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ELECTROCHEMICAL AND SCANNING PROBE MICROSCOPIC STUDIES 
ON MODIFIED CARBON FIBER SURFACES 
 

 

SUMMARY 

 

In 1976, electrical conductivity in a conjugated polymer (polyacetylene) was  reported 
by Shirakawa, Heeger and MacDiarmird [1]. After that,  combining these new 
conjugated materials with the properties of organic polymers has been studied for 
various applications.  

The preparation, characterization and application of conducting polymers are still 
mostly research activity in the electrochemistry. Electrochemical polymerization 
represents a widely employed route for the synthesis of some important classes of 
conjugated polymer such as thiophene (Th). 

Carbon fiber is made from graphite which  is a form of pure carbon. In graphite, the 
carbon atoms are arranged into big sheets of  aromatic ring and porous carbon is the 
most frequently selected electrode material which offers a large surface area. Due to 
porosity, carbon is one of the most promising electrode material for supercapacitor 
application.  

Carbon fiber micro electrodes shows superior performance in electrochemical studies 
due to their micron size and cylindrical structure. Its disposable character having a new 
surface area at each time rather than Pt or ITO electrodes. For many cases carbon fiber 
electrodes reveals better reversibilities than the other electrodes. 

Poly (3,4- alkylenedioxythiophene)s (PXDOTs), have attracted attention across 
academia and industry with their special polymerizaiton routes.  Due to their ability to 
be  functionalized  at  the  2-position of the   propylene  bridge,  ProDOT (Pro=1,3-
propylene) monomers and polymers have gained special interest as the polymers that 
form are regio-symmetric.  

By increasing the ring size from dioxane (six-membered) to the seven-memnered ring in 
ProDOT, little change is seen in the electropolymerization and switching behavior of 
PProDOT relative to PEDOT.  

Electropolymerization process was performed in 0.1M NaClO4 in ACN at various cycle 
numbers with a constant monomer concentration of 10-2 M. 

Electrochemical Impedance Spectroscopy (EIS) measurements were performed at both 
open circuit potential in the range of 0.1V -1.4 V between 100 kHz - 10 mHz (excitation 
of amplitude of 10 mV).  

PProDOT(Bu)2 electrochemically obtained at different charges (cycles), and at different 
applied potentials in the range of -0.1 V to 1.3 V with a potential step of 0.1V. 
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In parallel to cyclic voltammogram of the PProDOT-Bu2 in monomer free electrolyte 
solution, the stability of the film exhibit electroactivity without undergoing deformation 
up to 0.8 V.  

The shape of the electrogrowth plot has a very good agreement with the corresponding 
CV of the polymer film in monomer free solution. The low capacitance values increase 
in low potentials, at 0.4 V capacitance values shows a maximum point which converges 
very well at this potential observed in CV of the ProDOT-Bu2 film for 100 mV/s. 

The electrochemical parameters of the SCFME/P(ProDOT-Bu2) in NaClO4 system was 
evaluated by employing the ZSimpWin (version 3.10) software from Princeton Applied 
Research. Equivalent electrical circuit model and variation of the solution resistance, 
double layer capacitance and low frequency  capacitance of the PProDOT-Bu2 films 
with several cycles were investigated in this study. 

AFM is an essential tool to observe identificial characteristics of film morphologies 
with three dimensional images. In this study non-contact mode was employed with high 
frequency silicon tips with Al coating. 
 
Morphology of coatings for different applied charge densities and different applied 
potentials were studied. The SEM pictures show a pronounced difference in the surface 
morphology of the two type of different P(ProDOT-Bu2) layers with increasing cycle 
number.  

In the beginning, after very thin film formation on SCFME, where striations sligthly 
disappear on the whole surface area, a polymeric layer appears  with nano-size villus 
like structures were obtained after 20 cycles. 

At applied potentials afte 0.8 V, the film morphology changed and capacitance of 
modified electrodes decreased. 

Finally, investigation of out different substares such as Pt, ITO coated glass showed that 
SCFMEs are the most suitable ones for using supercapacitor components in 
comparasion with other  10 cycle coated Pt and ITO electrodes. 
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MODİFİYE EDİLMİŞ KARBON FİBER YÜZEYLERİNDE 
ELEKTROKİMYASAL VE TARAMALI PROP MİKROSKOPİK 
ÇALIŞMALAR 

 

 

ÖZET 

 

1976’de Alan MacDiarmid, Hideki Shirakawa ve bir grup araştırmacı iletken 
polimerleri keşfetti. Diğer iletken polimerlerin sentezi, bu keşiften sonra araştırmacılar 
tarafından büyük ilgi uyandırmıştır. İletken polimer filmlerde elektriksel iletkenlik, 
anyonik ve katyonik türlerin yüklenmiş olarak yapıya girmesini takip eden  
yükseltgenme (p-katkılandırma) ve indirgenme (n-katkılandurma) yolu ile 
gerçekleşmekte ve konjuge polimerlerin anazincirlerindeki çift bağların değişmesi ile 
katkılandırmadan oluşan yüklenmiş türler yardımıyla karbon zinciri boyunca elektronun 
taşınması, malzemeye iletkenlik kazandırır.   

İletken polimerlerin sentezi kimyasal ve elektrokimyasal olmak üzere ikiye ayrılır. 
Elektrokimyasal polimerizasyon genellikle döngülü voltamogram kullanılarak anodik 
oksidasyon ile çalışma elektrodunun üzerinde gerçekleştirilir. Son dönemlerde çalışma 
elektrotları karbon bazlı yapılar arasından seçilmektedir. 
 
Karbon fiber bir çeşit grafit formu olarak tanımlanırken, grafit ise saf karbon olarak 
adlandırılabilir. Grafit yapısında karbon atomları düzlemsel yapı üzerinde bulunan 
hekzagonal halkalar şeklindedir. 
 
Porlu bir yapıya sahip olan karbon, bunun yanında geniş yüzey alanı sağlama ve iyi 
polarize olması açısından süper kapasitör uygulamalarında tercih edilen bir malzemedir. 
Bunun yanında, birçok durumda metal elektrotlara nazaran daha iyi sonuçlar verdikleri 
saptanmıştır. 

Yüksek ve kararlı iletkenlik sergileyen iletken ve elektroaktif polimerler sınıfına giren 
poli (3,4-alkilendioksitiyofen)’ler (PXDOT), propilen köprüsünün ikinci pozisyonun 
fonksiyonlanmasının getirdiği özellikten dolayı özel bir ilgi çekmektedirler. 

ProDOT (Pro=1,3-propilen) monomeri ve polimeri halka büyüklüğünün altı üyeliden 
yedi üyeliye artması elektrokaplamada ve spektroelektrokimyada PEDOT polimerine 
göre küçük değişiklik gösterir. 

Bu çalışmada ProDOT-Bu2 monomerleri döngülü voltametri ile KFME üzerine 
kaplanmış, polimerlerin karakterizasyonu ve elektriksel impedans özellikleri 
araştırılmıştır. 

Elektrokaplama 0-1.6 V ‘da, 100 mVs-1 tarama hızında, 0.1 M NaClO4/ACN içerisinde  
TKFME (Tek karbon fiber mikroelektrot) üzerine döngülü voltametri ve değişik 
döngülerde gerçekleştirilmiştir. 
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Elektrokimyasal empedans ölçümleri 100 kHz - 10 mHz aralığında hem açık devre 
potansiyelinde döngü sayısı göz önüne alınarak, hem de farklı potansiyeller uygulanarak 
(20 döngü için) gerçekleştirilmiştir (0.1 V artan potansiyel aralıklarla 0.1 V’dan 1.4 V’a 
farklı potansiyellerde).  

Ayrıca, empedans ölçümleri farklı döngüler için de incelenmiş ve film kalınlığının 
artışının kapasitif özelliklere yansıması incelenmiştir. 

Elde edilen kapasitans değerlerin, polimerin döngülü voltametri grafiğine benzediği 
görülmüştür. Ayrıca elde edilen ince filmin en kapasitif davranışı 0.4 V’ ta gösterdiği ve 
0.8 V’ tan sonra kapasitif davranışının film yapısına parallel olarak değiştiği 
saptanmıştır. 

KFME/PProDOT-Bu2/Elektrolit sisteminde elektrokimyasal parametreler Princeton 
Applied Research cihazı için uygulanan ZSimpWin (versiyon 3.10) yazılımında 
modellenmiştir. PProDOT-Bu2 filminin çözelti direncinin çeşitliliği, çift tabaka 
kapasitans ve düşük frekans kapasitans değerleri hem farklı döngüler hem de uygulanan 
farklı potansiyeller için denemiştir. Sonuçlar karşılaştırılarak önerilen eşdeğer devrenin 
bileşenler elde edilen sonuçların belirli bir artma ve belirli bir azalma içinde 
olmalarından ötürü açıklanmıştır. 

Üç boyutlu görüntü vermesinden dolayı, atomik kuvvet mikroskobu önemli bir cihazdır. 
Bu çalışmada da yüzey üzerindeki filmin oluşumu atomik kuvvet mikroskobu ve 
taramalı elektron mikroskobu ile incelenmiş ve sonuçlar karşılaştırılmıştır. 

Polimerizasyonun birinci, üçüncü ve beşinci döngülerinde TKFME üzerinde 
yoğunlaşmaya başlayan tanecikler, özellikle onuncu döngüden sonra yoğunlaşmaya 
başlamışlar ve yirminci döngüde nano-vilus benzeri yapılar sergilemişlerdir.   

Elde edilen yüzey resimlerinden, 0.8 V potansiyel uygulanmasından sonra yüzeyin 
değiştiği ve nano-vilus benzeri yapıların ortadan kalktığı gözlemlenmiştir. 

Son olarak polimerizasyon farklı yüzeylerde de gerçekleştirilmiş (Platin ve indiyum 
kalay oksit kaplı cam) ve sonuçlar KFME’lar ile karşılaştırılmıştır. Elde edilen sonuçlar 
KFME’ların kapasitif özellikler amacında daha üstün olduklarını göstermektedir. 
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1. INTRODUCTION 

1.1  Conductive Polymers 

Electrical conductivity was reported in 1977 [1] by Shirakawa, Heeger and 

MacDiarmird for a conjugated polymer, and the research on conducting polymers have 

been continuous for several years. Many researchers have been focused on the 

conducting polymers to commercialize them with applications  [2-6]. 

In 1958, polyacetylene was first synthesised by Natta as a black powder. This was 

found to be a semi-conductor with a conductivity between 7x10-11 to 7x10-3 S m-1, 

depending upon how the polymer was processed and manipulated. This compound 

remained a scientific curiosity until 1967, when a postgraduate student of Hideki 

Shirakawa at the Tokyo Institute of Technology was attempting to synthesize 

polyacetylene, and a silvery thin film was produced as a result of a mistake. It was 

found that 1000 times too much of the Ziegler-Natta catalyst, Ti(O-n-But)4 - Et3Al, had 

been used. When this film was investigated it was found to be semiconducting,  with a 

similar level of conductivity to the best of the conducting black powders. Further 

investigations, initially aimed to produce thin films of graphite, showed that exposure of 

this form of polyacetylene to halogens increased its conductivity a billion fold. 

Undoped, the polymer was silvery, insoluble and intractable, with a conductivity similar 

to that of semiconductors. When it was weakly oxidized by compounds such as iodine it 

turned a golden colour and its conductivity increased to about 104 S m-1. The possibility 

of combining in these new materials the properties of organic polymers and the 

electronic properties of semiconductors has been the driving force for various 

applications.  

Electronically conducting polymers, such as polypyrrole, polythiophene or polyaniline, 

are a class of organic semiconductors with many possible areas of application [7]. 

Conducting polymers (CPs) are an exciting new class of electronic materials, which 

have  attracted rapidly increasing interest since their discovery in 1979.  
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CPs have the potential of combining the high conductivities of pure metals with the 

processibility, corrosion resistance and low density of polymers [8]  and are beginning 

to find applications in the fields of battery materials [9], electrochromic displays [10], 

electromagnetic shielding [11], sensor technology [12], non-linear optics [13] and 

molecular electronics [14-15]. 

Films of electronically conducting polymers are generally obtained onto a support 

electrode surface by anodic oxidation (electropolymerization) of the corresponding 

monomer in the presence of an electrolyte solution. Different electrochemical 

techniques can be used including potentiostatic (constant potential), galvanostatic 

(constant current), and potentiodynamic (potential scanning i.e. cyclic voltammetry) 

methods. Electrically conductivity is achieved in the film of conducting polymer by 

oxidation (p-doping) or reduction (n-doping), followed respectively by the insertion of 

anionic or cationic species [16]. The π-electron system along the polymer backbone, 

which confers rigidity and the cross linking points between polymer chains, make 

conducting polymers insoluble, infusible and poorly processable.  

During the last twenty years, conjugated polymers, such as polyacetylene, polyaniline, 

polypyrrole, polythiophene, etc., have attracted tremendous attention, mainly because of 

their interesting optical, electrochemical and electrical properties (Figure 1.1). These 

properties may lead to variety of applications such as information storage, 

electroluminescent devices, optical signal processing, solar energy conversion materials, 

electrochemical cells, EIM shielding, antistatic coatings, bioelectronic devices, etc. [17-

20]. For instance, these materials are well known for their high electrical conductivity 

arising upon doping (oxidation, reduction and protonation). The delocalized electronic 

structure of these polymers is partly responsible for the stabilization of the charge 

carriers created upon doping and electrical conductivities in the range of 1-1000 S cm-1 

can be reached in most cases. Moreover, processibility and a high level of conjugation 

have been obtained through the incorporation of alkyl side chains on polythiophene [21-

26]. 
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Semiconductors have an energy gap small enough that thermal excitation of electrons 

from the valence to the conduction bands is sufficient for conductivity; however, the 

band gap in insulators is too large for thermal excitation of an electron across the band 

gap (Figure 1.3). 

 
Figure 1.3: Classification of materials and schematic of valence and conduction. 

1.1.2 Doping Process and Polaron-Bipolaron Structures                          

The electrochemical switching of a conducting polymer (CP) between the doped and 

undoped states involves both electron and ion injection into or extraction from the 

polymer, concomitant with the transport of electronic and ionic charges within the CP. 

Consequently, the charge transport processes inside the CP bulk, as well as across the 

CP’s interfaces, constitute crucial points in many applications and have been the object 

of extensive researches.  

In particular, it has been reported that in most cases ion transport is the slow process, 

i.e. the step limiting the switching rates of, for example, displays and electronic devices 

based on similar materials [27]. 

The main criteria is its ability to oxidize or reduce the polymer without lowering its 

stability or whether or not they are capable of initiating side reactions that inhibit the 

polymers ability to conduct electricity.  
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Figure 1.4: Oxidative doping of thiophene ( A : dopant). 

The oxidative doping of polythiophene proceeds in the following way Figure 1.4. An 

electron is removed from the π-system of the backbone producing free radical and a 

spinless positive charge. The radical and cation are coupled to each other via local 

resonance of the charge and the radical. 

Upon further oxidation the free radical of the polaron is removed, creating a new 

spinless defect called a bipolaron. This is of lower energy than the creation of two 

distinct polarons. At higher doping levels it becomes possible that two polarons 

combine to form a bipolaron. Thus at higher doping levels the polarons are replaced 

with bipolarons. This eventually, with continued doping, forms into a continuous 

bipolaron bands [28].  

1.1.3 Polyalkylenedioxythiophenes                     

Due to its high oxidation potential, thiophene itself is difficult to polymerize 

electrochemically. The best results are obtained in BF3-Et2O medium [29]. However, 

upon alkyl substitution the monomer oxidation potential is lowered to an easily 

accessible range, which has resulted in the extensive study of poly(3-methyl thiophene) 

and other poly(3-alkylthiophenes) [30]. 

Substitution at the 3- and 4- positions of thiophene prevents the occurrence of α-β and β 

- β coupling during electropolymerization, yielding more ordered polymers with longer 

conjugation lengths.  
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Initially, the synthesis of 3,4-disubstituted polythiophenes were carried out with the goal 

of stabilizing the oxidized form as well as providing solubility and processibility [31]. 

While these substituents do lower the oxidation potential and stabilize form of the 

polymers to nucleophilic attack, they also lead to severe steric interactions that distort π 

conjugated system [32], decreasing the degree of conjugation and lowering the 

conductivity.  

To overcome this drawback, poly(3-4-cycloalkylthiophenes) [33] were synthesized, and 

it was demonstrated that carbocycles at at the 3- and 4- positions reduced the steric 

hinderence, especially in the case of poly(3,4-cyclopentylthiophene). This strategy was 

taken a step further and the methylene adjacent to the heterocycle was replaced by an 

heteroatom such as oxygen [34,35], making  the oxidized form form even more stable 

with less steric distortion. As a result,  polythiophenes  carrying 3,4-dialkoxy and 3,4-

alkylenedioxy substituents exhibit the most pronounced stability.      

Jonas et al. [36] were the first to anodically polymerize a member of the 3,4-

alkylenedioxythiophene family, 3-4-ethylenedioxythiophene. It was found that the 

resulting  poly(3,4-ethylenedioxythiophene) was highly conducting and more stable 

than other polythiophenes.  

To date, a large family of poly(3,4-alkylenedioxythiophene)s  (PXDOTs)        (Figure 

1.5)  has been   synthesized to elucidate the structure-property relationship in these 

materials.        

 

Figure 1.5: Poly (3, 4- alkylenedioxythiophene)s (PXDOTs). 

As a class of conducting and electroactive polymers that can exhibit high and quite 

stable conductivities, a high  degree of optical transparency as a conductor, and the 

ability to be rapidly switched between conducting doped and insulating neutral states, 

poly (3,4- alkylenedioxythiophene)s (PXDOTs), have attracted attention across 

academia and industry. 
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Since both chemically and electrochemically prepared PXDOT is insoluble and 

unprocessible, intensive research has been carried out to synthesize PXDOT derivatives 

that would overcome this problem. 

Due to their ability to be functionalized at the 2-position of the propylene bridge, 

ProDOT (Pro=1,3-propylene) monomers and polymers have gained special interest as 

the polymers that form are regio-symmetric. By increasing the ring size from dioxane 

(six-membered) to the seven-membered ring in ProDOT, little change is seen in the 

electropolymerization and switching behavior of PProDOT relative to PEDOT. There 

are distinct changes in the physical properties of the monomers as EDOT is a liquid at 

room temperature, while ProDOT is a solid. This makes purification by recrystallization 

and access to highly pure ProDOT monomers quite facile. There are large changes 

observed when comparing the optical properties of the substitued PProDOTs, especially 

the dimethyl and diethyl derivatives that exhibit enhanced electrochromic contrasts 

throughout the visible region [37]. This will be addressed further later. In addition, by 

appending long chains at the 2-position of the propylene bridge, soluble and peocessible 

PProDots are accessible, which are not only electroactive but are also highly fluorescent 

(deep-red emission) in solution [38]. 

Turning to the eight-membered ring-containing species. BuDOT (Bu=butylene), again 

little change is observed in electropolymerizability and switching relative to PEDOT or 

PProDOT. It should be noted that pentylene functionallized derivative, which might 

gain the acronym PenDOT, has not been synthesized to date due to the difficulty in 

closing nine-membered rings, and remains elusive [39]. 

1.1.4 Supercapacitors 
 
Conventional capacitors consist of two conducting electrodes separated by an insulating 

dielectric material. When a voltage is applied to a capacitor, opposite charges 

accumulate on the surfaces of each electrode.  

The charges are kept separate by the dielectric, thus producing an electric field that 

allows the capacitor to store energy. This is illustrated in Figure 1.6. 
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Figure 1.6:  Schematic of a conventional capacitor. 

Capacitance C is defined as the ratio of stored (positive) charge Q to the applied 

voltage V: 

C =Q/V                             (1.1) 

For a conventional capacitor, C is directly proportional to the surface area A of each 

electrode and inversely proportional to the distance D between the electrodes: 

C = ε0εR A/D                         (1.2) 

The product of the first two factors on the right hand side of the last equation is a 

constant of proportionality wherein ε0 is the dielectric constant (or “permittivity”) of 

free space and εR  is the dielectric constant of the insulating material between the 

electrodes. 

The two primary attributes of a capacitor are its energy density and power density. For 

either measure, the density can be calculated as a quantity per unit mass or per unit 

volume. The energy E stored in a capacitor is directly proportional to its capacitance:                            

E =1/2  CV2                          (1.3) 

In general, the power P is the energy expended per unit time. To determine P for a 

capacitor, though, it should be  considered that capacitors are generally represented as a 

circuit in series with an external “load” resistance R, as is shown in Figure 1.6. 
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The internal components of the capacitor (e.g., current collectors, electrodes, and 

dielectric material) also contribute to the resistance, which is measured in aggregate by 

a V quantity known as the equivalent series resistance (ESR). The voltage during 

discharge V is determined by these resistances. When measured at matched impedance 

(R = ESR),V the maximum power Pmax for a capacitor [40-42] is given by: 

Pmax : V2 / (4xESR)                                 (1.4) 

This relationship shows how the ESR can limit the maximum power of a capacitor. 

Conventional capacitors have relatively high power densities, but relatively low energy 

densities when compared to electrochemical batteries and to fuel cells. That is, a battery 

can store more total energy than a capacitor, but it cannot deliver it very quickly, which 

means its power density is low. Capacitors, on the other hand, store relatively less 

energy per unit mass or volume, but what electrical energy they do store can be 

discharged rapidly to produce a lot of power, so their power density is usually high. 

Supercapacitors are governed by the same basic principles as conventional capacitors. 

However, they incorporate electrodes with much higher surface areas (A) and much 

thinner dielectrics that decrease the distance (D) between the electrodes. Thus, from 

(1.2) and (1.3), this leads to an increase in both capacitance and energy. 

Furthermore, by maintaining the low ESR characteristic of conventional capacitors, 

supercapacitors also are able to achieve comparable power densities. 

 

Figure 1.7:  Schematic of a double layer capacitor. 

 



10 
 

Additionally, supercapacitors have several advantages over electrochemical batteries 

and fuel cells, including higher power density, shorter charging times, and longer cycle 

life and shelf life. Figure 1.7 provides a schematic diagram of a supercapacitor, 

illustrating some of the physical features described above. 

Supercapacitors, also known as ultracapacitors or electrochemical capacitors, utilize 

high surface area electrode materials and thin electrolytic dielectrics to achieve 

capacitances several orders of magnitude larger than conventional capacitors. 

Performance of a supercapacitor (or ultracapacitor) combines simultaneously two kinds 

of energy storage i.e. an electrostatic attraction as in electric double layer capacitors 

(EDLC) and faradaic reactions similar to processes proceeding in accumulators. 

Pseudocapacitance arises when, for thermodyamic reasons, the charge q required for the 

progression of an electrochemical process is a continously changing function of 

potential U. Then the derivative C=dq/dU corresponds to a faradaic kind of capacitance. 

The term pseudo originates from the fact that the double layer capacitance arises from 

quick faradaic charge transfer reactions and not only from electrostatic charging. An 

ideal double layer capacitance behavior of an electrode material is expressed in the form 

of a rectangular shape of   the voltametry characterictic behavior of supercapacitors. In 

this type of energy storage, the phenomenon is purely electrostatic and current is 

independent on potential. 

On the other hand, electrode materials with pseudocapacitance properties point out a 

deviation from such a rectangular shape and reversible redox peaks connected with 

pseudofaradaic reactions are remarkable. In this case charge accumulated in the 

capacitor is strongly dependent on the electrode material. This observed delay of 

potential during reversing the potential sweep is related with a kinetically slow process 

involved during charging pseudocapacitance. 

Contrarily, in the electrochemical capacitors, the electrical charge is accumulated in the 

double layer mainly by electrostatic forces without phase transformation in the electrode 

materials.  

The stored electrical energy is based on the separation of charged species in an electrical 

double layer across the electrode / solution interface (Figure 1.8). 
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Figure 1.8: Scheme of the Electrochemical Double Layer. 

The maximal charge density is accumulated at the distance of outer Helmholtz plane, 

i.e. at the centre of electrostatically  attracted solvated ions. The electrochemical 

capacitor contains one positive electrode with electron deficiency and the second one 

negative with electron excess, both electrodes being built from the same material. The 

amount of electrical energy W accumulated in such capacitors is proportional to 

capacitance C and voltage U according to the formula: 

 W=1/2CU2                                                   (1.5) 

The electrochemical withdrawing of energy from these two types of power sources 

differs significantly. 

It is clear that in a typical accumulator a charge/ discharge plateau is observed for the 

dependence U =f(t), and for an electrochemical capacitor we have almost a linear decay 

of voltage with time.  As a consequence,  the energy stored in the capacitor (1/2 qU ) is 

half that for the equivalent battery cell (qU ) [43]. 

1.2 Electropolymerization  

Electrochemical polymerization is recognized as an effective technique for the synthesis 

of conducting polymers. It is widely used, because it is simple and can be used as a one 

step method [44].  
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The electropolymerization procedure offers the advantage of controlling the thickness, 

and functionality of such a ‘reactive’ coating through selective process parameters (i.e. 

current density and monomer concentration, etc.) and uniform coatings can be achieved 

[45]. 

At the beginning of the electrochemical reaction the monomer, dissolved in an 

appropriate solvent containing the desired anionic doping salt, is oxidized at the 

surface of an electrode by application of an anodic potential (oxidation). The anode can 

be made of a variety of materials including platinum, carbon fiber, gold, glassy carbon, 

and tin or indium-tin oxide (ITO) coated glass. 

During the process, the monomer is electrochemically oxidized at a polymerization 

potential giving rise to free radicals.  

These radicals are adsorbed onto the electrode surface and undergo subsequently a wide 

variety of reactions leading to the polymer network [46]. As a result of the initial 

oxidation, the radical cation of the monomer is formed and reacts with other monomers 

present in solution to form oligomeric products and then the polymer.  

The extended conjugation in the polymer results in a lowering of the oxidation potential 

compared to the monomer. Therefore, the synthesis and doping of the polymer are 

generally done simultaneously. 

In Figure 1.9, electrochemical polymerization mechanism of heterocyclic compounds is 

shown. The growth of this polymer depends on its electrical character. If the polymer is 

electrically nonconducting, its growth is self-limited.  

Such films are very thin (10 - 100 nm).  In contrast, the growth of conductive polymers 

is virtually unlimited.  
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Figure 1.9: Electropolymerization pathway for valid heterocyclic compounds. 

The process is governed by the electrode potential and by the reaction time, which 

allows to control the thickness of the resulting film. In order to have uniform and 

reproducible results, the process parameters of electrochemical polymerization have to 

be optimized. The parameters; type of electrolyte, concentration ratio of monomer and 

electrolyte, pH of the electrolyte, monomer substitution, scan rate, solvent,  temperature 

and current density affect the conductivity and morphology of the synthesized polymer 

film.  

There are mainly 3 types of electropolymerization techniques. These are: 

1. Potentiodynamic by cyclic voltammetry 

2. Choronoamperometry (constant potential)  

3. Choronopotentiometry (constant current) 

These techniques are easier to describe quantitatively and have been therefore 

commonly utilized to investigate the nucleation mechanism and the macroscopic 

growth.  

Voltammetry uses four major types of excitation signals in order to vary the potential: 

linear scan, differential pulse, square wave, and triangular (Figure 1.10). Each variable 

potential excitation signal is applied to the electrochemical cell containing a 

microelectrode over time and induces a characteristic current response. 
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Linear and triangular excitation signals vary the potential applied to the working 

electrode linearly over time (Figure 1.10; (a) and (d)). When triangular excitation 

signals are used, we call the voltammetric method cyclic voltammetry. Pulsed 

voltammetric methods include differential pulse and square wave excitation signals, 

which vary the potential differently over time (Figure 1.10; (b) and (c)) and are of great 

analytical use because they minimize the interference of capacitive or nonfaradaic 

currents.  

A current that is due to electrolysis is a faradaic current and isthe useful current in 

pulsed voltammetric methods. Changing the potential applied to an electrode 

contributes a second current, called a nonfaradaic current, to the overall observed 

current, where the total current measured is the sum of the faradaic and nonfaradaic 

currents.  

As the potential is changed, the electrode must be charged resulting in a nonfaradaic 

current. Advances in voltammetry have led to improvements in the sensitivity of pulsed 

voltammetric methods, allowing interfering nonfaradaic currents to be separated from 

analytically useful faradaic currents. The manipulation of the voltage applied to the 

working electrode provides three useful types of voltammetry; cyclic voltammetry, 

square wave voltammetry, and differential pulse voltammetry. 
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Figure 1.10: Four Types of Voltammetric Signals. 

1.2.1 Cyclic Voltammetry 

In cyclic voltammetry (CV), a triangular wave form (Figure 1.10; (d)) is used to vary 

the potential applied to the working electrode linearly in both the forward and reverse 

direction. Because of the large overpotential of mercury electrodes, CV scans in natural 

waters are typically run from –0.1V to –1.8V and back to –0.1V (I-F-I scans) so that 

reversible electrochemical reactions can be detected. The rate at which the potential is 

changed (voltage / time) is called the scan rate. The potential range used when running a 

CV scan depends on the type of working electrode and the electrolyte it is in.  

As the varying potential is applied to the working electrode, the current is recorded. An 

advantage of CV over linear sweep voltammetry is the ability to determine if an 

electrochemical reaction is reversible by comparing the forward (cathodic) and reverse 

(anodic) peak currents and peak potentials. If a reaction is truly reversible the peak 

separation between the cathodic peak potential and the anodic peak potential will be 

0.0592 V/ electron. 
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1.2.2 Square Wave Voltammetry 

In square wave voltammetry (SWV), the square wave form (Figure 1.10; (c)) consists of 

a symmetrical square wave pulse of the potential applied to the working electrode, 

where the amplitude and step height can be defined by the user. The result of the 

staircase waveform is a forward pulse that produces a cathodic current and a reverse 

pulse that produces an anodic current. 

The net current, or resultant current, is the difference between the forward and reverse 

currents and is centered on the base potential of the wave pulse. Current peak heights, 

from the resultant current, are directly proportional to the concentration of the 

electroactive species reduced at the working electrode. Advantages to SWV include its 

excellent sensitivity, rejection of background currents, and the fast speeds at which 

scans can be run.  

1.2.3 Differential Pulse Voltammetry 

Differential pulse polarography (DPP) uses the differential pulse excitation signal 

(Figure 1.10; (b)) where a series of small pulses are made to the potential applied to the 

working electrode. Each potential pulse is fixed, has a small amplitude, and is 

superimposed on a slowly changing base potential. In order to separate the faradaic and 

nonfaradaic currents, the total current is measured twice; once just prior to the voltage 

pulse providing a baseline current, and once close to the end of the pulse when the 

nonfaradaic currents have decreased significantly. 

 The difference between the two currents at each pulse, the resultant current, is 

determined and centered on the base potential of the pulse. DPP has two major 

advantages, the ability to separate peaks at similar potentials and excellent sensitivity. 

1.2.4 Stripping Voltammetry 

Stripping voltammetry involves the pre-concentration of an analyte on the surface of the 

working electrode before running a voltammetric scan. Pre-concentrating an analyte on 

the surface of the working electrode can be accomplished by applying a potential to the 

working electrode for a certain amount of time.  

Certain analytes in solution are able to react with the surface of the electrode forming an 

amalgam that can then be measured or stripped from the electrode by running a 

potential scan (CV, SWV, DPP). 
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 The amount of time the potential is held during the pre-concentration step, while 

consistently stirring the solution, directly affects the sensitivity of the electrochemical 

method, lowering the detection limits of certain analytes. 

1.2.5 In Situ Voltammetry 

Voltammetric techniques can be applied to environments where redox chemistry needs 

to be defined in situ. The ability to detect and measure multiple chemical species in the 

same potential scan makes voltammetric techniques useful for investigating redox 

chemistry. Several electrode systems, based on voltammetric methods, have been 

designed for in situ detection of chemical species of oxygen,  sulfur, iron, manganese, 

iodide, and many trace metals. 

Working electrodes designed for these systems make it possible to detect particular 

chemical species; however, they are not able to detect metals and redox species 

important to anaerobic oxidation processes simultaneously. 

1.3 Carbon Fiber Microelectrodes  

Carbon fibers exhibit truly outstanding properties. Their strength, competes with the 

strongest steels; they can have stiffness, E, greater than any metal, ceramic or polymer; 

and they can exhibit thermal and electrical conductivities that greatly exceed those of 

competing materials. If the strength or stiffness values are divided by the low density, 

1800-2100 kg m-3, then their huge specific properties make this class of materials quite 

unique.  

Polyacrylonitrile (PAN) type carbon fiber, produced by carbonization of PAN 

precursor, having high tensile strength and high elastic modulus, extensively applied for 

structural material composites in aerospace and industrial field and sporting  

recreational goods.  

PAN based fibers are produced from a solubilized mixture that is wet or dry spun to 

produce a fiber, ostensibly for use in the textile industry. This fiber is stabilized and 

carbonized to produce a carbon fiber. Aerospace grade material can be obtained in tows 

that contain between 3000 and 12000 fibers. Lower performance materials are usually 

formed using larger tows that contain up to 320000 fibers. PAN based carbon fibers are 

cheaper when produced from larger tows.  

Pitch type of the fiber, produced by carbonization of oil/coal pitch precursor, having 

extensive properties from low elastic modulus to ultra high elastic modulus.  
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Fibers with ultra high elastic modulus are extensively adopted in high stiffness 

components and various uses as utilizing high thermal conductivity and / or electric 

conductivity. Pitch fibers are melt spun products obtained in small tow sizes varying 

from 2000 to 4000 fibers. They are usually larger diameter (10-15 pm) than fibers 

formed from PAN.   

The most important mechanical and physical properties exhibited by carbon fibers are 

the elastic modulus, tensile strength, electrical and thermal conductivities. Carbon fibers 

are used in fiber-reinforced composites, which consist of fiber and resin.  Original large-

scale applications were in the reinforcement of polymers. As the technology of textile 

reinforced composites expanded, a growing demand from the aerospace industry for 

composite materials with superior properties emerged. In particular, materials with 

higher specific strength, higher specific modulus and low density were required. 

Other desirable properties were good fatigue resistance and dimensional stability. 

Although carbon fibers meet these demands, it is necessary to improve interfacial 

properties between reinforcing (carbon) fibers and the polymeric matrix. The 

electrochemical deposition of conducting polymers on carbon substrates has been 

studied with the goal of improving the mechanical properties of conducting polymers, 

so as to use them as electrodes in different applications: electrochromic displays, 

batteries, sensors, capacitors.  

Electropolymerization onto carbon fiber microelectrodes was performed by Sarac et al. 

Surface characterizations of thin film coating of random poly(N-vinylcarbazole-co-

vinylbenzenesulfonic acid), [47,48] copolymer on carbon fiber was performed. 

Copolymer films of pyrrole and 3,4-ethylenedioxythiophene (EDOT) were synthesized 

electrochemically on the carbon fiber microelectrodes (CFME). Deposition conditions 

on the carbon fiber and influence of the monomer concentrations to the 

copolymerization as well as the electrochemistry of the resulting polymers and 

copolymers were studied using cyclic voltammetry, in-situ spectroelectrochemistry, 

FTIR-ATR and scanning electron microscopy [49]. 

Thin film electro-coated poly(N-vinylcarbazole-co-vinylbenzene sulfonic acid) [50,51] 

p(NVCzVBSA), poly(carbazole-co-methylthiophene), (p(CzMeTh) and polycarbazole 

(p(Cz)) coated  carbon fibre microelectrodes (CFMEs) were characterized by scanning 

electron microscopy (SEM) and FTIR-ATR spectroscopy.  
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1.4  Electrochemical Impedance Spectroscopy (EIS) 

Electrical resistance is the ability of a circuit element to resist the flow of electrical 

current. Ohm's law (Equation 1.6) defines resistance in terms of the ratio between 

voltage E and current I. 

 I
ER =                                                (1.6) 

While this is a well known relationship, it's use is limited to only one circuit element the 

ideal resistor. An ideal resistor has several simplifying properties: 

· It follows Ohm's Law at all current and voltage levels. 

· It's resistance value is independent of frequency. 

· AC current and voltage signals though a resistor are in phase with each other. 

The real world contains circuit elements that exhibit much more complex behavior. 

These elements force us to abandon the simple concept of resistance. In its place 

impedance is used, which is a more general circuit parameter.  

Impedance is a totally complex resistance encountered when a current flows through a 

circuit made of resistors, capacitors, or inductors, or any combination of these. 

Depending on how the electronic components are configured, both the magnitude and 

the phase shift of an ac can be determined.  

Because an inductive effect is not usually encountered in electrochemistry, it is 

considered that only the simple equivalent circuit shown in Figure 1.12 in which no 

inductor is present. 
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Figure 1.11 (a) The oxidants (red) with a positive charge diffuse toward the negatively 
charged electrode, acceptelectrons from the electrode at the interface, become the 
reductants (blue), and diffuse to the bulkof the solution. The oxidant is also a counterion 
to the electrode. No specific adsorption is consideredat the interface. IHP and OHP are 
the inner and outer Helmholtz planes, respectively. (b) An equivalent circuit 
representing each component at the interface and in the solution during an 
electrochemicalreaction is shown for comparison with the physical components. Cdl, 
double layer capacitor; Rp, polarization resistor; W, Warburg resistor; Rs, solution 
resistor. 

However, first consider an experiment in which a series of increasing dc potentials (a 

ramp) are applied to a working electrode in an electrochemical cell containing an 

electroactive species.  

                                                                            (1.7) 

A current – potential curve (Figure 1.12) is obtained, which is described by the Butler–

Volmer equation (solid line) in which η  is  the  overpotential   defined  as    E – Eeq, 

with E and Eeq representing the applied and equilibrium potentials, respectively; io is the 

exchange current at η= 0; n is the number of electrons transferred; F is the Faraday 

constant; R is the gas constant; T is the absolute temperature; and α is the transfer 

coefficient for electron transfer. The faradaic current i is limited by the mass transport 

(dashed line curving to the right) when the rate of electron transfer becomes large 

enough. At a given overpotential ηbias, the slope of the curves, di/dηbias, is 1/RP, in which 

Rp is the polarization resistance.  
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Figure 1.12 The DC plotted as a function of overpotential according to the Butler-
Volmer equation (solid line), which is limited by mass transport at large overpotentials 
(dashed line curving to the right), an ac voltage (broken line) superimposed on the dc 
bias potential, _bias (dot-dashed line), shown on the i axis [ηbias + ηsin(ωt)], and the 
resulting ac superimposed on the dc on the i axis [ibias + _isin(ωt +Ø )]. Rp is obtained 
by taking _η/_i, in which i is obtained after applying the ac voltage wave at a given η. 

When a small ac voltage wave of frequency ω at η bias is superimposed, the ac of the 

same frequency will be flowing on top of the dc. Because the interface has resistors and 

a capacitor (Figure 1b), the flowing ac will experience a phase shift, expressed as ibias, 

caused by the ac wave perturbation. For an equivalent circuit, a straightforward 

impedance expression can be derived by applying Ohm’s law to two components 

connected in parallel. One of these is Rp, and the other is 1/(jωCd), in which Cdl (or Cd)  

is the double-layer capacitance.  

                                                (1.8) 

To make the derivation of the equation and its interpretation straightforward,  the 

contribution of the Warburg component is neglected. Thus, the impedance of the 

interface consists of two parts, a real number Z´ and an imaginary number Z˝ with a 

complex representation, Z(ω)= Z´(ω) + jZ˝(ω) with Ø (the phase angle) = tan-1 

[Z˝(ω)/Z´(ω)]. Although the capacitance is relatively constant over the potential at a 

given electrode, the Rp varies as a function of ηbias applied to the electrode. At a given 

dc bias potential, a series of Z(ω) data are obtained in a range of frequencies, typically 

100 kHz-1 to 10-4 Hz. The impedance varies, depending on frequencies, and is often 

plotted in different ways as a function of frequency (making it a spectroscopic 

technique), hence, the name EIS [52-57]. 
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By treating the impedance data in such a frequency range, system characteristics for an 

electrochemical reaction (i.e., Rs, Rp, and Cdl) can be obtained. Rp is a function of 

potential; however, at η = 0, it becomes the charge-transfer resistance RCT. Two 

convenient ways of treating the impedance data are the Nyquist plot, (Figure1.11a) in 

which imaginary numbers Z˝(ω) are plotted against real numbers Z´(ω), and the Bode 

plot, (Figure 1.11b) in which absolute values of impedance or phase angle are plotted 

against the frequency. Extraction of the system characteristics requires interpreting the 

Nyquist plot according to Equation (1.8).  

   

Figure 1.13: (a) Nyquist plot (b) Bode magnitude of Z and Bode phase angle 

At high frequencies, the frequency dependent term of Equation 1.8 vanishes, resulting 

in Z(ω) = Z´(ω) = Rs, which is an intercept on the Z´(ω) axis on the high frequency side 

(Ø = 0 or Z˝(ω) = 0). For ω → 0, Equation 1.8  becomes   Z(ω) = Rs + Rp, which is an 

intercept on the Z´(ω) axis on the lowfrequency side. At the frequency where a 

maximum Z˝(ω) is observed, the straightforward relationship Rp.Cd = 1/ωmax = 

1/(2πfmax) = ζrxn, which is the time constant of the electrochemical reaction, can be 

shown and indicates how fast the reaction takes place.  

Also, if Rp.Cd is known, Cd can be obtained because Rp is already known from the low-

frequency intercept on the Z´(ω) axis. The Nyquist plot gives all the necessary 

information about the electrode–electrolyte interface and the reaction. Similar 

information is obtained by examining the Bode diagram using Equation 1.8. Log Rs and 

log (Rp+Rs) are obtained straight forwardly from the Z(ω) versus logω plot at high and 

low frequencies from the same argument as the Nyquist plot. The equation for this line 

is obtained by ignoring the frequency-independent terms, Rs and 1 in the denominator, 

of Equation 1.8 to yield :  
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                                                     (1.9) 

Taking the logarithm on both sides of the resulting equation yields  log Z(ω) = –log ω – 

log Cd, which indicates  that log |Z(ω)| versus log ω would have a slope of –1, and Cdl 

can be obtained from the intercept of this line with the Z(ω) axis when –log ω = 0 at ω = 

1. Thus, the Bode plot provides the same information as the Nyquist plot. The Ø versus 

log ω plot shows that the impedance responses are resistive primarily at high and low 

frequencies as indicated by practically no phase shifts, whereas at intermediate 

frequencies, they are mostly capacitive as their phase shifts get closer to 90o. 

The equivalent circuit without considering the effect of the Warburg impedance can be 

discussed; however, its contribution can be important at low frequencies because the 

mass transport of the electroactive species may limit the electron transfer process. The 

Warburg impedance [58] is imparted by mass transfer. 

Measuring impedance principle is the basis on which impedance is measured: A small 

ac wave, typically 5–10 mV (peak-to-peak) of a given frequency, is superimposed on 

the dc ηbias, and the resulting ac and its phase shift ibias are measured.  

These measurements may be made in various ways [59-61]; however, the frequency 

response analyzer has become the industry standard in electrochemical instrumentation 

in recent years. The reference ac wave of frequency super imposed on a given dc bias 

potential is applied to a working electrode in the electrochemical cell. The ac signal S(t) 

obtained from the cell is then multiplied by the reference sine or cosine wave and 

integrated to obtain. 

1.4.1 Equivalent Circuit Elements  

Solution resistance is often a significant factor in the impedance of an electrochemical 

cell. A modern 3 electrode potentiostat compensates for the solution resistance between 

the counter and reference electrodes. However, any solution resistance between the 

reference electrode and the working electrode must be considered when the cell is 

simulated. 
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1.5 Characterizations 

1.5.1 Attenuated Total Reflection Fourier Transform Infrared Spectroscopy  

Infrared spectroscopy is widely used in both research and industry as a simple and 

reliable technique for measurement, quality control, and dynamic measurement.  

 
Figure 1.15: Schematic representation of path of a ray of light for total internal 
reflection (Single reflection). The ray penetrates a fraction of a wavelength (dp) beyond 
the reflecting surface into the rarer medium of refractive index n2 and there is a certain 
displacement (D) upon reflection, n1 is refractive index of the interval reflection 
elements. 

The instruments are now small, and can be transported, even for use in field trials. 

Attenuated total reflectance (ATR) spectroscopy, also known as internal reflection 

spectroscopy or multiple internal reflectances (MIR), is a versatile, nondestructive 

technique for obtaining the infrared spectrum of the surface of a material or the 

spectrum of materials either too thick or too strongly absorbing to be analyzed by 

standard transmission spectroscopy. 

Attenuated Total Reflectance (ATR) spectroscopy, known as internal reflection 

spectroscopy or multiple internal reflectance (MIR), is a versatile, nondestructive 

technique for obtaining the infrared spectrum of the surface of material or the spectrum 

of materials either too thick or too strongly absorbing to be analyzed by standart 

transmission spectroscopy. 

In this technique, the sample is placed in contact with the internal reflection element 

(IRE), the light is totally reflected, generally several times, and the sample interacts 

with the evanescent wave resulting in the absorption of radiation by the sample at each 

point of reflection.  

The internal reflection element is made from a material with a high refractive index; 

zinc selenide (ZnSe), thallium iodide – thallium bromide (KRS-5), and germanium (Ge) 

are the most commonly used. 



27 
 

By measuring at a specific frequency over time, changes in the character or quantity of 

a particular bond can be measured. This is especially useful in measuring the degree of 

polymerization in polymer manufacture. Modern research machines can take infrared 

measurements across the whole range of interest as frequently as 32 times a second. 

This can be done whilst simultaneous measurements are made using other techniques. 

This makes the observations of chemical reactions and processes quicker and more 

accurate. 

1.5.2 Atomic Force Microscopy (AFM) 

For qualitative analysis in fractography, SEM (scanning electron microscopy) and 

stereoscopic techniques are widely used but are limited by quantitative measurements 

on the surface such as, roughness and striations on fractured surface. Therefore, the 

implementation of a reliable and specialized qualitative and quantitative technique that 

can reveal the three-dimensional characteristics of the surface and the study of related 

parameters is necessary.  

At the microscopic and submicroscopic scales such possibility is now offered by atomic 

force microscopy (AFM). 

Figure 1.16 [63] shows the AFM scheme, which consists of a cantilever and an 

integrated tip as shown in Figure 1.17 [64]. While the tip makes contact with the sample 

surface, a laser beam, focused on the back of the cantilever, reflects onto a quadrant 

photodetector. The deflection in cantilever due to applied normal and lateral forces can 

be measured by monitoring the variation in the photodetector signal. This allows the 

force detection in the nano-Newton to pico-Newton (10
-9 

to 10
-12 

N) regime.  

The principles of operation of an AFM are very simple: an extremely, usually 

atomically, sharp tip made of Si or Si
3
N

4 
is micro machined at the end of a flexible 

cantilever. The sensors used in this study were of silicon. It is then positioned in close 

proximity of the sample surface, where the cantilever is bent by the atomic force 

between the tip and sample surface .The tip geometry that was used during this work is 

shown in Figure 1.17.  

This tip is a contact mode nano-sensor, with a tip radius of 7 – 10 nm and 30 nm 

aluminum reflex coating on cantilever side that improves reflectivity. 
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Figure 1.16:  Squematic diagram of atomic force microscope 

 

Figure 1.17: Squematic AFM contact mode probe  

Magnification of the vertical surface features of an object, those features leaving the 

horizontal plane and extending in the vertical direction, have historically been measured 

by a stylus profiler. This profiler, invented by Schmalz  in 1929, utilized an optical lever 

arm to monitor the motion of a sharp probe mounted at the end of a cantilever. A 

magnified profile of the surface was generated by recording the motion of the stylus on 

photographic paper. 

This type of “microscope” generated profile “images” with a magnification of greater 

than 1000X. A common  problem with stylus profilers was the possible bending of the 

probe from collisions with surface features. Such “probe bending” was a result of 

horizontal forces on the probe caused when the probe encountered large features on the 

surface.  
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This problem was first addressed by Becker in 1950 and later by Lee. Both Becker and 

Lee suggested oscillating the probe from a null position above the surface to contact 

with the surface. Becker remarked that when using this vibrating profile method for 

measuring images, the detail of the images would depend on the sharpness of the probe. 

In 1971 Russell Young demonstrated a non-contact type of stylus profiler. In his 

profiler, called the topographiner, Young used the fact that the electron field emission 

current between a sharp metal probe and a surface is very dependent on the probe 

sample distance for electrically conductive samples. In the topographiner , the probe 

was mounted directly on a piezoelectric ceramic used to move the probe in a vertical 

direction above the surface. An electronic feedback circuit monitoring the electron 

emission was then used to drive the piezoceramic and thus keep the probe sample 

spacing fixed.  

Then, with piezoelectric ceramics, the probe was used to scan the surface in the 

horizontal (XY) dimensions. By monitoring  the  X-Y  and  Z position of the  probe, a 

3-D image of the surface was constructed. The resolution of Young’s instrument was 

controlled by the instrument’s vibrations. 

In 1981 researchers at IBM were able to utilize the methods first demonstrated by 

Young to create the scanning tunneling microscope (STM). Binnig and Rohrer 

demonstrated that by controlling the vibrations of an instrument very similar to Young’s 

topographiner, it was possible to monitor the electron tunneling current between a sharp 

probe and a sample. Since electron tunneling is much more sensitive than field 

emissions, the probe could be used to scan very close to the surface. The results were 

astounding; Binnig and Rohrer [65] were able to see individual silicon atoms on a 

surface. Although the STM was considered a fundamental advancement for scientific 

research, it had limited applications, because it worked only on electrically conductive 

samples. 

A major advancement in profilers occurred in 1986 when Binnig and Quate 

demonstrated the Atomic Force Microscope. Using an ultra-small probe tip at the end of 

a cantilever, the atomic force microscope could achieve extremely high resolutions. 

Initially, the motion of the cantilever was monitored with an STM tip. However, it was 

soon realized that a light-lever,  similar to the technique first used by Schmalz, could be 

used for measuring the motion of the cantilever. In their paper, Binnig and Quate 

proposed that the AFM could be improved by vibrating the cantilever above the surface. 
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The first practical demonstration of the vibrating cantilever technique in an atomic force 

microscope was made by Wickramsinghe in 1987 with an optical interferometer to 

measure the amplitude of a cantilever’s vibration. 

Using this optical technique, oscillation amplitudes of between 3 nm and 100 nm were 

achieved. Because the probe comes into close contact with the surface upon each 

oscillation, Wickramsinghe was able to sense the materials on a surface. The differences 

between photo-resist and silicon were readily observed. 

The AFM can be compared to traditional microscopes such as the optical or scanning 

electron microscopes for measuring dimensions in the horizontal axis. 

However, it can also be compared to profilers for making measurements in the vertical 

axis to a surface. One of the great advantages of the AFM is the ability to magnify in the 

X, Y and Z axes. 

When compared to a profiler, the AFM has a greater X-Y resolution because in the 

AFM the probe is sharper. Profilers can have high  vertical   resolutions, as low as 0.5 

nm. However, the bandwidth of the profiler measurements is much lower than an AFM. 

To achieve a resolution of 0.5 nm a profile has a bandwidth of approximately 0.1 Hz. 

The AFM bandwidth for the equivalent measurement is between 5 kHz and 10Khz. The 

length scale of an optical microscope overlaps nicely with an AFM. Thus, an AFM is 

typically combined with an optical microscope and with this combination it is possible 

to have a field of view dynamic range from mm to nm. In practice, an optical 

microscope is typically used for selecting the location for AFM scanning. 

The AFM is most often compared with the electron beam techniques such as the SEM 

or TEM. In general, it is easier to learn to use an AFM than an SEM because there is 

minimal sample preparation required with an AFM. With an AFM, if the probe is good, 

a good image is measured. A comparison of the some of the major factors follows as 

shown in Figure 1.18. 
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Figure 1.18:  Comparison of an AFM and SEM. 

SEM/TEM instruments are capable of doing much more than topography 

measurements. For example, electron beam instrumentation can do EDX measurements 

or even electron beam initiated lithography. Likewise, the AFM can make many types 

of measurements other than AFM topographical measurements. For example, AFM 

instruments can make thermal, magnetic and electric field maps of a surface. Like the 

SEM/TEM, an AFM can also initiate lithographic changes on a surface. 

Although the time required for making a measurement with the SEM image is typically 

less than an AFM, the amount of time required to get meaningful images is similar. This 

is because the SEM/TEM often requires substantial time to prepare a sample. With the 

AFM, little or no sample preparation is required. 

In comparison with an optical microscope and the SEM/TEM an AFM is more difficult 

to use than the optical microscope and easier to use than the SEM/TEM. Also, the AFM 

is typically more expensive than the optical microscope and less costly than an 

SEM/TEM. Figure 1.19 compares the relative time and cost for optical, AFM, and 

SEM/TEM microscopes. 
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Figure  1.19:  Comparison of the time for measurements and instrumentation cost 
optical, AFM, and SEM/TEM microscopes. 

Lastly, an optical microscope requires the least amount of laboratory space, while the 

SEM/TEM requires the most amount of laboratory space. An AFM is in the middle of 

these two. 

Finally, in comparison to an optical profiler, the AFM is more difficult to use. This is 

because the optical profiler does not need any adjustments. However, the AFM requires 

adjustments of the scan speed and the feedback control parameters [66]. 

1.5.3  Scanning Electron Microscope (SEM) 

The scanning electron microscope (SEM) is a type of electron microscope capable of 

producing high resolution images of a sample surface. SEM images have a 

characteristic three-dimensional appearance and are useful for judging the surface 

structure of the sample. 

In a typical SEM electrons are thermionically emitted from a tungsten or lanthanum 

hexaboride (LaB6) cathode and are accelerated towards an anode; alternatively electrons 

can be emitted via field emission (FE). Tungsten is used because it has the highest 

melting point and lowest vapour pressure of all metals, thereby allowing it to be heated 

for electron emission. The electron beam, which typically has an energy ranging from a 

few hundred eV to 50 keV, is focused by one or two condenser lenses into a beam with 

a very fine focal spot sized 1 nm to 5 nm.  

The beam passes through pairs of scanning coils in the objective lens, which deflect the 

beam in a raster fashion over a rectangular area of the sample surface.  
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Through these scattering events, the primary electron beam effectively spreads and fills 

a teardrop-shaped volume, known as the interaction volume, extending from less than 

100 nm to around 5 µm into the surface. Interactions in this region lead to the 

subsequent emission of   electrons  which  are  then  detected to  produce an image. X-

rays, which are also produced by the interaction of electrons with the sample, may also 

be detected in an SEM equipped for energy-dispersive X-ray spectroscopy or 

wavelength dispersive X-ray spectroscopy. 

The nature of the SEM's probe, energetic electrons, makes it uniquely suited to 

examining the optical and electronic properties of semiconductor materials. The high-

energy electrons from the SEM beam will inject charge carriers into the semiconductor. 

Thus, beam electrons lose energy by promoting electrons from the valence band into the 

conduction band, leaving behind holes [67]. 
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2. EXPERIMENTAL 

2.1 Chemicals 

Sodium perchlorate (NaClO4) from Fluka and acetonitrile (ACN) from  Riedel de Haen 

were used without further purification. The ProDOT-Bu2 monomer was synthesized in 

three steps from commercially available starting materials using Mitsunobu conditions 

[68] followed by alkaline hydrolysis [69] and decarboxylation [70] of the resulting 

precursor. 

2.2 Preparation of Single Carbon Fiber Microelectrodes 

Carbon fibers were prepared in our laboratory by a specific method. At first, a single 

carbon fiber  SGL SIGRAFIL HM48  (7µm in diameter, approx. 4 cm in length) was 

inserted  onto  5 cm length sticky tape while  1.5 cm of fiber was kept out of . After that, 

a filament of carbon fibers with a length of 8 cm   (approximately 25 fibers) were 

sticked with placing onto the single carbon fiber for electrical conduction of  single 

fiber, second sticky tape with the same length was placed and electrical conductivity 

was tested with a multimeter. Then SCFME was initially cleaned in acetone for 2 

minutes, then rinsed with distelled water and dried at room temprature. 

 

Figure 2.1: Top view image of a SCFME with an optical microscope 
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2.3 Electropolymerization, Cyclic Voltammetric Study 

Electropolymerization was performed in 0.1M NaClO4/ACN. A Parstat 2263 

potentiostat (Princeton Applied Research), a self-contained unit that combines 

potentiostat circuitry with phase sensitive detection (Faraday cage that Bass Cell Stand 

C3), was used for cyclic voltammetry (CV). Electropolymerisation was performed using 

a three electrode system with a SCFME, Pt wire or ITO coated glass  as a working 

electrode, a platinum (Pt) wire as a counter and a silver (Ag) wire as a pseudoreference 

electrode; the cell has a volume of 5 mL solution, arrange  in a way at a distance of, 1 

cm from each other. The pseudoreference electrode was calibrated externally using a 5 

mM solution of ferrocene/ferrocenium (Fc/Fc+) couple in the electrolyte and potentials 

were reported vs. the Ag electrode. 

2.4 Characterization 

Electrochemical impedance measurements were conducted in monomer free electrolyte 

solution with a 10 mV perturbation amplitude between a frequency range of 0.01Hz-

100 kHz with PARSTAT 2263-1 with using powersuite software. The electrochemical 

parameters of the p(ProDOT-Bu2) were  evaluated by employing the ZSimpWin 

(version 3.10) software from Princeton Applied Research. R(C(R(Q(RW))))(CR) 

equivalent circuit model was studied with resulted impedance data. 

The substrate surfaces coated with polymer by electrochemical polymerisation were 

analysed using an ATR-FTIR reflectance spectrophotometer (PerkinElmer, Spectrum 

One; with a universal ATR attachment with a diamond and ZnSe crystal C70951). 

The AFM images reported in this study were obtained with Nanosurf Easy Scan 2 ™ 

AFM. In all AFM analysis, the non-contact mode was employed by using Al coated 

high resonance frequency silicon tips (190 kHz) with 7μm thickness, 38μm mean width, 

225μm length and 48N/m force constant. High resolution images and the raw data 

collected by the Easy Scan 2 Software™ (version 1.5.0.0.) using left 

shadowing.Morphology of conducting polymer nanotubules was investigated via a high 

resolution Supra Gemini 35VP Field Emission Scanning Electron Microscope from 

LeoImaging was generally operated at 2 keV accelerating voltage, using the secondary 

electron imaging technique. 
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3. RESULTS AND DISCUSSION 

3.1 Electropolymerizations of ProDOT-Bu2 on CFMEs 

Poly(2,2-Dibuthyl-3,4-propylenedioxythiophene) (PProDOT-Bu
2
) thin films have been 

cyclovoltametrically coated onto micron size single carbon fiber microelectrodes 

(SCFME). An electrochemical impedance spectroscopic study (EIS) on the prepared 

electrodes is reported in this part which electropolymerization performed with different 

cycles (1, 3, 5, 10, 15 and 20) in the 0,1 M  NaClO4 / ACN solution. The 

electrochemical impedance data fitted to equivalent circuit model, used to find out 

quantitative relationships between the  suggested circuit  components. Effect of the 

cycle number (total charge)  on the capacitive behavior of the P(ProDOT-Bu
2
) 

SCFME’s  and morphology of films obtained by AFM and SEM were discussed.  

3.1.1 Electropolymerization and characterization of PProDOT-Bu2 on           

SCFMEs 

Schematic polymerization of ProDOT-(Bu)2 on SCFME are illustrated in figure 3.1. The 

radical cation structures are formed in electrolyte with applying potential follows 

coupling reaction and results with ordered polymer chains due to close form of 3- and 4- 

positions of thiophene ring.  

Electropolymerization processes were performed in 0.1 M NaClO4/ACN with various 

cycles (1, 3, 5, 10,15 and 20 cycles). ACN was chosen as a standard solvent to prepare 

electrolyte for 0.01 M ProDOT-(Bu)2 solution during this study. Electropolymerization 

of ProDOT-(Bu)2 SCFMEs were achieved  by cyclic voltammetry between 0-1.6 V at a 

scan rate of 100mVs-1 given in figures 3.2 -3.7.  

The current increases with the cycle, indicates insoluble polymer film was coated on 

SCFME. Multisweep cyclic voltammogram of 10-2 M ProDOT(Bu)2 also shows an  

increasing current density with each cycle and all anodic and corresponding cathodic 

peaks can be  easily seen after 10th cycle  (Epa1 = 0.22V , Epa2 = 0.45V, Epa3 = 1.3V, 

Epc1= 0.2V,  Epc2=0.35V,  Epc3=0,9V for Figure 3.5 ), resulting in the formation of thin 

films of conductive polymer on SCFME at 100 mVs-1 scan rate. 
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SCFMEs were washed throughly with ACN after electropolymerization and the scan 

rate dependence of all polymer films in monomer free solutions were investigated. Inset 

figures of Figure 3.2 to 3.7 shows redox behaviour of the polymer films on the SCFME 

in 0.1 M NaClO4 monomer free solution with different scan rates. 3 redox couples 

which are obtained by CVs in monomer free solution are roughly corresponding to the 

electron transfer peaks. (First redox couple can be only seen clearly in Figure 3.4) 

 

Figure 3.1: Electropolymerization of PProDOT-Bu2 on SCFMEs 
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Figure 3.2 : Cyclic voltammetry of electrogrowth of 10-2 M ProDOT(Bu)2 in 0.1 M 
NaClO4/ACN; scan rate:100 mV/s; scan number: 1 cycle on CFME . Inset: 
P[ProDOT(Bu)2] obtained under conditions described in cycled in different scan rates; 
a)50 mVs-1  , b)100 mVs-1 , c)150 mVs-1 , d) 200 mVs-1  , e)250 mVs-1  , f)300 mVs-1 , 
g) 350 mVs-1 , h)400 mVs-1 , i)450 mVs-1  , j)500 mVs-1  , k)750 mVs-1   l)1000 mVs-1  , 
m)1250 mVs-1  , n)1500 mVs-1  , o)2000 mVs-1  , p)2250 mVs-1 , q)2500 mVs-1  in 0.1 
M NaClO4/ACN. Qdep:1.91µC 
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Figure 3.3  : Cyclic voltammetry of electrogrowth of 10-2 M ProDOT(Bu)2 in 0.1 M 
NaClO4/ACN; scan rate:100 mV/s; scan number: 3 cycles on CFME . Inset: 
P[ProDOT(Bu)2] obtained under conditions described in cycled in different scan rates; 
a)50 mVs-1  , b)100 mVs-1 , c)150 mVs-1 , d) 200 mVs-1  , e)250 mVs-1  , f)300 mVs-1  
g), 350 mVs-1 , h)400 mVs-1 , i)450 mVs-1  , j)500 mVs-1  , k)750 mVs-1  , l)1000 mVs-1  
, m)1250 mVs-1  , n)1500 mVs-1  , o)2000 mVs-1  , p)2250 mVs-1 , q)2500 mVs-1 in 0.1 
M NaClO4/ACN. Qdep: 10.5 µC 
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Up to 10 cycles, both anodic and cathodic peaks can not be visually detected during the 

electrogrowth of polymer thin films by CV, scan rate dependencies of these polymeric 

thin films at high scan rates shows good reversibility in first and second redox couples. 

But anodic peak potential of third redox couple shifts in the positive direction and 

cathodic peak potential of the redox couple shifs to negative potential.  

The anodic and cathodic peak potentials of the films were independent on the scan rate, 

and the thin films could be cycled repeatedly between 50-2500 mVs-1 indicating the 

high stability of the polymer film without any decomposition below 10 cycles at very 

high scan rates. 
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Figure 3.4 : Cyclic voltammetry of electrogrowth of 10-2 M ProDOT(Bu)2 in 0.1 M 
NaClO4/ACN; scan rate:100 mV/s; scan number: 5 cycles on CFME . Inset: 
P[PProDOT(Bu)2] obtained under conditions described in cycled in different scan rates; 
a)50 mVs-1  , b)100 mVs-1 , c)150 mVs-1 , d) 200 mVs-1  , e)250 mVs-1  , f)300 mVs-1  , 
g) 350 mVs-1 , h)400 mVs-1 , i)450 mVs-1  , j)500 mVs-1  , k)750 mVs-1  , l)1000 mVs-1  
, m)1250 mVs-1  , n)1500 mVs-1  , o)2000 mVs-1  , p)2250 mVs-1 , q)2500 mVs-1 in 0.1 
M NaClO4/ACN. Qdep :33.2 µC 
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Figure 3.5 :  Cyclic voltammetry of electrogrowth of 10-2 M ProDOT(Bu)2 in   0.1 M 
NaClO4/ACN; scan rate: 100 mV/s; scan number: 10 cycles on CFME . Inset: 
P[PProDOT(Bu)2] obtained under conditions described in cycled in different scan rates; 
a)50 mVs-1  , b)100 mVs-1 , c)150 mVs-1 , d) 200 mVs-1  , e)250 mVs-1  , f)300 mVs-1  
g), 350 mVs-1 , h)400 mVs-1 , i)450 mVs-1  , j)500 mVs-1  , k)750 mVs-1  , l)1000 mVs-1  
, m)1250 mVs-1  , n)1500 mVs-1  , o)2000 mVs-1  , p)2250 mVs-1 , q)2500 mVs-1  in 0.1 
M NaClO4/ACN. Qdep: 110.4 µC 

Almost same anodic and cathodic peak potentials were obtained at varied scan rates for 

modified electrodes obtained up to 10 cycles which is a similar behaviour for the 

adsorbtion of species on the electrode surface where ΔE value almost so small. In 

contrast, the oxidation and reduction couple potentials shifted negatively and positively, 

after 10 cycles ΔE value ( ΔE = Ea-Ep ) increases. During  the scan rate dependency 

measurements  in monomer free solution, this is a clear indication of changes of surface 

morphology of polymer thin film on the SCFME. However, (it will be discussed in later 

sections) uncoated regions of SCFMEs are started to disappear and a nano-villus like 

film was obtained at 20th cycle.Scan rate dependencies of the polymer films were 

investigated for the  peak currents of  2nd and 3rd redox couples (1st redox couple is not 

shown due to overlapping with 2nd couple far all except 5 cycles) using current density 

values with respect to the scan rate instead of square root of scan rate which indicates a 

diffusion limited process of films.Correlation coefficient of the oxidation and reduction 

peaks for second and third redox couples were calculated  as in the range of 0,999 – 

0,986  indicate  a thin-layer behaviour of the films [71]. 
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Figure 3.6 : Cyclic voltammetry of electrogrowth of 10-2 M ProDOT(Bu)2 in 0.1 M 
NaClO4/ACN; scan rate:100 mV/s; scan number: 15 cycles on CFME . Inset:  
P[PProDOT(Bu)2] obtained under conditions described in cycled in different scan rates; 
a)50 mVs-1  , b)100 mVs-1 , c)150 mVs-1 , d) 200 mVs-1  , e)250 mVs-1  , f)300 mVs-1 , 
g) 350 mVs-1 , h)400 mVs-1 , i)450 mVs-1  , j)500 mVs-1  , k)750 mVs-1  , l)1000 mVs-1  
, m)1250 mVs-1  , n)1500 mVs-1  , o)2000 mVs-1  , p)2250 mVs-1 , q)2500 mVs-1  in 0.1 
M NaClO4/ACN. Qdep: 190.2 µC. 
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Figure 3.7 : Cyclic voltammetry of electrogrowth of 10-2 M ProDOT(Bu)2 in 0.1 M 
NaClO4/ACN; scan rate: 100 mV/s; scan number: 20 cycles on CFME . Inset: 
Poly[PProDOT(Bu)2] obtained under conditions described in cycled in different scan 
rates; a)50 mVs-1  , b)100 mVs-1 , c)150 mVs-1 , d) 200 mVs-1  , e)250 mVs-1  , f)300 
mVs-1 , g) 350 mVs-1 , h)400 mVs-1 , i)450 mVs-1  , j)500 mVs-1  , k)750 mVs-1  , l)1000 
mVs-1  , m)1250 mVs-1  , n)1500 mVs-1  , o)2000 mVs-1  , p)2250 mVs-1 , q)2500 mVs-1 
in 0.1 M NaClO4/ACN. Qdep: 417.5 µC. 
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Figure 3.8 : a) Plot of second anodic and corresponding cathodic peak current density 
vs. the  scan rate of the polymer film up to 500 mVs-1 in monomer free solution in 0.1 M 
NaClO4/ ACN. b)  Plot of third anodic and corresponding cathodic peak current density 
vs. scan rate dependence of the polymer film up to 500 mVs-1  in monomer free solution 
in 0.1 M NaClO4/ ACN. 
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3.1.2 EIS and Equivalent Circuit Modelling of PProDOT-Bu2  on  SCFMEs  

EIS measurements were performed at different cycles of the PProDOT-Bu2 in monomer 

free electrolyte solution where stability of the film exhibit good electroactivity without 

undergoing deformation.  

Figure 3.8 illustrates Nyquist plots of the PProDOT-Bu2 film where the magnitude of 

the imaginery parts are very large for all cycles and system shows capacitive behaviour 

for all. 

Figure 3.9 shows Bode magnitude and phase angle plots at which the frequency 

dependence of the system is more informative compared to Nyquist plots. The complex 

plane impedance plots demonstrate a vertical line with a phase angle  very close to -85o 

and bode phase plots also shows a shift to lower frequency while the bode magnitude 

curve of each cycles also show  shift to lower frequency region with a constant slope of 

linear part indicating an increament of double layer capacitance     ( CDL ) with 

increasing the cycle numbers in bode magnitude plot (Table 1). 

The low frequency capacitance (CLF) values from impedance spectroscopy were 

obtained from the slope of a plot of the imaginary component (ZIM) of the impedance at 

low frequencies versus inverse of the reciprocal frequency (f) where (f = 0.01 Hz)  

using following equation [72]; 

(CLF = -1/2πfZim)                                                                                                     (3.1) 

 The variation of the CLF  and the phase angle were showed  with respect to the cycle 

number (Table 3.1.). The phase angle varies in a narrow range around -8o while the CLF  

increases significantly as the cycle number increases after 10 cycles. 
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Figure 3.9 : Nyquist Plots of P(ProDOT-Bu2)  electrografted on SCFMEs correlated 
with the calculated data from theoretical equivalent circuit; R(C(R(Q(RW))))(C(R)). 
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Figure 3.10 : Bode Magnitude Plots of P(ProDOT-Bu2)  electrografted on SCFMEs 
correlated with the calculated data from theoretical equivalent circuit; 
R(C(R(Q(RW))))(C(R)). 
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Figure 3.11 : Bode Phase Plots of P(ProDOT-Bu2)  electrografted on SCFMEs 
correlated with the calculated data from theoretical equivalent circuit; 
R(C(R(Q(RW))))(C(R)). 

 

Table 3.1 :  The variation of CLF (from Nyquist at 10 mHz frequency) (Fig.3.11.) and 
phase angle (Fig.3.9) values of PProDOT-Bu2 on SCFME. 

Cycle 

Number 

1 3 5 10 15 20 

CLF / 
mFcm-2 

1.36 4.95 11.02 45,89 177.45 446.13 

Phase 
Ang./Deg.

87.3 86.4 85.2 83.6 81.8 79.9 

                 *Carbon fiber Area: 25,12 x 10-5 cm2 

The electrochemical parameters of the SCFME/PProDOT-Bu2 electrolyte system were 

evaluated by employing The ZSimpWin (version 3.10) software from Princeton Applied 

Research. We observed excellent agreement between experimental results and the 

parameters obtained from the best fitting electrical equivalent circuit model and the chi-

squared (χ2) values minimized to 10-4.  χ2 is the function defined as the sum of the 

squares of the residuals. R(C(R(Q(RW))))(CR) equivalent circuit model simulated to 

find the optimum circuit conditions and compared. Electrical equivalent circuit was 

successfully applied to the experimental data to explain the interface between the 

carbon fiber microelectrode, and the polymer film for all cycles. 
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Model used during simulation is very similar to the models that we have reported 

recently in our previous work [73]. The first component is the bulk solution of solvent, 

Rs, is the parallel combination of the double layer capacitance Cdl, and R1 is the charge 

transfer resistance. A series connection to charge transfer resistance (R1) made up using 

CPE in parallel with R2 where the the low frequency behavior is determined by the 

adsorption of cations and can be described by adsorption resistance and W is the 

Warburg impedance of the polymer. The last component is a capacitor element (CCF) is 

introduced in parallel with a resistor (CCF) correspondig to polymer coated carbon fiber 

capacitance and resistance (Figure 3.12).  

 

 

Figure 3.12 : Scheme of the equivalent circuit 

Table 3.2 : Cycle dependence of the parameters calculated from the equivalent circuit 
which is given in Figure 3.8. 

Cycle 

Number 

1  3 5  10  15  20  

Rs / kOhm 6.993 7.552 8.100 8.201 7.912 7.623 

Cdl / µF 0.279 0.674 0.995 0.672 10.611 26.1 
R1 / kOhm 1260 2.14 0.961 1.68 5.44 5.37 

Q / Y0 / μSs-n 5.04x 10-2 0.42 1.69 10.42 29.82 75.92 
n 0.883 0.957 0.968 0.964 0.967 0.951 

R2 /MOhm 832.123 67.245 49.006 24.213 5.088 2.521 
W / Y0 / μSs-n 1.01x10-8 6.22x10-14 6.47x107 14.7 503 3.07 

CCF / µF 0.098 0.015 0.019 0.020 1.083 4.116 
RCF / kOhm 0.179 0.555 0.628 1.630 2.220 1.240 
Chi Squared 

(χ2) 
2.49x10-4 1.15x10-4 1.21x10-4 6.46x10-4 5.42x10-4 3.50x10-4 

 
Table 3.2. shows that suggested  electrical equivalent circuit in this work was 

successfully applied to the experimental data to explain the increament of the capacitive 

behaviour of SCFME/PProDOT-Bu2 with increasing the cycle number. 
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Figure 3.13 : Variation of solution resistance and double layer capacitance of the 
PProDOT-Bu2 film with respect to the cycle number. 

The variation of the solution resistance (Rs) and the double layer capacitance (CDL) 

values were plotted with respect to the cycle number (Figure 3.12.). The solution 

resistance varies in a very narrow range around 8 kOhm while the double layer 

increases significantly as the cycle number increases after 10 cycles. 
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Figure 3.14 : Variation of polarization resistance and carbon fiber capacitance of  the 
PProDOT-Bu2 film with respect to the cycle number. 
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Additionally, the variation of the polarization resistance (RP) and the carbon fiber 

capacitance (CCF) values were plotted with respect to the cycle number (Figure 3.14). 

Both values are varies oppositely and carbon fiber resistance varies in a very narrow 

range around 4 µF which indicates the simulation data fits the experimental results 

perfectly. 

3.1.3 FTIR Reflectance-Spectra (ATR-FTIR) 

 

Figure 3.15.FTIR-ATR spectrum of CFMEs potentiodynamically coated by 10 mM 
ProDOT-Bu2 at 100mV/s scan rate 

FTIR-ATR of PProDOT-Bu2 coated CFME shows the corresponding spectra between 

4000 and 650 cm-1. A pattern of five main bands (1470, 1287, 1155, doublet at 1017 

and 826 cm-1) was observed for a PProDOT-Bu2 film coated on CFME Figure 3.15. 

The band at 1470 cm-1 (aromatic stretching of C=C bond) and a peak at 1287 cm-1 (in 

plane deformation of C-H bond at β position) are known to be characteristic vibrational 

peaks of polythiophene. Vibrations at 1469-1470 cm-1, 1295, 1286 cm-1 and 1160-1155 

cm-1 originate from the stretching of C-C and C= C bonds in the thiophene ring. 

Further vibrations from the C-S bond in the thiophene ring can be seen at 833-825 cm-1 

assigned to ν(C-S) [C-S- stretching]. Vibrations at 1017-1048 cm-1 are assigned to 

stretching in the alkylenedioxy group [74]. 
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3.1.4  Morphology of the films 

Selections of CFs, coated with polymer under same conditions described above 

sections, were studied by SEM and AFM. All images shown represent an ex-situ 

microscopic work which allows us to determine the film deposition strategy on the 

SCFMEs. 

 
Figure 3.16 : SEM image of 1 cycle coated PProDOT-Bu2 on SCFME.  Inset: AFM 
images of PProDOT-Bu2 coated CFME with image area of 3.5μm x 3.5μm. 

 

 
Figure 3.17 : SEM image of 3 cycles coated PProDOT-Bu2 on SCFME.  Inset: AFM 
image of PProDOT-Bu2 coated SCFME with image area of 3.5μm x 3.5μm. 
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Figure 3.18 : SEM image of 5 cycles coated PProDOT-Bu2 on SCFME.  Inset: AFM 
images of PProDOT-Bu2 coated SCFME with image area of 3.5μm x 3.5μm. 

 
Figure 3.19 : SEM image of 10 cycles coated PProDOT-Bu2 on SCFME.  Inset: AFM 
images ofPProDOT-Bu2 coated SCFME with image area of 3.5μm x 3.5μm. 

 

Polymerization of PProDOT-Bu2  starts both on the surface and in the striations of fiber 

at first cycle and continues up to third cycle with slighty disapperance of striations 

which is also another way to determine the second starting point of polymerization. 

With increasing the cycle number to five, local lumps are formed on the surface and the 

striations are sharply disappearing. 
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Figure 3.20 : SEM image of 15 cycles coated PProDOT-Bu2 on SCFME Inset: AFM 
images of PProDOT-Bu2 coated SCFME with image area of 3.5μm x 3.5μm. 

 
Figure 3.21 :  SEM image of 20 cycles coated PProDOT-Bu2 on SCFME Inset:AFM 
images of PProDOT-Bu2 coated CFME with image area of 3.5μm x 3.5μm 

In correlation, the reversible oxidation and reduction peaks of first 5 cycles are clearly 

seen and the amount of uncoated fiber area dominates the EIS results with slightly 

decreasing of phase angle and the magnitude of Zim at nyquist plots. Also a monemer 

free plot of first five cycles obeys the adsorbtion mechanism with very reversible anodic 

and cathodic peaks due to thin film formation.  

In contrast to unordered   nucleation of first five cycles, all surface area of CF is coated 

with polymeric thin film after 10th cycle and polymerization ratio increases.  
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Coating height, which causes a sharp increament of Cdl after 10th cycle, shifts the redox 

couples negatively and positively at high scan rates in monomer free solutions due to 

bulk polymer film at interface with increasing porosity. 

Film porosity can be explained when the 10th 15th and 20th cycles are compared.The  

hillock like  structures with app. equal Z ranges  at 10th cycle are becomes to hills via 

15th cyle. Finally after 20th cycle, nanosize-villus  like porous surface with a very large 

surface  area  obtained. 

3.2 Potential Effects on PProDOT-Bu2 coated SCFMEs; an EIS Investigation at 

Applied Potentials 

PProDOT-Bu2 film deposited at 100 mV/s, 20 cycle in 0.1 M NaClO4/ACN solution 

and electrochemical impedance spectroscopy (EIS) measurements were performed at 

different applied potentials in the range of 0.1 V to 1.3 V with a potential step of 0.1V 

in parallel to cyclic voltammogram of the PProDOT-Bu2 in monomer free electrolyte 

solution where stability of the film exhibit electroactivity up to 0.8 V potential   applied. 

The film morphology dramatically changes and surface area decreases when the applied 

potential arises around 1.2 V. 

3.2.1 EIS and Equivalent Circuit Modelling of PProDOT-Bu2 on   SCFMEs     

Figures 3.22 and 3.23 show bode phase angle and magnitude of Z plots in which the 

frequency dependence of the system is clearer compared to Nyquist plot (Figure 3.21.). 

In the potential region as the frequency increase from 10 mHz to 10 Hz magnitude of 

impedance exhibits a large drop, in the case of higher electrode potentials drop in 

magnitude is a narrow frequency window 10 mHz to 1000 Hz. From these observations 

we can conclude that the most capacitive film obtained when the 0.4 V potential 

applied.  
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Figure 3.22 : Nyquist plots at -0.1 V to 1.2 V for a PProDOT-Bu2 film deposited at 100 
mV/s, 20 cycle in 0.1 M NaClO4/ACN solution. 
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Figure 3.231 : Bode plots at 0.1 V to 1.2 V for a PProDOT-Bu2 film deposited at 100 
mV/s, 20 cycle in 0.1 M NaClO4/ACN solution. 
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Figure 3.24 : Bode phase angle plots at 0.1 V to 1.2 V for a PProDOT-Me2 film 
deposited at 100 mV/s, 20 cycle in 0.1 M NaClO4/ACN  solution. 
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Figure 3.25 : Variation of low frequency and double layer capacitances with the low 
frequency phase angle points at applied potentials of the PProDOT-Bu2 film. 

Bode phase angle of the films was given in Figure 3.23. We can separate into three 

frequency regions namely low, medium and high frequency regions.  
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Low frequency region is from 10 mHz to 1 Hz, in this regions all potential except 0.1V, 

0.2V, 1.2V and 1.3 V,  polymer film shows a maximum at 10 mHz with a phase angle 

of around (-80o), starting from this frequency phase angle decreases and where the 

electrode behaves in the low frequency region of  100 to 200 mHz, at 1.3 V two peak 

observed at 10 mHz (-45o) and 1 Hz (-40o).   

Figure 3.25 also illustrates the variation of the low frequency capacitance values of 

PProDOT-Bu2 film deposited electrochemically at 100 mV/s, 20 cycle in 0.1M 

NaClO4/ACN solution. The shape of the plot has a very good agreement with the 

corresponding CV of the polymer film in monomer free solution up to 1.3 V. 

After 1.2V applied to the system, the low frequency values decreases dramatically with 

respect to the double layer capacitance values as shown in Figure 3.25. 

The low frequency capacitance values from impedance spectroscopy were obtained 

from the slope of a plot of the imaginary component (ZIM) of the impedance at low 

frequencies versus inverse of the reciprocal frequency (f) using previously described 

equation (1-3). 

Table 3.3: Potential dependence of the parameters calculated from the model which is 
given Figure 3.10. 

 0.1V 0.2V 0.3V 0.4V 0.5V 0.6V 

Rs / 
kOhm 

16.22 12.61 8.25 7.47 7.38 7.39 

Cdl / µF 4.85x10-4 1.15x10-2 14.16 54.58 52.79 3.55x109 
R1 /kOhm 16.26 3.73 8.08 1.83 1,67 1.28 

Q / Y0 / 
Ss-n 

1.06x 10-7 4,97x10-6 5,63x10-5 5.89x10-5 4.57x10-5 5.18x10-5 

n 0.66 0.55 0.91 0.98 0.98 0.97 
R2/MOhm 0.05 0,40 7.13 1.00x10-7 0.18 1.25 

W / Y0 / 
Ss-n 

1.37x10-6 9.61x10-6 6.32 3.08x10-6 1.95x10-6 2.64x10-6 

CCF / µF 2.13 46.95 1.96 5.96 4.58 3.45 
RCF / 

kOhm 
998.31 7720.87 2.65 0.51 0.36 0.34 

Chi 
Squared 

(χ2) 

5.31x10-4 6.77x10-4 1.02x10-4 8.00x10-5 9.58x10-5 8.02x10-5 
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  Table 3.3 continue 
 0.7V 0.8V 0.9V 1.0V 1.1V 1.2V 

Rs / 
kOhm 

7.42 7.44 7.53 7.53 7.62 7.71 

Cdl / µF 25.76 21.93 16.29 15.58 12.54 8.11 
R1 / 

kOhm 
1.08 1.27 1.44 2.06 3.59 11.49 

Q / Y0 / 
Ss-n 

5.71x10-8 5.33x10-5 5.38x10-5 5.28x10-5 5.39x10-5 4.84x10-5 

n 0.97 0.97 0.97 0.96 0.95 0.97 
R2 

/MOhm 
0.87 1.13 0.56 0.76 1.09 0.44 

W / Y0 / 
Ss-n 

1.91x10-6 1.53x10-6 2.19x10-6 5.15x10-6 1.66x10-5 1.27x10-4 

CCF / µF 3.24 3.11 3.15 2.84 3.34 3.71 
RCF / 

kOhm 
0.28 0.34 0.35 0.49 0.79 1.61 

Chi 
Squared 

(χ2) 

7.55x10-5 9.98x10-5 1.25x10-4 2.03x10-4 2.22x10-4 1.48x10-4 

The electrochemical parameters of the SCFME/PProDOT-Bu2 electrolyte system were 

evaluated by employing The ZSimpWin (version 3.10) software from Princeton Applied 

Research.  

We observed excellent agreement between experimental results and the parameters 

obtained from the best fitting electrical equivalent circuit model and the chi-squared   

(χ2 ) values minimized to 10-4. χ2 is the function defined as the sum of the squares of the 

residuals. 

Same   equivalent circuit model (Figure 3.12.) was simulated to find out the optimum 

circuit conditions and compared. Electrical equivalent circuit was successfully applied 

to the experimental data of applied potentials between 0.1 V and 1.2 V to explain the 

interface between the carbon fiber microelectrode, and the polymer film for all cycles at 

applied potentials. 

Due to change in surface morphology (will be explained in next section), 1.3 V applied 

system could not be simulated perfectly and the chi-squared values obtained above 10-4. 
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Figure 3.26 : Variation of the solution and polarization resistance, double layer 
capacitance of the PProDOT-Bu2 film. 

Figure 3.26 shows variation of solution resistance, double layer capacitance and R2 of 

the PProDOT-Bu2 film. Rs is almost constant and it is independent of Edc.  

With comperasion of  Table 3.2 and Table 3.3 ,experimental results allow us to describe 

Rs as the solution, RCF as the carbon fiber and R2 as the adsorption resistance while the 

CCF as the coated carbon fiber capacitance. 

3.2.2. Morphology of Coatings    

According to experimental EIS results and theoretical equivalent circuit simulations, the 

dramatic decrease of double layer capacitance can be easily explained with the help of 

SEM micrographs. 
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Figure 3.27 : SEM image of 20 cycles coated PProDOT-Bu2 on SCFME after 0.8V 
potential applied. 

 

Figure 3.28 : SEM image of 20 cycles coated PProDOT-Bu2 on SCFME after 1.2 V 
potential applied 

Selections of CFs, coated with polymer under same conditions described above 

sections, were studied by SEM at two of applied potentials.Figure 3.27 and 3.28 

corresponds to the films surfaces of 0.8 V and 1.2 V respectively.  

The surface morphology of the thin films does not change significiantly up to 0.8 V 

potential applied.  
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But the nano-villus like structures of the films surprisingly disappears after that 

potential and non-porous surface results with  the decrease of the  surface area of the 

film after 1.2 V potential applied. 

In correlation, the surface of the film shown in Figure 3.28 is resulted with the 

decreasing double layer capacitance or low frequency phase angle obtained from EIS 

results. 

In addition, experimental results could not be simulated at high potentials. This may be 

another sign for changing film porosity where the suggested equivalent circuit fits to he 

experimental data at only porous surfaces as suggested in literarure [74]. 

3.3 Capacitive Behavior of  PProDOT-Bu2 Thin Films on Different Substrates 

Electropolymerization processes were performed in 0.1 M NaClO4/ACN with 10 cycles 

for Pt and ITO coated glass substrates in order to investigate electrochemical impedance 

results such as double layer capacitance and low frequency capacitance. Obtained 

results were compared with EIS results of bare substrates ACN was chosen as a standart 

solvent to prepare electrolyte for  0.01 M  ProDOT-(Bu)2 solution during this study. 

Electropolymerization of   ProDOT-(Bu)2 / SCFMEs is previously showed in Figure 3.7. 
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3.3.1 Electropolymerization of PProDOT-Bu2 on SCFME, Pt  and  ITO                        

Surfaces 

-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6
-0,2

-0,1

0,0

0,1

0,2

0,3

0,4

 

Potential / V

C
uu

re
nt

 D
en

si
ty

  /
 m

A
cm

-2
 

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

0,0

0,5

1,0

1,5

 

 

Figure 3.29 : Cyclic voltammetry of electrogrowth of 10-2 M ProDOT(Bu)2 in 0.1 M 
NaClO4/ACN on Pt surface; scan rate: 100 mV/s.Inset: First cycle of ProDOT(Bu)2 on 
Pt surface. 
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Figure 3.30 : Cyclic voltammetry of electrogrowth of 10-2 M ProDOT(Bu)2 in 0.1 M 
NaClO4/ACN on ITO coated glass surface; scan rate: 100 mV/s. Inset: First cycle of 
ProDOT(Bu)2 on ITO coated glass surface. 



61 
 

Cyclic voltammograms of ProDOT-Bu2 films in 0.1 M NaClO4/ACN on ITO coated 

glass and Pt surfaces are shown in Figure 3.29 and 3.30 where the characteristic 

oxidation and reduction peaks are clearly seen around 0.4V and 1.2V as excepted. 

3.3.2 Comperative EIS Study of  PProDOT-Bu2  on SCFME, Pt  and ITO Surfaces 

EIS results of the films are plotted in Figures 3.31, 3.32 and 3.33. Vertical shift of the 

graphs in the Bode plot is a sign of changing solution resistance which is dominantly 

related with the distance of electrodes and electrode geometry as well.   
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Figure 3.31 : Nyquist plots of PProDOT-Bu2 film deposited at 100 mV/s, 10 cycle in 
0.1 M NaClO4/ACN on SCFME, Pt and ITO coated glass substrates. 
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Figure 3.32 : Bode plots of PProDOT-Bu2 film deposited at 100 mV/s, 10 cycle in 0.1 
M NaClO4/ACN on SCFME, Pt and ITO coated glass substrates. 
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Figure 3.33 : Bode phase plots of PProDOT-Bu2 film deposited at 100 mV/s, 10 cycles 
in 0.1 M NaClO4/ACN on SCFME, Pt and ITO coated glass substrates. 

Cdl and CLF values of all substrates were calculated for coated and uncoated (graphs are 

not shown) substrates as described above and summarized in Tables 3.4 and 3.5. 
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Table 3.4 Double layer and low frequency capacitance values of bare ITO coated glass, 
Pt and SCFME in 0.1 M NaClO4/ACN solutions. 

BARE CLF /  mFcm-2 Cdl / mFcm-2 
ITO 22 x 10-3 9.43 x 10-2 
Pt 3,9 1.54 
CF 2.21x10-2 1.26 x 10-1 

 

Table 3.5 Double layer and low frequency capacitance values PProDOT-Bu2 film 
deposited at 100 mV/s, 10 cycles in 0.1 M NaClO4/ACN on SCFME, Pt and ITO coated 
glass substrates. 

10 cyc CLF /  mFcm-2 Cdl / mFcm-2 
ITO 8.85 6.45 
Pt 83.52 164.41 
CF 45.32 272.34 

 

Table 3.6 Ratios of double layer and low frequency capacitance values of SCFME, Pt 
and ITO coated glass substrates. 

 CLF coated/uncoated Cdl coated/uncoated 
ITO 402 68 
Pt 21 106 
CF 2036 2142 

 
 
 

The Cdl and CLF ratios of all substrates for coated and uncoated substrates. (Table 3.6.) 

Indicates an increament when coated with thin films of ProDOT-Bu2. However, 

depending on the substrates, Pt favors the increament of Cdl and ITO coated glass 

favors an increament of CLF while SCFME favours the both values nearly equal with an 

increasing ratio of more than 2000 times as compared to bare SCFME. 
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4. CONCLUSION 

2,2-Dibutyl-3,4-propylenedioxythiophene monomer was performed onto  single carbon 

fiber micro electrode by electrochemical polymerization and electrochemical 

characterizations, morpholology of the films were studied. Testing the polymer film in 

the use on SCFME as an active electrode material in supercapacitor applications was 

tested at different potentials. 

Electrochemical Impedance Spectroscopy is a powerful tool for the analysis of 

electrochemical system. This technique was used to explain electrochemical 

characteristics of the polymer electrodes like resistance, capacitance and impedance. 

Equivalent circuit simulations corresponding to the polymer modified microelectrodes 

calculated and suggested values of the each component was found aggrements with 

experimental data.  

Device properties based on PProDOT-Bu2 were checked with the applying potentials. 

Typical CV of the polymeric film exhibits very well-defined and reversible redox 

processes. The impedance study on specific capacitance values investigated between 0.1 

V and 1.4 V. A potential value of 0.4 V was found to be the most suitable condition for 

the polymer modified microelectrodes as supercapacitor components. 

Morphology of the resulting polymer shows that thickness of the polymer film is a 

function of number of cycles and increases with the number of deposition charge during 

the electropolymerization. Morhology of the film also changes during applying potential 

which also detoriates both the film surface and the capacitive behavior of film. 

Investigation of out different substares such as Pt, ITO coated glass showed that, 

SCFMEs are the most suitable ones for using supercapacitor components in 

comparasion with to other 10 cycles of composite electrodes. 
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