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ENERGY-EFFICIENT VELOCITY TRAJECTORY OPTIMIZATION USING
DYNAMIC PROGRAMMING FOR ELECTRIC VEHICLES

SUMMARY

The electrification and autonomous systems developed in the automotive industry in
the last decade bring different solutions. Many methods have been developed and still
continue to be developed to reduce energy consumption in vehicles, especially with
electrified, connected vehicle technologies and navigation systems. Speed trajectory
optimization is part of these methods.

The main motivation of speed trajectory optimization is to prevent excessive energy
consumption due to driver driving style. In order to prevent this, information such as
the slope and speed limit of the road to be traveled is used over the navigation system.

When we consider only energy while optimizing the speed trajectory, the prolongation
of the driving time will appear as a concern. Because if the vehicle goes faster, the
energy consumed will increase quadratically. Therefore, optimization will always
demand the vehicle to go slower in order to consume less energy and there must be a
balance between energy and travel time.

In this thesis, a study has been carried out that periodically updates the speed trajectory,
which will ensure that the destination point and arrival time information are provided
into the navigation system by the driver while consuming the least energy in the given
time.

Dynamic Programming (DP) method is used to solve this problem. Dynamic
programming always presents the global optimum behavior under the given boundary
conditions. The speed of the vehicle was used as the only state variable and its
optimization was performed separately over the distance stages.

The average speed required to reach the destination on time, based on the destination
point and travel time information obtained from the navigation system, is given as an
input to the optimization, and the DP state space is constantly updated. The main
reason for this is to reduce the memory load required by DP. Thus, a fixed number of
states are scanned. But the scanned range values are updated according to this speed
input.

A longitudinal vehicle model was used for optimization. The limits of the powertrain
are also part of the optimization as a boundary condition. Before the optimization is
run, a pre-calculation is also made to include the states where the transition between
states is possible only in the optimization. Thus, it is aimed to shorten the calculation
time by not including the unreachable situations in the optimization.

Optimization takes place along a certain horizon. The speed trajectory calculated for
this horizon is transmitted to the vehicle speed control unit as an input. The vehicle
follows this speed profile. The optimization is updated again after a certain period of
time and transmits the speed trajectory calculated for the next horizon to the vehicle.
The purpose of this is if the vehicle cannot follow the given speed for any reason during
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real driving, the optimization is performed again based on the new conditions. This
allows the vehicle to progress in real-time using the speed trajectory closest to the
global optimum.

In the study, simulation and analysis of the all-electric truck were carried out on two
different slope routes. Tests were performed with different fixed velocity values and
velocity profiles produced by velocity trajectory optimization in both routes. As a
result of the simulations carried out, it has been observed that up to 4% of energy
consumption and up to 2.5% of the targeted time are saved. Thanks to the proposed
adaptive weight factor, it has been observed that the time-energy balance is maintained
for different routes, arrival times, and vehicle parameters.
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ELEKTRIKLI ARACLAR ICIN DINAMIK PROGRAMLAMA
KULLANILARAK ENERJi VERIMLI HIZ YORUNGE OPTIiMiZASYONU

OZET

Son 10 yi1lda otomotiv endiistrisindeki gelistirilen elektrifikasyon ve otonom sistemleri
farkli ¢dziimleri de beraberinde getirmektedir. Ozellikle baglantili arag teknolojileri ve
navigasyon sistemleriyle beraber araglardaki enerji tikketimini azaltmaya yonelik bir
cok metot gelistirilmis ve halende gelistirilmeye devam edilmektedir. Hiz yoriinge
optimizasyonu da bunlardan bir tanesidir.

Hiz yo6riinge optimizasyonu, optimal bir kontrol problemi olarak formiile edilebilir ve
¢oziimii elde etmek i¢in farkli yontemler vardir. Genellikle, bu yontemler ii¢ farkli
gruba ayrilir: dolayli yontemler, dogrudan yontemler ve dinamik programlama (DP).

Ik grup, dolayli yontemler, Pontryagin'in Minimum Ilkesini (PMP) takip eder. Bu
yontemler, problemi ¢ok noktali Hamiltonian sinir deger problemine dontistiirerek ve
sayisal olarak ¢ozerek problemi “dolayli olarak” ¢ézer. Bu konuyla ilgili yapilan ilk
caligmada, i¢ten yanmali motorun yakit akis hizinin motorun hiz ve giiciiniin
fonksiyonu olarak yaklasik bir polinom denklemi ile sabit yol egimi i¢in dogrusal
olmayan sekilde modellenmis ve bir aracin yakit tiiketimini en aza indirme problemini
¢ozmek i¢in PMP'l kullanilmustir.

Sorunu ¢6zmek i¢in bagka bir yontem grubu ise, dogrudan yontemler olarak
adlandirilir. Bu yontemlerle, durumlar ve kontrol degiskenleri, optimizasyon
problemini bir Dogrusal Olmayan Programlama (NLP) problemine yaklastiracak
sekilde parametrelestirilir. Spesifik formlarda tanimlanan maliyet fonksiyonu ve sinir
kosullart ile birlikte, problemler ¢ok ¢esitli son teknoloji NLP ¢oziiciilerle “dogrudan”
coziilebilir. Ornek olarak, Ikinci Derece Koni Programi (SOCP) ve Kuadratik
Programlama (QP), arag hiz1 ve akii enerjisi durum degiskenleri olarak tanimlanarak
hibrit araglar igin kestirimci enerji yonetiminde kullanilmistir. Optimal durum
yoriingeleri, yaklasimlar ve bulugsal yontemler kullanarak disbiikey olarak yeniden
formiile ettikten sonra, bir SOCP ¢6ziicii tarafindan daha hizli hesaplanacak bir sekilde
tiretilir. Bundan sonra, sorun bir QP ¢6ziiciiniin gereksinimine uyacak sekilde yeniden
formiile edilir. Belirli bir test senaryosu igin gergeklestirilen ¢alismalar, iki farkl
¢oziiciiden de neredeyse ayni sonuglari verir. Elektrikli araglar igin ise QP kullanilarak
Model Ongoriilii Kontrol (MPC) tabanli bir Yesil Istk Optimum Hiz Tavsiye
(GLOSA) islevi de gelistirilmistir. Burada iist diizey bir islev, birden fazla trafik 1g18in1
durmadan gecebilen bir referans ara¢ hizi yoriingesini hesaplarken, daha diisiik
diizeydeki bir MPC denetleyicisi, bir enerji optimal ara¢ hiz1 yoriingesini hesaplar.
Problemi disbiikey ve basit bir formda tutmak igin maliyet fonksiyonunda sadece arag
ivmesi ve referans yoriingeden hiz sapmasi dikkate alinmaktadir.

DP, problemi Bellman'm Optimallik ilkesini kullanarak 6zyinelemeli olarak
¢oziilebilen alt problemlere boler. Ara¢ hizi yoriinge optimizasyonu ile ilgili gézden
gecirilen literatiirler arasinda DP, optimizasyon problemini ¢6zmek i¢in ¢ok yaygin
olarak benimsenen bir yontemdir. Farkli ¢alismalarda asama degiskeni olarak zaman
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kullanildiginda ileri O6zyinelemeli DP’yi veya mesafe asama degiskeni olarak
alindiginda da yolculuk siiresinin de maliyet fonksiyonun dahil edildigi yaklasimlarda
goriilmektedir. Gergek zamanli uygulamalar i¢in, arama alanini azaltmak, hesaplama
maliyetini azaltmak icin de etkili bir yaklasimdir. Bu yaklasimla kisitlamalari
karsilamayan durumlar ortadan kaldirilarak hesaplama maliyeti disiiriiliir. Yaygin
olarak uygulanan ayrik durum uzayina kiyasla, siirekli durum kullanan DP'de 6nerilen
calismalar vardir. Bu ¢aligmalarda, durum degiskeni kaba bir aralikla birkag "kutuya"
ayrilmistir.  "Kutular" icinde, durum degiskeni daha sonra sezgisel yaklasim
kullanilarak yerel ve siirekli olarak optimize edilir. Bu ¢aligmalara gore, bu yaklagim
hesaplama maliyetini disiiriir ve aym1 zamanda ayrik DP tarafindan siklikla
karsilasilan enterpolasyon problemlerini ¢ozer.

Yinelemeli DP ise, bir uyarlamali arama uzayinda optimal sonuglar1 yinelemeli olarak
yakinsayarak sorunu ¢ézmeye c¢alisan diger bir DP yaklasimidir. Bu yaklasimda,
sonraki yinelemeler, hesaplama maliyetini diisiik tutarken dogrulugu artirmak i¢in
daha ince bir 1zgarali durum alani olusturmak i¢in Onceki yinelemelerin sonucunu
kullanir. Bu yaklagimin, teorik olarak hesaplama c¢abasini 6nemli 6l¢iide azaltabilen,
onceki optimizasyon adimindan elde edilen tarihsel hesaplanmig maliyetin yeniden
kullanilmasini 6nermektedir.

Bu farkli yontemler karsilagtirildiginda, dolayli ve dogrudan yontemler, dinamik
programlama yontemine kiyasla, 6zellikle daha fazla sayida durum degiskeni olan
problemleri ¢ozerken, daha kisa hesaplama siiresi avantajina sahiptir. Bununla birlikte,
verimli ¢oziiciiler kullanarak daha kisa hesaplama siiresini elde etmek i¢in, problemin
once digbiikey veya dogrusal bir bicimde formiile edilmesi gerekir. Bu genellikle,
¢Oziimiin kesinligini etkileyecek olan basitlestirmeler ve yaklasimlarla saglanir.
Ayrica, problemin formiilasyonuna bagl olarak, global optimal ¢dziim her zaman
garanti edilmez. Ote yandan, dinamik programlama, kiiresel bir optimal ¢dziime
ulagmak i¢in alt problemleri 6zyinelemeli olarak ¢ozer. Herhangi bir karmasiklik
seviyesindeki problemleri ¢ozebildiginden, problemi belirli bir formda formiile
etmeye gerek yoktur. Muhtemelen DP'nin incelenen literatiirlerde yaygin olarak
benimsenmesinin nedenlerinden biri budur. Bununla birlikte, "boyutlulugun laneti"
olarak adlandirilan durum nedeniyle, hesaplama karmasikligi durum sayisi ile
katlanarak artar ve bu nedenle DP'nin uygulanmasi, daha az sayida durumla ilgili
problemlerle smirlidir. Ayrica, yapimi daha kolay olan DP c¢oziiciiler, ekonomik
acidan pahali olan baz1 ticari NLP ¢oziiciilere kiyasla ekonomik agidan avantajlidir.

Hiz yoriinge optimizasyonun temel motivasyonu, siiriicii siiriis stilinden kaynakli agir1
enerji tikketimini engellemektir. Bunu engellemek icin ise gidilecek olan yolun egim,
hiz limiti gibi bilgileri navigasyon sistemi iizerinden kullanilmaktadir.

Yukarida da bahsedildigi gibi hiz yoriinge optimizasyonu yaparken sadece enerjiyi
dikkate aldigimizda karsimiza siiriis sliresinin uzamasi bir problem olarak ¢ikacaktir.
Ciinkii aracin daha hizli gitmesi durumunda tiiketilen enerji karesiyle artacaktir. O
yiizden optimizasyon daha az enerji tiiketmek igin hep aracin daha yavas gitmesini
isteyecektir. Bundan dolay1 enerji ve seyahat siiresi arasinda bir dengeleme olmasi
gerekmektedir.

Bu tez ¢alismasinda, siiriicli tarafindan navigasyon sistemine girilen hedef nokta ve
varig siiresi bilgileri kullanilarak, bu noktaya verilen siirede en az yakit tiiketerek
gidilmesini saglayacak olan hiz profilini periyodik bir sekilde giincelleyen bir ¢alisma
gerceklestirilmistir.
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Bu problemi ¢6zmek igin yukaridaki karsilastirmalar sonucu DP metodu
kullanilmistir. Dinamik programlama bize verilen sinir kosullar1 altinda her zaman
global optimum davranisi vermektedir. Tek durum degiskeni olarak ise aracin hizi
kullanilmis ve optimizasyonu da mesafe kademeleri {iizerinden ayrik olarak
gerceklestirilmistir.

Navigasyon sisteminden alinan hedef nokta ve seyahat siiresi bilgileri iizerinden
stirekli olarak gidilmesi gereken yere zamaninda varilmasi i¢in gereken ortalama hiz
optimizasyona giris olarak verilip DP durum uzayimm siirekli giincellenmektedir.
Bunun temel sebebi DP ihtiya¢ duydugu hafiza yiikiinii azaltmaktir. Boylelikle sabit
sayida bir durum aralig1 taranmaktadir. Fakat taranan aralik degerleri bu hiz girisine
gore glincellenmektedir.

Optimizasyon i¢in boylamsal tasit modeli kullanilmistir. Gii¢ aktarim sisteminin
limitleri de sinir kosulu olarak optimizasyonun bir pargasidir. Optimizasyon kosmadan
oncede durumlar arasi gecisin miimkiin oldugu durumlar1 sadece optimizasyona dahil
etmek i¢in ayrica bir 6n hesaplama yapilmaktadir. Boylelikle erisilemeyecek olan
durumlar1 optimizasyona dahil etmeyerek hesaplama siiresinin kisaltilmasi
hedeflenmistir.

Optimizasyon belirli bir ufuk boyunca ger¢eklesmektedir. Bu ufuk i¢in hesaplanan hiz
profili ara¢ hiz kontrol birimine girig olarak iletilmektedir. Ara¢ bu hiz profilini takip
etmektedir. Optimizasyon belli bir siire sonra tekrar giincellenerek bir sonraki ufuk
icin hesaplanan hiz profilini araca iletmektedir. Bunun amaci gergek siiriis esnasinda
aracin verilen hizi herhangi bir sebepten oOtiirli takip edememesi durumunda
optimizasyon yeni kosullar1 baz alarak tekrardan gergeklestirilir. Boylelikle gercek
zamanlt olarak siirekli global optimuma en yakin hiz profilini kullanacak sekilde
aracin ilerlemesi saglanir.

Calismada, iki farkli egime sahip rotada tam elektrikli kamyonun Simulasyon ve
analizleri gergeklestirilmistir. Her iki rota iginde farkli sabit hiz degerleri ve hiz
yorlinge optimizasyonunun {irettigi hiz profili ile testler gerceklestirilmistir.
Gergeklestirilen simulasyonlar sonucunda enerji tilketiminden %4’e kadar, hedeflenen
zamandan ise %2.5 e kadar tasarruf edildigi gézlemlenmistir. Onerilen adaptif agirlik
faktorii sayesinde ise farkli rota, varis siireleri ve tasit parametreleri i¢in zaman-enerji
dengesi korundugu goézlemlenmistir.
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1. INTRODUCTION

In the course of the most recent years, the electrification of transportation has gotten
increasingly significant. In the coming years, stricter emission regulations, lower
battery costs, all the more broadly accessible charging infrastructure, and expanding
purchaser acknowledgment will make a new and powerful driving force for the
dissemination of electric vehicles (hybrid, plug-in, battery-electric, and fuel cell). The
automotive consumer will decide the speed of this adoption (total cost of ownership
will definitely have an effect) and laws and regulations will be a push, which will vary

strongly at the regional and local level [1].

Thanks to technologies that have started to develop rapidly in recent years, such as
electrification, connected vehicles, and autonomous driving, different and advanced
optimization methods have become available. Speed trajectory optimization is part of
these methods. The speed trajectory optimization function also uses the relevant road
information along the determined horizon, the topographic map data, and the internal
sensor data on the vehicle. Optimization is carried out periodically under the obtained
information and variable boundary conditions. The calculated optimum speed
trajectory is transmitted to the driver assistance system as a speed input. Thus, the
vehicle can drive efficiently in terms of both time and energy consumption.

1.1 Literature Review

The earliest studies on vehicle speed trajectory optimization date back to 1977 [2]. In
this study, velocity trajectory calculation was performed using the longitudinal vehicle
model to minimize consumption. There are many different approaches to the velocity
trajectory optimization problem in the literature. These approaches have been tried to

be categorized in Figure 1.1.



Application (Optimization Method

e Spatial domain only e Indirect method (PMP)
e GLOSA e Direct methods (QP, SOCP)
e Time and spatial domain ¢ Dynamic Programming
Speed Optimization
Architecture Implementation
e Single layer e Onboard
e Hierarchical e Cloud

Figure 1.1 : Categories of speed optimization problem from different approaches [3].

Reducing fuel consumption has often been the most important goal of optimizations
[2-22]. Most of these studies have considered reducing travel time as a direct trade-off
having minimum consumption. To achieve these purposes, various approaches are
introduced. Using constraints under the spatial domain was observed such as road
topography and speed limit information in order to optimize speed trajectory.
Considering the potential to reduce energy consumption due to high inertia, especially
in heavy commercial vehicles, and the average annual mileage, it is inevitable that it
has received the largest share of studies in the literature [4], [5], [6], [7], [8], [9], [10],
[11], [12]. Given that widespread use of heavy-duty trucks is normally on highways,
traffic lights are not normally considered a restriction. The absence of constraints in
the time domain also simplifies the problem. Figure 1.2 shows an illustration of such

an application.

Entire horizon

Look-ahead horizon |

Figure 1.2 : Look ahead horizon of vehicle speed trajectory optimization in the
spatial domain [11].



Optimization of velocity trajectory can be defined as an optimal control problem and
there are different methods to obtain the solution. Generally, these methods fall into

three groups: indirect methods, direct methods, and dynamics programming (DP) [13].

The first group, indirect methods, use Pontryagin's Principle of the Minimum (PMP).
These methods solve the problem numerically and “indirectly" after transforming the
problem into a multi-point Hamiltonian boundary value problem [14]. In the first study
on this subject, the fuel flow rate of the internal combustion engine was modeled
nonlinearly for constant road slope with an approximate polynomial equation as a
function of engine speed and power, and PMP was used to solve the fuel consumption
minimization problem of a vehicle by Schwarzkopf and Leipnik in 1977 [2]. In later
studies, traffic light scenarios started to be included in the optimization. In this study,
a solution to the optimization problem was sought by using a simple engine fuel

consumption and linearized vehicle model [15].

Direct methods can be used as another group for solving the problem. Direct methods
parametrize the state and control variables into the Nonlinear Programming (NLP)
problem. For example, in hybrid electric vehicles for predictive energy management,
battery energy, and vehicle speed are defined as state variables to use in Second Order
Cone Program (SOCP) and Quadratic Programming (QP) [8]. It was seen that the
problem was re-formulated convexly using approximations and calculated faster by
SOCP. In the next step, the main purpose is to fit the requirement of QP solver, thus
the problem is reformulated again. These two solvers provide approximately the same

results for a given test scenario.

DP separates the issue into subproblems whose solution can be found by using
“Bellman's Principle of Optimality”. It has been proven by many studies that the most
used method in solving the vehicle speed optimization problem is the DP [5-20]. In
one of these studies, for different scenarios to optimize speed trajectory, the time-based

stage variable forward recursive DP is selected [16].

However, to eliminate time as a condition in the problem, developing a method that
uses distance on behalf of time as a stage variable and introducing trip time into the
cost function is proposed in [9] and also chosen for this thesis as well. [5] show that

there is a possibility to reduce the computational cost by decreasing searching space



in real-time implementations. Thanks to this approach, the eliminated constraints are

not included search space and the computational cost is decreased.

In brief, problems that include a larger number of state variables can be solved faster
by using indirect and direct methods instead of dynamics programming. On the
contrary, the problem must be convex or linear form to be used by efficient solvers
having a faster solution, and this affects the solution precision. Also, indirect and direct
methods can not give the guarantee have the global optimal solution. However,
dynamic programming separates into subproblems to reach the global optimal
solution. DP does not need to specific form for any complex problem. This situation
is the main reason for the common usage of DP in the literature, but the "curse of
dimensionality” is a drawback of DP which increases computational cost and hence

DP examples generally have used fewer states.

1.2 Outline of Thesis

The thesis content is organized into five chapters. Chapter 1 includes general
introduction and literature review which covers different energy optimization
methods. Chapter 2 includes the theory of dynamic programming and the detailed
formulation of BELLMAN’s principle. Nonlinear longitudinal dynamic vehicle
modeling and a detailed formulation and implementation of the DP algorithm, which
covers the determination of optimization objective, stage and state variables, cost
function, boundary conditions, functional architecture in Chapter 3. In Chapter 4,
simulation results are presented for two route case studies. Finally, conclusions and

future work possibilities are discussed in Chapter 5.



2. THEORY OF DYNAMIC PROGRAMMING

Dynamic programming is a method in which complex optimization problems can be
broken down into a number of simpler problems. The combination of the solutions to
these simpler problems leads to the solution of complex optimization problems. The
greater the number of simpler problems, the greater the probability of a globally
optimal solution for the optimization problem to be found under the given boundary
conditions. In order to be able to apply the DP, the optimization problem must be
related to each other subdivide building sub-problems. One speaks with such

optimization problems also of multi-stage decision-making processes.

2.1 Multi-Stage Decision-Making Process

Due to the non-linear drive train characteristics and the changing driving resistances,
when the system “vehicle” is operated under real ambient conditions, the resulting
system behavior and thus the optimal control of parameters such as time and distance
arise. In decision theory, such a process is generally referred to as a “multi-level
decision-making process” [17]: In each process step, a decision must be made
regarding process control, which in turn influences the possible decisions of
subsequent process steps and thus the overall result. The principle of dynamic
programming enables the optimization of this type of process and the derivation of
optimal process control with regard to the underlying criteria. The basic features of
dynamic programming go back to the American mathematician R. E. BELLMAN, who
coined the term around 1950 [18]. Dynamic programming describes less a single
explicit algorithm than a basic principle for solving multi-level decision problems [19],
based on the well-known BELLMAN optimality principle [17] :

“An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision®.

Since it was first formulated, different variations of dynamic programming have been

developed and applied in different forms depending on the problem. The classic



deterministic dynamic programming (DDP), however, describes a numerical solution
method that requires a time discretization of the process to be regulated as well as a
complete value discretization of the state space. The originally time-continuous state-
space model from equation (2.1) and (2.2) is time-discretized by putting system output
y(t), system state x(t), control u(t) and disturbance w(t) ink = 0,1,..., N steps

are sampled in discrete time in equation (2.3).

£(0) = F(x(O,u®), w(®), x(te) = xo @.1)
y(©) = h(x(t), u(t), w(t)) 2.2
Vie = Y(t), xp = x(t), we = ulty), wi=w(ty), 2.3)

The numerical integration according to the explicit EULER method generates the
discrete-time, non-linear state difference equation with discrete-time system function
¢ as a calculation rule for the subsequent xj,,, depending on the current state x; ,

the control u;, used and the current disturbance variables wy,:

xk+1 = d)(xk’ uk’ Wk)l X(O) = xOl k = Olll IN - 1 (2. 4)

2.2 BELLMAN?’s Principle of Optimality

Using dynamic programming, a complex dynamic optimization problem is broken
down into a sequence of similar sub-problems and efficiently solving the overall
problem by avoiding recursions can be put together from the individual partial
solutions [20] [18]. Figure 2.1 shows an exemplary application of the principle [20].



Figure 2.1 : Example for BELLMAN’s principle of optimality.

A multi-stage decision-making process with the three system states is sketched X =
{x0, x1, x5 }. The optimal transfer of the system from the initial state x, in final state x,
causes minimal costs J* = J.» = min{ J;(x,)} in the state transitions and results from
the application of the optimal control law *. By checking the permissible state

transitions, the minimum cost J* in this example to:

J*(x1) = min {g14, 915} + 0

2.5)
J (x0) = go + ] (x1)

By generalizing the illustrated example, the BELLMAN’s principle of optimality

considering the remaining cost-to-go in any formulated transition state x; [19]:

J*(x;) = Jz(x;) = min {gN(XN) + gk(xk'ukrwk)}' (2. 6)
k=i

2.3 BELLMAN?’s Recursion Equation

With the help of complete induction, BELLMAN's recursion equation of dynamic
programming can be derived from the optimality principle formulated in equation
(2.6), which solves the dynamic optimization problem backward recursively starting

from the final state x, [19]:

For each initial state x, the minimum costs J*(x,) of the optimization problem
correspond to the costs J,(x,) resulting from the following algorithm, which goes

backward from step N — 1 to 0.



InCxn) = gn(xn), 2.7)

Je(x) = min {g, O, wie, wie) + Jiea1 (@G, wi, wid) 3 k

Ug € Ug(xg)

=01..,.N—-1

(2.8)

If the control variable uy (x,) minimizes the right-hand side of equation (2.7) and

equation (2.8) for each x; and, then the underlying control law 7* is optimal.

Dynamic programming is used in many different disciplines such as decision theory,
control engineering, graph theory, or operations research. The optimization of the
driving strategy can be formulated as a problem for each of these disciplines under
different conditions. With regard to real-time implementation, the interpretation of the

problem as the Shortest-Path problem of graph theory is particularly suitable.



3. OPTIMIZATION IMPLEMENTATION BASED ON DYNAMIC
PROGRAMMING

3.1 Vehicle Modelling

The total resistance of a wheel consists of four main components.

Aerodynamic friction loss F, can be written as equation (3.1).

1

Fp = 2 * Pair * Aront * Cq * v? (3.1)

where pg;- denotes the air density, Ag,.on, denotes the vehicle’s cross-frame area, ¢4
denotes the aerodynamic resistance coefficient.

Rolling friction loss Fg can be written as equation (3.2).

Fr = fr ¥ Myen x g * cos(a), v >0 (3.2)

where f,- denotes the road friction coefficient as a constant, m,,.,, denotes the vehicle
mass including passenger and payload, g denotes the gravity of earth, « denotes the

average road inclination.

Slope driving force F; can be written as equation (3.3).

Fg = myen * g * sin(a) (3.3)

Acceleration force F,., can be written as equation (3.4).

Frner = (finer * Myep + Ig ) *a (3 4)

where fi,. denotes the inertia equivalent factor for vehicle mass and I rotational

inertia value of all rotating components reduced to the wheel.

Total wheel level force is the sum of the above elements, provided in equation (3.5).



Frotat = Finer + Fa+ Fr + Fg (35)

3.2 Optimization Objective

The objective is to optimize the vehicle speed trajectory of a BEV with a single gear,
in order to minimize the energy demand without sacrificing travel time by considering
road slope, road speed limitations. There are indeed various other factors influencing
the energy demand apart from vehicle speed trajectories, such as power split between
the combustion engine and electric motor in case of hybrid powertrains or gear position
in case of a multi-gear transmission, thermal management as well. These factors will

not be the focus of this work but can be considered in low-level optimization layers.

3.3 Algorithm Development DDP

Before formulating the problem, the basic elements of DP are visualized in Figure 3.1.
Stages are displayed as discrete points along the horizontal axis. In the automotive
industry, the stages of a DP problem are often defined as the time or distance within

the problem range.

States show the data which can sufficiently assess the outcomes of various choices.
Along these lines, the state should be characterized in such a manner, that the outcome
of various choices can be reflected by various states. Another significant property that
the state ought to have is to pass on sufficient data to settle on future choices regardless
of how the cycle arrived at the present status. Figure 3.1 shows a single-dimensional
state DP issue, where the states are addressed by discretized circles. For multi-

objective issues, multi-dimensional states frequently should be characterized.

In the wake of describing stages and states, transitions between states can be described.
Since the issue is partitioned into sub-issues by discrete stages, only transitions

between states in adjoining stages are fundamental for solving the issue.
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Figure 3.1 : Definition of Stage, State, and Transition of DP.

For dynamic programming problems in automotive implementations, time is often
used as the stage variable especially for issues with time-varying inputs driving cycles,
which is based on speed over time [21] [22] [23]. But it is more useful to use distance
as a stage variable in problems where data related to distance such as speed limit
change, traffic lights, curvatures are used. Although the actual position can be
determined using the time and the vehicle speed due to effects of lane changes and
road gradients calculation will not have good precision. For this reason, navigation

systems are used in real applications.

¥ F 3 t A
m+l e O O VL +] Im=1k
(-1 m ¢+ O O (V1)
m * O rm,i'—i O m = O Tm’g—_; O
(w1 . N (Vi)
k-1 EFoos * R
v 3 JE\'-J‘ f]:.' 5
(A) (B)

Figure 3.2 : State variable definition.

The vehicle speed can be determined as a state that has the obvious advantage of
simplicity because chosen optimization variable is also speed. The other advantage of
choosing speed as an optimization variable is the calculation of “cost-t0-go” exclusion

recursive terms.

Equation 3.17 shows the “cost-t0-go” calculation. In that equation, ¥ refers to average

vehicle speed, a refers to average acceleration, and dt refers to transition time from

11



one state to another. The i, j and k are the transition from state i to state j at later stage
K.

After determining vehicle speed as state, average vehicle speed v; ;, can be written

as:

Vit Vik
vi,j,k = —2 (3 6)

Average acceleration a; ; , can be written as:

2 2
Vi — Vi
— j.k i,k—1
ajjr = 3.7
v 2% (Sk = Sk-1) S
Transition time dt; ; , can be written as:
Sk — Sk-1
dtjjr =2+ ———

Lik vj,k alF Vi k-1 (3 8)

j* means the index of the state which gives minimum cost from state j at later stage

k + 1 to state i at the previous recursion state.

j*=_min _Ji(j) (3.9)

je1,2,..M

M refers to the number of states. The following equations represent different recursion

directions.

Forward recursion,

ik = tigor + dtp ik (3. 10)

12



Backward recursion,

ik = tiger — dbirjk (3.11)

In equation 3.8, if both state v; , and v; ,_, have zero value, zero division problem can

occur. For this reason, zero speed should be removed from the state space or can be
defined very small number for the minimum speed state instead of zero.

The zero division problem can be handled by selecting the time as the state variable,

as the time calculation for transition does not have division.

Average acceleration a; ; , can be written as:

Aij = 2% P (3.12)
Transition time dt; ; , can be written as:
dtijr = Gk = tik-1 (3.13)
Average vehicle speed v; ; , can be written as:
By = Sk — Sk-1
tir — tig1 (3.14)

When the eliminated state is the optimal vehicle speed, speed equations can be written

for forward recursion as:

* - g%
ik = 2% Vit jk ~ Vi k-1 (3. 15)

For backward recursion as:

* _ — *

13



However, usage of time has also disadvantage which is detailed mentioned in [3]. To
conclude, the disadvantage of determining time as the state is compelling to be used
in real-time application. Thus, for the state variable definition, the one-state

formulation with vehicle speed is selected.

3.3.1 Cost function

After disregarding the time from state variable determination, the cost function of the
optimization includes the travel time penalty term. Since the required wheel force for
the vehicle increases quadratically with the vehicle speed, trip time and required
energy for the vehicle have a nonlinear trade-off. In addition to that, based on the
selected step size for the state variable discretization, some uncomfortable speed
change trajectory profile maybe occur, to eliminate that comfort penalty term is added

using acceleration value.
Jije = AEijpe+ Brdtijpe+y*aijg (3.17)

J refers to the “cost-to-go”; dE refers to the required energy for state transition; dt
refers to the trip time for state transition; a refers to the average acceleration while state
transition. B is an adaptive weighting factor for energy consumption and trip time

trade-off adjustment. y is also a weighting factor for comfort adjustment.

In 3.1, total wheel force calculation is introduced. Based on that the required energy

for each discrete state transition can be calculated as (3.18).

1 _
dEi,j,k = {[E * Pair * Afront * Cg * vi,j,kz + fr* Myen* g

* cos(@y) + Myep * g * sin(ay,)
(3.18)
+ (finer * Myep + IR ) * a_i'j'k ] * ﬁi’j'k + Plossi,j,k}

*dtj

Pioss; i refers to the combined power loss of electric motor, inverter. It can be

determined based on required torque and electric machine speed at state i using look-

up tables.
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3.4 Implementation

The implementation of the optimization algorithm and other subsystems is performed
by using Simulink®. Other related systems and task management become necessary
for realization. Figure 3.3 shows the velocity trajectory optimization functional

architecture.

Driver Inputs

— )
_____ 10ms_____5 Route Information Destination_|  HMI / Navigation
function call Generation Points System
10s S%%aeiilwm?s Target Average Velocity
| _ function call
Velocity Trajectory ¢ Adaptive Weighting
Optimization Factor Calculation
Optimization Functions
I
M el 10 ms Velocity Trajectory Actual Average Velocity
anager ihtion call Y.
/ Vehicle Plant Models \
| : 0 \
|, Actual Velocity
<
Driver Model »| Longitudinal
Vehicle Model
.
¥ EM Actual|Torque <
Electric ~
Machine Model|  Actual Power of EM b Elieny LeGE
Y, h Available Power

—_— \\‘ _,/

Figure 3.3 : Velocity trajectory optimization functional architecture.

Deciding on a prediction horizon is critical to velocity trajectory optimization since it
affects the memory requirement, computation effort, and update time of route
information generation function directly in real-time applications. Another important
parameter is the update interval of the optimization task due to their close relationship
with each other, the update interval and prediction horizon should be determined
together. Figure 3.4 shows the distance-time plot contains the relation among

prediction horizon Sy and update interval of the speed optimization function.
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Figure 3.4 : Update interval and prediction horizon.

The distance traveled approaches the prediction horizon with the long update interval.
Since the optimization function will use up-to-date route information with short
intervals, the effect of the deviation may be more significant than the shorter update
interval. On the other side, a very shorter update interval will not be reasonable when
the vehicle dynamic response is considered. To solve this problem, 10 s is chosen for
the update interval of the optimization functions, and with this, the optimum velocity
trajectory relative to the position is applied until the next function call.

3.4.1 Route information generation

First of all, as a basis, the information of the intended route and the target arrival time
are taken from the driver. After receiving this information from the HMI (Human
Machine Interface), the target average speed for the relevant route is calculated. Along
with the targeted speed, the slope and speed limit information of the targeted route is

also given as input to the velocity trajectory optimization algorithms.

3.4.2 Optimization functions

Velocity trajectory optimization consists of multiple sub-functions. These sub-
functions and their relations with each other are indicated in the diagram in Figure 3.5.
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All functions in this diagram are written in C-code and used in Simulink as S-

functions.
Average Target Velocity
Min/iax allowed vehicle speed limits
Vehicle Parameters
)
Input Pre-process
MNumber of State and Stage, deltaS, deltaV/
State Range of State Space

Coordination

Find Min/Max Available Torque

N/
Reachable State Matrix
) Dynamic Programming
Search Tree Algorithm
B Transition Cost
Calculation
Adaptive
Weighting
factor B Trajectory Found Flag
Calculation Velocity Trajectory Path Matrix
) 4
Output Post-process

./

Optimization Functions . elocity Trajectory based on distance

Figure 3.5 : Functional architecture of optimization functions
3.4.2.1 Input pre-process
In this partition of the software, the number of state and stage, step size of distance,
step size of velocity state, and overall range of state space are provided to optimization
functions by using average target velocity, speed limits, and vehicle parameters.
3.4.2.2 State coordination

The state coordination function is mainly responsible for enabling the optimization
function. If the actual speed of the vehicle is not in the working range of the

17



optimization function or the driver disenables the usage of this feature, state
coordination will stop the optimization and the vehicle will be used constant average

velocity target for cruise control.

3.4.2.3 Reachable state determination

“Curse of dimensionality” is a well-recognized downside of DP since it is the main
reason of uprise computational cost. The simple DP formulation O(M?2.N) where N
means the number of nodes for distance stage variable, and M means the number of
nodes for velocity as state variable gives results for velocity trajectory optimization
computational complexity. For this reason, the amount of computation can be reduced
by determining not reachable states according to available torques and not calculating
for those states. Hereby, the computational complexity can be rewritten into (M. N.T),

where T represents the maximum number of states which can be reachable.

The achievable speed states are calculated for each state, taking into account the
available torque of the electric machine at that speed, the resistive force to be
overcome, and the powertrain efficiency, as shown in Figure 3.6.

L As >

Figure 3.6 : Reachable state determination based on system limits
3.4.2.4 Adaptive weighting factor calculation

As described in 3.3.1, it is aimed to overcome the energy and time trade-off problem
with the adaptive weighting factor . When the literature is examined, it has been
observed that these coefficients are usually taken as a parameter to be adjusted

manually or calculated iteratively in a segment for each path, each powertrain.
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However, in this study, a novel approach was used which is an adaptive parameter in
run-time to calculate B. The initial value of the beta is determined with the following
equation 3.19 via the time required to complete the run with target average speed [10],
assuming no braking, zero slopes, and neglecting of the losses. The cost function can

be written as;

]=de+ B.dT = S.(Fy + Fp) + . (3. 19)

19avg
4 3 3.20
E(ﬁavg)zo - BZZ*FA*ﬁavg: pair*Afront*Cd* 19avg (3.20)

After the first value is calculated according to equation 3.20, the beta factor is adapted
to reach the target average velocity during the trip by using deviation between the

target average velocity and the actual average velocity, as shown in Figure 3.7.

Adaptation factor map

Average Target
Velocity
_ -
Actual Average
Velacity
> Adaptive B
nitial { calculation based on given equation e

Y

Figure 3.7 : Adaptive B calculation block diagram
3.4.2.5 Dynamic programming

In this function, search tree algorithms are developed and dynamic programming

formulas are applied together with Bellman Recursion equations described in 2.3.

Transition cost calculation is performed for all reachable states which are provided
over the reachable matrix from the previous function. During this calculation cost-to-

go and path index matrix of optimum velocity trajectory are stored.
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3.4.2.6 Output post-process

Output post-process converts the optimum velocity path index to the velocity
trajectory array and provides the other optimization state, total cost, and beta values to

the vehicle plant models.

3.4.3 Vehicle plant models

The vehicle plant model consists of 4 main parts as shown in Figure 3.3. The driver
model basically performs the required torque demand with the PI controller, following
the given set speed value. This torque request is transmitted to the electric motor
model. In the electric motor model, the torque requested from the driver model is
limited according to the maximum or minimum torque it can provide at that speed
value and the maximum and minimum power values from the battery. While the actual
requested power value calculated over the limited torque demand is transmitted to the

battery model, the actual torque value is transmitted to the vehicle model.

In the vehicle model, how much this torque value will accelerate the vehicle is

calculated by using the inertial parameters over the backward vehicle model.

In the battery model, the total consumed energy value with losses is calculated over
requested the actual power value from the electric motor model by using instantaneous
battery parameters based on actual SOC (state of charge), temperature values.
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4. SIMULATION RESULTS

In this section, two different route case study analyses are performed to assess the
energy reduction via optimal trajectory. Full electric trucks are used for both routes.
Thanks to the high inertia of heavy-duty vehicles have a higher potential to decrease
energy consumption. Since heavy-duty vehicles are generally used on highways, thus
following the optimal velocity trajectory will be much easier than urban driving.

Vehicle and final selected function parameters are listed in Table 4.1 and Table 4.2.

Table 4.1 : Vehicle specifications.

Specification Values
Battery capacity 190 kWh
Peak power of EM 350 kW
Continuous power of EM 240 kW
Vehicle mass 25000 kg

Air density 1.1839 kg/m?®

Frontal Area 9.5 m?

Cd coefficient 0.415

Tire radius 0.5143

Final drive ratio 5.125
Maximum speed 95 km/h
Road friction coefficient 0.0055

Table 4.2 : Velocity optimization function parameters.

Specification Values
Step size for velocity state 0.33 km/h

Step size for distance 20 m

Prediction horizon 1000 m
Task update interval for optimization
. 10s
functions
Task update interval for other functions 10 ms
State-space offset for set speed [-25 km/h, 25 km/h]
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4.1 Route Profile 1 Results

Three different average speed set values were created with the assumption of different
arrival times for the route planned by the driver. These determined average velocity
sets and velocity trajectory results calculated as a result of optimization were examined

separately in terms of energy consumption and arrival time.

70 . . . ' ' ' 6
. Actual Velocity
|. il | = = = Target Average Velocity
60 ’ e v Sl i, - r—fl—'— Slope =
\ |
| | | f |
50 | i A f | |
= |/ N & i I 1?
| [ ] | a / —
I I I I I | )
= oy L ] ] J - l : I =0 &
T A rm B W T §
g 30 |! | ||| | | | , | b I ||; l | 7]
G?J- Iy N | II | |I l I' | l\
| || | | | | |'I 12
20 1 : M
|,| | | { 14
10 | '
0 | L L . : ; -6
0 2 4 6 8 10 12 14
80 T T 6
. Actual Velocity
| i Dl | = = = Targel Velocity Trajectory
70 . Slope -4
60 \/\\J
" "| 12
< 50 dl T
E 'r ! / l l 4,1 =
=, 1/ | 8| P . .' | — o g
- 40 I ||| | | I | Y 0 o
g " TN W B 1N 1
gg[] ||| v Il | || | { | | @
- | | 1 | ]
w I | [ | B I| l hﬂ -2
20! | | - |
| \
|. ' "' 14
10 - 1 |
0 | 1 L L L L -6
0 2 4 6 8 10 12 14

Position [km]

Figure 4.1 : Comparison of velocity trajectories for optimization active and inactive
cases @60km/h target average speed in route profile 1

In the literature, using the authors' own or their own test drives as a base is not a fair
comparison method. In this study, a comparison method with base scenarios that will
follow the fixed set speed, which is a situation where acceleration is almost non-

existent and only the road and aerodynamic force are affected, is preferred.
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In Figure 4.1, the speed profile results obtained for road profile 1 based on the first
scenario, 60 km/h average speed, are shared. The road slope profile is shown as a gray
area in the graphs. It has been observed that the target velocity trajectory accelerates
before uphill starts and slows down before downbhill. Thus, it consumes less energy by
accelerating before the start of the slope. With the acceleration brought by the descent
by slowing down even before the descent starts, it does not consume energy and even

in some cases, it can be recovered by regenerative braking.

4000 T T T T T T

— Constant velocity
= = = Optimum velocity

3000 | .

2000

1000

EM Torque [Nm]

-1000

-2000 1 1 1 1 1 1

0 2 4 6 8 10 12 14
5 x107
— Constant velocity
= = = Optimum velocity
S4r A -
e
2
2
£ 3r i
=
w0
=
=] g g
Q2r i
s P s
Wwqr - i
4
D 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Position [km]

Figure 4.2 : Comparison of EM torque and energy consumption for optimization
active and inactive cases @60km/h target average speed in route profile 1

In Figure 4.2, the electric motor torque and the total energy consumed from the battery
for the scenario of 60 km/h average speed are shown with a blue solid line according

to the position. In this case, the total energy consumed by the vehicle is 4.9068 x 107J.
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The arrival time is 847,93 s. On the other hand, the dashed red line presented in Figure
4.2 describes the optimal velocity trajectory obtained with the optimization algorithm.
The total energy consumed by the vehicle under this strategy is 4.7952 x 107 J. Arrival
time is 833,47 s. The results show that the speed profile calculated by the optimization
Is 2.27% lower than the energy consumed 1.71% faster than by the vehicle driving at

constant velocity.
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Figure 4.3 : Comparison of velocity trajectories for optimization active and inactive
cases @70km/h target average speed in route profile 1

Figure 4.3 shows the velocity trajectory results for the 70 km/h average velocity target.
The velocity trajectory started to accelerate between 6-7 km before the positive slope
started. The velocity profile decreases at the point where the elevation starts and
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decreases to the minimum where it is maximum. Although there is a negative slope
between 5-6 km, the reason why the vehicle does not accelerate more is that energy
can be recovered thanks to regenerative braking in electric vehicles, it is prevented

from accelerating by braking to the calculated speed profile.
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Figure 4.4 : Comparison of EM torque and energy consumption for optimization
active and inactive cases @70km/h target average speed in route profile 1

In Figure 4.4, the electric motor torque and the total energy consumed from the battery
are shown for the scenario of 70 km/h average speed this time. In the constant speed
driving case, the total energy consumed by the vehicle is 5.5872 x 107 J. Arrival time
is 731,36 s. On the other hand, following the speed profile calculated by the
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optimization, the total energy consumed by the vehicle is 5.3964 x 107 J. Arrival time
IS 724,94 s. The results show that the speed profile calculated by optimization is 3.41%

lower than the energy consumed 0.88% faster than by the vehicle driving at constant

velocity.
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Figure 4.5 : Comparison of velocity trajectories for optimization active and inactive
cases @80km/h target average speed in route profile 1

In Figure 4.5, testing was performed for an average velocity target of 80 km/h. In this
test, the optimization produced the most efficient speed profile within the determined
limits. In this test, unlike the others, in the constant speed case where the optimization
is not active, the target speed cannot be reached due to the slope, although all available

power is used between 8-10 km. In the case where the optimization is active, such a
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situation did not occur because both these speed states are inefficient and thanks to the
reachable state generation function, those speed states are excluded from the

optimization.
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Figure 4.6 : Comparison of EM torque and energy consumption for optimization
active and inactive cases @80km/h target average speed in route profile 1

In Figure 4.6, the electric motor torque and the total energy consumed from the battery
are shown for the scenario of 80 km/h average speed this time. In the 80 km/h constant
speed driving case, the total energy consumed by the vehicle is 6.3432 x 107 J. Arrival
time is 647,38 s. On the other hand, following the speed profile calculated by the
optimization, the total energy consumed by the vehicle is 6.1812 x 107 J. Arrival time

Is 639,59 s. The results show that the speed profile calculated by the optimization is
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2.55% lower than the energy consumed 1.20% faster than by the vehicle driving at

constant velocity.
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Figure 4.7 : Results for different target average speed in route profile 1

In Figure 4.7, the results obtained for 3 different average speed values, whose results
are given separately, are shown together. In all three cases, it was observed that both

energy and time were saved.

In Figure 4.8, 70 km/h average speed target was tested with different weights this time.
It has been observed that the optimization gives more efficient results with different
weights. In addition, thanks to adaptive beta calculation, different beta values required
for different weights are calculated without the need for offline simulation / pre-

calculated repeatedly.
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Figure 4.8 : Results for different weights of truck @70km/h target average speed in
route profile 1

As defined in 3.3.1, the trade-off between energy demand and travel time is tuned by
a weighting factor . The biggest motivation for making B adaptive is the need for
different beta values for different road profiles, different weights, and different target
speeds. These values can normally be found with offline trials, but this approach is not

suitable for real-time solutions and real use-cases.

In this study, it is calculated by using the average speed calculated according to the
target arrival time taken from the driver and the instantaneous average speed. Figure
4.9 shows the test results for an average speed of 70 km/h. The velocity profile shown
here with the blue solid line is the result produced by the optimization when using the
constant beta. The constant 3 value has been determined by offline simulations until it

coincides with the constant speed driving time of 70 km/h shown in Figure 4.3.

As seen in Figure 4.9, the calculated velocity profile is higher where beta is high.
However, beta decreases as the average speed approach the target value. When the
average speed exceeds the target, the beta value falls below the fixed value. At these
times, the calculated velocity profile is lower. The energy value consumed with
adaptive f is the same as in Figure 4.4. The energy consumed with constant 3 is 5.3208

x 107 J. The arrival time with fixed B time is 732,05 s.
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Figure 4.9 : Comparison of velocity trajectory and energy consumption for best time
based tuned constant beta and adaptive beta @70kph in route profile 1

4.2 Route Profile 2 Results

All tests performed for road profile 1 were repeated in road profile 2. The main
motivation for performing retests for the second route is to show that both the
optimization algorithm and the adaptive B factor calculation yield successful results in

different path profiles.

In Figure 4.10, the speed profile results obtained for road profile 2 based on 60 km/h
average target speed are shared. The slope of route profile 2 is also shown as gray area
in the graphics. Due to the uphill starting at approximately 1.5 km and the downbhill
starting after 2 km, the optimization target speed first decreased and then started to
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increase again with the start of the downhill. A similar situation is observed between
11.3 km and 12.5 km.
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Figure 4.10 : Comparison of velocity trajectories for optimization active and
inactive cases @60km/h target average speed in route profile 2

Electric motor torque and energy consumption values of 60 km/h average target speed
performed in route profile 2 are shown in Figure 4.11. In the constant speed driving
case, the total energy consumed by the vehicle is 4.9788 x 107 J. Arrival time is 849,35
s. On the other hand, following the speed profile calculated by the optimization, the
total energy consumed by the vehicle is 4.9032 x 107 J. Arrival time is 832,27 s. The
results show that the speed profile calculated by optimization is 1.52% lower than the
energy consumed 2.01% faster than by the vehicle driving at constant velocity.
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Figure 4.11 : Comparison of EM torque and energy consumption for optimization
active and inactive cases @60km/h target average speed in route profile 2

The simulation results of 70 km/h average target velocity are also shown in Figure
4.12. The vehicle slows down before the negative slope starts at 5.5 km. It accelerates
again with the start of the slope. Despite the acceleration of the vehicle, energy

recovery is also provided with regenerative braking.
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Figure 4.12 : Comparison of velocity trajectories for optimization active and
inactive cases @70km/h target average speed in route profile 2

Electric motor torque and energy consumption values realized in route profile 2 of 70
km/h average target speed are shown in Figure 4.13. In the constant speed driving case,
the total energy consumed by the vehicle is 5.6700 x 107 J. Arrival time is 732,87 s.
On the other hand, following the speed profile calculated by the optimization, the total
energy consumed by the vehicle is 5.5008 x 107 J. Arrival time is 723,53 s. The results
show that the speed profile calculated by optimization is 2.98% lower than the energy
consumed 1.27% faster than by the vehicle driving at constant velocity.
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Figure 4.13 : Comparison of EM torque and energy consumption for optimization
active and inactive cases @70km/h target average speed in route profile 2

The latest results for route profile 2 with 80 km/h target average velocity are shown in
Figure 4.14. As in route profile 1, in the case of 80 km/h constant speed driving, speed
tracking cannot be done at some slope values because sufficient electric motor torque
cannot be produced. In velocity trajectory produced by optimization, this is not the

case since reachable velocity states are calculated as mentioned before.
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Figure 4.14 : Comparison of velocity trajectories for optimization active and
inactive cases @80km/h target average speed in route profile 2

Electric motor torque and energy consumption values realized in route profile 2 of 80
km/h average target speed are shown in Figure 4.15. In the constant speed driving case,
the total energy consumed by the vehicle is 6.4152 x 107 J. Arrival time is 649,77 s.
On the other hand, following the speed profile calculated by the optimization, the total

energy consumed by the vehicle is 6.1920 x 107 J. Arrival time is 638,92 s. The results

show that the speed profile calculated by optimization is 3.48% lower than the energy
consumed 1.67% faster than by the vehicle driving at constant velocity.
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Figure 4.15 : Comparison of EM torque and energy consumption for optimization
active and inactive cases @80km/h target average speed in route profile 2

In Figure 4.16, the results obtained for 3 different average speed values, which were
tested separately for route profile 2, are shown together. As given in Figure 4.7, it was

observed that both energy and time were saved in all three cases.

In Figure 4.17, as in Figure 4.8, 70 km/h average speed target was tested with different
weights for route profile 2 this time. It has been observed that the optimization gives

successful results in different weights in this route.
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Figure 4.17 : Results for different weights of truck @70km/h target average speed in
route profile 2

For route profile 2, as in Figure 4.9, the results of the constant beta of 70 km/h and the
use of adaptive beta are given. The constant  value here has been determined by
offline simulations until it coincides with the constant speed driving time of 70 km/h

shown in Figure 4.12.

As seen in Figure 4.18, beta starts from a high value in the first place to reach the
average speed. Where beta is high, the calculated velocity profile is higher. However,
beta decreases as the average speed approach the target value. When the average speed
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exceeds the target, the beta value falls below the fixed value. At these times, the speed
profile calculated with adaptive beta is lower. The energy value consumed with
adaptive B is the same as in Figure 4.13. The energy consumed with constant [ is

5.4468 x 107 J. The arrival time with fixed beta is 733,34 s.
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Figure 4.18 : Comparison of velocity trajectory and energy consumption for best
time based tuned constant beta and adaptive beta @70kph in route profile 2
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5. CONCLUSIONS AND FUTURE WORKS

In this thesis, a predictive vehicle speed trajectory optimization function has been
developed for the truck with an all-electric powertrain topology. The main purpose of
this function is to calculate the speed trajectory that will enable us to consume the least
energy within the determined route and the targeted time. This study includes literature
research, problem formulation, function development and implementation in Simulink

and C-code environment, and evaluation of results for different routes.

The dynamic programming method, which gives a global optimum based on the
Bellman optimality principle, has been chosen as a solution to this problem.
Numerically, the method, which is solved iteratively from reverse to beginning, solves
the problem in time and state space dimension by decomposing, while system and

control constraints are defined through penalty functions added to the cost function.

The one-state formulation of the DP problem is still selected because of its significant
utility in real-time application versus the two-state formulation, although global

optimality is not guaranteed.

The selection of some optimization parameters directly affects the optimization
performance and computational cost. In the literature, especially for time and energy
consumption trade-offs, parameterization is made in a route-based fixed or adaptive
way over the traffic light durations for city driving. In this study, a different adaptive
beta calculation has been developed that enables the targeted route to be reached within

the targeted time by consuming less energy.

The developed optimization function was investigated for two different road profiles
for different fixed target speed values and different weights. In the simulations, it has
been observed that the energy consumption is saved up to 4% compared to driving
with constant speed, and the completion time of the route is reduced up to 2.5%. It is
obvious that the energy savings will be even more if driving time at the constant speed
is equalized with the driving time at the optimum speed by adapting to the constant

speed value to match the time.
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In future studies, it is aimed to realize this function on a vehicle. Solutions will also be
sought for problems that will directly affect the optimization, such as precision and
communication latency, which will occur during implementation. In addition, its
contribution to energy consumption for different vehicle groups such as passenger cars

and electric race cars will be examined.
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