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CAMERA-BASED VEHICLE DETECTION AND TRACKING
SUMMARY

In recent years, developing on-board driver assigtaystems (DAS) aiming to alert
drivers about driving environments, and possibléiston with other vehicles is
becoming active research area among automotive sinds, suppliers and
universities. In these systems, robust and religblecle detection and tracking are
the basic steps. These basic steps could be adsbegblby one or multiple sensors
such as optical and radar sensors, etc.

Vision-based vehicle detection and tracking forelirgent driver assistance has
received considerable attention over the last Hssyel'here are at least three reasons
for this attention:

1. The startling losses both in human lives and fieasaused by accident
severity,

2. The growth in technologies within the last 30 yeafscomputer vision
research,

3. The exponential growth in processor speeds thatemadossible running
computation-intensive video-processing algorithms.

With the ultimate goal of building autonomous védsc for reducing accidents
caused by the main threats of driver inattenti@mious projects have been launched
worldwide. Monocular vision based vehicle detectiand tracking systems are
particularly interesting for their low cost and thégh-fidelity information they
provide about the driving environment.

The work presented within this master thesis pwedo® study computer vision
algorithms for automatic vehicle detection and kinag in monochrome images
captured by mono camera. The work has mainly beensktd on detecting and
tracking vehicles viewed from behind in daylighthddions.

The method presented within the thesis included aaa finding which has been
implemented by a lane detection algorithm to avfailde detection of vehicles
caused by the distraction of background objectssuAsng that lanes are
successfully detected, vehicle presence insidedhe area is hypothesized by using
“shadow” as a cue. Hypothesized vehicle locatiores \gerified using “vertical
edges” and “shadow” is also used for verificatiétiter extracting vehicles, the
algorithm effectively track them during successinege frames in a long image
sequence using a Kalman filter based tracking dlguar

The 2D-vehicle velocity provided by the algorithmsplemented within the thesis
will be used to estimate parameters of the (3Dyweald motion of vehicles relative
to the host vehicle with the aim of forward colhsiwarning as a future work.
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BILGISAYARLI GORU TEMELL I ARAC BELIRLEME VE TAK IBi
OZET

Surlcuyd, surgikosullarl ve carpgma olasilgina kagl uyaran arac ici surict yardim
sistemlerinin geltiriimesi; otomotiv endustrisi, yan sanayi ve Unsiteler arasinda
giderek yayginlgan bir uygulama alani bulmaktadir. Bu sistemleramelini,
dayanikli ve guvenilir birsekilde gerceklgtiriilmesi amacglanan arag¢ algilama ve
takibi calsmalar olgturmaktadir. Arac algilama ve takibi, optik ya dadar
algilayicilar gibi bir ya da c¢oklu algilayicilar érme temellendirilmi sistemler ile
gerceklgtiriimektedir.

Surdcu yardim sistemlerinin gglrilmesi surecinde; goru-tabanh ara¢ algilama ve
takibi Gzerine, son 15 yildir, ciddi birgdim s6z konusudur. Goéri-tabanli arag
algilama ve takibi cayjmalarina olan @limin baslica ¢ sebebi;

1. Giderek artan trafik kazalarinin sebeb @duhayati kayiplarin ve devlet
ekonomisine getir@i zararin endje verici boyutlara ukamasi,

2. Bilgisayarla gort argirmalarinin son 30 yili icerisinde teknolojide rdapa
gelen buyime,

3. Islemci hizinin giderek artmasi sonucglein hizinin éncelik tadigl video-
isleme algoritmalarinin ¢gimasinin mamkun kilinmasidir.

Suricunun dikkatsizli, yorgunlyzu gibi sdrtict kaynakli etmenlerin sebeb @au
kazalari azaltmak amaciyla nihai amaci suricudefint®az — otonom araglar
gerceklgtirmek olan pek cok proje, tum dinyada, uygulamanalbulmutur.
Tekg06zIi imgeleme olarak tabir edilen tek kameeagercgeklgtirilen gorui-tabanh
ara¢ algilama ve takibi, diik maliyeti ve yiksek kalitede veri @amasi sebebiyle
bilhassa ilgi gormektedir.

Bu dokimanda bahsi gecen yiksek lisans tezi kapsnrsunulan c¢aimada, tek
kamera aracinyla toplanan gri seviye goruntuler icerisinde aaémlama ve takibi
amaclanmgtir.  Sunulan cajmada, temel olarak, araclarin arka gorandmleri
algilanmaya ve sonrasinda takip edilmeyesgaiistir. Islenen goruntiler, gun ici
saatlerine dairdir. Galiirilen algoritmalar, gece goruntileri icin tasamaamstir.

Tez kapsaminda sunulan uygulamada; goruntiinin @ekanda yer alan aracsdi
nesnelerin, algilama surecinde hatalara sebeb ch:iamin dgrudan kameranin
onunde go6zlemlenen vyol yilzeyi, bigerit algilama algoritmasi arag@iyla,
belirlenmektedir Seritlerin gtvenilir birsekilde algilandiklari varsayilarak, araglarin
altinda olgan golgelerin ayirt edici 6zellik olarak kullanirtay belirlenen yol
yuzeyinde, muhtemel araglarin konumlari kestirilir.
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Kestirilen ara¢c konumlarinin gaulugu, dikey kenarlar ve yine arac altinda sin
gdlgenin ayirt edici 6zellik olarak kullanimiylatké edilir. Ara¢ algilama sirecinin
tamamlanmasi sonrasinda, algilanan araclarin tgltaisik gortntiler boyunca
araclarin konum dgsikliklerinin tayini), Kalman filtresi temelli bir Eoritma
aracilgiyla, ardsik gorintiler boyunca gercekteilir.

Tez kapsaminda uygulanan algoritmalar, iki boyugidriintii dizleminde, arag
hizinin belirlenmesini gdamaktadir. Nihai amac; yoldakighr araclarin, kameranin
bulundgu araca gore U¢ boyutlu g mesafe ve hizlarinin tayinidir. Uc boyutlu
bagil hiz ve mesafe tayini, araclarin yer koordinatesnindeki gercek hareketlerini
belirlemektedir. Dolayisiyla, tehdit cftwrabilecek araclara kar striculerin
uyariimasini sglayacak sistemlerin getirilmesi mimkun olabilecektir.
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1. INTRODUCTION

Since the first vehicle which moved by its own powas build in Paris in the 18

century, technological and social developmentsttedoday’'s dominant place of
vehicles, trucks and busses in modern society.eSiinen, we have constantly been
confronted with negative consequences of vehicBys. means of rules, infra-

structure, road and car design these negative quoesees were tried to be
controlled. In attempt to reduce the numbers ofialed on the road, vehicle-related
taxes were introduced and increased and alternaie@ns of transportation were

promoted.

Nowadays every minute, on average, at least orsopaties in a vehicle accident
and at least 10 million people are injured eaclr,yeeo or three million of them
seriously. Losses in finance caused by vehicledaots are also very challenging.
This situation requires new solutions. Intelligeftansportation Systems (ITS)
provides a modern, more drastic attempt to velmelated problems we are facing
today.

By means of (partially) automating driver tasks dnydmeans of communication

(vehicle-to-vehicle as well as roadside-to-vehitle§ aims to:

1. Increase the capacity of highways: higher speexteclspacing, less human

errors

2. Improve safety: warning systems, intelligent speédptation, less human

errors

3. Reduce fuel consumption: optimal speed, optimaélacation, reduced drag

force (platooning), cost reduction

4. Reduce pollution: as a direct consequence ofdinstthird item.



Researches within ITS can be classified as “rodd-sntelligence” and “in-car
intelligence”. Road-side intelligence systems padevimore global information about
driving environment or destination such as systémas report about traffic flow,
accidents and highway maintenance, dynamic nawigatystems or systems that

provide parking space information.

In-car intelligence systems consider the envirortmenmediately around the
vehicle. These systems can be ordered accordinjetdevel of autonomy of the
vehicle. First the “advisory” and “warning” systernan be identified within this
class of intelligence systems. Examples are systEm<lind spot monitoring,
collision warning, pedestrian warning, lane-depa&tuwarning, traffic sign
recognition and driver monitoring. Next “driver-esdance systems” can also be
identified within this class of intelligence systenTypical example for this kind of

systems is adaptive cruise control.

Today’s implementations mainly concern precrashsisgn Several national and
international projects have been realized overphst several years to investigate
new technologies for improving safety. Developing-kmard driver assistance
systems aiming to alert drivers about driving eowiment and possible collision has
attracted a lot of attention and is becoming aivaecesearch area among automotive

industries, suppliers and universities.

Vehicle detection and tracking is the first steptloése systems and this thesis

addresses a fundamental aspect for in-car intaltigsystems.

1.1 Purpose of the Thesis

Determining the position of other vehicles on tbad and their motion relative to
your own vehicle is an essential task to developedrassistance systems like
adaptive cruise control (ACC) and platooning. Thestrimportant vehicle a driver
should pay attention to is the preceding one, techvh security distance should be
kept. For this reason, an autonomous system capdbilenderstanding what the

position of the preceding vehicle is would be vesgful to increase driver’s safety.



The problem can be addressed by using “direct fasgasors which include
millimeter wave radars, laser radars (lidar) aretesi imaging as many researchers
have done. Although radar and laser sensors medsitece to obstacles with a
high degree of accuracy, obtaining their lateraifpans required for estimating the
possibilities of collision is difficult. Since visn is the most important sense used by
humans for driving and optical sensors are pasang cheaper, another option is
applying computer vision techniques. On the othardh it is expected that optical
sensors, such as normal cameras, should estim#tdaberal positions of obstacles
and their shape. As opposed to a stereo imagingrdésat is including the cost of
the additional camera and processing power, a mubgilogisual processing system is

easier to mass produce and costs less as an etutpro

No 3D information about the position of other vééscis directly available using a
monocular camera. But studies to investigate thssipdity of performing distance
control, to an sufficient accuracy level, by a maular imaging device (a single
camera) using the laws of perspective and puttimgesconstraints such as assuming

a flat road have been realized.

To estimate parameters of the (3D) real-world mowob other vehicles on the road
relative to your own vehicle using vision requipsviding 2D-image velocity. The

vehicle displacements in the image plane betweeoessive image frames must be
computed. In literature, this problem is generatidressed in two steps: vehicle
detection and vehicle tracking. These steps arédb#ises of estimating positions of

vehicles present in the scene and their relativeamo

This thesis focuses on vision-based on-road vehid&ection and tracking in
monochrome (i.e., grayscale) images from a moncecamounted on the rear-view
mirror of the vehicle. All algorithms are implemedtin MATLAB and tested on
data supplied by the experimental vehicle usedifolti-modal data collection and
processing within the Drive Safe Project in whisttanbul Technical University

Automotive Control and Mechatronics Research Cestarparticipant.



1.2 Background of Vision-Based Intelligent Vehicle Res®&ch

A large number of government institutions, autonmindustries and suppliers, and
R&D companies have launched various projects waddwThese attempts have
produced several prototypes and solutions, base@tber different approaches [1-
4]. Looking at research on intelligent vehicles latide, Europe pioneers the
research, followed by Japan and United States.

In Europe, The PROMETHEUS project (Program for pean Traffic with Highest
Efficiency and Unprecedented Safety) started thiplazation in 1986. A large
number of vehicle manufactures and research itessittom 19 European countries
were involved. Several prototype vehicles and systevere designed as a result of
the project. In 1987, the UBM (Universitaet der Baswehr Munich) experimental
vehicle VaMoRs demonstrated fully autonomous lardjital and lateral vehicle
guidance by computer vision on a 20 km free seatibhighway at speed up to 96
km/h. Vision was utilized to provide input for boldteral and longitudinal control.

That was the first milestone.

Within the PROMETHEUS project, the Institute of Mesement Science has
developed real-time vision technology that may bedufor a driver support system
[5]. Freeways were chosen as the principal donm@inelsting and demonstrating the
visual recognition of objects that are relevant fbe understanding of traffic
situations. The reason for choosing freeways i$ tha complexity of the traffic
situations and the variety of objects are much ftoovefreeways than on other roads.
Long range autonomous driving has been realizethéeywaMP of UBM in 1995.
The trip was more than 1,600 km [6]. Another exmpemtal vehicle, mobile
laboratory (MOB-LAB) was also part of the PROMETH&project [7]. It was
equipped with four cameras, several computers, tm@and a control-panel to give
a visual feedback and warnings to the driver. Onia@® most important subsystems
in the MOB-LAB was the Generic Obstacle and Lang¢eb@on (GOLD) system.
The GOLD system addressed both lane and obstatdetia utilizing a stereo rig.
The GOLD system has been ported on ARGO, a Lanc&amk passenger car with
automatic steering capabilities [8].



In Japan, MITI, Nissan and Fujitsu pioneered treeaech by the project “Personal
Vehicle System” [9]. In 1996, the Advanced Cruisesist Highway System

Research Association (AHSRA) was established anaurtgmobile industries and

many research centers [1]. The Japanese Smartwaggiocar will implement some
driver assistance features, such as, lane keeapiegsection collision avoidance, and
pedestrian detection. A model deployment project planned to be operational by
2003 and national deployment in 2015 [2].

In the United States, many initiatives have beemdhed about this problem. The
US government established the National AutomateghWay System Consortium

(NAHSC) in 1995. Several promising prototype vedscland systems have been
demonstrated within the last 15 years [10]. The lalagroup at Carnegie Mellon

University has a long history of investigationsaaftomated vehicles and intelligent
driver assistance systems with a series of 11 lehidlavlab 1 through Navlab 11.

The latest model in Navlab family is the Navlab aXTpbot Jeep Wrangler equipped
with a wide variety of sensors for short range amndrange obstacle detection [10-
12].

Major motor companies, such as Ford and GM, hameady demonstrated several
promising vehicles. Recently, the US Departmenf@nsportation (USDOT) has
launched a five year, 35 million dollar project viEM to develop rear-end collision
avoidance system [2]. In March 2004 and Novemb@&72€he world was stimulated
by the competitions, “grand challenge” and “urb&allenge”, organized by the US
Defense Advanced Research Projects Agency (DARRPAhese competitions, fully
autonomous vehicles attempted to independentlygasiwithin a fixed time period,
all with no human intervention whatsoever — no @rj\no remote-control, just pure

computer processing and navigation horsepower.



MOTION ESTIMATION
The image displacements between

successive image frames are computed.

ROAD AREA FINDING ! VEHICLE DETECTION VEHICLE TRACKING

LANE DETECTIONBY KALMAN FILTER BASED
THE HOUGH TRANSFORM

HYPOTHESIS GENERATION = HYPOTHESIS VERIFICATION
SHADOW DETECTION VERTICAL EDGES DETECTION

Figure 1.1 : Schematic overview of the objective of the thesis.
1.3Thesis Structure

This thesis is organized as follows: Chapter 2 @xgl the approaches to the vehicle
detection that have been proposed in the literancethe algorithms developed for
the vehicle detection within the work of the thesich includes road area finding.
In Chapter 3, the literature overview based ondhpect tracking is presented. In
addition, the theory of the Kalman filter is mem@al and the implemented algorithm
for the vehicle tracking based on the Kalman fiiterexplained in detail. Finally,
Chapter 4 sums up the conclusions and presentesiiis of the evaluation of the

developed algorithms.



2. VEHICLE DETECTION

From a general viewpoint vehicle detection is éfgm of object detection, which is
always an open issue in computer vision. Visioredagehicle detection requires a
system that should be able to separate image é&iading to the background from

the data belonging to the vehicles. Detection mteséhe vehicle tracking.

2.1 Approaches Proposed in Literature

Various approaches have been proposed in thetlitetavhich can be classified into
one of the following three categories: 1) knowletlgsed, 2) stereo-based, and 3)

motion-based.

2.1.1 Knowledge-based methods

The Knowledge-based methods employ a priori inféionato extract vehicles.
Different cues have been proposed in the literadumek systems often include two or

more of these cues to make detection more relfable.

2.1.1.1 Symmetry

Images of vehicles observed from rear or frontalwd are in general symmetrical in
the horizontal and vertical directions. This obs#éion has been used as a cue in
several studies [13, 14]. When computing symmaeatmynfintensity, the presence of
uniform areas decreases the performance of theithigpbecause these areas are
sensitive to noise for symmetry estimations. Infation about edges was included in
the symmetry estimation to avoid from uniform ar¢hsS]. Besides the fact that
edges might not always be visible (object-backgdorgiation), this approach is still

easily distracted by symmetrical background objextish as houses.

* “Shadow” is also a cue within the “knowledge-baseethods” used for vehicle detection. Using
shadow as a cue for vehicle detection will be dised in the following sections.



2.1.1.2 Color

Although color is a rare feature in literature,igta very useful cue for obstacle
detection, lane/road following [16- 18]. Color ialle for false detections and weak

for non-colored vehicles. It can help in some ditres anyway.

2.1.1.3 Vertical/ horizontal edges

Using constellations of vertical and horizontaklistructures is one of the strongest
cues used in literature for vehicle detection. Tikibecause of the fact that different
views of a vehicle contain many horizontal and ieattline structures, such as rear
window, bumper, etc. In [19], the generalized Hotigimsform was used to identify
rows and columns that might contain edges of therotontour of a car. In [20],
distant cars were identified by using projected eedgformation to extract
pronounced horizontal and vertical edges, that tnigh part of a rectangular
structure. Disadvantage of using these line strastus that they depend on the
relation between object and background intensity tuerefore the performance of
the algorithm will decrease when e.g. a dark vehisl observed against a dark

background.

2.1.1.4 Texture

The presence of a vehicle in an image causes Intatsity fluctuations. Due to
general similarities among all vehicles, the intgnshanges create a certain texture
pattern [21]. Two approaches have been suggestedeiditerature: 1) using the
entropy and 2) using the co-occurrence matrice$. [R2jor difficulty of using
texture as a cue for vehicle detection is thatlihekground is also very likely to

have texture.

2.1.1.5 Vehicle lights

Vehicle lights could be used as a salient visualtuiee for night time vehicle
detection [23]. However, the vehicle light deteotepproach should only be seen as
a complement to other approaches. Brighter illutmmaand the fact that vehicle
lights are not compulsory to use during daytimenmany countries makes it

unsuitable for robust vehicle detection.



2.1.2 Stereo-based methods

Vehicle detection based on stereo vision uses fwest of methods: the disparity
map and Inverse Perspective Mapping. The differancéeft and right images

between corresponding pixels is called as dispafite disparities of all the image
points generates the disparity-map. A disparitydgiam can be calculated from the
disparity map. Since the rear-view of a vehicla igertical surface, and the points on
the surface therefore are at the same distance fhemcamera, a peak in the

histogram should occur [24].

The Inverse Perspective Mapping transforms an inpag& onto a horizontal plane
in the 3D space. In [25], stereo vision was usegradlict the image seen from the

right camera, given the left image, using the IsedPerspective Mapping.

Drawbacks of using stereo-vision are that traddlormplementations are time
consuming and robust solutions for the vehicle cd&ie problem can only be
obtained, if the camera parameters have been e¢stimacurately.

2.1.3 Motion-based methods

So far, clues based on spatial features to digshgupetween vehicles and
background were discussed. Another important cuevdbicle detection is relative
motion. Pixels on the images appear to be movirggtduhe relative motion between
the sensor and the scene. The vector field ofntlmson is referred to as optical flow.
Examples of approaches based on the estimatioheobptical flow field can be
investigated in [26, 27]. In [26], the possibilgiand drawbacks of using optical flow
for vehicle detection were discussed. Optical fmam provide strong information for
vehicle detection but it is sensitive to even smaiations of the camera and other
mechanical disturbances and computing optical flewme consuming because of

the complexity.

2.2 Critique of Vehicle Detection Approaches

All the cues discussed within “the knowledge-basedhods” use spatial features to
distinguish between vehicles and background. Rereeithtat the major difficulties
of using the cues within this category are causedhe background since the

background is also likely to have these features.



On the other hand, on-road vehicle detection reguiaster processing than other
applications related to optical sensors. Anothey lssue is that robustness to
vehicle’s movements and drifts must be considdresinember that these two issues
are the major difficulties of using the cues witHithhe stereo-based” and “the

motion-based” approaches.

Consequently, different approaches to vehicle dietehave been proposed in the
literature as mentioned in the previous texts. tdrgaa robust system for vehicle
detection using optical sensors is a very challegmgroblem. Special difficulties that

make vehicle detection a challenge can be itenazed

1. Since both camera and objects are in movemenpdfraeived size and pose

of the objects change;

2. The objects exist in an environment that changeghting and weather

conditions vary substantially;
3. Vehicles might be occluded by other vehicles, badd, etc;
4. The actual aspect of vehicles is quite wide;

5. For a precrash system to serve its purpose itusiarto achieve real-time

performance.

To cope with these difficulties, approaches in literature are generally based on

two-step vehicle detection: Hypothesis Generatimh ldypothesis Verificatiofi.

2.2.1 The first step: hypothesis generation

In the first step of vehicle detection, a vehiclggbable existence location is
hypothesized. One or multiple cues are used withia step. Hypothesizing the
locations of possible vehicles in the first stepvehicle detection decreases the
whole image where vehicles are searched into tlagemegions where the vehicles
probably exist. This decrease in the size of thagenrequires less processing time

and therefore speeds up the process.

* Most of the information about the vehicle detectapproaches in the literature was quoted from
[28]. More detailed information about the vehicletettion approaches in the literature can be found
in [28].
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2.2.2 The second step: hypothesis verification

The existence of the located potential vehiclewvasfied in the second step of
vehicle detection. The cues discussed within “thevdedge-based methods” can be
used for the verification step. This kind of ver#tion is generally called as

“knowledge-based vehicle verification” or “templdiased vehicle verification”.

Another category of the verification step can bedaas “appearance-based vehicle
verification”. Appearance-based methods learn tiegacteristics of the vehicle class
from a set of training images, which should captthre variability in vehicle
appearance. The verification using appearance mogdelreated as a two-class
pattern classification problem: vehicle versus mehicle. Usually, the variability of

the non vehicle class is also modeled to improeegtrformance.

Appearance-based verification methods are more ratecuhan template-based
methods; however, they are more costly due to ifileisgaining. Nevertheless, due
to the exponential growth in processor speed, appea-based methods are getting

popular.

2.3 Objective

Although the solutions to the vehicle detectionlgean are becoming more reliable
and robust improving presented approaches and girmpaew methods day by day,
it is absolutely necessary to strictly define aralindit the problem due to the
difficulties in conditions just mentioned in theeprous texts. Detecting all vehicles
in every possible situation is not realistic. Therkvin this thesis concerns with
detecting trucks and busses as well as focusingeljaron detecting personal
vehicles. Detection under night illumination is nevaluated. The designed
algorithms are tried to be improved to detect VieBién various weather conditions

and at any distance.
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2.4 The Implemented Methods for Vehicle Detection ithin the Thesis

Template-based verification is used within the ihas spite of all these advantages
attached to the appearance-based verification.réagon is that appearance-based
verification requires composing a training datasetd pattern classification
background. Providing these requirements may hagenba tough process.
Implementing appearance-based vehicle verificai®rone of the future works
planned to realize with the aim of improving theality of the vehicle detection

algorithm.

In practical applications within the literaturethaugh it is possible to get rid of
about two thirds of the image regions in which ehicle exist using template-based
verification, some backgrounds may still cause efadetections. To avoid false
detections of background, the method implementdtinvihe thesis includes road

area finding and searches possible vehicles inbidarea.

The implemented algorithms for vehicle detectiothwi the thesis can be classified

as;
1. Road area finding: Lane detection,
2. Vehicle detection:
2.1. Hypothesis generation: Shadow detection
2.2. Hypothesis verification: Vertical edges datatt

The optical sensor used for image data acquisisiddasler A60O1FC color camera as
shown in Figure 2.1. The resolution of the cameré40 x 480 pixels and the frame
rate is 30 frames per second (fps). The interfaclEEE 1394 high performance

serial bus, also called as Firewire.

Figure 2.1 : Basler A60O1FC color camera.
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All algorithms are implemented in MATLAB and moneome images acquired
from just one camera are processed within the gh&sie vision data is supplied by
the experimental vehicle used for multi-modal dadiection and processing within
the Drive Safe Project in whiclstanbul Technical University Automotive Control
and Mechatronics Research Center is a participdote detailed information on the
Drive Safe Project can be found in [29, 30].

2.4.1 Road area finding

Finding road area is realized by means of a simajgerithm for detecting the free-
driving-space of our vehicle — the host vehiclee Tree-driving-space is defined as
the road observed directly in front of the caméfatimation of the free-driving-
space is based on the lane detection algorithmeimghted by Hough transform.

2.4.1.1 Hough transform

Edge detection methods yield pixels lying only @uges. In practice, the resulting
pixels seldom characterize an edge completely lsecatinoise, breaks in the edge
from nonuniform illumination, and other effects thatroduce spurious intensity
discontinuities. Thus, edge detection algorithm@icglly are followed by linking
procedures to assemble edge pixels into meaniegiygs. One approach that can be
used to find and link segments in an image is tbadh transform. In particular, it is

used to extract lines, circles and ellipses ininages.

The Hough transform, illustrated in Figure 2.2, siapery point (X, y) in the image

plane to a sinusoidal curve in the Hough spaée §pace) according to:
ycosf + xsind = p (2.1)
wherep can be interpreted as the perpendicular distaetveeen the origin and a line

passing through the point (x, y) aAdhe angle between the x-axis and the normal of

the same line.
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Figure 2.2 : The Hough transform transforms a point in the imadene to a
sinusoidal curve in the Hough space. All image {®on the same line
will intersect in a common point in the Hough spi&H.

The sinusoidal curves from different points alohg same line in the image plane
will intersect in the same point in the Hough spaegerimposing the value at that
point. In the second graphic, the intersection fpoamresponds to the line that passes
through both (x, y) and (u, v).

The computational attractiveness of the Hough foansarises from subdividing the
pO parameter space into so-called accumulator celiallisthe expected maximum
range of the parameters is — 908 < 90° and — D< p < D, where D is the distance

between corners in the image (the diagonal ofrtiege).

Initially the accumulator cell is set to zero. Thiem each of the desired feature
points (%, Yk) detected in the image plane, we deequal each of the predefined
values within the? range and solve for the correspondingsing the equation 2.1.
The resulting values are then rounded off to the nearest valtid@mwihe predefined

p range.

The corresponding element A(i, j) of the accumulatell defined with parameter
space coordinatesp(, §;) is then incremented. At the end of this procedarealue
of Qin A(i, j), means tha®@ points in the xy-plane lie on the lixecosd; + y sing; =

pi. By thresholding, dominant line segments can heoted®

* Most of the information about the Hough transfavas quoted from [32] and pages 393-395. More
detailed information about the Hough transform barfound in [32].
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2.4.1.2 Lane detection

Processing the whole image is unnecessary andithasconsuming while realizing
lane detection. To focus on the lines that markléimes, the image is divided into
two half images: Left half and right half as shown Figure 2.3. The Hough

transform is applied for each half part to detettd.

Each lane line has two longitudinal edges thatbmdescribed as the transition from
darker gray values to brighter ones or the tramsifrom brighter gray values to
darker ones in monochrome images as seen in FiydreBecause of that one of
these edges is enough to define the lane line, lalffparts of the image are filtered
by a simple mask such as [1 0 -1] or [-1 O 1] befapplying the Hough transform
(See Figure 2.5).

There are, of course, many detected lines on time $ane line as seen in Figure 2.6.

These lines must be reduced to one line as beiadimaon the lane line.

The algorithm is capable of giving two lines withparticular angle difference
between them as an output for each half image.€Tlmss are defined as Left-most,
Left for the left half part of the image and Rightst, Right for the right half part of

the image (as described in Figure 2.7).
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Figure 2.3 :(a) Detected lines in the left half (320 x 240) pdrthee image.
(b)Detected lines in the right half part of the image.
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te darker

Figure 2.4 : Two longitudinal edges that can be described astrdngsition from
darker gray values to brighter ones or the tramsifrom brighter gray
values to darker ones.

(a)

50 100 150 200 250 300

(b)

Figure 2.5 :(a) The original half image;
(bhe filtered half image by the mask [-1 0 1].
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Figure 2.7 : The output of the algorithm for the left half paftthe image:
Left-most line andft.line.

In figure 2.7, the output of the algorithm for theft half part of the image is
illustrated. The same approach is also realizedHerright half part of the image.
The lines GROUP 1 are reduced to one line as giifigeft-most” line and the lines

within GROUP 2 are reduced to one line as givirigedt” line.

It is possible to obtain lines that are irrelevarnth lanes. These lines are easily
eliminated utilizing the angle value given as anpat for each line by the Hough

transform.
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Assuming that lanes have been successfully detectethicle presence is
hypothesized by scanning each lane starting froenbtbitom to a certain vehicle

position, corresponding to a predefined maximuntadice in the real world.

In fact, it is difficult to acquire lane informatioin every frame of a sequence of
images. The lane lines may not be easily eligidlemay be interrupted by the
vehicles. Developing a lane tracking algorithm rbaya solution to this problem in
some circumstances. Besides scanning each laneeindently, it is also possible to
group the lane lines that can be detected in theewu frame to avoid from

undetectable lane lines as seen in Figure 2.8.

(a)

(b)

Figure 2.8 : (a) Road area identificatioiib) Besides scanning each lane
independently, it is also possible to groupl#me lines
that can be detected in the current frame.
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2.4.2 Vehicle detection

As mentioned in the previous texts, vehicle detecfirocess is realized in two steps:
1) Hypothesis generation, and 2) Hypothesis vetifor.

In the following parts of chapter 2, feature exti@t techniques used as a basic of
the vehicle detection process are not explainedktail. Detailed information about
basic image processing operations and featureatxtnatechniques can be found in
[32, 33].

2.4.2.1 Hypothesis generation — shadow detection

Vehicles may appear in many shapes and color. Neess, one feature they all
have in common is that they cause shadow on tret Ratential vehicle candidates

can be extracted by detecting the shadows undérmehicles.

In the literature, potential shaded areas are défas intensities with a significant
darker color than the road. In [34], a normal disttion is assumed for the intensity
of the road surface and the threshold value ofstiedow is defined based on the
mean and variance of this distribution. The meash @eviation of different regions

in a road may be different. Hence, this approaaghitmot always hold true.

Another approach is based on looking in the imagevertical transitions from
brighter gray values to darker ones. Instead ofprding the mean of road pixels,
pixels with negative vertical gradient values aomsidered as local darker regions
[35].

To detect the shadows underneath vehicles, vettiaakitions from brighter gray
values to darker ones are searched in the imageamsing the image bottom-up.
Considering the problem within this thesis, thisprjach can be realized

implementing an edge detection algorithm as scanpredefined road area bottom-

up.
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The edges with vertical transitions — horizontajesiare obtained by a vertical edge
detector. Sobel edge detector is implemented withenthesis and negative vertical
gradient values less than a predefined threshdleevare considered as local darker
regions, as seen in Figure 2.9. A systematic waghtmose appropriate threshold
values was not developed within the thesis. Bethdefact that the intensity of the
shadow depends on illumination of the image, whichurn depends on weather
conditions, it is a weakness of the implementedrittyn. The threshold value was
determined as an appropriate fixed value for aeseoi different training samples

after testing on them.

Figure 2.9 : Detected shadows are plotted as red dots.

Shadow is used as an initial cue for vehicle deteawithin the thesis. Hence, false
detections caused by applying a predefined, fixedshold can be prevented in the
following steps of the hypothesis generation ad ain the hypothesis verification.
Nevertheless, in the weather conditions that tlaelevs underneath vehicles can not
be distinctly eligible, the predefined thresholdueamight not be appropriate to
detect the shadows underneath vehicles. Theredereloping a systematic way to
choose appropriate threshold values must be canagla future work within this

study.
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Before implementing the following steps of the hypsis generation algorithm, a
simple preselection is performed. The shadow edgdsthe length smaller than a
predefined pixel value are eliminated. This prauksdi pixel value can be selected as
a value in the range of 10 — 15 pixel. The pixelga in this range are appropriate as
potential bottom edges of ROIs (Region-of-Interést)both mid-range and distant
vehicles within further analysis — hypothesis veafion step.

As seen in Figure 2.10, there are, of course, nshaglow edges in successive rows,
relating to the same vehicle. These edges mustdeced to one as representing the

bottom edge of the potential vehicle.

Figure 2.10 :Successive shadow edges relating to the same &ehicl

The edges whose the distance between their “y"dinates is less than or equal to
“2” pixels are combined as giving the bottom edgthe potential vehicle. The value
like “2” pixel is appropriate for both mid-range cadistant vehicles while realizing

this combining process.

The detected shadow edges underneath a vehicletdalways have the lengths
same as or near to the length of the bottom edgiedivehicle. Shadow length
changes during different weather conditions andesinof the day. In this case,
combining the shadow edges whose the lengths are than a reasonable value
requires facing with a critical situation during fideng ROIs of the potential

vehicles.
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Defining ROI whose the size is considerably moranthhe size of the potential
vehicle can cause false detections and thus vatiic errors for further analysis. In
such a case, the background or eligible featuréseobther vehicles might be in the

ROI defined for the hypothesized vehicle.

Evaluating each lane independently during the Hyggs generation step as solution
to the problem described above might provide toaiobtmore reliable ROIs.
However the fact that every lane is not detectableeach frame of an image
sequence, grouping the detected lanes given a malalso road area might be
necessary, as mentioned in the previous textsdBgghis, if each lane is evaluated
independently, detecting a vehicle while it is aiag the lane might not be easy.

Consequently, grouping the detected lanes as dgfiai reasonable road area and
evaluating them, in this manner, for the preserfceebicles is realized within the
thesis. The problems within the hypothesis genamagtep are eliminated under these

circumstances.

The width of a vehicle in an image is related te thidth of the lane where the
vehicle is currently located. Therefore a reasomaldlue for the width of the
potential vehicle can be determined according ® whdth of the lane where the

vehicle is currently present.

Since which lane the potential vehicle is presewt the width of the lane where the
potential vehicle is currently present are knowis possible to calculate a value for
the width of a potential vehicle according to thed where it is present. To define
ROls that represent the potential vehicle for ferthnalysis in the best possible way,
the calculated value, just mentioned above, iszetil as a reference length for the

bottom edge of the vehicle and, consequently,Hemtidth of the potential vehicle.

The calculated value for the width of the poteniithicle and the proposed approach
to calculate this value is more appropriate forspager cars. ROIs defined for large
size vehicles utilizing the mentioned approach dusssufficiently cover the area of

the vehicle. However this is not a critical problesamuch as defining ROIs whose
the sizes are considerably more than the sizeeof/é¢fhicle, since the defined ROIs
for large size vehicles are still have distinctieatures for hypothesis verification

step even if they do not sufficiently present thlated vehicles.
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In spite of the combining process, there might ilersore than one edge over the
same vehicle that could not be eliminated, as seéigure 2.11. The final step of
the hypothesis generation is implemented to reduese edges to one bottom edge

for each hypothesized vehicle.

(a)

(b)

Figure 2.11 :(a) The edges that could not be eliminated in the camgiprocess.
(bdn example of false hypotheses can also be sednsa range.

Consequently, the final bottom edges that represamh potential vehicle are
utilized to determine the width of ROIs for the bipesis verification step.

In the hypothesis verification step, the hypothedipresence of vehicles is verified
and false hypotheses (one of the false hypothemede seen in Figure 2.11) are

eliminated.
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2.4.2.2 Hypothesis verification — vertical edges teetion

Potential vehicles can be detected and locatedyusimadow as discussed in the
hypothesis generation step. Meanwhile, shadow dao be used for vehicle

verification, since the located potential vehicltousld have a shadow proper to its
expected width corresponding to its location inithage. If the shadow is too wide

or narrow, then it is rejected.

For each remaining potential vehicle, a regionrbéiiest is defined as described in
Figure 2.12. The final bottom edge that represanp®tential vehicle designate the
width of a rectangular box hypothesized as forniing area of the vehicle. The
potential bottom edge of ROI corresponding to tlmeptial vehicle is defined
enlarging the width of this hypothesized rectanglblex. The bottom edge of the
ROl is set as adding 6 pixels to the x coordintih® end point of the shadow edge
and subtracting 6 pixels from the x coordinatehaf start point of the shadow edge.
The value like “6” pixel is appropriate for diffareranges the vehicles locate in the
image. The side edge length of the ROI is deterchasethe half of the shadow edge
length.

Figure 2.12 :Defining the region-of-interest (ROI).
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Once the ROl is determined, refined search fotdhget vehicle is started in ROI. In
the refined search, the horizontal projection veato of the vertical edged/
(Remember that the horizontal edge detector detbetsertical edges, [32, 33]) in
the region defined as arx m matrix is computed as follows:

w=(w, W,,...,W,,t)= [anv(x1 yj,t),.... _ V(Xm, yj't)' tj (2.2)

n
i=1 i=

1
The projection vector of the vertical edges is dsedlcstarting from the left and also

from the right. The largest projection values foundboth directions during the

search determine the positions of the left andt sgles of the potential vehicle.
To verify that the potential object is a vehicle;

If one horizontal edge and two vertical edges aafolind in the same ROI, then it is

considered that a vehicle exists in the image.

Since there are no consistent cues associatedtietitop of a vehicle, it can be
detected by assuming that the aspect ratio of &mcle is a predefined, specific

value.
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3. VEHICLE TRACKING

One of the essential qualities of intelligent driassistance systems is the ability of
tracking other vehicles on the road. There areetlkey steps in video analysis: 1)
detection of interesting moving objects, 2) tragkiof such objects from frame to
frame, and 3) evaluation of object tracks to re@mrtheir behavior. Chapter 2
described how vehicles could be detected and réoedjrfrom a single image.
However, as we assume to analyze long image seesietfiche objects have been
identified in the current frame or previous framibss information could be used and
will be helpful in the detection of objects in thext frame. In its simplest form,
tracking can be defined as the problem of estirgdtue trajectory of an object in the
image plane as it moves around a scene. In othedswa tracker assigns consistent

labels to the tracked objects in different framea wideo [36]F

Vehicle tracking forms the basis for estimatinggmaeters of the (3D) real world
motion of the vehicles on the road. In this chaptee algorithm used to track

vehicles and extract 2D motion parameters is pteden

3.1 Literature Overview of Object Tracking

In machine vision, visual tracking is the processxdracting geometric information
of the motion of an object from image data. Thel gbaisual tracking is to analyze
specific attributes of a target via measurementaioéd from a sequence of image
data. For example, determining the image positl) (of a target as the target
object moves through the camera’s field of viewpbtaining the pose of an object
(3D position and orientation) may be intented téedaine. Visual tracking is the
problem known as the temporal correspondence prolilee problem of matching a
target region through successive frames of a seguehimages typically taken at

closely-spaced intervals.

* Most of the information about the object trackinmyl groblem conditions was quoted from [36].
More detailed information can be found in [36].
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The motion of an object in space causes changg®image. The motion detected
on the image, visual motion, is related to the omiin space. The motion field is
defined as the 2D vector field of velocities of theage points, caused by the motion
relative to the viewing camera. The motion fieleh dse thought of as the projection
of the 3D velocity field on the image plane. Detenimg the motion field provides
the basis information so that one can obtain then®iion of objects. Detecting 2D
motion in the image is generally classified int@teategories: 1) optical flow, and 2)
tracking. Optical flow, as mentioned in the motimesed detection methods, is based
on estimating the apparent motion of the imagehbnigss pattern. Optical flow
differs from the true motion field except where tirage gradients are strong. Much
work in tracking is realized by utilizing the otheategory — the feature-based
approach. The basis of the feature-based appraatie iprocessing of the images to
extract “features” (edges, regions of homogenealsr and/or texture, etc.). The
feature-based approach has advantages. Firstrdeaktraction reduces the vast
amount of data present in the image, without necggseliminating salient
information. Second, optical flow can only analytbe motion field along edges
hence computing dense flow field can be countedyctive and computational
expensive. In feature-based method, feature eidractduces the whole image into
subimage regions. Thus a comparatively computdtieffigiency can be provided.
Feature-based tracking generally works in such §:vem object template is
prestored as the basis of recognition and positiem in every next frame, template
iIs matched. The matching is based on the outpua obst function. If the cost
function is less than a predefined threshold vdhen it is assumed that target is
present in the current frame. There are variou$ ftogctions, of which the most
popular is sum-of-squared-diffrence (SSD). In [3fig detected vehicles are tracked
using a combination of distance based matching, &&Dedge density of detected
vehicle regions. In [38], recognition and localiratof the preceding vehicle in the

image is realized utilizing a correlation-basedrapph.
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Due to the constraint of real-time performance,dhallenge in visual tracking is to
match the amount of data to be processed to thiabacomputational resources.
This can be done in a number of ways: simplifying problem, utilizing specialized
image processing hardware, designing clever alguost or all of them. Target of
interest is not searched in whole image frame ¢ceise efficiency of the algorithm.
Template is matched in the Region of Interest (R@Hgre target was likely to be
found. ROl is determined based on the assumptiaintdéinget can not move too much
in consecutive two frames. Therefore, ROI will lmengwhere in surrounding of the
region where the last time the object was preseitedever, it is possible that there
may be significant change in target shape or aatent in the next frame. The image
changes due to motion, illumination, and occlusiongy causes errors in the

measurements. If this is the case, then trackesdtsing the target.

In order to tackle the above-mentioned problem,ube of a sufficiently rich and
accurate predictive model is required. In [20], Pusition and size of the target of
interest is determined by a simple recursive fitéth the aim of real-time multiple
vehicle tracking from a moving vehicle. The Kalmglter is exactly useful as a
solution to the problem mentioned above, handlioigynmeasurements (and also a
noisy process). In [39], a real-time vision-baspg@raach for detecting and tracking
vehicles from a moving platform is developed. Tiagkis realized by combining a
simple image processing technique with a 3D exténdelman filter and a
measurement equation that projects from 3D modeimage space. In [40,41],
Kalman filter is used to produce optimal estimaieshe state of a dynamic system

with the aim of motion estimation of vehicles fargar systems.

3.2 Problem Conditions

Ideally, a tracking algorithm would be able to lecéhe object anywhere within the
image at any point in time. However typically oylimited region of the image is
searched. Reasons for this are efficiency (espgcia¢cessary for real-time
applications) and the possibility that there midpet many other similar looking

objects in the image.
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The intuitive approach is to search within a regavound the last position of the
object. But as seen in Figure 3.1, this approadhfaii if the object moves outside

the target range. There are many possible reakahsdcur this case:
1. The object is moving too fast.
2. The frame rate is too slow.

3. The searched region is too small.

(a) (b)
New position New position

Current position Current position i
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Figure 3.1 : (a) Tracking the object without position prediction mmidpe
successfulkb) Tracking without position prediction will fail.

These problems are related to each other and caavdided by ensuring a high
enough frame rate for example. But given other tamgs, these problems are often

inevitable.

In addition, even when the target can be accurdbelyted. It seldomly appears the
same in all images. Changes in orientation, lightotclusions, and imperfections in
the camera continuously affect the appearanceeoféiine target. So essentially, to
observe the true location of the target in a cemaanner is very difficult under the

usual circumstances.

One can simplify tracking problem by imposing satoestraints on the motion and/
or appearance of objects. For example, almostaaking algorithms assume that the
object motion is smooth with no abrupt changes. €arefurther constrain the object
motion to be of constant velocity or constant am@lon based on a priori
information. Prior knowledge about the number aiz@ ®f objects, or the object

appearance and shape, can also be used to sitmgifyroblem.
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3.3 Objective

If a summary of the above-mentioned discussiomadde, two major problems can
be identified:

1. The object can only be tracked if it does not mioegond the searhed region.

2. Various factors such as lighting and occlusions &i#&ct the appearance of
the target, thus making accurate tracking complex.

To solve the first problem, making predictions abthe locations of the detected
vehicles in successive frames of a long image ssuenattempted. But in making
predictions, it is necessary to consider the secprablem as well. Thus the
prediction method needs to be robust enough to lbatinis source of error. A
Kalman filter which estimates the positions andextainties of moving vehicles in
the next frame is used within this master thesiswHarge a region should be
searched in the next frame for each target, thathere to look for the target objects,
around the predicted positions is determined byklkenan filter to be sure to find

the locations of the target objects within a certanfidence.

The region that covers the detected vehicle isedails “the bounding box”. Two
control points for each bounding box are considefé® image coordinates of these
control points are predicted for each next frameugh an image sequence using the
Kalman filter. The width of the bounding box in timage plane is computed using
the image coordinates of the predicted control ggoifhe ROI where the new target
is searched, is defined expanding the predictedhwid the bounding box in the
image plane to a predefined pixel value.
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3.4 The Theory of the Kalman Filter

The Kalman filter, rooted in the state-space fomatiah or linear dynamical systems,
provides a recursive solution to the linear optifilgdring problem. The solution is
recursive in that each updated estimate of the ssatomputed from the previous
estimate and the new input data, so only the pusvestimate requires storage. The
Kalman filter is essentially a set of mathematieguations that implement a
predictor-corrector type estimator that is optinmathe sense that it minimizes the
estimated error covariance. In addition to elimimgathe need for storing the entire
past observed data, the Kalman filter is computally more efficient than
computing the estimate directly the entire pasteoled data at each step of the
filtering process. The Kalman filter has been thbjact of extensive research and
application, particularly in the area of autonomaws assisted navigation. The
Kalman filter has also been used extensively facking in interactive computer
graphics [42].

Consider a linear, discrete-time dynamical systescdbed by the block diagram
shown in Figure 3.2. The Kalman filter addresses dhneral problem of trying to
estimate the state of the discrete-time dynamigstesn that is governed by the linear
stochastic difference equation. The state vectosimply state, denoted by, is
defined as the minimal set of data that is suffici® uniquely describe the unforced
dynamical behavior of the system; the subsdkigtenotes discrete time. In other
words, the state is the least amount of data opaise behavior of the system that is
needed to predict its feature behavior. Typicdh, statex is unknown. To estimate

it, a set of observed data, denoted by the vegtos used.

In mathematical terms, the block diagram of FigsuZ embodies the following pair

of equations:

3.4.1 The process to be estimated

A discrete time process that is governed by thealirstochastic difference equation

is defined as,

X = P X W (3.2)
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with a measurement equation that is
Y = Hi X v, (3.2)

where k.1 is the transition matrix taking the stagefrom timek to timek + 1,y is

the observable at timeand H is the measurement matrix.

The random variablesy and v, represent two additive noise terms: the proceds an
measurement noise (respectively). They are assumdx independent (of each
other), white, with normal probability distributisnand with covariance matrices
defined by

Q. for n=k

E[WHWI]:{ 0 for n#k (33)

whereQ is the process noise covariance matrix and

R, for n=k

E[anll-]:{ 0 for n#k (34)

whereR is the measurement noise covariance matrix.

If noises are uncorrelated, as is usually assuroedetthe case, the off-diagonal
terms are zero as described in the equation 3.3henequation 3.4. Most commonly
the noise processes are assumed to be statiorearyheir statistics do not vary with
time. The covariance matrices related to the nasesissumed to be constant.

Process equation Measuremzent equation
SR _ %

& - .

Y4 N
v uinp ;' j— - -rf-»

o

Figure 3.2 : Signal flow representation of a linear, discretedi
dynamical system [43] .
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The Kalman filtering problem, namely, the problemjantly solving the process
and measurement equations for the unknown stat@ ioptimum manner may now

be formally stated as follows:
Use the entire observed data, consisting of theov@g, y», ...., Yk to find for eactk

> 1 the minimum mean-square error estimate of thie st

3.4.2 The computational origins of the filter

A priori state estimate at stéps defined asx, 0" (note the “super minus”) given
knowledge of the process prior to ste@nd a posteriori state estimate at e
defines asx, 00" given measuremernyk Then, a priori and a posteriori estimate

errors can be depicted as

e =X, — X, and

e =x -%. (3.5)
The a priori estimate error covariance is then

R =Elee], (3.6)
and the a posteriori estimate error covariance is

R =Elgel]. (3.7)

In deriving the equations for the Kalman filtending an equation that computes an
a posteriori state estimate as a linear combination of an a priori state esema
and a weighted difference between an actual measuntey, and a measurement

prediction H X, is the initial goal, as shown below in equatior8)3

A

X =X+ K(Yk -H *E) (3.8)

The difference(yk -H R;) in equation (3.8) is called the measurement intioraor
the residual. The residual reflects the discreparmstween the predicted
measurement X, and the actual measuremegntA residual of zero means that the

two are in complete agreement.
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The matrixK in equation (3.8) is chosen to be the gain orldeading factor that
minimizes the a posteriori estimate error covamanequation (3.7). The
implementation of this minimization can be found [BD,31]. One form of the

resulting K that minimizes equation (3.7) is giusn

K, =P HT(HRHT +R]"
__RHT (3.9)
HP HT +R
Looking at equation (3.9), as the measurement ramgarianceR approaches zero,

the gainK weights the residual more heavily. On the otherdhas the a priori
estimate error covarianc, approaches zero, the gdfnweights the residual less

heavily.

3.4.3 The probabilistic origins of the filter
The Kalman filter maintains the first two momentshe state distribution,

E[Xk] = )A(k
E[(x - %) (% - %)]=P, . (3.10)

The a posteriori state estimate equation (3.8) a¢tflthe mean (the first moment) of
the state distribution — it is normally distributddhe conditions of equation (3.3)
and (3.4) are met. The a posteriori estimate emwartance equation (3.6) reflects

the variance of the state distribution (the seaomal-central moment).

More details on the probabilistic origins of thelikan filter can be found in [42].

3.4.4 The summary of the discrete Kalman filter algrithm

The equations for the Kalman filter fall into twoogps: time update equations and
measurement update equations. The time update eaqsiafire responsible for
projecting forward (in time) the current state amcbr covariance estimates to obtain
the a priori estimates for the next time step. Tleasaurement update equations are
responsible for incorporating a new measurementtim a priori estimate to obtain

an improved a posteriori estimate.

* Most of the information about the theory of the iiah filter was adapted from [42]. More detailed
information about the Kalman filter can be found42].
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The time update equations can also be thought pfedictor equations, while the
measurement update equations can be thought offestor equations. The specific
equations for the time and measurement updategprasented in the following

equations. A complete description of the operatibthe filter can also be found in

Figure 3.3:

X = FiaX (3.11)

P =F ,P,F ., +Q

k kk-1" k-1" k,k-1 k (312)
The equations described above (3.11 and 3.12)hareliscrete Kalman filter time
update equations. How the time update equationggirthe state and covariance

estimates forward from time st&p- 1 to stefk can be seen clearly.

Ky =RHT(HRHT +R)" (3.13)
X, =X, + K(yk -H k;) (3.14)
R=(-KH)R

k ( k ) k (315)

The equations described above (3.13 — 3.15) are diberete Kalman filter

measurement update equations.

3.5 Dynamical System Formulation of the Implemente&/ehicle Tracking

The attribute sought at any point in time describgdhe state vectot. Often this
state vector contains the coordinates of the taxgtbt respect to a chosen reference
frame. The two control points of the bounding bdxte vehicle in the image are
considered. The bounding box refers to a rectanghk covers the area of the
vehicle. These two control points are chosen addititom left and right points of the

bounding boxp, = [Xk,1’ Yirr X2 ykvz] Twhere the subscrigt denotes the frame of

the sequence under consideration (See Figure B/#hin the image, the control

points related to the bounding box of the vehicleoven with velocity

— T
Vk - [Vx,k,l’ Vy,k,l' Vx,k,2' Vy,k,2] '
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X =X tw, |
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v, =H,x, ‘.[Tk |
S

X, = E[x,]

Initiahization _

P, = E[(x, — E[x, (%, — E[x,]")

0

<
h J

. X, =F X
State estimate _ BT R

P, = Fk.x-JP.t-JFs:,k-l +Q;

v

G - BH
¥ H,P,H.+R,

v

State with — X, =X, +G,(v,-H,x;)
measurement
corection

v

P, = (I _Gka:]P.;

Figure 3.3 : A complete description of the operation of the Kainiilter [43] .
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A state vector

_ T
X = [Xk.li Yiar Xe2r Yo Vikar Vykno Yk, Vy,k,z] (3.16)

can be chosen to describe the motion of the bogndox on the image plane.
Nevertheless, since the two control points of tbenaing box that is chosen to track
are the points on the same horizontal edge (theroédge of the bounding box),
the state vector is reduced to

X, = [Xk,l’ Yiar X2 Vokar Vykar Vx,k,Z] T (3.17)

The position and size of the region-of-interestpiher words the tracking window,
in subsequent frames is determined by predictimng state vector in terms of the
theory behind the Kalman filter. Therefore the @rostate vector in Equation (3.17)
IS appropriate to predict the position and siz¢hefregion-of-interest in subsequent

frames.

THE BOUNDING BOX

Figure 3.4 : The description of the bounding box and the corgoohts.

If a sufficiently small sampling intervadt, is assumed, a constant velocity between
frames can also be assumed. The motion can bessepras:
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Pe = Peos T Vs LG + 64y

Vie = Vi T (3.18)

where &, _,, 77, are the uncertainty in the model, usually takerbéozero-mean,

white, Gaussian random processes. Re-writing thitkeims of the state vector, a

dynamical model of the target motion is obtained as

X = Py Xy + Wy (3.19)
where
1 004 0 0]
010024 O
o /0010 03
“' 1000 1 0 0 (3.19a)
0000 1 O
0000 0 1]
and
E
Wy —[ - (3.19b)

Wi-1 IS the uncertainty in the process; i.e., procassené.; can be assumed to be

zero and the uncertainty in the process can thuefieed as:

— T
Wk—1‘[0 0 0 Ugyqn Uyyoas ux,k—lz]

_ 3.20
’7k—1_[ux,k—1,1 Uy k-11 ux,k—lZ]T ( )

As to measurements, the positions of the boundmgdontrol pointsp, at every
frame of a sequence are evaluated. Therefore, dasumement model of the Kalman
filter becomes

z, = H X+ 4 (3.21)
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where

H, = (3.21a)

o O -

0
1
0

= O O
o O O
o O O
o O O

anduy is the uncertainty in the measurement; i.e., measent noise (again, often

assumed to be a zero-mean, white, Gaussian rancmess).

3.5.1 The initialization of the Kalman filter

The main problem with Kalman filtering is that s¢tital models are required for the
system and the measurement instruments. Unfortyneteey are typically not
available, or difficult to obtain. In the actual plrementation of the filter, the
measurement noise covariariRés usually measured prior to operation of theefilt
Measuring the measurement error covariaRaége generally practical (possible). An
off-line analysis of the measurement instrumenitsr o running the process (system
identification) can be made to determine the vaeaof the measurement noise. The
determination of the process noise covaria@as generally more difficult because
the process can not be observed directly. In otlueds, if the measurements in the
off-line analysis also contain errors, the proceas not be accurately profiled.
Sometimes a relatively simple (poor) process modelproduce acceptable results if
enough uncertainty is injected into the processth@selection of). Certainly in
this case, the process measurements must be ee@blether or not a rational basis
for choosing the parameters is provided, often gimsaperior filter performance
(statistically speaking) can be obtained by tunthg filter parameters. These
parameters can be pre-computed, for example, ®yrdeting the steady-state value

under conditions wher® andR are in fact constant.

SinceHy is a 3 x 6 matrix, the three additive noises asum@ed zero-mean white,

uncorrelated with each other, and with varianae$ (k), o7 (k), o7 (k).

Y1 X2
respectively. The measurement noise covariancaxnageded for the Kalman filter

implementation, is thus given by

20 0
R, =E[uui|=| 0 o,, O (3.22)
0 0 o’
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The process noise covariance matrix is formallyindef as Q,_, = E[Wk_lW[_l].

Using the definition of the noise vectok; and the assumption that the process-

noise termsu, ., 4, Uy, 1,5, Uy oy, @re uncorrelated,

000 0 0 O
000 0 0 O

looo 0o o0 o

Q119 o 0 g2 0 0 (3.23)
000 0 o2 0

000 0 0 o7

where g7 = E[uf’k_u], o; = E[u;k—l,l] and o? = E[ufyk_u] represent the variance
of the noise terms. Remember that these temms_{,, U, ,,, U, ,) represent

the change in the velocity (Equation 3.18).

Specific numbers must of course be put in for thaa&nces in order to define the
Kalman filter numerically. To do this, a model fihre vehicle acceleration that is
simple and appears reasonable on physical groutt]si§ used to model the 2D
image motion within the thesis. The vehicle ac@len u in either of the two
directions (image coordinatesandy) is assumed to be random and equally likely to
be positive or negative with some maximum vadud he acceleration is assumed to
be uniformly distributed betweenAt The probability density function of the
acceleration in either direction is thus assumegiatce the form of Figure 3.5. Three
impulse functions representing discrete probabditat A and O acceleration have
been superimposed to make the model a little flexibhese then simply say that
there is a probability?, that the vehicle will proceed at constant imagaiges,
while there is probability?; that its acceleration (deceleration) in either cion is

at the maximum valueA. The height of the uniform distribution is just

a=(1-2R - P /2A and that the variance of the random variakite given by

2

A
g} = 3(1+ 4R +P) (3.24)
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To find o7, o and ¢?, g, =To, must be considered (T is time interval and n =

1,2,3). Thus,
2 2 .2 A2T2
oy =T?o; =—_ —(1+4P, +P,), wheren=123, (3.25)
bt
¥ 3
A p A
P, ] Py
u
A 0 A

Figure 3.5 : Assumed probability distribution of the acceleratin

Although the noise is assumed to be stationaryhaothe variances do not vary with
time, it may be possible to employ an algorithm ahhadjusts these process noise
variances after each time step based on the oliseme@asurements and evaluated

change in the velocities considering these measemtsn

Filter initialization requires a first error covance matrix as well as the noise
covariance matrices. From its definition, the ercowvariance matrix is given as
E[(xk - %) (%, — X, )T] = P,. The diagonal terms are just the mean-squaredseino
the signal vector estimates. To initialize theefiJta first estimate is required as well
as a first covariance matrix corresponding to tee af that first estimate. A first
estimate can be found in several ways [44]. In sestgnation problems an optimal
(least mean squared error) can be found using thegonality principle, or,
equivalently, by starting with a previoug = , @hich is indeed the optimal estimate
of the zero-mean signal components when no obsengatre available. In such

cases, the corresponding error covariance mBgrixould be simply the steady-state

covariance matrixC of the signal vector since

P = E[[Xo - f(o][xo - )?O]T] = E[XOXg] = E[kal] =C (3.26)
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3.6 The Implemented Algorithm

The tracking algorithm implemented within the tlsasses the following steps:

1. After the recognition of the vehicles is realized the vehicle detection
process and the current state vector is determinacking starts from the

next image.
2. Repeat for each frame in the image sequence:

« Use the dynamical model to predict the positiontlod detected
vehicle in the image.

» Calculate the region-of-interest for the predictetiicle position. The
ROl is determined as described in the hypothesidication step of
the vehicle detection process explained in Chapt€Gee Section
2.4.2.2).

* In determined ROI, search for the correspondingickehby using

pronounced horizontal (shadow edge) and verticgésd

* Once the tracked vehicle is found, get the optiesimation of the

tracked vehicle in the current frame.

» Update the position of the tracked vehicle basethermeasurements

corresponding to the position of the vehicle in¢herent frame.

The same tracking process is realized for eachcleelmecognized in the vehicle

detection process.

The vehicle detection algorithm is called every' ftame due to the possibility of
the presence of the new vehicles. It is possibleafoobject in the image not to able
to detect from one or two images. Hence, any ofdétected and tracked vehicles
may not be detected in the next call of the vehad¢ection algorithm after 10

frames, even if it is still there.
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Employing the capabilities of the tracking algomthmight be reasonable to avoid
this problem. Before the elimination of the vehittlat is no longer detectable in the
current frame, the sub-region that is the boundary of the vehicle in the previous
frame is correlated with the sub-region in the entrframe whose the size and the
position is the same with the boundary box in thevipus frame. If the normalized
correlation of the image regions is high, it iseiméd that the vehicle might be still

there.

3.6.1 To update the filter: horizontal and verticaledges detection

In each determined ROI, a refined search is redltpedetect horizontal edge (the
shadow edge) and vertical edges that is the vedidas of the vehicle. The ROl is
determined as explained in the hypothesis veriticastep of the vehicle detection
algorithm and the vertical sides of the vehicle also extracted by the same way
defined in the hypothesis verification step. Nevelgss, in contrast with the vehicle
detection algorithm, the horizontal edge (the shadmige) detection must be
realized in each determined ROI to locate the spoading vehicle in the image.
The horizontal edges are extracted implementingolelS edge detector. The
projection vector of the horizontal edges in thel R€&fined as am x m matrix) is
computed as follows:

=1

v=(v, V...V, t)= (Zm‘, (%, vi. t).. ZmlH (% yo t) J (3.27)

Because of that the top horizontal edge of the ckehis not tried to detect, the
projection vector of the horizontal edges is seaddinom the bottom of the vector to
the middle of it. The largest projection value detiees the position of the bottom

edge of the vehicle.

Another difference from the vertical edges deteciio the hypothesis verification
step is the selection of the threshold value. Evienthé ROIs are accurately
representing the vehicles in the image, there nghstill distinctive features of the
other vehicles in the same ROI, that can cause f#sections in the situations such

as vehicle occlusions.

44



To handle with this problem (especially the falstedtions problem caused by the
occlusions), two threshold values are determinestdbaon the literature survey and
the observations obtained within the thesis: 1) A&lé of the largest projection value

and 2) the largest projection value. Firstly, thejgction vector is searched from the
left and also from the right until a vector enthat is more than or equal to the half
of the largest projection value is found. The maxim change in the image

coordinates of the vertical sides of each vehglstored during the execution of the
tracking algorithm. If the positions of the vectentries found based on the first
threshold value (the half of the largest projectiue) cause a change in the
coordinates more than the maximum one, a new sesrstarted using the second
threshold value (the largest projection value).edthse, the positions of the vector
entries selected using the first threshold detegntine positions of the left and right

sides of the vehicle.
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4. CONCLUSION AND RECOMMENDATIONS

This thesis proposed a multiple vehicle detectiond dracking system, which
includes road area finding. Video captured by just camera is used to detect and
track multiple vehicles. The system gives informatof the ongoing traffic via the

camera mounted on the rear-view mirror of the kekicle.

In the first step of the detection algorithm, tedtions of the potential vehicles in
the image are hypothesized using the shadows usalbria vehicle (as a distinctive
feature) scanning the defined road area bottomeu@vibid false detections of
delineators. The road area is defined using the laformation obtained by the

Hough transform.

In the second step of the detection algorithm, Higpothesized locations of the

potential vehicles in the image are verified usihg vertical edges as well as the
shadows underneath a vehicle. During the verificatthe presence of a vehicle is
considered if one horizontal edge and two verigchjes can be found. The summary

of the vehicle detection algorithm is illustratedrigure 4.1.

After extracting vehicles, the developed trackingodathm effectively track them

during successive image frames in a long image esemuusing a Kalman filter
based approach. Finally, the 2D image velocitytiadato the host vehicle for each
detected vehicle is provided. The flow chart of tiplemented algorithms can be

seen in Figure 4.2.

The shadow detection step of the vehicle detealgarithm can be considered as a
coarse search, while the detection algorithm isleyegal only for small regions
represented each potential vehicle after the regianterests defined for each
potential vehicle. The coarse search is implemeoted the defined road-area, while
ROIls make possible to employ a refined search meated small regions. Hence,
the coarse search takes a substantial amount ef lirnan take about 1-1.5 seconds

depending on the number of the detected shadows.
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However, if the dynamics of the moving objects lamewn, predictions can be made
about the positions of the objects in the curremge and the relevant positions of
the moving objects can be estimated in successweels of an image sequence. The
Kalman filter based tracking algorithm implementeithin the thesis can reduce the
processing time needed to execute the vehicle ti@tealgorithm to approximately
0.02 seconds.

Detected hadows bining shadow edges in successive rows

(for 2 pixels)

-

cing the shadow edges to one bottom edg
for each hvoothesized vehic

()

vertical edges and one horizontal edge
that renresent each vehicl

RedL' Tw’o

Figure 4.1 : The summary of the detection algorithm.

The developed algorithms within the thesis werelemented by MATLAB. Besides
the fact that MATLAB does not provide a sufficigoérformance for this kind of
vision applications related to the time constraint comparison with the
environments C/C++ based programs can be execatedhainly real-time computer
vision is aimed, the developed algorithms shouldraeslated from the MATLAB

implementation to C/C++ using this kind of envirogmts just mentioned about.

The most serious drawback of using the shadow cugéhicle detection is scenes
with low sun, making vehicles cast long shadowse($&ure 4.3). Hence, the
detected shadows become wider in the case of &@urthe side or ill positioned in

the case of the camera facing the sun.
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As mentioned in the hypothesis generation step €8eton 2.4.2.1), the shadow
lengths change due to the different weather camttiand even times of the day.
This situation can cause defining ROl whose the szconsiderably more than the

size of the potential vehicle.

Defining such a ROI can cause false detections #euication errors for further
analysis due to the background or eligible featafethe other vehicles where might
be in the same ROI. Such false detections mighgaalty occur in the situation the
vehicles in adjacent lanes. Surprisingly, this pgobhas not been mentioned enough

in the literature.

As a solution to the mentioned problem, the infdioma of the detected lanes is
utilized within the thesis. Beside the fact that thidth of a vehicle in an image is
related to the width of the lane where the vehigleurrently present, it is possible to
calculate a reference value for the width of a pixdé vehicle according to the lane
where it is present. If the width of the potenshbdow edge is too wide compared to

the reference value, then this shadow edge ismited (See section 2.4.2.1).

Most of the previous vehicle detection and trackimgthods used lane or determined
free driving space as in the work implemented withis thesis. However, if the lane
does not exist or due to an intersection, etc.jsitdifficult to acquire such

information.

Although searching the road area defined via thee laenformation to extract

distinctive cues reduces the computational costamparison with searching the
whole image, using appearance-based verificatiothods to verify the presence of
a potential vehicle hypothesized by searching thele&vimage can provide a more

robust algorithm to handle the problem associatiial tive lane detection.
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Divide the current image into two half images.

A 4

Apply the Hough transform for each half part to
detect lanes.

A 4

Scan each lane or the groups of the lanes bottoto-up
detect the shadows underneath the vehicles.

Remove
NO the shadow edge

The shadow edges are sufficient
length to represent a vehic
?

YES

Combine the shadow edges in successive rows
(for 2 pixels).

v

Reduce the shadow edges on the same vehicle to one
bottom edge for each potential vehicle.

Remove
the shadow edge

The Icoated vehicles have a shadow proper tQ
the expected width corresponding t

location in the image NO

Define the ROIs for each potential vehicle using th
final bottom edges.

One horizontal edge and twe Remove the
vetical edges found in the same hypothesized
ROI NO vehicle

Track each recognized vehicle during 10 frames.

A

NO

10 frames pas
?

YES

\ 4
STOP

Figure 4.2 : The flow chart of the implemented algorithms.
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Despite the problems related to the lane infornrmatibshould be taken into account
that the lane information in which the observedisiehis moving is an important
parameter. In the case that the shadows underaehities are used as a cue for the
detection, the lane information is especially imaot due to the change in the
shadow length during different weather conditionsd &imes of the day, as
mentioned in the previous paragraphs. Hence exitatte lane information might
require in the vehicle detection and tracking aggtions. If the dynamics of the
lanes due to the moving camera is known, develogifame tracking algorithm as a
solution to the problems related to the lane infaiion might be reasonable in some

circumstances within the applications the laneoimfation is needed.

Figure 4.3 :Low sun from the side makes that vehicles cast &raglows.

In Appendix A, the experimental results of the ismpknted algorithms can be seen.
The developed algorithms are executed for the imafehe daylight. The detected
vehicles are tracked during the frames of an imsgguence. Each vehicle is
represented by a different color. The aspect mitiany vehicle is assumed to be 1
and the bounding boxes of the recognized vehidlegpbtted based on this aspect
ratio. It is also possible to modify the algorithtesdetect and track the vehicles in

the night, as a future work.

In Figure A.1, the mid-range and the distant veds@re detected and tracked during
the frames of an image sequence. In these framissaiso possible to observe the
performance of the developed algorithms in detgcamd tracking the vehicles

which make a lane change maneuver.
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In Figure A.2,the vehicles at close range are detected and ttasikeng an image
sequence. In these frames, the host vehicle i®apping to another vehicle from the
rear. This image sequence is quite usable torndtese dangerous situation. In such a
case, estimating Time-to-Collision will make thevdr to be warned about the
distance of the vehicle from the leading vehiclel @an make the driver take an
action for avoiding a possible collision.

In Figure A.3,a drawback of the shadow-based algorithm is ilaistt. The shadow
an overpass occurs on the road causes false deteciihe area underneath the
vehicle is still distinctly darker than any otheeas underneath the overpass. Thus,
the shadow underneath the vehicle can be detectaeh whe vehicle passes

underneath the overpass.

However, the ROIs in which no vehicles exist cart bhe eliminated using the
vertical edges as a clue for verification, as seethe following frames. Using a
combination of different clues in the hypothesisifition step might prevent such
false detections. In the illustrated frames, usingpmbination of vertical edges and

texture pattern might be considered as a solutidhé mentioned problem.

As a future objective, the 2D-vehicle velocitiesoypded by the algorithms
implemented within the thesis are intended to Edusr estimating parameters of
the (3D) real-world motion of the vehicles relatieethe host vehicle with the aim of

preventing possible dangerous situations.

Providing the information about the driving envinoent for drivers makes possible
to warn about the time it takes for other vehidesontact with them and thus the
situations rear-end collisions might occur or tledligions caused by sudden lane

change might be avoided by estimating Time-to-Gulh.
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APPENDICES

APPENDIX A : Experimental results of the implemented algorghm
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APPENDIX A

FRAME 1116¢

FRAME 11228

Figure A.1 : Detection and tracking of mid-range and distantaieh.
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FRAME 1126C

FRAME 1130¢€

FRAME 1132t

Figure A.1 (contd.) : Detection and tracking of mid-range and distanticlek.
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FRAME 35467

Figure A.2 : Detection and tracking of the vehicles at closeyea
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FRAME 3565C

Figure A.2 (contd.) : Detection and tracking of the vehicles at closgean
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Figure A.3 : Detection and tracking of the vehicle in the siiat
where an overpass occurs shiadeas on the road.
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FRAME 247

FRAME 253

FRAME 265

Figure A.3 (contd.) : Detection and tracking of the vehicle in the sitat
where an overpassurs shadow areas on the road.
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