A NOVEL METHOD FOR PRODUCTION OF NEW TEXTILE DYES VIA LACCASE-CATALYZED OXIDATION

M.Sc. Thesis by
Mustafa KAHRAMAN, B.Sc.

Department: Advanced Technologies
Programme: Molecular Biology – Genetics & Biotechnology

JUNE 2008
A NOVEL METHOD FOR PRODUCTION OF NEW TEXTILE DYES VIA LACCASE-CATALYZED OXIDATION

M.Sc. Thesis by
Mustafa KAHRAMAN, B.Sc.
(521051229)

Date of submission: 5 May 2008
Date of defence examination: 11 June 2008

Supervisor (Chairman): Prof. Dr. Candan TAMERLER
Members of the Examining Committee: Assist. Prof. Dr. Nevin Gül KARAGÜLER (I.T.U.)
Dr. Mehmet Şener KARATAŞ (Setas Kimya San. AS.)

JUNE 2008
LAKKAZ KATALİZLİ OKSİDASYON VASITASIYLA YENİ TEKSTİL BOYALARININ ÜRETİMİ İÇİN YENİ BİR METOT

YÜKSEK LİSANS TEZİ
Mustafa KAHRAMAN
(521051229)

Tezin Enstitüye Verildiği Tarih : 5 Mayıs 2008
Tezin Savunulduğu Tarih : 11 Haziran 2008

Tez Danışmanları: Prof. Dr. Candan TAMERLER
Diğer Jüri Üyeleri: Yrd. Doç. Dr. Nevin Gül KARAGÜLER (İ.T.Ü)
Dr. Mehmet Şener (Setaş Kimya San. AŞ.)

HAZİRAN 2008
ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the enthusiastic supervision, guidance and support of Prof. Dr. Candan Tamerler.

I also thank to Dr. Mehmet Şener, Dr. Rezzan Karaarslan and Ismail Yakın (Setaş Kimya San. AS. Istanbul/Turkey) for the help with HPLC, industrial quality test of dyes and relevant technical discussions.

I would like to thank Wetlands Engineering S.P.R.L (Belgium) for performing toxicity tests for our dyes.

Special thanks to M.Sc. Koray Yesiladali for sharing his ideas and helping me as a labmate.

I also thank Abdullah Sert, Volkan Demir, Onur Ercan, Hasan Kahraman and Emrah Yelboga for their lovely friendship.

Finally, I am forever indebted to my family and Aslihan for their understanding, patience and encouragement.

This study is a part of ‘Novel sustainable bioprocesses for the European colour industries (SOPHIED) EU, FP6 Integrated Project’ and is funded by European Union

MAY 2008 Mustafa KAHRAMAN
TABLE OF CONTENT

ABBREVIATIONS ..vi
LIST OF TABLES .. vii
LIST OF FIGURE ... viii
ÖZET ..x
SUMMARY ... xi

1. INTRODUCTION .. 1

1.1. Current Industrial Dye Production and Dyestuff Market .. 1
1.2. A New Way to Synthetic Chemistry; Biotransformations and Biocatalysts 2
 1.2.1. Historical Landmarks of Modern Biotechnology and Biocatalyst................. 2
 1.2.2. Biotransformations and Biocatalysts... 4
 1.2.3. Selective Biooxidation; Oxidative Biotransformation 7
 1.2.4. Current Trends and Future Prospects ... 8
1.3. Laccase as a Green Chemistry Tool .. 10
 1.3.1 Green Chemistry ... 10
 1.3.2. Laccase .. 11
 1.3.2. Laccase Applications ... 13
 1.3.4. A Case Study of Biocatalysis .. 14
1.4. Production of Novel Textile Dyes by Laccase-catalyzed Oxidative Biocatalysis 16

2. MATERIALS AND METHODS .. 19

2.1. Materials .. 19
 2.1.1. Dye Precursors ... 19
 2.1.2. Enzymes ... 20
 2.1.3. Bacterial Culture Media ... 20
 2.1.4. Silica Gel Plates ... 20
 2.1.5. Stock Solutions .. 21
 2.1.6. Freshly Used Solution ... 21
 2.1.7. Lab Equipments ... 21
2.2. Methods .. 21
 2.2.1. Selection of Dye Precursors .. 21
 2.2.2. Laccase Activity Assay ... 22
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABTS</td>
<td>2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)</td>
</tr>
<tr>
<td>Caco-2 cells</td>
<td>Human intestinal cell line</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standard Organization</td>
</tr>
<tr>
<td>ITU22</td>
<td>Colored solution obtained from S_1 and S_2 in the presences of laccase</td>
</tr>
<tr>
<td>LB Media</td>
<td>Luria-Bertani Media</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NR</td>
<td>Neutral Red Dye</td>
</tr>
<tr>
<td>NRU</td>
<td>Neutral Red Uptake</td>
</tr>
<tr>
<td>REACH</td>
<td>Registration, Evaluation, Authorization and Restriction of Chemical substances</td>
</tr>
<tr>
<td>RTG-2 cells</td>
<td>Fish cell line</td>
</tr>
<tr>
<td>S_1</td>
<td>2-Aminophenol-4-sulphonic acid, precursor I</td>
</tr>
<tr>
<td>S_2</td>
<td>3,4,5-Trihydroxybenzoic acid (Gallic acid), precursor II</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>TvL</td>
<td>Trametes versicolor Laccase</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-violet</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. 1 Dates and events in biotechnology and biocatalyst, period since 1944 [6] ..3
Table 1. 2 Examples of current catalyst and process development studies [12]5
Table 1. 3 Some commercialized biocatalytic process [12], [17] and [13]9
Table 2. 1 Formula for laccase activity measurement ..22
Table 2. 2 Medium A and B composition ..23
Table 2. 3 Medium composition of coupling reaction sets ...24
Table 2. 4 Laccase-catalyzed biooxidation medium ..25
Table 3. 1 Results of the chlorinated water fastness and light fastness48
Table 3. 2 Results of the washing fastness and water fastness48
Table 3. 3 Cytotoxicity results of ITU22 ..49
LIST OF FIGURE

Figure 1. 1	Market share in dyestuffs industry [3]	2
Figure 1. 2	The biocatalysis cycle	6
Figure 1. 3	Classification of oxidizing enzymes	7
Figure 1. 4	The growth of biocatalysts market [6]	8
Figure 1. 5	An example of laccase action on substrate [22]	12
Figure 1. 6	Ribbon diagram of TvL showing the two channels leading to the T2/T3 cluster. Water molecules are depicted as red spheres, and copper ions are depicted as blue spheres [25].	13
Figure 1. 7	Acrylamide production route by Cu-catalytic process and biocatalytic process [8]	15
Figure 1. 8	The route for synthesis of novel textile dyes by laccase-catalyzed oxidation	17
Figure 1. 9	Mechanism of oxidative coupling as referred to the four resonance forms of free radicals generated laccase-mediated oxidation of vanilic acid [40].	18
Figure 2. 1	Structure of 2-Aminophenol-4-sulphonic acid	19
Figure 2. 2	Structure of Gallic acid	20
Figure 3. 1	Laccase activity throughout 24 hours in two different medium (■ indicates medium B without ethylene glycol, and ♦ indicates medium A with ethylene glycol)	29
Figure 3. 2	a) shows the laccase catalyzed micro-plate reaction, b) indicates well numbers and colors, the red painted boxes indicate; no dilution, the blue painted boxes; 4 fold dilution, the orange painted boxes; 16 fold dilution, the green painted boxes; 160 fold dilution	31
Figure 3. 3	(a) four fold diluted Medium II (b) 160 fold diluted Medium I	32
Figure 3. 4	spectrums of (a) four fold diluted Medium IX (b) four fold diluted Medium X	32
Figure 3. 5	(a) 160 fold diluted Medium V (b) four fold diluted Medium VI	33
Figure 3. 6	(Continued) (g) four fold diluted Medium IV (h) four fold diluted Medium III (i) four fold diluted Medium VII (k) four fold diluted Medium VIII	34
Figure 3. 7	TLC results of micro-plate reactions (a) photograph taken under day light, (b) taken under 254 nm UV light	35
Figure 3. 8	four resonance forms of free radicals and possible coupling by laccase mediated oxidation	36
Figure 3. 9 (continued) four resonance forms of free radicals and possible coupling by laccase mediated oxidation...37
Figure 3. 10 HPLC chromatogram of S_1 and S_2 in laccase mediated oxidation38
Figure 3. 11 HPLC spectrogram of S_1 and S_2 at 1.66 min. in laccase mediated oxidation...38
Figure 3. 12 HPLC chromatogram of S_1 and S_2 in the absence of any oxidant........39
Figure 3. 13 HPLC spectrogram of S_1 and S_2 at 2.18 min..39
Figure 3. 14 HPLC chromatogram of S_1 in laccase mediated oxidation40
Figure 3. 15 HPLC spectrogram of S_1 at 1.66 min..41
Figure 3. 16 HPLC chromatogram of S_2 in laccase mediated oxidation42
Figure 3. 17 HPLC spectrogram of S_2 at 1.86 min..42
Figure 3. 18 HPLC chromatogram of S_1 in the absence of oxidant.................................43
Figure 3. 19 HPLC chromatogram of S_2 in the absence of oxidant.................................43
Figure 3. 20 HPLC spectrogram of S_2 at 2.11 min..44
Figure 3. 21 Proposed reaction mechanism for laccase-catalyzed oxidation of phenolic substitute substances...45
Figure 3. 22 Multifibre dyeing..46
Figure 3. 23 Washing Fastness...46
Figure 3. 24 Water Fastness..46
Figure 3. 25 Chlorinated water fastness...47
Figure 3. 26 Determination of remaining dyestuff in the bath...47
Figure 3. 27 Light fastness control..47
Figure 4. 1 Modified experimental rotue ...50
LAKKAZ KATALİZLİ OKSİDASYON VASITASIYLE YENİ TEKSTİL BOYALARININ ÜRETİMİ İÇİN YENİ BİR METOT

ÖZET

A NOVEL METHOD FOR PRODUCTION OF NEW TEXTILE DYES VIA LACCASE-CATALYZED OXIDATION

SUMMARY

The studies aiming at the use of oxidative enzymes as a biocatalyst in synthetic chemistry have attracted attention from academic and industrial areas. Specifically, the ability of laccases to catalyze the oxidation (by O_2) of various substances is remarkable for the synthesis of novel or existing chemicals. The laccases store four electrons on copper directly involved at active site. Thus, it can be called as ‘molecular battery’. In laccase-mediated oxidation, the substrate loses a single electron and forms a free radical. Substrates such as phenols form semi-quinone free radicals in this process. The unstable free radicals may undergo further laccase-catalyzed oxidation, coupling other phenolic structure or non-enzymatic reactions such as hydration and polymerization.

Production of novel textile dyes by laccase-catalyzed oxidative biocatalysis is a completely new approach in terms of biocatalysis technology. The idea of the use of laccase in oxidative biocatalysis aiming at coupling of substitute phenolic substances by laccase is the basics of our studies. For this purpose, fifteen dye precursors which are commonly used in textile dyes production have been selected. Laccase-catalyzed micro-plate screening reactions were designed in order to find out color alteration in each micro-well which contains only two precursors of interest. At this stage, we expected that the oxidative biocatalytic reactions in wells result in coupling between two precursors and colorful extracts such as green, brown, orange, red and black. As a result of micro-plate screening reactions in the presence of laccase, we have obtained a few industrially-acceptable and non-toxic novel textile dyes. However, in order to protect proprietary rights of novel dyes, this thesis comprises only one of the micro-plate reactions and its dye, ITU22, catalyzed by laccase and analytical studies to be mentioned.

Thin layer chromatography, spectrum analysis and HPLC of the ITU22 were performed for determination of color contents and products analysis. The positive reactions in micro-plates were scaled-up at bench-scale and then antimicrobial activity tests were carried out. Finally, industrial dye quality tests and toxicity tests of selected colorful extracts were tested by Setas Kimya San. AS. (Turkey) and Wetlands Engineering S.P.R.L (Belgium), respectively. ITU22 has moderate quality in terms of industrial dye quality, however, it was determined as a cytotoxic dye for Caco-2 cells, while there was no cytotoxicity for RTG-2 cells.
1. INTRODUCTION

1.1. Current Industrial Dye Production and Dyestuff Market

A dye can basically be described as a colored substance that has an affinity to its substrate. Dyes can be classified concerning their chemical structure (azo dyes, anthraquinonic dyes, xanthene dyes, triphenylmethane dyes etc.), usage or application method (textile dyes, food dye etc.) [1]. Mauveine is known as the first synthetic dye which discovered by William Henry Perkin, an English chemist, in 1856 when marks the beginning of synthetic dyestuffs studies. As a result of Perkin’s studies, the synthetic dye manufacturing industry was founded by Perkin in 1857 [2]. Therefore, the dyestuff industry was an important activity in European economic until the end of 20th century. However, dye stuff industries have shifted to the developing countries in last two decades, due to increasing labour and production costs in Europe.

Currently, dyes are synthesized in a reactor by means of conventional chemical catalysts. There are usually several steps in dye manufacturing process, including reactions in reactor, separation, drying and grinding [1]. The chemical synthesis step involves reactions such as sulfonation, halogenation, amination, diazotization, and coupling, followed by separation processes that may include distillation, precipitation, and crystallization.

In the recent years, dyestuff production in the world is kept around 1-1.5 million tons in per year. Dyes can be segmented by their usage for printing inks, plastics, textiles, paper and foodstuff. Textile segment is responsible for great part of the dye consumption [3]. Today, Asian countries are the major dyestuff producing countries in the industry. In terms of market share Europe is the leading producer due to its allegiance towards specialty products and the countries in Europe have remained the largest players owing to specialty products.
Nowadays, European legislation implements a new system called REACH for Registration, Evaluation, and Authorization of Chemicals in Europe to ensure the protection of human health and environment. The aim of REACH is to improve the protection of human health and the environment through the better and earlier identification of the intrinsic properties of chemical substances [4]. It’s known that some dye intermediates and dyes are toxic and the conventional dye synthesis pathways and the dying of fibres are not fully worker and environmentally friendly [5]. These processes have certain risk to living organisms and their environments. Hence, the regulation somehow is likely to affect on conventional dyestuff industry. We can clearly say that there is a need for alternative processes and products which are economic, non/less-toxic, environmentally and worker friendly.

1.2. A New Way to Synthetic Chemistry; Biotransformations and Biocatalysts

1.2.1. Historical Landmarks of Modern Biotechnology and Biocatalyst

Microorganisms have been of tremendous social and economic significance throughout the history of humankind. The humankind is known to have made fermented foods since Neolithic times, without being conscious of their existence. After observing microorganism and discovering microscopy in 16th century, scientists had the knowledge of fermentation of food and beverages. However, the production of chemicals by means of fermentation is relatively recent and the knowledge in the literature for fermentation process only appeared in the second half of the 19th century.
Table 1.1 Dates and events in biotechnology and biocatalyst, period since 1944 [6]

<table>
<thead>
<tr>
<th>SCIENTIFIC EVENT</th>
<th>TECHNICAL APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1944 Avery et al.: Chemical nature of chromosomes: DNA</td>
<td>1955 Industrial steroid transformation (prednisolone)</td>
</tr>
<tr>
<td>1950 Chargaff: Rule of nucleotide ratios</td>
<td></td>
</tr>
<tr>
<td>1953 Sanger: Sequence of insulin</td>
<td></td>
</tr>
<tr>
<td>1953 Watson and Crick: Structure of DNA</td>
<td></td>
</tr>
<tr>
<td>1955f Kornberg et al: Enzymatic DNA replication</td>
<td></td>
</tr>
<tr>
<td>1955f Zamecnik and Hoagland: Amino acid activation, translation in protein synthesis</td>
<td></td>
</tr>
<tr>
<td>1960/61 Jacob and Monod: Operon model of gene regulation; concept of mRNA</td>
<td></td>
</tr>
<tr>
<td>1963 Merrifield: solid-phase protein synthesis</td>
<td></td>
</tr>
<tr>
<td>1961-66 Nirenberg, Khorana et al.: Genetic code; first X ray enzyme structure</td>
<td></td>
</tr>
<tr>
<td>1968 Arber and Linn: Restriction enzyme</td>
<td>1973 Industrial production of Amino Penicillanic Acid</td>
</tr>
<tr>
<td>1971f Nathans; Southern: DNA seperation</td>
<td></td>
</tr>
<tr>
<td>1972 Mertz, Davies: Recombinant DNA; Berg: First recombinant organism; Khorana: Oligonucleotide synthesis</td>
<td>1974 Glucose/fructose syrup</td>
</tr>
<tr>
<td>1973 Cohen, Boyer: Recombinant plasmid</td>
<td>1976 Swanson, Boyer: Foundation of first biotech company: Genentech</td>
</tr>
<tr>
<td>1975f Maxam and Gilbert; Sanger: Methos for DNA sequencing Köhler and Millstein: Monoclonal antibody Directed mutagenesis</td>
<td>1978 Recombinant human insulin</td>
</tr>
<tr>
<td>1975 Asilomar conference</td>
<td>1980 Chakrabarty : first patent for recombinant bacterium</td>
</tr>
<tr>
<td>1979 Mayer et al.: Recombinant penicillin acylase</td>
<td>1984 Mechanised DNA sequencing</td>
</tr>
<tr>
<td>1983f Frank and Blöcker; Carruthers: mechanised DNA synthesis</td>
<td>1988 Leder, Stewart: patent for transgenic mouse</td>
</tr>
<tr>
<td>1988 Mullis: Polymerase chain reaction (PCR)</td>
<td></td>
</tr>
<tr>
<td>1990: Start of Human Genome Project</td>
<td>1995 First complete bacterial genome sequence</td>
</tr>
<tr>
<td>1994: First example for directed evolution of an enzyme (using DNA-shuffling)</td>
<td>1996 Mass cultivation of recombinant seeds (commercial corn seeds)</td>
</tr>
<tr>
<td>1997 First cloned animal: Dolly</td>
<td></td>
</tr>
<tr>
<td>1998 Argonne Structural Genomic Meeting</td>
<td>1999 Strat of CELERA-industrial genome sequencing</td>
</tr>
<tr>
<td></td>
<td>1999 Sequence of human chromosome-22</td>
</tr>
<tr>
<td></td>
<td>1999 Vitamin C via whole cell biocatalysts</td>
</tr>
<tr>
<td></td>
<td>2000 First approximate version of human genome</td>
</tr>
</tbody>
</table>
The first optically active substance industrially produced by fermentation was probably lactic acid [7]. After discovering of DNA in 1940’s, period of modern biotechnology has been started (Table 1. 1). Restriction enzymes and synthesis of oligonucleotids were found in about 1970’s. These caused recombinant DNA technology by the help of constructing recombinant plasmids in the same years. By means of the recombinant DNA technology, insulin was the first commercialized recombinant product in 1976. In terms of biocatalyst, the first recombinant enzyme at an industrial scale (10 m3 fermenter) was produced by Boehringer Mannheim (Germany) Company in 1982 [6].

1.2.2. Biotransformations and Biocatalysts

Life depends on a well-designed series of chemical reactions. However, many of these reactions proceed too slowly to sustain life on their own. Protein based catalysts, which referred as enzymes or biocatalyst, greatly accelerate the rate of these chemical reactions. Nowadays, their catalytic potential is also of great importance for the industrial purposes. Biotransformations have become a well-known tool specifically in fine chemical industry since the mid-1970s [8]. Biocatalytic systems which include crude and purified enzymes as well as whole-cell systems can perform highly selective reactions under mild conditions. As the results of the recent advances in large scale DNA sequencing, structural biology, protein expression, high throughput screening, directed enzyme evolution, metabolic engineering and advance in process development, biocatalysis is becoming a transformational technology for chemical synthesis (Table 1.2.) [9]. The biocatalysts are widely used especially in synthesis and production of biologically active compounds in the agrochemical, polymer and pharmaceutical sectors. Biocatalysis has already been proven in many cases to overcome specific synthetic problems.

Advantage of biocatalysts;

Chemoselectivity; biocatalyst can act on single type of functional group.

Regioselectivity, stereoselectivity and enantioselectivity; complex 3D structure of an enzyme can only interact with one type of region of substrate [10].
Preventing or limiting the use of the hazardous reagents; biocatalysts can use the alternative reaction mechanism or solvents.

Impurities and by-products; because of the selectivity of biocatalysts in reaction, impurities and by-products can be minimized.

High turnover number; biocatalytic reactions usually display characteristically high turnover numbers [11].

Energy Efficiency; biocatalysts generally work at low temperatures and can be regenerated in biocatalytic system.

Easy product purification; heterogeneous reaction medium in biocatalysts provide easy product purification.

Table 1.2 Examples of current catalyst and process development studies [12]

<table>
<thead>
<tr>
<th>Areas</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advances in catalyst development</td>
<td>Directed Evolution Error prone PCR, saturation mutagenesis, genes/family shuffling, staggered, extension mutator strains</td>
</tr>
<tr>
<td>Metabolic engineering</td>
<td>Molecular breeding of strains</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>Proteome analysis using 2D PAGE, Transcriptome analysis using DNA microarrays</td>
</tr>
<tr>
<td>Screening for new biocatalyst</td>
<td>High-throughput screening</td>
</tr>
<tr>
<td>Exploitation of microbial adaptation</td>
<td>Selection following various cultivation procedures</td>
</tr>
<tr>
<td>Advances in process development</td>
<td>Two-phase systems Emulsion process, in situ product extraction</td>
</tr>
<tr>
<td>\textit{In vitro} redox reactions regeneration</td>
<td>Electrochemical NADH regeneration Direct enzyme regeneration</td>
</tr>
</tbody>
</table>
In order to design economically feasible biotransformation, there are some critical steps in the biocatalysis cycle [13] (Figure 1.2). Firstly, the synthetic routes can be biocatalysis or a combination of chemistry and biocatalysis. The availability of starting materials, number of steps in route, scalability, development time, product quality, and down-stream processing should be taken into consideration [14]. The main catalyst in biotransformation is enzyme which can be wild-type or recombinant. One or more enzymes can be used and the whole cells can also be used instead of the use of the enzyme alone.

![Figure 1.2 The biocatalysis cycle [13]]
1.2.3. Selective Biooxidation; Oxidative Biotransformation

Nowadays, biocatalyst technology in industry has been mainly limited to selective hydrolyses or ester/amide bond formation. Due to the need for expensive cofactors such as cofactor regeneration in biocatalytic system and low selectivity, stability and activities of biocatalyst, some important parts of synthetic chemical synthesis such as C-C bound formation and selective oxidation have still been remained inoperative by biocatalyst [15]. However, advance technologies in biotechnology promise great opportunities to overcome these problems. Nonetheless, there are some unsolved problems in oxidative synthetic chemistry such as uncontrolled reaction, predictability of the product structures and expensive oxidizers. Oxidative biocatalysts can also solve these unsolved problems. Oxidative enzymes can be classified according to the nature of the oxidizing substrate [16] (Figure 1.3).

Figure 1.3 Classification of oxidizing enzymes [16]
1.2.4. Current Trends and Future Prospects

There are some difficulties for the approval of biocatalyst in chemical synthesis such as:

- limited substrate specificity
- non-availability
- limited number of biocatalyst
- low stability
- requirement of cofactors

On the other hand, the impact of advances in technologies such as the recombinant DNA technology, bioprocess technology and biocatalyst screening techniques has played an important role to overcome mentioned difficulties and these technologies have resulted in the extension of the field of biocatalysis since the 1980’s [12]. Aforementioned key technologies provide biocatalyst with altered structure, function, stability, availability and selectivity, and using the biocatalyst in non-aqueous environments. Application of enzymes in industry has been become widespread day by day [6] (Figure 1. 4). The use of the biocatalysts in organic and pharmaceutical chemistry for the synthesis purposes has been remarkable in recent years and it has gained much attention.

![The growth of biocatalysts market](image)

Figure 1.4 The growth of biocatalysts market [6]
<table>
<thead>
<tr>
<th>Product</th>
<th>Substrate</th>
<th>Reaction</th>
<th>Biocatalyst</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-amide; S-amine (R)-2-(4’-Hydroxy-phenoxo) propionic acid</td>
<td>Rasemic Amines</td>
<td>Resolution</td>
<td>Lipase</td>
<td>BASF</td>
</tr>
<tr>
<td></td>
<td>(R)-2-Phenoxy-propionic acid</td>
<td>Oxidation</td>
<td>Whole cells, Oxidase</td>
<td>BASF</td>
</tr>
<tr>
<td>Enantiopure D-amino acids</td>
<td>Racemic hydantoins</td>
<td>Dynamic resolution</td>
<td>Hydantoinases, decarbamylases rasemase</td>
<td>Degussa</td>
</tr>
<tr>
<td>B-Lactam antibiotics</td>
<td>7-ADCA or &-APA and acid derivatives</td>
<td>Enzymatic hydrolysis/synthesis</td>
<td>Acylases</td>
<td>DSM</td>
</tr>
<tr>
<td>L-Aspartic acid</td>
<td>Fumaric acid</td>
<td>Enantio-selective synthesis</td>
<td>Ammonia lyase</td>
<td>DSM</td>
</tr>
<tr>
<td>5-Methylpyrazine-2-carboxylic acid</td>
<td>2,5-Dimethylpyrazine</td>
<td>Oxidation</td>
<td>Whole cells, xylene degradation pathway</td>
<td>Lonza</td>
</tr>
<tr>
<td>Niacinamide</td>
<td>Nicotinonitrile</td>
<td>Hydrolysis</td>
<td>Immobilized whole cells, nitrile hydratase, D-Amino acid oxidase and glutaryl amidase</td>
<td>Lonza</td>
</tr>
<tr>
<td>7-ACA</td>
<td>Cephalosporin C</td>
<td>Fermentation</td>
<td>oxidase and glutaryl amidase</td>
<td>Novartis</td>
</tr>
<tr>
<td>Various (S)-ester amides</td>
<td>Racemic aralactones</td>
<td>Dynamic resolution</td>
<td>Immobilized triacylglycerol acylhydrolase</td>
<td>Chirotech</td>
</tr>
<tr>
<td>Cacao Butter</td>
<td>Lipids</td>
<td>Hydratation</td>
<td>Lipase</td>
<td>Unilever</td>
</tr>
<tr>
<td>Acrylamide</td>
<td>Acrylonitrile</td>
<td>Hydratation</td>
<td>Nitrile hydratase</td>
<td>Nitto</td>
</tr>
</tbody>
</table>

Comparison of biological and chemical catalyst for novel process is an important issue. Jacobsen and Finney suggest the five criteria for comparison chemical catalysts
performance [18], these five criteria could be taken into account when comparison of biocatalyst and chemical catalyst:

1. Enantioselectivity of the product
2. Amount of product obtained per amount of catalyst consumed
3. Availability and costs of the catalyst
4. Substrate specificity (range of substrate)
5. Comparison of the method with alternative strategies

Biocatalysts present great opportunities and are likely to be the only solution for future economic sustainability. Academic and industrial efforts in biocatalyst discovery, design, development and implementation continue to decrease petroleum dependence and to eliminate environmentally destructive processes.

1.3. Laccase as a Green Chemistry Tool

1.3.1 Green Chemistry

Most process which concern the use of the chemicals and most substance which somehow contact with the people have the potential to cause a negative impact on the environment and human beings. Green chemistry philosophy was coined only 10 years ago to minimize risk by minimizing hazard [19]. The most widely accepted definition of green chemistry is ‘‘the design, development and implementation of chemical processes and products to reduce or eliminate substances hazardous to human health and the environment.’’. This definition can be expanded into 12 principles [20]:

1. It is better to prevent waste than to treat or clean up waste after it is formed.
2. Synthetic methods should be designed to maximize the incorporation of all materials used in the process into the final product.
3. Wherever practicable, synthetic methodologies should be designed to use and generate substances that possess little or no toxicity to human health and the environment.
4. Chemical products should be designed to preserve efficiency of function while reducing toxicity.

5. The use of auxiliary substances (e.g. solvents, separation agents, etc) should be made unnecessary wherever possible and, innocuous when used.

6. Energy requirements should be recognized for their environmental and economic impacts and should be minimized. Synthetic methods should be conducted at ambient temperature and pressure.

7. A raw material of feedstock should be renewable rather depleting wherever technically and economically practicable.

8. Unnecessary derivatisation (blocking group, protection/deprotection, and temporary modification of physical/chemical processes) should be avoided whenever possible.

9. Catalytic reagents (as selective as possible) are superior to stoichiometric reagents.

10. Chemical products should be designed so that at the end of their function they do not persist in the environment and break down into innocuous degradation products.

11. Analytical methodologies need to be further developed to allow for real-time, in-process monitoring and control prior to the formation of hazardous substances.

12. Substances and the form of a substance used in a chemical process should be chosen so as to minimize the potential for chemical accidents, including releases, explosions and fires.

1.3.2. Laccase

Laccases are oxidoreductases belong to the multinuclear copper-containing oxidase and contain four copper atoms per molecule. These can be secreted or intracellular and their physiological function is different in the various organisms but they all catalyze polymerization or depolymerization processes. Typical reaction of laccase is oxidation of a phenolic compound with the concurrent reduction of molecular oxygen to water.
After four cycle of single-electron oxidation forming free radicals, the enzyme reduces one molecule of oxygen, generating two molecules of water (Figure 1.5). Three types of copper atom can be distinguished by their spectroscopic and paramagnetic properties: type 1 (T1), type 2 (T2) and type 3 (T3) (Figure) [21].

![Diagram of enzyme action](image)

Figure 1.5 An example of laccase action on substrate [22]

Laccases were detected in various bacteria, fungi, plants and insects and play an important role in many cellular and microbial activities such as radical-based mechanism of lignin formation in plants [23] and morphogenesis, fungal plant-pathogen/host interaction, stress defense and lignin degradation in fungi [24]. Extensive characterization of laccases has been carried out in the past decades. In general, a fungal laccase has a molecular mass of ~60-80 kDa and isoelectric point pI of ~4-7, depending on glycosylation [22]. The three-dimensional structure of a laccase from *Trametes versicolor* was elucidated by Choinowski *et al* (Figure 1.6).
Figure 1.6 Ribbon diagram of TvL showing the two channels leading to the T2/T3 cluster. Water molecules are depicted as red spheres, and copper ions are depicted as blue spheres [25].

A very wide range of substrate can be oxidized by laccases such as phenols, anilines, thiols, N-hydroxyls, N-oximes, phenazines, phenoxazines, phenothiazines and transition metal complex, etc [15]. However, the catalytic constant of laccase may be different for each type of substrate. Different laccase enzymes can also differ in their catalytic preferences [22].

1.3.2. Laccase Applications

The use of the enzymes in food, materials and chemical industries is major component of the green technology revolution. Nowadays, efficient and environmentally benign processes for industry has increased interest in laccase essentially ‘green’ catalysts, which work with air and produce water as the only by-product [26]. Laccases have a serious application potential in various industrial areas;

Food and Beverage Industry

- Enhancing and modifying the colour appearance of food or beverage
- Potential application of laccase; bioremediation, beverage processing, ascorbic acid determination, sugar beet pectin gelation, baking and as a biosensor [27]

Pulp and Paper Industry

- alternative to bleaching systems [28]
- modification of wood fibers and functionalizing lignocellulosic fibers [29]
Textile Industry

- Textile bleaching
- Removal of dyes from industrial effluents [30]

Diagnostics

- Enzyme linked immunoassays (EIA) [31]
- Biosensors and nanobiotechnology [32]

Other laccase applications

- Soil bioremediation [33]
- Synthetic chemistry [34] and cosmetics [35]

The major drawbacks of commercialization of laccases are the lack of enzyme stocks and the cost of redox mediators. To achieve overproduction of this biocatalyst and to obtain more robust and active enzymes, their modifications by chemical means and protein engineering have to be employed. Moreover, the development of an effective system for laccase immobilization is of great importance for the use of laccase in industry.

1.3.4. A Case Study of Biocatalysis

One of the most successful examples of biocatalytic production of a chemical is the conversion of acrylonitrile to acrylamide [36]. Acrylamide is an important monomer needed for the production of a range of economically useful polymeric materials and can be produced by the addition of water to acrylonitrile under the use of a reduced copper catalyst (Cu⁺). However, the yield is poor, unwanted polymerization or conversion to acrylic acid may occur at the relatively high temperatures involved (80 -140°C) and the catalyst is difficult to regenerate. An alternative way to produce acrylamide by Pseudomonas chloraphis B 23 mutant strain as whole-cell biocatalysis was developed by Nitto Chemical Industries (now part of Mitsubishi Rayon Co., Ltd) [37]. Today, The company currently produces around 20 000 metric tons per year of acrylamide using a third-generation biocatalyst, Rhodococcus rhodochrous J1, which was first isolated by Kobayashi and Yamada [38]. Acrylamide is produced continuously from acrylonitrile at
10°C in a series of fixed-bed reactors using polyacrylamide-immobilized *Rhodococcus rhodochrous* J1 cells.

![Chemical reaction of Acrylamide production](image)

Figure 1.7 Acrylamide production route by Cu-catalytic process and biocatalytic process [8]

The biocatalytic process may eliminate:

- heat and pressure
- heavy metal catalyst

The bioprocess also produces higher purity product and less wastewater than the chemical process [39]. The chemical and biocatalytic production processes for acrylamide are compared on Figure 1.7.
1.4. Production of Novel Textile Dyes by Laccase-catalyzed Oxidative Biocatalysis

The ability of laccases to catalyze the oxidation (by O$_2$) of various substances is remarkable for synthesis of novel or existing chemicals. The laccases store four electrons on coppers which directly involved at active site. Thus, it can be called as ‘molecular battery’. In laccase-mediated oxidation, the substrate loses a single electron and forms a free radical. Substrates such as phenols form semi-quinone free radicals in this process. The unstable free radicals may undergo further laccase-catalyzed oxidation, coupling other phenolic structure or nonenzymatic reactions such as hydration and polymerization. One example of laccase-catalyzed reaction and possible products was showed Duc at al. (Figure 1.9) [40].

The redox potential of fungal laccase is independent of their species of origin and is in the range of 0.5–0.8 V. Nonetheless, horseradish peroxidase and lignin peroxidase are clearly stronger oxidant than the laccase. However, the laccase is relatively selective oxidant on phenolic substance in comparison to lignin peroxidase and horseradish peroxidase [41].

Production of novel textile dyes by laccase-catalyzed oxidative biocatalysis is a completely new approach in terms of biocatalysis technology. The idea of the use of laccase in oxidative biocatalysis and coupling of substitute phenolic substances by laccase is the basics of our studies. For this purpose, fifteen dye precursors which commonly used in textile dye production by means of chemical synthesis have been selected. Laccase-catalyzed micro-plate screening reactions were designed in order to find out color alteration in each micro-well which contains only two precursors of interest (Figure 1.8). At this stage, we expected that the oxidative biocatalytic reactions in wells result in coupling between two precursors and give colored solutions such as green, brown, orange, red and black. Thin layer chromatography and spectrum analysis of extracts were used for determination of colors and products. To accurately determine formation of products, laccase oxidation effects on each precursor and understand the enzymatic reaction mechanism, HPLC analysis were employed. The positive selected reactions in micro-plates were scaled-up at bench-scale and then antimicrobial activity tests were carried out. Finally, industrial dye quality and toxicity of selected colored
extracts were tested by Setas Kimya San. AS. and Wetlands Engineering S.P.R.L. respectively. This thesis describes one of the micro-plate reactions catalyzed by laccase and aforementioned characterization studies.

Figure 1.8 The route for synthesis of novel textile dyes by laccase-catalyzed oxidation
Figure 1.9 Mechanism of oxidative coupling as referred to the four resonance forms of free radicals generated laccase-mediated oxidation of vanilic acid [40].
2. MATERIALS AND METHODS

2.1. Materials

2.1.1. Dye Precursors

2.1.1.1. 2-Aminophenol-4-sulphonic acid

2-Aminophenol-4-sulphonic acid is a well-known dye precursor. This substance was kindly provided by Setas Kimya San. AS. Molecular weight of 2-Aminophenol-4-sulphonic acid is 189.10 g/mol. It is named as S_1 in our studies.

![Structure of 2-Aminophenol-4-sulphonic acid](image)

Figure 2. 1 Structure of 2-Aminophenol-4-sulphonic acid

2.1.1.2. 3,4,5-Trihydroxybenzoic acid (Gallic acid)

3,4,5-Trihydroxybenzoic acid is also well-known dye precursor. This substance was kindly provided by Setas Kimya San. AS. Molecular weight of gallic acid is 170.119 g/mol. It is named as S_2 in our studies.
2.1.2. Enzymes

The laccase from *Trametes versicolor* was purchased from Fluka, Biochemika. It was used as an oxidative biocatalyst in our studies. The activity of *Trametes versicolor* laccase was about 27.5 U/mg. Optimum pH of TvL was 4.5.

2.1.3. Bacterial Culture Media

2.1.3.1. Mueller-Hinton Agar Medium

2 g meat infusion (Merck Co.), 17.5 g casein hydrolysate (Acumedia), 1.5 g starch (Merck Co.), and 13 g agar (Merck Co.) were dissolved in distilled water up to 1L and pH was adjusted to 7.0 with 10 M NaOH, then prepared medium was autoclaved at 121 °C throughout 15 minutes.

2.1.3.2. Luria-Bertani Media (LB Media)

10 g tryptone (Acumedia), 5 g yeast extract (Acumedia), 5 g NaCl (Riedel-de-Haen) were dissolved in 1 L distilled water. Medium pH was adjusted to 7.0 with 10 M NaOH, then prepared medium was autoclaved at 121 °C for 15 minutes.

2.1.4. Silica Gel Plates

Thin layer chromatography plates (20 x 20 cm) were purchased from Merck (LuxPlate® Silica gel 60 F254). The plates have an UV indicator to monitor the substance.
2.1.5. Stock Solutions

2.1.5.1. Tartrate Buffer

100 mM 1 lt pH 4.5 tartrate buffer was prepared by dissolving 15.08 g tartaric acid (Merck Co.) in 1 L distilled water and pH was adjusted to 4.5 with NaOH.

2.1.6. Freshly Used Solution

2.1.6.1. TLC Eluent

For the TLC analysis, mixture of \(n \)-Butanol (Lab-Scan), acetone (Sigma), water, ammonia (Sigma) (5:5:1:2) was used as an eluent. 100 mL of eluent was freshly prepared for each TLC analysis.

2.1.6.2. Hydrogene Peroxide

Hydrogene peroxide (Sigma) was freshly prepared in each reaction.

2.1.6.3. Other Chemicals

Ethylene glycol (Merck) was used as a co-solvent in reaction.

2.1.7. Lab Equipments

Lab equipments are given in Appendix D.

2.2. Methods

2.2.1. Selection of Dye Precursors

Laccases are excellent oxidants of aromatic cycles substituted by electrodonating groups like diphenols (ortho and para), polyphenols, phenols substituted by methoxyl group. To achieve successfully biotransformation of precursors with laccase, selection of precursor is of great importance. Hence, the candidate precursors were selected considering the following limitations;

- easy to oxidation
- contain desired organic groups
cheap and accessible
- existing textile dyes precursors

2.2.2. Laccase Activity Assay

The activity of laccase was determined by measuring the oxidation of 25 mM ABTS (2,2-azino-bis-(3-ethylbenzo thiazoline-6-sulfonic acid) at 414 nm ($\varepsilon_{max}=34219$ M$^{-1}$ cm$^{-1}$) in 100 mM tartrate pH 4.5 at 25 °C into a stable cationic radical ABTS$^+$. The unit enzyme (U/L) activity was calculated by the formula given below using the slope of the spectrogram (Table 2.1.). One unit of laccase activity was defined as the amount of enzyme that oxidizes 1 µmol of ABTS per minute.

Table 2.1 Formula for laccase activity measurement

| Laccase (U/L) = ((ΔA/t) / ε.d) . (1x106 µmol/mol) . (V/v) |
| ΔA = absorbance change at 414 nm – (dA/dt) |
| ε = extinction coefficient of ABTS at 414 nm – 3600 M$^{-1}$ cm$^{-1}$ |
| d = light path of the cuvette container cell (cm) – 1 cm |
| V = total reaction volume (ml) – 1200µl |
| v = enzyme volume (ml) – varies according to the dilution rate |

2.2.3. Improvement of Precursor Solubility

Solubility of precursors in the reaction medium was an important issue which has to be enhanced. Ethylene glycol was added to the reaction mediums to increase the solubility. To determine ethylene glycol effect on laccase activity, medium A and medium B without ethylene glycol was prepared (Table 2.2). Both of the medium were incubated throughout 24 hours, 150 rpm, and at 25 °C. Enzymatic activity of both medium was detected throughout 24 hours. Laccase activity assays were performed by addition of 100 µL 5 mM ABTS solution into 1100 µL of medium A and B which incubated.
2.2.4. Laccase-catalyzed Oxidative Biocatalysis in Micro-plate

S₁ was reacted at an equimolar ratio with S₂ in tartrate buffer (pH 4.5; 100mM) in the presence of laccase for 24 hours at room temperature in the volume of 200µl micro plate well. 96-wells plastic plate was used for this purpose. Reaction was carried out triplet in micro plate. To enhance the conversion rate, the plate was shaken at 100 rpm at 28°C. In addition to this main reaction (Medium I), the following reaction was carried out as control groups in the same plate;

Medium I : S₁ and S₂ in the presence of laccase
Medium II : control 1, S₁ and S₂ in the absence of laccase
Medium III : control 2, S₁ and S₂ in the presence of 1 M H₂O₂ as an oxidizer agent
Medium IV : control 3, S₁ and S₂ in the presence of 200 mM H₂O₂ as an oxidizer agent
Medium V : control 4, S₁ in the presence of laccase
Medium VI : control 5, S₂ in the presence of laccase
Medium VII : control 6, S₁ in the presence of 500 mM H₂O₂ as a oxidizer agent
Medium VIII : control 7, S₂ in the presence of 500 mM H₂O₂ as a oxidizer agent
Medium IX : control 8: S₁ in the absence of catalyst
Medium X : control 9: S₂ in the absence of catalyst

For enzymatic coupling reaction sets, reaction medium are shown below (Table 2.3).
Table 2.3 Medium composition of coupling reaction sets

<table>
<thead>
<tr>
<th></th>
<th>Volumes for Enzymatic Reaction (μl)</th>
<th>Volumes for Blank Reaction (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye Precursor 1 (25 mM)</td>
<td>16.6</td>
<td>16.6</td>
</tr>
<tr>
<td>Dye precursor 2 (25 mM)</td>
<td>16.6</td>
<td>16.6</td>
</tr>
<tr>
<td>Tartrate Buffer (100 mM pH 4.5)</td>
<td>158.4</td>
<td>166.8</td>
</tr>
<tr>
<td>Laccase (10 U/mL)</td>
<td>8.4</td>
<td>-</td>
</tr>
<tr>
<td>Total Volume</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

2.2.5. Bench Scale Production

ITU22, the product of laccase-catalyzed biooxidation reaction, was produced at bench scale in 100 ml of 500 ml shake flask. The flasks was shaken with 200 rpm, at 28 °C throughout 24 hours. The same reaction medium composition was used (Table 2.4)
Table 2.4 Laccase-catalyzed biooxidation medium

<table>
<thead>
<tr>
<th>Dye Precursor</th>
<th>Volume of Enzymatic Reaction (mL)</th>
<th>Volume of Blank Reaction (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye Precursor 1, S₁</td>
<td>47.92</td>
<td>47.92</td>
</tr>
<tr>
<td>(52.17 mM P₁ in 47.92 mL 100 mM pH 4.5 tartrate buffer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dye precursor 2, S₂</td>
<td>47.92</td>
<td>47.92</td>
</tr>
<tr>
<td>(52.17 mM P₂ in 47.92 mL 100 mM pH 4.5 tartrate buffer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 mM pH 4.5 tartrate buffer</td>
<td>-</td>
<td>4.16</td>
</tr>
<tr>
<td>Laccase (10 U/mL)</td>
<td>4.16</td>
<td>-</td>
</tr>
<tr>
<td>Total Volume</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

2.2.6. Antibacterial Activity Test by Kirby-Bauer Method

One method that is used to determine antimicrobial susceptibility is the sensitivity disk method of Kirby-Bauer. The principle of the method is to determine effect of the substances on microbial growth by means of a rich agar.

1. Preparation of Plates: Mueller-Hinton agar and paper disks was prepared.
2. Inoculation: 10 μL of the dye extract was diffused over paper disks, same procedure was employed on the other precursors and dye extract without laccase. Then the papers were placed on a seeded Mueller-Hinton agar plate using a mechanical dispenser or sterile forceps.
3. Incubation: The plate is then incubated for 16 to 18 hours, and the diameter of the zone of inhibition around the disk is measured to the nearest millimeter.
4. Measurement: The inhibition zone diameter that is produced will indicate the susceptibility or resistance of a bacterium to the substance [42]
2.2.7. Spectrum Analysis of ITU22 by Visible Micro-Plate Reader

In order to determine color content, product formation and substrate consumption in laccase-catalyzed biooxidation reaction, visible spectra of the extracts in micro-plate were monitored by scanning at 340-800 nm.

2.2.8. Thin Layer Chromatography

Thin layer chromatography (TLC) is a chromatography technique used to separate chemical compounds. It involves a stationary phase consisting of a thin layer of adsorbent materials, usually silica gel, aluminum oxide, or cellulose immobilized onto a flat, inert carrier sheet. The principle of the methods is that the substances are separated by their differential migration caused by a mobile phase flowing through a porous, adsorptive medium. The following procedure was used to analysis of dye extracts;

1. *Preparation of Plates*; aluminum baked silica gel plate was heated at 50°C for 5 minutes.

2. *Choosing Appropriate Eluent*; for the acid and basic dye classes, following eluent was recommended [43].

 Eluent: n-Butanol, acetone, water, ammonia (5:5:1:2) [44].

3. *Sample Spotting*; the extracts included resulting extract, resulting extract without laccase, precursor I and precursor II were spotted onto the plate about 1 cm from the lower edge by capillary tubes.

4. *Development Chambers*; the eluent was added to the chamber and allowed to stand in the closed container for a few minutes before development, then the chromatograms were developed vertically in a glass chamber.

5. *Resolution*; the plate was eluted until good resolution was achieved.
2.2.9. HPLC Analysis of ITU22

To clearly understand formation of products and laccase-catalyzed oxidation effects on precursors, HPLC analysis was performed. Six samples analyzed by HPLC;

1. \(S_1 \) and \(S_2 \) in the presence of laccase
2. \(S_1 \) and \(S_2 \) in the absence of laccase
3. \(S_1 \) in the presence of laccase
4. \(S_2 \) in the presence of laccase
5. \(S_1 \) in the absence of laccase
6. \(S_2 \) in the absence of laccase

Preparation of sample;
- 5 mL sample dissolved in 50ml distilled hot water in 100 ml vol. flask
- Add 20 mL of Acetonitrile
- Adjust the volume to 100 ml with dH\(_2 \)O

Column; Hicrom Nucleosil 100-7C18
Flow: 1.0 mL/dk
Mobil phase: Buffer:Acetonitrile (1:1)

2.2.10. Industrial Dye Quality Tests of ITU22

To find out industrial acceptability of ITU22, industrial dye quality tests of ITU22 were carried out by Setas Kimya San AS which is a dye producer company from Turkey. The dried ITU22 dissolved in appropriate solvents and concentration was adjusted at 5 % (w/v).

Multifibre dyeing test
Material: Nylon/EI
Dyeing : 120 °C, 40 min.

Chlorinated water fastness test
Material : Nylon/EI.
Dyeing : 120 °C
Test method: ISO 105 E03 (20 ppm active chlorine, 20 ±2 °C, 1 hours)
Determination of remaining dyestuff in the bath

Material: Nylon/EI
Dyeing: 120 °C, 40 min.

Washing fastness test

Material: Nylon/EI
Dyeing: 120 °C, 40 min.
Test method: ISO 105 C06 :A2S (40 ±2 °C, 30 min.)

Water fastness test

Material: Nylon/EI
Dyeing: 120 °C, 40 min.
Test method: ISO 105 E01 (37 ±2 °C, 4 hours)

Light fastness control test

Equipment: Megasol V2.00 light fastness machine
Method: ISO-105 B02 (normal conditions, 20 Hours)

2.2.11. Dye Cytotoxicity Tests of ITU22

The adverse effects resulting from interference with structure and/or processes essential for cell survival, proliferation, and/or function are referred to cytotoxicity [45]. A number of basal cytotoxicity endpoints can be used for this purpose. Neutral red is a weakly cationic water-soluble supravital dye which stains living cells. NR can readily diffuse through the plasma membrane and binds lysosomal matrix. When toxicants alter the cell surface or the lysosomal membrane, the NR retains. Therefore, the cytotoxicity can be quantified by means of neutral red uptake (NRU) [46]. Several types of cell cultures can be also used for this purpose. Caco-2 and RTG-2 cells were used for cytotoxicity of ITU22 by Wetlands Engineering S.P.R.L, a Belgian biotech company.
3. RESULTS AND DISCUSSION

3.1 Enhancement of Precursor Solubility

S_1 and S_2 up to 50 mM are well soluble in 100 mM of tartrate buffer (at pH 4.5). High soluble precursors are favorable, because of high product yield. There was need to improve substrates solubility. For this purposes, ethylene glycol was used as co-solvent in laccase activity assay to determine effects on laccase activity.

![Graph showing laccase activity over time](image)

Figure 3.1 Laccase activity throughout 24 hours in two different medium (■- indicates medium B without ethylene glycol, and ♦- indicates medium A with ethylene glycol)

Incubation of laccase with medium A and medium B throughout 24 hours have resulted 23 % and 17 % activity losses, respectively (Figure 3.1). However, average laccase activity of medium A and medium B throughout 24 hours were 1.06 and 0.82, respectively. It is clear from this study that the use of ethylene glycol as co-solvent in the laccase mediated reaction is not favorable.
3.2. Production of Novel Textile Dyes by Laccase-catalyzed Oxidative Biocatalysis

3.2.1. Enzymatic Oxidative Micro-plate Reactions

Enzymatic oxidation and control reactions were carried out in micro-plate. Since each triplet wells contained different reaction medium, the wells on micro-plates were differently named as “I” to “X”. Enzymatic reactions resulted in highly dark colored extracts. To visually monitor the extracts, the extracts in the wells were diluted with distilled water (4, 16 and 160 fold) (Figure 3.2). The red color which obtained from oxidation of S_1 and S_2 in well I by laccase-catalyzed oxidative biocatalysis was monitored at 4 fold dilution ratio. These extract was called as ITU22.

According to the results of micro-plate reaction, there was no visually monitored color difference in medium II micro wells, containing S_1 and S_2 (Figure 3.2). On the contrary, the medium I, which contains S_1 and S_2 with laccase, had highly dark colored extract. The color alteration in the medium I resulted from laccase-catalyzed oxidation. Furthermore, 1 M of H_2O_2 in medium III resulted in a little color difference (Figure 3.2). Therefore, laccase effect on S_1 and S_2 was clearly monitored. Medium V and VI which contain respectively S_1 and S_2 in the presence of laccase resulted in dark colored extracts (Figure 3.2). These results indicate that individually S_1 and S_2 could be oxidized by laccase. Therefore, there are some possible products in these wells. Oxidation effect of laccase and possible products would be discussed after the thin layer chromatography, visible spectral analysis and HPLC results.

Medium numbers and their contents;

Medium I : S_1 and S_2 in the presence of laccase
Medium II : S_1 and S_2 in the absence of laccase
Medium III : S_1 and S_2 in the presence of 1 M H_2O_2 as a oxidizer agent
Medium IV : S_1 and S_2 in the presence of 200 mM H_2O_2 as a oxidizer agent
Medium V : S_1 in the presence of laccase
Medium VI : S_2 in the presence of laccase
Medium VII : S_1 in the presence of 500 mM H_2O_2 as a oxidizer agent
Medium VIII : S_2 in the presence of 500 mM H_2O_2 as a oxidizer agent

Medium IX : S_1 in the absence of catalyst

Medium X : S_2 in the absence of catalyst

Figure 3. 2 a) shows the laccase catalyzed micro-plate reaction, b) indicates well numbers and colors, the red painted boxes indicate; no dilution, the blue painted boxes; 4 fold dilution, the orange painted boxes; 16 fold dilution, the green painted boxes; 160 fold dilution.
Visible spectrums of micro-plate reaction extracts were monitored. Medium I (S₁ and S₂ in the presence of laccase) has one peak at 410 nm and interference came from infrared section (Figure 3.3 (b)). Medium II (S₁ and S₂ in the absence of laccase) has also one peak at 370 nm. These results indicate that the laccase is able to oxidize the medium I.

Figure 3.3 (a) four fold diluted Medium II (b) 160 fold diluted Medium I

In the absence of catalyst, spectrums of individually S₁ and S₂ were measured (Figure 3.4).

Figure 3.4 spectrums of (a) four fold diluted Medium IX (b) four fold diluted Medium X
Figure 3.5 (a) 160 fold diluted Medium V (b) four fold diluted Medium VI

There are small amount of spectrum differences when compared to Figure 3.4 and Figure 3.5. However, S_1 in the presence of laccase (medium V) was 40 fold diluted than the S_1 in the absence of laccase (medium IX). It indicates that laccase somehow has an oxidation effect on S_1.

200 mM and 1 M of hydrogen peroxide were used as an oxidizing agent in control reactions (medium III and IV). 500 mM of hydrogen peroxide was also used as an oxidizing agent for individually S_1 and S_2. In the visible spectrum results, there is no evidence for oxidation on precursors (Figure 3.6).
In order to separate micro-plate reaction products, thin layer chromatography (TLC) with UV indicator probe was used. Appropriate eluent system was used for this purpose and the extracts were greatly separated by TLC. According to the result of TLC for Medium I (S_1 and S_2 in the presence of laccase), there were five substance in Medium I (Figure 3. 7) at least. However, there was interestingly no coupling between S_1 and S_2 by oxidation. The five substances were probably resulted from individual oxidation of S_1 and S_2.

Figure 3. 6 (Continued) (g) four fold diluted Medium IV (h) four fold diluted Medium III (i) four fold diluted Medium VII (k) four fold diluted Medium VIII
Figure 3.7 TLC results of micro-plate reactions (a) photograph taken under day light, (b) taken under 254 nm UV light
The dark spots located starting points on TLC indicate the polymerization. Laccase-catalyzed oxidation of individual S_1 resulted in eight products at least. However, there is polymerization which came from laccase-catalyzed oxidation of individual S_2 (Figure 3. 7). To understand the wide range of product which arise from laccase-catalyzed oxidation of individual S_1, oxidation model and possible products were studied (Figure 3. 8). There are likely to be theoretically nine possible coupling according to the resonance structure of S_1, and eight substances at least were experimentally occurred in the micro-plate reaction (Figure 3. 7).

Figure 3. 8 Four resonance forms of free radicals and possible coupling by laccase mediated oxidation
Figure 3.9 (continued) four resonance forms of free radicals and possible coupling by laccase mediated oxidation

To analyze product formation and precursor consumption in laccase mediated and blank mediums, HPLC was carried out. On the HPLC chromatogram of S₁ and S₂ reaction in the presences of laccase mediated oxidation, one sharp peak at 1.66 min. was observed (Figure 3.10). Nonetheless, there was no sharp peak at same retention time on blank reaction medium chromatogram (Figure 3.12). On the chromatogram of blank reaction medium, one sharp peak was observed at 2.18 min. It is clearly understood that these are different substances when compared to the spectrogram of these peaks (Figure 3.11 and 3.13).
Figure 3.10 HPLC chromatogram of S_1 and S_2 in laccase mediated oxidation

Spectrum at time 1.66 min.

Figure 3.11 HPLC spectrogram of S_1 and S_2 at 1.66 min. in laccase mediated oxidation
Figure 3. 12 HPLC chromatogram of S_1 and S_2 in the absence of any oxidant.

Spectrum at time 2.18 min.

Figure 3. 13 HPLC spectrogram of S_1 and S_2 at 2.18 min.
To understand effect of laccase mediated oxidation on S_1, the medium which include only S_1 in the presence of laccase was analyzed by HPLC (Figure 3.14). One sharp peak at 1.66 min. was observed. However, there is also a small interference. It is likely to come from the unreacted S_1, because the same peak was observed on HPLC chromatogram of S_1 in the absence of any oxidant (Figure 3.18). Meanwhile, the same retention time on HPLC chromatogram of S_1 and S_2 in laccase mediated oxidation was noticed (Figure 3.11). Both of the peaks have nearly similar spectral characteristics and retention time (Figure 3.11 and Figure 3.15).

Figure 3.14 HPLC chromatogram of S_1 in laccase mediated oxidation
At a glance, differences between the HPLC chromatogram and spectrogram of S_2 in laccase mediated oxidation (Figure 3.16 and 3.17) and the HPLC chromatogram and spectrogram of S_2 in the absence of oxidant (Figure 3.19 and 3.20) could be determined. At this point, quantity of chromatogram difference is important. Previously mentioned at TLC result section (Figure 3.8), S_2 is likely to polymerized. Therefore, HPLC column can not able to separate it. The small peak on HPLC chromatogram of S_2 in laccase mediated oxidation probably based on the unpolimerized coupling products.
Figure 3.16 HPLC chromatogram of \(S_2 \) in laccase mediated oxidation

Figure 3.17 HPLC spectrogram of \(S_2 \) at 1.86 min.
Figure 3. 18 HPLC chromatogram of S_1 in the absence of oxidant

Figure 3. 19 HPLC chromatogram of S_2 in the absence of oxidant
To sum up the characterization studies related to the ITU22, there is no clue for coupling between S_1 and S_2 in the presence of laccase-catalyzed oxidation. On the contrary, each precursor could be coupled itself by laccase oxidation. Furthermore, polymerization between S_2 substances was likely to occurred by laccase. By means of HPLC, TLC and spectral analysis regarding ITU22, we have proposed possible oxidation and coupling mechanism for phenolic substitute substances (Figure 3. 21).
3.2.2. Scale-up

ITU22 was produced at bench scale in shake flask by laccase mediated oxidation up to 100 mL. Since maximum precursor solubility is 25 mM, concentration of precursors was adjusted at 25 mM. The product was used for industrial dye quality tests by Setas Kimya San. AS.
3.3. Industrial Dye Quality of ITU22

Industrial quality tests which include multifibre dyeing, chlorinated water fastness, remaining dye stuff in the batch, washing fastness, water fastness and light fastness were performed by Setas Kimya San AS. (Figure 3. 22-27). According to the result of the multifibre dyeing test, ITU22 dyed light brown on nylon fabric and brown on wool fabric (Figure 3. 22). There were no dye effects on the acetate, cotton, PES and acrylic fabrics.

![Figure 3. 22 Multifibre dyeing](image)

According to the results of washing and water fastness quality of ITU22, small amount of remain dye was found on wool fabric (Figure 3. 23-24). These results indicate that ITU22 have good washing and water fastness. The fastness properties of ITU22 were evaluated by using gray scale of ISO (Table. 3.2). The ISO scale for dyes can be described in the following context.

![Figure 3. 23 Washing Fastness](image)

![Figure 3. 24 Water Fastness](image)
Chlorinated water fastness results showed that ITU22 had a good level fastness (Figure 3. 25), although light fastness was under the critical value (Figure 3.27). These may decrease quality of ITU22.

Figure 3. 25 Chlorinated water fastness

After dyeing process, remaining dyestuff in the bath was determined by the dyeing of new fabric. It is clear from this result that ITU22 has a good affinity for fabrics (Figure 3. 26).

Figure 3. 26 Determination of remaining dyestuff in the bath

Consequently, according to the results of industrial dye quality of ITU22, it can be called as a moderate level acid dye. It has a potential for dying of nylon and wool fabrics.
Table 3.1 Results of the chlorinated water fastness and light fastness

<table>
<thead>
<tr>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorinated water fastness</td>
</tr>
<tr>
<td>Light Fastness</td>
</tr>
</tbody>
</table>

Table 3.2 Results of the washing fastness and water fastness

<table>
<thead>
<tr>
<th>Results</th>
<th>Acetat</th>
<th>Coton</th>
<th>Nylon</th>
<th>PES</th>
<th>Acrylic</th>
<th>Wool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washing Fastness</td>
<td>Staining</td>
<td>4/5</td>
<td>4</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
</tr>
<tr>
<td>Color Change</td>
<td></td>
<td>4/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Fastness</td>
<td>Staining</td>
<td>4/5</td>
<td>3/4</td>
<td>3</td>
<td>4/5</td>
<td>4/5</td>
</tr>
<tr>
<td>Color Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/5</td>
<td></td>
</tr>
</tbody>
</table>
According to the Blue scale of ISO, the value of light fastness is between 1-6:

- 1 is bad,
- 5 is very good and
- 3 is the limit value

\[5 > 4 > 3 > 2 > 1 \text{ bad} \]

And also according to Gray scale, the value of water washing and chlorinated water is between 1-5:

- 1 is bad,
- 5 is very good and
- 3 is the limit value

\[5 > 4 > 3 > 2 > 1 \text{ bad} \]

3.4. Cytotoxicity Test of ITU22

Two different cell cultures were used for cytotoxicity of ITU 22. Although the test performed with RTG-2 gave promising results for ITU22, the results obtained from Caco-2 cells showed that ITU22 has a high toxicity level for human health. Also ITU22 had no antimicrobial activity according to the Kirby-Bauer Method.

Table 3.3 Cytotoxicity results of ITU22

<table>
<thead>
<tr>
<th>ITU22</th>
<th>NRU Caco-2 cells (WET)</th>
<th>IC50s in g/L</th>
<th>NRU RTG-2 cells (WET)</th>
<th>IC50s in g/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.079</td>
<td>> 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interpretation of IC50 values:

- \(> 1 \text{ g/L} \) no toxicity detected or really low toxicity
- \(0.01 \text{ g/L} \leq \text{IC50} \leq 1 \text{ g/L} \) average toxicity
- \(> 0.01 \text{ g/L} \) high toxicity
4. CONCLUSION

In this study, fifteen selected precursors were screened to find out coupling reactions in micro-plate scale in the presence of laccase and some of the positive reactions which have appropriate colors were scaled up. As the results of these studies, several valuable novel textile dyes from these screening reactions were obtained. One of these novel textile dyes was named as ITU22. In the context of this thesis, the novel screening technique for textile dye synthesis and ITU22 synthesis by laccase-catalyzed oxidation have been studied. Our all experimental route was shown in Figure 1.8, in detail. Applicability tests of ITU22 have revealed that ITU22 is a light brown dye on fiber. Multifiber test which shows the affinity of the dye on specific fabrics indicated that ITU22 dyes nylon and wool fibers and has properties of acid dyes. Industrial dye quality tests such as washing fastness, chlorinated water fastness, water fastness, light fastness and remaining dye in batch were performed and these tests results showed that it has an average quality, although the light fastness of ITU22 was under the critical level.

Most of the existing dyes which synthesized via conventional chemical processes are generally toxic for human health. It is an important issue for chemical companies, workers and end-users. Today’s, European legislation implements a new system called REACH for Registration, Evaluation, and Authorization of Chemicals in Europe to ensure the protection of human health and environment. There are needs for new non-toxic, eco- and environmentally-friendly dyes. In our studies, several non-toxic dyes were obtained by laccase catalyzed biooxidation method developed by our group; it is a promising alternative method to produce safe dyes in this area. However, for ITU22 dye, the cytotoxicity tests performed by NRU tests indicated that ITU22 was not toxic for fish cell line (RTG-2), although it was highly toxic for human intestinal cell line (RTG-2). On the contrary of ITU22, several of other dyes had good industrial dye quality and
non-toxicity. To protect proprietary rights of novel textile dyes, patent request of these dyes is pending and large scale production studies are ongoing.

As a result of ITU22 characterization studies such as HPLC and TLC, we have concluded that ITU22 results from S\textsubscript{1} coupling by laccase-catalyzed biooxidation, not coupling between S\textsubscript{1} and S\textsubscript{2}. Great deals of S\textsubscript{2} were polymerized by laccase in this reaction. For phenolic substitute substances, we have proposed possible synthesis pathway (Figure 3. 21).

In the future, to obtain coupling products from different precursors, more screening reactions by the use of more precursors are required. We have also proposed a modified experimental route for this purpose (Figure 4. 1). To enhance selectivity of laccase on phenolic substitute substances, laccase can be modified and/or engineered by recombinant DNA technology. In the subsequent synthesis studies, engineered and/or modified laccase can be used. In addition to characterization studies, MS and NMR can be implemented in the experimental route to determine structure of products.

![Figure 4. 1 Modified experimental route](image)
REFERENCES

[3] Indian dyestuff industry and global opportunities, 2006, Cygnus, New Delhi

APPENDIX

Lab Equipment

Autoclaves
- 2540 ML benchtop autoclave, Systec GmbH
- NuveOT 4060 vertical steam sterilizer, Nuve

Deep freezes and refrigerators
- Heto Polar Bear 4410 ultra freezer, JOUAN
- 2021 D refrigerator, Arcelik

HPLC
- Shimadzu (DAD detector)

Incubators
- EN400, Nuve

Orbital shaker
- Certomat S II, Product# 886 252 4, B. Braun
 Biotech Internationnal GmbH

Magnetic stirrer
- AGE 10.0164, VELP Scientifica srl.

Micro-plate reader
- Bio-rad Benchmark Microplate Reader

Pipettes
- Pipetteman P10, P100, P1000, P5000, Eppendorf

Ph meter
- MP 220, Metter Toledo International Inc.
 Wissenschaftlich-Technische Werstätten

Pure water systems
- USF Elga UHQ-PS-MK3, Elga Labwater

Spectrophotometer
- DU530 Life Science UV/Vis, Beckman
 UV-1601, Shimadzu Cor.

Sterilizer
- FN 500, Nuve

Vortexing machine
- Reax Top, product# 541-10000, Heidolph2.2
CV

Mustafa Kahraman was born in Kırşehir in 1981. He graduated from Kırşehir High School in 1999 and in 2000 he started to study in Ege University Biochemistry Department. He had his Bachelor degree from the same department in 2005 and consequently, he was accepted to Molecular Biology - Genetics and Biotechnology Graduate Program, which is a part of Advanced Technologies Department. Biotechnology at Istanbul Technical University, biocatalysts, biotransformation, fermentation and protein engineering are among his professional interest topics.

Mustafa Kahraman kahramanmm@gmail.com