ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

RADICAL, NILRADICAL AND CLASSICAL PRIME SUBMODULES

Ph.D. THESIS

Sibel KILICARSLAN CANSU

Department of Mathematical Engineering

Mathematical Engineering Programme

DECEMBER 2013






ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

RADICAL, NILRADICAL AND CLASSICAL PRIME SUBMODULES

Ph.D. THESIS

Sibel KILICARSLAN CANSU
(509062005)

Department of Mathematical Engineering

Mathematical Engineering Programme

Thesis Advisor: Asst. Prof. Recep KORKMAZ

Co-Advisor: Asst. Prof. Erol YILMAZ

DECEMBER 2013






ISTANBUL TEKNIiK UNIiVERSITESI * FEN BIiLIMLERI ENSTITUSU

RADIKAL, NILRADIKAL VE KLASIK ASAL ALT MODULLER

DOKTORA TEZi

Sibel KILICARSLAN CANSU
(509062005)

Matematik Miihendisligi Anabilim Dah

Matematik Miihendisligi Program

Tez Danmismani: Yrd. Do¢. Dr. Recep KORKMAZ

Es Damisman: Yrd. Do¢. Dr. Erol YILMAZ

ARALIK 2013






Sibel KILICARSLAN CANSU, a Ph.D. student of ITU Graduate School of Sci-
ence Engineering and Technology 509062005 successfully defended the thesis enti-
tled “RADICAL, NILRADICAL AND CLASSICAL PRIME SUBMODULES”,
which she prepared after fulfilling the requirements specified in the associated legisla-
tions, before the jury whose signatures are below.

Thesis Advisor : Asst. Prof. Recep KORKMAZ ...
Istanbul Technical University

Co-advisor : Asst. Prof. Erol YILMAZ e,
Abant Izzet Baysal University

Jury Members : Prof. Dr. Vahap ERDOGDU  ........ccoooovviei,
Istanbul Technical University

Assoc. Prof. Sefa Feza ARSLAN ...,
Mimar Sinan Fine Art University

Assoc. Prof. Ergiin YARANERI ...
Istanbul Technical University

Assoc. Prof. Giirsel YESILOT ..o,
Yildiz Technical University

Assoc. Prof. Mustafa ALKAN ...
Akdeniz University

Date of Submission : 7 November 2013
Date of Defense : 27 December 2013



Vi



To my family and especially to my precious Fatma Zeynep,

vii



viii



FOREWORD

I would like to thank to my advisor Asst. Prof. Recep Korkmaz for his assistance
during my PhD studies. Also, I would like to thank to my co-advisor Asst. Prof.
Erol Yilmaz for his encouragement, patience and guidance during the development
of the thesis. I would like to present my gratitudes to him for his understanding and
confidence in me.

I would like to remember with respect the esteemed late Prof. Dr. Cemal Ko¢ who
provided me support before his passing, as one of the members of the thesis steering
committee. I would also like to thank to the other members of the committee Prof. Dr.
Vahap Erdogdu, Assoc. Prof. Sefa Feza Arslan, Assoc. Prof. Ergiin Yaraneri, Assoc.
Prof. Giirsel Yesilot and Assoc. Prof. Mustafa Alkan for their assistance.

I want to thank all members of the Department of Mathematics Engineering at Istanbul
Technical University for their help and sincerity.

My dear husband Fatih Kiirsat, I am grateful to him for always being there for me,
supporting me and not to give up believing in me. His confidence in me has given the
confidence in myself that I needed to get through the problems.

My one and only daughter Fatma Zeynep, my life is more beautiful after your birth;
thanks for giving a hug and a smile when I needed that. You showed a great dedication
to deal with the times when your mother was not around. Every moment that I had to
take from you is on that pages.

I am grateful to my esteemed mother Emine Kilicarslan who has always supported me,
shared the responsibilities on my shoulders and created me a time when I said "I have
lots of work to do". Also, I owe a lot to my esteemed father Osman Kiligarslan who
always there when I needed. It is impossible to remunerate for me. I send my love and
gratitude to my brother Sinan and my sister Sinem to whom I always tried to be a good
sister.

As a last word, I would like to thank everyone who has contributed to the process of
this study, especially Fatih Kiirsat and Fatma Zeynep.

December 2013 Sibel KILICARSLAN CANSU

iX






TABLE OF CONTENTS

Page
FOREWORD.....cutiiiiiininninnnninnisssisssnssssssssisssissssssssssssssssssssssssssssssesssssssssssssssses ix
TABLE OF CONTENTS .....uiiiiiiniiniinsninnnicssssssisssnssssessssssssossssssssssssssssssssssssssssses xi
LIST OF SYMBOLS ...uucoiiiniiiniinnissnncssnssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss xiii
SUMMARY ouviiirnicssanicssncssssessssssssassssssssssssssssssssssssssssssssssssssassssssssssassssssssssssssssssssss XV
OZET sssamssansssamssssasssaasesaes sesnesssnesssassssaassaesssaesses xvii
1. INTRODUCTION ...uuiiiuinrrinsnecsaecssnnssancssesssnsssassssssssessssssssssssssssasssssssssssasssssssss 1
2. ENVELOPE OF A SUBMODULE . . ceeessnesnnnane 5

2.1 Primary DeCOMPOSITION......cccueiruiiriieiieiienteereeiie ettt eneens 5
2.2 Stable QUOLIEIE ...vvveieeeeieiiieeeeeeeeeecirieeee e eeeeetree e e eeeeetrreeeeeeeeeearrreeeeeeeeenennes 6
2.3 Formula for Lower Nilradical...........ccccceiviiiniiiiiiiieeieeeeceeee e 7
3. COMPUTING RADICAL OF A SUBMODULE .......cccccceveesnresnrcssncsanssssoases 11
3.1 Saturation of SUbBMOAUIES.......c..cooiiiiiiiiiiiiiiee e 11
3.2 Generalized Associated Prime Ideal............cccocovveeeiiiiieniiiiicie e, 13
3.3 Determining Redundant Primes ............cccccueeiiiiiiiiiiniiiinieeneeeeeeeee 20
4. PRIME AND SEMIPRIME SUBMODULES... . . ceeessnesnneans 23
4.1 Semiprime SubmMOAUIES......c...coceiiiiriiiiiiicee e 23
4.2 Semiprime Radical .........ccoocuiiiiiiiiiiiiiiiieeeeee e 26
4.3 Modules Which Satisfy The Semiradical Formula...............cccocoiiiiniiennnnne. 28
4.4 Semiradical EQUALILY ......cccoeeviiiiiiiiiiiieieeieeecceeeee e 35
4.5 Semiprime Submodules of Cartesian Product of Modules..............cc.ccuue...e. 36
5. CLASSICAL PRIME SUBMODULES........cccuvtniiniinsninssncsssssssscssnsssssssssnses 41
5.1 Classical Prime Submodules .........cccccooiiriiiiiiiiiniiiiieciceeeecnceeeens 41
5.2 Semiprime Submodules which are Intersection of Classical Primes ............. 45
6. CONCLUSIONS AND RECOMMENDATIONS .....cccoivueseesrecsnessecsacssessasssacans 49
REFERENCES.... . . . ceeessnssnneane 51
CURRICULUM VITAE . ....uuiiiiiiinniisninsnissnnsssssssissssssssssssssssssssssssssssssssssssssssssssns 53

xi



Xii



LIST OF SYMBOLS

rady(N) : Radical of a submodule N of an R-module M
Ey(N) . Envelope of N in M

Ass(M/N) : Associated prime ideals of N

N:(f)” : Stable quotient of N by (f)

Sy(N) :  Saturation of N

GAss(M/N) : Generalized associated prime ideals of N
srady(N) : Semiradical of a submodule N of an R-module M

xiil



Xiv



RADICAL, NILRADICAL AND CLASSICAL PRIME SUBMODULES

SUMMARY

The set of nilpotent elements of a commutative ring forms an ideal and it is equal
to the intersection of all the prime ideals. This is a well-known characterization in
commutative rings. R.L.McCasland and M.E.Moore generalized this characterization
to modules which gave the concepts prime radical of a module, rady;(N), which is the
intersection of all prime submodules containing N and the envelope of a submodule
N, (Epm(N)), which is defined to be the set of all elements of the form rm where r is
an element of the ring R and m is an element of the R-module M with the condition
r*m € N where k € Z*. The submodule generated by the envelope, (Ej(N)), is called
(Baer’s) lower nilradical.

McCasland and Moore called that N satisfies the radical formula (N s.tr.f.) if
rady(N) = (Ey(N)); M satisfies the radical formula (s.t.r.f.) if for every submodule
N of M, N s.trf.; a ring R satisfies the radical formula (s.t.r.f.) if every R-module
satisfies the radical formula. The question of what kind of rings and modules s.t.r.f.
has been studied by many authors. Although some methods for computing of radical
of a submodule are given by McCasland - Smith and Marcelo - Rodriguez, it seems
there is no description for the computation of the lower nilradical of a submodule. One
of the main objective of this thesis is determining the lower nilradical of a submodule.
We give a formula for computing the lower nilradical of a submodule N if a minimal
primary decomposition of N is known.

Chin-Pi Lu proved that if N is a submodule of a finitely generated module M, then the
prime radical of N can be written as an intersection of the submodules S,(N + pM)
with p is a prime ideal such that N : M C p, where S,(N + pM) is the saturation of
N + pM which is the set of elements m € M such that cm € N + pM for some element
¢ € R— p. A method to find the saturation of the submodule N + pM is given. Also
a technique to eliminate the redundant primes in the process of determining the prime
radical of a submodule is given.

Also, some properties of semiprime submodules are studied and the relation between
the notions of prime radical of a submodule and semiprime radical of a submodule
which is the intersection of all semiprimes containing that submodule is examined.

Finally, semiprime submodules which can be written as an intersection of classical
primes are investigated. It is shown that if N is a semiprime submodule of a
Noetherian R-module and associated prime ideals of N that are determined by the
primary decomposition of N form a chain, then N is classical prime submodule. A new
definition which we called the simple quasi primary submodule is given. It is shown
that if M is a Noetherian R-module and N can be written as an intersection of simple
quasi primary submodules with each of them is semiprime, then N can be written as
a finite intersection of classical prime submodules. An example which shows that the
conjecture of Baziar and Behboodi is false is given.

XV



Throughout R will always denote a commutative ring with identity and M will denote
the unitary R-module.
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RADIKAL, NILRADIKAL VE KLASIK ASAL ALT MODULLER

OZET

R degismeli bir halka olmak iizere herhangi bir / idealin radikali R’nin I’y1 kapsayan
biitiin asal ideallerinin arakesiti olarak tanimlamir. Bu tamimin n € Z* olmak iizere
r" € I kosulunu saglayan biitiin » € R elemanlarinin kiimesine esit oldugu cok iyi
bilinen bir sonugtur. Modiil teorisinde bu tanimlamaya paralel olarak iki ayr1 kavram
karsimiza ¢ikmaktadir. Bunlardan ilki bir modiiliin asal radikali olarak isimlendirilmig
olup N alt modiiliiniin asal radikali M’nin N’yi kapsayan biitiin asal alt modiillerinin
ara kesiti olarak tanimlanmigtir, rady(N). R halkasim kendisi iizerinde bir modiil
olarak diigiindiigiimiiz zaman radg(I) halkalarda bildigimiz bir idealin radikaline
karsilik gelmektedir. Diger kavram ise zarf olarak isimlendirilen Ej;(N) kiimesidir. Bu
kiime k € Z*, r € R,m € M olmak iizere r*m € N sartin1 saglayan tiim 7m elemanlarinin
kiimesidir.

Halkalardakinin aksine bu iki kavram modiiller {izerinde her zaman birbirine esit
degildir. 1991 senesinde McCasland ve Moore hangi sartlar altinda esitligin oldugunu
arastirmiglardir. Aslinda zarf kiimesinin tanimina bakildiginda bu kiime bir alt modiil
degildir. Bu sebepten Ej(N) kiimesi tarafindan iiretilen alt modiil tizerinde ¢aligmak
daha anlamlidir. McCasland ve Moore bu makalelerinde N alt modiilii i¢in rady (N) =
(Em(N)) esitligi var ise N’ye radikal formiiliinii saglayan alt modiil demislerdir. Eger
M modiiliiniin her N alt modiilii radikal formiiliinii saglar ise M radikal formiiliinii
saglayan modiil, eger her R-modiil radikal formiiliinii saglar ise R radikal formiiliinii
saglayan halka olarak tanimlanmigtir. O zamandan beri de bir ¢ok kisi tarafindan bu
kavramlar iizerinde ¢aligilmigtir.

Literatiire bakildiginda uzun yillar boyunca asal radikal ve zarf tarafindan iiretilen
alt modiil hesaplanmas: ile ilgili herhangi bir ¢alisma bulunmamaktadir. Marcelo
ve Rodriguez 2000 senesinde, McCasland ve Smith ise 2008 senesinde bir alt
modiiliin radikalinin hesaplanmasi ile ilgili makaleler yaymlanmislardir. Bununla
beraber karakterizasyonun zarf kismi hala belirsiz gorilnmektedir. Bu tezin temel
problemlerinden bir tanesi zarf tarafindan iiretilen alt modiili belirleyebilmek i¢in
herhangi bir yontem gelistirilip gelistirilemeyecegidir. N alt modiiliiniin asil
parcalanigi bilindigi takdirde, Ej(N) tarafindan iiretilen alt modiiliin hesaplanmasini
saglayan bir formiil bu tezde verilmistir. Bu da Noether M modiilii i¢in zarf tarafindan
tiretilen alt modiiliin her zaman bulunabilmesine imkan saglar. Ayrica N alt modiiliiniin
zarfi tarafindan iiretilen alt modiil, N’nin kendisine esit ise N alt modiiliiniin asil
parcalanisindaki izole bilesenlerin asal alt modiil oldugu goriilmiistiir.

2003 yilinda Lu, N sonlu iiretecli bir M modiiliiniin alt modiili, p ise N : M
kiimesini kapsayan asal ideal olmak iizere, N’nin asal radikalinin S,(N + pM)
formundaki asal alt modiillerin kesisimi olarak ifade edilebilecegini gosterdi. Bu
tezde S,(N) kiimesinin N’nin asil parcalanigindaki bazi asil alt modiillerin kesigimi

Xvil



olarak yazilabildigi gosterilmistir. Ayrica M sonlu iiretecli bir R-modiil, N, M’nin
alt modiilii ve N : M C p oldugu durumda S,(N + pM) alt modiiliniin N + pM’in
asil parcalanisindaki p-asal alt modiile esit oldugu bulunmustur. R Noether bir halka,
M sonlu iiretecli R-modiil ve p, N : M C p sartim1 saglayan bir asal ideal ise N alt
modiiliiniin asal radikalinin S,(N + pM) seklindeki alt modiillerin sonlu ara kesiti
olarak yazilabildigi 2008 senesinde McCasland ve Smith tarafindan gosterilmistir. Bu
tezde McCasland ve Smith’in teoreminin daha farkl bir ispat1 verilmistir. Daha sonra
bu ara kesitte karsimiza ¢ikan asal alt modiillerin gereksiz olanlarini elemeye yardimci
olacak bir teknik verilmistir.

Asal alt modiil tanimiyla ilintili olarak yar1 asal ve klasik asal alt modiil tanimlari
da bu alanda caligsan insanlarin ilgisini ¢ekmistir. Klasik asal alt modiil ilk olarak
2004 yilinda Behboodi ve Koohy tarafindan tanimlanmistir. Tanimlar incelendigi
zaman asal alt modiiliin klasik asal, klasik asal alt modiiliin de yar1 asal oldugu
acikca goriilmektedir. Bu calismada alt modiiliin asal radikali tanimina benzer
sekilde bir alt modiiliin yar1 asal radikali tanimlanmis, yari asal radikalin 6zellikleri
incelenmig, degismeli bolgeler icin herhangi bir modiiliin yar1 asal radikali ile
burkulma modiiliiniin yar1 asal radikalinin ayni alt modiil oldugu goériilmiis ve yari
asal radikal ile asal radikal arasindaki iligki irdelenmistir. Her serbest R modiil icin
asal radikalin yar1 asal radikale esit olmasinin her R modiil icinde bu esitli§in s6z
konusu olmasini gerektirdigi goriilmiistiir. Radikal formiiliine benzer sekilde yari
radikal formiilii tantmlanmig ve yari radikal formiiliin hangi sartlar altinda saglandigi
belirlenmeye ¢alisilmistir. Bunun yaninda M R{-modiil, M; de R,-modiil olmak iizere
M x M, modiiliiniin yar1 asal alt modiilleri belirlenmeye ¢aligsilmis, bu baglamda Ny x
N, alt modiiliiniin yar1 asal radikalinin N; ve N, alt modiillerinin yar1 asal radikallerinin
carpimi olarak ortaya c¢iktig1 goriilmiistiir. Burada Nj, M;’in; N, ise M; nin bir alt
modiliidiir. Ayrica M| x M, modiiliiniin yar1 radikal formiiliinii saglamas: ile M ve
M> modiillerinin yar1 radikal formiiliinii saglamasinin birbirine denk kosullar oldugu
gosterilmisgtir.

Asal alt modiillerin kesisiminin her zaman yar1 asal olmasinin yaninda klasik asal alt
modiillerin kesisiminin de her zaman yar1 asal oldugunu goérmek zor degildir. Bu
durumda asal alt modiillerin kesisimi olarak yazilabilen yar1 asallar1 ve klasik asal
alt modiillerin kesisimi olarak yazilabilen yar1 asal alt modiilleri belirleyebilmek akla
ilk gelen soru olacaktir. Sorunun ilk kismim ¢ézmeye ¢alisirken Man, her yar asal
alt modiilii asal alt modiillerin kesigimi olarak yazilabilen degismeli Noether halkalar
icin bir tamimlama vermistir. Diger taraftan Behboodi, R degismeli bir bolge ve
dimR < 1 oldugu takdirde, her yar1 asal R alt modiiliiniin klasik asallarin kesisimi
olarak yazilabildigini gdstermistir.

Bu tezde Behboodi’nin calismasina ek olarak klasik asallarin kesisimi olarak
yazilabilen yar1 asal alt modiiller i¢in bir genelleme bulunmaya calisilmistir. Bu
calisma esnasinda yar1 asal alt modiillerin baz1 6zellikleri incelenmis, klasik asal alt
modiiller ve bu alt modiillerin zarfi tarafindan iiretilen alt modiiller arasindaki iligkiler
belirlenmistir. M Noether R-modiil ve N yar1 asal alt modiil olmak iizere, N ile iligkili
asal idealler bir zincir olusturuyorsa N alt modiiliiniin klasik asal olmas1 gerektigi
gosterilmigtir. Baziar ve Behboodi’nin 2009 yilinda yapmis oldugu varsayimin yanlis
oldugu gosterilmis, bu varsayimin sartlar1 zayiflatilarak R Noether bir halka, M sonlu
iiretecli bir R-modiil ise yar1 asal olan her klasik asil alt modiiliin klasik asal olmas1
gerektigi ispatlanmigtir. Ayrica klasik asallarin kesisimi olarak yazilabilen yar1 asal alt
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modiilleri belirleyebilmek amaciyla basit sozde asil alt modiil tanimi geligtirilmis ve
bu tanim yardimiyla N Noether bir R modiiliin yar1 asal alt modiilii iken N her biri yar1
asal olan basit sozde asil alt modiillerin kesigsimi olarak yazilabiliyorsa; N’nin klasik
asal alt modiillerin sonlu kesisimi olarak da yazilabildigi gosterilmistir.

Bu ¢aligmada tiim halkalar degismeli ve birim elemana sahip olup, M birimli R-modiilii
temsil edecektir.
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1. INTRODUCTION

We begin by recalling that, if 7 is an ideal in a commutative ring R, then radical of
I is the intersection of all prime ideals of R containing /. The radical of an ideal is
also characterized by VI={r€R:7/* €I for some n<cZ%}. This notion has
been generalized by R.LL..McCasland and M.E.Moore to modules over a commutative
ring [1]. This generalization brought up the concepts the prime radical of a module
and the envelope of a module. If N is a proper submodule of an R-module M, then N
is called p-prime (p-primary) if rm € N for r € R,m € M implies that either m € N or
re(N:M)=p(@meNorre \/N: M= p)where N : M is the set of all elements of
R that takes M into N.

Hence, the prime radical of N in M, rady(N) is defined as the intersection of all prime
submodules of M containing N [2]. If no prime submodule of M contains N or there
is no prime submodule, then rady(N) = M. The envelope of N in M, Ey(N), is the
collection of all elements x € M for which there exists r € R,m € M such that x = rm
and rm € N for some k € Z*. The submodule generated by the envelope is called
(Baer’s) lower nilradical and denoted by (Ej(N)). N satisfies the radical formula (N
s.t.r.f.) if the radical of N is equal the lower nilradical of N [1]i.e. rady (N) = (Ep(N))
. M satisfies the radical formula (M s.t.r.f.) if for every submodule N of M, N s.t.r.f.. It
is said that a ring R satisfies the radical formula (R s.t.r.f.) if every R-module satisfies
the radical formula. When we consider the ring R as an R-module, ideals of R will
be the submodules of R; and by the characterization of the radical of an ideal every

submodule of R satisfies the radical formula.

Prior to [1], the only rings known to s.t.r.f. were fields (every proper subspace of
a vector space is prime) and the only modules (other than vector spaces) known to
s.t.r.f. were multiplication modules [3]. Later, in 1992 Jenkins and Smith showed
that Dedekind domains satisfy the radical formula [4]. In [4], they gave a conjecture
that Dedekind domains are the only Noetherian domains which satisfy the radical

formula. Then in [5] Man tried to tackle this problem and he showed that if R is a



Noetherian domain of Krull dimension one and R & R s.t.r.f. as an R-module, then R is
a Dedekind domain. In 1997, Leung and Man [6] proved that the only Noetherian rings
which s.t.r.f. are of dimension at most one and they gave a complete characterization
of Noetherian rings which s.t.r.f. Also Sharif, Sharifi and Namazi [7] showed that

Artinian rings satisfy the radical formula.

Up to 2001, there was no work which deals with the computation neither the lower
nilradical nor the radical of a submodule. One of the main problems of this thesis
is computing the lower nilradical of a submodule. In 2001, Smith [8] showed that if
N is p-primary submodule, then (Ey(N)) = N + pM. After two years, Lu gave the
definition of saturation [9] which enables him to compute the radical of a submodule.
For any submodule N of M and for any prime ideal p of R, saturation of N defined as
the set

Sp(N) :={m e M :cm e Nforsome c € R\ p}.

Lu [9] showed that if M is Noetherian R-module, then rady (N) = (n] Sy, (N + piM)
where p;’s are prime ideals containing N : M. But it was a question thleTtlhow can these
prime ideals are determined. This question is answered by Smith and McCasland [10]
in 2008. They gave a decomposition of the radical of a submodule in a Noetherian
module as an intersection of finitely many known prime submodules. To give that

decomposition they define generalized associated prime ideals of a submodule.

The notion of classical prime submodule was introduced in [11] and has received the
attention of many authors [12], [13], [14]. A proper submodule N of an R-module M
is called classical prime if abm € N implies either am € N or bm € N for a,b € R and
m € M. Sometimes weakly prime is used for classical prime. A proper submodule N
is semiprime if ¥*m € N implies rm € N where r € R,m € M and k € Z+. When we
consider the definitions, it is clear that every prime submodule is classical prime and
every classical prime submodule is semiprime. An intersection of prime submodules is
semiprime. But the converse is not true in general. Man [15] gave a characterization of
a commutative Noetherian ring R with the property that every R-semiprime submodule
is an intersection of prime submodules. Also an intersection of classical prime
submodules is semiprime. Thus it is interesting to characterize the rings over which
each semiprime submodule is an intersection classical primes. Behboodi [12] showed

that if R is a commutative domain with dimR < 1, then every semiprime submodule of

2



a module M is an intersection of classical prime submodules. A proper submodule N
of M is classical primary if abm € N where a,b € R and m € M, then either bm € N
or a¥m € N for some k > 1 [16]. Behboodi and Baziar showed that if M is finitely
generated module over a Noetherian ring, then associated prime ideals of a classical

primary submodule form a chain [16].
This introduction forms Chapter 1.

Chapter 2 contains one of the main results of this thesis. We give a formula to compute
the lower nilradical of a submodule,(Ej(N)), if a minimal primary decomposition of

the submodule is known.

Chapter 3 has three sections. Section 1 contains some known results about saturation
and we will show that the saturation of a submodule is the intersection of some of
the primary components of its primary decomposition. Moreover, we also prove that
if N is a submodule of a finitely generated module M with N : M C p where p is
a prime ideal, then S,(N + pM) is equal to the p-prime component of the primary
decomposition of N + pM. In section 2, definition of generalized associated prime
ideal is given and an alternative proof of McCasland - Smith theorem [17] is stated.
In the third section, a technique to determine the redundant prime submodules which

appears in the computation of the radical is investigated.

Chapter 4 constitute some results about semiprime submodules and semiradical of a
module which is defined as the intersection of all semiprime submodules containing
that module. In the third section of this chapter we define semiradical formula and
investigate the modules which satisfy the semiradical formula. Since semiradical of a
module always contained in the prime radical, we investigate the conditions when the
equality holds and we call it semiradical equality. We also show that a ring R satisfy the
semiradical equality if and only if every free R-module satisfy the semiradical equality.
Also, semiprime submodules of the R = R; X R,-module M| x M, are characterized
where each M; is an R;-module. We also examine that semiradical of any submodule
N1 X Ny of My x M5 is the same as the cartesian product of semiradicals of Ny and N,
which also allows us to show that M| x M satisfy the semiradical formula if and only

if M; satisfy the semiradical formula for i = 1,2.



In chapter 5 the relation between classical prime submodules and their lower nilradical
is investigated. We show that if N is a semiprime submodule of a Noetherian R-module
and associated prime ideals of N form a chain, then N is classical prime submodule.
Also in this chapter we show that the lower nilradical of a classical primary submodule
need not be a classical prime submodule which is the answer of the conjecture of Baziar
and Behboodi [16]. We also show that a semiprime submodule N of M is classical
prime if it is classical primary when M is Noetherian. We give a new definition which
we call simple quasi primary submodule. We also examine that if N is a semiprime
submodule of a Noetherian R-module which can be written as an intersection of simple
quasi primary submodules, then each of these simple quasi primary submodules is
semiprime, and hence N can be written as a finite intersection of classical prime

submodules.

Finally, Chapter 6 is the conclusion chapter which contains a brief summary with some

suggestions for future study.

The main results of this thesis (namely, the results of Chapter 2 and Chapter 5) will

appear in the Bulletin of the Iranian Mathematical Society [18].

Throughout R will always denote a commutative ring with identity and M will denote

the unitary R-module.



2. ENVELOPE OF A SUBMODULE

2.1 Primary Decomposition

In this section we recall some basic definitions and well-known results about primary

decomposition.

Definition 2.1.1. A proper submodule Q of M is called primary submodule if rm € Q
implies that m € Q or *M C Q for some k € Z*, forall r € R,m € M.

If p= /N : M is a prime ideal of R, then Q is called p-primary submodule.

For an arbitrary submodule N, a primary decomposition of N in M is a representation

of N as an intersection of finitely many primary submodules of M

N=01Nn0N---NQy

with p;-primary submodules Q; C M.

We call a primary decomposition minimal precisely when

(a) p1,p2,--.,pn are n different prime ideals of R, and

(b) forall j=1,2,...,n we have
Q;2()0:

i#]j

k

If 01,05,...,0¢ are p-primary submodules, then () Q; is p-primary. This result
i=1

provides that we can always refine any primary decomposition to produce a minimal

primary decomposition by discarding those Q; that contain () Q; and intersecting those
i£]

Q; that are p-primary for the same p.

Definition 2.1.2. A prime ideal p of R is called the associated prime of N if p = (N : m)

for some m € M — N. The set of all associated primes of N is denoted by Ass(M/N).



The prime ideals in Ass(M /N) that are minimal with respect to inclusion are called the
isolated primes of N, the remaining associated prime ideals are the embedded primes

of N.

Theorem 2.1.1. ( [19], Theorem 3.1) Let R be a Noetherian ring and M be a finitely
generated non-zero R-module. Then Ass(M/N) is finite, non-empty set of primes each
containing Ann(M/N) = (N : M). The set Ass(M /N) includes all the primes minimal

among primes containing Ann(M /N) = (N : M).

Theorem 2.1.2. Let R be a Noetherian ring, M be a finitely generated R-module and
N be any submodule of M. Suppose N = Q1N QxN---NQ, is a minimal primary
decomposition of N with Q; is p;-primary. Then

(a) the p;’s are uniquely determined by N.
(b) if p;i is minimal, then Q; is uniquely determined by N.

Theorem 2.1.3. ( [19], Theorem 3.10) Let R be a Noetherian ring, M be a
finitely generated R-module and let N = Q1N Q>N ---NQ, be a minimal primary
decomposition with Q; is p;-primary submodules. Then Ass(M/N) = {p1,p2,-..,Pn}-

2.2 Stable Quotient

Definition 2.2.1. Let R be a ring and, M be an R-module and N be a proper submodule
of M. If f € R, then

N:(f)y*={meM: ffmeN for some ke Z"}.
is called stable quotient of N by (f).

Lemma 2.2.1. ( [20], Lemma 1) Let P be a primary submodule of M and f € R. Then
(i) P:{f)=Miffe VP:M,
(ii) P: (f)*=Piff¢ VP: M,

k
More generally if primary decomposition of any submodule N of M is N = () Q; into
i=1
qi-primary submodules, then



(iti) N: (f)" = Qi

féai

Proof. (i) If f € \/P: M, then for some positive integer k, f*M C P which implies
that P: (f)* =M.

(ii)) Let f¢ vVP:Mandne€ P: (f)”. Then f*n € P for some k € Z*. Since P is primary
submodule, we get n € P. Thus P: (f)* = P.

k
(iii) Suppose N = () Q; where /Q; : M = g;. Then
i=1

i=1 i=1 féaqi

by part (i) and (ii).

We can easily show that;

Lemma 2.2.2. ( [2]], Lemma 1.3.3) Let N be p-primary submodule of an R-module

M. Then

.| N, ifhép;
N'h_{M, ifh € (N:M).

where N:h={m M :h.m CN}.

2.3 Formula for Lower Nilradical

Recall that the envelope of N is the set
Ey(NY={rm:reRmeM and r*meN for some keZ'}.

Lemma 2.3.1. Let N = Q1N Q>N ---NQ be minimal primary decomposition of N
where Qi M =pjforalli=1,2,... k. If S={1,2,...;k} and 0 +# T C S, then

(P () Qi) C(Eu(N)).

ieT ieS-T

Proof. Let n € (N pi)( (1 Qi). Then there exist elements r; € () p; and m; €
i€l ieS-T ieT
(| Q; such that
i€S—T
n=rymy+rymy—+---+rgmy



for some s € Z*. Thenrj € () p; implies that rl;j M C () Q;withk; € Z*. In particular,
i€T i€T
rim;e ) Q;forall j.
ieT

. ) k

Also, mj € () Q; implies that r];.’mj € () Q;. Hence r];’mj € (N Qi=N. Thus
i€S—T i€S—T i=1

I’jijEM(N) for all j. O

The following theorem gives us a formula for determining the lower nilradical of a

submodule.

Theorem 2.3.1. Let N = Q1N QN ---NQy be minimal primary decomposition of N
where \/Q;:M = p;foralli=1,2,....kand S ={1,2,...,k}. Then

k
(Ev(N) =N+(poM+ Y ((p)( (] Q)
i=1

TCS ieT ieS—-T

where the summation runs over each non-empty subset T of S.

Proof. Let m € (Ep(N)). Then there exist m; € M,r; € R such that

k.
m = rymy +rymy + - - -+ rym; where rj’mj € N.

By the definition of stable quotient, m; € N : (r;)* for each j.

For each r;, we have three cases: r; € p; for all i, r; ¢ p; for all i which means that
k
rj € R— | p; or there is a maximal subset 7" of S such that r; € [ p; for all j.
i=1 i€T

k k
« If r; € () pi, thenm = rimy +romy+---+rm; € () pi)M.
=1

i i=1

k
s Ifr;eR— _Ulp,-, then consider the set N : (r;)*. By Lemma 2.2.1, N : (r;)* = N.
=

Hence m = rymy +rymy+--- +rym; withmj € N : (r;)* and thus m € N.

e Ifr; € .ﬂTpi for some maximal subset T of S, then N : (r)” = p TQi- Hence
4SS 1€5—

rimj € ((\pi)( [ Qi)

ieT ieS-T

Thusme (N pi)( N Qi).

ieT ieS-T



k
Thus for all cases, (Ey(N)) CN+(Np)M+ Y. (N pi)( N B).
i=1 TCS i€l ieS—T

For the other side of the inclusion, Lemma 2.3.1 implies that

Y () () Qi) S (Em(N)).

0#TCS ieT  ieS\T

1=

k
Also N and () p;)M are clearly in (Ep(N)). o
=1

As a result of this theorem, we can write the following corollary. This is also proved

by Patrick F.Smith in [8].

Corollary 2.3.1. If N is a p-primary submodule, then

(Em(N)) =N+ pM.
Now we will give an application of Theorem 2.3.1. The computer algebra system
SINGULAR [22] was used during the computations.

Example 2.3.1. Let R = Q[x,y,z] and let M be an R-submodule R & R & R. Consider

the submodule N = (xze3 — ze; ,x2e3,x2y3e1 —l—x2y2ze2).

Primary decompostion of N is N = Q1 N Q> N Q3 where

Q1 = (e3,ze1,ye| —|—ze2,z2e2> is (z) — primary,
02 = (e1,e3,y%2) is (y) — primary and
Q3 = (xe|,xe3 —ej,x’e;) is (x) — primary.
By Theorem 2.3.1,
(Em(N)) =N+ (p1Np2Np3)M+p1(Q2NQ03) + p2(Q1NQ3) + p3(Q1 N Q2)
+(P1Np2)Q3+ (p1Np3)Q2+ (p2Np3) Q1.

It is clear that (p; N pr N p3)M = (xyze;,xyzes, xyze3). Also we get



p1(Q2N03) = (xzey,xze3 — zey, x*y’ze;)
P2(Q1NQ3) = (xyzes —yzer,x°yes, X’y e +x°yzey)
p3(01N0y) = (xes,xzey, xy e; +xy’zes)
(p1 N p2)Q3 = (xyzer, xyzes — yzey, x*yzes)
(P11 p3)Qa = (xzeq,xze3,xy°ze2)
(

(p2N p3)Q1 = (xye3,xyze, ,xy2e1 +xyze2,xyz2e2>

Thus
(Ey(N)) = (ze;,xe3,xyzez, xy’e; ).
We also have the following result.

Corollary 2.3.2. If (Ey(N)) = N for any submodule of an R-module M, then each

isolated component of primary decomposition of N must be prime.

Proof. Let N =01 NQ0rN---NQ, with Q;’s are p;-primary submodules. Let Q; be
one of the isolated components of N. If O is not a prime submodule, then there exists
an element x € p;y — (O : M) and hence an element m € M such that xm ¢ Q. Since

Pk is an isolated prime, we can find an element y € () p;) — px. Then
Jj*k

n
xym € ﬂ )M C (Ey(N)) =N C Q.

Since Q is py-primary and xm ¢ Qy, y € py which is a contradiction. O

10



3. COMPUTING RADICAL OF A SUBMODULE

3.1 Saturation of Submodules

Definition 3.1.1. Let R be a ring and N be a submodule of an R-module M. For any

prime ideal p of R, the saturation of N defined as

Sp(N) :={m &M :cm e Nforsome c € R\ p}.

It is obvious that N C S,(N) and S,(N) = U (N:r).
reR—p

Let us give some well known properties for the saturation of a submodule.

Lemma 3.1.1. ( [9], Result 1) Let N be any submodule of an R-module M and p be a
prime ideal of R. Then S,(S,(N)) = S,(N).

Lemma 3.1.2. ( [9], Result 2(1)) N is p-prime (p-primary) submodule of M if and
only if S,(N)=Nand N:M =p (V/N:M = p).

Theorem 3.1.1. ( [9], Theorem 2.3) Let M be an R-module, N be a submodule of M

and p is a prime ideal of R. Then the following statements are equivalent.

(i) S,(N) is a p-primary submodule of M.
(ii) Sp(N) : M is a p-primary ideal of R.
(iii) \/Sy(N): M = p.

The following theorem states that saturation of a submodule is the intersection of some

of the primary submodules of its primary decomposition.

Theorem 3.1.2. Let N be a submodule of M and p is a prime ideal of R such that
N:MCp IfN=01NQxN---NQs is a primary decomposition with p;-primary
submodules Q;’s, then

Sp(N) = ﬂ Qi.

piCp

11



Proof. Letr € R— p. Then

N

(N:r)=(VQi:r)= [ (@I (Qi:r)].

i=1 pi&p piCp

By Lemma 2.2.2, we get (N:r)=[ () (Q;: r)]N[ N Qi]- If p; £ p, then there exists

pigp piCp
an element r; € (Q; : M) such that r; ¢ p. Say, ro = [] ri. Then ry € (Q; : M) for each
pitp

iand ro € R— p. Then

(N:r)=M([[)Q]l=[)Q22WN:r).

picp picp
foreachr € R—p. Hence S,(N)= U (N:r)=N:r9)= 1 Q. O
réR—p piCp

Example 3.1.1. Let R = Q[x,y,z] and let M be an R-submodule R & R @ R. Consider
the submodule N = (x’e| + ye, + xyes,ze;,y*ze; +x’e3). Then N : M = (x?yz) and

primary decomposition of N is N = Q1 N Q> N Q3 where
Q1 = (e3,2€1,2€2, 7€ +yey) is p1 = (z) — primary,

0> = (e1,e3,yey) is po = (y) — primary and

Q3 = (ej,xey, xe; +ep) is p3 = (x) — primary.

Take p = (z,y). Then N : M C p and p; C p, p» C p. Hence by Theorem 3.1.2,

Sp(N) =[] Qi = Q1N Q> = (e3,ze1,yze2, x°€| + ye2).
piCp

Proposition 3.1.1. ( /9], Proposition 4.1) Let N be a submodule of a finitely generated
R-module M and let p O N : M be a prime ideal of R. Then

(N+pM):M =S,(N+pM):M=p.

Theorem 3.1.3. ( [9], Theorem 5.4) Let N be a proper submodule of a finitely
generated module M. Then every minimal prime submodule of N must be of the form

S,(N + pM) for some N : M C p.

The following theorem gives us a method to compute the saturation of N + pM.

12



Theorem 3.1.4. Let M be finitely generated and let N be a submodule of M such
that N : M C p is a prime ideal of R. Then S,(N + pM) is p-prime submodule and
S,(N+ pM) is equal to p-primary component of the primary decomposition of N + pM.

Proof. Let N+ pM = Q1N ---NQ, be primary decomposition of N + pM with
VOi: M = p; for 1 <i < n. By Proposition 3.1.1, (N + pM) : M = p and hence p
is the unique minimal associated prime of N + pM. Let p = p;. Hence p ¢ p; for
i=2,---,n. By Theorem 3.1.2,

Sy(N+pM)= () Qi=0
piCp

Hence Q) is prime. O

Above theorem can be applied if we know the primary decomposition of N 4+ pM. If
we only know the associated primes of N + pM, not the decomposition; then we can

compute S, (N + pM) as follows.

Proposition 3.1.2. Let R be a Noetherian ring and let N be a submodule of finitely
generated R-module M and p O N : M be a prime ideal of R. If Ass(M /(N + pM)) =

(P.P1.-op) then Sy(N + pM) = (N -+ pM) : (f)" for some f € () pi) -

Proof. Since N:M C p, (N+ pM : M) = p and so p C p; for each i. Then there exists
N N
fi € pi— p for each i. So such an f can be found f =[] f; € (N pi) —
i=1 i=1

Now, if Q; is the corresponding primary submodule of the decomposition for the prime

ideal p;, by Lemma 2.2.1, (N + pM) : {f)* = Q and by Theorem 3.1.4

(N+pM): (f)” =0 =S,(N+pM).

3.2 Generalized Associated Prime Ideal

In the first part of this section, we will give some known results about saturation and
radical of a submodule. Recall that the radical of a submodule N is the intersection of
all prime submodules of M containing N and it is denoted by rady(N). In case there
is no prime submodule containing N, rady(N) = M. The radical of a submodule is

studied by some authors [1], [4], [5], [6], [9], [17], [23], [24], [25] and [26].
13



If M is finitely generated R-module, then rady(N) is the intersection of its minimal
prime submodules [23]. In [9], Lu showed that to find the radical of any submodule N
of M, it is enough to consider saturations of submodules of the form N + pM where p

is a prime ideal of R such that N : M C p.

We give a simple proof of the following corollary then its original one.

Corollary 3.2.1. ( [9], Corollary 5.5) If N is a submodule of a finitely generated
R-module M, then
rady(N)= () Sp(N+pM).
N:MCp
Proof. Since M is finitely generated, rady(N) is the intersection of all minimal prime
submodules of M. By Theorem 3.1.3, minimal prime submodules of N are of the form
S,(N + pM) for some N : M C p. Hence

rady(N)= [ Sp(N+pM).
N:MCp

The following corollary states that if M is Noetherian, then rady(N) is the finite

intersection of saturations S,(N + pM).

Corollary 3.2.2. ( [9], Corollary 5.6) If M is Noetherian R-module and N is proper

submodule of M, then there exist finitely many prime ideals p; O N : M such that,

n

rady(N) = () Sp,(N + piM).
i=1

We now need to determine the followings to compute the radical of any submodule N

of an R-module M.

1. S,(N+pM) where p DN : M.

2. finite number of prime ideals such that p DO N : M.

In the first section, we give a method to find the saturation S, (N + pM). The remaining
question is what are the ideals p’s where p O N : M ? The following example shows
that associated prime ideals of N are not necessarily equal to the set of these prime

ideals. We use the computer algebra system SINGULAR to make the computations.

14



Example 3.2.1. Let R = Q[x,y], M = R® R and let N = (xe; +y’e;,x°e;, xe3).
It is clear that N is (x)-primary and (x) is the only associated prime ideal of N. Then
N+ (x)M = (xe,xes,y e;) = Q1 N Q> where

Q1 = (e, xe;) is (x) — primary,

02 = (ve1,xez,y°e1,y e2) is (x,y) — primary.

By Theorem 3.1.4,

Sty (N+(x)M) = Q1 = (xey,e3).

On the other hand, P = (xe,xe,,ye;,yey) is an (x,y)-prime submodule of M containing

N. So radM(N) C P but S<x>(N—|— <X>M) ZP.

This example shows that for finding radical of submodule N, we need some additional

prime ideals other than Ass(M/N) containing N : M.

For the rest of this section, let N be a proper submodule of a finitely generated module
M and p be a prime ideal of R such that N : M C p. For a prime ideal g of R, we write
p—nqif g€ Ass(M/N+ pM).

In [17], McCasland and Smith gave the following definition.

Definition 3.2.1. Let N be a proper submodule of a finitely generated module M. A
prime ideal p of R is a generalized associated prime ideal of N, if there exist prime

ideals po, p1,. .., pn of R such that pg € Ass(M/N) and

PO—>N P1 —N P2 —N '+ —*N Pn=0D.

We will denote the set of generalized associated primes of N by GAss(M/N). If we

analize the definition, we get the following properties.

(i) If p € GAss(M/N), then N : M C p. Also, prime ideals which appear in the

definition of generalized associated prime form a chain.

(ii) Ass(M/N) C GAss(M/N).

15



Proof. (i) Let p € GAss(M/N). Then there exist prime ideals pg, p1,..., p, of R such
that pg € Ass(M/N) and

Po—>N Pl —N P2 ——N """ ——*N Dn=2D.

Since pg € Ass(M/N), N : M C py. Also by the definition of generalized associated
prime ideal, p; € Ass(M /N + p;—1M) for each i. Hence (N + p;— M) : M C p;, and
this implies that N : M C p;.

Since N : M C p;_1, (N+ p;—1M) : M = p;_; for each i. That is, we have
N:MC (N+pi-i1M):M = p,_1 C p;.

Hence

poCp1C---Cp,=p.

() If p € Ass(M/N), then N : M C p. So, (N+ pM) : M = p and hence
p € Ass(M/N + pM). Take n =1 and py = p, then we have p —y p. This
implies that p € GAss(M/N).

O

Theorem 3.2.1. ( [17], Theorem 3.5) Let R be a Noetherian ring and let N be a proper
submodule of a finitely generated R-module M. Then GAss(M /N) is finite.

The following theorem is proved by McCasland and Smith [17]. We will give an

alternative proof of the theorem.

Theorem 3.2.2. Let R be a Noetherian ring and let N be a proper submodule of a
finitely generated R-module M. Then

radM(N) = m Spi(N-l-piM).
pi€GAss(M/N)

Proof. By Theorem 3.2.1, GAss(M/N) is finite. Say, GAss(M/N) ={p1,...,ps}. Let
p be a prime ideal of R such that p D N : M and p ¢ GAss(M/N). Now our aim is to
show S, (N +piM) C S,(N + pM) for some i. Then the conclusion of the theorem will

be obvious.

16



Now let us say K = {p; € GAss(M/N) : p; C p}. Since Ass(M/N) C GAss(M/N), K
is not empty. Let p; be one of the maximal elements of K in terms of the set inclusion

order for a fixed i. Then

N+piM CN+pM C S,(N+pM).

Consider a minimal primary decomposition
N+piM =Q1NNyN--- NN

where Q1 is p;-primary and N; is g ;-primary for j = 2,3,...,s.

Since (N+ piM) : M = p;, p; C g for all j. On the other hand, p; being a maximal

element of K implies that g; ¢ p. This means that there exists f; € (¢;\ p) for j =
N
2,...,s. Therefore f = fof3--- fs € (_ﬂij)\p.
]:

We claim that S, (N + piM) = Q1 C S,(N + pM). Otherwise; there would be m € Q;
but m ¢ S,(N+ pM). Since f € g, f" € (Nj: M) for some positive integer n;. Let
n=max{ny,...,ng},then f" € (No:M)N---N(Ny: M) = (NaN---NNy) : M. Therefore
f"m € NN ---NN;. Furthermore, since m € Qy, f"m € Q1. Hence f"m e N+ p;M C
S,(N 4+ pM). On the other hand, f" ¢ p since p is prime ideal. Then by the definition
of saturation, m € S,(S,(N + pM)) = S,(N + pM) which is a contradiction. mi

We will conclude this section with an example. We use SINGULAR to make

necessary computations.

Example 3.2.2. Let R = Q[x,y,z] and let M be an R-submodule R & R&® R. Consider

the submodule N = (xze3 — ze;,x’e3,x’y’e; +x°y?zes). Then N : M = (x*y?z?) and

primary decomposition of N is N = Q; N Q> N Q3 where Q; is (z)-primary, Q, is
(y)-primary and Q3 is (x)-primary. Then

Ass(M/N) ={(z), (»), {x) }-
Now, we have following sets and submodules.

N+ (z2)M = (ze1,ze;,ze3,x%e3,x*y’e;) = P, N P, N P; where

17



Py = (ey,e3,z€2) is (z) — primary,
P, = (e3,zeq,ze2,y°€1,y°€y) is (z,y) — primary and

P; = (ze1,ze5,7€3,x°€1,x°€5, x°€3) is (z,x) — primary.
By Theorem 3.1.4,
S1 =Sy (N+(9)M) = P = (e1,e3,z€2).
Then Ass(M /N + (z)M) = {{(2), (z,y), (z,x) }.
Since N + (y)M = (yey,ye,,ye3,xze;,xze3 — ze1,x>e3) = P4 Ps N Ps where

P, = (ey,e3,yey) is (y) — primary,
Ps = (e3,zej,zey,ye,yes) is (z,y) — primary and

2 . .
Ps = (ye1,yep,ye3,xe;,xe3 —ej,x"e;) is (x,y) — primary.

Then by Theorem 3.1.4, we get
Sy = S<y> (N4 (y)M) = Py = (e},e3,yez) and

Ass(M/N + (y)M) = {(y), (z,), (x,3) }-

For the associated prime ideal (x) of N, we have
N+ <x>M = (ZC] ,xel,xez,xe3> =PNHk

where
P; = (e}, xep,xe3) is (x) — primary,
R = <Zelaze27ze37xel7xe27xe3> is <Zax> - primarY'

Hence,

S3 = S<x>(N—|— <x>M) =P = (el,xez,xe3>,

and Ass(M /N + (x)M) = {(x), (x,2) }.

Up to here, we find the saturations of N + pM where p is the associated prime ideal of
N. In this process, we get another prime ideals (z,y), (z,x), (x,y), (x,z). Now, to get the

radical of N, we need to the find saturations of N + gM for each of these prime ideals.

18



For the prime ideal (z,y),

N+ (z,y)M = (ze1,ze3,z€3,ye1,yez, yes, x’e3) = Py M Py
where
Py = (e3,zeq,zey,yer,yey) is (z,y) — primary,
Py = <Ze1,zez,ze3,ye1,yezyye3,x2e1,x2e2,x2e3> is (z,y,x) — primary.
Then

S4= S (N +(z,)M) = Py = (e3,ze1,ze2,ye1, ye2)

and Ass(M /N + (z,y)M) = {(z,y), (x,,2) }

For the prime ideal (z,x),
N+ (z,x)M = (ze|,ze;,ze3,x€] , x€, xe3)
which is (z, x)-primary. Hence

S5 = S(x,z) (N—l— (x,z)M) = <xe1,xe2,xe3,ze1,zez,ze3>

and Ass(M /N + (x,z2)M) = {(x,z) }.

For the prime ideal (x,y),
N+ (x,y)M = (ey,yez,ye3, xe, xe3) = P11 N Pip

where

Py = (e1,yez,ye3,xey, xes) is (y,x) — primary,

Py = (zeq,ze),z€3, Y€1, ye),ye3, xe|,xer, xe3) is (x,y,z) — primary.
Then

S6 = S(x,y)(N_{— <X7Y>M) = Pll = <e17ye27ye37xe27xe3>

and Ass(M /N + (x,y)M) = {(x,y), (x,y,2) }.

Since (x,y,z) is the associated prime ideal of N + (x,y)M,

N+ (x,y,2)M = (xe1, xey,xe3, ye,yes, yes, ze|,zep,ze3) = M
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and then

S7="S(x.2) (N + (x,y,2)M) = (xe|,xe;,xe3,yey,yes, yes, ze1,2€2,2€3)

with Ass(M /N + (x,y,z)M) = {{x,y,2) }

Thus,
7

rady(N) = m Si = (ze1,xe3,xyer,xyze;).
i=1

3.3 Determining Redundant Primes

In the Example 3.2.2, S¢ is a redundat prime submodule for the radical of N since S3 C
Se. This implies that some prime submodules which are mentioned in the Theorem

3.2.2 can be redundant.

McCasland and Smith gave a technique to determine the redundant primes [17]. In this
section we will give a different technique to eliminate that redundant primes. First of

all, we need some technical results for prime submodules similar to Lemma 2.2.1.

Lemma 3.3.1. Let N be p-prime submodule of an R-module M and let f € R. Then

and if I is an ideal of R, then

g | M, ifICp;
(zz)N.I—{N7 if1¢p.

Proof. (i) Let N be a prime submodule of M. If f € p=(N: M), then M C N : (f).

Let f ¢ pand m € N : (f). Since N is a prime submodule, m € N.

(ii) Let I be an ideal of R. Then, if I C p, then IM C N and this implies that M = N : I.

If I ¢ p, then there exists an elementa € [ and a ¢ p. By part (i), NCN:ICN: {(a) =
N. O

Theorem 3.3.1. Let {(S;,M,p;) : i = 1,2,---,n} be a collection of p;-prime
submodules S; of M with p; # pj for all i # j such that S = (S, is a possibly redundant
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i

prime decomposition of S. Let f € ( (| pj)—piand let N;y= ( () Sk) : (f). Then, S;
PiLpi k=1

is redundant prime submodule in the decomposition of S if and only if N = N; : p;. (in

case pj C p; for all j take f ¢ p; ).

Proof. By Lemma 3.3.1 part (i),

Again by Lemma 3.3.1 part (i1),

Nizpi=([)S):pi=[) Sk

PkCpi Prk&Di

Then, S = () Sy if and only if N; = N; : p;. O
k#i

By using Theorem 3.3.1, we can check whether the prime submodules which we found
in the Example 3.2.2 are redundant or not for each step.
In the fourth step of the Example 3.2.2, we get
S| = (e,e3,zey) is p; = (z) — prime,
S> = (ey,e3,yep) is p» = (y) — prime,
S3 = (e, xey,xe3) is p3 = (x) — prime and
S4 = (e3,zeq,zey,yer,yey) is pa = (z,y) — prime.
Now, since p; C 4{94 and py C p4, there is a possibility that S4 is redundant for the

intersection S = [ Sy.
k=1

If we take f = x € p3 — p4, then

4
Ny=S:(f)=([)Sk): (x)=[) Sk =51NS2NS4 = (e3,ze1,ye;,yzes), and
k=1 X¢ Pk

Ny:ps=Ny:(z,y) =SNS5y = (e],e3,yzey).

4
Since Ny : pg # N4, S4 is needed in the intersection and thus S = [ Sk.
k=1

Now, consider the submodule S5 = (xe;,xey,xes,ze|,zey,ze3) with ps = (z,x). Since
p1 C ps and p3 C ps, take f =y € (p2M p4) — ps. Then
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5
Ns=S8:(f)= (ﬂ Se) () = ﬂ Sk =S81N8S3N S5 = (ze1,xe;,xe3,xzey),
= V€D

N5 : ps = Ns: (z,x) = 851 NS3 = (e1,xe3,xz€;).

5
Since Ns : ps # Ns, Ss is also not a redundant prime. Hence S = [ Sy in this step.
k=1

But if we consider S¢ and pg = (x,y), we have p, C pg and p3 C pe. Take f =z €

(p1 N paN ps) — pe. Then

6
Ne=S:(f)=([)Sk): (=)= [) Sk =S52N53NS6 = (e1,xe3,xyes),
k=1 ¢k

N6 : p6 = Ns : (z,y) = 52N S3 = (e1,xe3,xyey).

5
Since Ng : ps = Ng, S 1s a redundant prime. Hence S = () Sy.
k=1

Also, for the last step we get S; = (xej,xe;,xes3,ye|,yer,yes, ze;,zep,ze3) and p7 =
(x,y,z). It is obvious that

5 5
([ Sk)NS7= () Sk.
k=1

k=1
Also by using Theorem 3.3.1, we can say that S is redundant. Since p; C p7 for all

i=1,---,6,take f =1¢ p7. Then

5

5 5
ﬂ )NS7): ﬂ )NS7): (1) = () Skand

k=1

N7 - P71 :N7 : (X,y,z> =

T
-

Thus S7 is also a redundant prime and therefore

5

radM(N) = ﬂSl = <Ze17xe3axyel7xyze2>'
i=1

Hence for this example, we only need the prime submodules Sy, - -, Ss.
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4. PRIME AND SEMIPRIME SUBMODULES

4.1 Semiprime Submodules

In this section, we will define semiprime submodule and give some properties of

semiprimes.

Definition 4.1.1. A proper submodule N of an R-module M is called a semiprime

submodule if whenever r*m € N for some r € R, m € M and k € N, then rm € N.

The following lemma shows that semiprime submodules can be defined in terms of

their envelopes.

Lemma 4.1.1. A proper submodule N is semiprime if and only if (Ep(N)) = N.

Proof. Suppose that N is semiprime. Let x € (Ep(N)). Then there exist elements

ri € R, mi € M (1 <i<k) such that
x=rim+---+rgm;  with rﬁ"miEN

for some#; € Z™. Since N is semiprime, r;m; € N for all i. Hence x € N and (Ejy(N)) =

N.

Conversely suppose that (Ey/(N)) = N. Let ¥*m € N for some r € R,m € M and natural
number k. By the definition of envelope, rm € Ey(N) C (Ey(N)) = N. Hence N is

semiprime. O

It is easy to see that every prime submodule is semiprime. But the converse is not
true. For example, if R = Q[x,y,z], M = R? and N = (ze|, ye|, xye;, xyes, xzes +x’ze3),
then by Theorem 2.3.1, (Ey(N)) = N. Hence N is a semiprime submodule of M
with N : M = (xy). On the other hand N is not a prime submodule; if we take r = z
and m = (0,x,x?), then rm = z(0,x,x*) = (0,xz,x>z) ENbut r =z ¢ N : M and m =

(0,x,x2) ¢ N.
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If N is prime submodule, it is well-known that N : M is a prime ideal. When N is

semiprime, we have the following.

Lemma 4.1.2. If N is a semiprime submodule of an R-module M, then N : M is a

semiprime ideal.

Proof. Recall that for a commutative ring R, an ideal 7 is semiprime if /7 = I. Now,
let x € /N : M. Then xM C N since N is semiprime. Hence VN : M = N : M. This

implies that N : M is a semiprime ideal. O

Lemma 4.1.3. Let N be a primary submodule. Then N is semiprime submodule iff

N : M is a semiprime ideal.

Proof. Suppose N : M is semiprime ideal. Let ¥*m € N where r € R,m € M — N and
k € Z*. Since N is primary and N : M is semiprime, r € /N : M = N : M. Hence

rm € N. Otherside is clear by the above lemma. O

Lemma 4.1.4. Let M be an R-module and N be a proper submodule of M. Then N is

prime submodule of M if and only if N is primary and semiprime.

Proof. Assume that N is primary and semiprime. Let am € N fora € R,m € M. Since
N is primary, either m € N ora € vVN: M. By Lemma 4.1.2, me Nora € N : M.

Hence N is prime submodule. The converse is clear. O

Proposition 4.1.1. A finite intersection of semiprime submodules is also semiprime.

Proof. Let N =Ny NN, N---NN; where each N, is semiprime. If x € (Ey(N)), then
X=rymy+rymy—+---rim;

where rf“'m,- € N for some k; € N. Therefore for each i and j, rf.“'m,- € N;. Since each
Nj is semiprime, r;m; € Nj for j=1,...,s. Hence x € N. By Lemma 4.1.1 , N is

semiprime.

O

Lemma 4.1.5. Let M be an R-module. Assume that N and K are submodules of M
such that K C N with N # M. Then, if K and N/K are semiprime submodules then N

is also semiprime.
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Proof. Let'meNforreRmeMandr€Z'. Thenr (m+K)=r'm+K € N/K. If
r'm € K, then rm € K C N since K is semiprime. Now, we may assume that #m ¢ K.
Then ' (m+K) € N/K and N/K is semiprime implies that r(m+K) =rm+K € N/K.

Hence rm € N. O

Lemma 4.1.6. Let M = K & L be the direct sum of submodules K,L and N be

semiprime submodule of K. Then N & L is a semiprime submodule of M.

Proof. Letr € R,m € M and ¥m € N ® L for some t € Z*. Then there exist elements
n € N,l € Lsuchthat ¥m=n+1. Since M = K @ L, there exists an element k € K such

that 7k € N. Since N is semiprime, rk € N. Hence rm € N ® L. O

Lemma 4.1.7. ([1], Result 1.1) Let M,M’ be R-modules with ¢ : M — M’ an R-module
epimorphism and N be a submodule of M such that Ker¢p C N. Then there exists
a one-to-one order preserving correspondence between the proper submodules of M
containing N and the proper submodules of M’ containing ¢ (N). Furthermore, for
any submodule N' of M’ there exists a submodule L of M such that Ker¢ C L and
o(L)=N".

The following lemma gives the relationship between semiprime submodules of a

module M and semiprime submodules of its homomorphic image.

Lemma 4.1.8. Let M, M’ be R-modules with ¢ : M — M’ an R-module epimorphism
and N be a submodule of M such that Ker¢p C N. Then

(i) If P is a semiprime submodule of M containing N, then ¢(P) is a semiprime

submodule of M containing ¢ (N).

(ii) If P is a semiprime submodule of M containing ¢(N), then ¢~ (P') is a semiprime

submodule of M containing N.

Proof. (i) Assume that P is a semiprime submodule of M containing N. Then ¢ (N) C
¢(P) and ¢(P) # ¢(M) = M’ by Lemma 4.1.7
Letr € R, m € M' and ¥'m' € ¢(P) for some ¢ € Z". Since ¢ is an epimorphism,
there exists an element m € M such that ¢ (m) = m'. Then ¥m' = ¢ (m) € ¢(P)
implies that #m € P. Since P is semiprime submodule of M, rm € P. Thus rm’ =
rg(m) = ¢(rm) € ¢(P).
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(ii) Let P’ be a semiprime submodule of M’ containing ¢(N). By Lemma 4.1.7 , there
exists a submodule L of M such that Ker¢ C L and ¢(L) = P'. Then N C L =
¢~ (P). Let'me ¢~ 1(P") forr c R,mec Mandt € Z*. Then ¢(r'm) = r' ¢(m) €
P'. Since P’ is semiprime submodule of M’, r¢ (m) = ¢(rm) € P'. Hence rm €

o~ (P).

Let K and N be any submodules of an R-module M where N C K. If we consider
the canonical epimorphism ¢ : M — M /N, then by Lemma 4.1.8 it is clear that K is a

semiprime submodule of M if and only if K/N is semiprime submodule of M/N.

4.2 Semiprime Radical

If N is a proper submodule of an R-module M, then the prime radical of N, rady(N),
is the intersection of all prime submodules containing N. The prime radical of

submodules has been studied by some authors ( [4], [9], [17], [23], [24], [27]).

The semiradical of N, denoted by srady(N), is defined as the intersection of all
semiprime submodules of M containing N. If there is no semiprime submodule
containing N, then srady;(N) = M. We shall denote the semiradical of M by srady;(0).

Since rady(N) is semiprime, we have
N C(Ey(N)) Csrady(N) C rady(N)
where

Ey(NY={rm:reRmeM and r*meN for some keZ'}

Proposition 4.1.1 implies that srady(N) is the minimal semiprime submodule of M
containing N. In this section we will give generalization of [4] and [12] to semiprime

radical. The following two lemmas are generalization of [4] Lemma 4 and Lemma 6.

Lemma 4.2.1. Let R be a ring, M be an R-module and N,K be submodules of M with
K C N. Then srady(K) C srady(K).

Proof. Let P be any semiprime submodule of M with K C P. If N C P, then
srady(K) C P. If N ¢ P, then NN P is a semiprime submodule of N. Hence

srady(K) C NN P C P. Thus in any case srady(K) C srady(K). O
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Lemma 4.2.2. Let M be the direct sum of the R-modules M;, i € I. Let N = ®N; be
a submodule of M such that N; is a submodule of M; for all i € I. Then srady(N) =
@srady, (N;).

Proof. By Lemma 4.2.1, srady;,(N;) C srady(N) for all i € I. Let m € srady(N)
and m ¢ @ sradpy;(N;). Then there exists j € I such that 7;(m) ¢ sradp;(N;) where
wi:M —>lM ; denotes the canonical projection. There exists a semiprime submodule
Pj of M; such that 7j(m) ¢ P;. By Lemma 4.1.6, K = P;®(@M,) is semiprime
submodule of M containing N. Since mj(m) ¢ Pj, m ¢ K. "liflian m & srady(N).
Therefore srady (N) = @ srady, (N;). o

Lemma 4.2.3. ( [4], Corollary 2) Let R be a domain and M be a non-torsion module.

Then

1. the torsion submodule T (M) of M is prime, and

2. PM = M or PM is prime submodule of M, for each maximal ideal P of R.

Since every prime submodule is semiprime, 7'(M) and PM are semiprime submodules

of a module M over a domain where P is maximal ideal of R.

The general form of [12], Proposition 1.3 is

Proposition 4.2.1. Let R be a domain and M be an R-module with torsion submodule
T(M). If N is a submodule of T(M), then N is semiprime submodule of T (M) if and

only if N is semiprime submodule of M.

Proof. Suppose N is semiprime submodule of T (M). Let 0 # r € R,m € M with r*m €
N for some k € Z*. By Lemma 4.2.3, rm € T(M). Then there exists nonzero s € R
such that s(rm) = 0. Since sr # 0, we have m € T (M) which implies that rm € N. Thus,

N is a semiprime submodule of M. The converse is clear. O

Now we can show that for domains, the study of semiprime radicals of any modules

reduces to torsion modules.

Corollary 4.2.1. Let R be a domain and M be an R-module with torsion submodule

T(M). Then sradp(0) = srady ) (0).
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Proof. Since T(M) is a submodule of M, by Lemma 4.2.1 sradryy;)(0) C srady (0).
Now, suppose srady(;(0) = (\N where N is a semiprime submodule of 7'(M).

)
By Proposition 4.2.1, N is also semiprime submodule of M. Hence srady(0) C

srady(pr)(0).

O

We also have the following corollary which is the generalization of [12], Lemma 1.7.

Corollary 4.2.2. Let R be a domain and M be a left R-module with torsion submodule
T(M). Then

srady(0) C ﬂ{PT(M) : P is a maximal ideal of R}.

Proof. By Corollary 4.2.1 and Lemma 4.2.3. |

4.3 Modules Which Satisfy The Semiradical Formula

Note that any submodule N of a module M satisfies the radical formula (s.t.r.f ) if
rady(N) = (Ey(N)) . Tt is said that M satisfies the radical formula if for every
submodule N of M, rady(N) = (Ey(N)). A ring R satisfies the radical formula,
if every R-module s.t.r.f.. Modules which satisfy the radical formula was studied

in [1], [4], [5], [6], [ 7], [23], [24] and [25].

In the same manner, we say that M satisfies the semiradical formula (s.t.s.r.f.) if
for any submodule N of M, srady(N) = (Ep(N)). Since intersection of semiprime
submodules is semiprime, srady(N) is the unique smallest semiprime submodule of

M containing N.

We know that for an ideal I of R, we have \/ /I = /I; but the envelope of a
submodule does not satisfy an equation similiar to this one as the following example

shows.

Example 4.3.1. Let R = Qlx,y,z] and let M be an R-submodule R @ R. Consider the
submodule N = (7%e;,z%€;,yze2,y°€| +z€2,y°€2,ye| +x3e3). N is p = (z,y)-primary,

so by Theorem 2.3.1,

(Em(N)) = N+ (z,y)M = (ze1,ze,ye1,yer,x°€2).
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Primary decompostion is (Ep(N)) = Q1 N Q» where

01 = <92,Ze1,yel> is (Z,y> — primary,

0> = (ze1,zea,ye,yer,x ey, x ey) is (x,y,z) — primary.

Hence,

(EM((Em(N)))) = (ze1,ze2,ver,yez,xes) # (Ep(N)).

In [28], Azizi and Nikseresht defined the kth envelope of N recursively by Ey(N) =
N,E\(N) = Ey(N),E2(N) = En((Ex(N))) and Ex(N) = En((Ex_1(N))) for every

submodule N of M. It is easy to show that
N = (Eo(N)) C (E1(N)) € (E2(N)) S -+ C (E=(N)) C srady(N) S radp(N)

where (E(N)) = kg)(Ek(N ))-

It is clear that (Ew(N)) is semiprime and thus (Ew(N)) = srady(N). Therefore we
have the following equivalent conditions.

Theorem 4.3.1. The following statements are equivalent.

(i) A module M satisfies the semiradical formula;
(ii) (Ei(N)) = (E;(N)) for all i, j;

(iii) (Ep(N)) = (E2(N)) for all submodules N of M.

Proof. (i) = (ii) and (ii) = (iii) are clear.

(iii) = (i) (Em(N)) = (E2(N)) implies that (Ep(N)) is semiprime submodule and

hence M s.t.s.r.f. O

By Theorem 4.3.1, we can conclude that a module M s.t.s.r.f. if and only if (Ep(N))
is either M or a semiprime submodule of M for every submodule N of M; R s.t.s.r.f.
if and only if either (Ej;(0)) = M or (Ep(0)) is semiprime submodule of M for every

non-zero R-module M. In this section, we will investigate the equality srady (N) =

(Em(N))-
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Lemma 4.3.1. Let M, M’ be R-modules with ¢ : M — M’ an R-module epimorphism
and N be a submodule of M such that Ker C N. Then ¢ (srady(N)) = sradyy (¢(N)).

Proof. Let x € ¢(srady(N)). Then x = ¢(y) for some y € srady(N) = (\F; where
each P; is semiprime submodule of M containing N. So, y € P; for eachl i. Hence
o (y) € ¢(P,) where ¢ (P;) is a semiprime submodule of M’ containing ¢ (N) by Lemma
4.1.8. If we take any semiprime submodule Q; of M’ containing ¢ (N), then () i)
is semiprime submodule of M containing N by Lemma 4.1.8. Hence y € ¢ ! (Q ;) for
all j, and hence x = ¢(y) € Q;. Thus x € sradyy (¢ (N)).

Now, let m' € sradyy(¢(N)) = (1Q; where Q; is semiprime submodule of M’
containing ¢(N) for each j. Theri m' € Q; for all j. Since ¢ is an epimorphism,
there exists m € M such that m’ = ¢(m) € Q;. Hence m € ¢~'(Q;). By Lemma
4.1.8, 9 1(Q;) is semiprime submodule of M containing N. Thus m € srady (N) and

m' = ¢(m) € ¢(srady(N)). O

Lemma 4.3.2. Let N be a submodule of a module M. Then sradyn(0) =
srady(N)/N.

Proof. Consider the canonical epimorphism 7 : M — M/N. Since Kerm = N, we
can apply Lemma 4.3.1. Then n(srady(N)) = srady n(T(N)) = srady;/n(0). Let
srady(N) = (N P.. Then we have;

i

srady;/y(0) ﬂP ﬂ (P./N) = ﬂP /N = srady(N)/N.
O

Corollary 4.3.1. Let N be a submodule of a module M and N' be a submodule of
a module M such that M/N = M'/N'. Then srady(N) = (Ey(N)) if and only if
sradyy(N') = (Eppr(N')).
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Proof. 1t is clear by the definition of envelope that (Ey/x(0)) = (Ep(N))/N, also by

Lemma 4.3.2, we have

srady(N) = (Ey(N)) < srady(N)/N = (Ey(N))/N
& sradyn(0) = (Ep/n(0))
= S}’(ldM//N/(O) = <EM’/N’(O)>
& sradyy(N') /N = (Epp (N')) /N’
& sradyy (N') = (Epp (N').
O
Corollary 4.3.2. Let N, L be submodules of M such that M = N +L and sradp (NNL) =
(EL(NNL)). Then srady(N) = (Ey(N)).
Proof. Note that M/N = (N+L)/N = L/NNL. Apply Corollary 4.3.1. o

Lemma 4.3.3. Let M,M', ¢ and N be as in Lemma 4.3.1. Then if srady(N) =
(Em(N)), then sradyy (¢(N)) = (Epr (9(N))).

Proof. Assume that srady(N) = (Ey(N)). By Lemma 4.3.1,
¢ (srady(N)) = sradyy (¢ (N)).
Now, it is enough to show that

o((En(N))) = (Epr (9 (N)))-

Let x € ¢((Epm(N))). Then x = ¢(y) where y € (Ep(N)). So there exist elements
ri € Rym; € Ey(N) such that

y=rim+rmy+---+rm
and for each i, m; = s;n; with s; € R,n; € M and s?ni € N. Then
Y =Tr1811] + 12820y + -+ r8ny
and so

x=0(y) = ¢(risin+rasony+---+rsn)
= r¢(sin)+rd(son)+ -+ rd(siny)
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where ¢ (s''n;) = s7¢(n;) € ¢(N) implies that 5;¢ (n;) € Eppr(¢(N)). Thus
x=ris19(n) +ros2@ () + -+ risi¢ () € (Eyr (¢(N)))-
Now, let X’ € (Epp(¢(N))). Then
r / / !
X =aymy +axymy + - - -+ agmy,
with a; € R, m! € Eyy(¢(N)). For each i, m) = by, where b; € R, y; € M’ and by

¢ (N) for some positive integer k;. Hence

/ ! ! /
X = aymy+amy+---+apm

= arb1y) +axbyyy + - + arbiyy,
= ab19(y1) +a2br¢(y2) + -+ -+ arbrd (yx)
= ¢(a1biy1 +axboys + -+ axbiyk)

where y; € M for each i. Also bf"yg = bf"d)(y,-) =¢ (bfiyi) € ¢(N) implies that bf"yi EN.
Hence b;y; € EM(N) and a1by1y; +---arbyyy € <EM(N>> Thus

X' = @(a1biyr +asboys + - -+ arbiyi) € 9 ((Em(N))).
O

Lemma 4.3.4. Let M be an R-module which s.t.s.r.f.. Then every homomorphic image

of M s.t.s.rf. as an R-module.

Proof. Suppose M s.t.s.r.f.. Let N be any submodule of M. Consider the canonical
epimorphism 7 : M — M/N. Let K be any submodule of M containing N. Then
srady(K) = (Ey(K)). By Lemma 4.3.3,

sradM/N(ﬂ(K)) = <EM/N(”(K))>
Hence
sradyn(K/N) = (Eyyn(K/N))

and thus M /N s.t.s.r.f.. O

Lemma 4.3.5. Let M be the direct sum of the R-modules M;, i € I. Let N = ®N; be
a submodule of M such that N; is a submodule of M; for all i € I. Then srady(N) =
(Em(N)) if and only if sradpy, (N;) = (Em,(N;)) for each i.
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Proof. Assume srady,(N;) = (Ep;(N;)) for each i. By Lemma 4.2.2,

srady(N) = @sradMi (N;) = @(EMi (Ni))-

iel icl
The result follows by [29], Lemma 2.3.

Conversely, since N; is a submodule of M; and N = ®N;, by Lemma 4.2.2

sradpy, (N;) C srady(N) = (Ey(N)).
If m € srady;,(N;), then by the definition of envelope it is easy to show that m €
(Em;(Ni)). O
By Lemma 4.2.2 and the above lemma, we have the following result.
Corollary 4.3.3. Let R be any ring and M be any projective R-module. Then

sradp(0) = (Ep(0)).

Proof. Since M is projective, there exists a free R-module F such that M is the direct
summand of F. Then there exist an index set A and cyclic submodules F) of F such
that F = @F, where A € A by [30]. By Lemma 4.2.2, sradr(0) = @ sradr, (0)
and since gvery cyclic module s.t.r.f., sradp, (0) = (Ef, (0)) for all 4 GAA. Hence
sradp(0) = (Er(0)) by Lemma 4.3.5 and thus srady;(0) = (Ep(0)). o

Since every prime submodule is semiprime, this result can also be obtained from [4],

Corollary 8.

Lemma 4.3.6. Let ¢ : S — R be a module epimorphism and M be an R-module. Then

(i) a submodule N of M is semiprime as an R-module if and only if it is semiprime as

an S-module.

(ii) for any submodule N of M, Ep(sN) = Ep(gN).

Proof. Since ¢ : S — R is an epimorphism, an R-module M has an S-module structure

as
f:SxM — M
(s,m) = s-m=@(s)m
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(i) Let N be a semiprime submodule of M as an R-module and let s € S,m € M with
sk-m € N. Then s*-m = @(s*)m = @(s)km € N. Since N is semiprime as an
R-module, ¢(s)m=s-m € N.

Conversely, let N be a semiprime submodule of M as an S-module and letr € R,m €

k

M with ¥*m € N. Since ¢ is an epimorphism, r*m = ¢@(s)m = s* -m € N, and since

N is semiprime as an S-module, s-m = @(s)m = rm € N. Thus N is semiprime

submodule of M as an R-module.

(ii) Let x € Ep(sN). Then x = s-m with s -m € N and x = s-m = @(s)m with s* - m =
@(s)*m € N. This means that @(s)m = x € Ey(gN). Conversely, let y € Ey(gN).
Then y = rm where r'm € N. Since @ is an epimorphism, y = rm = @(s)m =s-m

with #m = @(s)'m=s"-m € N. Theny =s-m € Ep(sN).

In the following theorem, we will give some equivalent conditions for a ring to satisfy

the semiradical formula.

Theorem 4.3.2. Let R be a ring. Then R s.t.s.1.f. provided that any one of the following

is satisfied.

(i) for every free R-module F, F s.t.s.r.f.
(ii) for every R-module M, srady(0) = (Ep(0)).
(iii) R is a ring homomorphic image of S, where S s.t.s.r.f.
Proof. (1) Since every module M is the homomorphic image of a free R-module, by
Lemma 4.3.4 it is clear.
(ii) Clear by the remark after Theorem 4.3.1.

(111) Let @ : § — R be an epimorphism. Suppose S s.t.s.r.f.. Since P is an epimorphism,
every S-submodule of M is also an R-submodule and vice versa. Let N be any

submodule of M. Then by Lemma 4.3.6,

sradM(RN) = sradM(SN) = <EM(SN)> = <EM(RN)>

Hence R s.t.s.r.f.. O
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4.4 Semiradical Equality

When we consider the chain

N = (Eo(N)) C (E1(N)) C (E2(N)) S -+ C (Ew(N)) = srady(N) € radp(N),

it seems meaningfull to focus on the submodules srady(N) and rady(N) and

investigate the conditions where the equality srady(N) = rady (N) occurs.

Lemma 4.4.1. Let M be an R-module. Then every semiprime submodule is an
intersection of prime submodules if and only if srady(N) = rady(N) for any

submodule N of M.

Proof. (=) Obvious since srady(N) is a semiprime submodule.

(<) Let K be a semiprime submodule of M. Then K = srady/(K) = rady (K). Hence

K is an intersection of prime submodules. O
Lemma 4.4.2. Let N be a submodule of an R-module M such that M /N is projective.
Then srady(N) = rady (N).

Proof. Since M /N is projective, rady;/n(0) = (Ep/n(0)) by [4] Lemma 8. Then we
have,rady(N) = (Ep(N)) which implies that srady(N) = rady (N). o

Corollary 4.4.1. Let N be a submodule of an R-module M such that M /N is projective.
Then srady(N) = radRM + N.

Proof. Clear by [29], Theorem 2.7 and the above lemma. O

We say that a module M satisfy the semiradical equality if for every submodule N of
M, srady (N) = rady(N).

It is said that a ring R satisfy the semiradical equality if every R-module satisfy
the semiradical equality. Since arithmetical rings satisfy the radical formula, an

arithmetical ring satisfy the semiradical equality.

Proposition 4.4.1. The followings are equivalent.

(i) The ring R satisfy the semiradical equality.

(ii) for any ideal I of R, the ring R/I satisfy the semiradical equality.
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(iii) for any non-maximal semiprime ideal P of R, the ring R/P satisfy the semiradical

equality.

Proof. (i = ii) Let M be an R/I-module. By Lemma 4.4.1, it is enough to show
that every semiprime R/I-module is an intersection of prime submodules. Let K be a
semiprime submodule of an R/I-module M. Then K is a semiprime submodule of M

as an R-module. So, K = srad,y(K) = rad,u(K).

It is easy to see that every submodule of M is a prime R-submodule if and only if

itis a prime R/I-submodule. Hence rad,y (K) = rad, ;1 (K) and thus K = rad,, v (K).

(iii = i) Let N be a semiprime submodule of an R-module M with N : M = P where
P is a non-maximal semiprime ideal. Consider M /N as an R/P-module. Then by our

assumption, srad, =rad . Hence srady = rady(N).
pti M/N(O) M/N(O) (N) (N)
O

Corollary 4.4.2. If for any non-maximal prime ideal P of R R/P is a Priifer domain,

then R satisfy the semiradical equality.

Lemma 4.4.3. A ring R satisfy the semiradical equality if and only if every free

R-module satisfy the semiradical equality.

Proof. Let M be an R-module. Then there exists a free R-module F such that M = F /K.

By our assumption, for any submodule N of M
sradp ;x(N/K) = sradr(N)/K
= radr(N)/K

= radp/k(N/K).

Hence M satisfy the semiradical equality. O

4.5 Semiprime Submodules of Cartesian Product of Modules

Let R = Ry X Ry where each R; is a commutative ring with nonzero identity. Let
M; be an R;-module for i = 1,2 and M = M| x M, be the R-module with action

(r1,r2)(my,my) = (rymy,romy) where r; € R;,m; € M;. These notations are fixed for
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this section.
Note that since our action is (ry,r2)(my,mp) = (rymy,romy) where r; € Ri,m; € M;,
every submodule of M| x M is of the form N; x N, with N is a submodule of M and

N> is a submodule of M>.

Proposition 4.5.1. Let R and M be as above. Then

(i) If N is semiprime submodule of M1, then N1 x M, is semiprime submodule of M| X

M.

(ii) If Ny is semiprime submodule of M3, then M X N; is semiprime submodule of M| %

M.

Proof. (i) Letr = (r1,r;) € R, m= (my,my) € M and r*m € Ni x M, for some k € Z*.
Since N is semiprime submodule of My, rym; € Ni. Then (rymy,romy) = rm € Ny X
M, which implies that Ny X M, is semiprime submodule of M.

(i1) Similiar to case (i). |

Lemma 4.5.1. Let R and M be as above. Then Q1 X Q3 is a semiprime submodule of

M if and only if Q; is semiprime submodule of M; for all i = 1,2.

Proof. Let (r,r2)*(my,my) € Q1 x Q; where m; € M;, r; € R; and k € Z*. Since Q;
and Q, are semiprime, r;m; € Q; for i = 1,2 which implies that Q; x Q» is semiprime.
Now assume that Q1 x Q5 is semiprime submodule of M| X M,. Let r; € Ry, mj €
M, with ¥¥m; € Q. Then (ry,1)¥(m,0) € Q1 x Q5. Since Q) x Q, is semiprime,
(r1,1)(my1,0) = (rymy,0) € Q1 x Qy implies that Q) is semiprime submodule of M.

Similarly it can be shown that Q» is semiprime submodule of M. O

Lemma 4.5.2. Let N = Ny X N, be a submodule of M where N; is a submodule of M;
fori=1,2. Then N: M = (N; : M) X (N2 : M>)

Proof. Letx = (x1,x2) € (N : M). Then xM C N which means that
(x1,x2)(my,ma) = (x1my,x2m3) € N1 X Np
for all m; € M| and my € M,. So, xym; € N and xomyp € N,. Hence

X1 € (N] ZM]), Xy € (Nz:Mz)
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and thus x = (.X],Xz) € (N] :Ml) X (N2 : Mz).

Conversely, let y = (y1,y2) € (N1 : My) X (Np : M3). Then yiM; C Ny and y,M, C N,.

Hence for all m; € My,my € M>,

(y1,y2)(my,mp) = (yimy,yamz) € Ni X Ny.

This implies that y € (N} X Np) : (M} x Mp) = (N : M). O

Let N be a semiprime submodule of an R-module M. If p = v/N : M is a prime ideal,

then N is called p -semiprime submodule.

Lemma 4.5.3. Let N = N| X N, be a submodule of M. Then

(i) N is p X Ry semiprime submodule of M iff Ny is p-semiprime submodule of M| and
Ny = M,.

(ii) N is Ry X p semiprime submodule of M iff N> is p-semiprime submodule of M> and
N1 =M.

Proof. (i) Suppose N = N| x N, is semiprime submodule of M; x M,. By Lemma

4.5.1, Ny is semiprime submodule of M.
Since N : M = p X Ry, Ny is p-semiprime and N, : M, = R, implies that N, = M,.
Other side is clear by Proposition 4.5.1 and the Lemma 4.5.2.

(i1) Similiar to case (i). O
Proposition 4.5.2. Let N = N| X N be a submodule of M. Then

srady (N) = srady, (N1) x sradpy, (N2 )

Proof. Let Q1 x Q> be a semiprime submodule of M containing N X N>. By Lemma

4.5.1, Q; is semiprime submodule of M; containing N; for i = 1,2. Then
sradps, (N1) x sradpg,(N2) C srady (N1 X Na)

since sradyy, (Nl) X sradyy, (Nz) C 01 X 0.
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Since srady;(N;) is the minimal semiprime submodule of M; containing N;, Lemma
4.5.1 implies that srady, (N1) X sradpy,(N2) is a semiprime submodule of M| x M>

which contains N; x N,. Hence

srady(N) C sradpy, (N1) x sradp, (N2)

m]
Corollary 4.5.1. Let N = N| X N, be a submodule of M. Then
(i) srady(Ny x Mp) = srady, (Ny) X Mp
(ii) srady (M) x N2) = M) X srady, (N>)
Proof. Clear by the Proposition 4.5.2.
m]

Proposition 4.5.3. ( [26], Proposition 2.12) Let N = N; X N> be a submodule of M.
Then (Ep(N)) = (Epm, (N1)) % (Epm, (N2))-

Theorem 4.5.1. M s.t.s.rf. if and only if M; s.t.s.r.f. foralli =1,2.

Proof. Assume M s.t.s.r.f.. Take a submodule N; of M. Then Ny x M; s.t.s.r.f., so
that sradyy, (N1) x My = (Ep,(N1)) X (Em,(M3)). Now, let x € srady, (Ny). Then
(x,m) € sradpy, (N1) X My and hence x € (Ep, (Ny)). Similiarly it can be shown that
srady, (N2) = (Em, (N2)).

Conversely assume that M| and M, s.t.s.r.f.. Take any submodule N; X N, of M| x M.
Then

srady (N1 X Np) = srady, (Ny) X srady, (N2)

= (Em (N1)) x (Em,(N2))

= <EM(N1 X Nz))

Thus, M = M| x M5 s.t.s.r.f.. ]
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5. CLASSICAL PRIME SUBMODULES

5.1 Classical Prime Submodules

Classical prime submodules was introduced in [11]. A proper submodule N of an
R-module M is called a classical prime submodule if for each m € M and a,b € R;
abm € N implies that am € N or bm € N.

In the same manner classical primary submodule is defined [16]. There are two
different definitions for this concept. When the main module is Noetherian, these
definitions are coincide [31]. A proper submodule N of an R-module M is a classical
primary submodule if abm € N where a,b € R and m € M, implies that either bm € N
or a*m € N for some k > 1.

Sometimes weakly prime and weakly primary are used for classical prime and classical

primary submodules.

It is clear from the definition that every prime submodule is classical prime and every
primary submodule is classical primary but the converse need not be true [ [16],

Example 1.2].

Lemma 5.1.1. If N is a classical prime submodule, then (Ep(N)) = N.

Proof. Letx € (Ep(N)). Then there exist elements r; € R,m; € M such that
x=rymy+romy—+---+rmm; wherel <i<nand rf.(imi € N.

Since N is classical prime, rf-"'m,- € N implies that r;m; € N or rf."‘*lm,- eN.If rm; €N,
then x =rymy+---+rim; € N. If rfiilmi € N, then r;m; € N or rf.‘ifzmi € N. By the
same process, rim; € N for all cases. Hence x € N, which means that (Ey(N)) C N.

Other side of the inclusion is obvious. O

The above lemma implies that every classical prime submodule is semiprime by

Lemma4.1.1.
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Behboodi and Baziar gave the following proposition which gives a relationship

between associated primes of a classical primary submodule.

Proposition 5.1.1. ( [16], Proposition 3.1) Let M be a finitely generated module over a
Noetherian ring. If N is classical primary submodule of M and N = Q1N Q>N ...N Qs
is its minimal primary decomposition with /Q; : M = pi for each i, then py C p> C

...Cps‘

In the next statement we show that the converse of the above proposition is also true for

any submodule N of a Noetherian module M satisfying the condition (Ey(N)) = N.

Theorem 5.1.1. Let R be a Noetherian ring and M be a finitely generated R-module.
Suppose that a submodule N of M has a primary decomposition N = Q1N Q>N ---MN Qg
where each Q; is pi-primary with py C py C --- C ps. If (Ey(N)) = N, then N is

classical prime submodule.

Proof. Since p; C p» C --- C ps, by Theorem 2.3.1 we have

i—1

N = (Ey(N)) :N-l-le‘i‘iPi(ﬂ Q;).
i=2 =1

Let abm € N with a,b € R and m € M. Let i be the first index for which m ¢ Q;. Since

Q; is p;-primary, ab € p; and so either a € p; or b € p;. 1If i = 1, then since py{M C
i—1

(Em(N)) =N, either am € N or bm € N. Leti > 1. Since p;( () Q;) C (Eu(N)) =N,
j=1

either am € N or bm € N. Hence N is a classical prime submodule. O

The classical quasi-primary submodules are introduced in [31].

Definition 5.1.1. A proper submodule N of a Noetherian module M is called classical
quasi-primary if abm € N where a,b € R and m € M implies that either a*m € N or

bkm € N for some k € N,

In [31], itis shown that if NV is classical quasi-primary, then the converse of Proposition

5.1.1 is also satisfied.

Proposition 5.1.2. ( [31], Proposition 3.4) Let M be a Noetherian R-module and N
be a proper submodule of M. Suppose that N = Q1N Q>N ---N Qs is the minimal
primary decomposition where each Q; is p;-primary submodule. Then N is classical

quasi-primary if and only if {p1, p2,...,ps} is a chain of prime ideals.
42



It is clear from the definition that every classical primary submodule is classical

quasi-primary, but the following example shows that the converse is not true in general.

Example 5.1.1. Let R = Q[x,y,z] and let M = R®R ® R. Consider the submodule

N = (ye;,xyes, x’es, +xy°e; + (x> +y%2)es, xy’er +yzes, x*e; ) with N : M = (x?y,x*).

Primary decompostion is N = Q1 N Q> where
Q1 = (ej,xey +zes) is (x) — primary,
0> = (ye ,xye3,xzez,y3e2,y3e3,x3e3 +Xy202 +y2263,x4el> is (x,y) — primary.

Since (x) C (x,y), N is classical quasi-primay by Proposition 5.1.2 with

<EM(N)> = <ye1 7xe17xe27xe3vyze3>-

On the other hand, N is not classical primary. If we take a = x>,b = y and m = (0,0, 1),
then abm = x3y(0,0,1) = (0,0,x’y) € N but

x*(0,0,1)¢ N and y*(0,0,1)¢N,

y(0,0,1)¢N and (x*)¥(0,0,1)¢N for some k>1.

By using the above proposition, we can show the following theorem.

Theorem 5.1.2. Let M be a Noetherian R-module. If N is a classical quasi-primary

submodule with (Eyy(N)) = N, then N is classical prime submodule.

Proof. Suppose that N = Q1N Q>N ---NQjis classical quasi primary submodule where
each Q; is p;-primary submodule. By Proposition 5.1.2, p; C p» C --- C ps. Hence by

Theorem 5.1.1, N is classical prime.

In [16] Theorem 1.9, Baziar and Behboodi showed that if R is domain with dimR <
1, then for every classical primary submodule Q of M (Ey(Q)) is a classical prime
submodule. As a result of this theorem, they proposed the following conjecture. Notice

that they use the notation "{/Q for (Ey(Q)).

Conjecture 5.1.1. Let R be a ring and M be an R-module. Then for every classical

primary submodule Q of M, (Ep(Q)) is a classical prime submodule.
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The following example shows that this conjecture is false.

Example 5.1.2. Let R = Q[x,y] and let M = R® R. Consider the submodule N =

(xe; + y’ey,x%e;,xe;). One can easily see that N : M = (x?) and N is (x)-primary

submodule. Hence
(Em(N)) =N+ (x)M = (xe;,xe2,y°¢2)
Then (Ej;(N)) is not classical prime submodule since y?(0,y) = (0,y?) € (Ep(N)) but

¥(0,y) = (0,) & (Em(N)).

If we weaken the conditions of conjecture as follows, then we obtain the following

result.

Corollary 5.1.1. Let R be a Noetherian ring and M be a finitely generated R-module, N
be classical primary submodule of M. Then N is semiprime if and only if N is classical

prime.

Proof. Suppose N is semiprime and N = Q1 N Q>N --- N QO is primary decomposition
of N with /Q;: M = p; (1 <i <k). By Proposition 5.1.1, p; C pp C -+ C pi. Then

Theorem 5.1.1 implies that N is classical prime submodule. O

We also have the following result.

Corollary 5.1.2. Let N = Q1 N Q; be a submodule of M where Q; is p;-primary. If

(Ep(N)) = N, then either Q| and Q; are both prime or N is classical prime.

Proof. We have two cases: p; € p> or p; C py. If p1 € p», then both p; and p; are
isolated primes. By Corollary 2.3.2, Q| and Q5 are prime submodules. If p; C p,,

then Theorem 5.1.2 implies that N is classical prime.
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5.2 Semiprime Submodules which are Intersection of Classical Primes

Any intersection of classical prime submodule of an R-module is semiprime. But
the converse is not true in general. So, it is interesting to characterize modules over
which every semiprime submodule is an intersection of classical prime submodules.
In [15], commutative rings over which semiprime submodules are intersection of prime

submodules are characterized. In 2006 Behboodi showed the following theorem [12].

Theorem 5.2.1. ( [12], Theorem 1.10) Let R be a commutative domain with dimR < 1,
and let M be an R-module. Then every semiprime submodule of M is an intersection

of classical prime submodules.

In this section we will give some additional definitions and conditions to characterize

the semiprime submodules which can be written as an intersection of classical primes.

Definition 5.2.1. A submodule N is called a quasi-p-primary in M, if N has a unique

isolated prime p (and possibly embedded primes).

Now, let us write a new definiton.

Definition 5.2.2. A quasi-p-primary submodule N is called simple quasi-p-primary if
for any distinct associated primes p;, p; and py of N, p; C py and p; C p; implies either
piCpjorp;C pi.

Definition 5.2.3. A Hasse diagram is a graphical rendering of a partially ordered set
displayed via the cover relation of the partially ordered set with an implied upward
orientation. A point is drawn for each element of the poset, and line segments are

drawn between these points according to the following two rules:

(i) If x <y in the poset, then the point corresponding to x appears lower in the drawing

than the point corresponding to y.

(i) The line segment between the points corresponding to any two elements x and y of

the poset is included in the drawing if and only if x covers y or y covers x.

In the language of the graph theory, we can say N is a simple quasi-primary submodule,
if Hasse diagram of associated primes of N with respect to set inclusion form a rooted

tree.
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Lemma 5.2.1. Let M be a Noetherian R-module. If N is a simple quasi-p\-primary
semiprime submodule, then N can be expressed as an intersection of finitely many

classical prime submodules containing N.

Proof. Let Ass(M/N) = {pi1,...,ps} and S = {1,...,s}. If N contains only one
maximal associated prime with respect to inclusion, then its associated primes form

a chain p; C --- C ps. Hence N is classical prime by Theorem 5.1.2.

Suppose that N has more than one maximal associated prime. For each maximal p;,
we have a unique chain of associated primes p; = p; C pj, C --- C pj, = p;j. Let
N;=0Q; NQj,---NQ;, where Q;, = Q0 and Q;, = Q;. From Theorem 2.3.1,

(EM(N))=N+pM+ Y ((\p)( ) Q)

TCS ieT ieS\T

and
t r—1

(Em(Nj)) = Nj+piM + Z,ijr< Q)
r= k=1

Our aim to show that (Ey(N;)) = N;.

Clearly piM C (Ey(N)) =N CN;. Let B=Ass(M/N)\ Ass(M/N;). Take x € p;, and
m e ﬂ,’c;ll Qj,- Since p; is a maximal prime and associated primes pairwise distinct,

there exists y € () p) \ pj. Hence
PEB

r—1
yam e (p;, V() P)(() Qi) € (Em(N)) =N CN; C Qj,.
pEB k=1

Since each Qj, is pj,-primary and y ¢ p;,, xm € Q;,. Hence xm € N;. This implies
(EmM(N;)) = N; and N; is classical prime by Theorem 5.1.2. Since N = NN, N is

intersection of finitely many classical prime submodules. O

The following proposition is crucial for computing the primary decomposition.

Proposition 5.2.1. ( [20], Proposition 2) Assume that L= {py, ..., px} are the isolated
primes of N. For i,j=1,... k take f; € R such that f; € p; if i # j, but f; & pj,
N; =N : (f;)* and take integers e; such that f{'N; C N. Then:

(i) N; is a quasi-p;-primary submodule in M.

(ii) The sets A; = Ass(M /N;) = {p € Ass(M/N) : fi & p} are pairwise disjoint.
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(iii) For J :== (f{', /3%, -, [¥) we have
N=(N)N(N+JM)

This is a decomposition of N into quasi-primary components N; and a component N' :=

N +JM C M of lower (relative) dimension.

Theorem 5.2.2. Assume that L = {py,...,pi} are the isolated primes of a semiprime
submodule N and define N;’s as in the previous proposition. If N = N1 NNyN---Ni
and each Nj; is simple quasi-p;-primary, then (Ep(N;)) = N; fori=1,... k. Hence N

can be written as a finite intersection of classical prime submodules.

Proof. For a fixed i, let Ass(M/N;) = {pi, = pi: Piy»---,Pi;, } and p; C p;, for every k
andlet N; = Q; N---N Qis[ where each Q;, is p; -primary. By the Theorem 2.3.1,

<EM<N>>:N+<rk)pi>M+ Y, (Nei)( N 2)

i=1 0+TCS  jeT JES\T

and

(Em(N)) =Ni+pM+ Y. ((\pi)( [) Qi)

0+TCS; reT reS\T

where S; = {i1,iz,...,i;;} and S = Uf-‘zlS,-.

Letx € pjandm e M. Take y € (ﬂj#pj) \ (Ui"zzpil). Then

k
yam € ( ﬂ pj)M S (En(N)) C O,
=1

fort =1,...,s;. Since Q;, is primary and y ¢ p;,, xm € Q;,. Hence xm € N;.

Nowletxe () pi,me () Q; forsomeT ¢ S;. Take
reT reS\T

S

ye (ﬂpj)\(UPi,)-

J#L =2
Then

yxm € (ﬂpj)ﬂ(ﬂpi,) ( ﬂ Qir)'

JEL reT reS\T

Since

ﬂm=ﬂﬁm,

Jj#i j#it=1
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(Ne)n (N r)|( N ) S (Eu(N)) SN

J#i reT reS\T
Thus yxm € Q;, fort =1,...,s;. Since Q;, is primary and y ¢ p;, xm € Q;, and hence
xm € Nj. Therefore (Ep(N;)) = N; and hence N can be written as an intersection of

classical prime submodules by Lemma 5.2.1. O
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6. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we obtained a formula for finding the lower nilradical of a submodule
when the underlying module is Noetherian. Computing the radical of a submodule
is also another problem in this area. This problem is solved for Noetherian modules
by [17]. Here we gave an alternative proof for that computation and also we got a
better technique to determining the prime submodules which are redundant or not for

the prime radical.

Since every prime submodule is semiprime, the certain question one would like to
think of is what is the intersection of all semiprime submodules containing a specific
module. The answer of this question gave us semiprime radical and this suggested that
one should consider the modules which satisfy the semiradical formula, and we did so.
We also observed the semiprime submodules which can be written as an intersection

of classical primes since the converse always holds.

The obvious question one would like to consider is that is it possible to find a formula
for determining lower nilradical even in the non-Noetherian case. This would be one
of the questions that we would like to answer in our future study. The related question
that we would like to answer is whether the definition of semiradical formula can be

generalized or not.

Another related question for our future study would be what conditions can be added

to simplify semiprimes which are intersection of classical primes.
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