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Assoc. Prof. Gürsel YEŞİLOT ..............................
Yıldız Technical University

Assoc. Prof. Mustafa ALKAN ..............................
Akdeniz University

Date of Submission : 7 November 2013
Date of Defense : 27 December 2013

v



vi



To my family and especially to my precious Fatma Zeynep,

vii



viii



FOREWORD

I would like to thank to my advisor Asst. Prof. Recep Korkmaz for his assistance
during my PhD studies. Also, I would like to thank to my co-advisor Asst. Prof.
Erol Yılmaz for his encouragement, patience and guidance during the development
of the thesis. I would like to present my gratitudes to him for his understanding and
confidence in me.

I would like to remember with respect the esteemed late Prof. Dr. Cemal Koç who
provided me support before his passing, as one of the members of the thesis steering
committee. I would also like to thank to the other members of the committee Prof. Dr.
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RADICAL, NILRADICAL AND CLASSICAL PRIME SUBMODULES

SUMMARY

The set of nilpotent elements of a commutative ring forms an ideal and it is equal
to the intersection of all the prime ideals. This is a well-known characterization in
commutative rings. R.L.McCasland and M.E.Moore generalized this characterization
to modules which gave the concepts prime radical of a module, radM(N), which is the
intersection of all prime submodules containing N and the envelope of a submodule
N, ⟨EM(N)⟩, which is defined to be the set of all elements of the form rm where r is
an element of the ring R and m is an element of the R-module M with the condition
rkm ∈ N where k ∈ Z+. The submodule generated by the envelope, ⟨EM(N)⟩, is called
(Baer’s) lower nilradical.

McCasland and Moore called that N satisfies the radical formula (N s.t.r.f.) if
radM(N) = ⟨EM(N)⟩; M satisfies the radical formula (s.t.r.f.) if for every submodule
N of M, N s.t.r.f.; a ring R satisfies the radical formula (s.t.r.f.) if every R-module
satisfies the radical formula. The question of what kind of rings and modules s.t.r.f.
has been studied by many authors. Although some methods for computing of radical
of a submodule are given by McCasland - Smith and Marcelo - Rodriguez, it seems
there is no description for the computation of the lower nilradical of a submodule. One
of the main objective of this thesis is determining the lower nilradical of a submodule.
We give a formula for computing the lower nilradical of a submodule N if a minimal
primary decomposition of N is known.

Chin-Pi Lu proved that if N is a submodule of a finitely generated module M, then the
prime radical of N can be written as an intersection of the submodules Sp(N + pM)
with p is a prime ideal such that N : M ⊆ p, where Sp(N + pM) is the saturation of
N + pM which is the set of elements m ∈ M such that cm ∈ N + pM for some element
c ∈ R− p. A method to find the saturation of the submodule N + pM is given. Also
a technique to eliminate the redundant primes in the process of determining the prime
radical of a submodule is given.

Also, some properties of semiprime submodules are studied and the relation between
the notions of prime radical of a submodule and semiprime radical of a submodule
which is the intersection of all semiprimes containing that submodule is examined.

Finally, semiprime submodules which can be written as an intersection of classical
primes are investigated. It is shown that if N is a semiprime submodule of a
Noetherian R-module and associated prime ideals of N that are determined by the
primary decomposition of N form a chain, then N is classical prime submodule. A new
definition which we called the simple quasi primary submodule is given. It is shown
that if M is a Noetherian R-module and N can be written as an intersection of simple
quasi primary submodules with each of them is semiprime, then N can be written as
a finite intersection of classical prime submodules. An example which shows that the
conjecture of Baziar and Behboodi is false is given.
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Throughout R will always denote a commutative ring with identity and M will denote
the unitary R-module.
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RADİKAL, NİLRADİKAL VE KLASİK ASAL ALT MODÜLLER

ÖZET

R değişmeli bir halka olmak üzere herhangi bir I idealin radikali R’nin I’yı kapsayan
bütün asal ideallerinin arakesiti olarak tanımlanır. Bu tanımın n ∈ Z+ olmak üzere
rn ∈ I koşulunu sağlayan bütün r ∈ R elemanlarının kümesine eşit olduğu çok iyi
bilinen bir sonuçtur. Modül teorisinde bu tanımlamaya paralel olarak iki ayrı kavram
karşımıza çıkmaktadır. Bunlardan ilki bir modülün asal radikali olarak isimlendirilmiş
olup N alt modülünün asal radikali M’nin N’yi kapsayan bütün asal alt modüllerinin
ara kesiti olarak tanımlanmıştır, radM(N). R halkasını kendisi üzerinde bir modül
olarak düşündüğümüz zaman radR(I) halkalarda bildiğimiz bir idealin radikaline
karşılık gelmektedir. Diğer kavram ise zarf olarak isimlendirilen EM(N) kümesidir. Bu
küme k ∈Z+, r ∈R,m∈M olmak üzere rkm∈N şartını sağlayan tüm rm elemanlarının
kümesidir.

Halkalardakinin aksine bu iki kavram modüller üzerinde her zaman birbirine eşit
değildir. 1991 senesinde McCasland ve Moore hangi şartlar altında eşitliğin olduğunu
araştırmışlardır. Aslında zarf kümesinin tanımına bakıldığında bu küme bir alt modül
değildir. Bu sebepten EM(N) kümesi tarafından üretilen alt modül üzerinde çalışmak
daha anlamlıdır. McCasland ve Moore bu makalelerinde N alt modülü için radM(N) =
⟨EM(N)⟩ eşitliği var ise N’ye radikal formülünü sağlayan alt modül demişlerdir. Eğer
M modülünün her N alt modülü radikal formülünü sağlar ise M radikal formülünü
sağlayan modül, eğer her R-modül radikal formülünü sağlar ise R radikal formülünü
sağlayan halka olarak tanımlanmıştır. O zamandan beri de bir çok kişi tarafından bu
kavramlar üzerinde çalışılmıştır.

Literatüre bakıldığında uzun yıllar boyunca asal radikal ve zarf tarafından üretilen
alt modül hesaplanması ile ilgili herhangi bir çalışma bulunmamaktadır. Marcelo
ve Rodriguez 2000 senesinde, McCasland ve Smith ise 2008 senesinde bir alt
modülün radikalinin hesaplanması ile ilgili makaleler yayınlanmışlardır. Bununla
beraber karakterizasyonun zarf kısmı hala belirsiz görünmektedir. Bu tezin temel
problemlerinden bir tanesi zarf tarafından üretilen alt modülü belirleyebilmek için
herhangi bir yöntem geliştirilip geliştirilemeyeceğidir. N alt modülünün asıl
parçalanışı bilindiği takdirde, EM(N) tarafından üretilen alt modülün hesaplanmasını
sağlayan bir formül bu tezde verilmiştir. Bu da Noether M modülü için zarf tarafından
üretilen alt modülün her zaman bulunabilmesine imkan sağlar. Ayrıca N alt modülünün
zarfı tarafından üretilen alt modül, N’nin kendisine eşit ise N alt modülünün asıl
parçalanışındaki izole bileşenlerin asal alt modül olduğu görülmüştür.

2003 yılında Lu, N sonlu üreteçli bir M modülünün alt modülü, p ise N : M
kümesini kapsayan asal ideal olmak üzere, N’nin asal radikalinin Sp(N + pM)
formundaki asal alt modüllerin kesişimi olarak ifade edilebileceğini gösterdi. Bu
tezde Sp(N) kümesinin N’nin asıl parçalanışındaki bazı asıl alt modüllerin kesişimi
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olarak yazılabildiği gösterilmiştir. Ayrıca M sonlu üreteçli bir R-modül, N, M’nin
alt modülü ve N : M ⊆ p olduğu durumda Sp(N + pM) alt modülünün N + pM’in
asıl parçalanışındaki p-asal alt modüle eşit olduğu bulunmuştur. R Noether bir halka,
M sonlu üreteçli R-modül ve p, N : M ⊆ p şartını sağlayan bir asal ideal ise N alt
modülünün asal radikalinin Sp(N + pM) şeklindeki alt modüllerin sonlu ara kesiti
olarak yazılabildiği 2008 senesinde McCasland ve Smith tarafından gösterilmiştir. Bu
tezde McCasland ve Smith’in teoreminin daha farklı bir ispatı verilmiştir. Daha sonra
bu ara kesitte karşımıza çıkan asal alt modüllerin gereksiz olanlarını elemeye yardımcı
olacak bir teknik verilmiştir.

Asal alt modül tanımıyla ilintili olarak yarı asal ve klasik asal alt modül tanımları
da bu alanda çalışan insanların ilgisini çekmiştir. Klasik asal alt modül ilk olarak
2004 yılında Behboodi ve Koohy tarafından tanımlanmıştır. Tanımlar incelendiği
zaman asal alt modülün klasik asal, klasik asal alt modülün de yarı asal olduğu
açıkca görülmektedir. Bu çalışmada alt modülün asal radikali tanımına benzer
şekilde bir alt modülün yarı asal radikali tanımlanmış, yarı asal radikalin özellikleri
incelenmiş, değişmeli bölgeler için herhangi bir modülün yarı asal radikali ile
burkulma modülünün yarı asal radikalinin aynı alt modül olduğu görülmüş ve yarı
asal radikal ile asal radikal arasındaki ilişki irdelenmiştir. Her serbest R modül için
asal radikalin yarı asal radikale eşit olmasının her R modül içinde bu eşitliğin söz
konusu olmasını gerektirdiği görülmüştür. Radikal formülüne benzer şekilde yarı
radikal formülü tanımlanmış ve yarı radikal formülün hangi şartlar altında sağlandığı
belirlenmeye çalışılmıştır. Bunun yanında M1 R1-modül, M2 de R2-modül olmak üzere
M1×M2 modülünün yarı asal alt modülleri belirlenmeye çalışılmış, bu bağlamda N1×
N2 alt modülünün yarı asal radikalinin N1 ve N2 alt modüllerinin yarı asal radikallerinin
çarpımı olarak ortaya çıktığı görülmüştür. Burada N1, M1’in; N2 ise M2’nin bir alt
modülüdür. Ayrıca M1 ×M2 modülünün yarı radikal formülünü sağlaması ile M1 ve
M2 modüllerinin yarı radikal formülünü sağlamasının birbirine denk koşullar olduğu
gösterilmiştir.

Asal alt modüllerin kesişiminin her zaman yarı asal olmasının yanında klasik asal alt
modüllerin kesişiminin de her zaman yarı asal olduğunu görmek zor değildir. Bu
durumda asal alt modüllerin kesişimi olarak yazılabilen yarı asalları ve klasik asal
alt modüllerin kesişimi olarak yazılabilen yarı asal alt modülleri belirleyebilmek akla
ilk gelen soru olacaktır. Sorunun ilk kısmını çözmeye çalışırken Man, her yarı asal
alt modülü asal alt modüllerin kesişimi olarak yazılabilen değişmeli Noether halkalar
için bir tanımlama vermiştir. Diğer taraftan Behboodi, R değişmeli bir bölge ve
dimR ≤ 1 olduğu takdirde, her yarı asal R alt modülünün klasik asalların kesişimi
olarak yazılabildiğini göstermiştir.

Bu tezde Behboodi’nin çalışmasına ek olarak klasik asalların kesişimi olarak
yazılabilen yarı asal alt modüller için bir genelleme bulunmaya çalışılmıştır. Bu
çalışma esnasında yarı asal alt modüllerin bazı özellikleri incelenmiş, klasik asal alt
modüller ve bu alt modüllerin zarfı tarafından üretilen alt modüller arasındaki ilişkiler
belirlenmiştir. M Noether R-modül ve N yarı asal alt modül olmak üzere, N ile ilişkili
asal idealler bir zincir oluşturuyorsa N alt modülünün klasik asal olması gerektiği
gösterilmiştir. Baziar ve Behboodi’nin 2009 yılında yapmış olduğu varsayımın yanlış
olduğu gösterilmiş, bu varsayımın şartları zayıflatılarak R Noether bir halka, M sonlu
üreteçli bir R-modül ise yarı asal olan her klasik asıl alt modülün klasik asal olması
gerektiği ispatlanmıştır. Ayrıca klasik asalların kesişimi olarak yazılabilen yarı asal alt
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modülleri belirleyebilmek amacıyla basit sözde asıl alt modül tanımı geliştirilmiş ve
bu tanım yardımıyla N Noether bir R modülün yarı asal alt modülü iken N her biri yarı
asal olan basit sözde asıl alt modüllerin kesişimi olarak yazılabiliyorsa; N’nin klasik
asal alt modüllerin sonlu kesişimi olarak da yazılabildiği gösterilmiştir.

Bu çalışmada tüm halkalar değişmeli ve birim elemana sahip olup, M birimli R-modülü
temsil edecektir.
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1. INTRODUCTION

We begin by recalling that, if I is an ideal in a commutative ring R, then radical of

I is the intersection of all prime ideals of R containing I. The radical of an ideal is

also characterized by
√

I = {r ∈ R : rn ∈ I f or some n ∈ Z+}. This notion has

been generalized by R.L.McCasland and M.E.Moore to modules over a commutative

ring [1]. This generalization brought up the concepts the prime radical of a module

and the envelope of a module. If N is a proper submodule of an R-module M, then N

is called p-prime (p-primary) if rm ∈ N for r ∈ R,m ∈ M implies that either m ∈ N or

r ∈ (N : M) = p (m ∈ N or r ∈
√

N : M = p) where N : M is the set of all elements of

R that takes M into N.

Hence, the prime radical of N in M, radM(N) is defined as the intersection of all prime

submodules of M containing N [2]. If no prime submodule of M contains N or there

is no prime submodule, then radM(N) = M. The envelope of N in M, EM(N), is the

collection of all elements x ∈ M for which there exists r ∈ R,m ∈ M such that x = rm

and rkm ∈ N for some k ∈ Z+. The submodule generated by the envelope is called

(Baer’s) lower nilradical and denoted by ⟨EM(N)⟩. N satisfies the radical formula (N

s.t.r.f.) if the radical of N is equal the lower nilradical of N [1] i.e. radM(N) = ⟨EM(N)⟩

. M satisfies the radical formula (M s.t.r.f.) if for every submodule N of M, N s.t.r.f.. It

is said that a ring R satisfies the radical formula (R s.t.r.f.) if every R-module satisfies

the radical formula. When we consider the ring R as an R-module, ideals of R will

be the submodules of R; and by the characterization of the radical of an ideal every

submodule of R satisfies the radical formula.

Prior to [1], the only rings known to s.t.r.f. were fields (every proper subspace of

a vector space is prime) and the only modules (other than vector spaces) known to

s.t.r.f. were multiplication modules [3]. Later, in 1992 Jenkins and Smith showed

that Dedekind domains satisfy the radical formula [4]. In [4], they gave a conjecture

that Dedekind domains are the only Noetherian domains which satisfy the radical

formula. Then in [5] Man tried to tackle this problem and he showed that if R is a

1



Noetherian domain of Krull dimension one and R⊕R s.t.r.f. as an R-module, then R is

a Dedekind domain. In 1997, Leung and Man [6] proved that the only Noetherian rings

which s.t.r.f. are of dimension at most one and they gave a complete characterization

of Noetherian rings which s.t.r.f. Also Sharif, Sharifi and Namazi [7] showed that

Artinian rings satisfy the radical formula.

Up to 2001, there was no work which deals with the computation neither the lower

nilradical nor the radical of a submodule. One of the main problems of this thesis

is computing the lower nilradical of a submodule. In 2001, Smith [8] showed that if

N is p-primary submodule, then ⟨EM(N)⟩ = N + pM. After two years, Lu gave the

definition of saturation [9] which enables him to compute the radical of a submodule.

For any submodule N of M and for any prime ideal p of R, saturation of N defined as

the set

Sp(N) := {m ∈ M : cm ∈ N for some c ∈ R\ p}.

Lu [9] showed that if M is Noetherian R-module, then radM(N) =
n∩

i=1
Spi(N + piM)

where pi’s are prime ideals containing N : M. But it was a question that how can these

prime ideals are determined. This question is answered by Smith and McCasland [10]

in 2008. They gave a decomposition of the radical of a submodule in a Noetherian

module as an intersection of finitely many known prime submodules. To give that

decomposition they define generalized associated prime ideals of a submodule.

The notion of classical prime submodule was introduced in [11] and has received the

attention of many authors [12], [13], [14]. A proper submodule N of an R-module M

is called classical prime if abm ∈ N implies either am ∈ N or bm ∈ N for a,b ∈ R and

m ∈ M. Sometimes weakly prime is used for classical prime. A proper submodule N

is semiprime if rkm ∈ N implies rm ∈ N where r ∈ R,m ∈ M and k ∈ Z+. When we

consider the definitions, it is clear that every prime submodule is classical prime and

every classical prime submodule is semiprime. An intersection of prime submodules is

semiprime. But the converse is not true in general. Man [15] gave a characterization of

a commutative Noetherian ring R with the property that every R-semiprime submodule

is an intersection of prime submodules. Also an intersection of classical prime

submodules is semiprime. Thus it is interesting to characterize the rings over which

each semiprime submodule is an intersection classical primes. Behboodi [12] showed

that if R is a commutative domain with dimR ≤ 1, then every semiprime submodule of

2



a module M is an intersection of classical prime submodules. A proper submodule N

of M is classical primary if abm ∈ N where a,b ∈ R and m ∈ M, then either bm ∈ N

or akm ∈ N for some k > 1 [16]. Behboodi and Baziar showed that if M is finitely

generated module over a Noetherian ring, then associated prime ideals of a classical

primary submodule form a chain [16].

This introduction forms Chapter 1.

Chapter 2 contains one of the main results of this thesis. We give a formula to compute

the lower nilradical of a submodule,⟨EM(N)⟩, if a minimal primary decomposition of

the submodule is known.

Chapter 3 has three sections. Section 1 contains some known results about saturation

and we will show that the saturation of a submodule is the intersection of some of

the primary components of its primary decomposition. Moreover, we also prove that

if N is a submodule of a finitely generated module M with N : M ⊆ p where p is

a prime ideal, then Sp(N + pM) is equal to the p-prime component of the primary

decomposition of N + pM. In section 2, definition of generalized associated prime

ideal is given and an alternative proof of McCasland - Smith theorem [17] is stated.

In the third section, a technique to determine the redundant prime submodules which

appears in the computation of the radical is investigated.

Chapter 4 constitute some results about semiprime submodules and semiradical of a

module which is defined as the intersection of all semiprime submodules containing

that module. In the third section of this chapter we define semiradical formula and

investigate the modules which satisfy the semiradical formula. Since semiradical of a

module always contained in the prime radical, we investigate the conditions when the

equality holds and we call it semiradical equality. We also show that a ring R satisfy the

semiradical equality if and only if every free R-module satisfy the semiradical equality.

Also, semiprime submodules of the R = R1 ×R2-module M1 ×M2 are characterized

where each Mi is an Ri-module. We also examine that semiradical of any submodule

N1 ×N2 of M1 ×M2 is the same as the cartesian product of semiradicals of N1 and N2

which also allows us to show that M1 ×M2 satisfy the semiradical formula if and only

if Mi satisfy the semiradical formula for i = 1,2.
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In chapter 5 the relation between classical prime submodules and their lower nilradical

is investigated. We show that if N is a semiprime submodule of a Noetherian R-module

and associated prime ideals of N form a chain, then N is classical prime submodule.

Also in this chapter we show that the lower nilradical of a classical primary submodule

need not be a classical prime submodule which is the answer of the conjecture of Baziar

and Behboodi [16]. We also show that a semiprime submodule N of M is classical

prime if it is classical primary when M is Noetherian. We give a new definition which

we call simple quasi primary submodule. We also examine that if N is a semiprime

submodule of a Noetherian R-module which can be written as an intersection of simple

quasi primary submodules, then each of these simple quasi primary submodules is

semiprime, and hence N can be written as a finite intersection of classical prime

submodules.

Finally, Chapter 6 is the conclusion chapter which contains a brief summary with some

suggestions for future study.

The main results of this thesis (namely, the results of Chapter 2 and Chapter 5) will

appear in the Bulletin of the Iranian Mathematical Society [18].

Throughout R will always denote a commutative ring with identity and M will denote

the unitary R-module.
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2. ENVELOPE OF A SUBMODULE

2.1 Primary Decomposition

In this section we recall some basic definitions and well-known results about primary

decomposition.

Definition 2.1.1. A proper submodule Q of M is called primary submodule if rm ∈ Q

implies that m ∈ Q or rkM ⊆ Q for some k ∈ Z+, for all r ∈ R,m ∈ M.

If p =
√

N : M is a prime ideal of R, then Q is called p-primary submodule.

For an arbitrary submodule N, a primary decomposition of N in M is a representation

of N as an intersection of finitely many primary submodules of M

N = Q1 ∩Q2 ∩·· ·∩Qn

with pi-primary submodules Qi ⊆ M.

We call a primary decomposition minimal precisely when

(a) p1, p2, . . . , pn are n different prime ideals of R, and

(b) for all j = 1,2, . . . ,n we have

Q j +
∩
i, j

Qi.

If Q1,Q2, . . . ,Qk are p-primary submodules, then
k∩

i=1
Qi is p-primary. This result

provides that we can always refine any primary decomposition to produce a minimal

primary decomposition by discarding those Qi that contain
∩
i, j

Qi and intersecting those

Qi that are p-primary for the same p.

Definition 2.1.2. A prime ideal p of R is called the associated prime of N if p= (N : m)

for some m ∈ M−N. The set of all associated primes of N is denoted by Ass(M/N).
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The prime ideals in Ass(M/N) that are minimal with respect to inclusion are called the

isolated primes of N, the remaining associated prime ideals are the embedded primes

of N.

Theorem 2.1.1. ( [19], Theorem 3.1) Let R be a Noetherian ring and M be a finitely

generated non-zero R-module. Then Ass(M/N) is finite, non-empty set of primes each

containing Ann(M/N) = (N : M). The set Ass(M/N) includes all the primes minimal

among primes containing Ann(M/N) = (N : M).

Theorem 2.1.2. Let R be a Noetherian ring, M be a finitely generated R-module and

N be any submodule of M. Suppose N = Q1 ∩Q2 ∩ ·· · ∩Qn is a minimal primary

decomposition of N with Qi is pi-primary. Then

(a) the pi’s are uniquely determined by N.

(b) if pi is minimal, then Qi is uniquely determined by N.

Theorem 2.1.3. ( [19], Theorem 3.10) Let R be a Noetherian ring, M be a

finitely generated R-module and let N = Q1 ∩ Q2 ∩ ·· · ∩ Qn be a minimal primary

decomposition with Qi is pi-primary submodules. Then Ass(M/N) = {p1, p2, . . . , pn}.

2.2 Stable Quotient

Definition 2.2.1. Let R be a ring and, M be an R-module and N be a proper submodule

of M. If f ∈ R, then

N : ⟨ f ⟩∞ = {m ∈ M : f km ∈ N f or some k ∈ Z+}.

is called stable quotient of N by ⟨ f ⟩.

Lemma 2.2.1. ( [20], Lemma 1) Let P be a primary submodule of M and f ∈ R. Then

(i) P : ⟨ f ⟩∞ = M if f ∈
√

P : M,

(ii) P : ⟨ f ⟩∞ = P if f <
√

P : M,

More generally if primary decomposition of any submodule N of M is N =
k∩

i=1
Qi into

qi-primary submodules, then
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(iii) N : ⟨ f ⟩∞ =
∩

f<qi

Qi.

Proof. (i) If f ∈
√

P : M, then for some positive integer k, f kM ⊆ P which implies

that P : ⟨ f ⟩∞ = M.

(ii) Let f <
√

P : M and n∈P : ⟨ f ⟩∞. Then f kn∈P for some k ∈Z+. Since P is primary

submodule, we get n ∈ P. Thus P : ⟨ f ⟩∞ = P.

(iii) Suppose N =
k∩

i=1
Qi where

√
Qi : M = qi. Then

N : ⟨ f ⟩∞ = (
k∩

i=1
Qi) : ⟨ f ⟩∞ =

k∩
i=1

(Qi : ⟨ f ⟩∞) =
∩

f<qi

Qi

by part (i) and (ii).

�

We can easily show that;

Lemma 2.2.2. ( [21], Lemma 1.3.3) Let N be p-primary submodule of an R-module

M. Then

N : h =

{
N, if h < p;
M, if h ∈ (N : M).

where N : h = {m ∈ M : h.m ⊆ N}.

2.3 Formula for Lower Nilradical

Recall that the envelope of N is the set

EM(N) = {rm : r ∈ R,m ∈ M and rkm ∈ N f or some k ∈ Z+}.

Lemma 2.3.1. Let N = Q1 ∩Q2 ∩ ·· · ∩Qk be minimal primary decomposition of N

where
√

Qi : M = pi for all i = 1,2, . . . ,k. If S = {1,2, . . . ,k} and /0 , T ⊆ S, then

(
∩
i∈T

pi)(
∩

i∈S−T

Qi)⊆ ⟨EM(N)⟩.

Proof. Let n ∈ (
∩

i∈T
pi)(

∩
i∈S−T

Qi). Then there exist elements r j ∈
∩

i∈T
pi and m j ∈∩

i∈S−T
Qi such that

n = r1m1 + r2m2 + · · ·+ rsms

7



for some s∈Z+. Then r j ∈
∩

i∈T
pi implies that rk j

j M ⊆
∩

i∈T
Qi with k j ∈Z+. In particular,

rk j
j m j ∈

∩
i∈T

Qi for all j.

Also, m j ∈
∩

i∈S−T
Qi implies that rk j

j m j ∈
∩

i∈S−T
Qi. Hence rk j

j m j ∈
k∩

i=1
Qi = N. Thus

r jm j ∈ EM(N) for all j. �

The following theorem gives us a formula for determining the lower nilradical of a

submodule.

Theorem 2.3.1. Let N = Q1 ∩Q2 ∩ ·· · ∩Qk be minimal primary decomposition of N

where
√

Qi : M = pi for all i = 1,2, . . . ,k and S = {1,2, . . . ,k}. Then

⟨EM(N)⟩= N +(
k∩

i=1

pi)M+ ∑
T⊂S

(
∩
i∈T

pi)(
∩

i∈S−T

Qi)

where the summation runs over each non-empty subset T of S.

Proof. Let m ∈ ⟨EM(N)⟩. Then there exist m j ∈ M,r j ∈ R such that

m = r1m1 + r2m2 + · · ·+ rtmt where rk j
j m j ∈ N.

By the definition of stable quotient, m j ∈ N : ⟨r j⟩∞ for each j.

For each r j, we have three cases: r j ∈ pi for all i, r j < pi for all i which means that

r j ∈ R−
k∪

i=1
pi or there is a maximal subset T of S such that r j ∈

∩
i∈T

pi for all j.

• If r j ∈
k∩

i=1
pi, then m = r1m1 + r2m2 + · · ·+ rtmt ∈ (

k∩
i=1

pi)M.

• If r j ∈ R−
k∪

i=1
pi, then consider the set N : ⟨r j⟩∞. By Lemma 2.2.1, N : ⟨r j⟩∞ = N.

Hence m = r1m1 + r2m2 + · · ·+ rtmt with m j ∈ N : ⟨r j⟩∞ and thus m ∈ N.

• If r j ∈
∩

i∈T
pi for some maximal subset T of S, then N : ⟨r j⟩∞ =

∩
i∈S−T

Qi. Hence

r jm j ∈ (
∩
i∈T

pi)(
∩

i∈S−T

Qi).

Thus m ∈ (
∩

i∈T
pi)(

∩
i∈S−T

Qi).
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Thus for all cases, ⟨EM(N)⟩ ⊆ N +(
k∩

i=1
pi)M+ ∑

T⊂S
(
∩

i∈T
pi)(

∩
i∈S−T

Pi).

For the other side of the inclusion, Lemma 2.3.1 implies that

∑
/0,T(S

(
∩
i∈T

pi)(
∩

i∈S\T

Qi)⊆ ⟨EM(N)⟩.

Also N and (
k∩

i=1
pi)M are clearly in ⟨EM(N)⟩. �

As a result of this theorem, we can write the following corollary. This is also proved

by Patrick F.Smith in [8].

Corollary 2.3.1. If N is a p-primary submodule, then

⟨EM(N)⟩= N + pM.

Now we will give an application of Theorem 2.3.1. The computer algebra system

SINGULAR [22] was used during the computations.

Example 2.3.1. Let R = Q[x,y,z] and let M be an R-submodule R⊕R⊕R. Consider

the submodule N = ⟨xze3 − ze1,x2e3,x2y3e1 + x2y2ze2⟩.

Primary decompostion of N is N = Q1 ∩Q2 ∩Q3 where

Q1 = ⟨e3,ze1,ye1 + ze2,z2e2⟩ is ⟨z⟩−primary,

Q2 = ⟨e1,e3,y2e2⟩ is ⟨y⟩−primary and

Q3 = ⟨xe1,xe3 − e1,x2e2⟩ is ⟨x⟩−primary.

By Theorem 2.3.1,

⟨EM(N)⟩= N +(p1 ∩ p2 ∩ p3)M+ p1(Q2 ∩Q3)+ p2(Q1 ∩Q3)+ p3(Q1 ∩Q2)

+(p1 ∩ p2)Q3 +(p1 ∩ p3)Q2 +(p2 ∩ p3)Q1.

It is clear that (p1 ∩ p2 ∩ p3)M = ⟨xyze1,xyze2,xyze3⟩. Also we get
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p1(Q2 ∩Q3) = ⟨xze1,xze3 − ze1,x2y2ze2⟩

p2(Q1 ∩Q3) = ⟨xyze3 − yze1,x2ye3,x2y2e1 + x2yze2⟩

p3(Q1 ∩Q2) = ⟨xe3,xze1,xy3e1 + xy2ze2⟩

(p1 ∩ p2)Q3 = ⟨xyze1,xyze3 − yze1,x2yze2⟩

(p1 ∩ p3)Q2 = ⟨xze1,xze3,xy2ze2⟩

(p2 ∩ p3)Q1 = ⟨xye3,xyze1,xy2e1 + xyze2,xyz2e2⟩

Thus

⟨EM(N)⟩= ⟨ze1,xe3,xyze2,xy2e1⟩.

We also have the following result.

Corollary 2.3.2. If ⟨EM(N)⟩ = N for any submodule of an R-module M, then each

isolated component of primary decomposition of N must be prime.

Proof. Let N = Q1 ∩Q2 ∩ ·· · ∩Qn with Qi’s are pi-primary submodules. Let Qk be

one of the isolated components of N. If Qk is not a prime submodule, then there exists

an element x ∈ pk − (Qk : M) and hence an element m ∈ M such that xm < Qk. Since

pk is an isolated prime, we can find an element y ∈ (
∩
j,k

p j)− pk. Then

xym ∈ (
n∩

j=1

p j)M ⊆ ⟨EM(N)⟩= N ⊆ Qk.

Since Qk is pk-primary and xm < Qk, y ∈ pk which is a contradiction. �
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3. COMPUTING RADICAL OF A SUBMODULE

3.1 Saturation of Submodules

Definition 3.1.1. Let R be a ring and N be a submodule of an R-module M. For any

prime ideal p of R, the saturation of N defined as

Sp(N) := {m ∈ M : cm ∈ N for some c ∈ R\ p}.

It is obvious that N ⊆ Sp(N) and Sp(N) =
∪

r∈R−p
(N : r).

Let us give some well known properties for the saturation of a submodule.

Lemma 3.1.1. ( [9], Result 1) Let N be any submodule of an R-module M and p be a

prime ideal of R. Then Sp(Sp(N)) = Sp(N).

Lemma 3.1.2. ( [9], Result 2(1)) N is p-prime (p-primary) submodule of M if and

only if Sp(N) = N and N : M = p (
√

N : M = p).

Theorem 3.1.1. ( [9], Theorem 2.3) Let M be an R-module, N be a submodule of M

and p is a prime ideal of R. Then the following statements are equivalent.

(i) Sp(N) is a p-primary submodule of M.

(ii) Sp(N) : M is a p-primary ideal of R.

(iii)
√

Sp(N) : M = p.

The following theorem states that saturation of a submodule is the intersection of some

of the primary submodules of its primary decomposition.

Theorem 3.1.2. Let N be a submodule of M and p is a prime ideal of R such that

N : M ⊆ p. If N = Q1 ∩Q2 ∩ ·· · ∩Qs is a primary decomposition with pi-primary

submodules Qi’s, then

Sp(N) =
∩

pi⊆p
Qi.
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Proof. Let r ∈ R− p. Then

(N : r) =
s∩

i=1

(Qi : r) = [
∩

pi*p

(Qi : r)]
∩
[
∩

pi⊆p
(Qi : r)].

By Lemma 2.2.2, we get (N : r) = [
∩

pi*p
(Qi : r)]

∩
[
∩

pi⊆p
Qi]. If pi * p, then there exists

an element ri ∈ (Qi : M) such that ri < p. Say, r0 = ∏
pi*p

ri. Then r0 ∈ (Qi : M) for each

i and r0 ∈ R− p. Then

(N : r0) = M
∩
[
∩

pi⊆p
Qi] =

∩
pi⊆p

Qi ⊇ (N : r).

for each r ∈ R− p. Hence Sp(N) =
∪

r∈R−p
(N : r) = (N : r0) =

∩
pi⊆p

Qi. �

Example 3.1.1. Let R = Q[x,y,z] and let M be an R-submodule R⊕R⊕R. Consider

the submodule N = ⟨x2e1 + ye2 + xye3,ze1,y2ze1 + x2e3⟩. Then N : M = ⟨x2yz⟩ and

primary decomposition of N is N = Q1 ∩Q2 ∩Q3 where

Q1 = ⟨e3,ze1,ze2,x2e1 + ye2⟩ is p1 = ⟨z⟩−primary,

Q2 = ⟨e1,e3,ye2⟩ is p2 = ⟨y⟩−primary and

Q3 = ⟨e1,xe2,xe3 + e2⟩ is p3 = ⟨x⟩−primary.

Take p = ⟨z,y⟩. Then N : M ⊆ p and p1 ⊆ p, p2 ⊆ p. Hence by Theorem 3.1.2,

Sp(N) =
∩

pi⊆p
Qi = Q1 ∩Q2 = ⟨e3,ze1,yze2,x2e1 + ye2⟩.

Proposition 3.1.1. ( [9], Proposition 4.1) Let N be a submodule of a finitely generated

R-module M and let p ⊇ N : M be a prime ideal of R. Then

(N + pM) : M = Sp(N + pM) : M = p.

Theorem 3.1.3. ( [9], Theorem 5.4) Let N be a proper submodule of a finitely

generated module M. Then every minimal prime submodule of N must be of the form

Sp(N + pM) for some N : M ⊆ p.

The following theorem gives us a method to compute the saturation of N + pM.
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Theorem 3.1.4. Let M be finitely generated and let N be a submodule of M such

that N : M ⊆ p is a prime ideal of R. Then Sp(N + pM) is p-prime submodule and

Sp(N+ pM) is equal to p-primary component of the primary decomposition of N+ pM.

Proof. Let N + pM = Q1 ∩ ·· · ∩ Qn be primary decomposition of N + pM with
√

Qi : M = pi for 1 ≤ i ≤ n. By Proposition 3.1.1, (N + pM) : M = p and hence p

is the unique minimal associated prime of N + pM. Let p = p1. Hence p  pi for

i = 2, · · · ,n. By Theorem 3.1.2,

Sp(N + pM) =
∩

pi⊆p
Qi = Q1.

Hence Q1 is prime. �

Above theorem can be applied if we know the primary decomposition of N + pM. If

we only know the associated primes of N + pM, not the decomposition; then we can

compute Sp(N + pM) as follows.

Proposition 3.1.2. Let R be a Noetherian ring and let N be a submodule of finitely

generated R-module M and p ⊇ N : M be a prime ideal of R. If Ass(M/(N + pM)) =

{p, p1, . . . , ps}, then Sp(N + pM) = (N + pM) : ⟨ f ⟩∞ for some f ∈ (
s∩

i=1
pi)− p.

Proof. Since N : M ⊆ p, (N + pM : M) = p and so p ⊆ pi for each i. Then there exists

fi ∈ pi − p for each i. So such an f can be found f =
s

∏
i=1

fi ∈ (
s∩

i=1
pi)− p.

Now, if Qi is the corresponding primary submodule of the decomposition for the prime

ideal pi, by Lemma 2.2.1, (N + pM) : ⟨ f ⟩∞ = Q and by Theorem 3.1.4

(N + pM) : ⟨ f ⟩∞ = Q = Sp(N + pM).

�

3.2 Generalized Associated Prime Ideal

In the first part of this section, we will give some known results about saturation and

radical of a submodule. Recall that the radical of a submodule N is the intersection of

all prime submodules of M containing N and it is denoted by radM(N). In case there

is no prime submodule containing N, radM(N) = M. The radical of a submodule is

studied by some authors [1], [4], [5], [6], [9], [17], [23], [24], [25] and [26].

13



If M is finitely generated R-module, then radM(N) is the intersection of its minimal

prime submodules [23]. In [9], Lu showed that to find the radical of any submodule N

of M, it is enough to consider saturations of submodules of the form N + pM where p

is a prime ideal of R such that N : M ⊆ p.

We give a simple proof of the following corollary then its original one.

Corollary 3.2.1. ( [9], Corollary 5.5) If N is a submodule of a finitely generated

R-module M, then

radM(N) =
∩

N:M⊆p

Sp(N + pM).

Proof. Since M is finitely generated, radM(N) is the intersection of all minimal prime

submodules of M. By Theorem 3.1.3, minimal prime submodules of N are of the form

Sp(N + pM) for some N : M ⊆ p. Hence

radM(N) =
∩

N:M⊆p

Sp(N + pM).

�

The following corollary states that if M is Noetherian, then radM(N) is the finite

intersection of saturations Sp(N + pM).

Corollary 3.2.2. ( [9], Corollary 5.6) If M is Noetherian R-module and N is proper

submodule of M, then there exist finitely many prime ideals pi ⊇ N : M such that,

radM(N) =
n∩

i=1

Spi(N + piM).

We now need to determine the followings to compute the radical of any submodule N

of an R-module M.

1. Sp(N + pM) where p ⊇ N : M.

2. finite number of prime ideals such that p ⊇ N : M.

In the first section, we give a method to find the saturation Sp(N+ pM). The remaining

question is what are the ideals p’s where p ⊇ N : M ? The following example shows

that associated prime ideals of N are not necessarily equal to the set of these prime

ideals. We use the computer algebra system SINGULAR to make the computations.
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Example 3.2.1. Let R = Q[x,y], M = R⊕R and let N = ⟨xe1 + y3e2,x2e1,xe2⟩.

It is clear that N is ⟨x⟩-primary and ⟨x⟩ is the only associated prime ideal of N. Then

N + ⟨x⟩M = ⟨xe1,xe2,y3e2⟩= Q1 ∩Q2 where

Q1 = ⟨e2,xe1⟩ is ⟨x⟩−primary,

Q2 = ⟨xe1,xe2,y3e1,y3e2⟩ is ⟨x,y⟩−primary.

By Theorem 3.1.4,

S⟨x⟩(N + ⟨x⟩M) = Q1 = ⟨xe1,e2⟩.

On the other hand, P= ⟨xe1,xe2,ye1,ye2⟩ is an ⟨x,y⟩-prime submodule of M containing

N. So radM(N)⊆ P but S⟨x⟩(N + ⟨x⟩M) * P.

This example shows that for finding radical of submodule N, we need some additional

prime ideals other than Ass(M/N) containing N : M.

For the rest of this section, let N be a proper submodule of a finitely generated module

M and p be a prime ideal of R such that N : M ⊆ p. For a prime ideal q of R, we write

p −→N q if q ∈ Ass(M/N + pM).

In [17], McCasland and Smith gave the following definition.

Definition 3.2.1. Let N be a proper submodule of a finitely generated module M. A

prime ideal p of R is a generalized associated prime ideal of N, if there exist prime

ideals p0, p1, . . . , pn of R such that p0 ∈ Ass(M/N) and

p0 −→N p1 −→N p2 −→N · · · −→N pn = p.

We will denote the set of generalized associated primes of N by GAss(M/N). If we

analize the definition, we get the following properties.

(i) If p ∈ GAss(M/N), then N : M ⊆ p. Also, prime ideals which appear in the

definition of generalized associated prime form a chain.

(ii) Ass(M/N)⊆ GAss(M/N).
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Proof. (i) Let p ∈ GAss(M/N). Then there exist prime ideals p0, p1, . . . , pn of R such

that p0 ∈ Ass(M/N) and

p0 −→N p1 −→N p2 −→N · · · −→N pn = p.

Since p0 ∈ Ass(M/N), N : M ⊆ p0. Also by the definition of generalized associated

prime ideal, pi ∈ Ass(M/N + pi−1M) for each i. Hence (N + pi−1M) : M ⊆ pi, and

this implies that N : M ⊆ pi.

Since N : M ⊆ pi−1, (N + pi−1M) : M = pi−1 for each i. That is, we have

N : M ⊆ (N + pi−1M) : M = pi−1 ⊆ pi.

Hence

p0 ⊆ p1 ⊆ ·· · ⊆ pn = p.

(ii) If p ∈ Ass(M/N), then N : M ⊆ p. So, (N + pM) : M = p and hence

p ∈ Ass(M/N + pM). Take n = 1 and p0 = p, then we have p −→N p. This

implies that p ∈ GAss(M/N).

�

Theorem 3.2.1. ( [17], Theorem 3.5) Let R be a Noetherian ring and let N be a proper

submodule of a finitely generated R-module M. Then GAss(M/N) is finite.

The following theorem is proved by McCasland and Smith [17]. We will give an

alternative proof of the theorem.

Theorem 3.2.2. Let R be a Noetherian ring and let N be a proper submodule of a

finitely generated R-module M. Then

radM(N) =
∩

pi∈GAss(M/N)

Spi(N + piM).

Proof. By Theorem 3.2.1 , GAss(M/N) is finite. Say, GAss(M/N) = {p1, . . . , ps}. Let

p be a prime ideal of R such that p ⊃ N : M and p < GAss(M/N). Now our aim is to

show Spi(N+ piM)⊆ Sp(N+ pM) for some i. Then the conclusion of the theorem will

be obvious.
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Now let us say K = {pi ∈ GAss(M/N) : pi ⊂ p}. Since Ass(M/N)⊆ GAss(M/N), K

is not empty. Let pi be one of the maximal elements of K in terms of the set inclusion

order for a fixed i. Then

N + piM ⊂ N + pM ⊂ Sp(N + pM).

Consider a minimal primary decomposition

N + piM = Q1 ∩N2 ∩·· ·∩Ns

where Q1 is pi-primary and N j is q j-primary for j = 2,3, . . . ,s.

Since (N + piM) : M = pi, pi ⊂ q j for all j. On the other hand, pi being a maximal

element of K implies that q j 1 p. This means that there exists f j ∈ (q j \ p) for j =

2, . . . ,s. Therefore f = f2 f3 · · · fs ∈ (
s∩

j=2
q j)\ p.

We claim that Spi(N + piM) = Q1 ⊂ Sp(N + pM). Otherwise; there would be m ∈ Q1

but m < Sp(N + pM). Since f ∈ q j, f n j ∈ (N j : M) for some positive integer n j. Let

n=max{n2, . . . ,ns}, then f n ∈ (N2 : M)∩·· ·∩(Ns : M)= (N2∩·· ·∩Ns) : M. Therefore

f nm ∈ N2 ∩·· ·∩Ns. Furthermore, since m ∈ Q1, f nm ∈ Q1. Hence f nm ∈ N + piM ⊂

Sp(N + pM). On the other hand, f n < p since p is prime ideal. Then by the definition

of saturation, m ∈ Sp(Sp(N + pM)) = Sp(N + pM) which is a contradiction. �

We will conclude this section with an example. We use SINGULAR to make

necessary computations.

Example 3.2.2. Let R = Q[x,y,z] and let M be an R-submodule R⊕R⊕R. Consider

the submodule N = ⟨xze3 − ze1,x2e3,x2y3e1 + x2y2ze2⟩. Then N : M = ⟨x2y2z2⟩ and

primary decomposition of N is N = Q1 ∩ Q2 ∩ Q3 where Q1 is ⟨z⟩-primary, Q2 is

⟨y⟩-primary and Q3 is ⟨x⟩-primary. Then

Ass(M/N) = {⟨z⟩,⟨y⟩,⟨x⟩}.

Now, we have following sets and submodules.

N + ⟨z⟩M = ⟨ze1,ze2,ze3,x2e3,x2y3e1⟩= P1 ∩P2 ∩P3 where
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P1 = ⟨e1,e3,ze2⟩ is ⟨z⟩−primary,

P2 = ⟨e3,ze1,ze2,y3e1,y3e2⟩ is ⟨z,y⟩−primary and

P3 = ⟨ze1,ze2,ze3,x2e1,x2e2,x2e3⟩ is ⟨z,x⟩−primary.

By Theorem 3.1.4,

S1 = S⟨z⟩(N + ⟨z⟩M) = P1 = ⟨e1,e3,ze2⟩.

Then Ass(M/N + ⟨z⟩M) = {⟨z⟩,⟨z,y⟩,⟨z,x⟩}.

Since N + ⟨y⟩M = ⟨ye1,ye2,ye3,xze1,xze3 − ze1,x2e3⟩ = P4 ∩P5 ∩P6 where

P4 = ⟨e1,e3,ye2⟩ is ⟨y⟩− primary,

P5 = ⟨e3,ze1,ze2,ye1,ye2⟩ is ⟨z,y⟩− primary and

P6 = ⟨ye1,ye2,ye3,xe1,xe3 − e1,x2e1⟩ is ⟨x,y⟩− primary.

Then by Theorem 3.1.4, we get

S2 = S⟨y⟩(N + ⟨y⟩M) = P4 = ⟨e1,e3,ye2⟩ and

Ass(M/N + ⟨y⟩M) = {⟨y⟩,⟨z,y⟩,⟨x,y⟩}.

For the associated prime ideal ⟨x⟩ of N, we have

N + ⟨x⟩M = ⟨ze1,xe1,xe2,xe3⟩= P7 ∩P8

where

P7 = ⟨e1,xe2,xe3⟩ is ⟨x⟩− primary,

P8 = ⟨ze1,ze2,ze3,xe1,xe2,xe3⟩ is ⟨z,x⟩− primary.

Hence,

S3 = S⟨x⟩(N + ⟨x⟩M) = P7 = ⟨e1,xe2,xe3⟩,

and Ass(M/N + ⟨x⟩M) = {⟨x⟩,⟨x,z⟩}.

Up to here, we find the saturations of N + pM where p is the associated prime ideal of

N. In this process, we get another prime ideals ⟨z,y⟩,⟨z,x⟩,⟨x,y⟩,⟨x,z⟩. Now, to get the

radical of N, we need to the find saturations of N +qM for each of these prime ideals.
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For the prime ideal ⟨z,y⟩,

N + ⟨z,y⟩M = ⟨ze1,ze2,ze3,ye1,ye2,ye3,x2e3⟩= P9 ∩P10

where

P9 = ⟨e3,ze1,ze2,ye1,ye2⟩ is ⟨z,y⟩− primary,

P10 = ⟨ze1,ze2,ze3,ye1,ye2,ye3,x2e1,x2e2,x2e3⟩ is ⟨z,y,x⟩− primary.

Then

S4 = S⟨z,y⟩(N + ⟨z,y⟩M) = P9 = ⟨e3,ze1,ze2,ye1,ye2⟩

and Ass(M/N + ⟨z,y⟩M) = {⟨z,y⟩,⟨x,y,z⟩}.

For the prime ideal ⟨z,x⟩,

N + ⟨z,x⟩M = ⟨ze1,ze2,ze3,xe1,xe2,xe3⟩

which is ⟨z,x⟩-primary. Hence

S5 = S⟨x,z⟩(N + ⟨x,z⟩M) = ⟨xe1,xe2,xe3,ze1,ze2,ze3⟩

and Ass(M/N + ⟨x,z⟩M) = {⟨x,z⟩}.

For the prime ideal ⟨x,y⟩,

N + ⟨x,y⟩M = ⟨e1,ye2,ye3,xe2,xe3⟩= P11 ∩P12

where

P11 = ⟨e1,ye2,ye3,xe2,xe3⟩ is ⟨y,x⟩− primary,

P12 = ⟨ze1,ze2,ze3,ye1,ye2,ye3,xe1,xe2,xe3⟩ is ⟨x,y,z⟩− primary.

Then

S6 = S⟨x,y⟩(N + ⟨x,y⟩M) = P11 = ⟨e1,ye2,ye3,xe2,xe3⟩

and Ass(M/N + ⟨x,y⟩M) = {⟨x,y⟩,⟨x,y,z⟩}.

Since ⟨x,y,z⟩ is the associated prime ideal of N + ⟨x,y⟩M,

N + ⟨x,y,z⟩M = ⟨xe1,xe2,xe3,ye1,ye2,ye3,ze1,ze2,ze3⟩= M
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and then

S7 = S⟨x,y,z⟩(N + ⟨x,y,z⟩M) = ⟨xe1,xe2,xe3,ye1,ye2,ye3,ze1,ze2,ze3⟩

with Ass(M/N + ⟨x,y,z⟩M) = {⟨x,y,z⟩}.

Thus,

radM(N) =
7∩

i=1

Si = ⟨ze1,xe3,xye1,xyze2⟩.

3.3 Determining Redundant Primes

In the Example 3.2.2, S6 is a redundat prime submodule for the radical of N since S3 ⊆

S6. This implies that some prime submodules which are mentioned in the Theorem

3.2.2 can be redundant.

McCasland and Smith gave a technique to determine the redundant primes [17]. In this

section we will give a different technique to eliminate that redundant primes. First of

all, we need some technical results for prime submodules similar to Lemma 2.2.1.

Lemma 3.3.1. Let N be p-prime submodule of an R-module M and let f ∈ R. Then

(i) N : ⟨ f ⟩=
{

M, if f ∈ p;
N, if f < p.

and if I is an ideal of R, then

(ii) N : I =
{

M, if I ⊆ p;
N, if I * p.

Proof. (i) Let N be a prime submodule of M. If f ∈ p = (N : M), then M ⊆ N : ⟨ f ⟩.

Let f < p and m ∈ N : ⟨ f ⟩. Since N is a prime submodule, m ∈ N.

(ii) Let I be an ideal of R. Then, if I ⊆ p, then IM ⊆ N and this implies that M = N : I.

If I * p, then there exists an element a ∈ I and a < p. By part (i), N ⊆ N : I ⊆ N : ⟨a⟩=

N. �

Theorem 3.3.1. Let {(Si,M, pi) : i = 1,2, · · · ,n} be a collection of pi-prime

submodules Si of M with pi , p j for all i , j such that S =
∩

Si is a possibly redundant
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prime decomposition of S. Let f ∈ (
∩

p j*pi

p j)− pi and let Ni = (
i∩

k=1
Sk) : ⟨ f ⟩. Then, Si

is redundant prime submodule in the decomposition of S if and only if Ni = Ni : pi. ( in

case p j ⊆ pi for all j take f < pi ).

Proof. By Lemma 3.3.1 part (i),

Ni =
i∩

k=1

Sk : ⟨ f ⟩=
∩
f<pk

Sk =
∩

pk⊆pi

Sk.

Again by Lemma 3.3.1 part (ii),

Ni : pi = (
∩

pk⊆pi

Sk) : pi =
∩

pk(pi

Sk

Then, S =
∩
k,i

Sk if and only if Ni = Ni : pi. �

By using Theorem 3.3.1, we can check whether the prime submodules which we found

in the Example 3.2.2 are redundant or not for each step.

In the fourth step of the Example 3.2.2, we get

S1 = ⟨e1,e3,ze2⟩ is p1 = ⟨z⟩−prime,

S2 = ⟨e1,e3,ye2⟩ is p2 = ⟨y⟩−prime,

S3 = ⟨e1,xe2,xe3⟩ is p3 = ⟨x⟩−prime and

S4 = ⟨e3,ze1,ze2,ye1,ye2⟩ is p4 = ⟨z,y⟩−prime.

Now, since p1 ⊆ p4 and p2 ⊆ p4, there is a possibility that S4 is redundant for the

intersection S =
4∩

k=1
Sk.

If we take f = x ∈ p3 − p4, then

N4 = S : ⟨ f ⟩= (
4∩

k=1

Sk) : ⟨x⟩=
∩

x<pk

Sk = S1 ∩S2 ∩S4 = ⟨e3,ze1,ye1,yze2⟩, and

N4 : p4 = N4 : ⟨z,y⟩= S1 ∩S2 = ⟨e1,e3,yze2⟩.

Since N4 : p4 , N4, S4 is needed in the intersection and thus S =
4∩

k=1
Sk.

Now, consider the submodule S5 = ⟨xe1,xe2,xe3,ze1,ze2,ze3⟩ with p5 = ⟨z,x⟩. Since

p1 ⊆ p5 and p3 ⊆ p5, take f = y ∈ (p2 ∩ p4)− p5. Then
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N5 = S : ⟨ f ⟩= (
5∩

k=1

Sk) : ⟨y⟩=
∩

y<pk

Sk = S1 ∩S3 ∩S5 = ⟨ze1,xe1,xe3,xze2⟩,

N5 : p5 = N5 : ⟨z,x⟩= S1 ∩S3 = ⟨e1,xe3,xze2⟩.

Since N5 : p5 , N5, S5 is also not a redundant prime. Hence S =
5∩

k=1
Sk in this step.

But if we consider S6 and p6 = ⟨x,y⟩, we have p2 ⊆ p6 and p3 ⊆ p6. Take f = z ∈

(p1 ∩ p4 ∩ p5)− p6. Then

N6 = S : ⟨ f ⟩= (
6∩

k=1

Sk) : ⟨z⟩=
∩

z<pk

Sk = S2 ∩S3 ∩S6 = ⟨e1,xe3,xye2⟩,

N6 : p6 = N6 : ⟨z,y⟩= S2 ∩S3 = ⟨e1,xe3,xye2⟩.

Since N6 : p6 = N6, S6 is a redundant prime. Hence S =
5∩

k=1
Sk.

Also, for the last step we get S7 = ⟨xe1,xe2,xe3,ye1,ye2,ye3,ze1,ze2,ze3⟩ and p7 =

⟨x,y,z⟩. It is obvious that

(
5∩

k=1

Sk)∩S7 =
5∩

k=1

Sk.

Also by using Theorem 3.3.1, we can say that S7 is redundant. Since pi ⊆ p7 for all

i = 1, · · · ,6, take f = 1 < p7. Then

N7 = ((
5∩

k=1

Sk)∩S7) : ⟨ f ⟩= ((
5∩

k=1

Sk)∩S7) : ⟨1⟩=
5∩

k=1

Sk and

N7 : p7 = N7 : ⟨x,y,z⟩=
5∩

k=1

Sk.

Thus S7 is also a redundant prime and therefore

radM(N) =
5∩

i=1

Si = ⟨ze1,xe3,xye1,xyze2⟩.

Hence for this example, we only need the prime submodules S1, · · · ,S5.
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4. PRIME AND SEMIPRIME SUBMODULES

4.1 Semiprime Submodules

In this section, we will define semiprime submodule and give some properties of

semiprimes.

Definition 4.1.1. A proper submodule N of an R-module M is called a semiprime

submodule if whenever rkm ∈ N for some r ∈ R, m ∈ M and k ∈ N, then rm ∈ N.

The following lemma shows that semiprime submodules can be defined in terms of

their envelopes.

Lemma 4.1.1. A proper submodule N is semiprime if and only if ⟨EM(N)⟩= N.

Proof. Suppose that N is semiprime. Let x ∈ ⟨EM(N)⟩. Then there exist elements

ri ∈ R, mi ∈ M (1 ≤ i ≤ k) such that

x = r1m1 + · · ·+ rkmk with rti
i mi ∈ N

for some ti ∈ Z+. Since N is semiprime, rimi ∈N for all i. Hence x ∈N and ⟨EM(N)⟩=

N.

Conversely suppose that ⟨EM(N)⟩= N. Let rkm ∈ N for some r ∈ R,m ∈ M and natural

number k. By the definition of envelope, rm ∈ EM(N) ⊆ ⟨EM(N)⟩ = N. Hence N is

semiprime. �

It is easy to see that every prime submodule is semiprime. But the converse is not

true. For example, if R =Q[x,y,z], M = R3 and N = ⟨ze1,ye1,xye2,xye3,xze2+x2ze3⟩,

then by Theorem 2.3.1, ⟨EM(N)⟩ = N. Hence N is a semiprime submodule of M

with N : M = ⟨xy⟩. On the other hand N is not a prime submodule; if we take r = z

and m = (0,x,x2), then rm = z(0,x,x2) = (0,xz,x2z) ∈ N but r = z < N : M and m =

(0,x,x2) < N.
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If N is prime submodule, it is well-known that N : M is a prime ideal. When N is

semiprime, we have the following.

Lemma 4.1.2. If N is a semiprime submodule of an R-module M, then N : M is a

semiprime ideal.

Proof. Recall that for a commutative ring R, an ideal I is semiprime if
√

I = I. Now,

let x ∈
√

N : M. Then xM ⊆ N since N is semiprime. Hence
√

N : M = N : M. This

implies that N : M is a semiprime ideal. �

Lemma 4.1.3. Let N be a primary submodule. Then N is semiprime submodule iff

N : M is a semiprime ideal.

Proof. Suppose N : M is semiprime ideal. Let rkm ∈ N where r ∈ R,m ∈ M −N and

k ∈ Z+. Since N is primary and N : M is semiprime, r ∈
√

N : M = N : M. Hence

rm ∈ N. Otherside is clear by the above lemma. �

Lemma 4.1.4. Let M be an R-module and N be a proper submodule of M. Then N is

prime submodule of M if and only if N is primary and semiprime.

Proof. Assume that N is primary and semiprime. Let am ∈ N for a ∈ R,m ∈ M. Since

N is primary, either m ∈ N or a ∈
√

N : M. By Lemma 4.1.2, m ∈ N or a ∈ N : M.

Hence N is prime submodule. The converse is clear. �

Proposition 4.1.1. A finite intersection of semiprime submodules is also semiprime.

Proof. Let N = N1 ∩N2 ∩·· ·∩Ns where each Ni is semiprime. If x ∈ ⟨EM(N)⟩, then

x = r1m1 + r2m2 + · · ·rtmt

where rki
i mi ∈ N for some ki ∈ N. Therefore for each i and j, rki

i mi ∈ N j. Since each

N j is semiprime, rimi ∈ N j for j = 1, . . . ,s. Hence x ∈ N. By Lemma 4.1.1 , N is

semiprime.

�

Lemma 4.1.5. Let M be an R-module. Assume that N and K are submodules of M

such that K ⊆ N with N ,M. Then, if K and N/K are semiprime submodules then N

is also semiprime.
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Proof. Let rtm ∈ N for r ∈ R,m ∈ M and t ∈ Z+. Then rt(m+K) = rtm+K ∈ N/K. If

rtm ∈ K, then rm ∈ K ⊆ N since K is semiprime. Now, we may assume that rtm < K.

Then rt(m+K)∈ N/K and N/K is semiprime implies that r(m+K) = rm+K ∈ N/K.

Hence rm ∈ N. �

Lemma 4.1.6. Let M = K ⊕ L be the direct sum of submodules K,L and N be

semiprime submodule of K. Then N ⊕L is a semiprime submodule of M.

Proof. Let r ∈ R,m ∈ M and rtm ∈ N ⊕L for some t ∈ Z+. Then there exist elements

n ∈ N, l ∈ L such that rtm = n+ l. Since M = K⊕L, there exists an element k ∈ K such

that rtk ∈ N. Since N is semiprime, rk ∈ N. Hence rm ∈ N ⊕L. �

Lemma 4.1.7. ( [1], Result 1.1) Let M,M′ be R-modules with ϕ : M →M′ an R-module

epimorphism and N be a submodule of M such that Kerϕ ⊆ N. Then there exists

a one-to-one order preserving correspondence between the proper submodules of M

containing N and the proper submodules of M′ containing ϕ(N). Furthermore, for

any submodule N′ of M′ there exists a submodule L of M such that Kerϕ ⊆ L and

ϕ(L) = N′.

The following lemma gives the relationship between semiprime submodules of a

module M and semiprime submodules of its homomorphic image.

Lemma 4.1.8. Let M,M′ be R-modules with ϕ : M → M′ an R-module epimorphism

and N be a submodule of M such that Kerϕ ⊆ N. Then

(i) If P is a semiprime submodule of M containing N, then ϕ(P) is a semiprime

submodule of M′ containing ϕ(N).

(ii) If P′ is a semiprime submodule of M′ containing ϕ(N), then ϕ−1(P′) is a semiprime

submodule of M containing N.

Proof. (i) Assume that P is a semiprime submodule of M containing N. Then ϕ(N)⊆

ϕ(P) and ϕ(P) , ϕ(M) = M′ by Lemma 4.1.7

Let r ∈ R, m′ ∈ M′ and rtm′ ∈ ϕ(P) for some t ∈ Z+. Since ϕ is an epimorphism,

there exists an element m ∈ M such that ϕ(m) = m′. Then rtm′ = rtϕ(m) ∈ ϕ(P)

implies that rtm ∈ P. Since P is semiprime submodule of M, rm ∈ P. Thus rm′ =

rϕ(m) = ϕ(rm) ∈ ϕ(P).
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(ii) Let P′ be a semiprime submodule of M′ containing ϕ(N). By Lemma 4.1.7 , there

exists a submodule L of M such that Kerϕ ⊆ L and ϕ(L) = P′. Then N ⊆ L =

ϕ−1(P′). Let rtm ∈ ϕ−1(P′) for r ∈ R,m ∈ M and t ∈ Z+. Then ϕ(rtm) = rtϕ(m) ∈

P′. Since P′ is semiprime submodule of M′, rϕ(m) = ϕ(rm) ∈ P′. Hence rm ∈

ϕ−1(P′).

�

Let K and N be any submodules of an R-module M where N ⊆ K. If we consider

the canonical epimorphism ϕ : M → M/N, then by Lemma 4.1.8 it is clear that K is a

semiprime submodule of M if and only if K/N is semiprime submodule of M/N.

4.2 Semiprime Radical

If N is a proper submodule of an R-module M, then the prime radical of N, radM(N),

is the intersection of all prime submodules containing N. The prime radical of

submodules has been studied by some authors ( [4], [9], [17], [23], [24], [27]).

The semiradical of N, denoted by sradM(N), is defined as the intersection of all

semiprime submodules of M containing N. If there is no semiprime submodule

containing N, then sradM(N) = M. We shall denote the semiradical of M by sradM(0).

Since radM(N) is semiprime, we have

N ⊆ ⟨EM(N)⟩ ⊆ sradM(N)⊆ radM(N)

where

EM(N) = {rm : r ∈ R,m ∈ M and rkm ∈ N f or some k ∈ Z+}.

Proposition 4.1.1 implies that sradM(N) is the minimal semiprime submodule of M

containing N. In this section we will give generalization of [4] and [12] to semiprime

radical. The following two lemmas are generalization of [4] Lemma 4 and Lemma 6.

Lemma 4.2.1. Let R be a ring, M be an R-module and N,K be submodules of M with

K ⊆ N. Then sradN(K)⊆ sradM(K).

Proof. Let P be any semiprime submodule of M with K ⊆ P. If N ⊆ P, then

sradN(K) ⊆ P. If N * P, then N ∩ P is a semiprime submodule of N. Hence

sradN(K)⊆ N ∩P ⊆ P. Thus in any case sradN(K)⊆ sradM(K). �
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Lemma 4.2.2. Let M be the direct sum of the R-modules Mi, i ∈ I. Let N = ⊕Ni be

a submodule of M such that Ni is a submodule of Mi for all i ∈ I. Then sradM(N) =

⊕sradMi(Ni).

Proof. By Lemma 4.2.1, sradMi(Ni) ⊆ sradM(N) for all i ∈ I. Let m ∈ sradM(N)

and m <
⊕

i
sradMi(Ni). Then there exists j ∈ I such that π j(m) < sradM j(N j) where

π j : M → M j denotes the canonical projection. There exists a semiprime submodule

Pj of M j such that π j(m) < Pj. By Lemma 4.1.6, K = Pj
⊕
(
⊕
i, j

Mi) is semiprime

submodule of M containing N. Since π j(m) < Pj, m < K. Then m < sradM(N).

Therefore sradM(N) =
⊕

i
sradMi(Ni). �

Lemma 4.2.3. ( [4], Corollary 2) Let R be a domain and M be a non-torsion module.

Then

1. the torsion submodule T (M) of M is prime, and

2. PM = M or PM is prime submodule of M, for each maximal ideal P of R.

Since every prime submodule is semiprime, T (M) and PM are semiprime submodules

of a module M over a domain where P is maximal ideal of R.

The general form of [12], Proposition 1.3 is

Proposition 4.2.1. Let R be a domain and M be an R-module with torsion submodule

T (M). If N is a submodule of T (M), then N is semiprime submodule of T (M) if and

only if N is semiprime submodule of M.

Proof. Suppose N is semiprime submodule of T (M). Let 0 , r ∈ R,m ∈ M with rkm ∈

N for some k ∈ Z+. By Lemma 4.2.3, rm ∈ T (M). Then there exists nonzero s ∈ R

such that s(rm) = 0. Since sr , 0, we have m∈ T (M) which implies that rm∈N. Thus,

N is a semiprime submodule of M. The converse is clear. �

Now we can show that for domains, the study of semiprime radicals of any modules

reduces to torsion modules.

Corollary 4.2.1. Let R be a domain and M be an R-module with torsion submodule

T (M). Then sradM(0) = sradT (M)(0).
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Proof. Since T (M) is a submodule of M, by Lemma 4.2.1 sradT (M)(0) ⊆ sradM(0).

Now, suppose sradT (M)(0) =
∩

N where N is a semiprime submodule of T (M).

By Proposition 4.2.1, N is also semiprime submodule of M. Hence sradM(0) ⊆

sradT (M)(0).

�

We also have the following corollary which is the generalization of [12], Lemma 1.7.

Corollary 4.2.2. Let R be a domain and M be a left R-module with torsion submodule

T (M). Then

sradM(0)⊆
∩
{PT (M) : P is a maximal ideal o f R}.

Proof. By Corollary 4.2.1 and Lemma 4.2.3. �

4.3 Modules Which Satisfy The Semiradical Formula

Note that any submodule N of a module M satisfies the radical formula (s.t.r.f ) if

radM(N) = ⟨EM(N)⟩ . It is said that M satisfies the radical formula if for every

submodule N of M, radM(N) = ⟨EM(N)⟩. A ring R satisfies the radical formula,

if every R-module s.t.r.f.. Modules which satisfy the radical formula was studied

in [1], [4], [5], [6], [7], [23], [24] and [25].

In the same manner, we say that M satisfies the semiradical formula (s.t.s.r.f.) if

for any submodule N of M, sradM(N) = ⟨EM(N)⟩. Since intersection of semiprime

submodules is semiprime, sradM(N) is the unique smallest semiprime submodule of

M containing N.

We know that for an ideal I of R, we have
√√

I =
√

I; but the envelope of a

submodule does not satisfy an equation similiar to this one as the following example

shows.

Example 4.3.1. Let R = Q[x,y,z] and let M be an R-submodule R⊕R. Consider the

submodule N = ⟨z2e1,z2e2,yze2,y2e1 + ze2,y2e2,ye1 + x3e2⟩. N is p = ⟨z,y⟩-primary,

so by Theorem 2.3.1,

⟨EM(N)⟩= N + ⟨z,y⟩M = ⟨ze1,ze2,ye1,ye2,x3e2⟩.
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Primary decompostion is ⟨EM(N)⟩= Q1 ∩Q2 where

Q1 = ⟨e2,ze1,ye1⟩ is ⟨z,y⟩−primary,

Q2 = ⟨ze1,ze2,ye1,ye2,x3e1,x3e2⟩ is ⟨x,y,z⟩−primary.

Hence,

⟨EM(⟨EM(N)⟩)⟩= ⟨ze1,ze2,ye1,ye2,xe2⟩ , ⟨EM(N)⟩.

In [28], Azizi and Nikseresht defined the kth envelope of N recursively by E0(N) =

N,E1(N) = EM(N),E2(N) = EM(⟨EM(N)⟩) and Ek(N) = EM(⟨Ek−1(N))⟩ for every

submodule N of M. It is easy to show that

N = ⟨E0(N)⟩ ⊆ ⟨E1(N)⟩ ⊆ ⟨E2(N)⟩ ⊆ · · · · · · ⊆ ⟨E∞(N)⟩ ⊆ sradM(N)⊆ radM(N)

where ⟨E∞(N)⟩=
∞∪

k=0
⟨Ek(N)⟩.

It is clear that ⟨E∞(N)⟩ is semiprime and thus ⟨E∞(N)⟩ = sradM(N). Therefore we

have the following equivalent conditions.

Theorem 4.3.1. The following statements are equivalent.

(i) A module M satisfies the semiradical formula;

(ii) ⟨Ei(N)⟩= ⟨E j(N)⟩ for all i, j;

(iii) ⟨EM(N)⟩= ⟨E2(N)⟩ for all submodules N of M.

Proof. (i)⇒ (ii) and (ii)⇒ (iii) are clear.

(iii) ⇒ (i) ⟨EM(N)⟩ = ⟨E2(N)⟩ implies that ⟨EM(N)⟩ is semiprime submodule and

hence M s.t.s.r.f. �

By Theorem 4.3.1, we can conclude that a module M s.t.s.r.f. if and only if ⟨EM(N)⟩

is either M or a semiprime submodule of M for every submodule N of M; R s.t.s.r.f.

if and only if either ⟨EM(0)⟩= M or ⟨EM(0)⟩ is semiprime submodule of M for every

non-zero R-module M. In this section, we will investigate the equality sradM(N) =

⟨EM(N)⟩.
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Lemma 4.3.1. Let M,M′ be R-modules with ϕ : M → M′ an R-module epimorphism

and N be a submodule of M such that Kerϕ ⊆ N. Then ϕ(sradM(N)) = sradM′(ϕ(N)).

Proof. Let x ∈ ϕ(sradM(N)). Then x = ϕ(y) for some y ∈ sradM(N) =
∩
i

Pi where

each Pi is semiprime submodule of M containing N. So, y ∈ Pi for each i. Hence

ϕ(y)∈ ϕ(Pi) where ϕ(Pi) is a semiprime submodule of M′ containing ϕ(N) by Lemma

4.1.8. If we take any semiprime submodule Q j of M′ containing ϕ(N), then ϕ−1(Q j)

is semiprime submodule of M containing N by Lemma 4.1.8. Hence y ∈ ϕ−1(Q j) for

all j, and hence x = ϕ(y) ∈ Q j. Thus x ∈ sradM′(ϕ(N)).

Now, let m′ ∈ sradM′(ϕ(N)) =
∩
j

Q j where Q j is semiprime submodule of M′

containing ϕ(N) for each j. Then m′ ∈ Q j for all j. Since ϕ is an epimorphism,

there exists m ∈ M such that m′ = ϕ(m) ∈ Q j. Hence m ∈ ϕ−1(Q j). By Lemma

4.1.8, ϕ−1(Q j) is semiprime submodule of M containing N. Thus m ∈ sradM(N) and

m′ = ϕ(m) ∈ ϕ(sradM(N)). �

Lemma 4.3.2. Let N be a submodule of a module M. Then sradM/N(0) =

sradM(N)/N.

Proof. Consider the canonical epimorphism π : M → M/N. Since Kerπ = N, we

can apply Lemma 4.3.1. Then π(sradM(N)) = sradM/N(π(N)) = sradM/N(0). Let

sradM(N) =
∩
i

Pi. Then we have;

sradM/N(0) = ϕ(
∩

i

Pi) =
∩

i

(Pi/N) = (
∩

i

Pi)/N = sradM(N)/N.

�

Corollary 4.3.1. Let N be a submodule of a module M and N′ be a submodule of

a module M′ such that M/N � M′/N′. Then sradM(N) = ⟨EM(N)⟩ if and only if

sradM′(N′) = ⟨EM′(N′)⟩.
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Proof. It is clear by the definition of envelope that ⟨EM/N(0)⟩ = ⟨EM(N)⟩/N, also by

Lemma 4.3.2, we have

sradM(N) = ⟨EM(N)⟩ ⇔ sradM(N)/N = ⟨EM(N)⟩/N

⇔ sradM/N(0) = ⟨EM/N(0)⟩

⇔ sradM′/N′(0) = ⟨EM′/N′(0)⟩

⇔ sradM′(N′)/N′ = ⟨EM′(N′)⟩/N′

⇔ sradM′(N′) = ⟨EM′(N′).

�

Corollary 4.3.2. Let N,L be submodules of M such that M =N+L and sradL(N∩L)=

⟨EL(N ∩L)⟩. Then sradM(N) = ⟨EM(N)⟩.

Proof. Note that M/N = (N +L)/N � L/N ∩L. Apply Corollary 4.3.1. �

Lemma 4.3.3. Let M,M′, ϕ and N be as in Lemma 4.3.1. Then if sradM(N) =

⟨EM(N)⟩, then sradM′(ϕ(N)) = ⟨EM′(ϕ(N))⟩.

Proof. Assume that sradM(N) = ⟨EM(N)⟩. By Lemma 4.3.1,

ϕ(sradM(N)) = sradM′(ϕ(N)).

Now, it is enough to show that

ϕ(⟨EM(N)⟩) = ⟨EM′(ϕ(N))⟩.

Let x ∈ ϕ(⟨EM(N)⟩). Then x = ϕ(y) where y ∈ ⟨EM(N)⟩. So there exist elements

ri ∈ R,mi ∈ EM(N) such that

y = r1m1 + r2m2 + · · ·+ rlml

and for each i, mi = sini with si ∈ R,ni ∈ M and sti
i ni ∈ N. Then

y = r1s1n1 + r2s2n2 + · · ·+ rlslnl

and so

x = ϕ(y) = ϕ(r1s1n1 + r2s2n2 + · · ·+ rlslnl)

= r1ϕ(s1n1)+ r2ϕ(s2n2)+ · · ·+ rlϕ(slnl)
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where ϕ(sti
i ni) = sti

i ϕ(ni) ∈ ϕ(N) implies that siϕ(ni) ∈ EM′(ϕ(N)). Thus

x = r1s1ϕ(n1)+ r2s2ϕ(n2)+ · · ·+ rlslϕ(nl) ∈ ⟨EM′(ϕ(N))⟩.

Now, let x′ ∈ ⟨EM′(ϕ(N))⟩. Then

x′ = a1m′
1 +a2m′

2 + · · ·+akm′
k

with ai ∈ R, m′
i ∈ EM′(ϕ(N)). For each i, m′

i = biy′i where bi ∈ R, y′i ∈ M′ and bki
i y′i ∈

ϕ(N) for some positive integer ki. Hence

x′ = a1m′
1 +a2m′

2 + · · ·+akm′
k

= a1b1y′1 +a2b2y′2 + · · ·+akbky′k

= a1b1ϕ(y1)+a2b2ϕ(y2)+ · · ·+akbkϕ(yk)

= ϕ(a1b1y1 +a2b2y2 + · · ·+akbkyk)

where yi ∈ M for each i. Also bki
i y′i = bki

i ϕ(yi) = ϕ(bki
i yi)∈ ϕ(N) implies that bki

i yi ∈ N.

Hence biyi ∈ EM(N) and a1b1y1 + · · ·akbkyk ∈ ⟨EM(N)⟩. Thus

x′ = ϕ(a1b1y1 +a2b2y2 + · · ·+akbkyk) ∈ ϕ(⟨EM(N)⟩).

�

Lemma 4.3.4. Let M be an R-module which s.t.s.r.f.. Then every homomorphic image

of M s.t.s.r.f. as an R-module.

Proof. Suppose M s.t.s.r.f.. Let N be any submodule of M. Consider the canonical

epimorphism π : M → M/N. Let K be any submodule of M containing N. Then

sradM(K) = ⟨EM(K)⟩. By Lemma 4.3.3,

sradM/N(π(K)) = ⟨EM/N(π(K))⟩.

Hence

sradM/N(K/N) = ⟨EM/N(K/N)⟩

and thus M/N s.t.s.r.f.. �

Lemma 4.3.5. Let M be the direct sum of the R-modules Mi, i ∈ I. Let N = ⊕Ni be

a submodule of M such that Ni is a submodule of Mi for all i ∈ I. Then sradM(N) =

⟨EM(N)⟩ if and only if sradMi(Ni) = ⟨EMi(Ni)⟩ for each i.
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Proof. Assume sradMi(Ni) = ⟨EMi(Ni)⟩ for each i. By Lemma 4.2.2,

sradM(N) =
⊕
i∈I

sradMi(Ni) =
⊕
i∈I

⟨EMi(Ni)⟩.

The result follows by [29], Lemma 2.3.

Conversely, since Ni is a submodule of Mi and N =⊕Ni, by Lemma 4.2.2

sradMi(Ni)⊆ sradM(N) = ⟨EM(N)⟩.

If m ∈ sradMi(Ni), then by the definition of envelope it is easy to show that m ∈

⟨EMi(Ni)⟩. �

By Lemma 4.2.2 and the above lemma, we have the following result.

Corollary 4.3.3. Let R be any ring and M be any projective R-module. Then

sradM(0) = ⟨EM(0)⟩.

Proof. Since M is projective, there exists a free R-module F such that M is the direct

summand of F . Then there exist an index set Λ and cyclic submodules Fλ of F such

that F =
⊕
Λ

Fλ where λ ∈ Λ by [30]. By Lemma 4.2.2, sradF(0) =
⊕
Λ

sradFλ (0)

and since every cyclic module s.t.r.f., sradFλ (0) = ⟨EFλ (0)⟩ for all λ ∈ Λ. Hence

sradF(0) = ⟨EF(0)⟩ by Lemma 4.3.5 and thus sradM(0) = ⟨EM(0)⟩. �

Since every prime submodule is semiprime, this result can also be obtained from [4],

Corollary 8.

Lemma 4.3.6. Let φ : S → R be a module epimorphism and M be an R-module. Then

(i) a submodule N of M is semiprime as an R-module if and only if it is semiprime as

an S-module.

(ii) for any submodule N of M, EM(SN) = EM(RN).

Proof. Since φ : S → R is an epimorphism, an R-module M has an S-module structure

as

f : S×M → M

(s,m) = s ·m = φ(s)m
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(i) Let N be a semiprime submodule of M as an R-module and let s ∈ S,m ∈ M with

sk · m ∈ N. Then sk · m = φ(sk)m = φ(s)km ∈ N. Since N is semiprime as an

R-module, φ(s)m = s ·m ∈ N.

Conversely, let N be a semiprime submodule of M as an S-module and let r ∈R,m∈

M with rkm ∈ N. Since φ is an epimorphism, rkm = φ(s)km = sk ·m ∈ N, and since

N is semiprime as an S-module, s ·m = φ(s)m = rm ∈ N. Thus N is semiprime

submodule of M as an R-module.

(ii) Let x ∈ EM(SN). Then x = s ·m with sk ·m ∈ N and x = s ·m = φ(s)m with sk ·m =

φ(s)km ∈ N. This means that φ(s)m = x ∈ EM(RN). Conversely, let y ∈ EM(RN).

Then y = rm where rtm ∈ N. Since φ is an epimorphism, y = rm = φ(s)m = s ·m

with rtm = φ(s)tm = st ·m ∈ N. Then y = s ·m ∈ EM(SN).

�

In the following theorem, we will give some equivalent conditions for a ring to satisfy

the semiradical formula.

Theorem 4.3.2. Let R be a ring. Then R s.t.s.r.f. provided that any one of the following

is satisfied.

(i) for every free R-module F, F s.t.s.r.f.

(ii) for every R-module M, sradM(0) = ⟨EM(0)⟩.

(iii) R is a ring homomorphic image of S, where S s.t.s.r.f..

Proof. (i) Since every module M is the homomorphic image of a free R-module, by

Lemma 4.3.4 it is clear.

(ii) Clear by the remark after Theorem 4.3.1.

(iii) Let Φ : S → R be an epimorphism. Suppose S s.t.s.r.f.. Since Φ is an epimorphism,

every S-submodule of M is also an R-submodule and vice versa. Let N be any

submodule of M. Then by Lemma 4.3.6,

sradM(RN) = sradM(SN) = ⟨EM(SN)⟩= ⟨EM(RN)⟩.

Hence R s.t.s.r.f.. �
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4.4 Semiradical Equality

When we consider the chain

N = ⟨E0(N)⟩ ⊆ ⟨E1(N)⟩ ⊆ ⟨E2(N)⟩ ⊆ · · · · · · ⊆ ⟨E∞(N)⟩= sradM(N)⊆ radM(N),

it seems meaningfull to focus on the submodules sradM(N) and radM(N) and

investigate the conditions where the equality sradM(N) = radM(N) occurs.

Lemma 4.4.1. Let M be an R-module. Then every semiprime submodule is an

intersection of prime submodules if and only if sradM(N) = radM(N) for any

submodule N of M.

Proof. (⇒) Obvious since sradM(N) is a semiprime submodule.

(⇐) Let K be a semiprime submodule of M. Then K = sradM(K) = radM(K). Hence

K is an intersection of prime submodules. �

Lemma 4.4.2. Let N be a submodule of an R-module M such that M/N is projective.

Then sradM(N) = radM(N).

Proof. Since M/N is projective, radM/N(0) = ⟨EM/N(0)⟩ by [4] Lemma 8. Then we

have,radM(N) = ⟨EM(N)⟩ which implies that sradM(N) = radM(N). �

Corollary 4.4.1. Let N be a submodule of an R-module M such that M/N is projective.

Then sradM(N) = radRM+N.

Proof. Clear by [29], Theorem 2.7 and the above lemma. �

We say that a module M satisfy the semiradical equality if for every submodule N of

M, sradM(N) = radM(N).

It is said that a ring R satisfy the semiradical equality if every R-module satisfy

the semiradical equality. Since arithmetical rings satisfy the radical formula, an

arithmetical ring satisfy the semiradical equality.

Proposition 4.4.1. The followings are equivalent.

(i) The ring R satisfy the semiradical equality.

(ii) for any ideal I of R, the ring R/I satisfy the semiradical equality.
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(iii) for any non-maximal semiprime ideal P of R, the ring R/P satisfy the semiradical

equality.

Proof. (i ⇒ ii) Let M be an R/I-module. By Lemma 4.4.1, it is enough to show

that every semiprime R/I-module is an intersection of prime submodules. Let K be a

semiprime submodule of an R/I-module M. Then K is a semiprime submodule of M

as an R-module. So, K = sradRM(K) = radRM(K).

It is easy to see that every submodule of M is a prime R-submodule if and only if

it is a prime R/I-submodule. Hence radRM(K) = radR/IM(K) and thus K = radR/IM(K).

(iii ⇒ i) Let N be a semiprime submodule of an R-module M with N : M = P where

P is a non-maximal semiprime ideal. Consider M/N as an R/P-module. Then by our

assumption, sradM/N(0) = radM/N(0). Hence sradM(N) = radM(N).

�

Corollary 4.4.2. If for any non-maximal prime ideal P of R R/P is a Prüfer domain,

then R satisfy the semiradical equality.

Lemma 4.4.3. A ring R satisfy the semiradical equality if and only if every free

R-module satisfy the semiradical equality.

Proof. Let M be an R-module. Then there exists a free R-module F such that M �F/K.

By our assumption, for any submodule N of M

sradF/K(N/K) = sradF(N)/K

= radF(N)/K

= radF/K(N/K).

Hence M satisfy the semiradical equality. �

4.5 Semiprime Submodules of Cartesian Product of Modules

Let R = R1 × R2 where each Ri is a commutative ring with nonzero identity. Let

Mi be an Ri-module for i = 1,2 and M = M1 × M2 be the R-module with action

(r1,r2)(m1,m2) = (r1m1,r2m2) where ri ∈ Ri,mi ∈ Mi. These notations are fixed for
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this section.

Note that since our action is (r1,r2)(m1,m2) = (r1m1,r2m2) where ri ∈ Ri,mi ∈ Mi,

every submodule of M1×M2 is of the form N1×N2 with N1 is a submodule of M1 and

N2 is a submodule of M2.

Proposition 4.5.1. Let R and M be as above. Then

(i) If N1 is semiprime submodule of M1, then N1×M2 is semiprime submodule of M1×

M2.

(ii) If N2 is semiprime submodule of M2, then M1×N2 is semiprime submodule of M1×

M2.

Proof. (i) Let r = (r1,r2) ∈ R, m = (m1,m2) ∈ M and rkm ∈ N1×M2 for some k ∈ Z+.

Since N1 is semiprime submodule of M1, r1m1 ∈ N1. Then (r1m1,r2m2) = rm ∈ N1 ×

M2 which implies that N1 ×M2 is semiprime submodule of M.

(ii) Similiar to case (i). �

Lemma 4.5.1. Let R and M be as above. Then Q1 ×Q2 is a semiprime submodule of

M if and only if Qi is semiprime submodule of Mi for all i = 1,2.

Proof. Let (r1,r2)
k(m1,m2) ∈ Q1 ×Q2 where mi ∈ Mi, ri ∈ Ri and k ∈ Z+. Since Q1

and Q2 are semiprime, rimi ∈ Qi for i = 1,2 which implies that Q1 ×Q2 is semiprime.

Now assume that Q1 ×Q2 is semiprime submodule of M1 ×M2. Let r1 ∈ R1, m1 ∈

M1 with rk
1m1 ∈ Q1. Then (r1,1)k(m1,0) ∈ Q1 ×Q2. Since Q1 ×Q2 is semiprime,

(r1,1)(m1,0) = (r1m1,0) ∈ Q1 ×Q2 implies that Q1 is semiprime submodule of M1.

Similarly it can be shown that Q2 is semiprime submodule of M2. �

Lemma 4.5.2. Let N = N1 ×N2 be a submodule of M where Ni is a submodule of Mi

for i = 1,2. Then N : M = (N1 : M1)× (N2 : M2)

Proof. Let x = (x1,x2) ∈ (N : M). Then xM ⊆ N which means that

(x1,x2)(m1,m2) = (x1m1,x2m2) ∈ N1 ×N2

for all m1 ∈ M1 and m2 ∈ M2. So, x1m1 ∈ N1 and x2m2 ∈ N2. Hence

x1 ∈ (N1 : M1), x2 ∈ (N2 : M2)
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and thus x = (x1,x2) ∈ (N1 : M1)× (N2 : M2).

Conversely, let y = (y1,y2) ∈ (N1 : M1)× (N2 : M2). Then y1M1 ⊆ N1 and y2M2 ⊆ N2.

Hence for all m1 ∈ M1,m2 ∈ M2,

(y1,y2)(m1,m2) = (y1m1,y2m2) ∈ N1 ×N2.

This implies that y ∈ (N1 ×N2) : (M1 ×M2) = (N : M). �

Let N be a semiprime submodule of an R-module M. If p =
√

N : M is a prime ideal,

then N is called p -semiprime submodule.

Lemma 4.5.3. Let N = N1 ×N2 be a submodule of M. Then

(i) N is p×R2 semiprime submodule of M iff N1 is p-semiprime submodule of M1 and

N2 = M2.

(ii) N is R1 × p semiprime submodule of M iff N2 is p-semiprime submodule of M2 and

N1 = M1.

Proof. (i) Suppose N = N1 ×N2 is semiprime submodule of M1 ×M2. By Lemma

4.5.1, N1 is semiprime submodule of M1.

Since N : M = p×R2, N1 is p-semiprime and N2 : M2 = R2 implies that N2 = M2.

Other side is clear by Proposition 4.5.1 and the Lemma 4.5.2.

(ii) Similiar to case (i). �

Proposition 4.5.2. Let N = N1 ×N2 be a submodule of M. Then

sradM(N) = sradM1(N1)× sradM2(N2)

Proof. Let Q1 ×Q2 be a semiprime submodule of M containing N1 ×N2. By Lemma

4.5.1, Qi is semiprime submodule of Mi containing Ni for i = 1,2. Then

sradM1(N1)× sradM2(N2)⊆ sradM(N1 ×N2)

since sradM1(N1)× sradM2(N2)⊆ Q1 ×Q2.
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Since sradMi(Ni) is the minimal semiprime submodule of Mi containing Ni, Lemma

4.5.1 implies that sradM1(N1)× sradM2(N2) is a semiprime submodule of M1 ×M2

which contains N1 ×N2. Hence

sradM(N)⊆ sradM1(N1)× sradM2(N2)

�

Corollary 4.5.1. Let N = N1 ×N2 be a submodule of M. Then

(i) sradM(N1 ×M2) = sradM1(N1)×M2

(ii) sradM(M1 ×N2) = M1 × sradM2(N2)

Proof. Clear by the Proposition 4.5.2.

�

Proposition 4.5.3. ( [26], Proposition 2.12) Let N = N1 ×N2 be a submodule of M.

Then ⟨EM(N)⟩= ⟨EM1(N1)⟩×⟨EM2(N2)⟩.

Theorem 4.5.1. M s.t.s.r.f. if and only if Mi s.t.s.r.f. for all i = 1,2.

Proof. Assume M s.t.s.r.f.. Take a submodule N1 of M1. Then N1 ×M2 s.t.s.r.f., so

that sradM1(N1)× M2 = ⟨EM1(N1)⟩ × ⟨EM2(M2)⟩. Now, let x ∈ sradM1(N1). Then

(x,m) ∈ sradM1(N1)×M2 and hence x ∈ ⟨EM1(N1)⟩. Similiarly it can be shown that

sradM2(N2) = ⟨EM2(N2)⟩.

Conversely assume that M1 and M2 s.t.s.r.f.. Take any submodule N1×N2 of M1×M2.

Then

sradM(N1 ×N2) = sradM1(N1)× sradM2(N2)

= ⟨EM1(N1)⟩×⟨EM2(N2)⟩

= ⟨EM(N1 ×N2)⟩

Thus, M = M1 ×M2 s.t.s.r.f.. �
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5. CLASSICAL PRIME SUBMODULES

5.1 Classical Prime Submodules

Classical prime submodules was introduced in [11]. A proper submodule N of an

R-module M is called a classical prime submodule if for each m ∈ M and a,b ∈ R;

abm ∈ N implies that am ∈ N or bm ∈ N.

In the same manner classical primary submodule is defined [16]. There are two

different definitions for this concept. When the main module is Noetherian, these

definitions are coincide [31]. A proper submodule N of an R-module M is a classical

primary submodule if abm ∈ N where a,b ∈ R and m ∈ M, implies that either bm ∈ N

or akm ∈ N for some k ≥ 1.

Sometimes weakly prime and weakly primary are used for classical prime and classical

primary submodules.

It is clear from the definition that every prime submodule is classical prime and every

primary submodule is classical primary but the converse need not be true [ [16],

Example 1.2].

Lemma 5.1.1. If N is a classical prime submodule, then ⟨EM(N)⟩= N.

Proof. Let x ∈ ⟨EM(N)⟩. Then there exist elements ri ∈ R,mi ∈ M such that

x = r1m1 + r2m2 + · · ·+ rtmt where 1 ≤ i ≤ n and rki
i mi ∈ N.

Since N is classical prime, rki
i mi ∈ N implies that rimi ∈ N or rki−1

i mi ∈ N. If rimi ∈ N,

then x = r1m1 + · · ·+ rtmt ∈ N. If rki−1
i mi ∈ N, then rimi ∈ N or rki−2

i mi ∈ N. By the

same process, rimi ∈ N for all cases. Hence x ∈ N, which means that ⟨EM(N)⟩ ⊆ N.

Other side of the inclusion is obvious. �

The above lemma implies that every classical prime submodule is semiprime by

Lemma 4.1.1.
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Behboodi and Baziar gave the following proposition which gives a relationship

between associated primes of a classical primary submodule.

Proposition 5.1.1. ( [16], Proposition 3.1) Let M be a finitely generated module over a

Noetherian ring. If N is classical primary submodule of M and N = Q1∩Q2∩ . . .∩Qs

is its minimal primary decomposition with
√

Qi : M = pi for each i, then p1 ⊂ p2 ⊂

·· · ⊂ ps.

In the next statement we show that the converse of the above proposition is also true for

any submodule N of a Noetherian module M satisfying the condition ⟨EM(N)⟩= N.

Theorem 5.1.1. Let R be a Noetherian ring and M be a finitely generated R-module.

Suppose that a submodule N of M has a primary decomposition N = Q1∩Q2∩·· ·∩Qs

where each Qi is pi-primary with p1 ⊂ p2 ⊂ ·· · ⊂ ps. If ⟨EM(N)⟩ = N, then N is

classical prime submodule.

Proof. Since p1 ⊂ p2 ⊂ ·· · ⊂ ps, by Theorem 2.3.1 we have

N = ⟨EM(N)⟩= N + p1M+
s

∑
i=2

pi(
i−1∩
j=1

Q j).

Let abm ∈ N with a,b ∈ R and m ∈ M. Let i be the first index for which m < Qi. Since

Qi is pi-primary, ab ∈ pi and so either a ∈ pi or b ∈ pi. If i = 1, then since p1M ⊂

⟨EM(N)⟩= N, either am ∈ N or bm ∈ N. Let i > 1. Since pi(
i−1∩
j=1

Q j)⊂ ⟨EM(N)⟩= N,

either am ∈ N or bm ∈ N. Hence N is a classical prime submodule. �

The classical quasi-primary submodules are introduced in [31].

Definition 5.1.1. A proper submodule N of a Noetherian module M is called classical

quasi-primary if abm ∈ N where a,b ∈ R and m ∈ M implies that either akm ∈ N or

bkm ∈ N for some k ∈ N.

In [31], it is shown that if N is classical quasi-primary, then the converse of Proposition

5.1.1 is also satisfied.

Proposition 5.1.2. ( [31], Proposition 3.4) Let M be a Noetherian R-module and N

be a proper submodule of M. Suppose that N = Q1 ∩Q2 ∩ ·· · ∩Qs is the minimal

primary decomposition where each Qi is pi-primary submodule. Then N is classical

quasi-primary if and only if {p1, p2, . . . , ps} is a chain of prime ideals.
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It is clear from the definition that every classical primary submodule is classical

quasi-primary, but the following example shows that the converse is not true in general.

Example 5.1.1. Let R = Q[x,y,z] and let M = R⊕R⊕R. Consider the submodule

N = ⟨ye1,xye3,x2e2,+xy2e2+(x3+y2z)e3,xy3e2+y3ze3,x4e1⟩ with N : M = ⟨x2y,x4⟩.

Primary decompostion is N = Q1 ∩Q2 where

Q1 = ⟨e1,xe2 + ze3⟩ is ⟨x⟩−primary,

Q2 = ⟨ye1,xye3,x2e2,y3e2,y3e3,x3e3 + xy2e2 + y2ze3,x4e1⟩ is ⟨x,y⟩−primary.

Since ⟨x⟩ ⊆ ⟨x,y⟩, N is classical quasi-primay by Proposition 5.1.2 with

⟨EM(N)⟩= ⟨ye1,xe1,xe2,xe3,yze3⟩.

On the other hand, N is not classical primary. If we take a = x3,b = y and m = (0,0,1),

then abm = x3y(0,0,1) = (0,0,x3y) ∈ N but

x3(0,0,1) < N and yk(0,0,1) < N,

y(0,0,1) < N and (x3)k(0,0,1) < N f or some k ≥ 1.

By using the above proposition, we can show the following theorem.

Theorem 5.1.2. Let M be a Noetherian R-module. If N is a classical quasi-primary

submodule with ⟨EM(N)⟩= N, then N is classical prime submodule.

Proof. Suppose that N =Q1∩Q2∩·· ·∩Qs is classical quasi primary submodule where

each Qi is pi-primary submodule. By Proposition 5.1.2, p1 ⊂ p2 ⊂ ·· · ⊂ ps. Hence by

Theorem 5.1.1, N is classical prime.

�

In [16] Theorem 1.9, Baziar and Behboodi showed that if R is domain with dimR ≤

1, then for every classical primary submodule Q of M ⟨EM(Q)⟩ is a classical prime

submodule. As a result of this theorem, they proposed the following conjecture. Notice

that they use the notation nil√Q for ⟨EM(Q)⟩.

Conjecture 5.1.1. Let R be a ring and M be an R-module. Then for every classical

primary submodule Q of M, ⟨EM(Q)⟩ is a classical prime submodule.
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The following example shows that this conjecture is false.

Example 5.1.2. Let R = Q[x,y] and let M = R⊕ R. Consider the submodule N =

⟨xe1 + y3e2,x2e1,xe2⟩. One can easily see that N : M = ⟨x2⟩ and N is ⟨x⟩-primary

submodule. Hence

⟨EM(N)⟩= N + ⟨x⟩M = ⟨xe1,xe2,y3e2⟩

Then ⟨EM(N)⟩ is not classical prime submodule since y2(0,y) = (0,y3)∈ ⟨EM(N)⟩ but

y(0,y) = (0,y2) < ⟨EM(N)⟩.

If we weaken the conditions of conjecture as follows, then we obtain the following

result.

Corollary 5.1.1. Let R be a Noetherian ring and M be a finitely generated R-module, N

be classical primary submodule of M. Then N is semiprime if and only if N is classical

prime.

Proof. Suppose N is semiprime and N = Q1 ∩Q2 ∩·· ·∩Qk is primary decomposition

of N with
√

Qi : M = pi (1 ≤ i ≤ k). By Proposition 5.1.1, p1 ⊂ p2 ⊂ ·· · ⊂ pk. Then

Theorem 5.1.1 implies that N is classical prime submodule. �

We also have the following result.

Corollary 5.1.2. Let N = Q1 ∩Q2 be a submodule of M where Qi is pi-primary. If

⟨EM(N)⟩= N, then either Q1 and Q2 are both prime or N is classical prime.

Proof. We have two cases: p1 * p2 or p1 ⊆ p2. If p1 * p2, then both p1 and p2 are

isolated primes. By Corollary 2.3.2, Q1 and Q2 are prime submodules. If p1 ⊆ p2,

then Theorem 5.1.2 implies that N is classical prime.

�
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5.2 Semiprime Submodules which are Intersection of Classical Primes

Any intersection of classical prime submodule of an R-module is semiprime. But

the converse is not true in general. So, it is interesting to characterize modules over

which every semiprime submodule is an intersection of classical prime submodules.

In [15], commutative rings over which semiprime submodules are intersection of prime

submodules are characterized. In 2006 Behboodi showed the following theorem [12].

Theorem 5.2.1. ( [12], Theorem 1.10) Let R be a commutative domain with dimR ≤ 1,

and let M be an R-module. Then every semiprime submodule of M is an intersection

of classical prime submodules.

In this section we will give some additional definitions and conditions to characterize

the semiprime submodules which can be written as an intersection of classical primes.

Definition 5.2.1. A submodule N is called a quasi-p-primary in M, if N has a unique

isolated prime p (and possibly embedded primes).

Now, let us write a new definiton.

Definition 5.2.2. A quasi-p-primary submodule N is called simple quasi-p-primary if

for any distinct associated primes pi, p j and pk of N, pi ⊂ pk and p j ⊂ pk implies either

pi ⊂ p j or p j ⊂ pi.

Definition 5.2.3. A Hasse diagram is a graphical rendering of a partially ordered set

displayed via the cover relation of the partially ordered set with an implied upward

orientation. A point is drawn for each element of the poset, and line segments are

drawn between these points according to the following two rules:

(i) If x < y in the poset, then the point corresponding to x appears lower in the drawing

than the point corresponding to y.

(ii) The line segment between the points corresponding to any two elements x and y of

the poset is included in the drawing if and only if x covers y or y covers x.

In the language of the graph theory, we can say N is a simple quasi-primary submodule,

if Hasse diagram of associated primes of N with respect to set inclusion form a rooted

tree.
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Lemma 5.2.1. Let M be a Noetherian R-module. If N is a simple quasi-p1-primary

semiprime submodule, then N can be expressed as an intersection of finitely many

classical prime submodules containing N.

Proof. Let Ass(M/N) = {p1, . . . , ps} and S = {1, . . . ,s}. If N contains only one

maximal associated prime with respect to inclusion, then its associated primes form

a chain p1 ⊂ ·· · ⊂ ps. Hence N is classical prime by Theorem 5.1.2.

Suppose that N has more than one maximal associated prime. For each maximal p j,

we have a unique chain of associated primes p1 = p j1 ⊂ p j2 ⊂ ·· · ⊂ p jt = p j. Let

N j = Q j1 ∩Q j2 · · ·∩Q jt where Q j1 = Q1 and Q jt = Q j. From Theorem 2.3.1,

⟨EM(N)⟩= N + p1M+ ∑
T⊂S

(
∩
i∈T

pi)(
∩

i∈S\T

Qi)

and

⟨EM(N j)⟩= N j + p1M+
t

∑
r=2

p jr(
r−1∩
k=1

Q jk).

Our aim to show that ⟨EM(N j)⟩= N j.

Clearly p1M ⊂ ⟨EM(N)⟩= N ⊂ N j. Let B = Ass(M/N)\Ass(M/N j). Take x ∈ p jr and

m ∈
∩r−1

k=1 Q jk . Since p j is a maximal prime and associated primes pairwise distinct,

there exists y ∈ (
∩

p∈B
p)\ p j. Hence

yxm ∈ (p jr ∩ (
∩
p∈B

p))(
r−1∩
k=1

Q jk)⊂ ⟨EM(N)⟩= N ⊂ N j ⊂ Q jk .

Since each Q jk is p jk-primary and y < p jk , xm ∈ Q jk . Hence xm ∈ N j. This implies

⟨EM(N j)⟩ = N j and N j is classical prime by Theorem 5.1.2. Since N = ∩N j, N is

intersection of finitely many classical prime submodules. �

The following proposition is crucial for computing the primary decomposition.

Proposition 5.2.1. ( [20],Proposition 2) Assume that L = {p1, . . . , pk} are the isolated

primes of N. For i, j = 1, . . . ,k take fi ∈ R such that fi ∈ p j if i , j, but fi < pi,

Ni = N : ⟨ fi⟩∞ and take integers ei such that f ei
i Ni ⊂ N. Then:

(i) Ni is a quasi-pi-primary submodule in M.

(ii) The sets Ai = Ass(M/Ni) = {p ∈ Ass(M/N) : fi < p} are pairwise disjoint.
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(iii) For J := ⟨ f e1
1 , f e2

2 , . . . , f ek
k ⟩ we have

N = (
∩

Ni)∩ (N + JM)

This is a decomposition of N into quasi-primary components Ni and a component N′ :=

N + JM ⊂ M of lower (relative) dimension.

Theorem 5.2.2. Assume that L = {p1, . . . , pk} are the isolated primes of a semiprime

submodule N and define Ni’s as in the previous proposition. If N = N1 ∩N2 ∩ ·· ·Nk

and each Ni is simple quasi-pi-primary, then ⟨EM(Ni)⟩= Ni for i = 1, . . . ,k. Hence N

can be written as a finite intersection of classical prime submodules.

Proof. For a fixed i, let Ass(M/Ni) = {pi1 = pi, pi2, . . . , pisi
} and pi ⊆ pik for every k

and let Ni = Qi1 ∩·· ·∩Qisi
where each Qik is pik-primary. By the Theorem 2.3.1,

⟨EM(N)⟩= N +(
k∩

i=1

pi)M+ ∑
/0,T S

( ∩
j∈T

pi j

)( ∩
j∈S\T

Qi j

)
and

⟨EM(Ni)⟩= Ni + piM+ ∑
/0,T Si

( ∩
r∈T

pir
)( ∩

r∈Si\T

Qir)

where Si = {i1, i2, . . . , isi} and S =
∪k

i=1 Si.

Let x ∈ pi and m ∈ M. Take y ∈
(∩

j,i p j
)
\
(∪si

t=2 pit
)
. Then

yxm ∈
( k∩

j=1

p j
)
M ⊆ ⟨EM(N)⟩ ⊆ Qit

for t = 1, . . . ,si. Since Qit is primary and y < pit , xm ∈ Qit . Hence xm ∈ Ni.

Now let x ∈
∩

r∈T
pir ,m ∈

∩
r∈Si\T

Qir for some T  Si. Take

y ∈
(∩

j,i

p j
)
\
( si∪

t=2

pit
)
.

Then

yxm ∈
[(∩

j,i

p j
)
∩
( ∩

r∈T

pit
)]( ∩

r∈Si\T

Qir
)
.

Since ∩
j,i

p j =
∩
j,i

s j∩
t=1

p jt ,
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[(∩
j,i

p j
)
∩
( ∩

r∈T

pit
)]( ∩

r∈Si\T

Qir
)
⊆ ⟨EM(N)⟩ ⊆ Ni.

Thus yxm ∈ Qit for t = 1, . . . ,si. Since Qit is primary and y < pit , xm ∈ Qit and hence

xm ∈ Ni. Therefore ⟨EM(Ni)⟩ = Ni and hence N can be written as an intersection of

classical prime submodules by Lemma 5.2.1. �
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6. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we obtained a formula for finding the lower nilradical of a submodule

when the underlying module is Noetherian. Computing the radical of a submodule

is also another problem in this area. This problem is solved for Noetherian modules

by [17]. Here we gave an alternative proof for that computation and also we got a

better technique to determining the prime submodules which are redundant or not for

the prime radical.

Since every prime submodule is semiprime, the certain question one would like to

think of is what is the intersection of all semiprime submodules containing a specific

module. The answer of this question gave us semiprime radical and this suggested that

one should consider the modules which satisfy the semiradical formula, and we did so.

We also observed the semiprime submodules which can be written as an intersection

of classical primes since the converse always holds.

The obvious question one would like to consider is that is it possible to find a formula

for determining lower nilradical even in the non-Noetherian case. This would be one

of the questions that we would like to answer in our future study. The related question

that we would like to answer is whether the definition of semiradical formula can be

generalized or not.

Another related question for our future study would be what conditions can be added

to simplify semiprimes which are intersection of classical primes.
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