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KALMAN FILTERING APPLICATIONS ON ATTITUDE 
DETERMINATION OF ITU-PSAT I SATELLITE 

SUMMARY 

Especially after 1990s, space industry have gained an overwhelming interest in 
smaller and lighter spacecrafts. Although that can be explained with several causes, 
main reason was the desire to achieve space missions with lesser economical 
demands. Pico satellites and so cubesats, which is a sort of picosatellite with special 
characteristics, are the yields of this idea. ITU-PSAT I, first satellite of Istanbul 
Technical University, can be considered as a part of this concept. 

Thus far, Kalman filter based attitude estimation algorithms have been used in many 
space applications. When the issue of pico satellite attitude estimation is taken into 
consideration, general linear approach to Kalman filter becomes insufficient and 
Extended Kalman Filters (EKF) are the types of filters, which are designed in order 
to overrun this problem. However, when  magnetometers are one of the onboard 
measurement devices as it is for ITU-PSAT I, the nonlinearity degree of the attitude 
estimation system increases because of the arisen nonlinear measurement model as 
well as inherent nonlinear dynamics of the satellite. Therefore, EKF may give 
inaccurate results. Unscented Kalman Filter (UKF) that does not require linearization 
phase and so Jacobians can be preferred instead of EKF in such circumstances. In 
addition to the attitude states of a satellite, EKF and UKF can be also used to identify 
satellite dynamics parameters such as unknown constant disturbance torques and 
measurement device biases. 

Nevertheless, both EKF and UKF are nonrobust (sensitive to failure) against the 
failure of the measurement system. However, if the Kalman filter algorithm is built 
with an adaptive manner, such that, faulty measurements do not affect attitude 
estimation process, accurate estimation results even in case of measurement 
malfunctions can be guaranteed. Two relatively new technique for such concept can 
be shown as adaptive Kalman filters (AKF) built in the base of filter gain correction 
with single and multiple fading factors.   

In this thesis, various Kalman filter algorithms for the attitude estimation of a pico 
satellite in different mission periods are developed. State estimation performances of 
both EKF and UKF are examined when the magnetometers are the only onboard 
measurement sensors. Identification of the parameters e.g. unknown constant 
external torques, magnetometer bias and gyro bias is achieved in case of Inertial 
Measurement Unit (IMU) usage as an additional sensor. Besides, Adaptive 
Unscented Fading Kalman Filter (AUFKF) with single and multiple fading factors 
are proposed so as to secure filter robustness against measurement malfunctions.  
Developed Kalman filter algorithms are tested as a part of the attitude determination 
system of ITU PSAT I satellite by the use of simulations.  
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İTÜ-PSAT I UYDUSUNUN YÖNELİM KESTİRİMİ ÜZERİNE KALMAN 
SÜZGEÇLEMESİ UYGULAMALARI 

ÖZET 

Özellikle 1990lar’dan sonra, uzay endüstrisi nispeten daha küçük ve hafif olan uzay 
araçlarına karşı kaçınılmaz bir ilgi kazandı. Bu durum bir çok nedenle 
açıklanabilmesine rağmen, temel sebep uzay görevlerini daha az ekonomik isterlerle 
gerçekleştirebilmekti. Piko uydular ve bu tip uyduların özel bir türü olan küp uydular 
bu fikrin bir getirisidir. İstanbul Teknik Üniversitesinin ilk uydusu olan İTÜ-PSAT I 
de bu düşüncenin bir parçası olarak ele alınabilir. 

Günümüze değin, Kalman süzgeci temeline dayanan yönelim kestirim algoritmaları 
bir çok uzay görevinde kullanılmıştır. Piko uydu yönelim kestirimi konusu 
düşünüldüğünde, Kalman süzgeçlemesine doğrusal yaklaşım yetersiz kalır. 
Genişletilmiş Kalman Süzgeci (GKS) bu problemi çözmek için geliştirilmiştir. 
Lakin, İTÜ-PSAT I uydusu için geçerli olduğu gibi, uydu üzerinde taşınan 
sensörlerden biri manyetometreler olunca, uydunun doğasında var olan doğrusal 
olmayan dinamiklerin yanısıra ortaya çıkan doğrusal olmayan ölçüm modellemesi 
sebebiyle, doğrusal olmama durumunun derecesinde artış gözlenir. Buna bağlı olarak 
da GKS’nin doğru sonuçlar vermemesi olağandır. Bu tarz durumlarda GKS’nin 
yerine doğrusallaştırma safhasına ve Jacobian hesaplamalarına ihtiyaç duymayan 
Sezgisiz Kalman Süzgeci (SKS) tercih edilebilir. GKS ve SKS’yi uydunun yönelim 
durum değişkenlerinin yanısıra, bilinmeyen sabit bozuntu torkları ve ölçüm cihazı 
kayımları gibi uydu dinamiğine ait parametreleri tanılamak için kullanmak da 
mümkündür. 

Bununla beraber, hem GKS hem de SKS ölçüm sisteminin hatalarına karşı 
dayanıksızdırlar (hataya karşı duyarlıdırlar). Fakat Kalman süzgeci algoritması hatalı 
ölçümlerin kestirim sürecini etkilemeyeceği şekilde uyarlamalı bir anlayışla 
oluşturulursa, ölçüm sisteminin arıza durumları için dahi doğru kestirim sonuçları 
sağlanabilir. Bu tür bir anlayış için yeni sayılabilecek iki teknik, tek ve çoğul 
zayıflatıcı faktörlü süzgeç kazanç düzeltimi temel alınarak geliştirlmiş uyarlamalı 
Kalman süzgeçleridir. 

Bu tezde, farklı görev dilimleri içerisinde bir piko uydunun yönelim kestirimini 
gerçekleştirmek için çeşitli Kalman süzgeci algoritmaları geliştirilmiştir. GKS ve 
SKS’nin durum değişkeni kestirim performansları manyetometrenin tek ölçüm cihazı 
olarak kullanıldığı durum için incelenmiştir. Ataletsel Ölçüm Birimi (AÖB) ek bir 
sensör olarak kullanıldığında bilinmeyen sabit dış torklar, manyetometre ve jiroskop 
kayımları gibi parametreler tanılanmıştır. Aynı zamanda, süzgecin ölçüm 
bozuntularına karşı dayanıklılığını sağlamak adına tek ve çoğul zayıflatıcı faktörlü 
Uyarlamalı Sezgisiz Zayıflatıcı Kalman Süzgeci (USZKS) algoritmaları önerilmiştir. 
Geliştirilen Kalman süzgeci algoritmaları, simülasyonlar yardımıyla İTÜ-PSAT I 
sisteminin yönelim belirleme sisteminin bir parçası olarak test edilmiştir. 
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1.  INTRODUCTION 

In this section, importance of the thesis is stated by introducing the main motivation 

and purpose of doing such study together with the literature survey, which examines 

past and recent similar studies as an argument.  

1.1 Motivation and Purpose of the Thesis 

Since the world’s first Earth orbiting artificial satellite, Sputnik I, was launched on 4 

October 1957, humankind has always been on a track to reach to the better in space 

missions. Until now, technology improved unexpectedly and today, there are more 

than 500 satellites on orbit where many of them are more functional and generally 

lesser in size and weight than their pioneers. 

In astronautics, as a satellite specification, pico refers to the satellites which have 

mass no more than 1 kg. These types of satellites are the outcomes of a search for 

lighter, smaller and so cheaper spacecrafts and recently, they have been mostly 

considered as a part of the research projects of the organizations like universities [1].  

Cubesats are special pico satellites with cubic dimensions of 10ܿ݉ ൈ  10ܿ݉ ൈ

10ܿ݉. Idea was first proposed by Professor Robert Twigs from Stanford University 

in 1999. They are also referred as S3-SAT in the light of their main utilization 

purpose; student-space-study satellites [2]. By the use of cubesats, university like 

organizations have an opportunity to produce their own satellite, educate their 

students/personnel practically and demonstrate their capability to develop new 

technologies. Presently, there are several running cubesats projects all over the world 

including ITU-PSAT I. 

ITU-PSAT I is the first satellite project of Istanbul Technical University. Main aim 

of the project is to educate students of the Astronautical Engineering Department by 

giving them a chance to gain practical experience in the basis of their theoretical 

background. Also it will be an initiative for Turkey in point of view of being the first 

student designed satellite.   
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Satellite will carry a low resolution camera for the Earth imaging and meanwhile 

other sensors. Besides, the ground station located in the university will communicate 

with the satellite and take the incoming sensor data. Satellite with the approximate 

weight of 1 kg, will satisfy its energy from the sophisticated solar cells on it [3]. 

Project is at the last phase as the flight model and space qualification tests continue. 

Launch is planned to be realized in 2009.  

As well as ITU-PSAT I, one of the main problems of cubesat projects is the limited 

size of the satellites. That is also reflected to the design progress of all subsystems of 

them as attitude determination and control system (ADCS). When the ADCS is 

limited in size and mass (also in point of view of energy budget for some missions), 

that means the number of onboard devices going to be used must be as low as 

possible. However, that does not annihilate the requirement of precise attitude 

determination and control in most cases. Hence, the question is, is there any possible 

way to determine and control attitude of a cubesat accurately despite using a limited 

number of onboard sensors and actuators? Besides, what happens if the 

measurements are not reliable because of device biases or any kind of malfunctions? 

Main motivation behind this study is to deal with these engineering design problems. 

Since the attitude of the ITU-PSAT will not be controlled, control part of the ADCS 

is not necessary but the question is still valid for the attitude determination procedure 

of the satellite. Aim is to find out if there is possibility to develop an efficient and 

reliable attitude determination system (ADS) for a pico satellite. While doing this, a 

scheme based on Kalman filtering will be followed and in general, relatively new 

techniques like UKF will be used.  

Developing an accurate Kalman filter algorithm which is adaptive against the 

measurement faults can be stated as the main purpose of the thesis. Via the 

comparison of the EKF and UKF, the superior attitude estimation algorithm will be 

detected firstly. Then, alongside with the attitude states of the satellite, parameters 

e.g. unknown constant external torques, magnetometer and gyro biases will be 

identified. By that way, it will be guaranteed that the both process and measurement 

models are true and free of errors. At last, as the main objective, the most appropriate 

adaptive Kalman filter algorithm for the pico satellite, which secures its accurate 

estimation characteristic even in case of measurement malfunctions, will be 

developed. 
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1.2 Literature Survey 

Kalman filter plays an important role in the attitude estimation procedure of the 

spacecrafts since it was firstly proposed [4]. Regarding the obstacles met during 

development process of the attitude estimation systems, various types of Kalman 

filters have been developed. One of these difficulties is the inherent nonlinear 

dynamics and kinematics of the satellites similarly to the many real world systems. 

Extended Kalman Filter is proposed so as to overcome this problem and it is used 

instead of linear Kalman filter for estimating the attitude of the satellite [5].  

On the other hand, EKF has some disadvantages, especially for the highly nonlinear 

systems. Generally this is caused by the mandatory linearization phase of EKF 

procedure and so Jacobians derived with that purpose.  For most of the applications, 

generation of Jacobians is hard, time consuming and prone to human errors [6, 7]. 

Nonetheless, linearization brings about an unstable filter performance when the time 

step intervals for update are not sufficiently small and that, results with the filter 

divergence [8]. Per contra, small time step intervals increase the computational 

burden because of the larger number of Jacobian calculations. As a result of these 

facts, EKF may be efficient only if the system is almost linear on the timescale of 

update intervals [7].  

A relatively new Kalman filtering technique, which does not have the shortcomings 

of EKF for nonlinear systems, is Unscented Kalman Filter. UKF generalizes Kalman 

filter for both linear and nonlinear systems and in case of nonlinear dynamics, UKF 

may afford considerably more accurate estimation results than the known observer 

design methodologies such as Extended Kalman Filter. The basic of UKF is the fact 

that; the approximation of a nonlinear distribution is easier than the approximation of 

a nonlinear function or transformation [9]. UKF introduces sigma points to catch 

higher order statistic of the system and by securing higher order information of the 

system, it satisfies both better estimation accuracy and convergence characteristic 

[6].  

As a spacecraft attitude estimation algorithm, UKF has many implementation 

examples in literature. In [10, 11] it is used as a state estimator, while both the states 

and the parameters of the satellite are estimated by UKF in [6, 12]. Besides, in [13] 

control of the multibody satellites is achieved by the use of UKF. However, in those 
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studies [6, 10-13] it is not considered as an identification algorithm for the unknown 

constant components of the external torques (the gravity-gradient, magnetic field 

pressure and the sun radiation) acting on the pico satellite. 

On the other hand, both EKF and UKF have no capability to adapt themselves to the 

changing conditions of the measurement system. Malfunctions such as abnormal 

measurements, increase in the background noise etc. affects instantaneous filter 

outputs and process may result with the failure of the filter. In order to avoid from 

such condition, the filter must be operated adaptively. 

The Kalman filter approach to the state estimation is quite sensitive to any 

measurement malfunctions (abnormal measurements, sudden shifts in the 

measurement channel, and other difficulties such as decrease of instrument accuracy, 

an increase of background noise, etc.). If the condition of the operation of the 

measurement system does not correspond to the models, used in the synthesis of the 

filter, then these changes resulting from some possible failures at the measurement 

channels significantly decrease the effectiveness of the estimation systems. In such 

cases to recover the possible malfunctions, the Adaptive Kalman Filters (AKF) can 

be used [14-24].   

The basic approaches to the adaptive Kalman filtering problem are Multiple-model-

based adaptive estimation (MMAE) [14-16], Innovation-based adaptive estimation 

(IAE) [17-19] and Residual-based adaptive estimation (RAE) [20, 21]. While in the 

first approach bank of Kalman filters run in parallel under different models for the 

filter’s statistical information, in the rest the adaptation is done directly to the 

covariance matrices of the measurement and/or system noises based on the changes 

in the innovation or residual sequences. 

In methods described in [14-16], the faults are assumed to be known, and the Kalman 

filters are designed for the known sensor/actuator faults. As the MMAE approach 

requires several parallel Kalman filters, and the faults should be known, it can be 

used in limited applications. 

Estimation of the covariance matrices by IAE and RAE requires the usage of the 

innovation vectors or residual vectors of m epoch. This increases the storage burden 

and presents the determination of the width of the moving window m as another 

problem. Furthermore, IAE and RAE estimators require that the number, type and 
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distribution of the measurements for all epochs within a window should be 

consistent. If they do not, the covariance matrices of the measurement noises cannot 

be estimated based on the innovation or the residual vectors.  

The Adaptive KF presented in [22] has been applied to fuse position signals from the 

GPS and INS for the autonomous mobile vehicles. The Extended Kalman Filter 

(EKF) and the noise characteristic have been modified using the Fuzzy Logic 

Adaptive System. In the paper [23], a method of multi-sensor data fusion based on 

the Adaptive Fuzzy Kalman Filter is presented. This method is applied in fusing 

position and orientation signals from Dead Reckoning (DR) system and the GPS for 

landing vehicle navigation. The EKF and the characteristics of the measurement 

noise are modified by using the Fuzzy Adaptive System, which is based on a 

covariance matching technique. It has been demonstrated that the Fuzzy Adaptive 

Kalman Filter gives better results (more accurate) than the EKF [22, 23]. In [24] 

fuzzy logic-based adaptive Kalman filter is used to build adaptive centralized, 

decentralized, and federated Kalman filters for adaptive multi sensor data fusion. The 

adaptation carried out is in the sense of adaptively adjusting the measurement noise 

covariance matrix of each local filter to fit the actual statistics of the noise profiles 

present in the incoming measured data. A fuzzy inference system based on a 

covariance-matching technique is used as the adaptation mechanism in the paper. 

The simulation results show that the proposed architectures by authors are effective 

in situations where there are several sensors measuring the same parameters, but each 

one has different measurement dynamic and noise statistics.  Although fuzzy logic 

based adaptive Kalman filter algorithms perform well under specific circumstances, 

they are knowledge-based systems operating on linguistic variables and these 

methods, which are based on the human experiences, are not widely applicable to the 

vital systems such as attitude control systems. 

Another concept is to scale noise covariance matrix by multiplying it with a time 

dependent variable. One of the methods for constructing such algorithm is to use a 

single adaptive factor as a multiplier to the process or measurement noise covariance 

matrices [25-30]. In other words, these algorithms, which may be named as Adaptive 

Fading Kalman Filter (AFKF), can be both used when the information about process 

or measurement noises is absent [28].  However, estimation performance of the 

Kalman filter differs for each variable, when it is utilized for complex systems with 
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multivariable and it may be not sufficient to use single fading factor as a multiplier 

for the covariance matrices [31]. Single factor may not reflect corrective effects for 

the faulty measurement to the estimation process, accurately. The technique, which 

can be implemented to surmount this problem, is to use multiple fading factors to fix 

the relevant component of the gain matrix, individually. Unfortunately, thus far any 

investigation about the comparison of the AFKF with the single and multiple fading 

factors have not been achieved. 

In literature, it is possible to meet with a limited number of adaptive unscented 

Kalman filtering (AUKF) applications, which integrate the mentioned adaptive 

Kalman filtering algorithms with the unscented Kalman filter. In [32], a cost function 

is defined in order to minimize the filter computed covariance and the actual 

innovation covariance. However, presented algorithm requires calculation of partial 

derivatives and that increases the computational burden as well as being inconsistent 

with the mentality of UKF. Besides, in [33] a two-stage adaptive UKF is proposed in 

the base of the process noise and measurement noise covariances matrices 

adaptation. Basically, it applies the methodology presented in [28] to the nonlinear 

systems by the use of UKF. However, as a disadvantage, it secures the adaptation 

using only single fading factor and as it is aforementioned, that may be a problem for 

implementations on complex systems like spacecrafts.      
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2.  PICO SATELLITE MATHEMATICAL MODEL 

2.1 Attitude Representations 

In his theorem, Leonhard Euler, a Swiss mathematician and physicist, states that “the 

most general displacement of a rigid body with one fixed point is a rotation about 

some axis” [34]. Moreover, so as to represent this rotation uniquely, at least three 

parameters are needed. However, there is not a single certain technique to achieve 

that and several representation methods may be used. In many of these techniques, it 

is worked with more than three parameters.  

Two of commonly used techniques are Euler angles and quaternions (or Euler 

symmetric parameters). In this thesis, one of these two representation methods have 

been preferred for the construction of the mathematical model of the pico satellite, 

depending to the estimation algorithm.  Related to their application area, Euler angles 

and quaternions may be more convenient than each other. Table 2.1 presents a brief 

comparison between them [34, 35].  

Table 2.1: Characteristics of attitude representations of Euler angles and 
quaternions. 

Representation Number of 
Parameters 

    Advantages    Disadvantages 

Euler Angles 3 

-No redundant 
parameters 
-Clear physical 
interpretation. 
-Minimal set. 

-Trigonometric 
functions in both 
rotation matrix and 
kinematic relations. 
-Singular for specific 
rotations. 
-No convenient product 
rule. 
 

Quaternions 4 

-Convenient product 
rule. 
-Simple kinematic 
relation. 
-No trigonometric 
functions. 
-No singularities. 

-No clear physical 
interpretation. 
-One redundant 
parameter. 
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2.1.1 Euler angles 

A transformation from one coordinate frame to another can be carried out by three 

consecutive rotations about different axes.  

While describing the rotation of the axis with respect to another one, rotation 

matrixes formed by Euler angles are used. The direction cosine matrix of 

transformation will be the product of these three matrices.   

According to [34] there are 12 possible Euler angle representations and so direction 

cosine matrixes for transformation. They are categorized in two as: 

Type 1: Case where three successive rotations take place around three 

different axes.  

Type 2: In this case first and third rotations are performed around same axis 

and the second one takes place about one of the other two axes.  

2.1.1.1 Euler angles for vector transformation 

Suppose that ߰ ՜ ߠ ՜ ߶ rotation order about ݕ ,ݖ and ݔ axes, which may be also 

referred as 3-2-1 Euler angle rotation [33, 35], is followed. That means; 

• a rotation ߰ about ݖ axis and a rotation matrix of, 

ଷܣ ൌ ൥
cos ሺ߰ሻ sin ሺ߰ሻ 0

െsin ሺ߰ሻ cos ሺ߰ሻ 0
0 0 1

൩                                           (2.1) 

• a rotation ߠ about ݕ axis and a rotation matrix of, 

ଶܣ ൌ ൥
cos ሺߠሻ 0 െsin ሺߠሻ

0 1 0
sin ሺߠሻ 0 cos ሺߠሻ

൩                                           (2.2) 

• a rotation ߶ about ݔ axis and a rotation matrix of, 

ଵܣ ൌ ൥
1 0 0
0 cos ሺ߶ሻ sin ሺ߶ሻ
0 െsin ሺ߶ሻ cos ሺ߶ሻ

൩                                           (2.3) 

Then the direction cosine matrix (or attitude matrix) that is used for transformation 

from reference to body frame can be obtained as the product of these three matrices. 
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ଷଶଵܣ ൌ ሾܣଵሿሾܣଶሿሾܣଷሿ ൌ

቎
ܿሺߠሻܿሺ߰ሻ ܿሺߠሻݏሺ߰ሻ െݏሺߠሻ

െܿሺ߮ሻݏሺ߰ሻ ൅ ሻܿሺ߰ሻߠሺݏሺ߮ሻݏ ܿሺ߮ሻܿሺ߰ሻ ൅ ሺ߰ሻݏሻߠሺݏሺ߮ሻݏ ሻߠሺ߮ሻܿሺݏ
ሺ߰ሻݏሺ߮ሻݏ ൅ ܿሺ߮ሻݏሺߠሻܿሺ߰ሻ െݏሺ߮ሻܿሺ߰ሻ ൅ ܿሺ߮ሻݏሺߠሻݏሺ߰ሻ ܿሺ߮ሻܿሺߠሻ

቏                (2.4) 

Here ܿሺ·ሻ and ݏሺ·ሻ represent the cosines and sinus functions. Per contra, matrix, 

which transforms a vector from body to reference frame, is simply the transpose of 

this matrix as ܣଷଶଵ
் ൌ ሾܣଷሿ்ሾܣଶሿ்ሾܣଵሿ்.   

Besides, for the small angle rotations, the sinus functions become sin ሺ߰ሻ ՜ ߰, 

sin ሺߠሻ ՜ sin ሺ߶ሻ , ߠ ՜ ߶ as well as the cosines functions approaches to the unity. 

When these approximations are used and the products of angles, which become 

insignificant, are ignored as ߰ߠ ൌ ߠ߮ ൌ ڮ ൌ 0, then the skew symmetric direction 

cosine matrix for small angles can be gained.   

ଷଶଵܣ ൎ ൥
1 ߰ െߠ

െ߰ 1 ߮
ߠ െ߮ 1

൩                                                (2.5) 

2.1.1.2 Propagation of Euler angles by time 

In order to found kinematic equations, which relate the Euler angles with the angular 

velocities in body frame, first, derivatives of the Euler angles must be transformed to 

the body angular rates. 

ቈ
݌
ݍ
ݎ

቉ ൌ ሾܣଵሿሾܣଶሿሾܣଷሿ ൥
0
0

ሶ߰
൩ ൅ ሾܣଵሿሾܣଶሿ ൥

0
ሶߠ
0

൩ ൅ ሾܣଵሿ ൥
ሶ߮

0
0

൩                (2.6) 

After the matrix multiplications; 

݌ ൌ ሶ߮ െ ሶ߰ sin ሺߠሻ                                             (2.7) 

ݍ ൌ ሶߠ cosሺ߮ሻ ൅ ሶ߰ cosሺߠሻ sin ሺ߮ሻ                               (2.8) 

ݎ ൌ ሶ߰ cosሺߠሻ cosሺ߮ሻ െ  ሶsin ሺ߮ሻ                                (2.9)ߠ

If these equations are solved for ሶ߮ ሶߠ ,  and ሶ߰ , then the kinematic equation via Euler 

angles can be determined. 

ሶ߮ ൌ ݌ ൅ sinሺ߮ሻ tanሺߠሻ ݍ ൅ cosሺ߮ሻ tanሺߠሻ  (2.10)                      ݎ

ሶߠ ൌ cosሺ߮ሻ݌ െ sinሺ߮ሻ(2.11)                                    ݍ 

ሶ߰ ൌ sinሺ߮ሻ / cosሺߠሻ ݍ ൅ cosሺ߮ሻ / cosሺߠሻ  (2.12)                    ݎ
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2.1.2 Quaternions 

The quaternion attitude representation is a technique based on the idea that a 

transformation from one coordinate frame to another may be performed by a single 

rotation about a vector ҧ݁ defined with respect to the reference frame. The quaternion, 

denoted here by the symbol ݍത, is a four element vector, the elements of which are 

functions of vector ҧ݁ and the magnitude of the rotation, Φ: 

ଵݍ                                                             ൌ ݁ଵ sin ஍
ଶ

                                        (2.13) 

ଶݍ                                                              ൌ ݁ଶ sin ஍
ଶ

                                        (2.14) 

ଷݍ                                                             ൌ ݁ଷ sin ஍
ଶ

                                        (2.15) 

ସݍ                                                              ൌ cos ஍
ଶ

                                          (2.16) 

Here ݁ଵ, ݁ଶ, ݁ଷ are the components of the vector ҧ݁ which is to be rotated around with 

an angle of Φ. As a result by the use of quaternions a transfer from reference frame 

to body frame can be denoted by a single rotation around a vector defined in the 

reference frame.  

A quaternion with components ݍଵ,  ݍଶ, ݍଷ  and ݍସ may also be expressed as a four 

parameter complex number with a real component ݍସ and three imaginary 

components, ݍଵ,  ݍଶ and ݍଷ as follows: 

തݍ                                               ൌ ସݍ ൅ ଵݍ݅ ൅ ଶݍ݆ ൅  ଷ  ,                             (2.17)ݍ݇

where ݅, ݆, ݇ are hyper-imaginary numbers with characteristics of; 

                                              ݅ଶ ൌ ݆ଶ ൌ ݇ଶ ൌ െ1                                       (2.18) 

                                                     ݆݅ ൌ െ݆݅ ൌ ݇                                           (2.19) 

                                                   ݆݇ ൌ െ݆݇ ൌ ݅                                           (2.20) 

                                         ݇݅ ൌ െ݅݇ ൌ ݆                                          (2.21) 

Also, redundancy of quaternions must be noted as; 

ଵݍ                                 
ଶ ൅ ଶݍ

ଶ ൅ ଷݍ
ଶ ൅ ସݍ

ଶ ൌ 1                                 (2.22) 
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2.1.2.1 Quaternions for vector transformation 

A vector quantity defined in body axes, ݎ஻ may be expressed in reference axes as ݎோ 

using the quaternion directly. First define a quaternion, ݎ஻
௤, in which the complex 

components are set equal to the components of ݎ஻, and with a zero scalar component, 

that is, if: 

஻ݎ ൌ ݔ݅ ൅ ݕ݆ ൅  (2.23)                                              ݖ݇

஻ݎ
௤ ൌ 0 ൅ ݔ݅ ൅ ݕ݆ ൅   (2.24)                                          ݖ݇

This is expressed in reference axes as ݎோ
௤ using: 

ோݎ
௤ ൌ ஻ݎ തݍ

௤ݍത(2.25)                                                                        כ 

where  ݍതכ ൌ ሺݍସ െ ଵݍ݅ െ ଶݍ݆ െ  .തݍ ଷሻ ,the complex conjugate ofݍ݇

Hence, 

ோݎ
௤= ሺݍସ ൅ ଵݍ݅ ൅ ଶݍ݆ ൅ ଷሻሺ0ݍ݇ ൅ ݔ݅ ൅ ݕ݆ ൅ ସݍሻሺ ݖ݇ െ ଵݍ݅ െ ଶݍ݆ െ  ଷሻݍ݇

ൌ 0 ൅ ሼሺݍସ
ଶ ൅ ଵݍ

ଶ െ ଶݍ
ଶ െ ଷݍ

ଶሻݔ ൅ 2ሺݍଵݍଶ െ ݕଷሻݍସݍ ൅ 2ሺݍଵݍଷ ൅  ሽ݅ݖଶሻݍସݍ

൅ሼ2ሺݍଵݍଶ ൅ ݔଷሻݍସݍ ൅ ሺݍସ
ଶ െ ଵݍ

ଶ ൅ ଶݍ
ଶ െ ଷݍ

ଶሻݕ ൅ 2ሺݍଶݍଷ െ  ሽ݆ݖଵሻݍସݍ

൅ሼ2ሺݍଵݍଷ െ ݔଶሻݍସݍ ൅ 2ሺݍଶݍଷ ൅ ݕଵሻݍସݍ ൅ ሺݍସ
ଶ െ ଵݍ

ଶ ൅ ଶݍ
ଶ െ ଷݍ

ଶሻݖሽ݇    (2.26) 

Alternatively, ݎோ
௤ may be expressed in matrix form as follows: 

ோݎ
௤ ൌ ஻ݎ ᇱܣ

௤                                                            (2.27) 

where ܣᇱ ൌ ቂ0 0
0 ோݎ , ቃܣ

௤ ൌ ሾ0 ݎ஻ሿ and 

ܣ ൌ ቎
ଵݍ

ଶ െ ଶݍ
ଶ െ ଷݍ

ଶ ൅ ସݍ
ଶ 2ሺݍଵݍଶ ൅ ସሻݍଷݍ 2ሺݍଵݍଷ െ ସሻݍଶݍ

2ሺݍଵݍଶ െ ସሻݍଷݍ െݍଵ
ଶ ൅ ଶݍ

ଶ െ ଷݍ
ଶ ൅ ସݍ

ଶ 2ሺݍଶݍଷ ൅ ସሻݍଵݍ
2ሺݍଵݍଷ ൅ ସሻݍଶݍ 2ሺݍଶݍଷ െ ସሻݍଵݍ െݍଵ

ଶ െ ଶݍ
ଶ ൅ ଷݍ

ଶ ൅ ସݍ
ଶ

቏     (2.28) 

which is equivalent to writing: 

ோݎ ൌ  ஻                                                  (2.29)ݎܣ

Here ܣ is the same direction cosine matrix that is used for transformation from body 

to reference frame. 
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2.1.2.2 Propagation of quaternions by time 

While defining the kinematic equations of motion with quaternions, time dependence 

of them must be used and that can be derived from the product relation [34]. 

Multiplication of quaternion is performed in a way not too different from complex 

number multiplications. However the order of the process must be regarded. By 

using characteristic of hyper-imaginary numbers; 

തᇱᇱݍ      ൌ തᇱݍതݍ ൌ ሺݍସ ൅ ଵݍ݅ ൅ ଶݍ݆ ൅ ସݍଷሻሺݍ݇
ᇱ ൅ ଵݍ݅

ᇱ ൅ ଶݍ݆
ᇱ ൅ ଷݍ݇

ᇱ ሻ      (2.30) 

തᇱᇱݍ                                      ൌ ሺെݍଵݍଵ
ᇱ െ ଶݍଶݍ

ᇱ െ ଷݍଷݍ
ᇱ ൅ ସݍସݍ

ᇱ ሻ                    

                                               ݅ሺݍଵݍସ
ᇱ ൅ ଷݍଶݍ

ᇱ െ ଶݍଷݍ
ᇱ ൅ ଵݍସݍ

ᇱ ) + 

                                            ݆ሺെݍଵݍଷ
ᇱ ൅ ସݍଶݍ

ᇱ ൅ ଵݍଷݍ
ᇱ ൅ ଶݍସݍ

ᇱ ) + 

                                              ݇ሺݍଵݍଶ
ᇱ െ ଵݍଶݍ

ᇱ ൅ ସݍଷݍ
ᇱ ൅ ଷݍସݍ

ᇱ )                              (2.31) 

If it is written in matrix form, 

                                    

ۏ
ێ
ێ
ۍ
ଵݍ

ᇱᇱ

ଶݍ
ᇱᇱ

ଷݍ
ᇱᇱ

ସݍ
ᇱᇱے

ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ସݍ    ۍ

ᇱ ଷݍ   
ᇱ      െݍଶ

ᇱ ଵݍ  
ᇱ

െݍଷ
ᇱ ସݍ   

ᇱ ଵݍ        
ᇱ ଶݍ 

ᇱ

ଶݍ   
ᇱ

െݍଵ
ᇱ

െݍଵ
ᇱ

െݍଶ
ᇱ ସݍ        

ᇱ ଷݍ 
ᇱ

  െݍଷ
ᇱ ସݍ 

ᇱ ے
ۑ
ۑ
ې

቎

ଵݍ
ଶݍ
ଷݍ
ସݍ

቏                     (2.32)                

Now assume that, ݍത and  ݍതᇱᇱ correspond to the orientation of the body at ݐ  and 

ݐ ൅ ݐ തᇱ is for the representation of position atݍ respectively. Also  ,ݐ∆ ൅  in a ݐ∆

relative way to the position that has been occupied at ݐ .   

ଵݍ                                                            
ᇱ ؠ ݁ଵ sin ∆஍

ଶ
                                        (2.33) 

ଶݍ                                                             
ᇱ ؠ ݁ଶ sin ∆஍

ଶ
                                        (2.34) 

ଷݍ                                                            
ᇱ ؠ ݁ଷ sin ∆஍

ଶ
                                        (2.35) 

ସݍ                                                             
ᇱ ؠ cos ∆஍

ଶ
                                           (2.36) 

When the necessary multiplication is done it is obvious that  

ݐതሺݍ             ൅ ሻݐ∆ ൌ ൞ܿݏ݋ ∆஍
ଶ

ܫ ൅ ݊݅ݏ ∆஍
ଶ

൦

   0    ݁ଷ െ ݁ଶ ݁ଵ
െ݁ଷ   0      ݁ଵ ݁ଶ
   ݁ଶ
െ݁ଵ

െ݁ଵ
െ݁ଶ

     0 ݁ଷ
െ݁ଷ 0

൪ൢ  ሻ         (2.37)ݐതሺݍ
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where ݁ଵ, ݁ଶ, ݁ଷ are the components of rotation axis unit vector and ܫ is the 4 ൈ 4 

identity matrix. After that by small angle approximation  

ݏ݋ܿ                                     ∆஍
ଶ

ൎ 1                                                (2.38) 

݊݅ݏ                                   ∆஍
ଶ

ൎ ଵ
ଶ

ഥ߱஻ோ∆(2.39)                                          ݐ 

It is possible to show that  

ݐതሺݍ                ൅ ሻݐ∆ ൎ ቐܫ ൅ ଵ
ଶ

቎
   0 ݎ  െ ݍ ݌
െݎ   0 ݌      ݍ
ݍ   
െ݌

െ݌
െݍ      0 ݎ 

െݎ 0

቏ Δݐቑ  ሻ                  (2.40)ݐതሺݍ

here ݌, ,ݍ  are components of  ഥ߱஻ோ and they indicate angular velocity of the rigid ݎ

body with respect to the reference frame. Hence if a skew-symmetric matrix is 

defined as      

                               Ωሺ ഥ߱஻ோሻ ൌ ቎
   0 ݎ  െ ݍ ݌
െݎ   0 ݌      ݍ
ݍ   
െ݌

െ݌
െݍ      0 ݎ 

െݎ 0

቏                               (2.41) 

equation becomes                     

ݐതሺݍ                          ൅ ሻݐ∆ ൎ ቄܫ ൅ ଵ
ଶ

ΩΔݐቅ  ሻ                                 (2.42)ݐതሺݍ

Finally it is known that  

                       ௗ௤തሺ௧ሻ
ௗ௧

؆ ௤തሺ௧ା∆௧ሻି௤തሺ௧ሻ
୼௧

ൌ ଵ
ଶ

Ωݍതሺݐሻ                                     (2.43) 

2.1.3 Euler angles and quaternions relationship 

Quaternions can be expressed in terms of Euler angles as well as angles can be used 

to define quaternions. Formulas used for transformation are simple and given below: 

• Euler Angle to Quaternion: 

            ቎

ଵݍ
ଶݍ
ଷݍ
ସݍ

቏ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
cosۍ ቀఏ

ଶ
ቁ cos ቀట

ଶ
ቁ sin ቀఝ

ଶ
ቁ െ sin ቀఏ

ଶ
ቁ sin ቀట

ଶ
ቁ cos ቀఝ

ଶ
ቁ

sin ቀఏ
ଶ
ቁ cos ቀట

ଶ
ቁ sin ቀఝ

ଶ
ቁ ൅ cos ቀఏ

ଶ
ቁ sin ቀట

ଶ
ቁ cos ቀఝ

ଶ
ቁ

sin ቀఏ
ଶ
ቁ cos ቀట

ଶ
ቁ cos ቀఝ

ଶ
ቁ ൅ cos ቀఏ

ଶ
ቁ sin ቀట

ଶ
ቁ sin ቀఝ

ଶ
ቁ

cos ቀఏ
ଶ
ቁ cos ቀట

ଶ
ቁ cos ቀఝ

ଶ
ቁ െ sin ቀఏ

ଶ
ቁ sin ቀట

ଶ
ቁ sin ቀఝ

ଶ
ቁے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

                  (2.44) 
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• Quaternion to Euler Angle: 

                                     ߮ ൌ sinିଵ൫2ሺݍଶ ݍଷ ൅  ସሻ൯                                    (2.45)ݍ ଵݍ

ߠ                                ൌ tanିଵ ቀ௤యା௤మ
௤రା௤భ

ቁ ൅ tanିଵ ቀ௤యି௤మ
௤రି௤భ

ቁ                             (2.46) 

                                ߰ ൌ tanିଵ ቀ௤యା௤మ
௤రା௤భ

ቁ െ tanିଵ ቀ௤యି௤మ
௤రି௤భ

ቁ                           (2.47) 

2.2 Pico Satellite Dynamics 

The fundamental equation of the satellite dynamics relates the time derivative of the 

angular momentum vector with the overall torque affecting the satellite [34]; 

ௗ௅ത

ௗ௧
ൌ ഥܰ െ ഥ߱஻ூ ܮ ݔത ൌ ܬ ௗఠഥ ಳ಺

ௗ௧
   ,                                    (2.48)    

                                                                           
തܮ                                                           ൌ ܬ ഥ߱஻ூ      ,                                             (2.49) 

where ܮത is the angular momentum vector, ഥܰ is the external torque vector, ഥ߱஻ூ is the 

angular velocity vector of the body frame with respect to the inertial frame and J is 

the moment of inertia matrix. When the vectors of ܮത and ഥ߱஻ூ are parallel, as the 

rotation is about the principal axis of the satellite, then the moment of inertia matrix 

is formed of principal moments of inertia as  

ܬ ൌ ቎
௫ܬ 0 0
0 ௬ܬ 0
0 0 ௭ܬ

቏ .                                           (2.50) 

Note that, this condition is an obligation for the rotation without nutation [34].  

By the use of (2.48) and (2.49), main equation for the dynamics part of the pico 

satellite mathematical model can be gained;  

                 ௗఠഥ ಳ಺
ௗ௧

ൌ ଵሺିܬ ഥܰ െ ഥ߱஻ூ  ൈ ܬ ഥ߱஻ூሻ.                                      (2.51) 

Besides, if the vectors are decomposed into their components as  

ഥ߱஻ூ ൌ ൣ ߱௫ ߱௬ ߱௭ ൧்,                                          (2.52) 

ഥܰ ൌ ൣ ௫ܰ ௬ܰ ௭ܰ  ൧்,                                           (2.53) 

open form of (2.51) can be given as   

௫ܬ                 
ௗఠೣ

ௗ௧
ൌ ௫ܰ ൅ ൫ܬ௬ െ  ௭൯߱௬߱௭,                                     (2.54)ܬ
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௬ܬ    
ௗఠ೤

ௗ௧
ൌ ௬ܰ ൅ ሺܬ௭ െ  ௫ሻ߱௭߱௫,                                               (2.55)ܬ

௭ܬ   
ௗఠ೥
ௗ௧

ൌ ௭ܰ ൅ ൫ܬ௫ െ  ௬൯߱௫߱௬,                                               (2.57)ܬ

One the most dominant external torque that affects Low Earth Orbit (LEO) satellites 

like ITU-PSAT I is the gravity gradient torque. This torque is inherent for LEO 

satellites and can not be neglected when the satellite model is built [36, 37]. Gravity 

gradient torque components can be determined as; 

              ቎
௫ܰ

௬ܰ

௭ܰ

቏ ൌ െ3 ఓ
௥బ

య ቎
൫ܫ௬ െ ଷଷܣଶଷܣ௭൯ܫ
ሺܫ௭ െ ଷଷܣଵଷܣ௫ሻܫ

൫ܫ௫ െ ଶଷܣଵଷܣ௬൯ܫ

቏.                                   (2.58) 

Here ߤ is the gravitational constant, ݎ଴is the distance between the centre of mass of 

the satellite and the Earth and ܣ௜௝ represents the corresponding element of the 

direction cosine matrix.  

2.3 Pico Satellite Kinematics 

Related to the chosen attitude representation, derived equations of the satellite 

kinematics may be different. In this study, as a part of the preferred representations, 

Euler angles and quaternions, two different version of pico satellite kinematics can 

be given.      

2.3.1 Kinematics with Euler angles 

When the Euler angles are used as the attitude representation technique, Kinematic 

equations of motion of the pico satellite can be expressed in matrix form as  

቎
ሶ߮

ሶߠ
ሶ߰
቏ ൌ ቎

1 ሻߠሺݐሺ߮ሻݏ ܿሺ߮ሻݐሺߠሻ
0 ܿሺ߮ሻ െݏሺ߮ሻ
0 ሻߠሺ߮ሻ/ܿሺݏ ܿሺ߮ሻ/ܿሺߠሻ

቏ ቈ
݌
ݍ
ݎ

቉                             (2.59)           

Here, ܿሺ·ሻ, ݏሺ·ሻand ݐሺ·ሻ stand for the cosines, sinus and the tangent functions 

successively and ݌,  are the components of ഥ߱஻ோ vector which indicates the ݎ and ,ݍ

angular velocity of the body frame with respect to the reference frame;  

ഥ߱஻ோ ൌ ሾ݌ ݍ  ሿ்,                                          (2.60)ݎ

In satellite attitude estimation problems, generally it is worked with the angular 

velocity of the body frame with respect to the inertial frame since the satellite’s 
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orientation with respect to the inertial coordinates is more significant for the 

designer, especially when the Earth orbiting spacecrafts are the point at issue. 

Nonetheless, on board inertial measuring instruments like gyros gives measurement 

outputs in the body frame with respect to the inertial frame [36]. Hence,  ഥ߱஻ூ and 

ഥ߱஻ோ must be related. That association is possible by the equation of; 

ഥ߱஻ோ ൌ ഥ߱஻ூ ൅ ܣ ൥
0

െ߱଴
0

൩.                                      (2.61) 

where ܣ represents the direction cosine matrix constituted of trigonometric functions 

of Euler angles. Note that, ܣ matrix may vary in accordance with the chosen axis 

sequence for the Euler angle rotation as well as the kinematic equations. Here matrix 

is given for 3-2-1 Euler angle rotation of [34].    

ܣ ൌ ଷଶଵܣ ൌ 

቎
ܿሺߠሻܿሺ߰ሻ ܿሺߠሻݏሺ߰ሻ െݏሺߠሻ

െܿሺ߮ሻݏሺ߰ሻ ൅ ሻܿሺ߰ሻߠሺݏሺ߮ሻݏ ܿሺ߮ሻܿሺ߰ሻ ൅ ሺ߰ሻݏሻߠሺݏሺ߮ሻݏ ሻߠሺ߮ሻܿሺݏ
ሺ߰ሻݏሺ߮ሻݏ ൅ ܿሺ߮ሻݏሺߠሻܿሺ߰ሻ െݏሺ߮ሻܿሺ߰ሻ ൅ ܿሺ߮ሻݏሺߠሻݏሺ߰ሻ ܿሺ߮ሻܿሺߠሻ

቏.       (2.62) 

Also, ߱଴ denotes the angular velocity of the orbit with respect to the inertial frame, 

found as ߱଴ ൌ ሺݎ/ߤ଴
ଷሻଵ/ଶ , where ߤ is the gravitational constant and  ݎ଴is the distance 

between the centre of mass of the satellite and the Earth. 

2.3.2 Kinematics with quaternions 

Kinematic equations of the pico satellite with quaternions is based on the time 

derivation of quaternions and it can be given by the equation of:  

ௗ௤ത
ௗ௧

ൌ ଵ
ଶ

Ωሺ ഥ߱஻ோሻݍത                                                (2.63) 

Here Ωሺ ഥ߱஻ோሻ is the skew symmetric matrix, formed of elements of the angular 

velocity vector in body frame with respect to the reference frame as [34]; 

          Ω ൌ ቎
   0 ݎ  െ ݍ ݌
െݎ   0 ݌      ݍ
ݍ   
െ݌

െ݌
െݍ      0 ݎ 

െݎ 0

቏                                      (2.64) 

If the Ωሺ ഥ߱஻ோሻ matrix is written in terms of angular velocity vector in body frame 

with respect to the inertial frame, ഥ߱஻ூ , then the equations that are going to be used 

for attitude estimation process can be determined. Simplified versions of these 

equations are [6]: 
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ሶଵݍ             ൌ ଵ
ଶ

ൣ߱௫ݍସ െ ߱௬ݍଷ ൅ ߱௭ݍଶ ൅ ߱଴ݍଷ൧                              (2.65) 

ሶଶݍ         ൌ ଵ
ଶ

ൣ߱௫ݍଷ ൅ ߱௬ݍସ െ ߱௭ݍଵ ൅ ߱଴ݍସ൧                              (2.66) 

ሶଷݍ         ൌ ଵ
ଶ

ൣെ߱௫ݍଶ ൅ ߱௬ݍଵ ൅ ߱௭ݍସ െ ߱଴ݍଵ൧                            (2.67) 

ሶସݍ             ൌ ଵ
ଶ

ൣെ߱௫ݍଵ െ ߱௬ݍଶ െ ߱௭ݍଷ െ ߱଴ݍଶ൧                            (2.68) 
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3.  MODELS FOR MEASUREMENT SENSORS 

In this section, measurement sensor models for ITU-PSAT I attitude estimation 

procedure are presented. The Earth magnetic field is modelled so as to simulate 

magnetometer measurements and determine magnetic field tensor vector, which is 

going to be used for Kalman filter observation vector prediction, while the model for 

IMU is derived in order to gain gyro outputs.  

Performing measurements with magnetometers and/or gyros and so having the 

magnetic field and/or an inertial sensor as the attitude estimation reference source 

have various advantages and drawbacks. Table 3.1 summarizes these characteristics 

[34, 35]: 

Table 3.1: Characteristics of the attitude estimation reference sources. 

Reference Performance     Advantages    Disadvantages 

Magnetic Field 
(Magnetometers) 

Accuracy of 
0.5 deg- 

5 deg 
 

-Economical. 
-Low power. 
-Always available 
for LEO spacecrafts. 
 

-Poor accuracy. 
-Good only for near 
Earth satellites. 
-Limited by modelling 
accuracy. 
-Orbit and attitude are 
strongly coupled. 
-Spacecraft must be 
magnetically clean (or 
in flight calibration 
must be done). 
-Sensitive to biases.  
 

Inertial Space 
(Gyros) 

Drift rate of 
0.002deg/h -

1deg/h 

-No need for 
external sensors. 
-Orbit independent. 
-High accuracy for 
limited time 
intervals. 
-Easily done 
onboard. 
 

-Senses change in 
orientation (orientation 
rate) only. 
-No absolute 
measurement. 
-Subject to drift. 
-Wear and friction 
caused by rapidly 
moving parts. 
-Relatively high power 
and mass. 
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For all of the attitude estimation scenarios, magnetometers are used as one of the 

measurement sensors. Nonetheless, in case of torque, magnetometer bias and gyro 

bias identification, gyros (or IMU), are used as the supplementary device. 

3.1 The Earth Magnetic Field Modelling 

In literature there are more than one methods for modelling the Earth magnetic field 

(EMF). One of them is to use directly the data of International Geomagnetic 

Reference Field (IGRF) [38], as it is given in [39].  

On the other hand, analytical calculation of the magnetic field is also possible, as it is 

realized in this study. As the satellite navigates along its orbit, magnetic field vector 

differs in a relevant way with the orbital parameters. If those parameters are known, 

then, magnetic field tensor vector that affects satellite can be shown as a function of 

time, analytically [6, 34]. Note that, these terms are obtained in the orbit reference 

frame. 

ሻݐଵሺܪ ൌ ெ೐
௥బ

య ሼܿݏ݋ሺ߱଴ݐሻ ሾܿݏ݋ሺ߳ሻ ሺ݅ሻ݊݅ݏ െ ሺ߳ሻ݊݅ݏ ሺ݅ሻݏ݋ܿ ሻሿݐሺ߱௘ݏ݋ܿ െ           

ሻݐሺ߱଴݊݅ݏ ሺ߳ሻ݊݅ݏ  ሻሽ                                                                          (3.1)ݐሺ߱௘ ݊݅ݏ

ሻݐଶሺܪ ൌ െ ெ೐
௥బ

య ሾܿݏ݋ሺ߳ሻ ሺ݅ሻݏ݋ܿ ൅ ሺ߳ሻ݊݅ݏ ሺ݅ሻ݊݅ݏ  ሻሿ                        (3.2)ݐሺ߱௘ݏ݋ܿ

ሻݐଷሺܪ ൌ ଶெ೐
௥బ

య ሼ݊݅ݏሺ߱଴ݐሻ ሾܿݏ݋ሺ߳ሻ ሺ݅ሻ݊݅ݏ െ ሺ߳ሻ݊݅ݏ ሺ݅ሻݏ݋ܿ ሻሿݐሺ߱௘ݏ݋ܿ ൅       

2 ሻݐሺ߱଴݊݅ݏ ሺ߳ሻ݊݅ݏ  ሻሽ                                                                           (3.3)ݐሺ߱௘ ݊݅ݏ

Here  

௘ܯ • ൌ .10ଵହܹܾ ݔ 7.943 ݉; the magnetic dipole moment of the Earth, 

ߤ • ൌ  ,ଶ; the Earth Gravitational constantݏ/10ଵସ݉ଷ ݔ 3.98601

• ݅ ൌ 97°; the simulation value for the orbit inclination of ITU-PSAT I, 

• ߱௘ ൌ  ,the spin rate of the Earth ;ݏ/݀ܽݎ10ିହ ݔ 7.29

• ߳ ൌ 11.7°; the magnetic dipole tilt, 
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଴ݎ • ൌ 6,928,140 ݉ ; the distance between the centre of mass of the satellite 

and the Earth (simulation value if the altitude of ITU-PSAT I is accepted as 

550 ݇݉). 

Three onboard magnetometers of pico satellite measures the components of the 

magnetic field vector in the body frame.  Therefore for measurement model, which 

characterizes the measurements in body frame, gained magnetic field terms must be 

transformed by the use of direction cosine matrix, ܣ. Overall measurement model 

may be given as; 

           ቎
,߮/തݍ௫ሺሼܪ ,ߠ ߰ሽ, ሻݐ
,߮/തݍ௬ሺሼܪ ,ߠ ߰ሽ, ሻݐ
,߮/തݍ௭ሺሼܪ ,ߠ ߰ሽ, ሻݐ

቏ ൌ ܣ ቎
ሻݐଵሺܪ
ሻݐଶሺܪ
ሻݐଷሺܪ

቏                                           (3.4) 

where, ܪଵሺݐሻ,  ሻ represents the Earth magnetic field vectorݐଷሺܪ ሻ, andݐଶሺܪ

components in orbit frame as a function of time and ܪ௫ሺሼݍത/߮, ,ߠ ߰ሽ, ,ሻݐ /തݍ௬ሺሼܪ

߮, ,ߠ ߰ሽ, ,߮/തݍ௭ሺሼܪ ሻ, andݐ ,ߠ ߰ሽ,  ሻ shows the Earth magnetic field vectorݐ

components in body frame as a function of time and varying attitude quaternions / 

Euler angles. 

3.2 Model for IMU 

Inertial Measurement Unit (IMU) consists of three rate gyros aligned through three 

axes, orthogonally to each other. Rate gyros supply directly the angular rates of the 

body frame with respect to the inertial frame. Hence the model for rate gyros can be 

given as; 

 ഥ߱஻ூ_ெ௘௔௦ ൌ ഥ߱஻ூ ൅ തܾ௚ ൅  ଵ.                                     (3.5)ߟ

where, ഥ߱஻ூ_ெ௘௔௦ is the measured angular rates of the satellite, തܾ௚ is the gyro bias 

formed of three bias components of three different gyros as തܾ௚ ൌ ሾܾ௫ ܾ௬ ܾ௭ ሿ் 

and ߟଵ is the zero mean Gaussian white noise with the characteristic of 

௝ߟ௞ߟൣܧ 
்൧ ൌ ௚ߪଷ௫ଷܫ

ଶߜ௞௝ ,                                       (3.6)  

Here, ܫଷ௫ଷ is the identity matrix with the dimension of  3 ൈ  ௚ is the standardߪ , 3

deviation of each rate gyro and  ߜ௞௝ is the Kronecker delta function as, 

௞௝ߜ ൌ ൜1,        ݇ ൌ ݆
0,        ݇ ് ݆                                           (3.7) 
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Nevertheless, characteristic of gyro bias is given as: 

ௗ௕ത೒

ௗ௧
ൌ  ଶ                                                (3.8)ߟ

where, ߟଶ is also the zero mean Gaussian white noise. 
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4.  KALMAN FILTERING APPLICATIONS 

In this section, algorithms of Kalman filter (KF) types that are going to be used for 

ITU-PSAT I attitude estimation process are introduced. In order to form a base for 

the further Kalman filter studies, linear Kalman filter algorithm is also given.  

After the first part that presents the Kalman filter algorithms in a general scheme, 

application procedures of these filters to the attitude estimation process of the ITU-

PSAT I are proposed. Thus, it is aimed at clarifying the study for the reader.  

4.1 Optimal Kalman Filters 

For Kalman filters, optimality means that the filter’s gain is derived optimally. 

Optimal Kalman Filter (OKF) uses filter gain of case, where expected value of the 

square of the magnitude of error in posterior state estimation is minimized. In other 

words, filter runs under some certain optimization law defined by minimization rule 

of indicated vector and so it has the optimal gain. If this optimal gain is modified in 

order to adapt filter to the changing conditions, that means filter is not optimal 

anymore and can be called as adaptive Kalman filter.  

Under these circumstances, linear Kalman filter (LKF), extended Kalman filter and 

unscented Kalman filter are all optimal unless an adaptation process is run on their 

gains.  

4.1.1 Linear Kalman filter 

Linear Kalman filter is the filter type which may be utilized for linear systems in 

point of view of both system process model and measurement model. Related to this 

statement, it cannot be used for attitude estimation procedure of a satellite since the 

satellite dynamics are inherently nonlinear. Besides, as in case, measurement model 

of the satellite may be nonlinear too.  
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However, linear Kalman filter is the fundamental of other Kalman filter types that 

are going to be used for the attitude estimation of ITU-PSAT. Hence, its algorithm 

should be presented to make the latter studies more understandable.      

First, let introduce the process and observation models for a dynamical system in the 

state space form as follow (note that, system is not controlled): 

௞ݔ         ൌ ௞ିଵݔ௞ܨ ൅  ௞                                             (4.1)ݓ௞ܩ

௞ݕ             ൌ ௞ݔ௞ܪ ൅  ௞,                                             (4.2)ݒ

where, ܨ௞ is the system dynamics matrix, ܤ௞ is the control distribution matrix, ݔ௞ is 

the state vector, ݕ௞ is the measurement vector, ܩ௞ is the transition matrix of system 

noises, ܪ௞ is the measurement matrix and ݓ௞ and ݒ௞ are successively, white 

Gaussian system process and measurement noises; 

௝ݓ௞ݓൣܧ                                                 
்൧ ൌ ܳ௞ߜ௞௝ ,                             (4.3)  

௝ݒ௞ݒൣܧ                                                  
்൧ ൌ ܴ௞ߜ௞௝ ,                              (4.4)  

௝ݒ௞ݓൣܧ                                         
்൧ ൌ 0.                                   (4.4) 

Here, ܳ௞ is the process noise covariance matrix, ܴ௞ is the measurement noise 

covariance matrix and  ߜ௞௝ is the Kronecker delta function. 

After that, optimal Kalman filter (OKF) can be given by those following steps [40]: 

State prediction: 

෤௞/௞ିଵݔ                                  ൌ  ො௞ିଵ/௞ିଵ                                   (4.5)ݔ௞ܨ

Covariance prediction: 

                                   ௞ܲ/௞ିଵ ൌ ௞ܨ ௞ܲିଵ/௞ିଵܨ௞
் ൅ ௞ܩ௞ܳ௞ܩ

்                     (4.6) 

Innovation: 

                                               ݁̃௞ ൌ ௞ݕ െ  ෤௞/௞ିଵ                            (4.7)ݔ௞ܪ

Optimal Kalman Gain: 

௞ܭ                                ൌ ௞ܲ/௞ିଵܪ௞
்൫ܪ௞ ௞ܲ/௞ିଵܪ௞

் ൅ ܴ௞൯ିଵ
              (4.8) 

State estimation: 

ො௞/௞ݔ                                              ൌ ෤௞/௞ିଵݔ ൅  ௞݁̃௞                                    (4.9)ܭ
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Covariance estimation: 

                                ௞ܲ/௞ ൌ ሺܫ െ ௞ሻܪ௞ܭ ௞ܲ/௞ିଵ.                     (4.10) 

Here ݔ෤௞/௞ିଵ is the predicted state vector, ௞ܲ/௞ିଵ is the predicted covariance matrix, 

݁̃௞ is the innovation sequence, ܭ௞ is the optimal Kalman gain, ݔො௞/௞ is the estimated 

state vector and ௞ܲ/௞ is the estimated covariance matrix for discrete step ݇. Subscript 

݇/݇ െ 1  denotes that computation is done in current step ݇ by using measurements 

of step ݇ െ 1.  Same as, subscript ݇ െ 1/݇ െ 1  means the variable has computed at 

the step  ݇ െ 1  by taking measurements of step ݇ െ 1 into consideration.      

4.1.2 Extended Kalman filter 

Extended Kalman filter is the version of Kalman filter developed for systems with 

nonlinear system process or/and measurement models. It is simply based on 

derivation of the system dynamics and measurement matrices constituted of partial 

derivatives (the Jacobians). 

First step of extended Kalman filter algorithm design procedure must be describing 

the real world by a set of non-linear equations and these equations may be shown in 

state-space form as a set of first order non-linear differential equations [40]. 

ሶݔ                          ൌ ݂ሺݔሺݐሻ, ሻݐ ൅   (4.11)                                            ݓ

where ݔ is the system state vector, ݂ሺݔሻ is nonlinear functions of these state and ݓ is 

the white process noise. 

Besides, measurement equation needed for Kalman filter application is also non-

linear function of the states and 

ݕ                              ൌ ݄ሺݔሺݐሻ, ሻݐ ൅                 (4.12)                                           ݒ

where ݕ is the measurement vector, ݄ሺݔሻis the nonlinear functions that relates the 

systems states with the measurements and ݒ is the white measurement noise.  

The ݂ function can be used for prediction of states from the last outputs of the 

Kalman filter (estimated states) and ݄ function can be operated to find out predicted 

measurements from predicted states. However in order to participate these functions 

in the process they must be first linearized. Hence Jacobian matrices constituted of 

partial derivatives with respect to the states must be derived. 
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          ݂ሺݔሺݐሻ, ሻݐ ൎ ݂ሺݔොሺݐሻ, ሻݐ ൅ డ௙ሺ௫ሻ
డ௫   

ቚ
௫,ෝ ௨

  (4.13)                                 ݔߜ

            ݄ሺݔሺݐሻ, ሻݐ ൎ ݄ሺݔ෤ሺݐሻ, ሻݐ ൅ డ௛ሺ௫ሻ
డ௫   

ቚ
௫෤

 (4.14)                                    ݔߜ

And then 

ܨ                          ൌ డ௙ሺ௫ሻ
డ௫   

ቚ
௫,ෝ ௨

                                                       (4.15)   

ܪ                          ൌ డ௛ሺ௫ሻ
డ௫   

ቚ
௫෤
                                                   (4.16)  

Here ܨ is system dynamics matrix, ܪ is measurement matrix,  ݔො is the estimated state 

from the previous step, ݑ is the control vector, and ݔ෤ is the predicted state of the 

present step. To find out ܨ and ܪ matrixes in discretized form an approximation with 

Taylor series expansion for ݁ி∆௧and ݁ு∆௧ can be done and generally first two terms 

of such expansion is sufficient for efficient result. Hence; 

௞ܨ   ൌ ܫ ൅        (4.17)                                                 ݐ∆ܨ

௞ܪ                                   ൌ ܫ ൅     (4.18)                                                ݐ∆ܪ

where ܨ௞ and ܪ௞ are system dynamics and measurement matrices in discretized 

form, ܫ is the identity matrix and ∆ݐ is the sampling time in second. 

Remaining progress of EKF is identical with the linear case and equations of (4.5)-

(4.10) are used for prediction and update phases of the filter. However, remind that, 

at each iteration, the Jacobians must be recalculated in accordance with the changing 

state prediction and estimation values.   

4.1.3 Unscented Kalman filter 

In order to utilize Kalman filter for nonlinear systems without any linearization step,  

the unscented transform and so Unscented Kalman Filter is one of the techniques. 

UKF uses the unscented transform, a deterministic sampling technique, to determine  

a minimal set of sample points (or sigma points) from the a priori mean and 

covariance of the state. Then, these sigma points go through nonlinear 

transformation. The posterior mean and the covariance are obtained from these 

transformed sigma points [12].     
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As it is stated, UKF procedure begins with the determination of 2݊ ൅ 1sigma points 

with a mean of ݔොሺ݇|݇ሻ and a covariance of ܲሺ݇|݇ሻ. For an n dimensional state 

vector, these sigma points are obtained by  

            ߯଴ሺ݇|݇ሻ ൌ   ොሺ݇|݇ሻ                     (4.19)ݔ

  ߯௜ሺ݇|݇ሻ ൌ ොሺ݇|݇ሻݔ ൅ ൫ඥሺ݊ ൅ ሻሾܲሺ݇|݇ሻߢ ൅ ܳሺ݇ሻሿ൯௜                   (4.20) 

   ߯௜ା௡ሺ݇|݇ሻ ൌ ොሺ݇|݇ሻݔ െ ൫ඥሺ݊ ൅ ሻሾܲሺ݇|݇ሻߢ ൅ ܳሺ݇ሻሿ൯௜,                    (4.21) 

where, ߯଴ሺ݇|݇ሻ, ߯௜ሺ݇|݇ሻ and ߯௜ା௡ሺ݇|݇ሻ are sigma points, ܳሺ݇ሻ is the process noise 

covariance matrix,  ݊ is the state number and ߢ is the scaling parameter which is used 

for fine tuning and the heuristic is to chose that parameter as ݊ ൅ ߢ ൌ 3 [8]. Also, ݅ is 

given as ݅ ൌ 1 … ݊.  

Next step of the UKF process is transforming each sigma point by the use of system 

dynamics,   

௜ሺ݇ݔ                  ൅ 1|݇ሻ ൌ ݂ሾݔ௜ሺ݇|݇ሻ, ݇ሿ.                     (4.22)   

Then these transformed values are utilized for gaining the predicted mean and the 

covariance [10]. 

                                                                                                                        

             (4.23) 

 

ܲሺ݇ ൅ 1|݇ሻ ൌ ଵ
௡ା఑

ሼߢሾݔ଴ሺ݇ ൅ 1|݇ሻ െ ොሺ݇ݔ ൅ 1|݇ሻሿ ·   

                       ሾݔ଴ሺ݇ ൅ 1|݇ሻ െ ොሺ݇ݔ ൅ 1|݇ሻሿ                                              

                       ൅
1
2 ෍ሾݔ௜ሺ݇ ൅ 1|݇ሻ െ ොሺ݇ݔ ൅ 1|݇ሻሿ

ଶ௡

௜ୀଵ

·  

                    ሾݔ௜ሺ݇ ൅ 1|݇ሻ െ ොሺ݇ݔ ൅ 1|݇ሻሿ்ሽ                           (4.24)                        

Here, ݔොሺ݇ ൅ 1|݇ሻis the predicted mean and ܲሺ݇ ൅ 1|݇ሻ is the predicted covariance.  

Nonetheless, predicted observation vector is,  

                                                                                                                                

(4.25) 
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where, 

௜ሺ݇ݕ                ൅ 1|݇ሻ ൌ ݄ሾݔ௜ሺ݇ ൅ 1|݇ሻ, ,ሺ݇ሻݒ ݇ሿ .                       (4.26) 

After that, observation covariance matrix is determined as, 

                ௬ܲ௬ሺ݇ ൅ 1|݇ሻ ൌ ଵ
௡ା఑

ሼߢሾݕ଴ሺ݇ ൅ 1|݇ሻ െ ොሺ݇ݕ ൅ 1|݇ሻሿ · 

                                                    ሾݕ଴ሺ݇ ൅ 1|݇ሻ െ ෝݕ  ሺ݇ ൅ 1|݇ሻሿ     

൅
1
2 ෍ሾݕ௜ሺ݇ ൅ 1|݇ሻ െ ොሺ݇ݕ ൅ 1|݇ሻሿ

ଶ௡

௜ୀଵ

·  

               ሾݕ௜ሺ݇ ൅ 1|݇ሻ െ ොሺ݇ݕ ൅ 1|݇ሻሿ்ሽ                             (4.27) 

where innovation covariance is 

    ௩ܲ௩ሺ݇ ൅ 1|݇ሻ ൌ ௬ܲ௬ሺ݇ ൅ 1|݇ሻ ൅ ܴሺ݇ ൅ 1ሻ.                        (4.28) 

Here ݒሺ݇ሻ is the white Gaussian measurement noise and  ܴሺ݇ ൅ 1ሻ is the 

measurement noise covariance matrix. On the other hand the cross correlation matrix 

can be obtained as, 

                       ௫ܲ௬ሺ݇ ൅ 1|݇ሻ ൌ ଵ
௡ା఑

ሼߢሾݔ଴ሺ݇ ൅ 1|݇ሻ െ ොሺ݇ݔ ൅ 1|݇ሻሿ · 

                                                                 ሾݕ଴ሺ݇ ൅ 1|݇ሻ െ ෝݕ  ሺ݇ ൅ 1|݇ሻሿ                

               ൅
1
2 ෍ሾݔ௜ሺ݇ ൅ 1|݇ሻ െ ොሺ݇ݔ ൅ 1|݇ሻሿ

ଶ௡

௜ୀଵ

·  

                         ሾݕ௜ሺ݇ ൅ 1|݇ሻ െ ොሺ݇ݕ ൅ 1|݇ሻሿ்ሽ .          (4.29) 

Following part is the update phase of UKF algorithm. At that phase, first by using 

measurements,  ݕሺ݇ ൅ 1ሻ, residual term (or innovation sequence) is found as  

    ݁ሺ݇ ൅ 1ሻ ൌ ሺ݇ݕ ൅ 1ሻ െ ොሺ݇ݕ ൅ 1|݇ሻ,                     (4.30) 

and then Kalman gain is computed via equation of, 

ሺ݇ܭ   ൅ 1ሻ ൌ ௫ܲ௬ሺ݇ ൅ 1|݇ሻ ௩ܲ௩
ିଵሺ݇ ൅ 1|݇ሻ.                         (4.31) 

At last, updated states and covariance matrix are determined by, 

ොሺ݇ݔ   ൅ 1|݇ ൅ 1ሻ ൌ ොሺ݇ݔ ൅ 1|݇ሻ ൅ ሺ݇ܭ ൅ 1ሻ݁ሺ݇ ൅ 1ሻ                 (4.32) 

ܲሺ݇ ൅ 1|݇ ൅ 1ሻ ൌ ܲሺ݇ ൅ 1|݇ሻ െ ሺ݇ܭ ൅ 1ሻ ௩ܲ௩ሺ݇ ൅ 1|݇ሻ்ܭሺ݇ ൅ 1ሻ.         (4.33) 
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Here, ݔොሺ݇ ൅ 1|݇ ൅ 1ሻ is the estimated state vector and ܲሺ݇ ൅ 1|݇ ൅ 1ሻ is the 

estimated covariance.  

4.2 Adaptive Fading Kalman Filters 

As it is aforementioned if the Kalman filter is modified in order to secure filter’s 

robustness against the estimation system malfunctions, that means filter is not 

optimal anymore and can be called as adaptive Kalman filter. 

In this part of the section, two different adaptive Kalman filter algorithms with the 

filter gain correction for the case of measurement malfunctions are introduced. By 

the use of defined variables named as fading factor, the faulty measurements are 

taken into the consideration with a small weight and the estimations are corrected 

without affecting the characteristic of the accurate ones. As they use fading factors to 

correct the estimation process, presented AKFs may be named as adaptive fading 

Kalman filter (AFKF). In this study, Adaptive Fading Kalman Filter (AFKF) 

algorithms with single and multiple fading factors are proposed.  

4.2.1 Adaptive fading Kalman filter with single fading factor 

In normal operation conditions, where any kind of measurement malfunction is not 

observed, any of the optimal Kalman filters, i.e. linear Kalman filter, extended 

Kalman filter and unscented Kalman filter, gives sufficiently good estimation results. 

However, when the measurements are faulty because of malfunctions in the 

estimation system such as abnormal measurements, sudden shifts or step-like 

changes in the measurement channel etc. filter estimation outputs become inaccurate.  

Therefore, an adaptive Kalman filter algorithm, which brings the fault tolerance to 

the filter and secures accurate estimation results in case of faulty measurements 

without affecting the remaining good estimation characteristic, should be introduced. 

This part presents the adaptation scheme, which can be applied to LKF and EKF.  

Base of the adaptive Kalman filter is the comparison of real and theoretical values of 

the covariance of the innovation sequence [29]. When the operational condition of 

the measurement system mismatches with the model used in the synthesis of the 

filter, then the Kalman filter gain changes according the differentiation in the 
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covariance matrix of the innovation sequence. Under these circumstances, covariance 

matrix of the innovation sequence differs as: 

                                            ௘ܲೖ ൌ ௞ܪ ௞ܲ/௞ିଵܪ௞
் ൅ ܵ௞ܴ௞,                        (4.34) 

and so the Kalman gain becomes 

௞ܭ                                     ൌ ௞ܲ/௞ିଵܪ௞
்൫ܪ௞ ௞ܲ/௞ିଵܪ௞

் ൅ ܵ௞ܴ௞൯ିଵ
       (4.35) 

Here ܵ௞ is the adaptive factor or the single fading factor (SFF).  

Due to the approach, the Kalman gain is changed when the predicted observation 

 ௞, because of theݕ ෤௞/௞ିଵis considerably different from the actual observationݔ௞ܪ

significant changes in the operational condition of the measurement system. In other 

word, if the real value of filtration error exceeds the theoretical error as 

ሼ݁̃௞݁̃௞ݎݐ                                      
்ሽ ൒ ௞ܪ൛ݎݐ ௞ܲ/௞ିଵܪ௞

் ൅ ܴ௞ൟ                     (4.36) 

filter must be run adaptively. Here ݎݐሺ·ሻ denotes the trace of the related matrix. 

In order to determine adaptive factor, ܵ௞, let substitute (4.34) into the (4.36) and put 

in that adaptation begins at the point where condition (4.36) is satisfied, 

ሼ݁̃௞݁̃௞ݎݐ                                  
்ሽ ൌ ௞ܪ൛ݎݐ ௞ܲ/௞ିଵܪ௞

்ൟ ൅ ܵ௞ݎݐሼܴ௞ሽ       (4.37) 

Then, in light of ݎݐሼ݁̃௞݁̃௞
்ሽ=݁̃௞

்݁̃௞ equality, ܵ௞ can be written as 

                                             ܵ௞ ൌ ௘̃ೖ
೅௘̃ೖି௧௥൛ுೖ௉ೖ/ೖషభுೖ

೅ൟ
௧௥ሼோೖሽ                              (4.38)   

If there is some kind of malfunction in the measurement system, that means the 

condition (4.36) is met, then it brings out an increase in the adaptive factor  ܵ௞. 

Higher ܵ௞ causes a smaller Kalman gain (4.35) because of the covariance of the 

innovation sequence (4.34) which is also increased in adaptive case. Consequently, 

small Kalman gain value reduces the effect of the faulty innovation sequence on the 

state estimation process (4.9). In all other cases, where measurement system operates 

normally, adaptive factor takes the value of  ܵ௞ ൌ 1 and so filter runs optimally.  

Nevertheless, adaptive algorithm is operated only when the measurements are faulty 

and in all other cases procedure is run optimally with LKF or EKF. Process is 

controlled by the use of a kind of statistical information. At that point, following two 

hypotheses may be introduced: 
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 ଴; the system is normally operatingߛ •

  .ଵ ; there is a malfunction in the estimation systemߛ •

To detect failures a statistical function may be defined as, 

௞ߚ               ൌ ݁̃௞
௞ܪൣ் ௞ܲ/௞ିଵܪ௞

் ൅ ܴ௞൧ିଵ݁̃௞.                                (4.39) 

This statistical function has ߯ଶdistribution with ݊ degree of freedom where ݊ is the 

dimension of the state vector. 

If the level of significance, ߙ, is selected as, 

                                         ܲ൛߯ଶ ൐ ߯ఈ,ெ
ଶ ൟ ൌ ;ߙ       0 ൏ ߙ ൏ 1                     (4.40) 

the threshold value, ߯ఈ,௦
ଶ  can be found. Hence, when the hypothesis ߛଵ is correct, the 

statistical value of ߚ௞ will be greater than the threshold value ߯ఈ,௦
ଶ , i.e.:         

଴ߛ                                 ׷  ௞ߚ ൑ ߯ఈ,௦
ଶ                                                                ݇׊                                          

ଵߛ    ׷  ௞ߚ ൐ ߯ఈ,௦
ଶ  (4.41)                              ݇׌                                          

4.2.2 Adaptive fading Kalman filter with multiple fading factors 

As it is discussed, it is possible to adapt filter by using single adaptive factor as a 

corrective term on the filter gain [29], but that is not a healthy procedure as long as 

the filter performance differs for each state for the complex systems with 

multivariable [31]. The preferred method is to use an adaptive matrix built of 

multiple fading factors (MFF) to fix the relevant term of the Kalman gain matrix, 

individually.  

In order to determine the adaptive matrix, an innovation based process may be 

followed. It is known that, Kalman filter innovation sequence can be determined by 

(4.7). Then, as the next step, real and theoretical values of the innovation covariance 

matrix must be compared as, 

             

                                (4.42) 

 

Here, ߤ is the width of the moving window. In case, where the system operates 

normally, the real and the theoretical innovation covariance matrix values match as 
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in (4.42). However, when there is a measurement malfunction in the estimation 

system, the real error will exceed the theoretical one. Hence, if an adaptive matrix, 

ܵ௞, is added in to the algorithm as, 

 

(4.43) .                         

 

then, it can be determined by the formula of, 

 

                                                                           (4.44) 

 

In case of normal operation, the adaptive matrix will be a unit matrix as ܵ௞ ൌ  Here .ܫ

  .represents the unit matrix ܫ

Nonetheless, as the ߤ is a limited number because of the number of the 

measurements and the computations performed with computer implies errors such as 

the approximation errors and the round off errors;  ܵ௞ matrix, found by the use of 

(4.44) may not be diagonal and may have diagonal elements which are “negative” or 

lesser than “one” (actually, that is physically impossible).    

Therefore, in order to avoid such situation, composing adaptive matrix by the 

following rule is suggested: 

כܵ                                          ൌ ݀݅ܽ݃ሺݏଵ
,כ ଶݏ

,כ … , ௡ݏ
 ሻ                            (4.45)כ

where, 

௜ݏ                                       
כ ൌ ,ሼ1ݔܽ݉ ௜ܵ௜ሽ         ݅ ൌ 1, ݊ .                     (4.46)  

Here, ௜ܵ௜ represents the ith diagonal element of the matrix ܵ. Apart from that point, if 

the measurements are faulty, ܵ௞
 ;will change and so affect the Kalman gain matrix כ

௞ܭ                                ൌ ௞ܲ/௞ିଵܪ௞
்൫ܪ௞ ௞ܲ/௞ିଵܪ௞

் ൅ ܵ௞
௞൯ିଵܴכ

 .          (4.47)    

Therefore, in case of any kind of malfunctions, related element of the adaptive 

matrix, which corresponds to the faulty component of the measurement vector, 

increases and that brings out a smaller Kalman gain, which reduces the effect of the 

innovation on the state update process. As a result, more accurate estimation results 

can be obtained.  
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Nevertheless, the adaptive algorithm is again operated only when the measurements 

are faulty and in all other cases procedure is run optimally with regular OKF. Same 

statistical information with the single fading factor based algorithm, which is defined 

by (4.39)-(4.41), is used as the supervision criteria. 

4.2.3 Adaptation procedure of unscented Kalman filter 

Since the filtration algorithm of the UKF is different from LKF and EKF, its 

adaptation procedure must be given separately. In this part, adaptive unscented 

fading Kalman filter (AUFKF) algorithms with the single and multiple fading factors 

are proposed.  

4.2.3.1 Adaptation with single fading factor 

Adaptive algorithm affects characteristic of filter only when the condition of the 

measurement system does not correspond to the model used in the synthesis of the 

filter. Otherwise filter works with regular UKF algorithm (4.19)-(4.33) in an optimal 

way.  Same as the case with LKF and EKF, adaptation occurs as a change in the 

covariance matrix of the innovation sequence, 

      ௩ܲ௩ሺ݇ ൅ 1|݇ሻ ൌ ௬ܲ௬ሺ݇ ൅ 1|݇ሻ ൅ ܵሺ݇ሻܴሺ݇ ൅ 1ሻ                  (4.48) 

where ܵሺ݇ሻ is the adaptive factor calculated in the base of innovation sequence,  

݁ሺ݇ ൅ 1ሻanalyses. In adaptive case filter gain becomes 

ሺ݇ܭ  ൅ 1ሻ ൌ   ௫ܲ௬ሺ݇ ൅ 1|݇ሻൣ ௬ܲ௬ሺ݇ ൅ 1|݇ሻ ൅ ܵሺ݇ሻܴሺ݇ ൅ 1ሻ൧ିଵ
              (4.49) 

The gain matrix is changed when the condition of 

ሾ݁ሺ݇ݎݐ ൅ 1ሻ்݁ሺ݇ ൅ 1ሻሿ ൒ ൣݎݐ ௬ܲ௬ሺ݇ ൅ 1|݇ሻ ൅ ܴሺ݇ ൅ 1ሻ൧                  (4.50) 

is the point at issue. Here ݎݐሺ·ሻ is the trace of the related matrix. Left hand side of 

(4.50) represents the real filtration error while the right hand side is the accuracy of 

the innovation sequence known as a result of priori information [29]. When the 

predicted observation vector ݕොሺ݇ ൅ 1|݇ሻ is reasonably different from measurement 

vector, ݕሺ݇ ൅ 1ሻ, real filtration error exceeds the theoretical one. Hence gain matrix 

must be fixed hereafter by the use of adaptive algorithm and so adaptive factor ܵሺ݇ሻ . 

In order to calculate adaptive factor equality of 

ሾ݁ሺ݇ݎݐ ൅ 1ሻ்݁ሺ݇ ൅ 1ሻሿ ൌ ൣݎݐ ௬ܲ௬ሺ݇ ൅ 1|݇ሻ ൅ ܵሺ݇ሻܴሺ݇ ൅ 1ሻ൧             (4.51) 
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is used. Equation (4.51) can be rewritten as 

ሾ݁ሺ݇ݎݐ ൅ 1ሻ்݁ሺ݇ ൅ 1ሻሿ ൌ ൣݎݐ ௬ܲ௬ሺ݇ ൅ 1|݇ሻ൧ ൅ ܵሺ݇ሻݎݐሾܴሺ݇ ൅ 1ሻሿ            (4.52) 

If the knowledge of  

ሾ݁ሺ݇ݎݐ    ൅ 1ሻ்݁ሺ݇ ൅ 1ሻሿ ൌ ்݁ሺ݇ ൅ 1ሻ݁ሺ݇ ൅ 1ሻ                     (4.53) 

is taken into consideration (36) becomes 

்݁ሺ݇ ൅ 1ሻ݁ሺ݇ ൅ 1ሻ ൌ ൣݎݐ ௬ܲ௬ሺ݇ ൅ 1|݇ሻ൧ ൅ ܵሺ݇ሻݎݐሾܴሺ݇ ൅ 1ሻሿ.                       (4.54) 

As a result, adaptive factor can be obtained as 

                    ܵሺ݇ሻ ൌ ௘೅ሺ௞ାଵሻ௘ሺ௞ାଵሻି௧௥ൣ௉೤೤ሺ௞ାଵ|௞ሻ൧
௧௥ሾோሺ௞ାଵሻሿ .                                (4.55) 

Adaptive factor rises in case of malfunctions. That makes up an increment in 

covariance matrix of innovation sequence and a decrement in Kalman gain as it can 

be seen from (4.48) and (4.49). Consequently, faulty measurements are regarded with 

a small weight in the identification process and filter outputs are not affected. 

On the other hand, adaptive algorithm is used only in case of faulty measurements 

and in all other cases procedure is run optimally with regular Unscented Kalman 

filter. Same checkout procedure is used with the one presented in 4.2.1. However, 

note that, this time statistical function is build in a convenient way with the UKF as  

௞ߚ ൌ ்݁ሺ݇ ൅ 1ሻൣ ௬ܲ௬ሺ݇ ൅ 1|݇ሻ ൅ ܴሺ݇ ൅ 1ሻ൧ିଵ݁ሺ݇ ൅ 1ሻ               (4.56) 

4.2.3.2 Adaptation with multiple fading factors 

As in other cases, AUFKF with multiple fading factors runs when the condition of 

the measurement system mismatches with the model used in the synthesis of the 

filter. Otherwise filter works with optimal UKF algorithm. For a normally operating 

system, the real and the theoretical innovation covariance matrix values match as in 

(4.57).  

 

(4.57) 

 

here, ߤ is the width of the moving window.  
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However, when there is a measurement malfunction in the estimation system, the 

real error will exceed the theoretical one. Hence, if an adaptive matrix, ܵሺ݇ሻ, is 

added into the algorithm as, 

 

(4.58) 

 

then, it can be determined by the formula of, 

 

(4.59) 

 

In case of normal operation, the adaptive matrix will be a unit matrix as ܵሺ݇ሻ ൌ  .ܫ

Here ܫ represents the unit matrix.  

Nonetheless, as ߤ is a limited number because of the number of the measurements 

and the computations performed with computer implies errors such as the 

approximation errors and the round off errors;  ܵሺ݇ሻ matrix, found by the use of 

(4.59) may not be diagonal and may have diagonal elements which are “negative” or 

lesser than “one” (actually, that is physically impossible).    

Therefore, in order to avoid such situation, composing adaptive matrix by the 

following rule is suggested: 

כܵ ൌ ݀݅ܽ݃ሺݏଵ
,כ ଶݏ

,כ … , ௡ݏ
 ሻ                                   (4.60)כ

where, 

௜ݏ
כ ൌ ,ሼ1ݔܽ݉ ௜ܵ௜ሽ         ݅ ൌ 1, ݊ .                         (4.61)  

Here, ௜ܵ௜ represents the ith diagonal element of the matrix ܵ. Apart from that point, if 

the measurements are faulty, ܵכሺ݇ሻ will change and so affect the Kalman gain 

matrix; 

ሺ݇ܭ ൅ 1ሻ ൌ ௫ܲ௬ሺ݇ ൅ 1|݇ሻൣ ௬ܲ௬ሺ݇ ൅ 1|݇ሻ ൅ ሺ݇ሻܴሺ݇כܵ ൅ 1ሻ൧ିଵ .             (4.62) 

In case of any kinds of malfunctions, the related element of the adaptive matrix, 

which corresponds to the faulty component of the measurement vector, increases and 

that brings out a smaller Kalman gain, which reduces the effect of the faulty 
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innovation term on the state update process (4.32). As a result, accurate estimation 

results can be obtained even in case of measurement malfunctions. 

On the other hand, adaptive algorithm is used only in case of faulty measurements 

and in all other cases procedure is run optimally with regular Unscented Kalman 

filter. Checkout is satisfied by the procedure formed of (4.56) with (4.40) and (4.41).  

4.3 Kalman Filtering for Attitude Estimation 

Throughout the study, several Kalman filter algorithms are proposed for the attitude 

estimation of a pico satellite. In this part, utilization methodology of these algorithms 

for ITU-PSAT I is investigated. 

Generally, by the use of optimal EKF or UKF, attitude parameters of a satellite can 

be estimated. In this sense, acquiring information about the attitude angles (in Euler 

angles or quaternions) and the angular rates of the satellite may be sufficient. 

Nevertheless, for general scheme, it is assumed that all the torques, affecting the 

satellite, are known and measurement sensors, i.e. magnetometers and gyros are bias 

free. However, that is not a realistic approach, since these unknown terms always has 

an effect on the estimation accuracy. One of the techniques to overrun this problem is 

to take these unknown parameters into account and estimate them as well as the 

attitude angles and the angular rates. 

On the other hand, performing a Kalman filter algorithm for estimation of more 

states means a degrading filter performance by time. In other words, estimating 

parameters as less as possible may bring about more precise Kalman filter results. 

Hence, the filter algorithms for the estimation of the unknown constant components 

of the external torques and the magnetometer and gyro biases should be run for short 

durations. 

If these torque and bias terms do not change significantly for a period of time (since 

the external torques and the bias of the magnetometers are assumed to be constant 

and the bias of the gyros changes only within a limited bound), then it is possible to 

utilize Kalman filter algorithms that identify them, initially, and then use the general 

scheme for the estimation of only attitude and the angular rates. If it is needed, 

estimations of these parameters may be corrected by running the relevant Kalman 

filter algorithm periodically. 
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Besides, as it is mentioned, Kalman filter algorithms must be built adaptively so as to 

be not affected by the measurement malfunctions. Thus, main aim is to develop an 

accurate adaptive Kalman filter where the formerly estimated parameters such as 

torques and biases are taken into consideration. Table 4.1 gives the details of the 

mentioned Kalman filter algorithms. 

Table 4.1: Characteristics of Kalman filter algorithms. 

Filter Type Measurement 
Sensors 

Estimated parameters No. of 
estimated 

parameters1 
Filter for attitude 

parameter 
estimation 

3 magnetometers 
 

Attitude angles + 
attitude rates 

 

 
6 or7 

Filter for torque 
estimation 

3 
magnetometers+ 

3gyros 

Attitude angles+attitude 
rates+ constant 

components of the 
unknown external 

torques 
 

 
 

9 or 10 

Filter for 
magnetometer bias 

estimation 

3 
magnetometers+ 

3gyros 

Attitude angles+attitude 
rates+ magnetometer 

biases 
 

 
9 or 10 

 
Filter for gyro bias 

estimation 

 
3 

magnetometers+ 
3gyros 

 
Attitude angles+attitude 

rates+ gyro biases 
 

 
9 or 10 

 
Adaptive Kalman 

filter for parameter 
estimation 

3 magnetometers 
 

 
Attitude angles + 

attitude rates 
 

 
6 or 7 

  

4.3.1 Attitude parameter estimation scenario 

In this scenario, only attitude angles and the angular rates of the pico satellite are 

estimated. For two different versions of attitude representation, Euler angles and 

quaternions, estimated state vectors are individually, formed as; 

• Euler angles 

ҧݔ                         ൌ ሾ߮ ߠ ߰ ߱௫ ߱௬  ߱௭ሿ்                                  (4.63) 

                                                 
1 If quaternions is chosen as an attitude representation, one more parameter is required to be estimated, 
since there are 4 quaternion components instead of 3 Euler angles. 
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• Quaternions 

ҧݔ               ൌ ሾݍଵ ଶݍ ଷݍ ସݍ ߱௫ ߱௬  ߱௭ሿ்                               (4.64) 

4.3.2 Torque estimation scenario 

In this scenario, along with the attitude angles and the angular rates, the unknown 

constant components of the external torques (magnetic field pressure and the sun 

radiation) are also estimated. Since the estimated torque components are constant, it 

is possible to say that 

ௗேഥ

ௗ௧
ൌ 0                                               (4.65) 

where  ഥܰ is  the vector of constant unknown external torques as in (2.53). 

Under these, circumstances estimated state vector will be 

ҧݔ ൌ ሾ߮ ߠ ߰ ߱௫ ߱௬  ߱௭ ௫ܰ ௬ܰ ௬ܰሿ்                  (4.66) 

Note that, torque estimation scenario is achieved with only Euler angle 

representation.  

4.3.3 Magnetometer bias estimation scenario 

As well as attitude angles and the angular rates, magnetometer biases are also 

estimated in this scenario. It is assumed that, bias of each magnetometer is constant 

such that 

ௗ௕ത೘
ௗ௧

ൌ 0   .                                            (4.67) 

Here  തܾ௠ is  the magnetometer bias vector as; 

തܾ௠ ൌ ൣܾ௠௫ ܾ௠೤ ܾ௠௭൧்
                                   (4.68) 

As a result, the estimated state vector is 

ҧݔ ൌ ൣ߮ ߠ ߰ ߱௫ ߱௬  ߱௭ ܾ௠௫ ܾ௠೤ ܾ௠௭൧்
  .                (4.69) 

Note that, magnetometer bias estimation scenario is achieved with only Euler angle 

representation.  
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4.3.4 Gyro bias estimation scenario 

This time, instead of magnetometer bias, biases of the three onboard gyroscopes are 

estimated along with the Euler angles and the angular rates. Characteristic of gyro 

biases is same as the model given with (3.8). It may be repeated for convenience 

ௗ௕ത೒

ௗ௧
ൌ  ଶ                                                (4.70)ߟ

where 

തܾ௚ ൌ ൣܾ௚௫
ܾ௚೤ ܾ௚௭൧்

                                    (4.71) 

Then the estimated state vector can be given as, 

ҧݔ ൌ ൣ߮ ߠ ߰ ߱௫ ߱௬  ߱௭ ܾ௚௫
ܾ௚೤ ܾ௚௭൧்

                  (4.72) 

Note that, gyro bias estimation scenario is achieved with only Euler angle 

representation.  

4.3.5 Scenario for estimation in case of measurement malfunctions 

In that last case, again only attitude angles and the angular rates of the pico satellite 

are estimated, but as a difference with the initial scenario, this time filter is built 

adaptively. Estimated state vectors are same with the ones given by (4.63) and (4.64). 
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5.  SIMULATIONS 

In this last section of the thesis, results of the simulations for the attitude estimation 

of the ITU-PSAT I are presented. Proposed Kalman filter algorithms run as an 

attitude estimator for the pico satellite and the obtained simulation outputs are given 

with a discussion on each of them. 

Mainly, a scheme as described in 4.3 is followed and it is dealt with five separate 

scenarios; attitude parameter estimation, torque estimation, magnetometer bias 

estimation, gyro bias estimation and estimation in case of measurement 

malfunctions. All of these scenarios are considered for UKF while EKF is used only 

for attitude estimation and estimation in case of measurement malfunctions. 

Also, note that, not all of the figures obtained by the simulations are given in this 

section. Only, figures which reflect the results clearly are chosen and presented here. 

If the algorithm is an extensive and important one for the thesis i.e. torque estimation 

and estimation by AUFKF, then the rest of the figures are put into appendix section.    

5.1 Attitude Estimation via Extended Kalman Filter 

5.1.1 Attitude parameter estimation 

In this simulation, attitude angles and the angular rates of the pico satellite are 

estimated via EKF. As the attitude representation method, Euler angles are used. 

Simulations are realized in 10000 steps for a period of 100 seconds with 0.01 

seconds of sampling time, Δݐ.  

First part of figures gives EKF parameter identification results and the actual values 

in a comparing way. Second part of the figures shows the error of the estimation 

process based on the actual attitude values of the satellite. The last part indicates the 

variance of the estimation.  

As it is seen in Fig.5.1, Fig.5.2 and Fig.5.3, EKF algorithm accurately estimates both 

the attitude angles and the angular velocities of the satellite with respect to the 

inertial frame.  
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Figure 5.1 : Roll angle estimation by EKF. 

 

 
Figure 5.2 : Pitch angle estimation by EKF. 
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Figure 5.3 : Estimation of angular velocity about “x” axis with EKF. 

5.1.2 Estimation in case of measurement malfunctions 

As it is explained in the previous sections, both EKF and UKF can be made robust 

against the measurement malfunctions by the use of proposed adaptive Kalman filter 

algorithms. This scenario presents the results for an adaptive extended Kalman filter 

(AEKF) algorithm which is used for estimation in case of measurement faults. Since 

the filter uses single fading factor to adapt the filter gain, it may be also called as 

adaptive extended fading Kalman filter (AEFKF) with SFF.  Simulations are realized 

in 10000 steps for a period of 100 seconds with 0.01 seconds of sampling time, Δݐ.  

In case of measurement fault, which is formed by adding a constant term to the 

measurement of one magnetometer at 40th second, the simulations are also done with 

EKF so as to compare results with AEKF. 

Nonetheless, ߯ఈ,௦
ଶ  is taken as 12.592 and this value comes from chi-square 

distribution when the degree of freedom is 6 and the reliability level is %95. 

First part of figures gives EKF or AEKF state estimation results and the actual values 

in a comparing way. Second part of the figures shows the error of estimation process 

based on the actual attitude estimation values of the satellite. The last part indicates 

the variance of the estimation.  
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Figure 5.4 : Roll angle estimation by EKF in case of measurement malfunction. 

 

 

Figure 5.5 : Roll angle estimation by AEKF in case of measurement malfunction. 
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As the Fig.5.4 shows, when the measurement malfunction is implemented to the 

system, EKF estimates the roll angle with a great error. Per contra, AEKF secures its 

estimation characteristic even in case of faulty measurements by reducing the effect 

of the innovation terms on the state estimation phase (Fig. 5.6). That means, if the 

measurements have error, the filter gain is decreased due to the adaptive factor which 

is much larger than 1. Variation of adaptive factor by time proofs that (Fig. 5.7). 

 

Figure 5.6 : Variation of adaptive factor by time for AEKF. 

 
Similar results have been obtained for the estimation of other attitude parameters.  
 

5.2 Attitude Estimation via Unscented Kalman Filter 

5.2.1 Attitude parameter estimation 

In this simulation, attitude angles and the angular rates of the pico satellite are 

estimated via UKF. As the attitude representation method, both Euler angles and the 

quaternions are used.  

First part of figures gives UKF parameter identification results and the actual values 

in a comparing way. Second part of the figures shows the error of the estimation 

process based on the actual attitude values of the satellite. The last part indicates the 

variance of the estimation. 

 

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
x 108

A
da

pt
iv

e 
Fa

ct
or

Variation of Adaptive Factor by Time

time (sec)



 

 46

5.2.1.1 Attitude parameter estimation with Euler angles 

Simulations are realized in 20000 steps for a period of 2000 seconds with 0.1 

seconds of sampling time, Δݐ.  

By examining results, it can be understood that UKF gives accurate estimation 

results for both Euler angles and the angular velocities (Fig.5.7 and Fig 5.8). Besides 

if the EKF and UKF algorithms for the attitude estimation are compared, and the data 

presented in Table 5.1 is regarded, it is possible to say that UKF is more efficient 

than EKF. Also, UKF algorithms can work with a larger sampling time than EKF 

algorithms without failing and usually, that brings about a lesser computational 

burden.  

 

Figure 5.7 : Pitch angle estimation by UKF. 
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Figure 5.8 : Estimation of angular velocity about “x” axis with UKF. 

 

           Table 5.1: Comparison of EKF and UKF estimation performances2. 

Parameter Absolute Estimation 
Error Values for 

EKF 

Absolute Estimation 
Error Values for  

UKF 
 

߮ ሺ݀݁݃ሻ 9.0644 0.0278 

 ሺ݀݁݃ሻ 2.7221 0.2191 ߠ

߰ ሺ݀݁݃ሻ 8.9144 2.8457 

߱௫ ሺ݀݁݃/ݏሻ 0.6473 0.0003 

߱௬ ሺ݀݁݃/ݏሻ 0.8236 0.0018 

߱௭ ሺ݀݁݃/ݏሻ 1.3286 0.0018 

 
 
 
 
 
 

                                                 
2 Note that, values are gained at time steps where the indicated filter is converged and giving accurate 
estimation results. Since EKF and UKF can be run for different periods because of the filter 
characteristics, the results do belong to two separate times. 
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5.2.1.2 Attitude parameter estimation with quaternions 

UKF is also used for attitude estimation when the quaternions are chosen as the 

attitude parameterization technique. This time simulations are realized with 0.005 

seconds of sampling time, Δݐ,  for a period of 50 seconds in 10000 steps.  

As it is apparent form Fig.5.9 and 5.10, accurate estimation results may be obtained 

in this case too. However, as the number of the states to be estimated is increased, 

UKF with quaternion representation may require more computation than UKF with 

Euler angles representation. Besides, quaternion representation means one redundant 

parameter, as a result of the characteristic of (2.22). When this constraint is not taken 

into consideration, UKF process may break down because of the covariance matrix 

which becomes singular by time. Hence, to get out of the problem, this constraint 

must be implicated into model as a dummy measurement, 

,ݍሺݕ                    ሻݐ ൌ

ۏ
ێ
ێ
ۍ

,ݍ௫ሺܪ ሻݐ
,ݍ௬ሺܪ ሻݐ
,ݍ௭ሺܪ ሻݐ

ଵݍ
ଶ ൅ ଶݍ

ଶ ൅ ଷݍ
ଶ ൅ ସݍ

ଶ െ ے1
ۑ
ۑ
ې
 .                              (5.1) 

 

 

Figure 5.9 : Estimation of parameter “q2” by UKF with quaternion representation. 
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This redundant parameter makes filter, prone to the divergence. If the constrain is not 

checked within short periods, filter may fail. That is why; a smaller sampling period 

is needed as in case.  

 

Figure 5.10 :  Estimation of angular velocity about “y” axis with UKF with    
quaternion representation. 
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estimation, the filter output becomes highly precise. Besides as it is presented in 

Fig.5.12, UKF also has a good estimation characteristic for the angular rates. 

 

Figure 5.11 : Roll angle estimation by UKF for torque estimation scenario. 

 

Another fact about the UKF algorithm is the exact estimation of the unknown 

constant components of the external torques, which coincides with the actual value 

approximately after 250 seconds from the origin (Fig. 5.13). That is also obvious 

from Fig. 5.14 that reflects the estimation error percentages for torques with respect 

to the actual values. Therefore, it is possible to say that; proposed UKF algorithm 

estimates all of the states (Euler angles, angular rates and the unknown constant 

components of the external torques) accurately. 

     

 
 
 
 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

ph
i(d

eg
)

Roll Angle Estimation

 

 
Kalman Estimation
Actual Value

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1

0

1

er
ro

r(
de

g)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2
x 10-5

va
ria

nc
e 

(d
eg2 )

time(sec)



 

 51

 
Figure 5.12 :  Estimation of angular velocity about “y” axis by UKF for torque 

estimation scenario. 

 

 
 

Figure 5.13 : Estimation of constant external torque about “x” axis with UKF. 
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5.2.3 Magnetometer bias estimation 

In this estimation scenario, magnetometer biases are estimated as well as Euler 

angles and the angular rates. As it is aforementioned, in this case, IMU is also used 

as a supplementary sensor. Simulations are realized in 20000 steps for a period of 

2000 seconds with 0.1 seconds of sampling time, Δt.  

First part of figures gives UKF parameter identification results and the actual values 

in a comparing way. Second part of the figures shows the error of the estimation 

process based on the actual attitude estimation values of the satellite. The last part 

indicates the variance of the estimation.  

In this case, UKF again gives accurate estimation results for Euler angles and the 

angular velocities as it is evident from Fig.5.15 and Fig.5.16. Nonetheless, although 

it is hard to estimate constant parameters, which do not change by time according to 

any dynamical rule, UKF algorithm estimates magnetometer biases with a sufficient 

precision (5.17). For magnetometer bias estimation scenario, filter must be tuned 
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carefully, in order to obtain good estimation characteristics for both bias terms and 

the attitude angles and angular rates.  

 
Figure 5.15 :  Roll angle estimation by UKF for magnetometer bias estimation 

scenario.  

 
Figure 5.16 :  Estimation of angular velocity about “y” axis by UKF for 

magnetometer bias estimation scenario. 
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Figure 5.17 : Estimation of bias of the magnetometer which is aligned in “x” axis. 

 
Furthermore, error percentages of magnetometer bias estimation procedure with 

respect to the actual values of the biases may be given to show how accurately biases 

can be identified with a fine tuned UKF (Fig. 5.18).   

 

 

Figure 5.18 : Error percentages for estimations of magnetometer biases. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1

1.5
x 10

-6

bx
e &

 b
x a (t

es
la

) Magnetometer bias bx Estimation

 

 

Kalman Estimation
Actual Value

0 200 400 600 800 1000 1200 1400 1600 1800 2000
4

4.5

5
x 10

-8

er
ro

r(
te

sl
a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5
x 10

-14

va
ria

nc
e 

(te
sl

a2 )

time(sec)

Bias Estimation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

Er
r. 

pe
r. 

(%
) b

x

0 200 400 600 800 1000 1200 1400 1600 1800 2000
20 

25 

Er
r. 

pe
r. 

(%
) b

y

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1.3

1.4

1.5

Er
r. 

pe
r. 

(%
) b

z

time(sec)



 

 55

5.2.4 Gyro bias estimation 

This time, gyro biases are estimated instead of magnetometer biases in addition to 

the attitude angles and the angular rates. Simulations are realized in 20000 steps for a 

period of 2000 seconds with 0.1 seconds of sampling time, Δt.  

First part of figures gives UKF parameter identification results and the actual values 

in a comparing way. Second part of the figures shows the error of the estimation 

process based on the actual attitude estimation values of the satellite. The last part 

indicates the variance of the estimation.  

 

Figure 5.19 : Pitch angle estimation by UKF for gyro bias estimation scenario. 

 

UKF algorithm estimation outputs of both attitude angles and the angular velocities 

are accurate again (Fig. 5.19 and Fig. 5.20). Nevertheless, by the use of UKF, gyro 

biases can be also estimated precisely. That is clear in Fig. 5.21. However, as it is 

valid for magnetometer bias estimation process, UKF for gyro bias is a hard to tune 

algorithm too. Especially, initial values of the covariance matrix, ܲሺ0/0ሻ, and the 

process noise covariance matrix, ܳሺ݇ሻ should be determined ably.      
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Figure 5.20 :  Estimation of angular velocity about “x” axis by UKF for gyro  bias     
estimation scenario. 

 

 
Figure 5.21 : Estimation of bias of the gyro which is aligned in “x” axis. 
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5.2.5 Estimation in case of measurement malfunctions 

In that last scenario, results for AUFKF algorithms with SFF and MFF are presented. 

Simulations are realized in 20000 steps for a period of 2000 seconds with 0.1 

seconds of sampling time, Δݐ.  

During simulations, for testing AUFKF algorithms, two kinds of measurement 

malfunction scenarios are taken into consideration; instantaneous abnormal 

measurements, and continuous bias.   

Besides, in case of measurement faults, the simulations are also done with UKF so as 

to compare results with AUFKFs and understand efficiency of the adaptive 

algorithms in a better way.  

Nonetheless, ߯ఈ,௦
ଶ  is taken as 12.592 and this value comes from chi-square 

distribution when the degree of freedom is 6 and the reliability level is %95. 

First part of figures gives UKF or AUFKF state estimation results and the actual 

values in a comparing way. Second part of the figures shows the error of estimation 

process based on the actual attitude estimation values of the satellite. The last part 

indicates the variance of the estimation. 

5.2.5.1 Instantaneous abnormal measurements 

Instantaneous abnormal measurements are simulated by adding a constant term to the 

magnetic field tensor measurement of one magnetometer at the 500th second.  As it is 

seen from Fig. 5.22, Fig. 5.23 and Fig 5.24, both AUFKF algorithms (with SFF and 

MFF) give more accurate estimation results than UKF in case of the instantaneous 

abnormal measurements. The results obtained by regular UKF are not reliable when 

the measurements are gained with an error. However, AUFKFs with SFF and MFF 

maintain their estimation characteristic for the whole process and afford precise 

estimation outputs in case of the abnormal measurements, as well as the normal 

operation condition. Similar results have been obtained when the measurement 

malfunction is implemented to another magnetometer. 

Table 5.2 compares absolute estimation errors of three filters for two different time 

steps. Note that, highlighted results are gained at seconds where the measurement 

malfunction is implemented.  
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Figure 5.22 :  Roll angle estimation by optimal UKF in case of instantaneous 
abnormal measurements. 

  

 

Figure 5.23 :  Roll angle estimation by AUFKF with SFF in case of 
instantaneous abnormal measurements. 
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Figure 5.24 :  Roll angle estimation by AUFKF with MFF in case of instantaneous 
abnormal measurements.  

 

Table 5.2:  Comparison of absolute estimation errors in case of instantaneous 
abnormal measurements. 
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Abs. Err. Values 
for Regular UKF

Abs. Err. Values 
for AUFKF with 

SFF 

Abs. Err. Values 
for AUFKF with 
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500 s. 1000 s. 500 s. 1000 s. 500 s. 1000 s. 

߮ ሺ݀݁݃ሻ 2.6941 0.9987 0.1992 0.6871 0.0652 0.1286 
 ሺ݀݁݃ሻ 1.1066 0.8125 1.8899 0.3089 0.3746 0.0705 ߠ
߰ ሺ݀݁݃ሻ 0.7437 5.1317 3.5498 4.7176 0.7132 0.9247 

߱௫ ሺ݀݁݃/ݏሻ 0.028 0.002 0.0014 0.0018 0.0003 0.0003 
߱௬ ሺ݀݁݃/ݏሻ 0.0181 0.0055 0.0037 0.0036 0.0007 0.0007 
߱௭ ሺ݀݁݃/ݏሻ 0.0007 0.0005 0.0056 0.0002 0.0013 0.00004 

 

When the measurements are faulty, AUFKF with SFF compensates that by 

increasing its single fading factor (adaptive factor) and disregarding all of the 

measurements for these time steps. Besides, AUFKF with MFF secures the 

robustness of the filter by increasing related fading factors of the adaptive matrix 

individually. Increment of the related fading factors brings out a decrement in the 

related components of the Kalman gain, so as to reduce the corrective effect of the 
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innovation sequences of the faulty measurements on the state estimation process 

(4.32). Progress may be understood better by examining the graph of the adaptive 

factor of the AUFKF with SFF (Fig. 5.25) and the adaptive matrix itself of AFKF 

with MFF at the 500th second (5.2). 

 

Figure 5.25 : Variation of adaptive factor by time for AUFKF with SFF in case of 
instantaneous abnormal measurements.   
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Even though both of the adaptive Kalman filters give similar estimation results in 

case of instantaneous abnormal measurements, AUFKF with MFF can be thought as 

a more advantageous algorithm as it takes the faulty measurements into account 

individually. Disregarding all of the measurements, as AUFKF with SFF does, 

affects estimation procedure of the all states. However, since the abnormal 

measurement is implemented only to the one measurement channel, keeping out the 

related measurement would be more significant. As a result of the dynamics and the 
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characteristic of all states, but not in same degree. Hence, for this kind of 

measurement malfunction, AUFKF with MFF proves its high performance capability 

as it can correct estimation characteristic of each state, individually and secure 

accurate estimation characteristic for all states at the same time. 

Proposed AUFKF algorithms are free of computational burden and they can be easily 

run by simple microprocessors. If the general %10 constrain for the mass and the 

power consumption of the ADCS of a pico satellite is regarded [2], these algorithms 

do not brings out an extra requirement and they can be used with the systems suitable 

for general EKF or UKF processing.      

Furthermore, note that it is possible to obtain same kind of results for  AUFKF 

algorithms when they are built with the quaternion representation. Fig. 5.26 and Fig. 

5.27 gives UKF and AUFKF with SFF estimation results for a quaternion component 

in case of instantaneous abnormal measurements.    

 

 
Figure 5.26 :  Estimation of parameter “q2” by optimal UKF in case of instantaneous 

abnormal measurements. 
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Figure 5.27 : Estimation of parameter “q2” by AUFKF with SFF in case of 

instantaneous abnormal measurements. 

   

5.2.5.2 Continuous bias at measurements 

Continuous bias term is formed by adding a constant term to the measurements of 

one of the magnetometer  in between 500th and 530th seconds. As Fig. 5.28, Fig. 5.29, 

Fig. 5.30 and Table 5.3 show, again optimal UKF fails about estimating states 

accurately. Per contra, AUFKF algorithms with SFF and MFF reduce the effect of 

the innovation sequence and eliminate the estimation error which is caused by the 

biased measurements of one magnetometer. Besides, by the use of the predicted 

states which are more weighted than the innovation sequence in (4.32), they secure 

accurate estimation outputs throughout this period.  
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Figure 5.28 :  Roll angle estimation by optimal UKF in case of continuous bias at 
measurements. 

 

Figure 5.29 :  Roll angle estimation by AUFKF with SFF in case of continuous bias 
at measurements. 
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Figure 5.30 :  Roll angle estimation by AUFKF with MFF in case of continuous bias 
at measurements. 

 

Table 5.3:  Comparison of absolute estimation errors in case of continuous bias at 
measurements. 

 
 
 

Parameter 

Abs. Err. Values 
for Regular UKF

Abs. Err. Values 
for AUFKF with 

SFF 

Abs. Err. Values 
for AUFKF with 

MFF 
500 s. 1000 s. 500 s. 1000 s. 500 s. 1000 s. 

߮ ሺ݀݁݃ሻ 5.0535 15.759 0.1571 0.461 0.0928 0.2329 
 ሺ݀݁݃ሻ 2.7733 23.431 1.2893 0.2172 0.6617 0.1156 ߠ
߰ ሺ݀݁݃ሻ 1.2492 192.76 2.4375 3.2138 1.256 1.6444 

߱௫ ሺ݀݁݃/ݏሻ 0.0558 0.0798 0.0009 0.0012 0.0005 0.0006 
߱௬ ሺ݀݁݃/ݏሻ 0.0352 0.2307 0.0025 0.0024 0.0013 0.0013 
߱௭ ሺ݀݁݃/ݏሻ 0.0043 0.1422 0.0039 0.0001 0.0021 0.0001 

 

Even though, it can not be stated that AUFKF with MFF is superior than AUFKF 

with SFF according to the figures (Fig. 5.29 and Fig. 5.30), Table 5.3 shows that 

estimation outputs of AUFKF with MFF are more precise as it is expected. Already, 

it is a known fact that individual increase of related fading factors, which 

corresponds to the faulty measurements, is advantageous than disregarding all 

measurements at the same time.   
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6.  CONCLUSION  

In this study, various Kalman filter algorithms for the attitude estimation of ITU-

PSAT I satellite in different mission periods are developed. State estimation 

performances of both EKF and UKF are investigated when the magnetometers are 

the only onboard measurement sensors. Identification of the parameters e.g. 

unknown constant external torques, magnetometer bias and gyro bias is achieved in 

case of Inertial Measurement Unit (IMU) usage as a supplementary sensor. Besides, 

Adaptive Unscented Fading Kalman Filter (AUFKF) with single and multiple fading 

factors are proposed so as to secure filter robustness against measurement 

malfunctions.  Developed Kalman filter algorithms are tested as a part of the attitude 

determination system of ITU PSAT I satellite by the use of simulations.  

Individual UKF algorithm gave accurate outputs for the estimation of unknown 

components of the external torques acting on the satellite, magnetometer bias and the 

gyro bias, as well as Euler angles and angular rates. The simulation results approve 

that, the developed UKF based identification algorithms of the attitude dynamics 

parameters gives sufficiently accurate estimation results to be utilized on a pico 

satellite. Moreover, they may be considered for other satellite types too.   

If EKF and UKF algorithms are compared regarding the satellite attitude estimation 

problem, it is possible to say that UKF is superior to EKF. Nonetheless, when it is 

thought in point of view of usage on pico satellites and their limited computer 

processor capacity, being free of computational burden is an advantage for UKF. 

Also adaptive unscented fading Kalman filter algorithms with single fading factor 

and multiple fading factors for the case of measurement malfunctions are developed. 

By the use of defined variables named as fading factor, faulty measurements are 

taken into consideration with small weight and the estimations are corrected without 

affecting the characteristic of the accurate ones. In the presented AUFKFs, the filter 

gain correction is performed only in the case of malfunctions in the measurement 

system. 
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Proposed AUFKF algorithms are applied for the attitude estimation process of ITU-

PSAT I satellite’s attitude dynamics model. Algorithms are tested for two different 

measurement malfunction scenarios and results are compared with the outputs of 

optimal UKF for the same cases; Instantaneous abnormal measurements and 

continuous bias at measurements. At both circumstances, UKF becomes faulty while 

the introduced AUFKF algorithms stand robust to the measurement errors 

(insensitive to failure). Comparison of simulation results show that, the performance 

of AUFKF algorithms are significantly better than UKF in the case of measurement 

malfunctions. On the other hand, if these two adaptive Kalman filter algorithms are 

compared, it is thought that AUFKF with MFF is more advantageous. However, 

especially for the attitude estimation problem, further studies on that topic are 

required.   

The proposed approach does not require a priori statistical characteristics of the 

faults. Furthermore, the presented AUFKF algorithms are simple for practical 

implementation and their computational burden are not heavy. These characteristics 

make introduced AUFKF algorithms extremely important in point of view of 

supplying reliable state estimation for the attitude determination and control system 

of pico satellites.  
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APPENDICES 

 
 

APPENDIX D: Rest of the figures for optimal UKF in case of instantaneous   
      abnormal measurements. 
APPENDIX E: Rest of the figures for AUFKF with SFF in case of instantaneous   
      abnormal measurements. 
APPENDIX F: Rest of the figures for AUFKF with MFF in case of instantaneous   
      abnormal measurements. 
APPENDIX G: Rest of the figures for optimal UKF in case of continuous bias at 
                           measurements.   
APPENDIX H: Rest of the figures for AUFKF with SFF in case of continuous   
                           bias at measurements.   
APPENDIX I:  Rest of the figures for AUFKF with MFF in case of continuous   
                           bias at measurements.   
   
 
 
 

APPENDIX A: Rest of the figures for the torque estimation scenario by UKF. 
APPENDIX B: Rest of the figures for the magnetometer bias estimation   
                           scenario by UKF. 
APPENDIX C: Rest of the figures for the gyro bias estimation scenario by  
                           UKF. 
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APPENDIX A  

 
Figure A.1 : Pitch angle estimation by UKF for torque estimation scenario. 

 
Figure A.2 : Yaw angle estimation by UKF for torque estimation scenario. 
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Figure A.3 :   Estimation of angular velocity about “x” axis by UKF for torque 
estimation scenario. 

 
Figure A.4 :   Estimation of angular velocity about “z” axis by UKF for torque 

estimation scenario. 
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Figure A.5 : Estimation of constant external torque about “y” axis with UKF. 

 
Figure A.6 : Estimation of constant external torque about “z” axis with UKF. 
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APPENDIX B  

 
Figure B.1 :   Pitch angle estimation by UKF for magnetometer bias estimation 

scenario.  

 
Figure B.2 :   Yaw angle estimation by UKF for magnetometer bias estimation 

scenario.  
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Figure B.3 :   Estimation of angular velocity about “x” axis by UKF for 

magnetometer bias estimation scenario. 

 
Figure B.4 :   Estimation of angular velocity about “z” axis by UKF for 

magnetometer bias estimation scenario. 
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Figure B.5 : Estimation of bias of the magnetometer which is aligned in “y” axis. 
 

 
Figure B.6 : Estimation of bias of the magnetometer which is aligned in “z” axis. 
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APPENDIX C 

  
Figure C.1 : Yaw angle estimation by UKF for gyro bias estimation scenario. 

 
Figure C.2 : Roll angle estimation by UKF for gyro bias estimation scenario. 
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Figure C.3 :   Estimation of angular velocity about “y” axis by UKF for gyro  bias     
estimation scenario. 

 
Figure C.4 :   Estimation of angular velocity about “z” axis by UKF for gyro  bias     

estimation scenario. 
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Figure C.5 : Estimation of bias of the gyro which is aligned in “y” axis. 

 
Figure C.6 : Estimation of bias of the gyro which is aligned in “z” axis. 
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APPENDIX D 

 
Figure D.1 :   Pitch angle estimation by optimal UKF in case of instantaneous 

abnormal measurements. 

 
Figure D.2 :   Yaw angle estimation by optimal UKF in case of instantaneous 

abnormal measurements. 
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Figure D.3 :   Angular velocity about “x” axis estimation by optimal UKF in 
case of instantaneous abnormal measurements. 

 
Figure D.4 :   Angular velocity about “y” axis estimation by optimal UKF in 

case of instantaneous abnormal measurements. 
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Figure D.5 :   Angular velocity about “z” axis estimation by optimal UKF in 
case of instantaneous abnormal measurements. 
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APPENDIX E 

 
Figure E.1 :   Pitch angle estimation by AUFKF with SFF in case of 

instantaneous abnormal measurements. 

 
Figure E.2 :   Yaw angle estimation by AUFKF with SFF in case of 

instantaneous abnormal measurements. 
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Figure E.3 :   Angular velocity about “x” axis estimation by AUFKF with SFF 
in case of instantaneous abnormal measurements. 

 
Figure E.4 :   Angular velocity about “y” axis estimation by AUFKF with SFF 

in case of instantaneous abnormal measurements. 
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Figure E.5 :   Angular velocity about “z” axis estimation by AUFKF with SFF 
in case of instantaneous abnormal measurements. 
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APPENDIX F 

 
Figure F.1 :   Pitch angle estimation by AUFKF with MFF in case of 

instantaneous abnormal measurements. 

 
Figure F.2 :   Yaw angle estimation by AUFKF with MFF in case of 

instantaneous abnormal measurements. 
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Figure F.3 :   Angular velocity about “x” axis estimation by AUFKF with MFF in 
case of instantaneous abnormal measurements. 

 
Figure F.4 :   Angular velocity about “y” axis estimation by AUFKF with MFF in 

case of instantaneous abnormal measurements. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.04

0.06

0.08

W
x(

de
g/

s)
Wx Estimation

 

 

Kalman Estimation
Actual Value

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.02

0

0.02

er
ro

r(
de

g/
s)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2
x 10-8

va
ria

nc
e 

[(
de

g/
s)2 ]

time(sec)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.08

0.1

0.12

W
y(

de
g/

s)

Wy Estimation

 

 
Kalman Estimation
Actual Value

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.01

0

0.01

er
ro

r(
de

g/
s)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2
x 10-8

va
ria

nc
e 

[(
de

g/
s)2 ]

time(sec)



 

 89

 

Figure F.5 :   Angular velocity about “z” axis estimation by AUFKF with MFF in 
case of instantaneous abnormal measurements. 
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APPENDIX G 

 
Figure G.1:    Pitch angle estimation by optimal UKF in case of continuous bias at 

measurements. 

 
Figure G.2:    Yaw angle estimation by optimal UKF in case of continuous bias at 

measurements. 
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Figure G.3:    Angular velocity about “x” axis estimation by optimal UKF in case of 
continuous bias at measurements. 

 
Figure G.4:    Angular velocity about “y” axis estimation by optimal UKF in case of 

continuous bias at measurements. 
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Figure G.5:    Angular velocity about “z” axis estimation by optimal UKF in case of 

continuous bias at measurements. 
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APPENDIX H 

 
Figure H.1:    Pitch angle estimation by AUFKF with SFF in case of continuous bias 

at measurements. 

 
Figure H.2:    Yaw angle estimation by AUFKF with SFF in case of continuous bias 

at measurements. 
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Figure H.3:    Angular velocity about “x” axis estimation by AUFKF with SFF in 
case of continuous bias at measurements. 

 
Figure H.4:    Angular velocity about “y” axis estimation by AUFKF with SFF in 

case of continuous bias at measurements. 
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Figure H.5:    Angular velocity about “z” axis estimation by AUFKF with SFF in 

case of continuous bias at measurements. 
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APPENDIX I 

 
Figure I.1:     Pitch angle estimation by AUFKF with MFF in case of continuous 

bias at measurements. 

 
Figure I.2:     Yaw angle estimation by AUFKF with MFF in case of continuous bias 

at measurements. 
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Figure I.3:     Angular velocity about “x” axis estimation by AUFKF with MFF in 
case of continuous bias at measurements. 

 
Figure I.4:     Angular velocity about “y” axis estimation by AUFKF with MFF in 

case of continuous bias at measurements. 
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Figure I.5:     Angular velocity about “z” axis estimation by AUFKF with MFF in 
case of continuous bias at measurements. 
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