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ANALOG CIRCUIT DESIGN WITH NEW ACTIVE CIRCUIT 

COMPONENTS 

SUMMARY 

The design of electronics which are indispensable for every area of our lives is 

mainly studied in two groups as analog circuit design and digital circuit design. The 

use of digital circuits compared to analog circuits is increasing day by day. Due to 

the creation of man and the universe, analog signal processing circuits and systems is 

inevitable. This inevitability shows us analog signal processing and analog signal 

processing circuits and systems are unavoidable despite the increase in the 

prevalence of digital systems and circuits. 

Analog signal processing systems can be examined in two main groups as voltage-

mode or current-mode circuits, in terms of operating principles. The voltage-mode 

circuits’ input signal and the output signal is voltage. The input signal and the output 

signal are current in current mode circuits. Designs of this work have been tested 

with current-mode applications. 

The design of electronic circuits facilitated with the discovery of the transistors. 

Nowadays, the sizes of electronic circuits are much smaller. CMOS 20nm gate 

length production can do as of 2013. However, the small size integrated circuit 

technologies that can be used easily in digital circuit design are not widely available 

in analog circuit design. The main reason for this is that analog processing blocks 

with small sized MOS transistors working with low supply voltages, does not allow 

all the transistors to operate in saturation mode. For this reason, the existing analog 

signal processing building blocks must be adapted to small size technologies. In this 

work, the simulations have been performed using 0.18µm AMS parameters. 

In this work, the CMOS internal structure is proposed for ZC-CDTA (Z-Copy 

Current Differencing Transconductance Amplifier), ZC-CDBA (Z-Copy Current 

Differencing Buffered Amplifier) and ZC-CG-CDBA (Z-Copy Controlled Gain 
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Current Differencing Buffered Amplifier) which recently recommended as analog 

building blocks. Input stage of the ZC-CDTA, ZC-CDBA and the ZC-CG-CDBA 

consist of current differencing unit. Different current differencing unit CMOS 

structures are used in this work. Ideally, these elements of ZC-CDTA, ZC-CDBA 

and ZC-CG-CDBA input resistance were reduced with the help of positive feedback 

structure close to ideal. Application circuits designed by exploiting smaller value 

resistors allow the design of integrated circuit structures occupying less area. 

CDU (current differencing unit), CCIII (third generation current conveyor), ECCII 

(electronically controllable second generation current conveyor), OTA (operational 

transconductance amplifier) and voltage buffer which form the structure of the 

proposed ZC-CDTA, ZC-CDBA and ZC-CG-CDBA analog building blocks’ 

performances has been tested using CADENCE environment and the performances 

of these sub-circuits were presented in Chapter 2. 

In Chapter 3, negative and positive feedbacks were discussed. The effect of positive 

and negative feedback to the input resistance were also examined. The structure of 

the ZC-CDTA, ZC-CDBA and ZC-CG-CDBA was proposed by putting together the 

analog sub-circuits in Chapter 4. The CCIII (third generation current conveyor) 

recommended by Alain Fabre was used for obtaining the Z copy terminal current 

which exists in the structures of ZC-CDTA, ZC-CDBA and ZC-CG-CDBA. The 

layout of the ZC-CDBA, the ZC-CDTA and the post-layout simulations are given in 

Chapter 5. A second order KHN filter structure realized with ZC-CDBA, a biquad 

filter structure realized with ZC-CDTA and frequency agile filter realized with ZC-

CG-CDBA were presented in Chapter 6. Also, a frequency agile filter structure 

realized with ZC-CDTA and ECCII is given in Chapter 6. All works were concluded 

in Chapter 7. 
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YENİ AKTİF DEVRE ELEMANLARIYLA ANALOG DEVRE TASARIMI 

ÖZET 

Hayatımızın her alanının vazgeçilmezi olan elektronik düzenlerin tasarımı temel 

olarak sayısal devre tasarımı ve analog devre tasarımı olarak iki grupta incelenir. 

Sayısal devrelerin kullanımı analog devrelere kıyasla gün geçtikçe daha da 

artmaktadır. İnsanın ve kainatın yaratılışı gereği analog işaret işleyen devre ve 

sistemler kaçınılmazdır. Bu kaçınılmazlığın sebebi evrende var olan tüm varlıkların 

ve insanın duyularının analog işaretleri algılayabilmeleridir. Bu da bize sayısal 

sistem ve devrelerin yaygınlığının artmasına rağmen analog işaret işlemenin ve 

analog işaret işleyen devre ve sistemlerin tasarlanmasının kaçınılmaz olduğunu 

göstermektedir. 

Analog işaret işleyen sistemler çalışma prensibi bakımından gerilim modlu veya 

akım modlu devreler olarak iki ana grupta incelenebilir. Gerilim modlu devrelerde 

giriş işareti ve çıkış işareti gerilimdir. Akım modlu devrelerde ise giriş işareti ve çıkış 

işareti akımdır. Akım modlu çalışma denilince devrede sadece akım bağıntılarının 

var olduğu akla gelmemelidir. Elbetteki akım modlu devrelerde gerilim, gerilim 

modlu devrelerde de ise akımdan söz edilebilir. Temel olarak akım modlu devrelerde 

işaret akım ile taşındığı için düşük empedanslı düğümler vardır. Düşük empedanaslı 

düğümler zaman sabitini küçülttüğü için işaret daha hızlı taşınabilmektedir. Temel 

olarak bu sebepden dolayı akım modlu devreler gerilim modlu devrelere kıyasla daha 

yüksek bir performans ile çalışmaktadır. Bu çalışmadaki tasarımlar akım modlu 

uygulamalar ile test edilmiştir.  

Transistorun keşfedilmesiyle elektronik devrelerin tasarlanması kolaylaşmış bir o 

kadar da elektronik devrelerin boyutu küçülmüştür. 2013 yılı itibariyle 20nm geçit 

uzunluğunda CMOS üretimi yapılabilmektedir. Ancak sayısal devre tasarımında 

kolaylıkla kullanılabilen küçük boyutlu tüm devre teknolojileri analog devre 

tasarımlarında yaygın olarak kullanılamamaktadır. Bunun temel sebebi düşük 
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besleme gerilimleri ile çalışan küçük boyutlu MOS transistorlar ile tasarlanan analog 

işlem bloklarında besleme gerilimi bütün transistorların doymada çalışmasına olanak 

sağlamamasıdır. Oysa analog işaret işleyen devrelerde bütün transistorların doymada 

çalışması gerekmektedir. Bu sebeple mevcut analog işlem bloklarının yeniden 

düzenlenilerek küçük boyutlu teknolojilere uygun hale getirimesi gerekmektedir. Biz 

çalışmalarımızda 0.18µm AMS parametrelerinden yararlanarak benzetimlerimizi 

gerçekleştirdik. 

Çalışmada temel olarak yakın zamanda önerilmiş analog işlem blokları olan ZC-

CDTA (Z kopyalı akım farkı alan geçiş iletkenliği kuvvetlendiricisi) ve ZC-CDBA 

(Z kopyalı akım farkı alan tamponlanmış kuvvetlendirici) ve ZC-CG-CDBA (Z 

kopyalı kazancı kontrol edilebilir akım farkı alan tamponlanmış kuvvetlendirici) 

elemanları için CMOS iç yapısı önerildi ve önerilen iç yapılar uygulama devreleri ile 

test edildi. ZC-CDTA, ZC-CDBA ve ZC-CG-CDBA aktif elemanları CDTA (akım 

farkı alan geçiş iletkenliği kuvvetlendiricisi) ve CDBA (akım farkı alan 

tamponlanmış kuvvetlendirici) yapılarından geliştirilmişlerdir ve CDTA ile 

CDBA’nın evrenselliğini artırmaktadırlar. 

Önerilen ZC-CDTA, ZC-CDBA ve ZC-CG-CDBA analog işlem bloklarının yapısını 

oluşturan CDU (farksal akım bloğu), CCIII (üçüncü nesil akım taşıyıcı), ECCII 

(elektronik olarak kontrol edilebilen ikinci nesil akım taşıyıcı), OTA (geçiş 

iletkenliği kuvvetlendiricisi) ve gerilim tamponunun başarımları CADENCE 

ortamında denemiş ve başarımları çalışmanın ikinci kısmında sunulmuştur. ZC-

CDTA, ZC-CDBA ve ZC-CG-CDBA’nın giriş katı akım farkı alan blokdan oluşur. 

Bu kısımda iki farklı akım farkı alan CMOS iç yapı ve başarımları verildi. OTA 

yapısı olarak kullanılan yüzen akım kaynağı ZC-CDTA’nın çıkış katında, gerilim 

tamponu ZC-CDBA ve ZC-CG-CDBA’nın çıkış katında kullanıldı. ZC-CDTA, ZC-

CDBA ve ZC-CG-CDBA analog işlem bloklarının yapısındaki Z kopyayı elde etmek 

için Alain Fabre tarafından önerilen CCIII (üçüncü nesil akım taşıyıcı) kullanılmıştır.  

ECCII ise akım kazancını kontrol etmek için kullanıldı.  

Üçüncü kısımda ise negatif ve pozitif geribeslemeden bahsedilmiştir. Pozitif ve 

negatif geri beslemenin giriş direncine etkisi incelenmiştir. İdealde giriş direnci sıfır 

olan bu elemanların giriş direnci pozitif geri besleme yardımıyla ideale yakın 

azaltıldı. Tasarlanan uygulama devrelerini daha küçük değerli dirençler ile 
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gerçekleyerek daha az alan kaplayan tüm devre yapılarının tasarlanabilmesine olanak 

sağlanmış oldu. Bu kısımda ikinci kısımda verilen akım farkı alan bloklar ile pozitif 

geri besleme ile gerçeklenen CMOS yapıların başarımları kıyaslandı. 

Çalışmanın dördüncü bölümünde analog alt bloklar bir araya getirilerek ZC-CDTA, 

ZC-CDBA ve ZC-CG-CDBA analog işlem bloklarının yapısı oluşturulmuştur.  

Çalışmanın beşinci bölümde ZC-CDBA ve ZC-CDTA CMOS yapılarının serimi 

verişmiştir. Bu kısımda ZC-CDBA CMOS gerçeklemesinde Z akımını kopyalamak 

için üçüncü nesil akım taşıyıcı yerine klasik akım aynası kullanılmıştır. 

Çalışmanın son kısmında uygulama devreleri ile yeni analog işlem bloklarının 

başarımı test edimiştir. ZC-CDTA (Z kopyalı akım farkı alan geçiş iletkenliği 

kuvvetlendiricisi) ile iki tane ikinci derecede süzgeç yapısının ardarda 

bağlanılmasıyla dördüncü derece süzgeç yapısı elde edilmiştir. ZC-CDBA (Z kopyalı 

akım farkı alan tamponlanmış kuvvetlendirici) CMOS iç yapısı performansı ikinci 

derece KHN süzgeç yapısı ile test edilmiştir. Yine ZC-CDBA CMOS iç yapısı 

elektronik olarak kontrol edilebilen ikinci nesil akım taşıyıcı yardımıyla ZC-CG-

CDBA (Z kopyalı kazancı kontrol edilebilir akım farkı alan tamponlanmış 

kuvvetlendirici) yapısına dönüştürülmüştür. ZC-CDBA için tasarlanan ikinci derece 

KHN süzgeç yapısı ZC-CG-CDBA ile tekrar gerçeklenmiştir. Bu şekilde kutuplama 

akımı ile kesim frekansı değişebilen frekans atik süzgeç yapısı elde edilmiştir. Aynı 

kısımda ZC-CG-CDBA ile elde edilen frekans atik süzgeç yapısının eksik yönleri 

değerlendirilmiştir. 

Son bir uygulama olarak ZC-CDTA ikinci derece süzgeç yapısı geri besleme 

kullanılarak frekans atik süzgeç yapısına dönüştürülmüştür. Alain Fabre ve ekibi 

tarafından önerilen gerilim modlu geri besleme yapısı akım modlu yapıya 

dönüştürülmüştür. Akım modlu olarak tasalanan kurgulanabilir süzgeç yapısı merkez 

frekansı ECCII yardımıyla akım ile kontrol edilebilmektedir. Tasarlanan frekans atik 

süzgeç yapılarının kavramsal radyo, şifreli haberleşme, geniş kapsamlı 

konumlandırma sistemleri gibi uygulama alanlarında kullanılabileceği 

öngörülmüştür. 



xxvi 

 

Tasarım kütüphanesi tarafından önerilen tüm testler ve benzetim setleri serim 

sırasında ve serim sonrası benzetimlerde uygulanmıştır. Önerilen yapıların analog 

tasarımcılar için alternatif oluşturacağı düşünülmektedir. 
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1. INTRODUCTION 

Operational amplifiers have been used as fundamental circuit components in analog 

circuit design since the emergence of integrated circuits. After the emergence of new 

analog circuit applications, the voltage-mode operational amplifiers performance 

characteristics are not enough for analog signal processing requirements. The 

compensation capacitance which provides the stability of the OP-AMP reduces the 

bandwidth of the operational amplifier due to expected excessive voltage gain from 

the OP-AMP [1, 2, 3]. 

Those voltage mode circuits that have high-impedance nodes draw large time 

constants of the circuit help to reduce the operation frequency with parasitic 

capacitance. Current-mode circuits that have low impedance nodes do not have these 

type of problems. As a result, the suitability of current-mode applications operating 

on wide-band is higher than voltage mode counterpart. 

Nowadays, power consumption is the most important design criteria for analog 

applications. Especially the portable cell phone, laptop, mp3 player production that 

operates with low power is necessary for long time using. In particular, the low 

supply voltage of digital applications significantly reduces the power consumption. 

In the case of the design of analog and digital structures in the same chip, digital 

blocks and analog blocks are obliged to align. Current mode approach is the biggest 

advantages of easier design of circuits in accordance with the low supply voltages 

[4]. 

1.1 Purpose of Thesis 

Nowadays, although digital circuits and systems became prominent in electronic 

applications, analog circuit structures and systems are continuing to be important. 

The main reason is the signals in the nature are continuous-time analog signals. 

Human senses and the brain process only continuous-time analog signals. Thus, 

analog structures are inevitable considering the human factor. In addition, some of 
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the signals sometimes become difficult and expensive to process digitally and analog 

electronic circuits and systems are required anyway. For example, a speaker can be 

considered. Such a practice, the function realized with digital building block is very 

difficult and expensive, or even impossible to implement digitally. That in many 

applications, such as the need for analog circuit structures today's modern electronic 

devices are produced as a combination of analog and digital circuits. For the 

realization of such a mixed system which successfully adapts to high-performance 

digital blocks, analog circuit structures must be designed. 

In this work, different type of current mode filter structure and its CMOS realization 

for narrow band pass tuned amplifiers such as video signal processing, TV receivers, 

cognitive communication, encrypted communication and wireless communications 

stages is proposed. 

1.2 Literature Review 

CCI (first generation current conveyor) is proposed by Sedra A. and Smith K. C. in 

1968 is known as the beginning of the current mode application [5]. After a short 

time CCII (second generation current conveyor) is proposed by Sedra A. and Smith 

K. C. in 1970 [6]. Today, when it is said current conveyor second generation current 

conveyor is understood. The third generation current conveyor is presented by Fabre 

A. in 1995 [7]. 

CDBA (current differencing buffered amplifier) is proposed by Acar C. and Ozoğuz 

S. as a current mode building block in 1999 [8]. CDTA (current differencing 

transconductance amplifier) is submitted by Biolek D. in 2003 [9]. ZC-CDBA (Z-

copy current differencing buffered amplifier) and ZC-CDTA (Z-copy current 

differencing transconductance amplifier) is also proposed by Biolek D in 2008 [10]. 

The ZC-CDBA, ZC-ZDTA and ZC-CG-CDTA increase the universality of the 

CDBA and CDTA.  
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2. THE BUILDING BLOCKS 

The basic building blocks CDU (Current Differencing Unit), CCIII (Third 

Generation Current Conveyor), OTA (Operational Transconductance Amplifier), 

Voltage Buffer, ECCII (Electronically Controllable Second Generation Current 

Conveyor) simulation results, CMOS realization and performance parameters will be 

given in this chapter. The performances of these building blocks are investigated in 

CADENCE 0.18µm AMS parameters. 

2.1 CDU(Current Differencing Unit) 

In current mode analog design, the unity gain current differencing block is widely 

used at the input stage. For example, Current Differencing Buffered Amplifier, 

Current Differencing Transconductance Amplifier, Current Operational Amplifier, 

etc. input stage consist of unity gain current differencing unit. The current 

differencing unit has ideally two zero impedance input impedances and one infinite 

output impedance.  

The current differencing unit can be realized with two positive second generation 

current conveyors as seen Figure 2.1. But, this structure contains lots of transistors 

and the parasitics narrow the available frequency region. Two alternative current 

differencing structures are presented in this chapter. Also, another low impedance 

current differencing unit realized with positive feedback is presented in the Chapter 

3. 

 

Figure 2.1 : Current differencing unit realized with CCII+ [3]. 
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2.1.1 The First Current Differencing Unit Structure 
The first current differencing unit CMOS structure schematic view is shown in 

Figure 2.2. This structure also is known as “Differential Current Controlled Current 

Source” (DCCCS). In Table 2.1, the performance parameters of the first current 

differencing unit CMOS structure are seen. The size of the transistors is shown in 

Table 2.2. The bias currents Ib1 and Ib2 are selected 100µA. The bias voltages are 

selected as Vb1=-600mV and Vb2=600mV.  

 

Figure 2.2 : The first current differencing unit CMOS structure [11]. 

The defining equation of the current differencing unit is given in Equation 2.1. 

z p nI I I       (2.1) 

The change of the output terminal current according to P terminal input current and 

N terminal input current are given in Figure 2.3 and Figure 2.4. The Z terminal 

current dynamic range was found between -100µA, 100µA. The frequency responses 

of the input impedances at P and N terminals and the output impedance at Z terminal 

are given in Figure 2.5, 2.6, 2.7, respectively. 
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The input impedances for proposed current differencing unit at P and N input 

terminal were found 600.248Ω, 233.798Ω, respectively. The output impedance at Z 

terminal was found 129.529kΩ. The bandwidth ratio of the Z terminal current 

respect to P and N terminal currents are given in Figure 2.8, 2.9, respectively. 

 

Table 2.1 : Simulation results of the first current differencing unit structure. 

Power Supply ±0.9V 
Z terminal current dynamic range -100µA ≤ Iz ≤ 100µA 

Iz/In (-3dB) bandwidth 540.335MHz 
Iz/Ip (-3dB) bandwidth 692.879MHz 

P terminal input impedance 600.248Ω 
N terminal input impedance 233.798Ω 
Z terminal output impedance 129.529kΩ 

Current tracking error (%) 1,04 
Power Consumption 256.45µW 

 

Table 2.2 : Transistors size of the first current differencing unit structure. 

Transistors (W/L) 
M1,M2 72µ/0.36µ 
M3,M4 144µ/0.36µ 

M5,M6,M7,M8,M9,M10,M11,M12 72µ/0.36µ 

 

 

Figure 2.3 : The output terminal current according to the P terminal input current. 
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Figure 2.4 : The output terminal current according to the N terminal input current. 

 

Figure 2.5 : The frequency response of the input impedance at P. 

 

 

Figure 2.6 : The frequency response of the input impedance at N. 
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Figure 2.7 : The frequency response of the output impedance at Z. 

 

 

Figure 2.8 : The bandwidth ratio of the Z terminal current respect to P. 

 

 

Figure 2.9 : The bandwidth ratio of the Z terminal current respect to N. 
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2.2 The Second Current Differencing Unit Structure 
The current differencing unit CMOS realization used in ZC-CDTA, ZC-CDBA and 

ZC-CG-CDBA is given in Figure 2.10. In Table 2.3 the performance parameters of 

the circuit is seen. The size of transistors is shown in Table 2.4. The bias currents of 

Ib1 and Ib2 are 100µA. The defining equation of the CMOS structure is given in 

Equation 2.2. 

z p nI I I       (2.2) 

 

Figure 2.10 : The second current differencing unit CMOS structure [12]. 

Table 2.3 : Simulation results of the second current differencing unit structure. 

Power Supply ±0.9V 
Z terminal current dynamic range -28µA ≤ Iz ≤ 28µA 

Iz/In (-3dB) bandwidth 354,774MHz 
Iz/Ip (-3dB) bandwidth 417.224MHz 

P terminal input impedance 6.206kΩ 
N terminal input impedance 4.273kΩ 
Z terminal output impedance 295.682kΩ 

Current tracking error (%) 1,86 
Power Consumption 189.35µW 
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Table 2.4 : Transistors size of the second current differencing unit structure. 

Transistors (W/L) 
M1,M2,M5,M7 0.36µ/0.36µ 

M3,M4,M6 1.4µ/0.36µ 
M8,M15,M16 3.5µ/0.36µ 

M9,M10,M11,M12,M13,M14 14µ/0.36µ 

 

The change of output terminal current according to the P terminal input current and 

N terminal input current are given in Figure 2.11 and Figure 2.12. The Z terminal 

current dynamic range was found between -28µA, 28µA. The frequency responses of 

the input impedances at P and N terminals and the output impedances at Z terminal 

are given in Figure 2.13, 2.14, 2.15, respectively. 

The input resistances for proposed current differencing unit at P and N input terminal 

were found 6.206kΩ, 4.273kΩ, respectively. The output resistance at Z terminal was 

found 295.682kΩ. The bandwidth of the ratio Z terminal current respect to P and N 

terminal current are given in Figure 2.16, 2.17, respectively. 

 

 

Figure 2.11 : The output terminal current according to the P terminal input current. 
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Figure 2.12 : The output terminal current according to N terminal input current. 

 

Figure 2.13 : The frequency response of the input impedance at P. 

 

 

Figure 2.14 : The frequency response of the input impedance at N. 
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Figure 2.15 : The frequency response of the output impedance at Z. 

 

Figure 2.16 : The bandwidth of the ratio Z terminal current respect to P. 

 

 

Figure 2.17 : The bandwidth of the ratio Z terminal current respect to N. 
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2.3 CCIII(Third Generation Current Conveyor) 

An ideal third generation current conveyor is shown in Figure 2.18. The defining 

equation matrix is given in Equation 2.3. The basic formulas of the CCIII are given 

in Equation 2.4, 2.5, 2.6, respectively. 

Only two classes of output currents can be found; some flows directly to ground 

through two port elements and the others flow through floating branches. To be 

usable, these output signals have to be taken out of the circuit, so they must be 

available at high impedance to drive. It is not very easy to copy the current flowing 

through floating branches. For these purpose the third generation current conveyor is 

used to copying the z terminal current. 

 

Figure 2.18 : CCIII (The third generation current conveyor) [7]. 
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X YV V         (2.4) 

 
Y XI I            (2.5) 

 
Z Z XI I I                 (2.6) 

 

The third generation current conveyor CMOS structure is shown in Figure 2.19. The 

simulation results of the CCIII and the transistors size are given in Table 2.5 and 2.6, 

respectively. 
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Figure 2.19 : The third generation current conveyor CMOS structure [13]. 

The change of Z+, Z- terminal currents according to the X terminal current is given 

in Figure 2.20 and Figure 2.21, respectively. Z+,Z- terminal currents dynamic range 

are found between -97µA and 97µA. The change of X terminal voltage respect to the 

Y terminal voltage is shown in Figure 2.22. X terminal voltage dynamic range is 

found between -230mV and 230mV. The X terminal input impedance, the Y terminal 

input impedance and Z output terminal impedances are given in Figure 2.23, 2.24, 

2.25, 2.26, respectively. 

The bandwidth of the Vx/Vy, the X terminal input impedance, Y terminal input 

impedance, the Z+ output terminal impedance and the Z- output terminal impedance 

of the third generation current conveyor were found 648.816MHz, 131.772Ω, 

539.613Ω, 62.285kΩ, 82.339kΩ, respectively. The X and Y terminal input 

impedance is appropriate for current copying. The bandwidth of the ratio Z+, Z- 

terminal current respect to X terminal current are given in Figure 2.27, 2.28, 

respectively. 
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Table 2.5 : Third generation current conveyor simulation results. 

Power Supply ±0.9V 
Z+,Z- terminal currents dynamic range -97µA ≤ Iz ≤ 97µA 

Vx/Vy (-3dB) Bandwidth 648.816MHz 
X terminal voltage dynamic range -230mV ≤ Iz ≤ 230mV 

Y terminal input impedance 539.613Ω 
X terminal input impedance 131.772Ω 

Z- terminal output impedance 82.339kΩ 
Z+ terminal output impedance 62.285kΩ 

Current tracking error (%) 0,84 
Power Consumption 240.56µW 

Z+ terminal bandwidth 65.934MHz 
Z- terminal bandwidth 41.283MHz 

 

Table 2.6 : Third generation current conveyor transistors sizes. 

Transistors (W/L) 
T1,T2,T5,T6,T9,T10 36µ/0.36µ 

T11,T12,T13,T14 36µ/0.36µ 
T3,T4,T7,T8,T15,T16 12µ/0.36µ 

T17,T18,T19,T20 12µ/0.36µ 

 

 

Figure 2.20 : The change of Z+ terminal current according to X terminal current. 
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Figure 2.21 : The change of Z- terminal current according to X terminal current. 

 

 

Figure 2.22 : The change of X terminal voltage respect to the Y terminal voltage. 

 

Figure 2.23 : The frequency response of the input impedance at X. 

 



16 

 

 

Figure 2.24 : The frequency response of the input impedance at Y. 

 

 

Figure 2.25 : The frequency response of the output impedance at Z+. 

 

Figure 2.26 : The bandwidth of the ratio Z terminal current respect to N. 
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Figure 2.27 : The bandwidth of the ratio Z+ terminal current respect to X terminal 
current. 

 

Figure 2.28 : The bandwidth of the ratio Z- terminal current respect to X terminal 
current. 

2.3 OTA(Operational Transconductance Amplifier) 

The input of an operational transconductance amplifier is voltage and the output is 

current. Hence the input impedance must be high (ideally infinite) and the output 

impedance must be low (ideally zero). Floating current source proposed by Arbel and 

Goldminz is used as a dual output operation transconductance amplifier in this work 

[14].  

The CMOS structure of the floating current source is shown in Figure 2.29. The 

simulation results of the floating current source and the transistors size are given in 

Table 2.7 and 2.8, respectively. The bias currents Ib1 and Ib2 are selected 100µA. 
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Figure 2.29 : The floating current source CMOS structure [14]. 

The transconductance simulations, gm value and the output terminal impedances are 

given in Figure 2.30, 2.31, 2.32, 2.33, respectively. The defining equation of the 

CMOS structure is given in Equation 2.7. 

)( npmZ VVgI  , )( npmZ VVgI    (2.7) 

Table 2.7 : Floating current source simulation results. 

Power Supply ±0.9V 
gm 51.773µA/V 

The input voltage dynamic range ±210mV 
Z- terminal output impedance 256.480kΩ 
Z+ terminal output impedance 256.480kΩ 

gm bandwidth 9.917GHz 

Table 2.8 : Transistors sizes of the floating current source. 

Transistors (W/L) 
M1,M2,M3,M4 16µ/0.36µ 

 

 

Figure 2.30 : The transconductance (gm) value. 
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Figure 2.31 : The transconductance (gm) bandwidth. 

 

 

Figure 2.32 : The input voltage dynamic range. 

 

Figure 2.33 : The output impedances. 
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2.4 Voltage Buffer 

The classical voltage buffer has one high impedance input and one low impedance 

output. The CMOS structure of the voltage buffer is shown in Figure 2.34. The 

simulation results of the buffer and the transistors size are given in Table 2.9 and 

2.10, respectively. The bias current Ib is selected 50µA. 

 

Figure 2.34 : The voltage buffer CMOS structure [15]. 

It is shown the DC transfer characteristic of buffer in Figure 2.35. The Z terminal 

voltage dynamic range was found between -240mV, 240mV. The AC transfer 

characteristic of buffer is given in Figure 2.36. The frequency response of the output 

terminal is given in Figure 2.37. The Z terminal resistance of the voltage buffer is 

found 5.4582kΩ. The defining equation of the CMOS structure is given in Equation 

2.8. 

Vw = Vz     (2.8) 

Table 2.9 : The voltage buffer simulation results. 

Power Supply ±0.9V 
W terminal voltage dynamic range -180mV ≤ Iz ≤ 180mV 

Vw/Vz (-3dB) bandwidth 382.830MHz 
Vw/Vz phase margin 117.731o 
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Voltage tracking error (%) 1,48 

Power Consumption 69.46µW 
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Table 2.10 : Transistors sizes of the voltage buffer. 

Transistors (W/L) 
T1,T2,T3,T4,T6,T7 24µ/0.36µ 

T8 72µ/0.36µ 

 

Figure 2.35 : The DC transfer characteristic of voltage buffer. 

 

Figure 2.36 : The AC transfer characteristic of voltage buffer. 

 

Figure 2.37 : The frequency response of the output terminal. 



22 

 

2.5 ECCII (Electronically Controllable Second Generation Current Conveyor) 

The electronically controllable second generation current conveyor has one high 

impedance input terminal, one low impedance input terminal and one high 

impedance output terminal. The CMOS structure of the electronically controllable 

second generation current conveyor is shown in Figure 2.38. The bias current IC is 

60µA. The bias current of the IB is 30µA. 

 

Figure 2.38 : The electronically controllable second generation current conveyor 
CMOS structure [16]. 

The current transfer ratio is controlled by the ratio of IB / IA bias currents. The 

simulation results of the ECCII and the transistors size of the circuit are given in 

Table 2.11 and 2.12, respectively. 

The change of Z terminal current according to the X terminal current is given in 

Figure 2.39. Z terminal current dynamic range are found between -42µA and 42µA. 
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Y terminal input impedance and Z output terminals impedance are given in Figure 

2.41, 2.42, 2.43, respectively. The bandwidth of the Vx/Vy, the X terminal input 

impedance, the bandwidth of the Iz/Ix and the Z output terminal impedance of the 

third generation current conveyor were found1.3GHz, 7.691kΩ, 114.484MHz, 

45.049kΩ, respectively. The X and Y terminal input impedance is appropriate for 

current copying. The bandwidth of the ratio Z terminal current respect to X terminal 

current is given in Figure 2.44. 

The defining equations of the CMOS structure ECCII are given in Equation 2.9, 

2.10, respectively. 

Vx = Vy     (2.9) 

Iz = αIx              (2.10) 

 

Table 2.11 : The electronically controllable second generation current conveyor 
simulation results. 

Power supply ±0.9V 
Iz/Ix (-3dB) Bandwidth 114.484MHz 

Vx/Vy (-3dB) Bandwidth 1.3GHz 
X terminal input impedance 7.691kΩ 

X terminal dynamic voltage range -214mV ≤ Iz ≤ 214mV 
Z terminal output impedance 45.049kΩ 

Z terminal current dynamic range -42µA ≤ Iz ≤ 42µA 
Current tracking error (%) 1.62 

Power dissipation 346.76µW 

 

Table 2.12 : Transistors sizes of the electronically controllable second generation 
current conveyor. 

Transistors (W/L) 
M1, M2, M3, M4, M5, M6, 
M1’, M2’, M3’, M4’, M5’, 
M6’, M7, M8, M9, M10, 
M11, M12, M13, M14, 
M15, M16, M17, M18, 

M19, M20 

16µ/0.36µ 
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Figure 2.39 : The change of Z terminal current according to X terminal current. 

 

Figure 2.40 : The change of X terminal voltage respect to the Y terminal voltage. 

 

 

Figure 2.41 : The frequency response of the Vx/Vy. 
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Figure 2.42 : The X terminal input impedance. 

 

Figure 2.43 : The bandwidth of the Iz/Ix. 

 

 

Figure 2.44 : The Z output terminal impedance. 

 



26 

 

 



27 

 

 

3. POSITIVE FEEDBACK 

The engineer solves problems with the most accurate approach. In electronic circuits, 

the voltage source input impedance is ideally zero and the current source input 

impedance is ideally infinite. In reality, it is impossible to realize infinite output 

impedance for current sources.  

Designers who use building blocks in order to obtain impedance values close to 

ideal, benefit from negative or positive feedback. In this work, positive feedback is 

used to reduce the input impedance of the current differencing unit. Also, 

comparison of negative and positive feedback is given. 

3.1 General Information and Purpose 

Figure 3.1 shows a system without feedback. The impedance seen from the input of a 

system is the ratio of the input voltage to the current which flows inside of the 

system. The impedance seen from the input for Figure 3.1 is given in Equation 3.1. 

 

Figure 3.1 : A system without feedback. 

௏
௜
= ܼ௜௡     (3.1) 

Figure 3.2 shows the positive feedback system. The impedance seen from the input 

for Figure 3.2 is shown in Equation 3.2. 

 

Figure 3.2 : The positive feedback system. 
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௏
௜
= ቄ1 − ௓೛

௓೔೙
ቅ  ௜௡    (3.2)ݖ

The impedance value is reduced by the ratio of p inZ Z . The ratio of p inZ Z must 

select lower than one for positive impedance values. Negative impedance can also be 

obtained by using positive feedback.  

The negative feedback system is shown in Figure 3.3. The impedance seen from the 

Figure 3.3 negative feedback system input is shown in Equation 3.3. 

 

Figure 3.3 : The negative feedback system. 

௏
௜
= ቄ1 + ௓೙

௓೔೙
ቅ  ௜௡    (3.3)ݖ

It is obviously seen from Equation 3.2 and 3.3 the positive feedback system 

decreases the input impedance more than the negative feedback system. 

The CMOS structure of the low impedance current differencing unit developed by 

positive feedback system is given in Figure 3.4. In Table 3.1 the performance 

parameters of the circuit is seen. The size of transistors is shown in Table 3.2. 

The change of output terminal current according to the P terminal input current and 

N terminal input current are given in Figure 3.5 and Figure 3.6. The Z terminal 

current dynamic range was found between -30µA, 30µA. The frequency responses of 

the input impedances at P and N terminals and the output impedances at Z terminal 

are given in Figure 3.7, 3.8, 3.9, respectively. The input resistances for proposed 

current differencing unit at N and P input terminal were found 410.798Ω, 194.013Ω, 

respectively. The output resistance at Z terminal was found 372.327kΩ. The 

bandwidth of the ratio Z terminal current respect to P and N terminal current are 

given in Figure 3.10, 3.11, respectively. 
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Figure 3.4 : The current differencing unit with positive feedback system [17]. 

The input resistances of the current differencing unit with positive feedback system 

is given in Equation 3.4, 3.5 [17]. The biasing voltages are selectected Vb1=300mV, 

Vb2=-400mV, Vb3=100mV, Vb4=-500mV. 
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The defining equation of the CMOS structure is given in Equation 3.6. 

z p nI I I       (3.6) 

 

M15

M8

M4

Vb3

-Vss

M7

M5

0

-Vss

M14
M9

PN

M13

M2

Vb4

M11

M16

Vb2

+Vdd

M10

Vb3

M12

M3

M6

Z

Vb1

-Vss

M1

Vb2



30 

 

Table 3.1 : Simulation results of the current differencing unit structure. 

Power Supply ±0.9V 
Z terminal current dynamic range -30µA ≤ Iz ≤ 30µA 

Iz/In (-3dB) bandwidth 177.207MHz 
Iz/Ip (-3dB) bandwidth 234.14MHz 

P terminal input impedance 194.013Ω 
P terminal phase margin 47.764o 

N terminal input impedance 410.798Ω 
P terminal phase margin 57.50o 

Z terminal output impedance 372.327kΩ 
Current tracking error(%) 1,04 

Power Consumption 276.12µW 

 

Table 3.2 : Transistors size of the current differencing unit structure. 

Transistors (W/L) 
M1,M2 120µ/0.36µ 

M3,M4,M5,M6,M7,M8 12µ/0.36µ 
M9,M10 120µ/0.36µ 

M11,M12,M13,M14,M15,M16 12µ/0.36µ 

 

 

Figure 3.5 : The output terminal current according to the P terminal input current. 
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Figure 3.6 : The output terminal current according to the P terminal input current. 

 

 

Figure 3.7 : The frequency responses of the input impedance at N. 

 

 

Figure 3.8 : The frequency responses of the input impedance at P. 
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Figure 3.9 : The frequency responses of the input impedance at Z. 

 

 

Figure 3.10 : The bandwidth of the ratio Z terminal current respect to P. 

 

 

Figure 3.11 : The bandwidth of the ratio Z terminal current respect to N. 
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The comparison of three current differencing unit structures is given in Table 3.3. 

The input resistance of the The input resistances of the positive feedback system is 

lower than the others. 

Table 3.3 : Simulation results of the three current differencing unit structure. 

 The First Current 
Differencing Unit 

The Second 
Current 

Differencing Unit 

The current differencing 
unit with positive 
feedback system. 

Power Supply ±0.9V ±0.9V ±0.9V 
Z terminal current 

dynamic range 
-100µA ≤ Iz ≤ 

100µA 
-28µA ≤ Iz ≤ 28µA -30µA ≤ Iz ≤ 30µA 

Iz/In (-3dB) 
bandwidth 

540.335MHz 354,774MHz 177.207MHz 

Iz/Ip (-3dB) 
bandwidth 

692.879MHz 417.224MHz 234.14MHz 

P terminal input 
impedance 

600.248Ω 6.206kΩ 194.013Ω 

N terminal input 
impedance 

233.798Ω 4.273kΩ 410.798Ω 

Z terminal output 
impedance 

129.529kΩ 295.682kΩ 372.327kΩ 

Current tracking 
error (%) 

1,04 1,86 1,04 

Power 
Consumption 

256.45µW 189.35µW 276.12µW 
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4. NEW ACTIVE BLOCKS 

4.1 ZC-CDTA 

ZC-CDTA(Z Copy Current Differencing Transconductance Amplifier) is a new 

current mode active element, introduced recently. Z-Copy Current Differencing 

Transconductance Amplifier is developed from CDTA. CDTA (Current Differencing 

Transconductance Amplifier) is a five-terminal current-mode active element 

proposed by D. Biolek in 2003. CDTA consists of two input terminal, one 

intermediate terminal and two output terminals. Inputs are differential and they take 

the difference between the currents applied to the input. This current difference is 

transferred to the intermediate terminal and it converted to the voltage with the aid of 

external resistance. This voltage multiplied by transconductance parameter of the 

operational transconductance amplifier converted to the balanced current at output of 

the Current Differencing Transconductance Amplifier. The symbol and the 

schematic view of the CDTA is given in the Figure 4.1 and Figure 4.2, respectively. 

 

Figure 4.1 : The schematic view of the CDTA [9]. 

 

Figure 4.2 : The block diagram of the CDTA [9]. 
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Furthermore, the Z Copy Current Differencing Transconductance Amplifier has 

additional Z terminal output Z copy called. The ZC-CDTA increases the universality 

of CDTA. Third generation current conveyor (CCIII) is used to copy the z terminal 

current instead of a classical current mirror. The current sensing is perfectly done by 

the aid of CCIII. The symbol and the schematic view of the ZC-CDTA are given in 

the Figure 4.3 and Figure 4.4, respectively. The proposed circuit structure for the ZC-

CDTA is given in Figure 4.5. ZC-CDTA defining equation matrix and its basic 

operations formulas are given in Equation 4.1, 4.2, 4.3, 4.4. 

 

Figure 4.3 : The schematic view of the ZC-CDTA. 

 

Figure 4.4 : The block diagram of the ZC-CDTA [10]. 

 

Figure 4.5 : The proposed circuit structure for the ZC-CDTA. 
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Vp= Vn= 0           (4.2) 
 

Iz= Izc= Ip-In                  (4.3) 
 

Ix+ = gmVz , Ix-= -gmVz           (4.4) 
The defining equation of the ZC-CDTA in Figure 4.4 becomes in Equation 4.5 by 

considering the deviation of the voltage and current gains from their ideal values. 
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αp and αn are the current gain. αp = 1- εp and αn = 1- εn. Here εp and εn are the error of 

current tracking, their absolute value are very close to zero. 

4.2 ZC-CDBA 

ZC-CDBA (Z Copy Current Differencing Buffered Amplifier) introduced recently as 

a new current mode signal processing active element. CDBA forms the foundation of 

Z-Copy Current Differencing Buffered Amplifier. CDBA (Current Differencing 

Buffered Amplifier) is a four-terminal current-mode active element proposed by C. 

Acar in 1999. CDBA has two low impedance input terminal, one high impedance 

output terminal and one low impedance intermediate terminal. Here, a current 

through the z-terminal follows the difference of the currents through the p-terminal 

and n-terminal. Input terminals p and n are internally grounded. 

The active element Current Differencing Buffered Amplifier circuit symbol is shown 

in Figure 4.6, where p and n are input terminals and w and z are output terminals. 

This element is equivalent to the circuit in Figure 4.7, which involves dependent 

current and voltage sources. 



38 

 

 

Figure 4.6 : The schematic view of the CDBA [8]. 

 

Figure 4.7 : The block diagram of the CDBA [8]. 

Z Copy Current Differencing Buffered Amplifier has additional Z terminal output. 

The ZC-CDTA increases the universality of CDBA. Third generation current 

conveyor (CCIII) is used to copy the z terminal. Current detection is precisely done 

with the help of CCIII. The symbol and the schematic view of the ZC-CDBA is 

given in the Figure 4.8 and Figure 4.9, respectively. The designed circuit structure 

for the ZC-CDBA circuit is given in Figure 4.10. ZC-CDBA defining equation 

matrix and its basic operations formulas are given in Equation 4.6, 4.7, 4.8, 4.9. 

 

Figure 4.8 : The schematic view of the ZC-CDBA. 
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Figure 4.9 : The block diagram of the ZC-CDBA. 

 

Figure 4.10 : The designed circuit structure for the ZC-CDBA. 
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z zc p ni i i i        (4.7) 

w zV V             (4.8) 

௣ܸ = ௡ܸ = 0              (4.9) 
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4.3 ZC-CG-CDBA 

ZC-CG-CDBA (Z Copy Controlled Gain Current Differencing Buffered Amplifier) 

is a new current mode active element, introduced recently. Z-Copy Controlled Gain 

Current Differencing Buffered Amplifier is developed from Current Differencing 

Buffered Amplifier.  

The active element Z Copy Controlled Gain Current Differencing Buffered 

Amplifier circuit symbol is shown in Figure 4.9, where p and n are input terminals 

and w and z are output terminals. This element is equivalent to the circuit in terms of 

dependent current and voltage sources in Figure 4.10. In Figure 4.13, the designed 

circuit for ZC-CG-CDBA is given. The z terminal output current gain changeable by 

the help of electronically controllable second generation current conveyor. 

 

Figure 4.11 : The schematic view of the ZC-CG-CDBA. 

 

Figure 4.12 : The block diagram of the ZC-CG-CDBA. 

The circuit description matrix of the Z Copy Controlled Gain Current Differencing 

Buffered Amplifier and the operation are given in Equation 4.10, 4.11, 4.12, 4.13, 
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respectively. The different point from the Z Copy Current Differencing Buffered 

Amplifier is the current gain seen in Equation 4.10 and 4.11. 

 

Figure 4.13 : The designed circuit for the ZC-CG-CDBA. 
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    (4.10) 

݅௭ = ݅௭௖ = ௣݅)ߙ − ݅௡)     (4.11) 

w zV V      (4.12) 

௣ܸ = ௡ܸ = 0       (4.13) 
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5. LAYOUT AND POST-LAYOUT SIMULATIONS 

The layout for the Z copied current differencing buffered amplifier and Z copied 

current differencing transconductance amplifier are performed with the Cadence 

package. 

5.1 Layout of the ZC-CDBA 

In this chapter, the CMOS structure of the Z copied current differencing buffered 

amplifier, layout of the ZC-CDBA and the post-layout simulations of the ZC-CDBA 

will be given. 

The Z copy for the ZC-CDTA, ZC-CDBA and ZC-CG-CDBA are realized with 

CCIII proposed by Fabre A. The CMOS inner structure of the ZC-CDBA in this 

chapter is realized without the third generation current conveyor. 

The classical current mirror is used for realization of the Z copy. The main reason of 

the using classical current mirror is the design of the low power consumption CMOS 

inner structure for the ZC-CDTA, ZC-CDBA and ZC-CG-CDBA. The main 

disadvantage of using classical current mirror for Z copy terminal is the current 

tracking problem for the high impedance load. The current tracking is negligible for 

low impedance load. The additional disadvantage of the third generation current 

conveyor is the increasing of the complexity of the device. The complexity of the 

device decreases the operating frequency level of the circuit. 

The CMOS structure for the Z copied current differencing buffered amplifier is given 

in Figure 5.1. The layout of the ZC-CDBA is given in Figure 5.2. The simulation 

results of the ZC-CDBA and the transistor sizes of the ZC-CDBA are given in Table 

5.1 and 5.2, respectively. The biasing voltages are selectected as Vb1=300mV, Vb2=-

400mV, Vb3=100mV, Vb4=-500mV. The bias current Ib is 50µA. 
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Figure 5.1 : ZC-CDBA CMOS Realization. 

M12

Vb3

Vb2

Z

M3

M17
M22

M5

Vb1

M27

M26

Vb4
M28

M24

0

M10

-Vss

M16

M13

Vb3

Ib

M1
M15

-Vss

M9

M20

P

M14

M2

M25 W
N

M21
M23

-Vss

M18

M8

M4

Vb2

M6

M11

ZC

+Vdd

M7

M19



45 

 

 

Figure 5.2 : Layout of the ZC-CDBA. 
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Table 5.1 : The simulation results of the ZC-CDBA. 

Power Supply ±0.9V 
Z terminal current dynamic range -50µA ≤ Iz ≤ 50µA 
W terminal voltage dynamic range -215mV ≤ Vw ≤ 215mV 

Iz/In (-3dB) bandwidth 299.681MHz 
Iz/Ip (-3dB) bandwidth 347.789MHz 

P terminal input impedance 530.762Ω 
N terminal input impedance 1.224kΩ 

W terminal output impedance 303.240Ω 
Z terminal output impedance 1.673MΩ 

Vw/Vz (-3dB) bandwidth 393.220MHz 
Power Consumption 343.46µW 

 
 

Table 5.2 : The transistor sizes of the ZC-CDBA. 

Transistors (W/L) 
M1 12µ/0.36µ x 1 
M2 12µ/0.36µ x 10 

M3,M4,M5 6µ/0.36µ x 2 
M6,M7 12µ/0.36µ x 1 

M8 6µ/0.36µ x 2 
M9 12µ/0.36µ x 1 
M10 12µ/0.36µ x 10 

M11,M12,M13 6µ/0.36µ x 2 
M14,M15 12µ/0.36µ x 1 
M16,M17 6µ/0.36µ x 2 
M18,M19 12µ/0.36µ x 1 

M20, M21,M22,M23 6µ/0.36µ x 2 
M24,M25 12µ/0.36µ x 1 

M26 12µ/0.36µ x 5 
M27,M28 12µ/0.36µ x 1 

 

The Z output terminal current according to the N input terminal current, the Z output 

terminal current according to the P input terminal current, the ZC output terminal 

current according to the Z terminal output current, the W output terminal voltage 

according to the Z output terminal voltage, Iz/In bandwidth, Iz/Ip bandwidth, Vw/Vz 

bandwidth, the N input terminal impedance, the P input terminal impedance, the W 

output terminal impedance, the Z output terminal impedance are given in Figure 5.3, 

5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, respectively. 



47 

 

The Z copy output terminal current is perfectly follow the Z output terminal current 

with the aid of classical current mirror. But for high impedance load this tracking is 

destroyed. 

 

 

Figure 5.3 : The Z output terminal current according to N input terminal current. 

 

Figure 5.4 : The Z output terminal current according to P input terminal current. 

 

Figure 5.5 : The ZC output terminal current according to Z terminal output current. 
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Figure 5.6 : The W output terminal voltage according to Z output terminal voltage. 

 

 

Figure 5.7 : Iz/In bandwidth. 

 

 

Figure 5.8 : Iz/Ip bandwidth. 
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Figure 5.9 : Vw/Vz bandwidth. 

 

 

Figure 5.10 : The N input terminal impedance. 

 

 

Figure 5.11 : The P input terminal impedance. 
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Figure 5.12 : The W output terminal impedance. 

 

 

Figure 5.13 : The Z output terminal impedance. 

Iz/In bandwidth is found 299,681MHz from the Figure 5.7. Iz/Ip bandwidth is 

observed 347.789MHz from the Figure 5.8. Vw/Vz bandwidth also is found as 

393,220MHz from Figure 5.9. In conclusion, all the simulations are compatible with 

the post-layout simulations.  

5.2 Layout of the ZC-CDTA 

In this chapter of the thesis the layout of the Z copied current differencing 

transconductance amplifier is given. The CMOS realization of the ZC-CDTA is 

performed with the CCIII. 

The firs current differencing unit structure given in Figure 2.2, the third generation 

current conveyor and the Arbel-Goldmiz floating current source structure are used in 
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the CMOS realization. The layout also performed according to the CMOS structure. 

The layout of the ZC-CDTA is given in the Figure 5.14. 

 

Figure 5.14 : Layout of the ZC-CDTA. 
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6. APPLICATION CIRCUITS 

6.1 ZC-CDTA and Its Biquad Filter Application 

The biquad filter is a very important filter structure for analog signal processing. 

There are many applications such as processing, TV receivers and wireless 

communication stages require narrow band pass tuned amplifiers such as video 

signal. By using the filter topology shown in Figure 6.1, a fourth order band pass 

filter was implemented. The proposed universal filter, employing Z copy current 

differencing transconductance amplifiers, is shown in Figure 6.2. Each of the 

proposed circuits is composed of 2 ZC-CDTAs. The configuration uses only two 

capacitors, without any resistors. Thanks to Z Copy Current Differencing 

Transconductance Amplifier an high pass section is obtained for the CDTA biquad 

application in Figure 6.1. The capacitors C1 and C2 are 1.8pF. The capacitors C3 and 

C4 are 1.8pF. 

 

Figure 6.1 : Proposed biquad filters employing CDTAs [22]. 

 

Figure 6.2 : Filter structure based on ZC-CDTA [18]. 
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Figure 6.3 : The biquad filter structure [18]. 

The high-pass filter transfer function, band-pass filter transfer function, low-pass 

filter transfer function, the pole angular frequency 0  and the quality factor Q  are 

given in Equation6.1, 6.2, 6.3, 6.4, 6.5, respectively [22]. 

The second order filter characteristics with post-layout simulations, the fourth order 

filter characteristics with ideal simulations, the fourth order filter characteristics with 

post-layout simulations and the total harmonic distortion of the ZC-CDTA fourth 

order filter structure according to the input signal level at 10MHz are given in Figure 

6.4, 6.5, 6.6, 6.7, respectively. 
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Figure 6.4 : The second order filter characteristics with post-layout simulations. 

 

 

Figure 6.5 : The fourth order filter characteristics with ideal simulations. 

 

 

Figure 6.6 : The fourth order filter characteristics with post-layout simulations. 
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Figure 6.7 : The (THD) total harmonic distortion of ZC-CDTA fourth order filter 
structure . 

6.2 ZC-CDBA and Its KHN Filter Application 

KHN filter structure is one of the widely used filter structure in analog signal 

processing. KHN filter is proposed by Kerwin, Huelsman, Newcomb using state-

variable synthesis in 1967. It is also produced commercially. The most important 

characteristic of the KHN filter transfer function is the adequacy for different type of 

filter implementation (band pass, high pass, low pass) at the same time. KHN filter 

another important property is the conformity for low sensitivity realization. 

The filter structure is shown in Figure 6.8. The structure of the KHN filter has two 

band pass filter sections, two high pass filter sections and one low pass filter section. 

One of the high pass filter section is high impedance. The capacitors C1 and C2 are 

5pF. The resistors R1 and R2 are 20kΩ. 

 

Figure 6.8 : The KHN filter structure [20]. 
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The filter current transfer functions are yielded by hand calculations. The high-pass 

filter transfer function, band-pass filter transfer function, low-pass filter transfer 

function, the pole angular frequency 0  and the quality factor Q  are given in 

Equation 6.6, 6.7, 6.8, 6.9, 6.10, respectively. 
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Sensitivity analyses of the proposed filter with respect to active and passive 

components yield the following Equation 6.11, 6.12, respectively. 

0 0 0 0

1 2 1 2
0.5W W W W

G G C CS S S S         (6.11) 

12 1 2
0.5

G C G C

Q Q Q QS S S S                 (6.12) 

The filter characteristics of the ZC-CDBA filter structure are given in Figure 6.9. The 

total harmonic distortion of ZC-CDBA filter structure according to the input signal 

level at 1.9MHz is given in Figure 6.10. 
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Figure 6.9 : The filter characteristics of the ZC-CDBA filter structure. 

 

Figure 6.10 : The total harmonic distortion of ZC-CDBA filter structure at center 
frequency. 

6.3 ZC-CG-CDBA and Its Frequency Agile Filter Application 

The frequency agile filter structure is proposed by Fabre and his team to be used in 

encrypted communication structure. The designed frequency agile filter structure is 

also applicable to the global positioning systems using different protocols in different 

continents at the same. The proposed structure provides the signals that use different 

global positioning system protocols to be processed on a single discrete filter. The 

designed agile filter structure is given in Figure 6.11. The KHN filter structure 

proposed for Z-Copy Current Differencing Buffered Amplifier in Figure 6.8 is 

adapted for frequency agile filter structure. The capacitors C1 and C2 are 10pF. The 

resistors R1 and R2 are 20kΩ. 
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Figure 6.11 : The frequency agile filter structure [21]. 

The frequency agile filter transfer functions, the quality factor and the natural 

frequency are given in Equation 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19, respectively. 
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The quality factor and the cut-off frequency of the filter change with the current gain. 

The disadvantage of this frequency agile filter circuit structure given in the Figure 

6.11 is the stability of the quality factor. 

Sensitivity analyses of the proposed filter with respect to active and passive 

components yield the following Equation 6.19, 6.20, respectively. 
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The filter characteristics of ZC-CG-CDBA for unity gain of ECCII, the total 

harmonic distortion, the effect of the current gain α1 to the band-pass filter, the effect 

of the current gain α1 to the high-pass filter and the effect of the current gain α1 to the 

low-pass filter are given in Figure 6.12, 6.13, 6.14, 6.15 and 6.16, respectively. 

 

 

Figure 6.12 : The filter characteristics of ZC-CG-CDBA for unity gain of ECCII. 

 

Figure 6.13 : The total harmonic distortion of ZC-CG-CDBA filter at 4MHz input 
signal. 
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Figure 6.14 : The effect of the current gain α1 to the band-pass section. 

 

Figure 6.15 : The effect of the current gain α1 to the high-pass section. 

 

Figure 6.16 : The effect of the current gain α1 to the low-pass section. 
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6.4 ZC-CDTA and its Frequency Agile Filter Structure 

Frequency, bandwidths, modulation can be controllable using computer tools in 

Software defined radio, or SDR [23, 24, 25]. Reconfigurable receiver is possible to 

adapt to any frequency, band-width, modulation, etc., corresponding to the standards 

which were pre-selected.  

Cognitive radio which searches and uses a suitable band refers to wireless 

architectures in which a communication system does not operate in a fixed band [26].  

The software defined radio system is also applicable to provide a new solution for 

global positioning system to reply to the needs of five bands containing GPS, 

GLONASS, Galileo, Beidou, GNSS [27, 28]. It is inevitable for the biggest possible 

versatility of future global navigation systems, including GPS, GLONASS, Beidou, 

GNSS and Galileo. 

Such architectures require reconfigurable analog elements: LNA, local oscillators, 

mixers and filters [26]. 

The Z copied current differencing transconductance amplifier second order filter 

structure is modified with a feedback system to obtain reconfigurable filter structure. 

This structure also called as frequency agile filter.  

The second order filter structure which includes band-pass and low-pass output is 

given in Figure 6.17. The low-pass and band-pass filter output must be high 

impedance for current mode reconfigurable applications. The gain at f0 of the band 

pass output is GBP = 1 and -3 dB bandwidth is gm1/2πC1. The gain for the low pass 

output is gm1gm2. Figure 6.18 shows the second order current mode frequency agile 

filter general structure developed with second order filter structure. The output of the 

low pass section is applied to the input as feedback with a gain A obtained from 

electronically controllable second generation current conveyor. 

 

Figure 6.17 : The second order filter structure [26]. 
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Figure 6.18 : The second order current mode frequency agile filter general structure 
with feedback [26]. 

The formulation IE = Iin - A.ILP gives the input signal of the new circuit. The band 

pass function is then, 
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The gain at f0 of the band pass output is GBP = 1, remains the same as before. 

The center frequency and the quality factor of the new filter structure is then, 
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Electronically controllable second generation current conveyor is used to change the 

center frequency of the second order filter with the IA current. The new current mode 

filter structure is given in Figure 6.19. The band pass output of frequency agile filter 

is given in Figure 6.20. The capacitors C1 and C2 are 10pF.  
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Figure 6.19 : The new current mode frequency agile filter structure. 

 

Figure 6.20 : Frequency agile filter band pass output for bias current IA=5 µA, 10 
µA, 16 µA, 22 µA. 

The center frequency of band pass filter 10 MHz, 13 MHz, 16 MHz and 17 MHz are 

obtained for bias current IA=22 µA, 16 µA, 10 µA, 5 µA respectively. The IC, IB bias 

currents of ECCII are selected as 60 µA. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

In this thesis ZC-CDTA (Z-Copy Current Differencing Transconductance 

Amplifier), ZC-CDBA (Z-Copy Current Differencing Buffered Amplifier) and ZC-

CG-CDBA (Z-Copy Controlled Gain Current Differencing Buffered Amplifier) 

CMOS internal structures were presented. A modified biquad filter application with 

ZC-CDTA, a new KHN filter application with ZC-CDBA, a frequency filter 

application with ZC-CG-CDBA and a frequency filter application with ZC-CDTA 

were also proposed in this work. 

In Chapter 3, low input impedance current differencing unit with positive feedback 

was presented. The advantages of the positive feedback system to reduce input 

impedances were also investigated in the same chapter. 

In Chapter 4, the realization method for ZC-CDTA, ZC-CDBA and ZC-CG-CDBA 

were presented. The third generation current conveyor was used for obtaining the Z 

copy terminal current. 

In Chapter 5, the Z copied current differencing buffered amplifier CMOS realization 

without CCIII was presented. The classical current mirror structure was used for 

realizing the Z copy terminal current. The advantages and disadvantages of the CCIII 

and the classical current mirror were investigated in this chapter. The layout of the 

ZC-CDBA and post-layout simulations of the ZC-CDBA were also shown. The Z 

copied current differencing transconductance amplifier layout was also given in this 

chapter. The post-layout and the pre-layout simulations are compatible with each 

other. 

In Chapter 6 the KHN, biquad and frequency agile filters characteristics were 

presented. The filter chracteristics were tested with the ideal characteristics of the 

filters. The sensitivity analysis of the proposed KHN filter structure and frequency 

agile filter structure were given in this chapter of the thesis. The total harmonic 

distortions according to input signal magnitude were also given for all applications. 
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The Cadence environment was used for the design simulations. 0.18µm AMS 

parameters were used for all simulations of the ZC-CDTA, ZC-CDBA, ZC-CG-

CDBA and sub-circuits of these new active elements. The designed circuit behaviors 

were tested with respect to theory. 

The presented circuit and filters can be considered as another alternative for the 

circuit designer realized with CMOS and BJT technologies. 
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