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DYNAMIC PROPERTIES AND STATIC BEHAVIOR OF FIBER 
REINFORCED SAND 

SUMMARY 

In the recent years, very high loads are applied on soil deposits as a result of 
developing technology, raising population and increasing demand for giant 
structures. In most of the constructions, the soil properties need to be improved in 
order to enable safe and economical constructions. Soil improvement techniques are 
used to improve the engineering properties of soils. Different methods are preffered 
according to the requirements and soil type. One of the most commonly used soil 
improvement type is the addition of substances such as polypropylene fibers.  

In scope of this research, the dynamic properties and static behavior of fiber 
reinforced sand is determined by performing labaratory tests. Conducted laboratory 
tests are cyclic triaxial test, static triaxial test and direct shear test. The maximum 
Elasticity Modulus, the stress-strain response under monotonic loading and shear 
strength parameters are determined for unreinforced and reinforced sand specimens. 
While the type of fiber and sand is kept constant, effect of different parameters are 
tested in each test. The main aim is to find the effect of fiber inclusion on the 
behavior of tested sand. 

The cyclic triaxial test is performed to determine the maximum Elasticity Modulus at 
two different confining pressures. The static triaxial test is performed at different 
strain rates on saturated specimens. The consolidated undrained and consolidated 
drained triaxial tests are performed. Also samples prepared at certain water content 
are subjected to static triaxial test. In the second part of the experimental study, direct 
shear tests are performed on unreinforced and randomly distributed fiber reinforced 
samples. The effect of different fiber contents on the behavior of sand is tested 
during the experimental study. The effect of fiber inclusion on the shear strength 
parameters are discussed by using the experimental results obtained from direct shear 
and triaxial tests. 

In general, the results obtained from laboratory tests showed that fiber reinforcement 
improves the static behavior of sand, depending on the test type and tested fiber 
content. On the other hand, the effect of strain rate on the triaxial test results can be 
considered insignificant. 
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FİBERLE GÜÇLENDİRİLEN KUM ZEMİNLERİN DİNAMİK 
ÖZELLİKLERİ VE STATİK DAVRANIŞI 

ÖZET 

Gelişen teknoloji ve artan nüfusa bağlı olarak günümüzde zeminler yüksek miktarda 
yüklere maruz kalmaktadırlar. Birçok inşaat projesinde, güvenli ve ekonomik 
çözümler geliştirebilmek için zeminlerin mühendislik özelliklerinin iyileştirilmesi 
gerekmektedir. Zemin iyileştirme yöntemleri de zeminlerin mühendislik 
parametrelerini iyileştirmek için geliştirilen yöntemlerdir. Uygulanan zemin 
iyileştirme yöntemi, zemin cinsine ve uygulamanın gerekliliklerine bağlıdır. 
Günümüzde en çok kullanılan zemin iyileştirme yöntemlerinden biri de çeşitli 
zemine çeşitli malzemeler katılarak zemin iyileştirilmesidir. Özellikle polipropilen 
fiberler sıkça kullanılmaktadır. 

Bu çalışma kapsamında fiber katılmış kum zeminin dinamik özellikleri ve statik 
davranışı laboratuvar deneyleri ile incelenmiştir. Dinamik üç eksenli deney sistemi, 
statik üç eksenli deney sistemi ile kesme kutusu deney sistemi kullanılarak zeminin 
davranışı belirlenmiştir. Temiz kum ve fiberle güçlendirilmiş kum için maksimum 
Elastisite Modulü, statik yük altında gerilme-deformasyon davranışı ve kayma 
mukavemeti parametreleri belirlenmiştir. Deneylerde kullanılan fiber ve kum çeşidi 
sabit tutularak çeşitli parametrelerin etkisi incelenmiştir. Öncelikle her deneyde 
fiberin zeminin davranışına etkisi incelenmiştir.  

Dinamik üç eksenli deney sisteminde, numunelerin maksimum Elastisite Modülleri 
iki farklı konsolidasyon basıncı altında belirlenmiştir. Statik üç eksenli deney 
sisteminde ise değişik deformasyon hızlarında doygun numuneler test edilmiştir. 
Numunelere, konsolidasyonlu drenajsız ve konsolidasyonlu drenajlı deneyler 
yapılmıştır. Aynı zamanda belirli bir su muhtevasında hazırlanmış ve doygunluğa 
ulaşmamış numunelerde de statik üç eksenli basınç deneyleri yapılmıştır. Deneysel 
çalışmanın ikinci bölümünde ise saf kum ve dağınık liflerle rastgele donatılı kumlar 
kesme kutusu deneyi ile test edilmişlerdir. Deneysel çalışmada farklı fiber 
oranlarının kumun davranışına etkisi incelenmiştir. Fiber eklemenin kayma 
mukavemeti parametreleri üzerine etkisi, üç eksenli deney ve kesme kutusu deney 
sonuçları karşılaştırılarak yorumlanmıştır. 

Genel olarak, laboratuvar deney sonuçları fiber eklemenin kumun statik davranışını 
iyileştirdiğini ve bu iyileşmenin fiber miktarı ile deney çeşidine bağlı olduğunu 
göstermiştir. Bunun yanı sıra, üç eksenli deneyler test edilen hızlar için deney hızının 
sonuçlar üzerine önemli bir etkisi olmadığı gözlemlenmiştir. 
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1. INTRODUCTION 

Soil improvement techniques have essential importance for Soil Mechanics and 

Foundation Engineering Applications. By using different methods, it is possible to 

improve the engineering properties of soils and thus safer and more economical 

solutions can be developed.   

Addition of substances to improve soil properties dates back to ancient times when 

sun-dried soil bricks were the primary building materials (Freitag, 1985). As a result 

of developing technology, adding different substances to improve soil properties 

became a common application. Fly ash, lime, cement and fibers are the most 

common additives preferred. The idea of reinforcing soil with adding fibers is 

derived from the tree root-soil mechanism (Waldron, 1977). Natural and synthetic 

types of fibers are mixed into soil and their effects are determined by different testing 

methods. 

In scope of this thesis, dynamic properties and static behavior of fiber reinforced 

sand is determined by performing laboratory tests. For the experimental study, 

random distribution of fibers is preferred as sample preparation only requires simply 

mixing fibers into sand and random distribution of fibers provide strength isotropy 

(Yetimoglu and Salbas, 2002). 

First, brief information about the most commonly used soil improvement techniques 

are presented. Secondly, dynamic properties and static behaviour of sand is presented 

along with the previous studies on fiber reinforced sand samples. Considering the 

information obtained from literature study, the experimental program has been 

prepared. 

In the experimental part of this study, cyclic triaxial test, static triaxial test and direct 

shear test are performed. The engineering properties of Akpınar sand are determined. 

One type of polypropylene fiber is chosen to mix into poorly graded Akpınar sand. 

The effect of fiber on the dynamic properties and static behavior of sand is analysed.  
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The maximum Elasticity Modulus is determined by conducting cyclic triaxial test. 

The static behavior of randomly distributed fiber reinforced sand and unreinforced 

sand are analysed by performing static triaxial tests at different strain rates. The 

saturated and unsaturated specimens prepared at certain water content are used in the 

experimental study. The direct shear test is performed to determine the effect of fiber 

inclusions on the shear strength parameters of sand. The shear strength parameters 

calculated from static triaxial tests conducted on unsaturated samples are compared 

with the parameters calculated from the direct shear tests. The result of the 

experimental study will be discussed to present the effect of fiber inclusion on the 

behaviour of sand.  
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2. SOIL IMPROVEMENT 

2.1 Introduction  

Soil improvement techniques are used to improve the engineering properties of soils. 

These techniques vary by the application methods and soil types that can be 

improved. These methods are required not only when the top soil is not able to 

support structures but also when the deeper layers need to be improved.  In general, 

the aim of soil improvement methods is to (Das, 2007): 

1. Improve the shear strength of soils and increase the bearing capacity of 

shallow foundations 

2. Reduce the shrinkage and swelling of soils 

3. Reduce the settlement of structures 

4. Increase the factor of safety for possible slope failure of embankments and 

earth dams. 

Any change that renders parameters of the soil or rock to the required strength or 

permeability properties by the field construction is classified as stabilization. On the 

other hand, modification means a minor change in the parameters of soil. 

Modification of granular soils consists of changing the volume of voids, replacing 

the void material or application of both. For cohesive soils, modification requires 

mixing with stabilizers and preloading to reduce settlement.  

In scope of soil improvement methods, ground water can be removed with different  

drainage methods. Methods such as grouting, freezing, mixing and jet piling are used 

for changing the void fluid (Karol, 2003). In scope of this thesis a general description 

of widely used methods for soil improvement are stated. It is possible to use only one 

method or a combination of methods depending on the soil profile and required 

properties for the construction site.  

In this part of the thesis, brief information about soil improvement techniques are 

presented. Application of methods and their effects on soil properties are decribed 

briefly. 
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2.2 Soil Improvement Methods 

2.2.1 Mechanical Stabilization 

The aim of this method is to change the grain size distribution of the soil by adding 

binder materials that will fill the voids. In case of granular soils, the binder material 

adds cohesion to soil. Best results are obtained when the cohesive material occupies 

75-90 % of the voids of granular material. For cohesive soils, the granular binder 

material is mixed with soil (Bowles, 1997). 

2.2.2 Compaction 

In this method, addition of water rearranges solid particles under compaction energy. 

The maximum dry unit weight at the optimum moisture content is calculated by 

applying Standard or Modified Proctor Tests at the laboratory. According to the 

results of the laboratory compaction tests, specifications for the in situ compaction 

are determined. In most cases, it is preferred to form a relative compaction of 90% or 

more based on the laboratory compaction test. The compaction is performed at the 

field by using rollers such as smooth wheel rollers, pneumatic rubber tired rollers, 

sheepsfoot rollers and vibratory rollers. Especially cohesive soils are well compacted 

by rollers (Das, 2007). Vibratory rollers are effective for cohesionless soils (Terzaghi 

et al., 1996). The soil is excavated until a certain depth, and the soil is backfilled by 

compacting in layers. The lift thickness should not exceed 75-100 mm for a 

successful compaction application (Bowles, 1997) 

Dynamic compaction is a type of compaction method, which is performed by using a 

mobile crane to lift and drop a heavy tamper on to the soil. Depending on the height 

of the drop, weight of the mass and type of the soil, compaction can be performed 

successfully until a certain depth. This method can be used for compacting saturated 

soils that are classified as silty and/or clayey sand and gravels. The increase in the 

fine material content causes the decrease of the compaction. While partially saturated 

clays above ground water table level can be improved by this method, there can be 

no improvement for fully saturated clays (Bowles, 1997). The schematically drawing 

of the dynamic compaction method is shown in Figure 2.1. 
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Figure 2.1: Dynamic Compaction Method (Gunaratme, 2006)  

2.2.3 Vibro flotation 

This method is used for compacting loose clean sand deposits that are above or 

below ground water table level. The cylindrical probe that includes an eccentric 

weight rotates about the vertical axis and transfers horizontal vibration to the probe. 

The sand particles moves and gets denser in a cylindrical zone as the vibrating probe 

lowers under its own weight The unit includes openings at the bottom and top for 

water jets and the vibrating unit is attached to the follow-up pipe. The method is 

applied for forming densified sand columns (Terzaghi et al., 1996). 

The grain size distribution of the soil and the nature of the backfill used to fill the 

holes effects the efficiency of the vibro flotation method (Das,2007). 

2.2.4 Blasting 

This technique is used for the densification of granular soils. In this method, 

explosives such as 60 % dynamite are blasted at a certain depth in saturated soils.  

The explosives are placed at a depth of two-thirds of the thickness of the soil layer so 

that relative compaction values up to 80% can be achieved (Mitchell, 1970). 

2.2.5 Freezing 

In this method, a cold medium is contacted to the soil for a certain amount of time 

until the pore water is freezed. For application, pipes are placed into the soil. Pipes 
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are combined of two units, a small pipe concentric within a larger pipe. During the 

transfer of refrigerant through the inner pipe, the soil around the outer pipe is cooled. 

For using this method, the soil must be saturated and the groundwater movements 

should be slow. This method is preferred when temporary waterproof barriers are 

needed. Freezing soil increases the strength of soil but frozen soil masses subject to 

creep under load. As pollutants are not added to the soil, this method is 

environmentally friendly (Karol, 2003). 

2.2.6 Precompression 

Compressible soils such as soft clays, loose silts and most of the organic soils are 

consolidated by precompression method, which is also known as preloading method. 

The area is subjected to weight caused by the fill having a weight per unit area high 

enough to consolidate the soil. While the compressibility of the soil is decreased, the 

strength is increased. The factor of safety against undrained failure during the 

precompression application is achieved by determining adequate magnitude and rate 

for preloading (Terzaghi et al., 1996). 

2.2.7 Drainage Methods 

Different types of drainage methods are used to remove the water in the soil and thus 

increase the rate of settlements. In most of the natural deposits, the permeability of 

soil differentiates from point to point. Methods such as pumping of water from shafts 

in the excavation area, suction of water by well point method, deep well drainage 

method, drainage by electro-osmosis and vacuum method are also used (Terzaghi et 

al., 1996). Brief information about commonly used drainage methods are presented. 

The sand drain method is used to accelerate the consolidation settlement of 

impermeable layers, especially soft, normally consolidated clay layers. The estimated 

rate of consolidation varies if horizontally discontinuous isolated sand layers exist in 

the compressible profile, as the drainage layers cannot be accurately determined. The 

installation of vertical drains is used in accordance with natural drainage layers (sand 

blankets) to increase the rate of consolidation. For this purpose, sand drains or fabric-

encased sand drains are used (Terzaghi et al., 1996). The holes are drilled at regular 

intervals into the clay layers. After completing the backfilling with sand, a surcharge 

is applied at the ground surface and it increases the pore water pressure in the clay 
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layer. The excess pore water pressure is dissipated through sand drains and thus it 

accelerates the consolidation (Das, 2011). 

The prefabricated vertical drains (PVDs), also known as wick drains, are used to 

enable the drainage of low-permeability soils under surface surcharge. These are 

produced with a channeled synthetic core enclosed by a geotextile filter (Das, 2011). 

The wick drains does not provide any strengthening effect on the soil except for that 

resulting from the water content and void ratio reduction (Bowles, 1997). The 

schematically drawing of the installation of PVDs is shown in Figure 2.2.   

 

Figure 2.2: Installation of PVDs (Gunaratme, 2006)  

2.2.8 Sand Columns 

Sand columns are used to increase the stiffness of soils. This method is applicable in 

both sand and clay deposits. The amount of sand required, the density and spacing of 

columns are determined according to the present stiffness and target stiffness value. 

As this method enables the usage of in situ sand, this method can be considered 

economical in most of the cases (Bowles, 1997). 

2.2.9 Stone Columns 

This method is used to increase the load-bearing capacity of shallow foundations on 

soft clay layers (Das, 2011). While the stone columns can be used in sand deposits, it 

is usually preferred for soft, inorganic, cohesive soils. The vibroflot is used to 
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produce stone columns. The vibroflot is raised and lowered repeatedly as it cleans 

the cohesive cuttings by jetting. Then the backfill material is placed in stages by 

vibrating (Terzaghi et al., 1996). The size of the gravel used as the backfill material  

ranged between 6 to 40 mm. Stone columns are usually constructed with diameters 

about 0.5 to 0.75 m. After the construction of stone columns, the fill material is 

placed over the ground surface and it is compacted (Das, 2011). 

2.2.10 Jet Grouting 

The jet grouting method consists of injecting cement slurry into the soil at a high 

velocity in order to create a soil-cement matrix (Das, 2011). A special drill bit with 

vertical and horizontal high-pressure water jets is used for excavating through soil. 

The cement slurry is then injected into the soil where it is mixed with the remaining 

foundation material loosened during excavation (Bowles, 1997). The single, double 

and triple rod systems are developed for the jet grouting system. The erodibility of 

the soil effects in jet grout columns. While the high plasticity clays are difficult to 

erode, gravelly soil and clean sand are highly erodible (Burke, 2004; Welsh and 

Burke, 1991). The schematically drawing of the jet grout application is shown in 

Figure 2.3. 

 

Figure 2.3: Jet Grouting Method (Baker) 

2.2.11  Soil Nailing 

This is an in situ technique for reinforcing and stabilizing deep cuts. Soil nailing is 

used for temporary or permanent support for excavations, retaining walls, 

stabilization of tunnel portals, stabilization of slopes and repairing retaining walls. 

This method is applicable to cohesive soils or weathered rock as this application 

requires the soil to temporarly stand in a near vertical face. The soil is excavated at a 
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certain depth. The soil is drilled and steel reinforcing bars, known as soil nails, are 

placed and a welded wire mesh is fastened to the steel bars and the excavated face is 

stabilized by shotcrete application. The schematic drawing of the soil nailing method 

is shown in Figure 2.4 (Gunaratme, 2006). 

 

Figure 2.4 : Soil Nailing Process (Gunaratme, 2006) 

2.2.12 Use of Geosynthetics 

Different types of geosynthetics, synthetic fabric materials, are used to improve soil 

conditions. They are made from polyster, nylon, polyethylene and polypropylene. 

Geosynthetics are sufficiently durable materials and they can be used for different 

purposes (Bowles, 1997). Geosynthetic materials are used for several purposes. They 

are primarily used for separation, reinforcement, drainage, filtration and as a 

moisture barrier (Das, 2007).  

They types of geosynthetics are geotextiles, geogrids, geonets, geomembranes, 

geosynthetic clay liners, geopipe and geocomposites. Geotextiles are used for erosion 

control applications as an alternative for granular soil filters. A typical geotextile 

application is shown in Figure 2.5. Geogrids are used for reinforcement. Geonets are 

preffered for drainage applications. Geomembranes are prefered due to their 

impervious nature. Geosynthetic clay liners are used as hydraulic barrier to water, 

leachate or other liquids. Geopipes are used for underground pipeline transmission of 

various types of liquid and gas. Geocomposites are combinations of different types of 

geosnyhtetic materials. They are used in combinations in order to provide required 

functions (Koerner, 1998). 
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Figure 2.5 : Temporary geotextile wrapped-face wall (Bathurst) 

2.2.13 Chemical Stabilization 

Chemical admixtures, such as lime, cement, fly ash and their combinations are used 

to stabilize in situ soils, especially fine grained soils. The aim is to improve the 

strength and durability of the soil.  

The addition of lime into the soil forms cementing material due to the puzzolonic 

reaction between soil and lime. There are different ways of performing lime 

stabilization in the field. One method is to mix in situ material with lime at the site 

and compact after the addition of moisture. The second method is to mix lime, soil 

and water in a plant and transfer the mixture to the site for compaction. The third 

method is to inject the lime slurry into the soil under pressure. The addition of lime 

to fine grained soil increases its unconfined compression strength and tensile strength 

in a considerable amount (Das, 2011). 

Soil stabilization with addition of cement is preferred especially for the high way and 

earth dam constructions. It is used for stabilizing sand and clayey soils. The cement 

addition increases the strength of soil in a considerable amount. For field application, 

the required amount of cement and water are mixed with the soil and compacted 

(Das, 2011). 

Fly ash is obtained from the pulverized coal combustion. It is a puzzolonic fine 

grained dust, which reacts with hydrated lime to produce cementitious products. 

Stabilized soil layers for highway bases and subbases are obtained by mixing soil 

with the lime-fly ash mixture and compacting under controlled conditions (Das, 

2011). 
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2.2.14 Biotechnical and Fiber Reinforcement 

Biotechnical reinforcement technique, also known as bioengineering, requires the 

usage of live vegetation to stabilize slopes against erosion and shallow mass 

movements (Gunaratme, 2006). The most common method of biotechnical 

reinforcement is to cover a part or the entire slope with small trees or low ground 

cover. Another biotechnical stabilization method is using microorganisms such as 

bacteria and fungi, to remove pollutants from soil and water. This method is known 

as bioremediation (Karol, 2003).The method of improving the engineering properties 

of soils by inclusions of various types of fibers is called fiber reinforcement. 

Randomly distributed discrete fibers are mixed into the soil to increase the strength 

and assist the soil in tension (Gunaratme, 2006). 

2.3 Results  

In this part of the thesis, brief description of soil improvement methods, their 

application and effects are presented. The most common methods are analysed. In 

scope of this thesis, soil improvement with fiber reinforcement method will be 

analysed in the following sections. 
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3. LITERATURE REVIEW 

3.1 Introduction 

In this part of the thesis, brief information about the dynamic properties of sand and 

sand behavior under static loading is included. In addition to this, previously 

conducted studies on sand specimens reinforced with randomly distributed fibers are 

presented. The effect of fiber inclusions on the static behavior of sand is 

demonstrated with the sample preparation methods, test methods and effect of 

different parameters on the test results. 

3.2 Dynamic Properties of Sand 

Soil behavior under cyclic loading conditions are governed by the dynamic 

properties of soil. Soil properties, stiffness, damping, Poisson’s ratio and density 

influence the wave propagation and thus the behavior of soils under cyclic loading. 

Also the rate and number of cycles of loading are important parameters. Volume 

change characteristics are considered important especially at high strain levels 

(Kramer, 1996).   

The most significant developments in the Soil Dynamics aim to determine elastic 

characteristics in a strain range between 10-6-10-4. This range respresents the strains 

encountered in earthquakes (Pecker, 2007). Dynamic properties can be determined 

directly by the field tests based on wave propagation velocities. The laboratory tests 

are performed to study soil behavior under controlled stress conditions. In the free 

vibration tests, an initial displacement is applied to the sample and this displacement 

is returned under free vibration. In the resonant tests, forced vibrations are applied to 

the sample and the frequency is tuned until the resonance occurs. The stress paths 

followed by a soil element in the field is duplicated by forced vibration tests which 

are cyclic triaxial test, cyclic simple shear test and torsional cyclic shear test (Pecker, 

2007). 

The cyclic triaxial test is used widely for the determination of cyclic strength and 

Young Modulus. The sample is isotropically consolidated and subjected to axial 
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stress in undrained condition. Young’s modulus, shear modulus, shear strain and 

equivalent damping ratio are calculated by using stress strain relations and hysteresis 

loop. The stress controlled test is performed to determine the cyclic undrained 

strength of sand (Silver, 1976). Figure 3.1 shows the hysteresis loop obtained from a 

dynamic triaxial test. From the hysteresis loop the Young’s Modulus is calculated as: 

d
E





                          (3.1) 

where Δσd is the deviatory stress and ε is the axial strain.  The Shear Modulus (G) 

can be calculated as: 

2(1 )

E
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



                               (3.2) 

where μ is the Poisson’s ratio. The damping ratio is calculated as (Das, 1993): 
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ᇱ࡮ᇱ࡭ࡻ ࢊ࢔ࢇ ࡮࡭ࡻ ࢋ࢒ࢍ࢔ࢇ࢏࢚࢘ ࢋࢎ࢚ ࢌ࢕ ࢇࢋ࢘ࢇ
                  (3.3) 

 

  

Figure 3.1 : Determination of damping ratio from cyclic triaxial test (Das, 1993) 

The maximum modulus, Emax, is tangent to the stress-strain curve at the origin. The 

Figure 3.2 shows the stress-strain diagram that corresponds to the triaxial test and the 

definition of Young’s modulus from the diagram (Sawicki and Swidzinski, 1998). 



  
15

 

Figure 3.2 : Definition of Young’s modulus (Tatsuoka et. al., 1994) 

The cyclic simple shear test is performed to determine the behaviour of soils under 

pure shear stress fields (Silver, 1976). Especially shear modulus and damping ratio of 

soils can be determined by performing the cyclic simple shear test (Das, 1993). It is 

mostly used for liquefaction analysis. The device applies shear stress on the top and 

the bottom surfaces of the specimen (Kramer, 1996). Figure 3.3 shows the hysteresis 

loop obtained from the cyclic simple shear test. The shear modulus is determined as: 

G = 
amplitude of cyclic shear stress, 

amplitude of cyclic shear strain, '




                                 (3.4) 

and the damping ratio is calculated as (Das, 2007) : 

1

2
D




area of the hysteresis loop

area of the triangle OAB and OA'B'
                          (3.5)  

For producing more homogeneous stress fields inside the sample and for having 

control on the radial stress, the torsional cyclic shear test is performed (Pecker, 

2007). Cyclic shear stresses are applied on horizontal planes with continuous rotation 

of principal stresses at isotropic and anisotropic initial stress conditions. The stiffness 

and damping characteristics can be measure over a wide range of strains by torsional 

cyclic shear test (Kramer, 1996). 
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Figure 3.3 : Determination of damping ratio from hysteresis loop (Das, 1993) 

3.3 Sand Behavior under Static Loading 

Sand deposits are composed of solid particles that transmit inter-granular forces 

through points of contact. The term dilatancy is used to describe the volume change 

due to shear stress application. This volume change occurs as a result of slip-down 

and roll over movements of particles. While the volume reduction is observed at 

early stages of loading due to slip-down movement of particles, volume increase or 

dilation is induced at large deformations. Figure 3.4 shows the stress-strain relations 

of saturated sand specimens obtained from undrained shear tests. The strain 

hardening behavior is observed at large densities and the shear stress increases along 

with the shear strain. In this case, the dense sand sample is being dilative. The strain 

softening behavior is observed in the sample with a drop of shear stress followed  by 

large strains. This behavior is preferred as flow type (Ishihara, 1996).  

At moderate densities, the sand first shows strain-softening response at moderate 

strains. As the strain increases, strain hardening behavior is observed. This behavior 

is referred as flow type (Ishihara, 1996).  
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Figure 3.4 : Undrained behavior of  sandy soils based on contractiveness and  
dilativeness (Ishihara, 1996) 

The static shear strength of sands mostly depends on the density. Laboratory tests are 

performed to determine the static strength of sand. In addition, different correlations 

are developed by many researchers to determine the static strength of sands by using 

in-situ test results. (Srbulov, 2008).   

3.4 Compression and Extension Tests on Sands Reinforced with Randomly 
Distributed Fibers 

Babu et. al (2007) used coir fibers as reinforcement in their study. Coir is a 

biodegradable and thus environmentally friendly fiber and it is used to provide short 

term stability in the bund constructions. In this study, randomly distributed coir 

fibers are mixed with soil and triaxial compression tests were performed.  

The samples subjected to triaxial tests included dry sand finer than 425 μm and coir 

fibers of 15 mm length and 0.25 mm average diameter. Soil samples are used with a 

diameter of 38 mm diameter and height of 76 mm. The samples were prepared by the 

method of dry mixing and according to observations, fibers mixed randomly within 

the soil. The triaxial tests were performed at confining pressures of 100 and 150 kPa 

with the fiber contents of 0%, 0.5%, 1.0% and 1.5%. The soil density was kept equal 

to 14.8 kN/m3 in all the experiments. The application of deviatory stress continued 

until the specimen failed or a strain level of 10% is observed, whichever was earlier.  
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According to the triaxial test results, shown in  Figure 3.5 (a)-(b), it is noted that the 

addition of fibers improved the stress-strain response of sand significantly.  

In the second part of the research, the finite difference code of FLAC3D (2002) was 

used to analyze the behavior of coir fiber reinforced sand. Elastic-perfectly plastic 

Mohr-Coulomb model is used for the material behavior simulation, as the anticipated 

stress paths are mainly dominated by shear failure as a result of load application on 

the soil. Sand specimens with a diameter of 38 mm and a height of 76 mm are 

generated using cylindrical elements.  The cable elements are used for the modeling 

of coir fibers as they cannot resist bending moments like fibers. A parameter, which 

is described as cross sectional area times Young’s modulus divided by its length, is 

used to describe the axial stiffness of the cable element. The randomly oriented fibers 

within the sample domain are created by writing a numerical code using the built-in 

programming language FISH. Even though the cohesive strength of soil is practically 

zero, an amount of 0.1 kPa is used in order to establish numerical stability in the 

analysis.  

 

Figure 3.5 : Stress-strain curves for various fiber contents (Babu et al., 2007) 

a) 

b) 
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According to the stress-strain curves obtained from experiments and numerical 

simulations for the plain soil, it is noted that the results show good agreement. Figure 

3.6 shows the stress-strain plots of both experiments and simulations. It is resulted 

that increase in confining stress causes increase of the failure deviatory stress and it 

leads to increase in shear strain. When shear stress exceeds the shear strength of soil, 

localization of strain causes the failure of soil sample. It is also stated that the 

addition of fibers results in the increase of deviatory stress by reducing the 

localization of strain to a broader area and creating additional frictional resistance in 

the soil. According to the numerical simulations, it is concluded that the stress-strain 

response of random-reinforced soil is governed by the pull-out resistance of fibers. 

 

Figure 3.6 : Experimental and numerical stress-strain plots (Babu et. al, 2007) 

Ranjan et al. (1994) performed triaxial compression tests to investigate the stress 

deformation behavior of plastic-fiber reinforced fine sand and the effect of confining 

stress on the failure envelope of reinforced sand. Generally the effects of fiber 

content, aspect ratio and confining stresses are searched. In this study poorly graded 

fine sand was mixed with the plastic fibers. For sample preparation, a standard 

Proctor test was performed on unreinforced soil and the optimum moisture content at 

the maximum dry unit weight was determined. Fiber contents of 1%, 2%, 3% and 4% 

of the weight of the soil solids were mixed with soil at the optimum moisture 
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content. Samples were tested at a confining stress of 50-400 kPa with varying fiber 

contents and aspect ratios in order to obtain the effect of fiber parameters, such as the 

fiber content and aspect ratio, on the shear strength. 

Figure 3.7 indicates that the addition of fibers affected the behaviour of sand. Results 

indicate that while the unreinforced sand reaches a peak stress at around 10 %, fiber 

reinforced sand samples do not exhibit any peak stress. In this analysis, the failure 

condition was defined as the stress corresponding to the peak stress condition or at 

20% axial strain whichever was earlier. 

 

Figure 3.7 : Stress-strain behaviour of fiber-reinforced sand (Ranjan et al. 1994) 

The term “critical confining stress” was used to describe the critical stress 

corresponding to the break in failure envelope. It is stated that at confining stresses 

below the critical confining stress value, the fibers slip during deformation and at 

confining stresses above the critical confining stress value, fibers strech or yield. In 

this research, the effect of fiber aspect ratio was determined by performing triaxial 

tests with soil samples that has same amount of fibers with different aspect ratios.  

As it is shown in Figure 3.8, the aspect ratio of fibers in a soil sample affects the 

level of critical confining stress in a considerable amount. This process is described 

by stating that as the length of fiber available to mobilize surface resistance is small 
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in lower aspect ratios, high confining stresses are required for the mobilization of 

frictional resistance (Ranjan et. al., 1994).  

 

Figure 3.8 :  Effect of aspect ratio on critical confining stress (Ranjan et al. 1994) 

In this study, it is mentioned that at lower fiber contents, the strength of reinforced 

sand increases more rapidly. As the specific gravity of fibers was relatively small, 

they occupied large volume in the composite. Besides, it was observed that for fiber 

content beyond 2%, as the amount of fibers increased, it became more difficult to 

create a fairly uniform distribution of fibers inside the soil because fibers tend to ball 

up. It is concluded that the fibers increased peak shear stress as they reduced the loss 

of post-peak stress (Ranjan et. al., 1994). 

Diambra et al. (2009) performed triaxial compression and extension tests on sand 

samples reinforced with short polypropylene. The moist tamping technique is used 

for the preparation of specimens. The fiber concentration is defined as a percentage 
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of dry weight of sand and fiber concentrations of 0.3%, 0.6% and 0.9% were used 

alongside with the unreinforced sand. Drained triaxial compression and extension 

test were performed on isotropically consolidated specimens. The failure condition 

was defined as 20 % axial strain for compressive loading. According to the results it 

is noted that fiber addition increased the friction angle and cohesion intercept 

significantly. Dense specimens have more tendencies to dilate and it results in greater 

potential tensile stresses in the fibers therefore larger strength increases can be 

observed compared to loose specimens. In triaxial compression tests, 0.6% fiber 

content provided a net deviatoric stress increase up to 180-200%. On the other hand, 

the contribution of fibers to the deviatoric response in triaxial extension tests was 

limited, only 8% to 10% net strength increase was recorded for the extension tests.  

Diambra et al. (2009) developed the theoretical model based on the rule of mixtures. 

The results of experimental tests are compared with the proposed model based on the 

rule of mixtures. This model considered the fiber orientation distribution function. It 

is stated that the excursions between experimental test results and modeling approach 

can be compensated by a more complex model that also considers the non-linear 

behavior.  

Michalowski and Zhao (1996) presented a mathematical description of a failure 

criterion for fiber-reinforced soil in a macroscopic stress space. A series of triaxial 

tests were conducted on sand specimens reinforced with stainless steel or polyamide 

monofilament fibers. According to experimental test results, it is stated that steel 

fiber inclusions increased the peak shear stress and the stiffness prior to reaching 

failure. Polyamide fiber addition also increased the peak shear stress for large 

confining pressures but a loss of stiffness and an increase of the strain prior to failure 

was observed. Mohr Coulomb model was used as the matrix failure criterion and it 

was independent of the intermediate principal stress. The limit condition for the 

reinforced sand is represented in terms of the maximum shear stress and the mean 

maximum-minimum principal stress. The internal friction angles calculated from the 

axisymmetrical triaxial compression tests were used to demonstrate the internal 

friction angle of the theoretical prediction. In the theoretical model, the fiber failure 

is defined related to the volumetric concentration, aspect ratio, yield point, fiber-soil 

interface friction angle and the internal friction angle of the granular matrix. As it can 

be seen in Figure 3.9 (a)-(b), the predictions of the theoretical model were consistent 
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with the results of experimental tests conducted on both steel fiber reinforced sand 

and polyamide fiber reinforced sand. 

 

Figure 3.9 : Comparison of theoretical and experimental failure criteria 
(Michalowski and Zhao, 1996) 

Maher and Gray (1990) performed laboratory triaxial compression tests on sands 

reinforced with discrete, randomly distributed fibers to determine the effect of sand 

granulometry and fiber properties on the strength-deformation process of the 

composites. The assumptions for the theoretical model are stated below. 

1. Fibers have a constant length and diameter. 

2. The smaller portion of a fiber length on either side of a failure plane is 

uniformly distributed between zero and half of the fiber length. 

3. All the fibers have the same probability of making all possible angles with 

any arbitrarily chosen fixed axis.  

4. Fibers and their points of intersection with any failure plane are randomly 

distributed in the soil mass. 

5. When the confining stress is less than the critical confining stress, fibers slip 

during deformation. At confining stresses higher than the critical confining 

stress, fibers yield according to the Mohr-Coulumb yield criterion.   

Also the Poisson-Distribution assumption is valid for this theoretical model. Thus, it 

is stated that the number of fibers in a volume is equal to the known average number 
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of fibers randomly distributed in the matrix and it is directly related to the volume 

fraction βf, length L and diameter d of the fibers (Maher and Gray, 1990). 

According to the theoretical study, the shear strength increase due to fiber inclusion 

is calculated as: 

 sin cos tanR RS t w w                      (3.6) 

where 

ΔSR=shear strength increase due to fiber inclusion 

tR=mobilized tensile strength of fiber per unit area of soil 

ϕ=internal friction angle of sand 

ω=angle of distortion 

x=shear displacement parallel to the shear zone 

z=thickness of shear zone. 

The angle of distortion is calculated as; 

1 x
w tg

z
    
                                    

              (3.7) 

and the tR is calculated as; 
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                 (3.8) 
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 
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 
                   (3.9) 

AR= cross sectional area of all fibers crossing the shear plane 

A= total cross-sectional area of the failure plane 

Ns=average number of fibers intersecting a unit area 

d=fiber diameter 

σR=tensile stress developed in the fiber at the shear failure. 

Maher and Gray (1990) developed the theoretical model for calculating the shear 

strength increase in sand due to fiber inclusion considering the bilinearity of failure 

envelopes and the existence of critical confining stress. According to the model, 

for 0 < σconf < σcrit ; 
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and for 0  σconf  >  σcrit 
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 
                               (3.11) 

where 

σcrit = critical confining stress 

σconf = average confining stress in triaxial chamber 

ζ=an empirical coefficient depending on sand granulometry and fiber parameters. 

Maher and Gray (1990) performed 180 triaxial compression tests on randomly 

distributed fiber reinforced sand within the scope of experimental program. The sand 

samples were mixed with fibers at a moisture content of 10% to prevent fiber sunder. 

Different types of sands were mixed with natural and synthetic fibers to determine 

the effect of sand granulometry and fiber types on the behavior of composites under 

static loading conditions. According to the results, it is stated that rounded sands 

exhibited curved-linear behavior while angular sands exhibit bilinear behavior as it is 

shown in Figure 3.10 (a)-(b).  

 

Figure 3.10 : Principal stress envelopes from triaxial tests on reinforced sand:          
(a) Muskegon Dune Sand; (b) Mortar Sand (Maher and Gray, 1990) 
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Figure 3.11 : Influence of (a) sand particle and shape; (b) gradation on critical 
confining stress (Maher & Gray, 1990) 

The results indicated that the strength increase provided by fiber addition depends on 

the soil-fiber parameters such as fiber aspect ratio and modulus, fiber content, grain 

size, gradation and shape. According to the experimental results it is stated that an 

increase in fiber aspect ratio (L/D) results in a decrease in σcrit and an increase in 

shear strength. As it is shown in Figure 3.11 (a)-(b), increase of coefficient of 

uniformity or a better gradation of sand results in lower σcrit and higher shear strength 

(Maher and Gray, 1990). 

Maher and Gray (1990) stated that at high confining stresses or fiber aspect ratios, 

the fiber addition causes a linear increase in strength but when those parameters have 

low values the strength increase reaches an asymptotic upper limit. This behavior can 

be seen in Figure 3.12.  
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Figure 3.12 : Influence of fiber content and aspect ratio on strength increase in 
Muskegon Dune Sand (Maher and Gray, 1990) 

Functional relationships derived from experimental results in order to estimate σcrit 

and ߞvalues, to be used in the theoretical model for the calculations of the effects of 

fiber inclusions. Maher and Gray (1990) stated that experimental results and the 

model predictions were in agreement. In Figure 3.13 the Principal Stress Enveloped 

show this agreement clearly.  
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Figure 3.13 : Theoretical versus Experimental Principal Stress Envelopes         
(Maher and Gray, 1990)  

Santoni et al. (2001) investigated the suitability of randomly oriented discrete fiber 

reinforced sands for the pavement applications. Six sand types, four fiber types, five 

fiber lengths, six fiber deniers and five different fiber dosages were used during the 

laboratory tests. The compressive strengths of specimens were used to determine the 

performance. The unconfined compression tests were performed with a displacement 

rate of 0.0423 mm/s. It is decided that the suitable vertical deformation limit is 

25mm for pavement applications. Sand types ranged from fine sand to coarse sand. 

The fiber types were synthetic monofilament, fibrillated, tape and mesh fibers made 

of polypropylene. For sample preparation, moisture was fundamental to mix and 
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mold the specimen so moisture control study was performed. The water content of 

the specimens were arranged to be equal to 8%. Water was added to sand-fiber 

composites to obtain target moisture content and ensure a uniform mixture. Each 

specimen was compacted in five layers with modified Proctor tests. The effects of 

test variables were evaluated by comparing the unconfined compression test results 

of unreinforced sand and fiber-reinforced sand specimens. According to Figure 3.14, 

when fiber content of 1% by dry weight of sand was used, it was observed that all 

fiber types improved the unconfined compressive strength of all sand types.  

 

Figure 3.14 : Performance of fiber types by sand type (Santoni et al., 2001) 

The effect of fiber length was evaluated by mixing monofilament fibers of different 

lengths at different deniers. The results are presented in Figure 3.15 and it is stated 

that while 51 mm (2 in.) monofilament fibers increased the unconfined strength 

significantly at three deniers, the fiber lengths up to 25 mm (1in.) did not create any 

significant effect. The control specimen represents the unreinforced sand at the 

moisture content of 8%. When the effect of fiber denier was evaluated it is concluded 

that the unconfined compressive strength increases with the decreasing fiber denier.  

The term “denier” used in this study represents the fiber thickness. As it is shown in 

Figure 3.15, when the monofilament specimens increased from 4 denier specimens to 

20 denier specimens, the unconfined compressive strength of specimens decreased 

approximately by 13.5%. The decrease in the specimen performance of 12.5% was 
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recorded for fibrillated specimens from the 360 denier to the 1000 denier (Santoni et 

al., 2001). 

 

Figure 3.15 : Comparison of fiber type, length and denier in Vicksburg Concrete 
Sand (Santoni et al., 2001) 

Santoni et al. (2001) performed unconfined compression tests with different fiber 

contents of 0.2, 0.4, 0.6, 0.8 and 1.0 %. It is informed that fiber contents over 1.0% 

requires excessive deformation in order to initiate the specimen’s load support 

capabilities. According to the test results, the strain softening characteristics, 

described as decreasing unconfined compressive strength with a corresponding 

increase in strength, was observed for specimens with fiber contents below 0.6%. On 

the other hand fiber contents of 0.6-1.0% resulted in strain hardening characteristics, 

the expected behavior, that are exhibited as an increase in unconfined compressive 

strength with a corresponding increase in strain. Figure 3.16 shows that the optimum 

fiber content is between 0.6-1.0% dry weights of sand to obtain optimum unconfined 

compressive strength. The effect of sand type was determined by using six different 

types of sand. The experimental results showed that synthetic fiber inclusions 

improved the unconfined compressive strength of all sand types and there was no 

considerable difference between the performance of coarse sands and fine sands. 

Another parameter searched was the silt content and the results showed that silt 
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contents higher than 12% may degrade the performance of sand reinforced with 

fibers. According to the test results, it is concluded that dirty sand can also be 

reinforced with synthetic fibers.  

a)  

b)  

Figure 3.16  : Typical performance of 51mm (2 in.) Monofilament (20 Denier) and 
Fibrillated (1000 Denier) Fiber in (a) Vicksburg Concrete (b) Yuma 
Sand (Santoni et al., 2001) 

The effect of moisture content was determined by performing the unconfined 

compression tests at different moisture contents. The specimens were tested just after 

they were compacted. The fiber content of 0.6% was chosen and 51mm (2in.) 

monofilament (20 denier) fibers were mixed with sand at different moisture contents. 

As the results shown in Figure 3.17 exhibits, the moisture contents between the base 

moisture content of 2.6 % and 14.0%, increased the performance of fiber-sand 

mixtures. On the other hand when the moisture content reached up to 14.0%, it is 
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observed that the specimen was saturated and due to drainage, the specimen showed 

a similar performance as it showed at the base moisture content.  

 

Figure 3.17 : Specimen performance at varying moisture contents                    
(Santoni et al., 2001) 

Ibraim et al. (2009) performed a series of laboratory experiments to determine the 

liquefaction potential of loose clean sand reinforced with short flexible fibers. The 

experimental program focused on the undrained behavior in both triaxial 

compression and triaxial extension. The Houston RF sand is mixed with LoksandTM 

flexible polypropylene crimped fibers. It is stated that these fibers act predominately 

in tension. The moist tamping technique is used for preparing unreinforced and 

reinforced sand specimens at the optimum moisture content, which is determined 

from the compaction tests as 10%.  For sample preparation, the weight of sand was 

kept constant and the fiber contents used for compressions tests were 0.3%, 0.6% and 

0.9% while the fiber contents used for extension tests were 0.3% and 0.6%.The 

experimental program included drained and undrained triaxial compression and 

extension tests on isotropically consolidated samples. The consolidation pressures of 

30, 100 and 200 kPa were used for the tests. The specimens were saturated by water 

backpressure up to 300 kPa and CO2 method. The shape of the homogeneous 

specimen was preserved well beyond the 20% axial strain in compression and around 

10%-12% axial strain in extension. For interpreting the test results, axisymmetric 
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triaxial conditions were used. It is stated that p and q are respectively the total mean 

and deviatoric stresses action on the composite where 

p=p*+u                  (3.12) 

where p* is the effective mean stress and u is the pore water pressure.  The deviator 

stress on the sample is denoted as q*. The strain variables are the volumetric strain εv 

and shear strain εq. The relations between these quantities and the axial and radial 

stresses are: 

2

3

a r
p

 
                   (3.13) 

 a rq                      (3.14)   

 2v a r                                      (3.15) 

 2
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                                  (3.16) 

the subscripts of a and r represent the axial and radial components respectively. If 

q*/p*=M, the Mohr-Coulomb mobilized angle of friction ϕm
* is defined as:
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The drained triaxial compression and extension tests were performed on isotropically 

consolidated unreinforced and reinforced specimens at a consolidation pressure of 

100 kPa and the results are shown in  

Figure 3.18. As is it shown, at 20% axial strain and with a fiber content of 0.9%,  the 

deviator stress increase was almost 300% compared to that of unreinforced sand. It is 

stated that fibers ability to withstand tension without plastic deformations provided a 

significant strength increase for the fiber-sand mixture (Ibraim et al., 2009). 
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Figure 3.18 : Deviator stress-strain results for drained compression and extension 

triaxial tests (Ibraim et al.,2009) 

According to the results of triaxial extension tests, it can be seen from the Figure 

3.26 that the stress-strain relationships for reinforced specimens were similar to that 

of unreinforced sand. It is stated that sand matrix controls the strength response of 

the composite in extension. Test results presented in Figure 3.19 also showed that the 

volumetric response of the composite is affected by the presence of fibers that cause 

an apparent densification mechanism of the sand matrix. It is stated that the potential 

of static liquefaction can be affected by the change of the volumetric response from 

contractive for the unreinforced sand to dilative for the reinforced sand (Ibraim et al., 

2009). 

 

Figure 3.19 : The volumetric behavior for drained compression and extension 
triaxial tests (Ibraim et al.,2009) 
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Ibraim et al. (2009) also performed undrained monotonic compression and extension 

triaxial tests on unreinforced and reinforced sand specimens. For the unreinforced 

specimens, both in compression and extension tests, a typical behavior of static 

liquefaction was observed. The generation of pore pressure and a continuous 

decrease of effective mean stress was followed by a reaching the peak value rapidly, 

a sharp drop of the deviator stress and steady state as deformation continues. Results 

showed that fibers converted a strain softening response (typical for loose 

unreinforced sand) into a strain hardening response both for the compression and the 

extension tests and thus the monotonic liquefaction is prevented. It is also noted that 

higher amount of fibers were required to prevent liquefaction in extension. The 

mobilized angle of friction ϕ*
m, increased monotonically with the shearing for the 

specimens reinforced with fiber content between 0.3-0.9% in triaxial compression 

tests. Also at the end of the experiments, the reinforced sand specimen maintained 

some stability even after its membrane was removed. It shows that fiber inclusions 

limit the lateral spreading of the soil, which is accepted as one of the results of 

liquefaction.  

Michalowski and Cermak (2003) performed drained triaxial compression tests on 

fiber-reinforced sand specimens. Fine and coarse sands were mixed with three types 

of fibers: polyamide monofilament, steel galvanized wire and polypropylene 

fibrillated fibers. The amount of fiber added is described by its volumetric content: 

rV

V
                     (3.19) 

where 

ρ=fiber content 

Vr = volume of fibers in a specimen 

V= total volume of the specimen. 

Unreinforced and reinforced specimens were prepared with void ratios of e = 0.58 

and e = 0.66. The first step of drained triaxial compression tests was the application 

of confining stress, σ3. Than controlled increasing stress, σ1 was applied. The 

displacement rate was chosen to be 0.16 mm/min. The axial strain ε1 and the 

volumetric strain εv were plotted along with the deviatoric stress σ1-σ3. The results of 

sand reinforced with polyamide fibers show that large failure stresses were recorded 
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at large strains at the failure. As it is shown in Figure 3.20 (a)-(b), the initial stiffness 

is affected by the addition of fibers. There is a drop in the initial stiffness for the sand 

reinforced with large fiber contents. It is stated that the changes in the fabric of the 

sand produced by the synthetic fibers may be the reason for the loss of initial 

stiffness. This statement was also supported by the results of sand reinforced with 

steel fibers as there was no stiffness reduction recorded. The interaction of fibers to 

the sand grains is searched by performing triaxial tests with different fiber aspect 

ratios for the same amount of fiber concentrations. As it is shown in Figure 3.21, the 

recorded strengths increase with the increasing aspect ratio. It is also stated that fiber 

inclusions caused similar effects for both fine and coarse sand specimens  

(Michalowski and Cermak, 2003). 

 

Figure 3.20 : Stress strain and volumetric curves of fine sand reinforced with 
polyamide fibers (Michalowski and Cermak, 2003) 
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Figure 3.21 :  Stress-strain behavior of sand reinforced with polyamide fibers of 
different aspect ratios and different lengths (Michalowski and 
Cermak, 2003) 

Chen and Loehr (2008) performed consolidated-undrained and consolidated drained 

type of triaxial compression tests on unreinforced and fiber reinforced sand 

specimens. The poorly graded Ottawa sand is mixed with fibrillated polypropyene 

fibers that have a specific gravity of 0.91 gr/cm3. The test specimens are prepared at 

loose (Dr ≈ 10%) and medium-dense (Dr ≈ 55%) conditions. The specimens were 

saturated until B values are measured at least 0.96 before consolidation and shear. 

The deformation rate preferred was 12.5 mm/hour to eliminate the concerns due to 

strain rate when comparing the undrained and drained test results. The specimens 

were sheared up to a maximum axial strain of 30 percent. All the tests were 

conducted on specimens having diameter of 63.5 mm and height of 124.5 mm. The 

specimens were isotropically consolidated to the effective stresses of 35, 140, 280 

and 415 kPa. Figure 3.22 presents the deviatoric stress (q) versus shear strain (εq) of 

loose and medium dense specimens consolidated to 140kPa effective stress where; 

1 3q                      (3.20) 

in which σ1 is the maximum principle stress and σ3 is the minimum principal stress 
and  

1

3q a v                      (3.21) 

in which εa is the axial strain and εv is the volumetric strain.  
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It is stated that the loose unreinforced sand reached a peak deviatoric stress at 

approximately 2% strain and decreased with additional strain. On the other hand, 

medium dense unreinforced sand specimens reached the peak deviatoric stresses at 

strains of approximately 5% and decreased slightly at additional strains. The 

reinforced specimens showed a strain hardening behavior (Chen and Loehr, 2008). 

 

Figure 3.22 : Deviatoric stress versus triaxial shear strain curves for CU tests for 
specimens consolidated to 140 kPa effective stress (Chen and Loehr, 
2008) 

The test results of consolidated undrained tests are presented in Figure 3.23. It is 

shown that the unreinforced specimens tended to reach peak deviatoric stress levels 

at axial strain of 1% and maintained stresses until large strains. On the other hand, 



  
39

reinforced specimens exhibited peak stresses at strains of 20% or greater (Chen and 

Loehr, 2008). 

 

Figure 3.23 : Deviatoric stress versus triaxial shear strain curves for CD tests for 
specimens consolidated to 140 kPa effective stress (Chen and Loehr, 
2008) 

The pore water pressure changes observed in the CU tests are presented in Figure 

3.24. The unreinforced specimens at the loose state exhibited the typical “loose sand” 

behavior with pore pressures increasing throughout the end of the test. For the loose 

reinforced specimens, the increase in pore pressure at small strains is followed by 

decrease with additional strains. The medium-dense unreinforced specimens showed 

that the pore pressure increased at strains up to 1% and and decreased significantly 
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and it is equal to or less than zero before 10% strains. On the other hand, the medium 

dense fiber reinforced specimens showed that pore pressure increased at small strains 

(2%) and that is followed by significant decrease at absolute pore pressures equal to 

or less than zero before 10% strains (Chen and Loehr, 2008). 

 

 

Figure 3.24 : Change in pore pressure versus triaxial shear strain curves from CU 
tests for specimens consolidated to 140 kPa effective stress (Chen and 
Loehr, 2008) 

The tests results are also used for determining the Mohr-Coulomb strength 

parameters, effective cohesion intercept (c') and effective internal friction angle (ϕ'). 

Failure enveloped were determined from peak effective principal stress ratio failure 

criterion. The results are shown in Table 3.1. It is presented that fiber inclusion 
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improved the effective stress friction angles and the effective stress cohesion 

intercepts significantly. 

Table 3.1 : Mohr-Coulomb Strength Parameters (Chen and Loehr, 2008) 

Test Type 

Relative 

Density,    

Dr (%) 

0.0% Fiber Content 0.4% Fiber Content 

c' (kPa) ϕ' (deg) c' (kPa) ϕ' (deg) 

CU 
10 0.0 30.4 87 43.1 

55 0.0 33.7 0* 43.5* 

CD 
10 0.0 29.8 21 45.3 

55 0.0 34.2 34 47.9 

*Suspicious result due to equipment limitation for pore pressure 

measurement 

    

3.5 Direct Shear Tests on Sands Reinforced with Randomly Distributed Fibers 

Gray and Ohashi (1983) performed direct shear tests on dry sand specimens 

reinforced with different types of fibers. They developed theoretical predictions 

based on a force equilibrium model and they compared their test results to the 

theoretical predictions. The sand used in the direct shears tests was clean, quartz 

beach sand. Different types of fibers were used in order to provide a range of elastic 

moduli. Fibers diameters were from 1mm-2mm and the lengths were in a range 

between 2-25 cm. The standard direct shear tests were conducted on sand samples 

that have relative densities of 20% and 100% for both reinforced and unreinforced 

conditions. Metal wires, natural and synthetic fibers were used as reinforcement. 

While most of the tests were conducted on fiber area ratios of 0.25 % or 0.50 %, the 

maximum amount fiber area ratio used was 1.67%. Direct shear tests were conducted 

as strain controlled and the test continued until a total displacement of 5mm or an 

average shear strain of 8% was recorded. The fibers were placed with various 
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orientation angles. Tests were performed with different confining stresses up to 144  

kN/m2. 

The theoretical model in this study was developed for two different fiber 

orientations. Fibers that are perpendicular to the shear place can be seen in Figure 

3.25 and fibers that are oriented at an arbitrary angle to the shear plane can be seen in 

Figure 3.26.  

 

Figure 3.25 :  Fiber Reinforcement Model for Perpendicular Orientation to Shear 
Surface (Gray and Ohashi, 1983) 

 

Figure 3.26 : Fiber Reinforcement Model for Fiber Oriented at Angle to Shear 
Surface (Gray and Ohashi, 1983) 

The tensile force, formed as a result of shearing, has two components normal and 

tangential to the shear plane. It is stated that while tangential component resists shear 

directly, the normal component mobilizes shear resistance by increasing the 

confining stress.  The shear strength increase caused by the addition of fibers is 

estimated as: 
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For perpendicular fibers: 

 sin cos tanR RS t                      (3.22)  

For oriented fibers: 

 sin(90 ) cos(90 ) tanR RS t                                 (3.23) 
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                (3.24) 

as the shear strength increase due to fiber reinforcement is represented by ΔSR; the 

mobilized tensile strength of fibers per unit area of soil is represented by tR; angle of 

internal friction angle of sand is represented by φ; the angle of shear distortion is 

represented by θ; the initial orientation angle of fiber with respect to shear surface is 

represented by i; the horizontal of shear displacement is represented by x; the 

thickness of shear zone is represented by z and the shear distortion ratio is 

represented by k. The mobilized tensile strength per unit area of soil (tR) is defined as 

the product of tensile stress developed in the fiber at the shear plane and the fiber 

area ratio (Gray and Ohashi, 1983). 

The possible tensile stress distributions along the length of the fiber are considered as 

linear or parabolic distributions. The resulting tensile stress at the shear plane for 

corresponding tensile stress distributions are calculated as given: 

For linear distribution: 
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                           (3.25) 

For parabolic distribution: 
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               (3.26) 

where ER is the modulus of the fiber, τR is the skin friction stress along the fiber, DR 

is the diameter of fiber and z is the thickness of the shear zone. 
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According to the experimental test results and theoretical predictions, it is stated that 

fiber reinforcement increased the ultimate shear strength. Figure 3.27 presents that, 

as the number of fibers increased the shear strength increased alongside with the 

limited reductions in the post peak shearing resistance. It is stated that the initial 

orientation angle of fibers did not affect the stress-strain relations in a considerable 

amount but it affected the peak shear resistance. According to the test results, an 

initial fiber orientation of 60° is calculated as the optimum orientation for maximum 

shear strength increase. The average strength increases recorded for loose and dense 

sand specimens were similar. On the other hand, in loose sand specimens larger 

strains were necessary for reaching the peak shear resistance. The effect of fiber 

length was to increase the shear strength of the reinforced sand until reaching a limit. 

It is stated that the predictions made based on force equilibrium theory were 

consistent with the experimental test results (Gray and Ohashi, 1983). 

 

 

Figure 3.27 : Influence of Number of Fibers on Stress-Deformation Behavior of a 
Dense Sand (Gray and Ohashi, 1983) 

Yetimoglu and Salbas (2003), performed direct shear tests to investigate the shear 

strength of randomly reinforced sand specimens. The experimental study consists of 
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direct shear tests performed at the vertical normal stresses of σn= 100, 200 and 

300kPa. The loading rate was chosen to be 0.002 mm/s and shear stresses were 

recorded until a total displacement of 16 mm. The sand used in experiments was the 

uniform quartz river sand. It was sieved through ASTM 10 and washed through 

ASTM 20. The sand properties are shown in Table 3.2 :. 

Table 3.2 : Properties of sand (Yetimoglu and Salbas, 2003) 

Property Value 
Specific Gravity 2.64 

Maximum dry unit weight (kN/m3) 17.48 
Minimum dry unit weight (kN/m3) 14.92 

Maximum void ratio 0.77 
Minimum void ratio 0.51 

Coarse sand fraction (%) 2 
Medium sand fraction (%) 53 

Fine sand fraction (%) 45 
Effective grain size D10 (mm) 0.20 

D60 (mm) 0.33 
D30 (mm) 0.26 

Coefficient of uniformity Cu 1.65 
Coefficient of curvature Cc 1.02 

c (kPa) * 0 
ϕ (deg) * 42 

*Obtained from direct shear tests at Dr = 70 % 

 

Sand samples were reinforced with polypropylene fibers with the contents (ρ) of 

0.10%, 0.25%, 0.50% and 1.00% of the dry weight of sand. The composite was 

mixed thoroughly by hand to prepare a uniform mixture.  Figure 3.28, Figure 3.29, 

Figure 3.30 and Figure 3.31 show the shear stress-horizontal displacement curves 

obtained from the reinforced sands including fiber contents of 0.1%, 0.25%, 0.5% 

and 1.0% respectively. The peak shear strength angle and cohesion values are 

calculated. As the fiber content increased up to 1%, the shear strength angle 

decreased slightly from 42.3° to 40.4°. On the other hand, the cohesion value stayed 

constant as 0kPa. The results show that fiber inclusion affected the peak shear 

stresses and horizontal displacements at which peak shear stresses mobilized 

significantly. A smaller loss of post-peak strength was observed for fiber reinforced 

samples. It is concluded that fiber reinforcement can change the brittle behavior of 

sand to a more ductile behavior (Yetimoglu and Salbas, 2003). 
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Figure 3.28 : Shear stress-horizontal displacement response for unreinforced sand 
and reinforced sand with fiber content of ρ = 0.10% (Yetimoglu and 
Salbas, 2003)  

 

Figure 3.29 : Shear stress-horizontal displacement response for unreinforced sand 
and reinforced sand with fiber content of ρ = 0.25% (Yetimoglu and 
Salbas, 2003)  

 



  
47

 

Figure 3.30 : Shear stress-horizontal displacement response for unreinforced sand 
and reinforced sand with fiber content of ρ = 0.50% (Yetimoglu and 
Salbas, 2003) 

 

 

Figure 3.31 : Shear stress-horizontal displacement response for unreinforced sand 
and reinforced sand with fiber content of ρ = 1.0% (Yetimoglu and 
Salbas, 2003) 

Michalowski and Cermak (2003) also performed fiber pull through tests in a 

modified shear box to determine the behavior of the composite. The results of fine 

grained sand reinforced with polyamide are shown in Figure 3.32 (a) and the results 

of fine grained sand reinforced with steel wires are shown in Figure 3.32 (b). The 
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results for pull through tests conducted on fine and coarse sands were similar. 

Additional direct shear tests were performed when it is considered that a uniform 

stress distribution may not be available through a fiber. The friction angles calculated 

are shown in Figure 3.32 (Michalowski and Cermak, 2003). 

 

Figure 3.32 : Fiber pullthrough tests in fine sand (a) polyamide and (b) steel 
(Michalowski and Cermak, 2003) 

 

Figure 3.33 : Friction angles for reinforced (a) fine sand and (b) coarse 
sand(Michalowski and Cermak, 2003) 
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The results of the experimental study done by Michalowski and Cermak (2003) 

showed that fiber addition of 2% of volume increased the shear strength in a 

considerable amount. For small fiber contents, the reinforcing effect is more 

prominent compared to coarse sand. On the other hand, large fiber inclusion resulted 

in greater strength increases in coarse sand. The reinforced sand behavior was 

modeled using an energy-based homogenization technique to calculate the 

macroscopic plastic stress state of the composite. The frictional interaction of fibers 

and sand was mainly considered in this technique. According to this technique, the 

calculations were based on the equation of the work rate of the macroscopic stress to 

the work dissipation rate in a deformation process. The failure stress of fiber 

reinforced sand was calculated with the model. Figure 3.34 shows the macroscopic 

internal friction angles predicted from the model and it is concluded that they were 

consistent with the experimental results. It is also noted that this model was sensitive 

to the fiber contents and fiber aspect ratios.  

 

Figure 3.34 : Model predictions and experimental results steel (Michalowski and 
Cermak, 2003) 

Ibraim and Fourmont (2006) performed compaction and direct shear tests on 

unreinforced and reinforced sand specimens of different densities. In this study very 

fine sand, Houston RF sand is reinforced with randomly distributed discrete crimped 

polypropylene fibers. Compaction tests were performed with a Proctor compaction 

apparatus on unreinforced sand and sand samples that are reinforced at fiber contents 

of 0.1%, 0.3% and 0.5%. The optimum moisture content is calculated as 10% and it 
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is stated that fibers up to 0.5 % of dry weight has no significant effect on the 

optimum moisture content. For sample preparation, the amount of water for the 

optimum moisture content is used for the mixing of soil and fibers. The maximum 

dosage of fibers that can be mixed with the sand is determined as 2% after applying 

compaction to four different densities of fiber-sand mixtures. A series of preliminary 

direct shears tests were performed on fully saturated sand specimens and unsaturated 

sand specimens at the optimum moisture content. Considering the results, researchers 

decided to perform direct shear tests on unsaturated sand specimens, which have 

optimum moisture content. The specimen void ratios were chosen as 0.8, 0.9 and 1.0 

for the experimental direct shear tests. The applied normal stress was in a range of 

55.3 to 310.6 kPa. Test results indicated that the peak shear stress of unreinforced 

sand is smaller than the peak shear stress of reinforced sand. The randomly oriented 

fibers increase the failure peak shear strength and corresponding horizontal 

displacements. At low effective normal stress values, the increase of the peak shear 

strength was almost linear for all specimen densities. On the other hand, higher 

normal stress values enable the peak shear stress to approach a limiting value. A limit 

of 0.4% of fibers provides 15-20% increase in shear strength. An increase of 30-40% 

was obtained for 0.8% and the highest fiber content of 1.0% resulted in a 60 % in the 

shear stress increase (Ibraim and Fourmont, 2006). 

Sadek et al. (2010) conducted a series of direct shear tests to determine the effect of 

various parameters on the shear strength of the fiber-sand composite. Two types of 

sands (Ottawa sand and BGL sand) were mixed with three types of nylon fibers with 

different diameters and aspect ratios. For sample preparation the void ratios of 0.6 

and 0.71, which correspond to a relative density of approximately 55%, were used 

for unreinforced specimens. For test specimens, the volumetric fiber content ranged 

between 0 to 1.5%. Minimum three specimens were tested with the normal stress 

levels of 100, 150 and 200kN/m2 to determine the effects of each parameter. 

According to the results of tests conducted on fine Ottawa sand, it is determined that 

similar stress-displacement curves were obtained for the unreinforced specimens and 

fiber-reinforced specimens except for an increase in the slope at small displacements. 

For the coarse sand, fiber inclusions improved both shear strength and ductility. The 

experiments on the coarse BGL sand and fine Ottawa sand indicated that the 

dimensions of sand grains and the diameters of fibers effect the shear strength of 
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composites significantly. While the reinforcing effect in fines significant for small 

fiber concentrations, the strength increase of coarse sand reinforced with larger fiber 

concentrations was greater. The effect of grain size is presented in Figure 3.35. For 

the fiber content of 1.5%, a maximum increase in shear strength was 17%. On the 

other hand, the maximum shear strength increase was 37% for coarse sand reinforced 

with 1% fibers. It is stated that an increase in the fiber aspect ratio increases the 

strength of low-fiber-content composites compared to high-fiber-content composites. 

It is stated that the maximum shear strength value increased with the increasing fiber 

content, resulting in an increase of the friction angle of the composite.  

 

Figure 3.35 : Extend of improvement in shear strength of fiber reinforced Ottawa 
sand and BGL sand (Sadek et al., 2010) 

3.6 Results 

In this part of the thesis, firstly brief information about the dynamic properties and 

static behavior of sand is presented. Secondly, previous studies on fiber reinforced 

sand are presented. In the previous studies, fiber reinforced sand samples are 

subjected to triaxial tests and direct shear tests. In these studies, the effect of several 

parameters on the static behavior of fiber reinforced sand is investigated. The 

experiments were conducted on different sand types, fiber types, fiber contents, fiber 

aspect ratios, confining pressures, strain rates, sample preparation and testing 

methods. The previous studies showed that, fiber reinforcement improves the static 

behavior of sand. On the other hand, the degree of improvement obtained at the 

studies depends on the tested parameters. 
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4. EXPERIMENTAL STUDY 

The experimental study consists of static and dynamic laboratory tests on 

unreinforced and reinforced sand specimens. First the grain size distribution of the 

sand that will be used in the experiments is determined. As it is stated in the previous 

studies on fiber reinforced sands, an optimum moisture content is required to produce 

fairly uniform distirubiton of fibers in sand solids. The Modified Proctor Test is 

performed to decide the optimum water content that is required for sample 

preparation. After the Modified Proctor Test, sieve analysis is performed again to 

confirm that performing the Modified Proctor Test has not effected the grain size 

distribution of the sand.  

The experimental study mainly consists of two parts. At the first part, the maximum 

initial Elasicity Modulus is determined for confining pressures of 30kPa and 100kPa. 

The same samples were subjected to static triaxial compression test. The 

consolidated undrained and consolidated drained triaxial compression tests were 

performed on the randomly distributed fiber reinforced sand samples to determine 

the the effect of fiber inclusions on the static behavior of sand.  Unreinforced 

samples and sampled reinforced with different fiber contents are tested in order to 

determine the effect of fiber inclusions and strain rate. Also triaxial compression tests 

are performed on unsaturated samples in order to determine the effect of fiber 

inclusions on the shear strength parameters.  

The second part of the experimental study consists of direct shear tests that are 

conducted on unreinforced and reinforced sand samples prepared at certain water 

content. Five different fiber contents are tested at the same strain rate. The effect of 

fiber inclusion on the shear strength parameters are compared using the test results of 

direct shear tests and triaxial tests on unsaturated samples. 
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4.1 Triaxial Test Apparatus 

The triaxial tests apparatus is used for both monotonic and cyclic loading conditions. 

The details of a typical triaxial cell are shown in Figure 4.1. The main components of 

a triaxial test apparatus are cell base, cell body and top, loading piston and loading 

caps (Head, 1998). 

The cyclic triaxial test apparatus Model DTC-311, shown in Figure 4.2, was 

developed by the Japanese company “Seiken Inc.” and was brought to Istanbul 

Technical University Soil Dynamics Laboratory within the scope of ITU-JICA 

(Japan International Cooperation Agency) cooperation. 

 

Figure 4.1 : Details of a Triaxial Test Apparatus (Head, 1998) 

The device is capable of applying cyclic and monotonic loads. The load cell has a 

vertical load capacity of 500 kgf and lateral load capacity of 10 kg/cm2. It is possible 

to form specimens with diameters of 50 mm, 60 mm, 75 mm and heights of 100 mm, 

120 mm and 150 mm by changing the top and bottom caps. The vertical loading 

apparatus is capable of applying 200 kgf dynamic load. For monotonic loading 

conditions, the loading capacity is 500 kgf and rate of loading is between 

0.002mm/min and 2.0mm/min. It is possible to apply pressures between 0-10 
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kg/cm2. The air pressure is transmitted to water leading to triaxial chamber and the 

pressure regulator controls its amount. The drainage valves connected to the top and 

bottom caps are used for supplying water into the specimen and applying the 

backpressure. The 25ml burette pipe is connected to the drainage valves and it is 

used for calculating the amount of water drained during consolidation. The test 

apparatus also includes a water tank and a vacuum tank with volumes of 5 lt. 

 

Figure 4.2 : Triaxial Test Apparatus in ITU Soil Dynamics Laboratory 

The cyclic loading is applied to the specimen by uniform sinusoidal load and its 

frequency ranges between 0.001 Hz and 2.0 Hz. The load, displacement and pore 

water pressure transducers are used for monitoring the specimen behaviour and the 

data is directly transferred to the computer. The computer program, Virtuel Bench 

Logger, is used for transferring the data and also drawing the graphics.  

The schematically drawing of the loading unit and triaxial chamber are shown in 

Figure 4.3.  
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Figure 4.3 : Loading Unit and Triaxial Chamber (Seiken Inc.) 

The digital system shown in Figure 4.4 is used for calibrating the data. When the 

digital system starts to operate, the condition of gain button, ATT5 button and 

CAL.με button must be controlled. The ATT button controls the sensitivity of 

measurements. The CAL.με button calibrates the μ ε input. The CAL.με button is 

switched by pressing the CALL.ON button and it starts the calibration. First the 

AUTO button is switched and the digital voltmeter should show the value of “0.00”. 

Then CALL.ON button is switched and the value of voltmeter is arranged as “5.00” 

by using the GAIN control button which controls the sensitivity of the amplifier. The 
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ZERO-C-BAL button controls the changes in the measurement and after it is 

switched to zero, the ZERO CONTROLLER is used for setting the voltmeter value 

shown on digital indicator (DV) to “0.00”. The ZERO-C-BAL button is kept 

constant at the C-BAL position and the voltmeter value is set to “0.00” by using C-

BAL button. At the same time, for calibrating the sensitivity of the measurements, 

ATT 1, 2 or 5 button is calibrated. The MEANS button is pushed for adjusting the 

indicator to the rated value of the sensor. After that, CAL.ON is switched and DV 

value is set to “10.00” with turning MEAS controller. At the end CAL button is 

switched off and so the device will be ready to record experimental data. The 

mechanical gauges are also placed to be used for experimental calculations. 

 

Figure 4.4 : Digital System of the Triaxial Apparatus 

4.2 Test Materials 

The Akpınar Sand is used in the experimental study. The sand is first washed through 

ASTM #200 sieve and then sieved through ASTM #10 sieve. According to the 

Unified Soil Classification System the sand is classified as SP. The constant head 

permeability test is conducted on sand samples at relative densities of 30%, 50% and 

80%. The microscopic analysis of the Akpınar Sand has been conducted by the 

Istanbul Technical University, Civil Engineering Faculty, Construction Materials 

Laboratory. The results obtained from the binocular microscope showed that sand 

particles are clean and  semi-circular, semi-angular shaped. The composition mainly 

consists of quartz and it includes magnetite in small amounts. The grain size 
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distribution curve of Akpınar Sand is shown in  Figure 4.5 . The parameters of the 

sand are shown in Table 4.1. 

Table 4.1 : Properties of Sand 

Property Value 
Specific Gravity 2.69 

Maximum void ratio 0.85 
Minimum void ratio 0.54 
Permeability (m/s) 4x10-4 
Sand fraction (%) 99 
Fine materials (%) 1 

Effective grain size D10 (mm) 0.22 
D60 (mm) 0.35 
D30 (mm) 0.27 

Coefficient of uniformity Cu 1.60 
Coefficient of curvature Cc 0.95 

c (kPa)  0 
φ (deg)  40 

 

 

Figure 4.5 : Grain Size Distribution Curve of Akpınar Sand 

The fiber used as the reinforcement is called FORTA MIGHTY-MONO fiber. It is 

made of pure homopolymer polypropylene. The photo of fibers is shown in Figure 

4.6 are produced according to ASTM C1116. The fiber parameters are presented in 

Table 4.2. 
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Table 4.2 :  Fiber Properties 

Color White 
Structure Single Fiber 
Specific Weight (g/cm3) 0.91 
Length 19 mm 
Water Absorption 0 
Tensile Stress 570-660 MPa 

 

 

Figure 4.6: Fibers 

4.3 Compaction Test 

The first step for sample preparation was to determine the required amount of water 

for mixing the fiber into the sand uniformly. According to the previous studies on 

fiber-reinforced sand, water is required for obtaining an efficient mixture and 

preventing fiber-sand segregation (Ibraim and Fourmont, 2006).  For determining the 

amount of water that will be added to the fiber-sand mixture, compaction test is 

performed on unreinforced sand to determine the optimum water content. 

The optimum water content is determined by performing Modified Proctor Test. For 

conducting Modified Proctor Test, a mold with a volume of 2304cm3 was used. The 

rammer weighting 4.54 kg was dropped from a height of 45 cm. The soil was 

compacted in five layers with applying 56 blows to each layer. Figure 4.7 shows the 

compaction curves obtained. Despite the deviations, it is clearly obtained that an 

optimum water content of 10 % will be used for sample preparation. Considering this 

information, the randomly distributed fiber reinforced sand samples were prepared at 

this water content. 
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Figure 4.7 : Modified Proctor Test Results 

Also the sieve analysis is performed after the modified Proctor Test to confirm that 

compaction has not effected the grain size distribution curve. The grain size 

distribution curves before and after the Modied Proctor Test are presented in Figure 

4.8 to show the exact match of the curves. 

 

Figure 4.8 : Comparision of Grain Size Distribution Curves before and after 
compaction 
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4.4 Sample Preparation   

The triaxial test apparatus is used for performing static triaxial compression tests and 

cyclic triaxial tests. The tests were conducted on samples of 50 mm diameter and 100 

mm height, having a relative density around 55 %. The amount of fibers added to the 

sand was taken as a percentage of the dry weight of the sand. The fibers are accepted 

as a part of the sand skeleton. The fiber contents tested are 1.0%, 0.5% and 0.1%. 

The results are compared with the results of unreinforced sand. For sample 

preparation, fibers were separated to enable a uniform mixture. The fibers, sand and 

water are mixed thoroughly by hand until a uniform mixture is obtained. It is 

observed that fibers disperse in the sand easily. Before the mixture is placed in the 

test apparatus, the burette is filled with water. The air bubbles inside the top and 

bottom drainage pipes must be expelled by applying a backpressure of 10-20kPa. 

After that, porous stones at the top and bottom caps are saturated. The rubber 

membrane, having a thickness of 0.15mm is placed and O rings are used to fasten the 

membrane. The split mold is placed around the membrane and the mold is fixed with 

an apparatus holding the parts of the mold together. A small amount of vacuum is 

applied inside the mold to stick the membrane to the inner wall of the mold. The 

porous paper is placed on the porous stone at the bottom cap. The fiber reinforced 

sand sample is transferred to the mould with a spoon in five layers and compacted 

lightly by wet tamping method to achieve a uniform sample. The sample is placed in 

5 layer and 30 blows are applied on each layer. The second porous paper is placed on 

the sample. After placing the sample, the loading device with three bases is placed 

and they are fixed. The membrane is rolled over the top cap and O-rings are used to 

fasten the membrane to the loading device. They are required for avoiding the 

transfer of water and air into the sample during the experiment. At this stage, 30kPa 

vacuum is applied inside the sample to prevent any deformation and then the split 

mold is removed as the sample can stand still due to vacuum. When the specimen is 

standing with the help of vacuum, its dimensions are measured to determine the 

volume. The loading piston on the top cap is lowered until it touches the porous 

paper smoothly. The cell chamber and chamber cap are placed and they are fixed 

with three screws on the top. Air pressure between 30kPa is applied to the water tank 

that enables water transfer into the chamber and so the chamber is filled with water 

until the level marked on the chamber. The loading piston is lowered and after it is 
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completely loose, gauges are calibrated. Carbondioxyde gas is transferred inside the 

specimen for 30 minutes. For samples that are going to be tested in unsaturated 

conditions, CO2 method is not used and back pressure is not applied inside the 

sample. The vertical deformation changes are recorded to be used in final volume 

calculations. The water level of the burette is recorded. After that, vacuum is turned 

off and distilled water is transferred into the soil from the bottom cap due to the head 

difference between the water supply tank and the triaxial chamber. At this stage, the 

external pressure holds the sample together. This process is continued until all the air 

inside the water pipe is removed. It takes approximately 15 minutes but the air 

bubbles inside the pipe must be carefully observed. 

The backpressure of 270kPa and confining pressure of 300kPa is applied to the 

specimen and after waiting for 4 hours, the degree of saturation is determined.  The 

degree of saturation can be increased by increasing the backpressure and cell 

pressure simultaneously, in order to maintain the confining stress acting to the 

sample. The B coefficient is calculated for determining the saturation and it is 

calculated as: 

3

u
B







                                                (4.1) 

where Δu is the resulting change in pore pressure and Δσ3 is the pressure increase for 

determining the saturation. At this stage the cell pressure is increased to 330kPa and 

the back pressure is increased to 300 kPa for determining the saturation. When the B 

coefficient is greater or equal to 97%, the specimen is accepted as saturated. After 

the first cyclic triaxial test, the cell pressure is increased up to 400 kPa while the back 

pressure is constant. The drainage valves are opened and the water level of the 

burette is controlled in order to determine if the consolidation phase is complete. The 

change of water level in the burette shows the volume change of the specimen. When 

the water level is constants, the specimen is ready for the experiment. After waiting 

for 30 minutes the cell pressure is increased up to 500 kPa and the back pressure is 

increased to 400 kPa in order to confirm the saturation level. At this stage, the 

sample is ready for the static triaxial test. For the undrained test, the drainage valves 

are kept close during the test and for the drained test, the drainage valves are kept 

open during the test. 
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For the unsaturated test specimens, the sample is not subjected to CO2 gas or 

backpressure. The cell pressure confined at the desired confining pressure value and 

subjected to undrained test. 

4.5 Test Procedure 

When the specimen is ready for the experiment, the maximum initial Elasticity 

Modulus values for unreinforced and reinforced sand specimens were determined by 

using cyclic triaxial apparatus in accordance with ASTM D3999-91. The load 

controlled test type was preferred. First, the cyclic loading is applied while the 

confining pressure of 30kPa is applied on the specimen. The cyclic loading is applied 

at very small values. The load is applied as staged loading with the frequency of 

0.1Hz. Small strains, between 10-4 and 10-6 are determined by the gap-sensors. The 

Elasticity Modulus values are calculated as:  

E







                    (4.2) 

where Δσ is the deviatory stress and Δε is the small axial strains.  

After the maximum initial Elasticity Modulus under the confining pressure of 30kPa 

is determined, the experiment is stopped. It is necessary to wait for 15 minutes until 

the consolidation phase is completed. At the end of this time interval, water level in 

the burette is recorded in order to be used for estimating the volume change in the 

specimen. In scope of this research, the initial maximum Elasticity Modulus values 

are also determined under the cell pressure of 500kPa and backpressure of 400kPa. 

The triaxial compression test under monotonic loading is carried out after completing 

the cyclic loading tests in undrained conditions. The conditions are kept constant and 

kinematically controlled increasing stress is applied under a confining stress of 

100kPa during the undrained conditions. The tests were conducted at strain rates of 

1.00 mm/min, 1.25 mm/min, 1.50 mm/min for saturated specimens and the strain rate 

of 1.0 mm/min is applied for unsaturated specimens. The drained tests are performed 

on unreinforced sand samples and sand samples reinforced with fiber contents of 0.5 

and 1.0% fiber contents at the strain rate of 1.00 mm/min. For the unreinforced sand 

samples the effect of strain rates of 0.5 mm/min, 1.0 mm/min and 2.0 mm/min are 

determined by conducting consolidated drained test. Deviator load was applied until 

the specimen failed or up to a strain of 20%, whichever was earlier. 
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The photos of unreinforced sand and fiber-sand mixtures before and after the triaxial 

test application are taken by using a digital microscope. They are presented in Figure 

4.9. 

 

 

Figure 4.9: Microscopic images a) unreinforced sand before (a) and after (b) the 
experiment, reinforced sand before (c) and after (d) the experiment 

4.6 Direct Shear Tests 

Direct Shear Tests are performed to determine the effect of fibers on the shear 

strength parameters of sand. The sand used in direct shear tests is the same as the 

sand used in triaxial tests. The sand is washed through ASTM #200 sieve and then 

sieved through ASTM #10 sieve.  The tests are conducted in a shear box with the 

dimensions of 60 mm x 60 mm in plane and 20 mm in depth. The samples are 

prepared at relative densities around 55%. The unreinforced and reinforced sand 

samples are prepared at optimum water content by using the oven dried sand. The 

tested fiber contents are 0.5 %, 0.75%, 1.0% and 2.0% of the dry weight of sand. The 

fibers, sand and water are mixed thoroughly by hand. During the sample preparation, 

the difficulty of obtaining a fairly uniform mixture increases as the amount of fibers 

that will be mixed into soil increases. Thus, the upper limit of fiber content is decided 

as 2.0% of dry weight of sand.  The sample including 2.0 % fiber is shown in Figure 

4.10 and it can be seen that a fairly uniform mixture is obtained with randomly 

distributed fibers.   

a) b)

c) d)
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Figure 4.10: Fiber reinforced sample 

The sample is placed into the direct shear box with tamping lightly. The porous 

papers are placed before and after the sample is placed. The surface of the sample 

must be smooth as it is shown in Figure 4.11. The direct shear test apparatus used is 

showed in Figure 4.12. The normal vertical stresses of σn =100, 200 and 300 kPa are 

applied at unreinforced and reinforced sand samples. The loading rate was 

0.12mm/min for all tests. The settlements are recorded for 15 minutes after the 

sample is loaded. Shear stresses were recorded as a function of horizontal 

displacement up to a total displacement of 12 mm in order to observe the post failure 

behavior. 

 

Figure 4.11 : Direct Shear Test Sample 

 

Figure 4.12 : Direct Shear Test Apparatus 



  
66

  



  
67

5. EXPERIMENTAL RESULTS 

In this part of the thesis, the experimental results of the laboratory tests conducted at 

ITU Soil Mechanics Laboratory are presented. 

5.1  Maximum Elasticity Modulus Values 

The maximum Elasticity Modulus (Emax) values are determined by conducting load 

controlled cyclic triaxial test on unreinforced and reinforced sand samples. The Emax 

values are calculated for confining pressures of 30 kPa and 100 kPa. Through these 

experiments, the effect of confining pressure acting on the specimen and the effect of 

fiber inclusions are determined. 

The gap sensors recorded small strains (order of 10-4 and 10-6) and the deviator 

stress-axial strain graphs are used for calculating the Emax values.  For example, as it 

is shown in Figure 5.1, the slope of the deviator stress-axial strain graph of 

unreinforced sand at the confining pressure of 100 kPa is estimated. The maximum 

modulus,  Emax is calculated approximately 250MPa.  

 

Figure 5.1 : Determination of Emax value for unreinforced sand  

The effect of fiber inclusions is searched by conducting the experiments on 

unreinforced sand and reinforced sand with fiber contents of 0.1%, 0.5% and 1.0 %. 
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The Emax values are calculated at strain levels of 10-6-10-4. Properties of the test 

specimens and test results are presented in the Appendix A.  The comparison of Emax 

values obtained for fiber contents of 0.0%, 0.1%, 0.5% and 1.0% are presented in 

Figure 5.2.  

 

Figure 5.2 : Emax values for different fiber contents  

According to the results, it is concluded that the Emax values calculated for the 

confining pressure of 100 kPa are higher than the Emax values calculated for the 

confining pressure of 30 kPa. As the fiber content increased, a slight decrease in the 

Emax value is calculated. This decrease is more evident at the confining pressure of 

30kPa. Also the Emax values calculated for the reinforced sand samples at fiber 

contents of 0.5% and 1.0% are appoximately the same. It can be concluded that fiber 

addition did not result in a significant change of the maximum modulus. 

5.2 Static Behavior of Fiber Reinforced Sand 

Firstly, the consolidated undrained static triaxial compression tests are conducted on 

sand samples having a relative density around 55 %. Figure 5.3 shows the test 

sample before and after the test. The static triaxial compression tests are conducted at 

strain rates of 1.00 mm/min, 1.25 mm/min and 1.50 mm/min to observe the effect of 

strain rate on the static behaviour of unreinforced and reinforced sand. The triaxial 

test results of reinforced samples having fiber contents of 0.1%, 0.5% and 1.0% and 

unreinforced sand samples are compared in order to determine the effect of fiber 

inclusion. Secondly, unreinforced sand samples are subjected to CD test at strain 
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rates of 0.50 mm/min, 1.00 mm/min and 2.0 mm/min in order to determine the effect 

of strain rate. Thirdly, unsaturated samples that are prepared at the water content of 

10% are subjected to triaxial test. In the third part of the triaxial testing programme, 

the consolidated drained tests are performed at the strain rate of 1.00mm/min in order 

to determine the effect of tested fiber contents. Properties of test samples and the 

static triaxial test results are presented in the Appendix B. 

 

 

Figure 5.3 : Sand sample before and after the compression test 

5.2.1 Effect of Strain Rate on the Static Behavior 

In scope of this investigation, for each of the tested fiber content, the monotonic 

loading was applied at different strain rates to determine whether these strain rates 

will affect the stress-strain response of unreinforced and randomly distributed fiber 

reinforced sand samples in a considerable amount.  

Firstly, saturated sand specimens are tested in undrained condition. The samples are 

allowed to saturate until B values are reached at least 0.97. The samples are tested at 

three different but close strain rates. The test results of unreinforced and reinforced 

sand samples with fiber contents of 0.1%, 0.5% and 1.0% are presented. 

Figure 5.4 (a)-(b) shows the stress-strain behaviour of unreinforced sand at strain 

rates of 1.00 mm/min, 1.25 mm/min and 1.50 mm/min. The consolidated undrained 

triaxial compression tests are conducted on samples that have a saturation degree of 

97-98%. The peak deviator stress of 1500 kPa is recorded at an axial strain of 10%. 

As the results show, the effect of strain rate on the stress-strain behaviour of fiber 

reinforced sand can be considered insignificant. The initial increase of the pore water 

pressure at small strains is followed by an important decrease at absolute pore 

pressures at axial strain of approximately 10%.  While the results of tests conducted 

on strain rates of 1.00 mm/min and 1.50 mm/min are very similar, the test results of 
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the test conducted on 1.25 mm/min showed a slight difference. After the peak 

deviator stress is recorded, the deviator stress value decreases with the increasing 

axial strain. 

a)  

b)  

Figure 5.4: Effect of strain rate on the static behavior of unreinforced sand 

The effect of strain rate on sand reinforced with 0.1% fiber content is shown in 

Figure 5.5 (a)-(b).  For the triaxial tests conducted with strain rates of 1.00 mm/min, 

1.25 mm/min and 1.50 mm/min. According to the results, the tested strain rates 

showed insignificant differences. Due to fiber addition, the peak value is recorded at 
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higher strain levels compared to unreinforced sand. It can be seen that the peak 

deviator stress recorded is 1600 kPa at an axial strain around 12%. After the peak 

deviator stress is recorded, the deviator stress value decreases in an insignificant 

amount.  

a)  
 

b)  

Figure 5.5: Effect of strain rate on the static behavior of 0.1% fiber reinforced sand 

For fiber content of 0.5 %, the static response of experiments with the strain rate of 

1.0 mm/min, 1.25 mm/min and 1.5 mm/min are presented in Figure 5.6 (a)-(b). The 
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stress values recorded are around 1700 kPa and they are recorded at axial strains 

between 10-15%. 

a)  

b)  

Figure 5.6: Effect of strain rate on the static behavior of 0.5% fiber reinforced sand 

The static response of sand reinforced with 1% fiber content is presented in Figure 

5.7. As the fiber content increased up to 1.0 %, the static behaviours that are recorded 

for strain rates of 1.00 mm/min, 1.25 mm/min and 1.50 mm/min are very similar. It 

can be stated that conducting the experiments at strain rates of 1.00mm/min, 

1.25mm/min and 1.50mm/min have no significant effect on the static behavior of 

sand both for unreinforced and reinforced sand specimens with fiber contents of 
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0.1%, 0.5% and 1.0%.  It either affects the maximum deviator stress value or the 

axial strain that value was reached in a negligible amount.  

a)  

 

b)  

Figure 5.7 :Effect of strain rate on the static behavior of fiber reinforced sand with 
fiber content of 1.0 % 

Secondly, the effect of strain rate is determined by performing consolidated drained 

tests on unreinforced sand with the relative density of 55%. The samples are tested at 

the confining pressure of 100kPa and the tested strain rates are 0.50 mm/min, 1.00 

mm/min and 2.00 mm/min. The change in the deviator stress, void ratio and the ratio 

of volume change to the volume after consolidation are presented Figure 5.8.   
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a) , 

b)  

c)  

Figure 5.8: Effect of strain rate on the static behavior of unreinforced sand obtained 
from CD tests 

It is presented that the tested strain rates did not effect the stress-strain response or 

the change in the volume or void ratio considerably. 
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5.2.2 Effect of Fiber Content on the Static Behavior  

In scope of this experimental program, the effect of fiber content on the static 

behavior of fiber reinforced sand is investigated by conducting a series of triaxial 

tests. The results are used to compare the effect of fiber inclusion on the static 

behavior of sand. Consolidated undrained tests are performed on saturated sand 

specimens reinforced with randomly distributed fibers at fiber contents of 0.0%, 

0.1%, 0.5% and 1.0%.  

Figure 5.9 presents the static triaxial tests performed at the strain rate of 

1.00mm/min. The fiber contents of 0.1 % and 0.5% affected the stress-strain 

behaviour of sand similarly. On the other hand the fiber content of 1.0% caused a 

significant improvement. While the unreinforced sand reaches the peak stress value 

at the axial strain around 10 %, reinforced sand samples reach the peak stress value 

at axial strains around 12-14 % .  

a)  

b)  

Figure 5.9: Effect of fiber inclusions at the strain rate of 1.00mm/min 

Figure 5.10 presents the static triaxial tests performed at the strain rate of 1.25 

mm/min. In these set of tests, the effect of fiber inclusion is more apparent. While the 
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fiber contents of 0.1 % and 0.5 % caused approximately 15 % increase of the peak 

stress value, the fiber addition of 1.0 % caused approximately 60 % increase of the 

peak stress value. As the fiber content increased, the peak stresses are observed at 

greater axial strains. 

a)  

b)  

Figure 5.10: Effect of fiber inclusions at the strain rate of 1.25mm/min 

The results of triaxial tests performed at a strain rate of 1.50 mm/min are presented in 

Figure 5.11. Comparing the static triaxial test results presented it can be stated that, 

the fiber addition improved the static behavior of sand. While the fiber addition of 

0.1% and 0.5% caused a slight increase of the peak stress value, the addition of 1.0% 

resulted in a significant increase. Also, the peak stresses are observed at greater axial 

strains due to fiber addition. 
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a)  

b)  

Figure 5.11: Effect of fiber inclusions at the strain rate of 1.50mm/min 

In general the results of consolidated undrained triaxial tests showed that while the 

inclusion of 0.1% and 0.5% fiber contents increased the peak stress values slightly, 

the inclusion of 1.0% fiber content resulted in a significant improvement of the 

stress-strain behavior of sand. As shown on the figures, the pore water pressure 

reached the limit value at axial strain of approximately 10%.  

Consolidated drained tests are performed on saturated sand specimens reinforced 

with randomly distributed fibers at fiber contents of 0.0%, 0.5% and 1.0%. The strain 

rate is 1.00mm/min in each test and the confining pressure of 100kPa is applied. The 
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relative densities, it can be stated that fiber addition improved the static behavior of 

sand considerably.  

  

Figure 5.12: Effect of fiber inclusions at the strain rate of 1.00mm/min obtained 
from CD tests 

Also the change in the void ratio and volume are presented in Figure 5.13. It is 

shown that while addition of 0.5% fiber content decreased the void ratio and volume 

change, the addition of 1.0% increased these parameters. The details of the test 

specimens and results of the CU and CD tests are presented in the Attachment B. 
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a)  

b)  

Figure 5.13: Effect of fiber inclusions on the void ratio and volume obtained from 
CD tests 

5.2.3 Triaxial Compression Tests on Unsaturated Samples 
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specimen is confined by the cell pressure. The specimens are subjected to deviator 

loading right after they are placed in the triaxial system. The unsaturated specimens 

are tested at the confining pressure of 100kPa and the strain rate of 1.00 mm/min is 

applied. Figure 5.14 shows the stress-strain response of unreinforced sand and 

reinforced sand specimens including fiber contents of 0.1%, 0.5% and 1.0%. It can 

be seen that the fiber addition improved the static behaviour of sand considerably. As 

the fiber content increased, the recorded peak value is also increased at higher axial 

strains. Even the addition of fiber amount that is 0.1% of the dry weight of the sand 

caused increase of the failure deviator stress. Especially for the fiber addition of 

1.0%, the peak value is recorded at the axial strain of 20%. On the other hand, the 

peak stress values recorded for saturated specimens are very high compared to peak 

stress values of unsaturated specimens. 

 

Figure 5.14: Static response of unsaturated samples 

In addition to these tests, the triaxial compression tests are performed onunsaturated 

specimens that are prepared at water content of 10% with confining pressures of 

200kPa and 300kPa to determine the effect of fiber inclusions on the shear strength 

parameters of sand. These triaxial tests are performed on unreinforced samples and 

reinforced samples that include 1.0 % fiber content. Figure 5.15, Figure 5.16 and 

Figure 5.17 and shows the static responses of unreinforced sand and sand reinforced 

with the fiber content of 1.0%. 
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Figure 5.15: Stress-Strain response of unsaturated unreinforced specimens at 
different confining stresses 

 

 

Figure 5.16: Stress-Strain response of unsaturated specimens reinforced with fiber 
content of 0.5% at different confining stresses 
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Figure 5.17: Stress-Strain response of unsaturated specimens reinforced with fiber 
content of 1.0% at different confining stresses 

The shear stress-normal stress graph for the unreinforced sand is shown in Figure 

5.18. While the cohesion intercept is calculated as zero, the shear strength angle is 

calculated as 37°.  

 

Figure 5.18: Shear stress-Normal stress graph for unreinforced sand 
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The shear stress-normal stress graph for the sand reinforced with fiber content of 

0.5% is shown in Figure 5.19. While the cohesion intercept is calculated as 65kPa the 

shear strength angle is calculated as 39°. The addition of fiber increased both of the 

parameters. 

 

Figure 5.19: Shear stress-Normal stress graph for sand samples reinforced with fiber 
content of 0.5% 

The shear stress-normal stress graph for the sand reinforced with tha fiber content of 

1.0% is shown in Figure 5.20. While the cohesion intercept is calculated as 80 kPa, 

the shear strength angle is calculated as 45°. It is observed that fiber addition of 1.0% 

of the dry weight of sand at the water content of 10% caused the increase of both the 

shear strength angle and cohesion intercept. Properties of the samples and test results 

are presented in the Appendix B. 
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Figure 5.20: Shear stress-Normal stress graph for sand samples reinforced with fiber 
content of 1.0%  

5.3 Direct Shear Test Results 

Direct Shear Tests are performed on unreinforced and reinforced sand samples at 

relative densities around 55 % to determine the effect of fiber inclusions on the shear 

strength parameters of sand. The samples are prepared at the water content of 10% 

and fiber contents of 0.5%, 0.75%, 1.0% and 2.0% are tested. Fibers are mixed 

randomly into the soil. As the fiber content increases, mixing fibers into the sand 

becomes harder so higher fiber contents are not tested. The strain rate was kept 

constant at 0.12mm/min for all tests. The shear stress-horizontal displacement curves 

of unreinforced and reinforced sand specimens are presented in Figure 5.21, Figure 

5.22 and Figure 5.23. Under the same normal stress, the peak stress value recorded 

increases due to fiber addition. In the reinforced specimens,  the recorded  shear 

stress values increased with increasing horizonal displacement. Especially under the 

normal stresses of 200kPa and 300kPa, first the fiber reinforced samples reached a 

peak value at around horizontal displacement of 5 mm that is  followed by a small 

decrease of the shear stress and a gradual increase due to increace in horizontal 

stresss. While the effect of fiber inclusions is more apprent for the normal stresses of 
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100 kPa and 200 kPa, the fiber addition caused an insignificant improvement for the 

normal stress of 300 kPa.  

 

Figure 5.21: Shear stress-horizontal displacement response for unreinforced and 
reinforced sand samples at the normal stress of σ = 100kPa 

 
 

Figure 5.22: Shear stress-horizontal displacement response for unreinforced and 
reinforced sand samples at the normal stress of σ = 200kPa 
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Figure 5.23: Shear stress-horizontal displacement response for unreinforced and        
reinforced sand samples at the normal stress of σ = 300kPa 

In the direct shear test, the peak shear strength angle (ϕ) and cohesion (c) parameters 

are calculated by linear regression analyses with correlation coefficients that are 

approximately equal to unity (R2=0.98-1.00). The summary of the direct shear test 

results are presented in Table 5.1. It is resulted that the randomly distributed fiber 

addition affected the shear strength parameters of sand. The shear strength angle 

decreased, as the fiber content increased from 0.5 % to 2.0%.  An apparent cohesion  

value is calculated for fiber reinforced sand samples. The shear stress-normal stress 

graphs are presented in Appendix C. 

Table 5.1:  Direct Shear Test Results for unreinforced and reinforced sand 

Fiber Content (%) σnf (kPa) τnf (kPa) ϕ (°) c (kPa) 

0.00 
123 95 

40 0 209 168 
317 280 

0.50 
104 72 

34 24 235 173 
371 280 

0.75 
12 119 

35 25 247 181 
371 290 

1.00 
124 144 

30 70 247 218 
371 288 

2.00 
124 160 

29 90 247 230 
371 300 
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The peak shear strength angle and cohesion parameters calculated from CU tests that 

are performed on unsaturated specimens at the water content of 10% (whose results 

are presented in Figure 5.15-Figure 5.20) are compared with the parameters obtained 

from direct shear tests. Figure 5.24 shows the shear strength angles calculated for 

unreinforced and reinforced sand specimens by performing direct shear and CU tests 

on samples prepared at the water content of 10%. It is presented that the shear 

strength angle decreases due to fiber addition in direct shear tests.   

 

Figure 5.24: Shear strength angles of unreinforced and reinforced sand samples 
obtained from direct shear tests and CU tests 

On the other hand, the shear strength angle values calculated from CU tests increased 

due to fiber addition. Also the apparent cohesion values are calculated for the 

unreinforced and reinforced specimens and they are presented in Figure 5.25. For 

both of the test types, the apparent cohesion value increased significantly due to fiber 

addition. 
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Figure 5.25: Cohesion intercepts of unreinforced and reinforced sand samples 
obtained from direct shear tests and CU tests 
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6. CONCLUSION AND RECOMMENDATIONS 

Soil improvement with addition of substances is a common ground treatment. 

According to the additives, the behavior of soil changes significantly. The method of 

reinforcing soil with fiber inclusions is used for landfills and stabilization of shallow 

slope failures. Previous studies on randomly distributed fiber reinforced sands show 

that additions of fibers improves the static behavior of sand and affects the shear 

strength parameters depending on several factors. These factors are soil type, grain 

size distribution, gradation, particle shape, fiber type, fiber aspect ratio, fiber content 

and testing method parameters. 

In scope of this thesis, the effects of one type of  polypropylene fibers to the dynamic 

properties and static behavior of sand are searched by performing laboratory tests. 

The polypropylene fibers are mixed randomly into the poorly graded Akpınar sand at  

certain water content in order to obtain a fairly uniform mixture. The fibers contents 

are determined as the percentage of the dry weight of sand. The samples are prepared 

at relative densities around 55 %.  

In the experimental part of the thesis, first triaxial compression test system is used. 

The saturated specimens are subjected to cyclic triaxial loading and the maximum 

modulus values (Emax) are determined for confining pressure of 30 kPa and 100 kPa. 

The results of unreinforced sand samples and sand samples that are reinforced with 

fiber contents of 0.1%, 0.5% and 1.0% are compared. The Emax values are calculated 

from the stress-strain graphs obtained for small strains (order of 10-4 and 10-6). The 

results showed that the Emax value decreased slightly due to fiber addition for both 

of the confining pressure values. While the Emax value decreased from 250MPa to 

240MPa for the confining pressure of 100kPa, it decreased from 150MPa to 110MPa 

for the confining pressure of 30kPa as the fiber content increased up to 1%.  

In the second part of the triaxial testing program, undrained static triaxial test is 

performed on samples confined at 100kPa. The samples are tested at both 

unsaturated and saturated conditions. For the saturated samples, B coefficient of 0.97 

or more is required. The strain controlled static loading is applied at strain rates of 
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1.00 mm/min, 1.25 mm/min and 1.50 mm/min. The test results of unreinforced 

samples are compared with the results of sand samples reinforced with fiber contents 

of 0.1%, 0.5% and 1.0% are compared. According to the results, it is observed that 

the tested strain rates did not affect the stress-strain graphs in a considerable amount. 

On the other hand fiber inclusions increased the peak stress value significantly. As 

the fiber content increased, higher peak stress values are recorded at higher axial 

strains. The slight increase of the pore water pressure is followed by a significant 

decrease at higher axial strains. The consolidated drained triaxial test results showed 

that fiber inclusion improved the stress-strain behavior of sand considerably. On the 

other hand the strain rates of 0.5 mm/min, 1.0 mm/min and 2.0 mm/min did not show 

significant effect on the stress-strain response of unreinforced sand. The change in 

the volume and void ratio is also insignificant. 

In addition to these tests, the unsaturated specimens are tested in the triaxial system. 

The samples are prepared at the water content of 10% and they are not exposed to 

either CO2 gas or backpressure. The samples are confined with the cell pressure of 

100kPa and tested at the strain rate of 1.00 mm/min. In this case, the peak stress 

values recorded are very small compared to that of saturated specimens but the peak 

values are recorded at the same axial stress levels. For determining the shear strength 

parameters, the unreinforced sand and sand reinforced with fiber content of 1.0% are 

also tested at confining pressure of 200kPa and 300kPa in unsaturated condition. The 

unreinforced sand has cohesion intercept (c) of zero and shear strength angle (ϕ) of 

37°. For the sand reinforced with the fiber content of 1.0%, the cohesion intercept is 

calculated as 80kPa and the shear strength angle is calculated as 45°. It shows that 

fiber addition improved the shear strength parameters of the sand significantly. 

In the second part of the experimental study, direct shear tests are performed. The 

samples are prepared at the relative density around 55% and fiber contents of 0.5%, 

0.75%, 1.0% and 2.0% of dry weight of sand is mixed into sand at the water content 

of 10%. The direct shear tests is performed with a strain rate of 0.12 mm/min. The 

shear stress-horizontal displacement curves for the normal stresses of 100 kPa, 200 

kPa and 300 kPa showed that while the unreinforced samples showed the strain 

softening behavior, the fiber reinforced samples showed strain hardening behavior. 

The shear strength parameters are calculated for all samples. As the shear strength 
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angle decreases due to increasing fiber content, the apparent cohesion value 

increased in a considerable amount.  

Comparing the shear strength parameters calculated from unsaturated triaxial 

compression tests and direct shear tests, it can be observed that while the apparent 

cohesion value increases due to fiber addition in both testing methods, the change in 

the shear strength angle showed differences. Increasing fiber content decreased the 

shear strength angle calculated from direct shear test results but it increased the shear 

strength angle calculated from triaxial compression test.  

In conclusion, the randomly distributed FORTA MIGHTY-MONO fiber inclusion 

improved the strength of Akpınar sand considerably. The results obtained from the 

experimental study are also consistent with the previous researches that are 

conducted on randomly distributed polypropylene fiber reinforced sands. The 

method of randomly distributed fiber inclusions can be preferred for landfills, 

pavements and slope stabilization. The experimental study can also be advanced with 

an analytical model or additional laboratory tests. 
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APPENDIX A  

Table A. 1: Properties of Test No 8 

Sample 
No 

Cell 
Pressure 
(kPa) 

Back 
Pressure 
(kPa) 

Confining 
Pressure 
(kPa) 

Fiber 
Content 
(%) 

Saturation 
(%) 

Relative 
Density 
(%) 

8 330 300 30 0 97.5 55 

 

 

Figure A. 1: Test Results for Test No 8  
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Table A. 2: Properties of Tests No 9 
Sample 
No 

Cell 
Pressure 
(kPa) 

Back 
Pressure 
(kPa) 

Confining 
Pressure 
(kPa) 

Fiber 
Content 
(%) 

Saturation 
(%) 

Relative 
Density 
(%) 

8 500 400 100 0 97.5 55 
 

 

 

 
 

Figure A. 2: Test Results for Test No 9 
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Table A. 3: Properties of Sample No 7 

Sample 
No 

Cell 
Pressure 
(kPa) 

Back 
Pressure 
(kPa) 

Confining 
Pressure 
(kPa) 

Fiber 
Content 
(%) 

Saturation 
(%) 

Relative 
Density 
(%) 

7 330 300 30 0.1 98 57 

 

 

 

Figure A. 3: Test Results for Test No 7
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Table A. 4: Properties of Test No 10 

Sample 
No 

Cell 
Pressure 
(kPa) 

Back 
Pressure 
(kPa) 

Confining 
Pressure 
(kPa) 

Fiber 
Content 
(%) 

Saturation 
(%) 

Relative 
Density 
(%) 

7 500 400 100 0.1 98 57 

 

 

 

Figure A. 4: Test Results for Test No 10 
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Table A. 5: Properties of Test No 5 

Sample 
No 

Cell 
Pressure 
(kPa) 

Back 
Pressure 
(kPa) 

Confining 
Pressure 
(kPa) 

Fiber 
Content 
(%) 

Saturation 
(%) 

Relative 
Density 
(%) 

5 330 300 30 0.5 97 55 

 

 

 

Figure A. 5: Test Results for Test No 5 
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Table A. 6: Properties of Test No 11 

 
Sample 
No 

Cell 
Pressure 
(kPa) 

Back 
Pressure 
(kPa) 

Confining 
Pressure 
(kPa) 

Fiber 
Content 
(%) 

Saturation 
(%) 

Relative 
Density 
(%) 

5 500 400 100 0.5 97 55 

 

 

 

Figure A. 6: Test Results for Test No 11 
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Table A. 7: Properties of Test No 1 

Sample 
No 

Cell 
Pressure 
(kPa) 

Back 
Pressure 
(kPa) 

Confining 
Pressure 
(kPa) 

Fiber 
Content 
(%) 

Saturation 
(%) 

Relative 
Density 
(%) 

1 330 300 30 1.0 97 57 
 

 

 
 

 

Figure A. 7: Test Results for Test No 1 
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Table A. 8: Properties of Test No 2 

Sample 
No 

Cell 
Pressure 
(kPa) 

Back 
Pressure 
(kPa) 

Confining 
Pressure 
(kPa) 

Fiber 
Content 
(%) 

Saturation 
(%) 

Relative 
Density 
(%) 

1 500 400 100 1.0 97 57 
 

 

 
 

 
Figure A. 8: Test Results for Test No 2  
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APPENDIX B  
 

Table B. 1: Properties of Sample No 75 

Sample No 75 
A0 (cm2) 19.37 
V0 (cm3) 193.48 
γdry (g/cm3) 1.60 
Cell Pressure (kPa) 500 
Back Pressure (kPa) 400 
Confining Pressure (kPa) 100 
Fiber Content (%) 0 
Saturation(%) 97.5 
Relative Density, Dr (%) 55 
Strain rate (mm/min) 1.00 

 

 

Figure B. 1: Test Results for Sample No 75 
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Table B. 2: Properties of Sample No 44 

Sample 44 
A0 (cm2) 19.39 
V0 (cm3) 193.55 
γdry (g/cm3) 1.60 
Cell Pressure (kPa) 500 
Back Pressure (kPa) 400 
Confining Pressure (kPa) 100 
Fiber Content (%) 0 
Saturation(%) 98 
Relative Density, Dr (%) 55 
Strain rate (mm/min) 1.25 

 

 

 

Figure B. 2: Test Results for Sample No 44 
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Table B. 3: Properties of Sample No 73 

Sample 73 
A0 (cm2) 19.37 
V0 (cm3) 193.49 
γdry (g/cm3) 1.60 
Cell Pressure (kPa) 500 
Back Pressure (kPa) 400 
Confining Pressure (kPa) 100 
Fiber Content (%) 0 
Saturation (%) 97 
Relative Density, Dr (%) 55 
Strain rate (mm/min) 1.50 

 

 

 

Figure B. 3: Test Results for Sample No 73 
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Table B. 4: Properties of Sample No 55 

Sample No 55 
A0 (cm2) 19.37 
V0 (cm3) 193.23 
γdry (g/cm3) 1.604 
Cell Pressure (kPa) 500 
Back Pressure (kPa) 400 
Confining Pressure (kPa) 100 
Fiber Content (%) 0.1 
Saturation(%) 98 
Relative Density, Dr (%) 56 
Strain rate (mm/min) 1.00 

 

 

 

Figure B. 4: Test Results for Sample No 55 
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Table B. 5: Properties of Sample No 72 

Sample No 72 
A0 (cm2) 19.42 
V0 (cm3) 193.56 
γdry (g/cm3) 1.603 
Cell Pressure (kPa) 500 
Back Pressure (kPa) 400 
Confining Pressure (kPa) 100 
Fiber Content (%) 0.1 
Saturation(%) 98 
Relative Density, Dr (%) 55 
Strain rate (mm/min) 1.25 

 

 

 
Figure B. 5: Test Results for Sample No 72  
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Table B. 6 : Properties of Sample No 78 

Sample No 78 
A0 (cm2) 19.39 
V0 (cm3) 193.36 
γdry (g/cm3) 1.605 
Cell Pressure (kPa) 500 
Back Pressure (kPa) 400 
Confining Pressure (kPa) 100 
Fiber Content (%) 0.1 
Saturation(%) 98 
Relative Density, Dr (%) 56 
Strain rate (mm/min) 1.50 

 

 
 

 

Figure B. 6 : Test Results for Sample No 78 
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Table B. 7 : Properties of Sample No 56 

Sample No 56 
A0 (cm2) 19.44 
V0 (cm3) 194.08 
γdry (g/cm3) 1.602 
Cell Pressure (kPa) 500 
Back Pressure (kPa) 400 
Confining Pressure (kPa) 100 
Fiber Content (%) 0.5 
Saturation(%) 98 
Relative Density, Dr (%) 57 
Strain rate (mm/min) 1.00 

 

 

 

Figure B. 7 : Test Results for Sample No 56 
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Table B. 8 : Properties of Sample No 68 

Sample No 68 
A0 (cm2) 19.38 
V0 (cm3) 193.55 
γdry (g/cm3) 1.612 
Cell Pressure (kPa) 500 
Back Pressure (kPa) 400 
Confining Pressure (kPa) 100 
Fiber Content (%) 0.5 
Saturation(%) 98 
Relative Density, Dr (%) 58 
Strain rate (mm/min) 1.25 

 

 
 

 

Figure B. 8 : Test Results for Sample No 68 
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Table B. 9 : Properties of Sample No 57 

Sample No 57 
A0 (cm2) 19.44 
V0 (cm3) 194.27 
γdry (g/cm3) 1.606 
Cell Pressure (kPa) 500 
Back Pressure (kPa) 400 
Confining Pressure (kPa) 100 
Fiber Content (%) 0.5 
Saturation(%) 98 
Relative Density, Dr (%) 56 
Strain rate (mm/min) 1.50 

 
 

 

 
 

Figure B. 9 : Test Results for Sample No 57 
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Table B. 10 : Properties of Sample No 47 

Sample No 47 
A0 (cm2) 19.43 
V0 (cm3) 194.00 
γdry (g/cm3) 1.613 
Cell Pressure (kPa) 500 
Back Pressure (kPa) 400 
Confining Pressure (kPa) 100 
Fiber Content (%) 1.0 
Saturation (%) 97 
Relative Density, Dr (%) 58 
Strain rate (mm/min) 1.00 

 

 

 

Figure B. 10 : Test Results for Sample No 47 
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Table B. 11 : Properties of Sample No 1 

Sample No 1 
A0 (cm2) 19.46 
V0 (cm3) 194.40 
γdry (g/cm3) 1.610 
Cell Pressure (kPa) 500 
Back Pressure (kPa) 400 
Confining Pressure (kPa) 100 
Fiber Content (%) 1.0 
Saturation (%) 97 
Relative Density, Dr (%) 57 
Strain rate (mm/min) 1.25 

 

 
 

 
 

Figure B. 11 : Test Results for Sample No 58 

  

0

500

1000

1500

2000

2500

0 5 10 15 20 25

D
ev

ia
to

r 
S

tr
es

s,
 Δ
σ 

(k
P

a)

Axial Strain, ε (%)

‐1000,0

‐500,0

0,0

500,0

0 5 10 15 20 25

P.
W

.P
. (

kP
a)

Axial Strain, ε (%)



  
118

Table B. 12 : Properties of Sample No 50 

Sample No 50 
A0 (cm2) 19.42 
V0 (cm3) 194.07 
γdry (g/cm3) 1.613 
Cell Pressure (kPa) 500 
Back Pressure (kPa) 400 
Confining Pressure (kPa) 100 
Fiber Content (%) 1.0 
Saturation (%) 99 
Relative Density, Dr (%) 58 
Strain rate (mm/min) 1.50 

 
 

 

 

Figure B. 12 : Test Results for Sample No 50 
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Table B. 13 : Properties of Sample No 90 

Sample No 90 
A0 (cm2) 19.37 
V0 (cm3) 193.42 
γdry (g/cm3) 1.60 
Cell Pressure (kPa) 100 
Back Pressure (kPa) 0 
Confining Pressure (kPa) 100 
Fiber Content (%) 0 
Relative Density, Dr (%) 55 
Strain rate (mm/min) 1.00 

 

Figure B. 13: Test Results for Sample No 90 
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Table B. 14 : Properties of Sample No 19 

Sample No 19 
A0 (cm2) 19.47 
V0 (cm3) 194.27 
γdry (g/cm3) 1.596 
Cell Pressure (kPa) 100 
Back Pressure (kPa) 0 
Confining Pressure (kPa) 100 
Fiber Content (%) 0.1 
Relative Density, Dr (%) 54 
Strain rate (mm/min) 1.00 

 

 

Figure B. 14 : Test Results for Sample No 19 
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Table B. 15 : Properties of Sample No 23 

 
Sample No 23 
A0 (cm2) 19.41 
V0 (cm3) 194.00 
γdry (g/cm3) 1.603 
Cell Pressure (kPa) 100 
Back Pressure (kPa) 0 
Confining Pressure (kPa) 100 
Fiber Content (%) 0.5 
Relative Density, Dr (%) 55 
Strain rate (mm/min) 1.00 

 
 
 

 

Figure B. 15 : Test Results for Sample No 23 
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Table B. 16 : Properties of Sample No 80 

Sample No 80 
A0 (cm2) 19.47 
V0 (cm3) 194.53 
γdry (g/cm3) 1.609 
Confining Pressure (kPa) 100 
Back Pressure (kPa) 0 
Confining Pressure (kPa) 100 
Fiber Content (%) 1.0 
Relative Density, Dr (%) 57 
Strain rate (mm/min) 1.00 

 

 

Figure B. 16 : Test Results for Sample No 80 
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Table B. 17 : Properties of Sample No 79 

Sample No 79 
A0 (cm2) 19.39 
V0 (cm3) 193.81 
γdry (g/cm3) 1.599 
Cell Pressure (kPa) 200 
Back Pressure (kPa) 0 
Confining Pressure (kPa) 200 
Fiber Content (%) 0 
Relative Density, Dr (%) 55 
Strain rate (mm/min) 1.00 

 

 

Figure B. 17 : Test Results for Sample No 79 
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Table B. 18 : Properties of Sample No 76 

Sample No 76 
A0 (cm2) 19.37 
V0 (cm3) 193.49 
γdry (g/cm3) 1.602 
Cell Pressure (kPa) 300 
Back Pressure (kPa) 0 
Confining Pressure (kPa) 300 
Fiber Content (%) 0 
Relative Density, Dr (%) 55 
Strain rate (mm/min) 1.00 

 

Figure B. 18 : Test Results for Sample No 76 
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Table B. 19: Properties of Sample No 82 

 
Sample No 82 
A0 (cm2) 19.36 
V0 (cm3) 193.45 
γdry (g/cm3) 1.608 
Cell Pressure (kPa) 200 
Back Pressure (kPa) 0 
Confining Pressure (kPa) 200 
Fiber Content (%) 0.5 
Relative Density, Dr (%) 57 
Strain rate (mm/min) 1.00 

 

Figure B. 19: Test Results for Sample No 82 
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Table B. 20: Properties of Sample No 83 

Sample No 83 
A0 (cm2) 19.36 
V0 (cm3) 193.50 
γdry (g/cm3) 1,608 
Cell Pressure (kPa) 300 
Back Pressure (kPa) 0 
Confining Pressure (kPa) 300 
Fiber Content (%) 0.5 
Relative Density, Dr (%) 58 
Strain rate (mm/min) 1.00 

 
 

 

Figure B. 20: Test Results for Sample No 83 
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Table B. 21 : Properties of Sample No 81 

Sample No 81 
A0 (cm2) 19.47 
V0 (cm3) 194.14 
γdry (g/cm3) 1.610 
Cell Pressure (kPa) 200 
Back Pressure (kPa) 0 
Confining Pressure (kPa) 200 
Fiber Content (%) 1.0 
Relative Density, Dr (%) 58 
Strain rate (mm/min) 1.00 

 

 

Figure B. 21 : Test Results for Sample No 81 
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Table B. 22 : Properties of Sample No 77 

 
Sample No 77 
A0 (cm2) 19.47 
V0 (cm3) 194.60 
γdry (g/cm3) 1.608 
Cell Pressure (kPa) 300 
Back Pressure (kPa) 0 
Confining Pressure (kPa) 300 
Fiber Content (%) 1.0 
Relative Density, Dr (%) 57 
Strain rate (mm/min) 1.00 

 
 

 

Figure B. 22 : Test Results for Sample No 77 
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Table B. 23: Properties of Sample No 87 

Sample No 87 
A0 (cm2) 19.37 
V0 (cm3) 193.42 
γdry (g/cm3) 1.603 
Confining Pressure (kPa) 500 
Back Pressure (kPa) 400 
Fiber Content (%) 0 
Saturation(%) 97 
Test Type CD 

 

 

 

 

Figure B. 23: Test Results for Sample No 87 
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Table B. 24: Properties of Sample No 86 

Sample No 86 
A0 (cm2) 19.43 
V0 (cm3) 194.02
γdry (g/cm3) 1.601 
Confining Pressure (kPa) 500 
Back Pressure (kPa) 400 
Net Pressure (kPa) 100 
Fiber Content (%) 0 
Saturation(%) 98 
Relative Density, Dr (%) 55 
Strain rate (mm/min) 1.00 
Test Type CD 

 

 
 

 

 

Figure B. 24: Test Results for Sample No 86 
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Table B. 25: Properties of Sample No 88 

Sample No 88 
A0 (cm2) 19.40 
V0 (cm3) 193.62 
γdry (g/cm3) 1.601 
Confining Pressure (kPa) 500 
Back Pressure (kPa) 400 
Net Pressure (kPa) 100 
Fiber Content (%) 0 
Saturation(%) 97 
Relative Density, Dr (%) 55 
Strain rate (mm/min) 2.00 
Test Type CD 

 

 
 

 
 

 

Figure B. 25: Test Results for Sample No 88 
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Table B. 26: Properties of Sample No 89 

Sample No 89 
A0 (cm2) 19.39 
V0 (cm3) 193.84
γdry (g/cm3) 1.607 
Confining Pressure (kPa) 500 
Back Pressure (kPa) 400 
Net Pressure (kPa) 100 
Fiber Content (%) 0.5 
Saturation(%) 98 
Relative Density, Dr (%) 57 
Strain rate (mm/min) 1.00 
Test Type CD 

 

 
 

 
 

 

Figure B. 26: Test Results for Sample No 89 
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Table B. 27: Properties of Sample No 90 

Sample No 90 
A0 (cm2) 19.41 
V0 (cm3) 194.203 
γdry (g/cm3) 1.612 
Confining Pressure (kPa) 500 
Back Pressure (kPa) 400 
Net Pressure (kPa) 100 
Fiber Content (%) 1.0 
Saturation(%) 97 
Relative Density, Dr (%) 58 
Strain rate (mm/min) 1.00 
Test Type CD 

 

 
 

 
 

 
Figure B. 27: Test Results for Sample No 90 
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APPENDIX C 

 

Figure C. 1 : Shear Stress-Normal Stress graph for unreinforced sand 

 

 

Figure C. 2 : Shear Stress-Normal Stress graph for sand including 0.50 % fiber 
content 
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Figure C. 3 : Shear Stress-Normal Stress graph for sand including 0.75 % fiber 
content 

 

Figure C. 4 : Shear Stress-Normal Stress graph for sand including 1.00 % fiber 
content 
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Figure C. 5 : Shear Stress-Normal Stress graph for sand including 2.00 % fiber 
content 
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