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CAMERA-BASED VEHICLE DETECTION AND TRACKING 

SUMMARY 

In recent years, developing on-board driver assistance systems (DAS) aiming to alert 
drivers about driving environments, and possible collision with other vehicles is 
becoming active research area among automotive industries, suppliers and 
universities. In these systems, robust and reliable vehicle detection and tracking are 
the basic steps. These basic steps could be accomplished by one or multiple sensors 
such as optical and radar sensors, etc.  

Vision-based vehicle detection and tracking for intelligent driver assistance has 
received considerable attention over the last 15 years. There are at least three reasons 
for this attention: 

1. The startling losses both in human lives and finance caused by accident 
severity, 

2. The growth in technologies within the last 30 years of computer vision 
research,  

3. The exponential growth in processor speeds that makes possible running 
computation-intensive video-processing algorithms.  

With the ultimate goal of building autonomous vehicles for reducing accidents 
caused by the main threats of driver inattention, various projects have been launched 
worldwide. Monocular vision based vehicle detection and tracking systems are 
particularly interesting for their low cost and the high-fidelity information they 
provide about the driving environment. 

The work presented within this master thesis purposed to study computer vision 
algorithms for automatic vehicle detection and tracking in monochrome images 
captured by mono camera. The work has mainly been focused on detecting and 
tracking vehicles viewed from behind in daylight conditions.  

The method presented within the thesis includes road area finding which has been 
implemented by a lane detection algorithm to avoid false detection of vehicles 
caused by the distraction of background objects. Assuming that lanes are 
successfully detected, vehicle presence inside the road area is hypothesized by using 
“shadow” as a cue. Hypothesized vehicle locations are verified using “vertical 
edges” and “shadow” is also used for verification. After extracting vehicles, the 
algorithm effectively track them during successive image frames in a long image 
sequence using a Kalman filter based tracking algorithm. 

The 2D-vehicle velocity provided by the algorithms implemented within the thesis 
will be used to estimate parameters of the (3D) real-world motion of vehicles relative 
to the host vehicle with the aim of forward collision warning as a future work. 
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BĐLGĐSAYARLI GÖRÜ TEMELL Đ ARAÇ BEL ĐRLEME VE TAK ĐBĐ 

ÖZET 

Sürücüyü, sürüş koşulları ve çarpışma olasılığına karşı uyaran araç içi sürücü yardım 
sistemlerinin geliştirilmesi; otomotiv endüstrisi, yan sanayi ve üniversiteler arasında 
giderek yaygınlaşan bir uygulama alanı bulmaktadır. Bu sistemlerin temelini, 
dayanıklı ve güvenilir bir şekilde gerçekleştirilmesi amaçlanan araç algılama ve 
takibi çalışmaları oluşturmaktadır. Araç algılama ve takibi, optik ya da radar 
algılayıcılar gibi bir ya da çoklu algılayıcılar üzerine temellendirilmiş sistemler ile 
gerçekleştirilmektedir. 

Sürücü yardım sistemlerinin geliştirilmesi sürecinde; görü-tabanlı araç algılama ve 
takibi üzerine, son 15 yıldır, ciddi bir eğilim söz konusudur. Görü-tabanlı araç 
algılama ve takibi çalışmalarına olan eğilimin başlıca üç sebebi;  

1. Giderek artan trafik kazalarının sebeb olduğu hayati kayıpların ve devlet 
ekonomisine getirdiği zararın endişe verici boyutlara ulaşması,  

2. Bilgisayarla görü araştırmalarının son 30 yılı içerisinde teknolojide meydana 
gelen büyüme,  

3. Đşlemci hızının giderek artması sonucu, işlem hızının öncelik taşıdığı video-
işleme algoritmalarının çalışmasının mümkün kılınmasıdır. 

Sürücünün dikkatsizliği, yorgunluğu gibi sürücü kaynaklı etmenlerin sebeb olduğu 
kazaları azaltmak amacıyla nihai amacı sürücüden bağımsız – otonom araçlar 
gerçekleştirmek olan pek çok proje, tüm dünyada, uygulama alanı bulmuştur. 
Tekgözlü imgeleme olarak tabir edilen tek kamera ile gerçekleştirilen görü-tabanlı 
araç algılama ve takibi, düşük maliyeti ve yüksek kalitede veri sağlaması sebebiyle 
bilhassa ilgi görmektedir.  

Bu dokümanda bahsi geçen yüksek lisans tezi kapsamında sunulan çalışmada, tek 
kamera aracılığıyla toplanan gri seviye görüntüler içerisinde araç algılama ve takibi 
amaçlanmıştır. Sunulan çalışmada, temel olarak, araçların arka görünümleri 
algılanmaya ve sonrasında takip edilmeye çalışılmıştır. Đşlenen görüntüler, gün içi 
saatlerine dairdir. Geliştirilen algoritmalar, gece görüntüleri için tasarlanmamıştır. 

Tez kapsamında sunulan uygulamada; görüntünün arka planında yer alan araç dışı 
nesnelerin, algılama sürecinde hatalara sebeb olmaması için doğrudan kameranın 
önünde gözlemlenen yol yüzeyi, bir şerit algılama algoritması aracılığıyla, 
belirlenmektedir. Şeritlerin güvenilir bir şekilde algılandıkları varsayılarak, araçların 
altında oluşan gölgelerin ayırt edici özellik olarak kullanımıyla, belirlenen yol 
yüzeyinde, muhtemel araçların konumları kestirilir.  
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Kestirilen araç konumlarının doğruluğu, dikey kenarlar ve yine araç altında oluşan 
gölgenin ayırt edici özellik olarak kullanımıyla tetkik edilir. Araç algılama sürecinin 
tamamlanması sonrasında, algılanan araçların takibi (ardışık görüntüler boyunca 
araçların konum değişikliklerinin tayini), Kalman filtresi temelli bir algoritma 
aracılığıyla, ardışık görüntüler boyunca gerçekleştirilir.  

Tez kapsamında uygulanan algoritmalar, iki boyutlu görüntü düzleminde, araç 
hızının belirlenmesini sağlamaktadır. Nihai amaç; yoldaki diğer araçların, kameranın 
bulunduğu araca göre üç boyutlu bağıl mesafe ve hızlarının tayinidir. Üç boyutlu 
bağıl hız ve mesafe tayini, araçların yer koordinat sistemindeki gerçek hareketlerini 
belirlemektedir. Dolayısıyla, tehdit oluşturabilecek araçlara karşı sürücülerin 
uyarılmasını sağlayacak sistemlerin geliştirilmesi mümkün olabilecektir. 
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1.  INTRODUCTION 

Since the first vehicle which moved by its own power was build in Paris in the 18th 

century, technological and social developments led to today’s dominant place of 

vehicles, trucks and busses in modern society. Since then, we have constantly been 

confronted with negative consequences of vehicles. By means of rules, infra-

structure, road and car design these negative consequences were tried to be 

controlled. In attempt to reduce the numbers of vehicles on the road, vehicle-related 

taxes were introduced and increased and alternative means of transportation were 

promoted. 

Nowadays every minute, on average, at least one person dies in a vehicle accident 

and at least 10 million people are injured each year, two or three million of them 

seriously. Losses in finance caused by vehicle accidents are also very challenging. 

This situation requires new solutions. Intelligent Transportation Systems (ITS) 

provides a modern, more drastic attempt to vehicle related problems we are facing 

today. 

By means of (partially) automating driver tasks and by means of communication 

(vehicle-to-vehicle as well as roadside-to-vehicle) ITS aims to: 

1. Increase the capacity of highways: higher speed, closer spacing, less human 

errors 

2. Improve safety: warning systems, intelligent speed adaptation, less human 

errors 

3. Reduce fuel consumption: optimal speed, optimal acceleration, reduced drag 

force (platooning), cost reduction 

4. Reduce pollution: as a direct consequence of first and third item. 
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Researches within ITS can be classified as “road-side intelligence” and “in-car 

intelligence”. Road-side intelligence systems provide more global information about 

driving environment or destination such as systems that report about traffic flow, 

accidents and highway maintenance, dynamic navigation systems or systems that 

provide parking space information. 

In-car intelligence systems consider the environment immediately around the 

vehicle. These systems can be ordered according to the level of autonomy of the 

vehicle. First the “advisory” and “warning” systems can be identified within this 

class of intelligence systems. Examples are systems for blind spot monitoring, 

collision warning, pedestrian warning, lane-departure warning, traffic sign 

recognition and driver monitoring. Next “driver-assistance systems” can also be 

identified within this class of intelligence systems. Typical example for this kind of 

systems is adaptive cruise control. 

Today’s implementations mainly concern precrash sensing. Several national and 

international projects have been realized over the past several years to investigate 

new technologies for improving safety. Developing on-board driver assistance 

systems aiming to alert drivers about driving environment and possible collision has 

attracted a lot of attention and is becoming an active research area among automotive 

industries, suppliers and universities.  

Vehicle detection and tracking is the first step of these systems and this thesis 

addresses a fundamental aspect for in-car intelligence systems. 

1.1 Purpose of the Thesis 

Determining the position of other vehicles on the road and their motion relative to 

your own vehicle is an essential task to develop driver assistance systems like 

adaptive cruise control (ACC) and platooning. The most important vehicle a driver 

should pay attention to is the preceding one, to which a security distance should be 

kept. For this reason, an autonomous system capable of understanding what the 

position of the preceding vehicle is would be very useful to increase driver’s safety. 
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The problem can be addressed by using “direct range” sensors which include 

millimeter wave radars, laser radars (lidar) and stereo imaging as many researchers 

have done. Although radar and laser sensors measure distance to obstacles with a 

high degree of accuracy, obtaining their lateral positions required for estimating the 

possibilities of collision is difficult. Since vision is the most important sense used by 

humans for driving and optical sensors are passive and cheaper, another option is 

applying computer vision techniques. On the other hand, it is expected that optical 

sensors, such as normal cameras, should estimate both lateral positions of obstacles 

and their shape. As opposed to a stereo imaging design that is including the cost of 

the additional camera and processing power, a monocular visual processing system is 

easier to mass produce and costs less as an end product.  

No 3D information about the position of other vehicles is directly available using a 

monocular camera. But studies to investigate the possibility of performing distance 

control, to an sufficient accuracy level, by a monocular imaging device (a single 

camera) using the laws of perspective and putting some constraints such as assuming 

a flat road have been realized. 

To estimate parameters of the (3D) real-world motion of other vehicles on the road 

relative to your own vehicle using vision requires providing 2D-image velocity. The 

vehicle displacements in the image plane between successive image frames must be 

computed. In literature, this problem is generally addressed in two steps: vehicle 

detection and vehicle tracking. These steps are the basis of estimating positions of 

vehicles present in the scene and their relative motion. 

This thesis focuses on vision-based on-road vehicle detection and tracking in 

monochrome (i.e., grayscale) images from a mono camera mounted on the rear-view 

mirror of the vehicle. All algorithms are implemented in MATLAB and tested on 

data supplied by the experimental vehicle used for multi-modal data collection and 

processing within the Drive Safe Project in which Đstanbul Technical University 

Automotive Control and Mechatronics Research Center is a participant. 
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1.2 Background of Vision-Based Intelligent Vehicle Research 

A large number of government institutions, automotive industries and suppliers, and 

R&D companies have launched various projects worldwide. These attempts have 

produced several prototypes and solutions, based on rather different approaches [1-

4]. Looking at research on intelligent vehicles worldwide, Europe pioneers the 

research, followed by Japan and United States.  

In Europe, The PROMETHEUS project (Program for European Traffic with Highest 

Efficiency and Unprecedented Safety) started this exploration in 1986. A large 

number of vehicle manufactures and research institutes from 19 European countries 

were involved. Several prototype vehicles and systems were designed as a result of 

the project. In 1987, the UBM (Universitaet der Bundeswehr Munich) experimental 

vehicle VaMoRs demonstrated fully autonomous longitudinal and lateral vehicle 

guidance by computer vision on a 20 km free section of highway at speed up to 96 

km/h. Vision was utilized to provide input for both lateral and longitudinal control. 

That was the first milestone. 

Within the PROMETHEUS project, the Institute of Measurement Science has 

developed real-time vision technology that may be used for a driver support system 

[5]. Freeways were chosen as the principal domain for testing and demonstrating the 

visual recognition of objects that are relevant for the understanding of traffic 

situations. The reason for choosing freeways is that the complexity of the traffic 

situations and the variety of objects are much lower on freeways than on other roads. 

Long range autonomous driving has been realized by the VaMP of UBM in 1995. 

The trip was more than 1,600 km [6]. Another experimental vehicle, mobile 

laboratory (MOB-LAB) was also part of the PROMETHEUS project [7]. It was 

equipped with four cameras, several computers, monitors and a control-panel to give 

a visual feedback and warnings to the driver. One of the most important subsystems 

in the MOB-LAB was the Generic Obstacle and Lane Detection (GOLD) system. 

The GOLD system addressed both lane and obstacle detection utilizing a stereo rig. 

The GOLD system has been ported on ARGO, a Lancia Thema passenger car with 

automatic steering capabilities [8]. 
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In Japan, MITI, Nissan and Fujitsu pioneered the research by the project “Personal 

Vehicle System” [9]. In 1996, the Advanced Cruise-Assist Highway System 

Research Association (AHSRA) was established among automobile industries and 

many research centers [1]. The Japanese Smartway concept car will implement some 

driver assistance features, such as, lane keeping, intersection collision avoidance, and 

pedestrian detection. A model deployment project was planned to be operational by 

2003 and national deployment in 2015 [2]. 

In the United States, many initiatives have been launched about this problem. The 

US government established the National Automated Highway System Consortium 

(NAHSC) in 1995. Several promising prototype vehicles and systems have been 

demonstrated within the last 15 years [10]. The Navlab group at Carnegie Mellon 

University has a long history of investigations of automated vehicles and intelligent 

driver assistance systems with a series of 11 vehicles, Navlab 1 through Navlab 11. 

The latest model in Navlab family is the Navlab 11, a robot Jeep Wrangler equipped 

with a wide variety of sensors for short range and midrange obstacle detection [10-

12]. 

Major motor companies, such as Ford and GM, have already demonstrated several 

promising vehicles. Recently, the US Department of Transportation (USDOT) has 

launched a five year, 35 million dollar project with GM to develop rear-end collision 

avoidance system [2]. In March 2004 and November 2007, the world was stimulated 

by the competitions, “grand challenge” and “urban challenge”, organized by the US 

Defense Advanced Research Projects Agency (DARPA). In these competitions, fully 

autonomous vehicles attempted to independently navigate within a fixed time period, 

all with no human intervention whatsoever – no driver, no remote-control, just pure 

computer processing and navigation horsepower. 
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Figure 1.1 : Schematic overview of the objective of the thesis. 

1.3 Thesis Structure 

This thesis is organized as follows: Chapter 2 explains the approaches to the vehicle 

detection that have been proposed in the literature and the algorithms developed for 

the vehicle detection within the work of the thesis, which includes road area finding. 

In Chapter 3, the literature overview based on the object tracking is presented. In 

addition, the theory of the Kalman filter is mentioned and the implemented algorithm 

for the vehicle tracking based on the Kalman filter is explained in detail. Finally, 

Chapter 4 sums up the conclusions and presents the results of the evaluation of the 

developed algorithms.    
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2.  VEHICLE DETECTION 

From a general viewpoint vehicle detection is a problem of object detection, which is 

always an open issue in computer vision. Vision based vehicle detection requires a 

system that should be able to separate image data belonging to the background from 

the data belonging to the vehicles. Detection precedes the vehicle tracking.  

2.1 Approaches Proposed in Literature 

Various approaches have been proposed in the literature, which can be classified into 

one of the following three categories: 1) knowledge-based, 2) stereo-based, and 3) 

motion-based. 

2.1.1 Knowledge-based methods 

The Knowledge-based methods employ a priori information to extract vehicles. 

Different cues have been proposed in the literature and systems often include two or 

more of these cues to make detection more reliable.♣ 

2.1.1.1 Symmetry 

Images of vehicles observed from rear or frontal views are in general symmetrical in 

the horizontal and vertical directions. This observation has been used as a cue in 

several studies [13, 14]. When computing symmetry from intensity, the presence of 

uniform areas decreases the performance of the algorithm because these areas are 

sensitive to noise for symmetry estimations. Information about edges was included in 

the symmetry estimation to avoid from uniform areas [15]. Besides the fact that 

edges might not always be visible (object-background relation), this approach is still 

easily distracted by symmetrical background objects, such as houses. 

 

                                                 
♣ “Shadow” is also a cue within the “knowledge-based methods” used for vehicle detection. Using 
shadow as a cue for vehicle detection will be discussed in the following sections. 
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2.1.1.2 Color 

Although color is a rare feature in literature, it is a very useful cue for obstacle 

detection, lane/road following [16- 18]. Color is liable for false detections and weak 

for non-colored vehicles. It can help in some situations anyway. 

2.1.1.3 Vertical/ horizontal edges 

Using constellations of vertical and horizontal line structures is one of the strongest 

cues used in literature for vehicle detection. This is because of the fact that different 

views of a vehicle contain many horizontal and vertical line structures, such as rear 

window, bumper, etc. In [19], the generalized Hough transform was used to identify 

rows and columns that might contain edges of the outer contour of a car. In [20], 

distant cars were identified by using projected edge information to extract 

pronounced horizontal and vertical edges, that might be part of a rectangular 

structure. Disadvantage of using these line structures is that they depend on the 

relation between object and background intensity and therefore the performance of 

the algorithm will decrease when e.g. a dark vehicle is observed against a dark 

background. 

2.1.1.4 Texture 

The presence of a vehicle in an image causes local intensity fluctuations. Due to 

general similarities among all vehicles, the intensity changes create a certain texture 

pattern [21]. Two approaches have been suggested in the literature: 1) using the 

entropy and 2) using the co-occurrence matrices [22]. Major difficulty of using 

texture as a cue for vehicle detection is that the background is also very likely to 

have texture. 

2.1.1.5 Vehicle lights 

Vehicle lights could be used as a salient visual feature for night time vehicle 

detection [23]. However, the vehicle light detection approach should only be seen as 

a complement to other approaches. Brighter illumination and the fact that vehicle 

lights are not compulsory to use during daytime in many countries makes it 

unsuitable for robust vehicle detection.  
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2.1.2 Stereo-based methods 

Vehicle detection based on stereo vision uses two types of methods: the disparity 

map and Inverse Perspective Mapping. The difference in left and right images 

between corresponding pixels is called as disparity. The disparities of all the image 

points generates the disparity-map. A disparity histogram can be calculated from the 

disparity map. Since the rear-view of a vehicle is a vertical surface, and the points on 

the surface therefore are at the same distance from the camera, a peak in the 

histogram should occur [24].  

The Inverse Perspective Mapping transforms an image point onto a horizontal plane 

in the 3D space. In [25], stereo vision was used to predict the image seen from the 

right camera, given the left image, using the Inverse Perspective Mapping. 

Drawbacks of using stereo-vision are that traditional implementations are time 

consuming and robust solutions for the vehicle detection problem can only be 

obtained, if the camera parameters have been estimated accurately. 

2.1.3 Motion-based methods 

So far, clues based on spatial features to distinguish between vehicles and 

background were discussed. Another important cue for vehicle detection is relative 

motion. Pixels on the images appear to be moving due to the relative motion between 

the sensor and the scene. The vector field of this motion is referred to as optical flow. 

Examples of approaches based on the estimation of the optical flow field can be 

investigated in [26, 27]. In [26], the possibilities and drawbacks of using optical flow 

for vehicle detection were discussed. Optical flow can provide strong information for 

vehicle detection but it is sensitive to even small rotations of the camera and other 

mechanical disturbances and computing optical flow is time consuming because of 

the complexity. 

2.2 Critique of Vehicle Detection Approaches 

All the cues discussed within “the knowledge-based methods” use spatial features to 

distinguish between vehicles and background. Remember that the major difficulties 

of using the cues within this category are caused by the background since the 

background is also likely to have these features. 
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On the other hand, on-road vehicle detection requires faster processing than other 

applications related to optical sensors. Another key issue is that robustness to 

vehicle’s movements and drifts must be considered. Remember that these two issues 

are the major difficulties of using the cues within “the stereo-based” and “the 

motion-based” approaches. 

Consequently, different approaches to vehicle detection have been proposed in the 

literature as mentioned in the previous texts. Creating a robust system for vehicle 

detection using optical sensors is a very challenging problem. Special difficulties that 

make vehicle detection a challenge can be itemized as: 

1. Since both camera and objects are in movement, the perceived size and pose 

of the objects change; 

2. The objects exist in an environment that changes. Lighting and weather 

conditions vary substantially; 

3. Vehicles might be occluded by other vehicles, buildings, etc; 

4. The actual aspect of vehicles is quite wide; 

5. For a precrash system to serve its purpose it is crucial to achieve real-time 

performance. 

To cope with these difficulties, approaches in the literature are generally based on 

two-step vehicle detection: Hypothesis Generation and Hypothesis Verification.♣ 

2.2.1 The first step: hypothesis generation 

In the first step of vehicle detection, a vehicle’s probable existence location is 

hypothesized. One or multiple cues are used within this step. Hypothesizing the 

locations of possible vehicles in the first step of vehicle detection decreases the 

whole image where vehicles are searched into the image regions where the vehicles 

probably exist. This decrease in the size of the image requires less processing time 

and therefore speeds up the process. 

                                                 
♣ Most of the information about the vehicle detection approaches in the literature was quoted from 
[28]. More detailed information about the vehicle detection approaches in the literature can be found 
in [28]. 
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2.2.2 The second step: hypothesis verification 

The existence of the located potential vehicles is verified in the second step of 

vehicle detection. The cues discussed within “the knowledge-based methods” can be 

used for the verification step. This kind of verification is generally called as 

“knowledge-based vehicle verification” or “template-based vehicle verification”. 

Another category of the verification step can be called as “appearance-based vehicle 

verification”. Appearance-based methods learn the characteristics of the vehicle class 

from a set of training images, which should capture the variability in vehicle 

appearance. The verification using appearance models is treated as a two-class 

pattern classification problem: vehicle versus non vehicle. Usually, the variability of 

the non vehicle class is also modeled to improve the performance. 

Appearance-based verification methods are more accurate than template-based 

methods; however, they are more costly due to classifier training. Nevertheless, due 

to the exponential growth in processor speed, appearance-based methods are getting 

popular. 

2.3 Objective 

Although the solutions to the vehicle detection problem are becoming more reliable 

and robust improving presented approaches and proposing new methods day by day, 

it is absolutely necessary to strictly define and delimit the problem due to the 

difficulties in conditions just mentioned in the previous texts. Detecting all vehicles 

in every possible situation is not realistic. The work in this thesis concerns with 

detecting trucks and busses as well as focusing largely on detecting personal 

vehicles. Detection under night illumination is not evaluated. The designed 

algorithms are tried to be improved to detect vehicles in various weather conditions 

and at any distance.  
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2.4 The Implemented Methods for Vehicle Detection within the Thesis 

Template-based verification is used within the thesis in spite of all these advantages 

attached to the appearance-based verification. The reason is that appearance-based 

verification requires composing a training dataset and pattern classification 

background. Providing these requirements may have been a tough process. 

Implementing appearance-based vehicle verification is one of the future works 

planned to realize with the aim of improving the quality of the vehicle detection 

algorithm.  

In practical applications within the literature, although it is possible to get rid of 

about two thirds of the image regions in which no vehicle exist using template-based 

verification, some backgrounds may still cause false detections. To avoid false 

detections of background, the method implemented within the thesis includes road 

area finding and searches possible vehicles inside this area. 

The implemented algorithms for vehicle detection within the thesis can be classified 

as; 

1. Road area finding: Lane detection, 

2. Vehicle detection: 

2.1. Hypothesis generation: Shadow detection 

2.2. Hypothesis verification: Vertical edges detection. 

The optical sensor used for image data acquisition is Basler A601FC color camera as 

shown in Figure 2.1. The resolution of the camera is 640 x 480 pixels and the frame 

rate is 30 frames per second (fps). The interface is IEEE 1394 high performance 

serial bus, also called as Firewire. 

 

Figure 2.1 : Basler A601FC color camera. 
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All algorithms are implemented in MATLAB and monochrome images acquired 

from just one camera are processed within the thesis. The vision data is supplied by 

the experimental vehicle used for multi-modal data collection and processing within 

the Drive Safe Project in which Đstanbul Technical University Automotive Control 

and Mechatronics Research Center is a participant. More detailed information on the 

Drive Safe Project can be found in [29, 30]. 

2.4.1 Road area finding 

Finding road area is realized by means of a simple algorithm for detecting the free-

driving-space of our vehicle – the host vehicle. The free-driving-space is defined as 

the road observed directly in front of the camera. Estimation of the free-driving-

space is based on the lane detection algorithm implemented by Hough transform. 

2.4.1.1 Hough transform 

Edge detection methods yield pixels lying only on edges. In practice, the resulting 

pixels seldom characterize an edge completely because of noise, breaks in the edge 

from nonuniform illumination, and other effects that introduce spurious intensity 

discontinuities. Thus, edge detection algorithms typically are followed by linking 

procedures to assemble edge pixels into meaningful edges. One approach that can be 

used to find and link segments in an image is the Hough transform. In particular, it is 

used to extract lines, circles and ellipses in the images. 

The Hough transform, illustrated in Figure 2.2, maps every point (x, y) in the image 

plane to a sinusoidal curve in the Hough space (ρθ - space) according to: 

ρθθ =+ sincos xy  (2.1) 

where ρ can be interpreted as the perpendicular distance between the origin and a line 

passing through the point (x, y) and θ the angle between the x-axis and the normal of 

the same line. 
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Figure 2.2 : The Hough transform transforms a point in the image plane to a 
sinusoidal curve in the Hough space. All image points on the same line 
will intersect in a common point in the Hough space [31]. 

The sinusoidal curves from different points along the same line in the image plane 

will intersect in the same point in the Hough space, superimposing the value at that 

point. In the second graphic, the intersection point corresponds to the line that passes 

through both (x, y) and (u, v). 

The computational attractiveness of the Hough transform arises from subdividing the 

ρθ parameter space into so-called accumulator cell. Usually the expected maximum 

range of the parameters is – 90° ≤ θ ≤ 90° and – D ≤ ρ ≤ D, where D is the distance 

between corners in the image (the diagonal of the image).  

Initially the accumulator cell is set to zero. Then for each of the desired feature 

points (xk, yk) detected in the image plane, we let θ equal each of the predefined 

values within the θ range and solve for the corresponding ρ using the equation 2.1. 

The resulting ρ values are then rounded off to the nearest value within the predefined 

ρ range.  

The corresponding element A(i, j) of the accumulator cell defined with parameter 

space coordinates ( ρi, θj ) is then incremented. At the end of this procedure, a value 

of Q in A(i, j), means that Q points in the xy-plane lie on the line x cos θj + y sin θj  = 

ρi. By thresholding, dominant line segments can be detected.♣ 

 

 

                                                 
♣ Most of the information about the Hough transform was quoted from [32] and pages 393-395. More 
detailed information about the Hough transform can be found in [32]. 
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2.4.1.2 Lane detection 

Processing the whole image is unnecessary and thus time consuming while realizing 

lane detection. To focus on the lines that mark the lanes, the image is divided into 

two half images: Left half and right half as shown in Figure 2.3. The Hough 

transform is applied for each half part to detect lines. 

Each lane line has two longitudinal edges that can be described as the transition from 

darker gray values to brighter ones or the transition from brighter gray values to 

darker ones in monochrome images as seen in Figure 2.4. Because of that one of 

these edges is enough to define the lane line, both half parts of the image are filtered 

by a simple mask such as [1 0 -1] or [-1 0 1] before applying the Hough transform 

(See Figure 2.5). 

There are, of course, many detected lines on the same lane line as seen in Figure 2.6. 

These lines must be reduced to one line as being one line on the lane line. 

The algorithm is capable of giving two lines with a particular angle difference 

between them as an output for each half image. These lines are defined as Left-most, 

Left for the left half part of the image and Right-most, Right for the right half part of 

the image (as described in Figure 2.7).  
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Figure 2.3 : (a) Detected lines in the left half (320 x 240) part of the image.  
          (b) Detected lines in the right half part of the image. 

 

 

 

 

(a) 

(b) 
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Figure 2.4 : Two longitudinal edges that can be described as the transition from 
darker gray values to brighter ones or the transition from brighter gray 
values to darker ones. 
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Figure 2.5 : (a) The original half image;  
                                              (b) The filtered half image by the mask [-1 0 1]. 

(a) 

(b) 
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Figure 2.6 : Many lines are detected on the same lane line. 

 

Figure 2.7 :  The output of the algorithm for the left half part of the image: 
                               Left-most line and Left line. 

In figure 2.7, the output of the algorithm for the left half part of the image is 

illustrated. The same approach is also realized for the right half part of the image. 

The lines GROUP 1 are reduced to one line as giving a “Left-most” line and the lines 

within GROUP 2 are reduced to one line as giving a “Left” line. 

It is possible to obtain lines that are irrelevant with lanes. These lines are easily 

eliminated utilizing the angle value given as an output for each line by the Hough 

transform. 
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Assuming that lanes have been successfully detected, vehicle presence is 

hypothesized by scanning each lane starting from the bottom to a certain vehicle 

position, corresponding to a predefined maximum distance in the real world. 

In fact, it is difficult to acquire lane information in every frame of a sequence of 

images. The lane lines may not be easily eligible or may be interrupted by the 

vehicles. Developing a lane tracking algorithm may be a solution to this problem in  

some circumstances. Besides scanning each lane independently, it is also possible to 

group the lane lines that can be detected in the current frame to avoid from 

undetectable lane lines as seen in Figure 2.8. 

 

 
 

Figure 2.8 : (a) Road area identification. (b) Besides scanning each lane 
   independently, it is also possible to group the lane lines  
   that can be detected in the current frame. 

(a) 

(b) 
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2.4.2 Vehicle detection 

As mentioned in the previous texts, vehicle detection process is realized in two steps: 

1) Hypothesis generation, and 2) Hypothesis verification. 

In the following parts of chapter 2, feature extraction techniques used as a basic of 

the vehicle detection process are not explained in detail. Detailed information about 

basic image processing operations and feature extraction techniques can be found in 

[32, 33].  

2.4.2.1 Hypothesis generation – shadow detection 

Vehicles may appear in many shapes and color. Nevertheless, one feature they all 

have in common is that they cause shadow on the road. Potential vehicle candidates 

can be extracted by detecting the shadows underneath vehicles. 

In the literature, potential shaded areas are defined as intensities with a significant 

darker color than the road. In [34], a normal distribution is assumed for the intensity 

of the road surface and the threshold value of the shadow is defined based on the 

mean and variance of this distribution. The mean and deviation of different regions 

in a road may be different. Hence, this approach might not always hold true. 

Another approach is based on looking in the image for vertical transitions from 

brighter gray values to darker ones. Instead of computing the mean of road pixels, 

pixels with negative vertical gradient values are considered as local darker regions 

[35]. 

To detect the shadows underneath vehicles, vertical transitions from brighter gray 

values to darker ones are searched in the image as scanning the image bottom-up. 

Considering the problem within this thesis, this approach can be realized 

implementing an edge detection algorithm as scanning predefined road area bottom-

up. 
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The edges with vertical transitions – horizontal edges are obtained by a vertical edge 

detector. Sobel edge detector is implemented within the thesis and negative vertical 

gradient values less than a predefined threshold value are considered as local darker 

regions, as seen in Figure 2.9. A systematic way to choose appropriate threshold 

values was not developed within the thesis. Beside the fact that the intensity of the 

shadow depends on illumination of the image, which in turn depends on weather 

conditions, it is a weakness of the implemented algorithm. The threshold value was 

determined as an appropriate fixed value for a series of different training samples 

after testing on them. 

       

Figure 2.9 : Detected shadows are plotted as red dots. 

Shadow is used as an initial cue for vehicle detection within the thesis. Hence, false 

detections caused by applying a predefined, fixed threshold can be prevented in the 

following steps of the hypothesis generation as well as in the hypothesis verification. 

Nevertheless, in the weather conditions that the shadows underneath vehicles can not 

be distinctly eligible, the predefined threshold value might not be appropriate to 

detect the shadows underneath vehicles. Therefore, developing a systematic way to 

choose appropriate threshold values must be consider as a future work within this 

study. 
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Before implementing the following steps of the hypothesis generation algorithm, a 

simple preselection is performed. The shadow edges with the length smaller than a 

predefined pixel value are eliminated. This predefined pixel value can be selected as 

a value in the range of 10 – 15 pixel. The pixel values in this range are appropriate as 

potential bottom edges of ROIs (Region-of-Interest) for both mid-range and distant 

vehicles within further analysis – hypothesis verification step.  

As seen in Figure 2.10, there are, of course, many shadow edges in successive rows, 

relating to the same vehicle. These edges must be reduced to one as representing the 

bottom edge of the potential vehicle. 

 

Figure 2.10 : Successive shadow edges relating to the same vehicle. 

The edges whose the distance between their “y” coordinates is less than or equal to 

“2” pixels are combined as giving the bottom edge of the potential vehicle. The value 

like “2” pixel is appropriate for both mid-range and distant vehicles while realizing 

this combining process. 

The detected shadow edges underneath a vehicle do not always have the lengths 

same as or near to the length of the bottom edge of the vehicle. Shadow length 

changes during different weather conditions and times of the day. In this case, 

combining the shadow edges whose the lengths are more than a reasonable value 

requires facing with a critical situation during defining ROIs of the potential 

vehicles. 
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Defining ROI whose the size is considerably more than the size of the potential 

vehicle can cause false detections and thus verification errors for further analysis. In 

such a case, the background or eligible features of the other vehicles might be in the 

ROI defined for the hypothesized vehicle. 

Evaluating each lane independently during the hypothesis generation step as solution 

to the problem described above might provide to obtain more reliable ROIs. 

However the fact that every lane is not detectable in each frame of an image 

sequence, grouping the detected lanes given a reasonable road area might be 

necessary, as mentioned in the previous texts. Besides this, if each lane is evaluated 

independently, detecting a vehicle while it is changing the lane might not be easy. 

Consequently, grouping the detected lanes as defining a reasonable road area and 

evaluating them, in this manner, for the presence of vehicles is realized within the 

thesis. The problems within the hypothesis generation step are eliminated under these 

circumstances. 

The width of a vehicle in an image is related to the width of the lane where the 

vehicle is currently located. Therefore a reasonable value for the width of the 

potential vehicle can be determined according to the width of the lane where the 

vehicle is currently present.  

Since which lane the potential vehicle is present and the width of the lane where the 

potential vehicle is currently present are known, it is possible to calculate a value for 

the width of a potential vehicle according to the lane where it is present. To define 

ROIs that represent the potential vehicle for further analysis in the best possible way, 

the calculated value, just mentioned above, is utilized as a reference length for the 

bottom edge of the vehicle and, consequently, for the width of the potential vehicle. 

The calculated value for the width of the potential vehicle and the proposed approach 

to calculate this value is more appropriate for passenger cars. ROIs defined for large 

size vehicles utilizing the mentioned approach does not sufficiently cover the area of 

the vehicle. However this is not a critical problem as much as defining ROIs whose 

the sizes are considerably more than the size of the vehicle, since the defined ROIs 

for large size vehicles are still have distinctive features for hypothesis verification 

step even if they do not sufficiently present the related vehicles. 



 
24 

In spite of the combining process, there might be still more than one edge over the 

same vehicle that could not be eliminated, as seen in Figure 2.11. The final step of 

the hypothesis generation is implemented to reduce these edges to one bottom edge 

for each hypothesized vehicle. 

 

 
 

Figure 2.11 : (a) The edges that could not be eliminated in the combining process. 
                            (b) An example of false hypotheses can also be seen at close range. 

Consequently, the final bottom edges that represent each potential vehicle are 

utilized to determine the width of ROIs for the hypothesis verification step.  

In the hypothesis verification step, the hypothesized presence of vehicles is verified 

and false hypotheses (one of the false hypotheses can be seen in Figure 2.11) are 

eliminated. 

(a) 

(b) 
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2.4.2.2 Hypothesis verification – vertical edges detection 

Potential vehicles can be detected and located using shadow as discussed in the 

hypothesis generation step. Meanwhile, shadow can also be used for vehicle 

verification, since the located potential vehicle should have a shadow proper to its 

expected width corresponding to its location in the image. If the shadow is too wide 

or narrow, then it is rejected. 

For each remaining potential vehicle, a region-of-interest is defined as described in 

Figure 2.12. The final bottom edge that represents a potential vehicle designate the 

width of a rectangular box hypothesized as forming the area of the vehicle. The 

potential bottom edge of ROI corresponding to the potential vehicle is defined 

enlarging the width of this hypothesized rectangular box. The bottom edge of the 

ROI is set as adding 6 pixels to the x coordinate of the end point of the shadow edge 

and subtracting 6 pixels from the x coordinate of the start point of the shadow edge. 

The value like “6” pixel is appropriate for different ranges the vehicles locate in the 

image. The side edge length of the ROI is determined as the half of the shadow edge 

length.  

 

Figure 2.12 : Defining the region-of-interest (ROI). 
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Once the ROI is determined, refined search for the target vehicle is started in ROI. In 

the refined search, the horizontal projection vector w of the vertical edges V 

(Remember that the horizontal edge detector detects the vertical edges, [32, 33]) in 

the region defined as an n x m matrix is computed as follows: 

( ) ( ) ( ) 









== ∑ ∑

= =

n

j

n

j
jmjn ttyxVtyxVtwwww

1 1
121 ,,,,,,,,,,, KK  (2.2) 

The projection vector of the vertical edges is searched starting from the left and also 

from the right. The largest projection values found in both directions during the 

search determine the positions of the left and right sides of the potential vehicle. 

To verify that the potential object is a vehicle; 

If one horizontal edge and two vertical edges can be found in the same ROI, then it is 

considered that a vehicle exists in the image. 

Since there are no consistent cues associated with the top of a vehicle, it can be 

detected by assuming that the aspect ratio of any vehicle is a predefined, specific 

value. 
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3.  VEHICLE TRACKING 

One of the essential qualities of intelligent driver assistance systems is the ability of 

tracking other vehicles on the road. There are three key steps in video analysis: 1) 

detection of interesting moving objects, 2) tracking of such objects from frame to 

frame, and 3) evaluation of object tracks to recognize their behavior. Chapter 2 

described how vehicles could be detected and recognized from a single image. 

However, as we assume to analyze long image sequences, if the objects have been 

identified in the current frame or previous frames, this information could be used and 

will be helpful in the detection of objects in the next frame. In its simplest form, 

tracking can be defined as the problem of estimating the trajectory of an object in the 

image plane as it moves around a scene. In other words, a tracker assigns consistent 

labels to the tracked objects in different frames of a video [36].♣ 

Vehicle tracking forms the basis for estimating parameters of the (3D) real world 

motion of the vehicles on the road. In this chapter, the algorithm used to track 

vehicles and extract 2D motion parameters is presented. 

3.1 Literature Overview of Object Tracking 

In machine vision, visual tracking is the process of extracting geometric information 

of the motion of an object from image data. The goal of visual tracking is to analyze 

specific attributes of a target via measurements obtained from a sequence of image 

data. For example, determining the image position (2D) of a target as the target 

object moves through the camera’s field of view, or obtaining the pose of an object 

(3D position and orientation) may be intented to determine. Visual tracking is the 

problem known as the temporal correspondence problem: the problem of matching a 

target region through successive frames of a sequence of images typically taken at 

closely-spaced intervals. 

                                                 
♣ Most of the information about the object tracking and problem conditions was quoted from [36]. 
More detailed information can be found in [36]. 
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The motion of an object in space causes changes in the image. The motion detected 

on the image, visual motion, is related to the motion in space. The motion field is 

defined as the 2D vector field of velocities of the image points, caused by the motion 

relative to the viewing camera. The motion field can be thought of as the projection 

of the 3D velocity field on the image plane. Determining the motion field provides 

the basis information so that one can obtain the 3D motion of objects. Detecting 2D 

motion in the image is generally classified into two categories: 1) optical flow, and 2) 

tracking. Optical flow, as mentioned in the motion-based detection methods, is based 

on estimating the apparent motion of the image brightness pattern. Optical flow 

differs from the true motion field except where the image gradients are strong. Much 

work in tracking is realized by utilizing the other category – the feature-based 

approach. The basis of the feature-based approach is the processing of the images to 

extract “features” (edges, regions of homogeneous color and/or texture, etc.). The 

feature-based approach has advantages. First, feature extraction reduces the vast 

amount of data present in the image, without necessarily eliminating salient 

information. Second, optical flow can only analyze the motion field along edges 

hence computing dense flow field can be counter-productive and computational 

expensive. In feature-based method, feature extraction reduces the whole image into 

subimage regions. Thus a comparatively computational efficiency can be provided. 

Feature-based tracking generally works in such a way: an object template is 

prestored as the basis of recognition and position, then in every next frame, template 

is matched. The matching is based on the output of a cost function. If the cost 

function is less than a predefined threshold value then it is assumed that target is 

present in the current frame. There are various cost functions, of which the most 

popular is sum-of-squared-diffrence (SSD). In [37], the detected vehicles are tracked 

using a combination of distance based matching, SSD and edge density of detected 

vehicle regions. In [38], recognition and localization of the preceding vehicle in the 

image is realized utilizing a correlation-based approach. 
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Due to the constraint of real-time performance, the challenge in visual tracking is to 

match the amount of data to be processed to the available computational resources. 

This can be done in a number of ways: simplifying the problem, utilizing specialized 

image processing hardware, designing clever algorithms, or all of them. Target of 

interest is not searched in whole image frame to increase efficiency of the algorithm. 

Template is matched in the Region of Interest (ROI) where target was likely to be 

found. ROI is determined based on the assumption that target can not move too much 

in consecutive two frames. Therefore, ROI will be somewhere in surrounding of the 

region where the last time the object was presented. However, it is possible that there 

may be significant change in target shape or orientation in the next frame. The image 

changes due to motion, illumination, and occlusions may causes errors in the 

measurements. If this is the case, then tracker starts losing the target. 

In order to tackle the above-mentioned problem, the use of a sufficiently rich and 

accurate predictive model is required. In [20], The position and size of the target of 

interest is determined by a simple recursive filter with the aim of real-time multiple 

vehicle tracking from a moving vehicle. The Kalman filter is exactly useful as a 

solution to the problem mentioned above, handling noisy measurements (and also a 

noisy process). In [39], a real-time vision-based approach for detecting and tracking 

vehicles from a moving platform is developed. Tracking is realized by combining a 

simple image processing technique with a 3D extended Kalman filter and a 

measurement equation that projects from 3D model to image space. In [40,41], 

Kalman filter is used to produce optimal estimates of the state of a dynamic system 

with the aim of motion estimation of vehicles for in-car systems. 

3.2 Problem Conditions 

Ideally, a tracking algorithm would be able to locate the object anywhere within the 

image at any point in time. However typically only a limited region of the image is 

searched. Reasons for this are efficiency (especially necessary for real-time 

applications) and the possibility that there might be many other similar looking 

objects in the image. 
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The intuitive approach is to search within a region around the last position of the 

object. But as seen in Figure 3.1, this approach will fail if the object moves outside 

the target range. There are many possible reasons that occur this case: 

1. The object is moving too fast. 

2. The frame rate is too slow. 

3. The searched region is too small. 

 

Figure 3.1 : (a) Tracking the object without position prediction might be 
   successful. (b) Tracking without position prediction will fail. 

These problems are related to each other and can be avoided by ensuring a high 

enough frame rate for example. But given other constraints, these problems are often 

inevitable. 

In addition, even when the target can be accurately located. It seldomly appears the 

same in all images. Changes in orientation, lighting, occlusions, and imperfections in 

the camera continuously affect the appearance of the same target. So essentially, to 

observe the true location of the target in a certain manner is very difficult under the 

usual circumstances. 

One can simplify tracking problem by imposing some constraints on the motion and/ 

or appearance of objects. For example, almost all tracking algorithms assume that the 

object motion is smooth with no abrupt changes. One can further constrain the object 

motion to be of constant velocity or constant acceleration based on a priori 

information. Prior knowledge about the number and size of objects, or the object 

appearance and shape, can also be used to simplify the problem. 
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3.3 Objective 

If a summary of the above-mentioned discussions is made, two major problems can 

be identified: 

1. The object can only be tracked if it does not move beyond the searhed region. 

2. Various factors such as lighting and occlusions can affect the appearance of 

the target, thus making accurate tracking complex. 

To solve the first problem, making predictions about the locations of the detected 

vehicles in successive frames of a long image squence is attempted. But in making 

predictions, it is necessary to consider the second problem as well. Thus the 

prediction method needs to be robust enough to handle this source of error. A 

Kalman filter which estimates the positions and uncertainties of moving vehicles in 

the next frame is used within this master thesis. How large a region should be 

searched in the next frame for each target, that is, where to look for the target objects, 

around the predicted positions is determined by the Kalman filter to be sure to find 

the locations of the target objects within a certain confidence.  

The region that covers the detected vehicle is called as “the bounding box”. Two 

control points for each bounding box are considered. The image coordinates of these 

control points are predicted for each next frame through an image sequence using the 

Kalman filter. The width of the bounding box in the image plane is computed using 

the image coordinates of the predicted control points. The ROI where the new target 

is searched, is defined expanding the predicted width of the bounding box in the 

image plane to a predefined pixel value. 
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3.4 The Theory of the Kalman Filter 

The Kalman filter, rooted in the state-space formulation or linear dynamical systems, 

provides a recursive solution to the linear optimal filtering problem. The solution is 

recursive in that each updated estimate of the state is computed from the previous 

estimate and the new input data, so only the previous estimate requires storage. The 

Kalman filter is essentially a set of mathematical equations that implement a 

predictor-corrector type estimator that is optimal in the sense that it minimizes the 

estimated error covariance. In addition to eliminating the need for storing the entire 

past observed data, the Kalman filter is computationally more efficient than 

computing the estimate directly the entire past observed data at each step of the 

filtering process. The Kalman filter has been the subject of extensive research and 

application, particularly in the area of autonomous or assisted navigation. The 

Kalman filter has also been used extensively for tracking in interactive computer 

graphics [42]. 

Consider a linear, discrete-time dynamical system described by the block diagram 

shown in Figure 3.2. The Kalman filter addresses the general problem of trying to 

estimate the state of the discrete-time dynamical system that is governed by the linear 

stochastic difference equation. The state vector or simply state, denoted by xk, is 

defined as the minimal set of data that is sufficient to uniquely describe the unforced 

dynamical behavior of the system; the subscript k denotes discrete time. In other 

words, the state is the least amount of data on the past behavior of the system that is 

needed to predict its feature behavior. Typically, the state xk is unknown. To estimate 

it, a set of observed data, denoted by the vector yk, is used. 

In mathematical terms, the block diagram of Figure 3.2 embodies the following pair 

of equations: 

3.4.1 The process to be estimated 

A discrete time process that is governed by the linear stochastic difference equation 

is defined as, 

kkkkk wxFx += ++ ,11  (3.1) 
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with a measurement equation that is 

kkkk vxHy +=  (3.2) 

where Fk+1,k is the transition matrix taking the state xk from time k to time k + 1, yk is 

the observable at time k and Hk is the measurement matrix. 

The random variables wk and vk represent two additive noise terms: the process and 

measurement noise (respectively). They are assumed to be independent (of each 

other), white, with normal probability distributions and with covariance matrices 

defined by 

[ ] { knforQ

knfor

T
kn

k

ww
=

≠
=Ε

0
 (3.3) 

where Q is the process noise covariance matrix and 

[ ] { knforR

knfor

T
kn

k

vv
=

≠
=Ε

0
 (3.4) 

where R is the measurement noise covariance matrix. 

If noises are uncorrelated, as is usually assumed to be the case, the off-diagonal 

terms are zero as described in the equation 3.3 and the equation 3.4. Most commonly 

the noise processes are assumed to be stationary; i.e., their statistics do not vary with 

time. The covariance matrices related to the noises are assumed to be constant. 

 

Figure 3.2 : Signal flow representation of a linear, discrete-time 
         dynamical system [43] . 
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The Kalman filtering problem, namely, the problem of jointly solving the process 

and measurement equations for the unknown state in an optimum manner may now 

be formally stated as follows: 

Use the entire observed data, consisting of the vectors y1, y2, …., yk, to find for each k 

≥ 1 the minimum mean-square error estimate of the state xk.  

3.4.2 The computational origins of the filter 

A priori state estimate at step k is defined as n
kx ℜ∈−ˆ  (note the “super minus”) given 

knowledge of the process prior to step k, and a posteriori state estimate at step k  is 

defines as n
kx ℜ∈ˆ  given measurement yk. Then, a priori and a posteriori estimate 

errors can be depicted as 

.ˆ

,ˆ

kkk

kkk

xxe

andxxe

−≡
−≡ −−

 (3.5) 

The a priori estimate error covariance is then 

[ ] ,T
kkk eeP −−− Ε=  (3.6) 

and the a posteriori estimate error covariance is 

[ ].T
kkk eeP Ε=  (3.7) 

In deriving the equations for the Kalman filter, finding an equation that computes an 

a posteriori state estimate kx̂ as a linear combination of an a priori state estimate −
kx̂  

and a weighted difference between an actual measurement yk and a measurement 

prediction −
kxH ˆ  is the initial goal, as shown below in equation (3.8).  

( )−− −+= kkkk xHyKxx ˆˆˆ  (3.8) 

The difference ( )−− kk xHy ˆ  in equation (3.8) is called the measurement innovation, or 

the residual. The residual reflects the discrepancy between the predicted 

measurement −
kxH ˆ  and the actual measurement yk. A residual of zero means that the 

two are in complete agreement. 
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The matrix K in equation (3.8) is chosen to be the gain or the blending factor that 

minimizes the a posteriori estimate error covariance equation (3.7). The 

implementation of this minimization can be found in [30,31]. One form of the 

resulting K that minimizes equation (3.7) is given by 

( )

RHHP

HP

RHPHHPK

T
k

T
k

T
k

T
kk

+
=

+=

−

−

−−− 1

 (3.9) 

Looking at equation (3.9), as the measurement noise covariance R approaches zero, 

the gain K weights the residual more heavily. On the other hand, as the a priori 

estimate error covariance −kP  approaches zero, the gain K weights the residual less 

heavily. 

3.4.3 The probabilistic origins of the filter 

The Kalman filter maintains the first two moments of the state distribution, 

[ ]
( ) ( )[ ] .ˆˆ

ˆ

k
T

kkkk

kk

Pxxxx

xx

=−−Ε

=Ε
 (3.10) 

The a posteriori state estimate equation (3.8) reflects the mean (the first moment) of 

the state distribution – it is normally distributed if the conditions of equation (3.3) 

and (3.4) are met. The a posteriori estimate error covariance equation (3.6) reflects 

the variance of the state distribution (the second non-central moment). 

More details on the probabilistic origins of the Kalman filter can be found in [42].♣ 

3.4.4 The summary of the discrete Kalman filter algorithm 

The equations for the Kalman filter fall into two groups: time update equations and 

measurement update equations. The time update equations are responsible for 

projecting forward (in time) the current state and error covariance estimates to obtain 

the a priori estimates for the next time step. The measurement update equations are 

responsible for incorporating a new measurement into the a priori estimate to obtain 

an improved a posteriori estimate. 

                                                 
♣ Most of the information about the theory of the Kalman filter was adapted from [42]. More detailed 
information about the Kalman filter can be found in [42]. 
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The time update equations can also be thought of as predictor equations, while the 

measurement update equations can be thought of as corrector equations. The specific 

equations for the time and measurement updates are presented in the following 

equations. A complete description of the operation of the filter can also be found in 

Figure 3.3: 

kkkk xFx ˆˆ 1, −
− =  (3.11) 

k
T

kkkkkk QFPFP += −−−
−

1,11,  
(3.12) 

The equations described above (3.11 and 3.12) are the discrete Kalman filter time 

update equations. How the time update equations project the state and covariance 

estimates forward from time step k – 1 to step k can be seen clearly. 

( ) 1−−− += RHHPHPK T
k

T
kk  (3.13) 

( )−− −+= kkkk xHyKxx ˆˆˆ  
(3.14) 

( ) −−= kkk PHKIP  
(3.15) 

The equations described above (3.13 – 3.15) are the discrete Kalman filter 

measurement update equations. 

3.5 Dynamical System Formulation of the Implemented Vehicle Tracking  

The attribute sought at any point in time described by the state vector xk. Often this 

state vector contains the coordinates of the target with respect to a chosen reference 

frame. The two control points of the bounding box of the vehicle in the image are 

considered. The bounding box refers to a rectangular that covers the area of the 

vehicle. These two control points are chosen as the bottom left and right points of the 

bounding box [ ] T
kkkkk yxyxp 2,2,1,1, ,,,= where the subscript k denotes the frame of 

the sequence under consideration (See Figure 3.4). Within the image, the control 

points related to the bounding box of the vehicle move with velocity 

[ ] T
kykxkykxk vvvvv 2,,2,,1,,1,, ,,,= .  
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Figure 3.3 : A complete description of the operation of the Kalman filter [43] . 
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A state vector  

[ ] T
kykxkykxkkkkk vvvvyxyxx 2,,2,,1,,1,,2,2,1,1, ,,,,,,,=  (3.16) 

can be chosen to describe the motion of the bounding box on the image plane. 

Nevertheless, since the two control points of the bounding box that is chosen to track 

are the points on the same horizontal edge (the bottom edge of the bounding box), 

the state vector is reduced to 

[ ] .,,,,, 2,,1,,1,,2,1,1,
T

kxkykxkkkk vvvxyxx =  (3.17) 

The position and size of the region-of-interest, in other words the tracking window, 

in subsequent frames is determined by predicting this state vector in terms of the 

theory behind the Kalman filter. Therefore the chosen state vector in Equation (3.17) 

is appropriate to predict the position and size of the region-of-interest in subsequent 

frames. 

          
 

Figure 3.4 : The description of the bounding box and the control points. 

If a sufficiently small sampling interval, δt, is assumed, a constant velocity between 

frames can also be assumed. The motion can be expressed as: 

THE BOUNDING BOX  
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11
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 (3.18) 

where 11, −− kk ηξ  are the uncertainty in the model, usually taken to be zero-mean, 

white, Gaussian random processes. Re-writing this in terms of the state vector, a 

dynamical model of the target motion is obtained as 

111 −−− +Φ= kkkk wxx  (3.19) 

where 
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and 
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    (3.19b) 

wk-1 is the uncertainty in the process; i.e., process noise. ξk-1 can be assumed to be 

zero and the uncertainty in the process can thus be defined as: 

[ ]
[ ]T

kxkykxk

T
kxkykxk

uuu

uuuw

2,1,1,1,1,1,1
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=

=

η
 (3.20) 

As to measurements, the positions of the bounding box control points, pk, at every 

frame of a sequence are evaluated. Therefore, the measurement model of the Kalman 

filter becomes 

kkkk xHz µ+=  (3.21) 
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where 
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kH     (3.21a) 

and µk is the uncertainty in the measurement; i.e., measurement noise (again, often 

assumed to be a zero-mean, white, Gaussian random process). 

3.5.1 The initialization of the Kalman filter 

The main problem with Kalman filtering is that statistical models are required for the 

system and the measurement instruments. Unfortunately, they are typically not 

available, or difficult to obtain. In the actual implementation of the filter, the 

measurement noise covariance R is usually measured prior to operation of the filter. 

Measuring the measurement error covariance R is generally practical (possible). An 

off-line analysis of the measurement instruments prior to running the process (system 

identification) can be made to determine the variance of the measurement noise. The 

determination of the process noise covariance Q is generally more difficult because 

the process can not be observed directly. In other words, if the measurements in the 

off-line analysis also contain errors, the process can not be accurately profiled. 

Sometimes a relatively simple (poor) process model can produce acceptable results if 

enough uncertainty is injected into the process via the selection of Q. Certainly in 

this case, the process measurements must be reliable. Whether or not a rational basis 

for choosing the parameters is provided, often times superior filter performance 

(statistically speaking) can be obtained by tuning the filter parameters. These 

parameters can be pre-computed, for example, by determining the steady-state value 

under conditions where Q and R are in fact constant. 

Since Hk is a 3 x 6 matrix, the three additive noises are assumed zero-mean white, 

uncorrelated with each other, and with variances ( )k
kx

2

1,
σ , ( )k

ky
2

1,
σ , ( )k

kx
2

2,
σ , 

respectively. The measurement noise covariance matrix, needed for the Kalman filter 

implementation, is thus given by 
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The process noise covariance matrix is formally defined as [ ]T
kkk wwQ 111 −−− Ε≡ . 

Using the definition of the noise vector wk-1 and the assumption that the process-

noise terms 1,1, −kxu , 1,1, −kyu , 2,1, −kxu  are uncorrelated; 
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where [ ]2
1,1,

2
1 −Ε= kxuσ , [ ]2

1,1,
2
2 −Ε= kyuσ  and [ ]2

2,1,
2
3 −Ε= kxuσ  represent the variance 

of the noise terms. Remember that these terms (1,1, −kxu , 1,1, −kyu , 2,1, −kxu ) represent 

the change in the velocity (Equation 3.18). 

Specific numbers must of course be put in for those variances in order to define the 

Kalman filter numerically. To do this, a model for the vehicle acceleration that is 

simple and appears reasonable on physical grounds [44] is used to model the 2D 

image motion within the thesis. The vehicle acceleration u in either of the two 

directions (image coordinates; x and y) is assumed to be random and equally likely to 

be positive or negative with some maximum value A. The acceleration is assumed to 

be uniformly distributed between ±A. The probability density function of the 

acceleration in either direction is thus assumed to have the form of Figure 3.5. Three 

impulse functions representing discrete probabilities at ±A and 0 acceleration have 

been superimposed to make the model a little flexible. These then simply say that 

there is a probability P2 that the vehicle will proceed at constant image velocities, 

while there is probability P1 that its acceleration (deceleration) in either direction is 

at the maximum value A. The height of the uniform distribution is just 

( ) APPa 2/21 21 −−=  and that the variance of the random variable u is given by 

( )21

2
2 41

3
PP

A
u ++=σ     (3.24) 
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To find 2
1σ , 2

2σ  and 2
3σ , un Tσσ =  must be considered (T is time interval and n = 

1,2,3). Thus, 

( ) .3,2,1,41
3 21

22
222 =++== nwherePP

TA
T nn σσ     (3.25) 

 

 

Figure 3.5 : Assumed probability distribution of the acceleration u. 

Although the noise is assumed to be stationary, so that the variances do not vary with 

time, it may be possible to employ an algorithm which adjusts these process noise 

variances after each time step based on the observed measurements and evaluated 

change in the velocities considering these measurements. 

Filter initialization requires a first error covariance matrix as well as the noise 

covariance matrices. From its definition, the error covariance matrix is given as 

( ) ( )[ ] k
T

kkkk Pxxxx =−−Ε ˆˆ . The diagonal terms are just the mean-squared errors in 

the signal vector estimates. To initialize the filter, a first estimate is required as well 

as a first covariance matrix corresponding to the use of that first estimate. A first 

estimate can be found in several ways [44]. In some estimation problems an optimal 

(least mean squared error) can be found using the orthogonality principle, or, 

equivalently, by starting with a previous 0ˆ0 =x , which is indeed the optimal estimate 

of the zero-mean signal components when no observations are available. In such 

cases, the corresponding error covariance matrix P0 would be simply the steady-state 

covariance matrix C of the signal vector since 

[ ][ ][ ] [ ] [ ] CxxxxxxxxP T
kk

TT =Ε=Ε=−−Ε= 0000000 ˆˆ     (3.26) 
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3.6 The Implemented Algorithm 

The tracking algorithm implemented within the thesis uses the following steps: 

1. After the recognition of the vehicles is realized in the vehicle detection 

process and the current state vector is determined, tracking starts from the 

next image. 

2. Repeat for each frame in the image sequence: 

• Use the dynamical model to predict the position of the detected 

vehicle in the image. 

• Calculate the region-of-interest for the predicted vehicle position. The 

ROI is determined as described in the hypothesis verification step of 

the vehicle detection process explained in Chapter 2 (See Section 

2.4.2.2). 

• In determined ROI, search for the corresponding vehicle by using 

pronounced horizontal (shadow edge) and vertical edges. 

• Once the tracked vehicle is found, get the optimal estimation of the 

tracked vehicle in the current frame. 

• Update the position of the tracked vehicle based on the measurements 

corresponding to the position of the vehicle in the current frame. 

The same tracking process is realized for each vehicle recognized in the vehicle 

detection process. 

The vehicle detection algorithm is called every 10th frame due to the possibility of 

the presence of the new vehicles. It is possible for an object in the image not to able 

to detect from one or two images. Hence, any of the detected and tracked vehicles 

may not be detected in the next call of the vehicle detection algorithm after 10 

frames, even if it is still there.  
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Employing the capabilities of the tracking algorithm might be reasonable to avoid 

this problem. Before the elimination of the vehicle that is no longer detectable in the 

current frame, the sub-region that is the boundary box of the vehicle in the previous 

frame is correlated with the sub-region in the current frame whose the size and the 

position is the same with the boundary box in the previous frame. If the normalized 

correlation of the image regions is high, it is inferred that the vehicle might be still 

there. 

3.6.1 To update the filter: horizontal and vertical edges detection 

In each determined ROI, a refined search is realized to detect horizontal edge (the 

shadow edge) and vertical edges that is the vertical sides of the vehicle. The ROI is 

determined as explained in the hypothesis verification step of the vehicle detection 

algorithm and the vertical sides of the vehicle are also extracted by the same way 

defined in the hypothesis verification step. Nevertheless, in contrast with the vehicle 

detection algorithm, the horizontal edge (the shadow edge) detection must be 

realized in each determined ROI to locate the corresponding vehicle in the image. 

The horizontal edges are extracted implementing a Sobel edge detector. The 

projection vector of the horizontal edges in the ROI (defined as an n x m matrix) is 

computed as follows: 

( ) ( ) ( ) 









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= =

m

i

m

i
niim ttyxHtyxHtvvvv

1 1
121 ,,,,,,,,,, KK  (3.27) 

Because of that the top horizontal edge of the vehicle is not tried to detect, the 

projection vector of the horizontal edges is searched from the bottom of the vector to 

the middle of it. The largest projection value determines the position of the bottom 

edge of the vehicle. 

Another difference from the vertical edges detection in the hypothesis verification 

step is the selection of the threshold value. Even if the ROIs are accurately 

representing the vehicles in the image, there might be still distinctive features of the 

other vehicles in the same ROI, that can cause false detections in the situations such 

as vehicle occlusions.  
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To handle with this problem (especially the false detections problem caused by the 

occlusions), two threshold values are determined based on the literature survey and 

the observations obtained within the thesis: 1) The half of the largest projection value 

and 2) the largest projection value. Firstly, the projection vector is searched from the 

left and also from the right until a vector entry that is more than or equal to the half 

of the largest projection value is found. The maximum change in the image 

coordinates of the vertical sides of each vehicle is stored during the execution of the 

tracking algorithm. If the positions of the vector entries found based on the first 

threshold value (the half of the largest projection value) cause a change in the 

coordinates more than the maximum one, a new search is started using the second 

threshold value (the largest projection value). Otherwise, the positions of the vector 

entries selected using the first threshold determine the positions of the left and right 

sides of the vehicle. 
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4. CONCLUSION AND RECOMMENDATIONS 

This thesis proposed a multiple vehicle detection and tracking system, which 

includes road area finding. Video captured by just one camera is used to detect and 

track multiple vehicles. The system gives information of the ongoing traffic via the 

camera mounted on the rear-view mirror of the host vehicle. 

In the first step of the detection algorithm, the locations of the potential vehicles in 

the image are hypothesized using the shadows underneath a vehicle (as a distinctive 

feature) scanning the defined road area bottom-up to avoid false detections of 

delineators. The road area is defined using the lane information obtained by the 

Hough transform. 

In the second step of the detection algorithm, the hypothesized locations of the 

potential vehicles in the image are verified using the vertical edges as well as the 

shadows underneath a vehicle. During the verification, the presence of a vehicle is 

considered if one horizontal edge and two vertical edges can be found. The summary 

of the vehicle detection algorithm is illustrated in Figure 4.1.  

After extracting vehicles, the developed tracking algorithm effectively track them 

during successive image frames in a long image sequence using a Kalman filter 

based approach. Finally, the 2D image velocity relative to the host vehicle for each 

detected vehicle is provided. The flow chart of the implemented algorithms can be 

seen in Figure 4.2. 

The shadow detection step of the vehicle detection algorithm can be considered as a 

coarse search, while the detection algorithm is employed only for small regions 

represented each potential vehicle after the region-of-interests defined for each 

potential vehicle. The coarse search is implemented over the defined road-area, while 

ROIs make possible to employ a refined search over located small regions. Hence, 

the coarse search takes a substantial amount of time. It can take about 1–1.5 seconds 

depending on the number of the detected shadows. 
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However, if the dynamics of the moving objects are known, predictions can be made 

about the positions of the objects in the current image and the relevant positions of 

the moving objects can be estimated in successive frames of an image sequence. The 

Kalman filter based tracking algorithm implemented within the thesis can reduce the 

processing time needed to execute the vehicle detection algorithm to approximately 

0.02 seconds. 

  

  

Figure 4.1 : The summary of the detection algorithm. 

The developed algorithms within the thesis were implemented by MATLAB. Besides 

the fact that MATLAB does not provide a sufficient performance for this kind of 

vision applications related to the time constraint in comparison with the 

environments C/C++ based programs can be executed and mainly real-time computer 

vision is aimed, the developed algorithms should be translated from the MATLAB 

implementation to C/C++ using this kind of environments just mentioned about. 

The most serious drawback of using the shadow cue for vehicle detection is scenes 

with low sun, making vehicles cast long shadows (See Figure 4.3). Hence, the 

detected shadows become wider in the case of a sun from the side or ill positioned in 

the case of the camera facing the sun.  

Reducing the shadow edges to one bottom edge 
for each hypothesized vehicle 

Two vertical edges and one horizontal edge 
that represent each vehicle 

Detected shadows Combining shadow edges in successive rows 
(for 2 pixels) 
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As mentioned in the hypothesis generation step (See section 2.4.2.1), the shadow 

lengths change due to the different weather conditions and even times of the day. 

This situation can cause defining ROI whose the size is considerably more than the 

size of the potential vehicle.  

Defining such a ROI can cause false detections thus verification errors for further 

analysis due to the background or eligible features of the other vehicles where might 

be in the same ROI. Such false detections might especially occur in the situation the 

vehicles in adjacent lanes. Surprisingly, this problem has not been mentioned enough 

in the literature.  

As a solution to the mentioned problem, the information of the detected lanes is 

utilized within the thesis. Beside the fact that the width of a vehicle in an image is 

related to the width of the lane where the vehicle is currently present, it is possible to 

calculate a reference value for the width of a potential vehicle according to the lane 

where it is present. If the width of the potential shadow edge is too wide compared to 

the reference value, then this shadow edge is eliminated (See section 2.4.2.1).   

Most of the previous vehicle detection and tracking methods used lane or determined 

free driving space as in the work implemented within this thesis. However, if the lane 

does not exist or due to an intersection, etc., it is difficult to acquire such 

information.  

Although searching the road area defined via the lane information to extract 

distinctive cues reduces the computational cost in comparison with searching the 

whole image, using appearance-based verification methods to verify the presence of 

a potential vehicle hypothesized by searching the whole image can provide a more 

robust algorithm to handle the problem associated with the lane detection. 
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Figure 4.2 : The flow chart of the implemented algorithms. 

START 

Divide the current image into two half images. 

Apply the Hough transform for each half part to 
detect lanes. 

Scan each lane or the groups of the lanes bottom-up to 
detect the shadows underneath the vehicles. 

The shadow edges are sufficient 
length to represent a vehicle 

? 
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the shadow edge 
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Reduce the shadow edges on the same vehicle to one 
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Despite the problems related to the lane information, it should be taken into account 

that the lane information in which the observed vehicle is moving is an important 

parameter. In the case that the shadows underneath vehicles are used as a cue for the 

detection, the lane information is especially important due to the change in the 

shadow length during different weather conditions and times of the day, as 

mentioned in the previous paragraphs. Hence extracting the lane information might 

require in the vehicle detection and tracking applications. If the dynamics of the 

lanes due to the moving camera is known, developing a lane tracking algorithm as a 

solution to the problems related to the lane information might be reasonable in some 

circumstances within the applications the lane infromation is needed. 

     

Figure 4.3 : Low sun from the side makes that vehicles cast long shadows. 

In Appendix A, the experimental results of the implemented algorithms can be seen. 

The developed algorithms are executed for the images of the daylight. The detected 

vehicles are tracked during the frames of an image sequence. Each vehicle is 

represented by a different color. The aspect ratio of any vehicle is assumed to be 1 

and the bounding boxes of the recognized vehicles are plotted based on this aspect 

ratio. It is also possible to modify the algorithms to detect and track the vehicles in 

the night, as a future work. 

In Figure A.1, the mid-range and the distant vehicles are detected and tracked during 

the frames of an image sequence. In these frames, it is also possible to observe the 

performance of the developed algorithms in detecting and tracking the vehicles 

which make a lane change maneuver. 
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In Figure A.2, the vehicles at close range are detected and tracked during an image 

sequence. In these frames, the host vehicle is approaching to another vehicle from the 

rear. This image sequence is quite usable to illustrate a dangerous situation. In such a 

case, estimating Time-to-Collision will make the driver to be warned about the 

distance of the vehicle from the leading vehicle and can make the driver take an 

action for avoiding a possible collision. 

In Figure A.3, a drawback of the shadow-based algorithm is illustrated. The shadow 

an overpass occurs on the road causes false detections. The area underneath the 

vehicle is still distinctly darker than any other areas underneath the overpass. Thus, 

the shadow underneath the vehicle can be detected when the vehicle passes 

underneath the overpass.  

However, the ROIs in which no vehicles exist can not be eliminated using the 

vertical edges as a clue for verification, as seen in the following frames. Using a 

combination of different clues in the hypothesis verification step might prevent such 

false detections. In the illustrated frames, using a combination of vertical edges and 

texture pattern might be considered as a solution to the mentioned problem. 

As a future objective, the 2D-vehicle velocities provided by the algorithms 

implemented within the thesis are intended to be used for estimating parameters of 

the (3D) real-world motion of the vehicles relative to the host vehicle with the aim of 

preventing possible dangerous situations.  

Providing the information about the driving environment for drivers makes possible 

to warn about the time it takes for other vehicles to contact with them and thus the 

situations rear-end collisions might occur or the collisions caused by sudden lane 

change might be avoided by estimating Time-to-Collision. 
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    APPENDIX A :  Experimental results of the implemented algorithms. 
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APPENDIX A 

 

 

 

 

 

 

Figure A.1 : Detection and tracking of mid-range and distant vehicles.
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FRAME 11223 
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Figure A.1 (contd.) : Detection and tracking of mid-range and distant vehicles. 

FRAME 11306 
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FRAME 11325 
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Figure A.2 : Detection and tracking of the vehicles at close range. 
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Figure A.2 (contd.) : Detection and tracking of the vehicles at close range. 
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Figure A.3 : Detection and tracking of the vehicle in the situation 
                     where an overpass occurs shadow areas on the road. 
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Figure A.3 (contd.) : Detection and tracking of the vehicle in the situation 
                                  where an overpass occurs shadow areas on the road. 
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