure 6.2 : The effects of power allocations on users’ outage probabilities.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Power level of UE
1
 (p

1
)

10-2

10-1

100

S
y
s
te

m
 O

u
ta

g
e
 P

ro
b
a
b
ili

ty

OMA

NOMA

Simulation

Figure 6.3 : The effects of power allocations on system outage probability.
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results match, indicating the correctness of the model. Pout is always higher for NOMA

compared to OMA for all possible power allocations. Pout increases when p1 increases

and reaches 1 when p1 is around 0.43. These simulation results directly match with

the results in equation (6.14), where p1 = 0.43, p2 = 0.57, p2/p1 = 1.325 τth = 1dB =

1.2589W . The shape of Pout for NOMA is convex so that there is an optimum p1 that

minimizes Pout . The similar behavior can be observed for OMA but the optimum p1

value is different compared to NOMA. In this chapter, we propose an analytic model

to calculate this optimum p1 for NOMA. Figure 6.4 and Figure 6.5 compare the outage

probabilities of various power allocation methods for NOMA including the optimum

one that minimizes Pout .
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Figure 6.4 : The system outage probabilities versus UE2 distance.

Figure 6.4 shows the Pout results when three NOMA and one OMA power allocation

methods are employed when the physical distance from the base station to UE2 is

varied from 200 m to 1600 m while the distance of UE1 is 100 m. The results show

that, for all methods, Pout increases when the UE2 distance increases since the received

power and SINR at UE2 decrease resulting in higher outage probability. Opt-NOMA
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yields always the lowest Pout among three NOMA power allocation methods while

Frac-OMA achieves the lowest Pout .
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Figure 6.5 : The system outage probability versus the transmit power.

In another set of experiments, the total transmit power (Pt) of the base station is varied

from −30 dB to 20 dB while the distances of UE1 and UE2 from the base station

are set to the fixed values of 300 m and 800 m, respectively. When Pt increases, the

system outage probabilities of all power allocation methods including OMA decrease

as depicted in Figure 6.5. For Frac-NOMA, the tranmission powers of UE1 and UE2

increases with the same rate when Pt increases since the fractional power ratio is

constant and does not depend on the absolute value of Pt . In these experiments, p1

is calculated as 0.0193 and hence p2 is 0.9807. For all Pt values, Frac-OMA yields the

lowest Pout among all methods while Opt-NOMA yields the lowest Pout among three

NOMA methods. When Pt is lower than −25 dB, the Pout values of all four methods

converge to 1.
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6.5 Summary

In this chapter, the analytical model of the system outage probability for the NOMA

downlink system under the Rayleigh fading channel is presented. The optimum power

allocation yielding the minimum system outage probability is obtained by solving the

convex optimization problem. The Monte Carlo simulations demonstrated that the

proposed model can be accurately used to characterize the system outage probability.

The results show that OMA has lower system outage probability compared to NOMA.

However, the spectral efficiency of NOMA is higher since it allows multiple users

to share the same radio resource. The next chapter will study how to control the

trade-off between the outage and spectral efficiency in NOMA towards meeting higher

throughput and lower latency objectives of 5G and provide a comparison between

OMA.
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7. CROSS-LAYER OPTIMIZATION OF NOMA QUEUING DELAY UNDER
SINR OUTAGE CONSTRAINT

In previous chapters, an analytical model of average queuing delay and outage

probability analysis are independently studied for NOMA downlink systems. In this

chapter, we combine these studies and present a discrete time M/G/1 queuing model

by taking the outage event into account such that the user fails either decoding its own

signal or performing SIC for the signals of other users at the receiver when the SINR is

lower than a predefined outage threshold. The departure process of the queuing model

is characterized by obtaining the first and second moment statistics of the service time

that depends on the resource allocation strategy and the packet size distribution. The

proposed model is utilized to obtain the optimum power allocation that minimizes the

maximum of the average queuing delay (MAQD) for a two-user network scenario.

The user plane end-to-end delay of packet transmission can be divided into three main

parts: radio access, mobile core, and cloud, where the radio access latency between

a base station and user equipment includes over-the-air transmission and propagation,

queuing, processing, and re-transmission delays [12]. The outage probability analysis

has been taken considerable attention to study the reliability of wireless networks. New

analytical models, which can characterize the radio access latency dynamics by taking

the outage event into account, are of paramount importance to evaluate the NOMA

suitability for URLLC services of 5G NR.

The outage event can be defined for cellular systems using various performance metrics

such as maximum delay, minimum throughput, minimum BER, and minimum SINR

levels [66, 69, 71, 75]. The study in [78] investigates the outage probability of OMA

downlink transmission, in which the transmitter knows the probability distributions of

the fading. In [66], the expressions of the average user throughput is provided for both

NOMA downlink and uplink systems under the Rayleigh fading channel model by

considering target data rates as constraints. The SINR outage constraint is considered

in [73] to analyse the individual and system outage probabilities in addition to the
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secrecy capacity of the NOMA system under Rayleigh fading channel. These studies

assume that the transmitter has the probability distributions of the fading coefficients

instead of their realizations. By following a similar approach, our proposed queuing

model takes the SINR outage constraint into account for both of the decoding and SIC

processes at the receiver. On the other hand, the aforementioned studies focus on only

modelling of the throughput, they do not provide higher order statistics of the service

rates under the outage constraint. In our study, the first and second moment statistics of

the service rate are derived by considering the SINR outage constraint to characterize

the latency dynamics of individual users for both NOMA and OMA systems under the

Rayleigh fading channel.

The effective capacity approach in [102] is used to accurately predict several link-level

QoS metrics such as delay bounds for admission control and resource reservation in

wireless communication systems. The effective capacity of NOMA guaranteeing the

statistical delay requirements under fading channels has been widely studied [15, 17,

18, 81, 103]. For example, the bisection-based cross-layer power allocation scheme

is proposed in [103], where the max-min effective capacity of NOMA is selected as

the optimization objective. These studies consider the outage condition as a delay

violation constraint while this study presents an analytical model to characterize the

average queuing delay under the SINR outage constraint.

[107] investigates the average delay minimization problem for two-user OMA

networks and show that the optimal resource allocation policy needs to equalize the

queue lengths of both users. We present the optimum cross-layer power allocation

framework minimizing the maximum of average queuing delays in two-user NOMA

downlink system. Consistent with the proposal in [107], we have analytically shown

that the optimal power allocation method yields the minimum average queuing delay

by minimizing the difference between the average queuing delays of both users.

The delay violation probability for two-user uplink NOMA systems is presented in

[105] by utilizing the stochastic network calculus. They stated that NOMA with the

SIC decoding may not be suitable for low latency system under realistic system effects

such as imperfect CSI. We have also achieved a similar result for two-user NOMA

downlink systems when the SINR outage constraint is set to higher levels.
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Stable throughput regions for uplink NOMA systems under unsaturated traffic are

investigated using the queuing theory approach, where traffic arrival for each user is

assumed to be independent Bernoulli process [106]. In [110], theoretical queuing

analysis and system-level simulations are performed to study the system design

principles of 5G NR. They emphasize that the queuing effect has an important

contribution on the URLLC latency. Although they study both uplink and downlink

models for 5G NR, the NOMA technology is not considered in their model. The

queuing analysis of block Rayleigh fading channels for conventional OMA system is

presented in [108] by utilizing the discrete time discrete state D/G/1 queuing model.

They drive the probability distribution of packet service time by taking advantage of

the channel distribution of the low SNR regime. In another study [109], a general state

space Markov chain model is proposed to calculate the throughput regions of OFDMA

users under Rayleigh fading channel by taking the scheduling algorithms into account.

The buffer overflow probability providing insights for buffer dimensioning problems is

obtained assuming that each user has finite traffic arrival and queue capacity. We adopt

a similar system model for the NOMA downlink such that each user has a dedicated

queue with the packet based random traffic arrival model and the departure process of

each queue is determined by the NOMA resource allocation parameters in addition to

the Rayleigh fading channel. By taking both arrival and departure models into account,

we utilize a discrete-time M/G/1 queuing model to obtain the average queuing delays

of both NOMA and OMA downlink systems with 5G NR frame types.

In Chapter 5), the individual average queuing delay of NOMA users are derived for

Poisson distributed packet arrivals with various packet size distributions. However,

the proposed approach does not consider the outage condition which is required to

accurately model the practical system level enhancements. The closed-form expression

of the optimum power allocation that minimizes the system outage probability is

provided in Chapter 6 also published as [125].

In this chapter, an analytical model to characterize the queuing delay of NOMA

downlink systems under the SINR outage constraint is proposed. The contributions

can be summarized as follows:

• The users’ service capacities are expressed under a common SINR outage threshold

which is the minimum required level to successfully perform both the SIC and
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decoding processes. By taking the SINR outage constraint into account, the first and

second moment statistics of users’ service rates are derived for a NOMA downlink

system simultaneously serving K users sharing a single resource block.

• Similar to the queuing model proposed in Chapter 5, for a given probability

distribution of the packet size, a fairly close analytical approximation of the first and

second moment statistics for the users’ service time is obtained by expressing the

underlying problem as the random sums of i.i.d random variables. The underlying

queuing system with Poisson traffic arrivals becomes M/G/1, where the Pollaczek

Khintchine formula of the residual service approach together with the Little’s Law

are utilized to obtain the average queuing delay.

• We prove that the maximum of average queuing delays for two user NOMA

and OMA systems is a unimodel function with a single minimum point for the

power allocation yielding stable queues. Using this result, the optimum power

allocation framework is proposed by utilizing the M/G/1 queuing model such that

the maximum of average queuing delays is minimized for a single resource block

simultaneously serving two users.

• The delay optimization framework is applied for the 5G NR concept when the

NOMA is utilized.

The proposed analytical model including the approximation of the second moment

of the service time is validated by performing the Monte Carlo simulation results.

The delay performance of NOMA and OMA is reported using the proposed delay

optimization method under various network settings such as SINR outage threshold,

user arrival rates and distances. Without considering the SINR outage constraint, the

ergodic capacity region of NOMA is a superset of OMA due to its higher spectral

efficiency as demonstrated in Chapter 5). As the SINR outage threshold increases,

the average queuing delay increases for both NOMA and OMA; however, the rate

of increase for NOMA is higher than OMA due to the white noise effect over larger

bandwidth. The proposed model in this chapter show that NOMA results in higher

delay when the SINR outage threshold is set to higher levels. OMA becomes more

preferable than NOMA due to higher noise effect over the 5G NR frame types

having wider bandwidth for higher outage thresholds. However, the average queuing
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Figure 7.1 : OMA and NOMA downlink system model.

delay performance of NOMA outperforms OMA when the SINR outage threshold is

disabled.

7.1 System Model

The downlink transmission system model is shown in Figure 7.1, where one base

station utilizes either non-orthogonal multiple access (NOMA) or orthogonal multiple

access (OMA) schemes to serve K user equipments (UEs). In this model, Power

Domain-NOMA (PD-NOMA) is utilized. The same radio resources consisting of

bandwidth, transmit power, and time slot duration are utilized for both multiple access

schemes. In OMA, the transmission bandwidth is equally divided into K subcarriers

and each subcarrier is assigned to a single UE while the entire bandwidth is allocated to

all UEs in NOMA. The total transmission power can be arbitrarily distributed among

K UEs for both schemes.

7.1.1 MAC Layer

In the MAC layer, the base station has an infinite First-in-First-out (FIFO) queue for

each user to store and forward the corresponding packets. Considering the user k at

the time slot n, the number of arrived and served packets within the duration of Ts is

represented as independent and identically distributed (i.i.d.) random variables Ak[n]

and Dk[n], respectively. The queue size qk[n] can evolve as:

qk[n+1] = (qk[n]+Ak[n]−Dk[n])
+ (7.1)

where (x)+ is an operator defined as max{0,xk}. The random variable Ak[n] is operated

for each time interval of nTs to form K independent Poisson process with the mean
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value of Λk packets/slot, where Ts represents the time slot duration. The departure

process with the random variable Dk[n] is characterized as General distributed, where

its statistical information depends on the network settings (e.g., channel model,

distance, etc.) and resource allocation decisions (e.g., power allocation, subcarrier

assignment, etc.). Therefore, the underlying queuing model for downlink multiple

access schemes forms a discrete time discrete state M/G/1 queue with the mean

arrival rate of Λk and the mean departure rate of (i.e., service rate) µk packets/slot.

Furthermore, Lk representing the packet size is assumed to be an i.i.d. random variable

with a finite mean (E[Lk]) and a finite variance (var(Lk)).

Let Sk,m be an integer valued random variable representing the service time of the

mth packet with the size of Lk,m at the user k. The required number of time slots to

serve a packet defines the service time. Let Rk[n] represent the amount of served bits

within the time slot n. Assuming that Rk[n] is independent and identically distributed,

it is a strongly stationary process and its statistical information is independent of time

n. Thus, the process (Rk[n];n ∈ Z+) is the joint distribution function of the vector

(Rk[n+1],Rk[n+2], ..,Rk[n+ j]) is equal with the one of (Rk[1],Rk[2], ..,Rk[ j]) for any

finite set of indices 1,2, .., j ⊂ Z+ and any n ∈ Z+.

The service time of the mth packet satisfies the following condition:

Sk,m−1

∑
j=1

Rk [ j]< Lk,m ≤
Sk,m

∑
j=1

Rk [ j] (7.2)

Since Rk[ j] is finite, the service time Sk,m requires at least one time slot (i.e., Sk,m ≥ 1)

to serve a packet having a finite size of Lk,m. Yk,m representing the consumed service

capacity to serve the mth packet is equal to the sum of service capacities within the

window of Sk,m:

Yk,m =
Sk,m

∑
j=1

Rk [ j] . (7.3)

Equation (7.3) corresponds to the random sums of i.i.d. random variables problem as

defined in [122], where the generating functions (g.f.) of random variables can be used

to obtain the service time statistics in terms of Rk and Yk. The g.f of Yk can be defined

as:

gYk(z) = E
[
zi]= ∞

∑
j=1

P[i = j]z j . (7.4)
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where z ∈ D̄(0 : 1) while D̄(0 : 1) is the complex closed unit disk centered at 0. Thus,

equation (7.3) becomes:

gYk (z) = gSk (gRk (z)) . (7.5)

where, gSk (z) and gRk (z) represents the g.f. of Sk and Rk, respectively. The domain

definition of gYk (z) contains the open unit disk and the differentiation is possible inside

the open disk. Let z→ 1, the first and second derivatives of gYk(z) are g′Yk
(1) = E [Yk]

and g′′Yk
(1)) = E

[
Yk

2−Yk
]
, respectively. Then, E [Sk] = E [Yk]/E [Rk] using g′Yk

(1) =

g′Sk
(1) g′Rk

(1). The second derivative of gYk is:

g′′Yk
(z) = g′′Sk

(1) .g′Rk
(1) .g′Rk

(1) + g′Sk
(1) g′′Rk

(1) . (7.6)

When the first and second moments of Yk, Rk, and Sk are substituted into equation (7.6),

the second moment of service time (Sk
2) can be simplified as:

E
[
Sk

2]= Sk
2 =

E
[
Yk

2]−E [Yk]
(

Var(Rk)
E[Rk]

)
E[Rk]

2 . (7.7)

We utilize the similar approach in [108] such that after the (m− 1)th packet is

successfully served, the remaining service capacity Uk,m at the last time slot is used

to serve a portion of the mth packet. Note that the remaining service capacity is zero

(Uk,0 = 0) at the beginning. Let us define ∆Uk,m =Uk,m −Uk,m−1 ,∀m∈Z+, then Yk,m =

Lk,m+∆Uk,m. By taking the summation for M packets:
M
∑

m=1
Yk,m =

M
∑

m=1

(
Lk,m +∆Uk,m

)
.

Since
M
∑

m=1
∆Uk[m] =Uk[M], let M → ∞, utilizing the law of large numbers, E [Yk] =

E [Lk]. Similarly, M→ ∞ for
M
∑

m=1
(Yk[m])2 =

M
∑

m=1
(Lk[m]+∆Uk[m])2, we obtain:

E
[
Yk

2]= E
[
Lk

2]+2E [Lk∆Uk]+E
[
∆Uk

2] . (7.8)

Note that E [Lk∆Uk] = E [Lk]E[∆Uk]+Cov(Lk,∆Uk) =Cov(Lk,∆Uk) since E[∆Uk] = 0,

where Cov(Lk,∆Uk) represents the covariance of Lk and ∆Uk. Then, equation (7.8)

becomes:

E
[
Yk

2]= E
[
Lk

2]+2Cov(Lk,∆Uk)+E
[
∆Uk

2] (7.9)

Assuming that Lk is significantly higher than Rk, Uk can be neglected compared to Lk.

Therefore, we can assume that E
[
∆Uk

2] and Cov(Lk,∆Uk) can be negligible to find
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the following approximation:

E
[
Yk

2]≈ E
[
Lk

2] . (7.10)

One can substitute equation(7.10) into equation (7.7) to approximate S2
k in terms of the

statistics of Rk and Lk:

S2
k ≈

E
[
L2

k

]
−E [Lk]

(
Var(Rk)

E[Rk]

)
E[Rk]

2 . (7.11)

The Pollaczek Khintchine formula of the residual service approach together with the

Little’s Law [123] can be utilized to obtain the average queuing delay (E [Qk]) of the

M/G/1 system:

E [Qk] =
ΛkS2

k
2(1−ρk)

+
1
µk

(7.12)

where ρk represents the utilization of the kth queue, which is the ratio of the mean

packet arrival rate over the mean service rate (ρk = Λk/µk). The mean service rate

of the kth queue in terms of packets/slot is µk = 1/E [Sk] = E [Rk]/E [Lk]. Therefore,

substituting equation (7.11) into equation (7.12):

E [Qk] =
E
[
Lk

2]ΛkE [Rk]−2E[Lk]
2
ΛkE [Rk]

2E[Rk]
2 (E [Rk]−E [Lk]Λk)

+

E[Rk]
2E [Lk] (2+Λk)−E [Lk]ΛkE

[
Rk

2]
2E[Rk]

2 (E [Rk]−E [Lk]Λk)
.

(7.13)

7.1.2 Physical Layer

For K-user PD-NOMA downlink system, the combined transmission signal at the base

station is
√

p1s1 +
√

p2s2 + · · ·+
√

pKsK , where sk and pk represent the data symbol

per unit energy and the power allocation level of the kth user, respectively (1≤ k≤ K).

The total power allocation levels of all users should be equal to 1
(

K
∑

k=1
pk = 1

)
. For a

single-input single-output system, the received signal of the kth user:

yk =

(
√

pksk +
k−1

∑
i=1

√
pisi +

K

∑
i=k+1

√
pisi

)
×hk
√

Pt
√

PL(dk)+wk (7.14)

where, dk and hk represent the distance and the channel gain coefficient between the

base station and the kth user, respectively. Pt is the transmit power of the base station
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and wk represents white Gaussian noise ∼N (0,N0). We utilize the non-singular path

loss model given in [120] as PL(dk) = 1/(1+dβ

k ), where β is the path loss exponent.

At the receiver, the SIC process is employed such that, the user decode and cancel the

signals of the other users according to the SIC order. As in [73], the NOMA users are

ordered for the SIC procedure according to their distances (d1 < d2.. < dk) from the

base station instead of their instantaneous channel gains. Furthermore, the perfect SIC

procedure is assumed when the outage constraint is satisfied.

At the user k, the interfering signals of users having k+1 or higher index (i.e., the third

term in equation (7.14)) is removed by the SIC process. During the SIC procedure, the

signal to interference plus noise ratio (SINR) of the lth user’s signal (sl) at the user k is

given in equation(7.15). When the SIC procedure is successfully performed, the SINR

of the kth user with respect to sk is given in equation(7.16).

SINRSIC
k→l =

PL(dk)Pt |hk|2 pl

PL(dk)Pt |hk|2
(

K
∑

i=l+1
pi

)
+W0,k

, (7.15)

SINRk =
PL(dk)Pt |hk|2 pk

PL(dk)Pt |hk|2
k−1
∑

i=1
pi +W0,k

s.t.
K

∑
k=1

pk = 1 .

(7.16)

Let Xk represent the channel gain power (Xk = |hk|2) and define a new variable θk =

W0,k/(PtPL(dk)) to simplify the equation (7.15) and equation (7.16) as:

SINRSIC
k→l =

Xk pl

Xk

(
K
∑

i=l+1
pi

)
+θk

, (7.17)

SINRk =
Xk pk

Xk
k−1
∑

i=1
pi +θk

. (7.18)

When the base station utilize OMA as a downlink multiple access scheme, each UE is

assigned to a separate subcarrier with an equal bandwidth of Boma = B/K. The power

level of each subcarrier can be determined arbitrarily by the base station while the sum

of the allocated power coefficients are equal to 1. Hence, the SINR of kth OMA user

is:
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SINRoma
k =

PL(dk)Pt |hk|2 pk

W oma
0,k

=
Xk pk

θ oma
k

. (7.19)

where, the noise power is W oma
0,k = BN0/(2K) due to the double sided white noise and

θ oma
k =W oma

0,k /(PtPL(dk)).

The block (slow) fading Rayleigh channel model is assumed, where the channel gain

remains constant at a given time interval nTs. The channel gain coefficients hk[1],

hk[2], ..., hk[n] are i.i.d sequence of random variables with the Rayleigh distribution

which have a finite mean and a finite variance ∀ k,n. Therefore, the channel power

gain (Xk = |hk|2) is exponentially distributed with the mean value of E
[
|hk|2

]
= 1/λ

and its probability density function is:

fX(x) =

{
λe−λx x≥ 0
0 o.w. .

(7.20)

7.2 Service Capacity under Outage Constraint

In this section, the first and second moments of the user service capacity statistics

are presented for a single resource block NOMA downlink system under the outage

constraint. The service capacity is defined as the amount of served bits within a single

time slot. The power allocation coefficients are considered as the resource allocation

parameters which determine the SINR levels of users, and hence the service capacity

statistics. In Chapter 5 also presented as [125], we have defined an SINR outage

constraint for the NOMA downlink scheme and used a predefined SINR threshold τth

for the minimum level required for successful communication. We extend the outage

analysis to derive the service capacity statistics of individual NOMA users. For a single

time slot, if the SINR level of a user is greater than or equal to τth (τth ≥ 0), the UEs

can decode their corresponding signal in both SIC and decoding processes, otherwise

the outage event occurs and the the amount of served bits within a time slot becomes

zero. For simplicity, we use X as a channel gain power of the kth user instead of Xk,

since X1,X2, ..,Xk has the same probability distribution.

The outage condition (γk) of the user k is expressed in terms of the SINR levels. The

outage event for UEk occurs if the required SINR level cannot be reached in neither
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SIC nor decoding processes. Thus, the outage probability of UEk is:

P(γk) =P(SINRk < τth) ∪ P
(

SINRSIC
k→k+1 < τth

)
∪ ...∪ P

(
SINRSIC

k→K < τth

) (7.21)

Since the same random variable of channel gain power X is employed for all terms

in equation (7.21), the outage probability needs to be calculated by considering

the overlapping events. The instantaneous channel capacity of the kth user can be

represented as B log2 (1+SINRk (X)) bits/s.

For the user k, when the SINR condition is satisfied, the amount of served bits

within one time slot is represented as Rk(X) and can be calculated by multiplying

the instantaneous channel capacity with a time slot duration (Ts), otherwise it will be

zero. Note that the channel gain power X remains constant at each time slot interval.

For a K-user NOMA downlink system, UEk represents the kth user, where dk < dk+1.

By considering the outage SINR condition, the amount of served bits within one time

slot for the kth user can be expressed as:

Rk(X)=


Ts B log2

1+ pkX

X
k−1
∑

i=1
pi+θk

 , γc
k

0, γk ,

(7.22)

where γc
k represents the complement of γk such that the user k is not in the outage. The

first moment of the Rk(X) representing the average service capacity (bits/slot) for a

time slot can be expressed as follows:

E [Rk] =

∞∫
g(γc

k )

Ts B log2

1+
pkx

x
k−1
∑

i=1
pi +θk

 fX (x)dx . (7.23)

where g(γc
k ) is the function providing the threshold level of channel gain power

according to equation (7.21). Performing the same approach, the second moment of

the Rk(X) (E
[
R2

k

]
):

R2
k =

∞∫
g(γc

k )

Ts B log2

1+
pkx

x
k−1
∑

i=1
pi +θk




2

fX (x)dx . (7.24)
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Thus, by using equation (7.23) and equation (7.24), the variance of Rk can be calculated

as Var(Rk) = R2
k−E [Rk]

2.

Up to this point, the first and second moments of the service capacity are expressed

for K-user NOMA. We now consider the two-user NOMA downlink system, where

UE1 and UE2 represent the near and far users, respectively (d1 < d2). The predefined

SIC order indicates that the near user needs to employ the SIC process to decode its

own signal while the far user will receive near users’ signals as interference during the

decoding process. The first and second moments of Rk, for k = 1,2 can be expressed

with special mathematical functions by organizing the equations equation (7.23) and

equation (7.24).

First, let us derive the service capacity statistics of the near user (UE1) under the SINR

outage constraint τth > 0. The first and second moment statistics of R1 can be derived

by considering the outage events of UE1. The outage event for UE1 occurs if the

required SINR level cannot be reached in neither SIC nor decoding processes. From

equation (7.21) the expression of the outage probability of UE1 is:

P(γ1) = P(SINR1 < τth)∪P
(

SINRSIC
1→2 < τth

)
. (7.25)

The SINRSIC
1→2 < τth and SINR1 < τth conditions are dependent (overlapping) events

as the same random variable of channel gain power (X) is used for their SINR

calculations. Using equation (7.17) and equation (7.18) for UE1, the probability of

the complement of γ1 can be expressed in terms of X :

P(γc
1) = P(X > g(γc

1))

= P
(

X >
θ1τth

p1

)
∩ P

(
X >

θ1τth

p2− p1τth

)
.

(7.26)

Since θ1, τth, and X are always greater than zero, when p2/p1 ≤ τth, the probability

of satisfying the outage constraint for the SIC procedure is zero (i.e., the second term

in equation(7.26)). The intersection point of the first and the second terms satisfies the

equation of θ1τth
p1

= θ1τth
p2−p1τth

which yields p2/p1 = τth + 1 . Thus, the channel power

gain threshold satisfying the outage constraint depends on the values of p2/p1 and τth.

The threshold level of the channel gain power is defined with the function g(γc
1) and

expressed as:
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g(γc
1) =


∞, p2

p1
≤ τth

θ1τth
p2−p1τth

, τth <
p2
p1

< τth +1
θ1τth

p1
, p2

p1
≥ τth +1 .

(7.27)

Therefore, the amount of served bits within a single time slot with the duration of Ts

for UE1 is:

R1(X) =

{
Ts Blog2

(
1+ p1X

θ1

)
, γc

1

0, γ1 .
(7.28)

Substituting equation (7.27) and equation (7.28) into equation (7.23) and equa-

tion (7.24), the first and second moment of R1 are given by equation (7.29) and

equation (7.30), respectively.

E [R1] =
0, p2

p1
≤ τth

TsB
log(2)e

λθ1τth
−p2+p1τth

(
log
(

p2
p2−p1τth

)
− e

λθ1 p2
p1(p2−p1τth) Ei

(
− λθ1 p2

p1(p2−p1τth)

))
, τth <

p2
p1

< τth+1

TsB
log(2)e

−λθ1τth
p1

(
log(1+ τth)− e

λθ1(1+τth)
p1 Ei

(
−λθ1(τth+1)

p1

))
, p2

p1
≥ τth+1 .

(7.29)

R2
1 =



0, p2
p1
≤ τth

(
TsB

log(2)

)2
e

λθ1τth
−p2+p1τth


(

log
(

p2
p2−p1τth

))2
+2e

λθ1 p2
p1(p2−p1τth) log

(
p2

p2−p1τth

)
G2,0

1,2

(
λθ1 p2

p1(p2−p1τth)

∣∣∣ 1
0,0

)

+2e
λθ1 p2

p1(p2−p1τth)G3,0
2,3

(
λθ1 p2

p1(p2−p1τth)

∣∣∣ 1,1
0,0,0

)
, τth<

p2
p1
<τth+1

(
TsB

log(2)

)2
e
−λθ1τth

p1 λ


(log(1+ τth))

2+2e
λθ1(1+τth)

p1 log(1+ τth)G2,0
1,2

(
λθ1(1+τth)

p1

∣∣∣ 1
0,0

)
+

2e
λθ1(1+τth)

p1 G3,0
2,3

(
λθ1(1+τth)

p1

∣∣∣ 1,1
0,0,0

)
, p2

p1
≥ τth+1 .

(7.30)

Note that the function Ei(z) represents the exponential integral function as

Ei(z) = −
∫

∞

−z
e−t

t dt and Gm,n
p,q

(
z
∣∣∣∣ a1, ..,an,an+1, ..,ap

b1, ..,bm,bm+1, ..,bq

)
represents the Meijer’s

G-function [126]. For all z> 0 the equality of G2,0
1,2

(
z
∣∣∣∣ 1

0,0

)
=−Ei(−z) is satisfied.

Secondly, let us calculate the service capacity statistics of the far user (UE2) under the

SINR outage constraint τth > 0. Since the SIC procedure is not performed in UE2, the

outage condition (γ2) is satisfied when the SINR level of UE2 is lower than the outage

SINR threshold:

P(γ2) = P(SINR2 < τth) . (7.31)
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Using equation (7.18) for UE2, the probability of the complement of γ2 can be

expressed in terms of X :

P(γc
2) = P(X > g(γc

2)) = P
(

X >
θ2τth

p2− p1τth

)
. (7.32)

The threshold level of the channel gain power for UE2 is defined with the function

g(γc
2) as:

g(γc
2) =

{
∞, p2

p1
≤ τth

θ2τth
p2−p1τth

, p2
p1

> τth .
(7.33)

The amount of served bits within a single time slot for UE2:

R2(X) =

{
Ts Blog2

(
1+ p2X

p1X+θ2

)
, γc

2

0, γ2 .
(7.34)

Substituting equation (7.33) and equation (7.34) into equation (7.23) and equa-

tion (7.24), the first and second moments of R2 are:

E [R2]=



0, p2
p1
≤ τth

TsB
log(2)e

λθ2
p1 Ei

(
λθ2 p2

p1(−p2+p1τth)

)
−

TsB
log(2)e

λθ2
p1+p2 Ei

(
λθ2 p2(1+τth)

(p1+p2)(−p2+p1τth)

)
+ TsB

log(2)e
λθ1τth

−p2+p1τth log(1+ τth)
p2
p1

> τth .

(7.35)

R2
2=


0, p2

p1
≤ τth

∞∫
−θ2τth
−p2+p1τth

(
Ts Blog2

(
1+ p2x

p1x+θ2

))2
λe−λxdx, p2

p1
> τth . (7.36)

The derivation of the service capacity statistics for the OMA is not presented since it

can be readily obtained by following the similar approach used for the nearest NOMA

users with the perfect SIC process. Thus, for the user k in OMA, the first and second

moments of the service capacity are given by equation (7.37) and equation (7.38),

respectively.

E [Rk,OMA] =
TsBOMA

k
log(2)

e
−λθOMA

k τth
pk

(
log(1+ τth)− e

λθOMA
k (1+τth)

pk Ei
(
−

λθ OMA
k (τth +1)

pk

))
.

(7.37)
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R2
k,OMA =

(
TsBOMA

k
log(2)

)2
e
−λθOMA

k τth
pk λ


(
log2 (1+ τth)

)2
+2e

λθOMA
k (1+τth)

pk log(1+ τth)G2,0
1,2

(
λθ OMA

k (1+τth)
pk

∣∣∣ 1
0,0

)
+

2e
λθOMA

k (1+τth)
p1 G3,0

2,3

(
λθ OMA

k (1+τth)
pk

∣∣∣ 1,1
0,0,0

)
 .

(7.38)

7.3 Queuing Delay Optimization

The optimum power allocation coefficients (Popt) that minimize the maximum of

average queuing delays (MAQD) for K-user downlink scheme can be expressed as:

Popt = argmin
P

{
max

(
Q
)}

s.t. µk > Λk ∀k ∈ [1,2, ..K]
K
∑

k=1
pk = 1 ,

(7.39)

where P and Q represent the power allocation coefficients (p1, p2, ...pk) and the average

queuing delays (Q1,Q2, ...Qk), respectively. Note that for a selected power level

allocation P, if any user k does not satisfy the constraint of µk > Λk, the queuing

system is not stable and hence, Qk becomes infinity at the steady state. Popt yields the

minimum MAQD by minimizing the differences among users’ average queuing delays.

The similar observation is also stated in [107].

Lemma 1 For two-user NOMA and OMA downlink systems without the SINR outage

constraint (τth = 0), the average service rate of UE1 (µ1) increases and the average

service rate of UE2 (µ2) decreases when p1 increases from 0 to 1.

Proof: When the SINR outage constraint is disabled (τth = 0), the average service rate

µk (packets/slot) of the kth user:

µk =

∞∫
0

TsB
E [Lk]

log2 (1+SINRk (x)) fX(x)dx . (7.40)

Firstly, let us focus on µ1. The Leibniz integral rule is used to calculate the derivative

of µ1 with respect to p1 as:
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∂ µ1

∂ p1
=

∂

(
∞∫
0

TsB
E[L1]

log2

(
1+ p1x

θ1

)
λe−λxdx

)
∂ p1

=

∞∫
0

TsB
E[L1]

x

θ1

(
1+ p1x

θ1

)
log(2)

λe−λxdx

=− TsB
E [L1] log(2)

e
λθ1
p1 Ei

(
−λθ1

p1

)
.

(7.41)

Let φ = λθ1
p1

, −eφ Ei(−φ) > 0 for all φ > 0. Since θ1, λ , E [L1], and B are always

greater than zero, equation (7.41) proves that ∂ µ1
∂ p1

> 0 for all p1 ∈ (0,1). Therefore, µ1

increases when p1 increases from 0 to 1.

Secondly, substituting p2 = 1− p1 into equation (7.18) and the Leibniz integral rule is

used to calculate the derivative of µ2 with respect to p1:

∂ µ2

∂ p1
=

∂

(
∞∫
0

TsB
E[L2]

log2

(
1+ (1−p1)x

p1x+θ2

)
λe−λxdx

)
∂ p1

=

∞∫
0

∂

(
TsB

E[L2]
log2

(
1+ (1−p1)x

p1x+θ2

))
∂ p1

λe−λxdx

=

∞∫
0

TsB
E [L2]

log2

 − (1−p1)x2

(θ2+p1x)2 − x
θ2+p1x(

1+ (1−p1)x
θ2+p1x

)
log(2)

λe−λxdx .

(7.42)

Since θ2, λ , E [L2], and B are greater than zero, equation (7.41) proves that ∂ µ2
∂ p1

< 0 for

all p1 ∈ (0,1). Therefore, µ2 decreases when p1 increases from 0 to 1. Performing the

similar approach for two-user OMA system, it can be shown that µOMA
1 increases and

µOMA
2 decreases when p1 increases from 0 to 1, respectively.

Lemma 2 For a two-user NOMA downlink system, when the SINR outage constraint is

enabled (τth > 0), the average service rate of UE1 (µ1) increases as p1 increases from

0 to pµ1
1,opt , where pµ1

1,opt represents the optimum power level providing the maximum

average service rate of UE1.
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Proof: When we apply the Leibniz integral rule after substituting p2 = 1− p1 and

E[R1] in equation (7.23) into µ1 = E[R1]/E[L1], the derivative of µ1 with respect to p1:

∂ µ1

∂ p1
=

∂

∂ p1

∞∫
θ1τth

p1

TsB
E[L1]

log2

(
1+ p1x

θ1

)
λe−λxdx, p1 ≤ 1

τth+2

∂

∂ p1

∞∫
θ1τth

(1−p1)−p1τth

TsB
E[L1]

log2

(
1+ p1x

θ1

)
λe−λxdx, 1

τth+1 > p1>
1

τth+2

0, p1 ≥ 1
τth+1 .

(7.43)

Case 1: Let us consider the first case for p1 ≤ 1
τth+2 :

∂ µ1
∂ p1

= TsB
E[L1]p12 log(2)e

−λθ1τth
p1

 p1 + e
λθ1(1+τth)

p1 λθ1(1+ τth)Ei
(
−λθ1(1+τth)

p1

)
+

λθ1τth

(
−e

λθ1(1+τth)
p1 Ei

(
−λθ1(1+τth)

p1

)
+ log(1+ τth)

)
 (7.44)

Let ψ = λθ1(1+ τth), ψ is always greater than zero since λ , θ1, and τth are always

greater than zero. Substituting ψ into the first row inside the parenthesis of equation

(7.44), we obtain p1 + e
ψ

p1 ψ Ei
(
− ψ

p1

)
> 0 for p1 ∈ [0,1]. Then, let φ = λθ1

p1
,

−eφ Ei(−φ) > 0 for all φ > 0 and hence the second row inside the parenthesis of

equation (7.44) is always positive.

Since B, E[L1], and Ts are always greater than zero, ∂ µ1
∂ p1

> 0 is satisfied for 0 < p1 ≤
1

τth+2 . Thus, the average service rate µ1 increases when p1 increases from 0 to 1
τth+2 .

Case 2: For p1 ∈ ( 1
τth+2 ,

1
τth+1) in equation (7.43), the outage event due to the SIC

failure becomes a dominating factor compared to the outage event due to the failure of

decoding its own signal. The derivative of µ1 with respect to p1 is:

∂ µ1
∂ p1

= T sB
E[L1]p2

1 log(2)
e

λθ1(−1+p1τth)
p1(−1+p1+p1τth) e

λθ1
−1+p1+p1τth λθ1Ei

(
−λθ1(−1+p1)

p1(−1+p1+p1τth)

)
+

e
λθ1

p1(−1+p1+p1τth)

(
p1 +

λθ1 p1
2τth(1+τth) log

(
1+ p1τth
−1+p1

)
(−1+p1+p1τth)

2

)
 (7.45)

Note that all the parameters in (7.45) always greater than zero. Ts, E[L1], and B affect

the magnitude of the derivative function in equation (7.45) while the values of λ , θ1,
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τth, and p1 determine the sign of the function to be either positive or negative. When

p1 increases from 1
τth+2 , µ1 increases to the maximum level for the interval satisfying

∂ µ1
∂ p1

> 0. The maximum value of µ1 is obtained for pµ1
1,opt providing ∂ µ1

∂ p1
= 0. For

the p1 values satisfying ∂ µ1
∂ p1

< 0, µ1 decreases to zero. Note that if there is no p1

values satisfying ∂ µ1
∂ p1
≥ 0, pµ1

1,opt =
1

τth+2 . Higher p1 values result in more frequent

outage event due to the SIC procedure and µ1 becomes zero for p1 ≥ 1
τth+1 . When p1

increases from 1
τth+2 to 1

τth+1 , the µ1 either increases first, then decreases or decreases

directly depending on the values of λ , θ1, and τth. Therefore, the optimum power

level (pµ1
1,opt) that maximize µ1 is located inside the interval of p1 ∈ [ 1

τth+2 ,
1

τth+1) and

provides the equality of ∂ µ1
∂ p1

= 0. As a result, µ1 increases when p1 increases from 0

to pµ1
1,opt .

Lemma 3 For a two-user NOMA downlink system, when the SINR outage constraint

is enabled (τth > 0), the average service rate of UE2 (µ2) decreases as p1 increases

from 0 to 1
τth+1 .

Proof: Substituting p2 = 1− p1 into equation (7.35), the average service rate of UE2

(µ2) is available only for p1 < 1
τth+1 . Thus, the derivative of µ2 = E[R2]/E[L2] with

respect to p1:

∂ µ2

∂ p1
=

∂

∂ p1

∞∫
−θ2τth

−(1−p1)+p1τth

TsB
E [L2]

log2

(
1+

(1− p1)x
p1x+θ2

)
λe−λxdx

=− TsB

E [L2]p1
2 log(2)

e
λθ2
p1 λθ2Ei

(
λθ2 (1− p1)

p1 (−1+ p1 + p1τth)

)
−

TsB

E [L2]p1
2 log(2)

1

(−1+ p1 + p1τth)
2 e

λθ2τth
−1+p1+p1τth

p1

(
(−1+ p1 + p1τth)

2 +λθ2 p1τth (1+ τth) log(1+ τth)
)
.

(7.46)

The Ts, E[L2], and B parameters are greater than zero and only affect the magnitude of

the derivative function in equation (7.46). The numerical values of ∂ µ2
∂ p1

are extensively

calculated for various θ2, λ , and τth values. Since θ2, λ , and τth are always greater

than zero, it is observed that ∂ µ2
∂ p1

< 0 is satisfied when p1 ∈
(

0, 1
τth+1

)
. Hence, the

average service rate of UE2 (µ2) decreases as p1 increases from 0 to 1
τth+1 .
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Lemma 4 The average queuing delay (Qk) decreases as the average service capacity

E [Rk] increases under a certain condition between packet size and service capacity

statistics.

Proof: The utilization value ρk = Λk/µk decreases when E [Rk] increases for a given

distribution Lk with a finite mean of E [Lk], where µk = E [Rk]/E [Lk]. However, this is

not a sufficient condition to show that the queuing delay decreases as E [Rk] increases.

From equation (7.12), Qk increases as the second moment of the service time (S2
k)

increases. The S2
k in equation (7.11) can be expressed as:

S2
k =

E
[
L2

k

]
E [Rk]−E [Lk]E [Rk]

2−E [Lk]E
[
R2]

E [Rk]
3 . (7.47)

The derivative of S2
k with respect to E [Rk] is:

∂S2
k

∂E [Rk]
=−

2E
[
L2

k

]
E [Rk]+E [Lk]E [Rk]

2−3E [Lk]E
[
R2]

E [Rk]
4 . (7.48)

The inequality of ∂S2
k

∂E[Rk]
< 0 is required to prove that S2

k decreases as E [Rk] increases.

Since E [Rk], E
[
R2], E [Lk], and E

[
L2

k

]
are always greater then zero, the condition that

provide S2
k to be a decreasing function is:

E
[
L2

k
]
>
−E [Lk]E [Rk]

2 +3E [Lk]E
[
R2]

2E [Rk]
. (7.49)

As a result, when the condition defined in equation (7.49) is satisfied, Qk decreases as

E [Rk] increases.

For the finite values of Qk, let pΛk
k,max and pΛk

k,min represent the power level assignments

providing the maximum and minimum average queuing delays of UEk for the arrival

rate of Λk, respectively. We combine Lemma 1 through 4 to obtain the following

theorem for minimizing the maximum of average queuing delays (MAQD)

Theorem 1 For two-user NOMA downlink systems with and without the SINR outage

threshold, if any p1 satisfying the constraint of µk > Λk∀k ∈ [1,2] exists, max{Q1,Q2}

is a unimodel function for all p1 ∈
(

max
{

pΛ1
1,max, pΛ2

1,min

}
,min

{
pΛ1

1,min, pΛ2
1,max

})
,

which has a single minimum point.
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Proof: Firstly, let us consider the p1 values satisfying the µ1 > Λ1 condition. The

interval of
(

pΛ1
1,max, pΛ1

1,min

)
represents the p1 values to meet the µ1 > Λ1 constraint

yielding a stable queue for UE1. For the case that the SINR outage constraint is enabled

(τth > 0), pΛ2
1,min needs to be less then 1

τth+1 from equation (7.27) and it equals to the

p1 value providing the maximum service rate of UE1 (pµ1
1,opt) from Lemma 4. When

p1 increases from 0 to pΛ2
1,min, µ1 increases and hence Q1 decreases according to the

Lemma 4.

Secondly, the interval of
(

pΛ2
1,min, pΛ2

1,max

)
is defined as the p1 values satisfying the

µ2 > Λ2 condition. Since µ2 decreases when p1 increases from pΛ2
1,min to pΛ2

1,max, Q2

decreases according to the Lemma 3 and 4.

The interval of p1 that meets µ1 > Λ1 and µ2 > Λ2 is the intersection interval of both

conditions and can be represented as
(

max
{

pΛ1
1,max, pΛ2

1,min

}
,min

{
pΛ1

1,min, pΛ2
1,max

})
.

When p1 increases inside this interval, Q1 decreases and Q2 increases. Hence,

the function max{Q1,Q2} is a unimodel function with a single minimum point.

Furthermore, the optimum p1 value that provides the minimum of max{Q1,Q2}

satisfies the equation of Q1 = Q2. Using the similar approach and Lemma 1, it can be

shown that this result is also valid for two-user NOMA and OMA downlink systems

when the SINR outage threshold is disabled.

An example scenario is performed to numerically calculate the average user service

rates and queuing delays for both two-user NOMA and OMA downlink schemes when

the power level of UE1 (p1) varies from 0 to 1 (p2 = 1− p1). For the sake of visualizing

Theorem 1 clearly, the average packet size E[L] is set to 2000 bits/packet and the

user traffic arrivals rates are set to 500 packets/s and 200 packets/s for UE1 and UE2,

respectively. Note that the SINR outage threshold τth is set to 8 dB and the rest of

the parameters are given in Table 7.1. Fig 7.2 shows the individual average user

service capacities in addition to individual user arrival rates to visualize the power

level assignment of pΛ1
1,min, pΛ1

1,max, pΛ2
1,max, and pΛ2

1,min for a two-user NOMA downlink

system. The average service capacity of UE1 increases when p1 increases from 0 to

pµ1
1,opt , which is located inside the interval of 1

τth+1 ≥ p1 >
1

τth+2 as stated in Lemma 2.

The average service capacity of UE2 decreases when p1 increases from 0 to pΛ2
1,max as

stated in Lemma 3.
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Figure 7.2 : The average user service capacities versus power level assignments.
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Figure 7.3 : The maximum average queuing delay versus power level assignments.
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The maximum value of the users’ average queuing delays is shown in Fig 7.3 as the

power level of UE1 (p1) varies from 0 to 1. The maximum average queuing delay

(MAQD) is determined by Q1 when p1 is between 0 and a certain power level (i.e., 0.04

and 0.54 for NOMA-τth = 8 dB, OMA-τth = 8 dB, respectively) while it is determined

by Q2 beyond that power level. Outside the interval defined in Theorem 1, the MAQD

is infinity since one of the users’ queue is not stable and hence its average queuing

delay becomes infinity at the steady state. This power level corresponds to the optimum

operating point resulting in the lowest MAQD value, where the difference between Q1

and Q2 is minimum. As depicted in the figure, the optimum power allocation depends

not only on the multiple access scheme but also the SINR outage threshold.

The result of the Theorem 1 indicates the existence of the optimum power level of p1

within a fixed interval for the optimization problem in equation (7.39). For two-user

scenario, equation (7.39) can be expressed as:

min
p1

max{Q1,Q2}

s.t. max
{

pΛ1
1,max, pΛ2

1,min

}
< p1<min

{
pΛ1

1,min, pΛ2
1,max

}
µk > Λk ∀k ∈ [1,2]
p2 = 1− p1.

(7.50)

When any p1 satisfying the constraints of µ1 > Λ1 and µ2 > Λ2 exists, the function

max{Q1,Q2} is a unimodel function and the optimum p1 is inside the interval of(
max

{
pΛ1

1,max, pΛ2
1,min

}
,min

{
pΛ1

1,min, pΛ2
1,max

})
. The solution can be found by several

optimization approaches. A golden section search and parabolic interpolation based

search algorithm [127] is used in this study to find the optimum p1 value yielding the

minimum of MAQD within a given interval. The used approach effectively explores

the minimum point of a cost function within a fixed interval.

7.4 Numerical Results

In this section, the numerical results of the proposed analytical model and Monte Carlo

simulation experiments are provided for two-user downlink schemes under various

network settings such as SINR outage threshold, traffic arrival rates, and user distances

from the base station. The theoretical derivations, including the approximation

of the second moment of the service time in Section 7.1, are validated with the

simulation results. The optimum power level assignment satisfying the minimum of
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Table 7.1 : Simulation parameters for queuing analysis of NOMA with SINR outage.

Parameter Value
Transmission Bandwidth (B) 180 KHz
Receive/Transmit Antenna SISO

Path Loss Exponent (β ) 4
Transmit Power (Pt) 0 dBW

Noise Spectral Density (N0) -160 dBm/Hz
Rayleigh Fading Parameter (λ ) 1

User Distances (d1,d2) 400 m, 1200 m
Noise Model Double-sided White Noise

Path Loss Model Non-singular Path Loss
Time Slot Duration (Ts) 0.5 ms

Number of Packets 108

Number of Users (K) 2

Packet Size (L)
Uniform Distributed

E[L] = 2000 bits/packet
σL = 1000 bits/packet

UE1 Arrival Rate 50 packets/s (100 Kbps)
UE2 Arrival Rate 50 packets/s (100 Kbps)

maximum average queuing delays (MAQD) is employed for various scenarios and the

queuing delay performances of NOMA and OMA considering the outage threshold

is compared. Unless otherwise is stated, the parameters used for the experiments are

given in Table 7.1. We consider two-user scenario, where the transmission bandwidth

is 180 KHz for both users in NOMA while it is set to 90 KHz for each user in OMA.

Assuming that the total transmit power of the base station is Pt , the transmit power of

UE1 is p1×Pt while the transmit power of the UE2 is p2×Pt where p2 = 1− p1. The

distances of UE1 and UE2 from the base station are set to d1 = 400 m and d2 = 1200

m, respectively. The packet size L is uniform distributed with the mean value of 2000

bits/packet and the standard deviation of 1000 bits/packet while the user traffic arrivals

are set to 50 packets/s for both UE1 and UE2. The provided numerical results for both

service capacity and average queuing delay are given in the units of seconds (i.e., bps

for service capacity, ms for the average queuing delay) to clarify the effects of 5G NR

frame types having different time slot duration.

Figure 7.4 shows the ergodic capacity regions of both NOMA and OMA systems,

which are calculated by taking all possible power allocations into account. Any

vector of arrival rates of UE1 and UE2 lying inside of the ergodic capacity region
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Figure 7.4 : The ergodic capacity regions of OMA and NOMA.

can yield stable queuing dynamics if the proper power allocation is performed. When

the SINR outage threshold (τth) is disabled, NOMA is a superset of OMA in terms of

the ergodic capacity region. As the the SINR outage threshold increases the ergodic

capacity region of NOMA decreases more than OMA. When τth is set to 14 dB, the

precise superiority of NOMA over OMA can not be observed such that OMA can

support more capacity when both UE1 and UE2 are jointly considered within a certain

part of the ergodic capacity region. Since the bandwidth of the OMA is half of the

bandwidth of NOMA, the power of double sided white Gaussian noise is half of

NOMA. Therefore, NOMA users have lower SINR levels than OMA users when the

same power allocation coefficients are used. As a summary, NOMA users tend to have

lower service capacities as τth gets higher. Another drawback of NOMA for higher

SINR threshold scenarios is that it becomes challenging to satisfy the SINR constraint

of UE1 in the SIC process in addition to the decoding process.

Figure 7.5 demonstrates that the MAQD of OMA and NOMA downlink schemes

increase when τth increases from 4 dB to 24 dB. Since the optimum power allocation

scheme, which minimizes the maximum average queuing delay for each network
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Figure 7.5 : The maximum average queuing delay versus outage threshold.

settings, is employed, the best performances of both multiple access schemes are

presented. The higher SINR condition causes higher service times due to the amount

of served bits within a time slot is zero when the SINR constraint is not met. Therefore,

the MAQD significantly increases for higher SINR threshold conditions. When τth is

disabled, the queuing delay of NOMA is lower due to its higher spectral efficiency.

When τth is enabled, as τth increases, the MAQD increases for both NOMA and OMA.

However, the rate of increase for NOMA is higher than OMA due to the white noise

effect. The results show that NOMA provides lower MAQD for the τth values below

15 dB, while OMA provides lower MAQD for τth values above 16 dB. Furthermore,

the queues are stable for both users when τth is lower than 18 dB for NOMA, while it

is 22 dB for OMA.

Figure 7.6 demonstrates the maximum average queuing delays (MAQD) when the

arrival rate of UE1 and UE2 varies from 100 to 1540 Kbps with the steps of 80 Kbps

and from 100 to 460 Kbps with the steps of 20 Kbps, respectively (i.e., the arrival

rates represented by the blue squares in Figure 7.4). The results are provided for

the SINR outage threshold (τth) values of 12 dB and 14 dB in addition to the case
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Figure 7.6 : The maximum average queuing delay versus different arrival rates.

that when the outage is disabled. The optimum power allocation coefficients yielding

the minimum MAQD is utilized for all scenarios. When the SINR outage threshold

is disabled (τth = 0) or set to 12 dB, NOMA provides lower MAQD than OMA. The

queues of UE1 and UE2 are stable when the arrival rates are inside the ergodic capacity

region. For example, for τth = 0, both users’ queues are stable for NOMA when the

UE1 and UE2 arrival rates are equal to or lower than 1460 and 440 Kbps while they are

stable for OMA for 1060 and 440 Kbps, respectively. On the other hand, for τth = 14,

OMA can support higher arrival rates compared to NOMA for the same MAQD results

when the UE1 and UE2 arrival rates are beyond 500 and 200 Kbps, respectively.

Figure 7.7 demonstrates that the MAQD of OMA and NOMA downlink schemes

increases when the distance of UE2 from the base station (d2) increases from 400

m to 2200 m. The reason for this increase is that the average service rate of UE2

decreases and the average queuing delay Q2 increases when d2 increases. When the

outage constraint is disabled (τth = 0) NOMA provides lower MAQD than OMA since

its higher spectral efficiency. The increase on MAQD for NOMA is higher than OMA

when d2 increases when τth is enabled. NOMA provides lower MAQD when the d2
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Figure 7.7 : The maximum average queuing delay versus UE2 distance.

value is lower than 1400 m and 1700 m for the SINR outage threshold values (τth) of

12 dB and 14 dB, respectively. However, when d2 is greater than 1500 m for τth = 14

dB and 1800 m for τth = 12 dB OMA yields lower MAQD. The proposed model is

capable of determining a multiple access scheme that achieves the lowest delay for a

given network scenario.

7.4.1 Numerical results for 5G NR

The 5G NR, which is based on orthogonal frequency-division multiplexing (OFDM),

provides flexibility on the frame structure to support low latency communication.

Since a time slot is defined as a fixed number of OFDM symbols, a higher subcarrier

spacing leads to a shorter slot duration [124]. Table 5.2 shows subcarrier spacing, RB

bandwidth, and time slot duration for different 5G NR frame types, where the frame

type 0 corresponds to the LTE setting. The rest of the simulation parameters are used

from Table 7.1. Without loss of generality, it is assumed that the same carrier frequency

and channel model are used for all 5G NR experiments in this section. The effects of
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Figure 7.8 : The ergodic capacity regions versus 5G NR frame types.

higher carrier frequencies for wider subcarrier spacing as described in [124] is not

within the scope of this work and will be studied as a future work.

The ergodic capacity regions of both NOMA and OMA downlink systems for the 5G

NR frame types are shown in Figure 7.8 when the SINR outage threshold τth is set

to 8 dB. Since the noise power increases with the RB bandwidth, the average service

capacities for a single time slot decrease when the frame type increases from 0 to

4. Since the number of time slots per second increases when the time slot duration

decreases, the average service capacities in terms of bits per second are expected to

increase when the frame type varies from 0 to 4. However, the lower SINR levels make

the average service capacities significantly decrease when the SINR outage constraint

is taken into account. For example, NOMA is a superset of OMA in terms of ergodic

capacity region for the 5G NR frame types 0, 1, and 2. When the 5G NR frame type

3 is utilized, there is no precise superiority of ergodic capacity of NOMA over OMA.

Furthermore, OMA is preferable when the 5G NR frame type 4 is employed since it

provides higher ergodic capacity.
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Figure 7.9 : The maximum average queuing delay for 5G NR frame types.

Figure 7.9 shows the MAQD results of 5G NR frame types for different SINR outage

thresholds (τth). When the outage constraint is disabled, the MAQD decreases for both

NOMA and OMA when the frame type varies from 0 to 4 while NOMA provides

lowest MAQD values. For example, the delay of less than 1 ms can be achieved for

NOMA with the 5G NR frame types 2, 3, and 4 while it is observed for OMA with

frame types 3 and 4. When τth is enabled and set to 6 and 8 dB, NOMA provides lower

maximum average queuing delays for 5G NR frame types 0, 1, 2, and 3. However, for

the 5G NR frame types having wider bandwidth (5G NR frame types 4), the MAQD

of NOMA increases and becomes higher than OMA for both τth values. The results

indicate that the delay improvements of 5G NR without the outage constraint and the

drawbacks of NOMA for higher outage threshold values can be accurately predicted.

7.5 Summary

In this chapter, the queuing delay performance of a NOMA downlink system is studied

by utilizing a discrete time M/G/1 queuing model for the radio access network. The

analytical model includes the SINR outage threshold to successfully perform SIC
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and decoding procedures at the receiver. The proposed queuing model is utilized

within an optimization framework to obtain the lowest queuing delay performances

of both NOMA and OMA. The Monte Carlo simulation experiments are performed

to numerically validate the model by providing lowest delay results for both NOMA

and orthogonal multiple access (OMA) schemes. The numerical results show that

NOMA provides higher ergodic capacity region than OMA indicating that NOMA can

achieve lower latency when the SINR outage threshold is disabled or set to low values.

However, when the SINR outage threshold is set to high levels, the superiority of OMA

over NOMA is observed in terms of the ergodic capacity and delay performances.

Furthermore, the optimization framework using the analytical model is applied for

the performance evaluations of the 5G NR concept when the NOMA is utilized. For

higher SINR outage thresholds, the delay performance is highly affected by the frame

type due to higher noise effect over wider bandwidth. For a given network scenario

including the SINR outage threshold that satisfy reliability requirement of 5G URLLC

services, our proposed model is capable of determining the frame type that achieves

the lowest delay performance for both NOMA and OMA.
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8. CONCLUSION AND FUTURE WORK

In this thesis, we have studied the resource allocation for NOMA downlink schemes

in wireless cellular networks. We have first focused on radio resource management

of multi user multi resource block NOMA systems by proposing a novel genetic

algorithm based approaches under full buffer and the rate limited traffic models. In

addition, we have proposed analytical models for NOMA downlink systems which

can be utilized to develop resource allocation strategies satisfying the challenging

requirements of 5G services.

In Chapter 3, a downlink radio resource management for NOMA system is studied

from the multi-user scheduling perspective towards maximizing the geometric mean

of user throughputs. Genetic algorithm (GA) approach is proposed to reach the

best resource allocation solution, where the power level optimization is employed for

each candidate user group. Simulation experiments show that the proposed method

quickly converges to the target solution that balances the tradeoff between total system

throughput and fairness among users.

NOMA downlink resource allocation including both user scheduling and power

allocation is studied under rate limited traffic arrivals in Chapter 4. We first propose

two proportional fairness (PF) based user scheduling and power allocation schemes,

namely UDB-PF and PUSF, by takein the rate limited user traffic demand requirements

into account. UDB-PF extends the PF based scheduling by allocating optimum

power levels to satisfy user traffic demand constraints while PUSF maximizes the

network-wide user satisfaction. In both schemes, the optimal power level assignment

is calculated together with the best user pair selection at each resource block for a

given objective function. The GA heuristic is also employed for user group selection

at each resource block to reduce the computational complexity. The performance is

evaluated by varying the number of users and traffic characteristics of each user. The

simulation results show that UDB-PF yields higher sum-rate (throughput) while PUSF

provides higher network-wide user satisfaction results compared to the PF based user
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scheduling. The performance gains of the proposed methods increase as the variation

of user traffic demands increases over time. In addition, when the number of users

in the network gets higher, the GA heuristics provide the performance gain on the

computational load while the throughput and user satisfaction results are only slightly

degraded.

While the proportional fairness based resource allocation approaches assuming the

rate-limited traffic demand as a QoS requirement, the delay dynamics can not be

studied since the packet-based traffic model with random inter-arrival times and packet

sizes are not considered. In Chapter 5, an analytical model utilizing a discrete time

M/G/1 queuing model is proposed to characterize the average queuing delay for

NOMA downlink systems. The first and second moment statistics of the service time

are derived using both packet size and service rate statistics under a Rayleigh fading

channel to express the average queuing delay. We perform extensive Monte Carlo

simulations and the results verify the accuracy of the proposed analytical model under

various network scenarios for both NOMA and OMA schemes. Numerical results

show that the ergodic capacity region of NOMA is a superset of OMA indicating

that the NOMA can support higher arrival rate and lower latency. Furthermore,

the proposed model is applied to demonstrate that the 5G NR frame types having

wider bandwidth and shorter duration considerably improves the latency performance.

These are promising results such that employing the NOMA technology within the 5G

NR concept is a potential enabler to satisfy the challenging latency requirements of

time-critical services.

Due to the importance of the outage condition in real-life scenarios of wireless

communication systems, in Chapter 6, the outage probability for the NOMA downlink

system under the Rayleigh fading channel is analyzed. The optimum power allocation

yielding the minimum system outage probability is obtained by solving the convex

optimization problem. The Monte Carlo simulations demonstrated that the proposed

model can be accurately used to characterize the system outage probability. The results

show that OMA has lower system outage probability compared to NOMA. However,

the spectral efficiency of NOMA is higher since it allows mutiple users to share the

same radio resource.
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Then, utilizing the outage probability analysis, the proposed analytical model is

extended to support outage constraint in Chapter 7. The extended analytical model

includes the SINR outage threshold to successfully perform SIC and decoding

procedures at the receiver. The proposed extended queuing model is utilized within

an optimization framework to obtain the lowest queuing delay performances of both

NOMA and OMA. The numerical results show that NOMA provides higher ergodic

capacity region than OMA indicating that NOMA can achieve lower latency when

the SINR outage threshold is disabled or set to low values. However, when the

SINR outage threshold is set to high levels, the superiority of OMA over NOMA

is observed in terms of the ergodic capacity and delay performances. Furthermore,

the optimization framework using the extended analytical model is applied for the

performance evaluations of the 5G NR concept when the NOMA is utilized. For higher

SINR outage thresholds, the delay performance is highly affected by the frame type due

to higher noise effect over wider bandwidth. For a given network scenario including

the SINR outage threshold that satisfy reliability requirement of 5G URLLC services,

our proposed model is capable of determining the frame type that achieves the lowest

delay performance for both NOMA and OMA.

8.1 Future Work

A significant reduction in end-to-end latency is one of the major concern for 5G

cross-layer radio resource management schemes. The proposed analytical models in

this thesis can potentially have a wide range of application scenarios for the delay

aware cross-layer radio resource management.

Future work will focus on minimizing the maximum queuing delay of multi-user

multi-RB NOMA downlink systems, where optimum user grouping and power level

assignment will be performed by extending the M/G/1 queuing model. In addition,

a hybrid NOMA and OMA system will be investigated as the proposed model can

predict the higher performance regions of these multiple access schemes according

to the network settings. The proposed models also allow us to design new radio

resource management methods while queuing delay requirements are considered as

a QoS constraint to reach different objectives such as sum-rate, energy efficiency,

fairness. In the literature, the effective capacity approach has been heavily utilized
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to study the performance of resource allocation strategies. As another extension to our

work, the resource allocation strategies using both the effective capacity approach and

the proposed model can be compared in terms of the latency performances.

Modelling the end-to-end latency of the wireless networks will be a significant

contribution and can be provided by combining core-network, propagation,

processing, and re-transmission delays with the proposed queuing delay. Utilizing

the corresponding channel models and capacity equations, we are planning to

investigate the cross-layer designs of NOMA with different technologies such as

beamforming, massive MIMO, cooperative communication, mmWave, or visible light

communication.
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APPENDIX A: Derivation of the Second Moment of the Service Time

The solution of equation (5.29) in Section 5.3 is provided by enabling the generating
functions (g.f.) of random variables as described in [122]. The generating function of
random variable Y is defined as:

gY (z) = E
[
zl
]
=

∞

∑
k=1

P[l = k]zk (A.1)

where z ∈ D̄(0 : 1) while D̄(0 : 1) is the complex closed unit disk centered at 0.
Similarly, the g.f. of S and R random variables represented as gS (z) and gR (z),
respectively. By computing the generating function of the random sums of i.i.d.
random variables problem defined in equation (5.29), the final representation of the
problem becomes:

gY (z) = gS (gR (z)) . (A.2)

It is also provided in [122] that the domain definition of gY (z) contains the open unit
disk and the differentiation is possible inside the open disk. Therefore, let z→ 1, the
first and second derivation of the gY (z) satisfy the following equations:

g′Y (1) = E [Y ]

g′′Y (1)) = E
[
Y 2−Y

]
.

(A.3)

The first derivation of gY (z) can be calculated for equation (5.29) then it will be
g′Y (z) = g′S (gR (z))g′R (z). Let z→ 1, g′Y (1) = g′S (1) g′R (1) is obtained. Therefore,
the first moments of the random variables Y,S, and R provide the equation of E [Y ] =
E [S] E [R]. Then the expected value of service time (E [S]) is:

E [S] =
E [Y ]
E [R]

. (A.4)

Taking the derivation of equation (A.2), the second derivation of gY (z) is derived as:

g′′Y (z) =
(
g′S (gR (z)) .g′R (z)

) ′
= g′′S (gR (z)) .gı

R (z) .g
′
R (z) +

g′S (gR (z)) .g′R (z) .g
′′
R (z) .

(A.5)

Let z→ 1, then the second derivation of gY (z) can be represented as:

g′′Y (z) = g′′S (1) .g
′
R (1) .g

′
R (1) + g′S (1) g′′R (1) . (A.6)

Equations (A.3) and (A.6) are combined and simplified to obtain the following result:

E
[
Y 2−Y

]
= E

[
S2−S

]
E [R]E [R]+E [S]E

[
R2−R

]
= E

[
S2]E[Y ]2−E [S]E[R]2 + E [S]E

[
R2] − E [S]E [R]

= E
[
S2]E[R]2 + E [S]

(
E
[
R2] −E[R]2−E [R]

)
= E

[
S2]E[R]2 + E [S] (Var (R)−E [R]) .

(A.7)
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Substituting equation (A.4) into equation (A.7), the second moment of the service time
(S2) obtained as:

E
[
Y 2]−E [Y ] = E

[
S2]E[R]2 +

E [Y ]
E [R]

(Var (R)−E [R])

E
[
Y 2]−E [Y ]−E [Y ]

(
Var (R)−E [R]

E [R]

)
= E

[
S2]E[R]2

E
[
S2]= S2 =

E
[
Y 2]−E [Y ]

(
Var(R)

E[R]

)
E[R]2

.

(A.8)
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