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KALMAN FILTERING APPLICATIONS ON ATTITUDE
DETERMINATION OF ITU-PSAT I SATELLITE

SUMMARY

Especially after 1990s, space industry have gained an overwhelming interest in
smaller and lighter spacecrafts. Although that can be explained with several causes,
main reason was the desire to achieve space missions with lesser economical
demands. Pico satellites and so cubesats, which is a sort of picosatellite with special
characteristics, are the yields of this idea. ITU-PSAT 1, first satellite of Istanbul
Technical University, can be considered as a part of this concept.

Thus far, Kalman filter based attitude estimation algorithms have been used in many
space applications. When the issue of pico satellite attitude estimation is taken into
consideration, general linear approach to Kalman filter becomes insufficient and
Extended Kalman Filters (EKF) are the types of filters, which are designed in order
to overrun this problem. However, when magnetometers are one of the onboard
measurement devices as it is for ITU-PSAT I, the nonlinearity degree of the attitude
estimation system increases because of the arisen nonlinear measurement model as
well as inherent nonlinear dynamics of the satellite. Therefore, EKF may give
inaccurate results. Unscented Kalman Filter (UKF) that does not require linearization
phase and so Jacobians can be preferred instead of EKF in such circumstances. In
addition to the attitude states of a satellite, EKF and UKF can be also used to identify
satellite dynamics parameters such as unknown constant disturbance torques and
measurement device biases.

Nevertheless, both EKF and UKF are nonrobust (sensitive to failure) against the
failure of the measurement system. However, if the Kalman filter algorithm is built
with an adaptive manner, such that, faulty measurements do not affect attitude
estimation process, accurate estimation results even in case of measurement
malfunctions can be guaranteed. Two relatively new technique for such concept can
be shown as adaptive Kalman filters (AKF) built in the base of filter gain correction
with single and multiple fading factors.

In this thesis, various Kalman filter algorithms for the attitude estimation of a pico
satellite in different mission periods are developed. State estimation performances of
both EKF and UKF are examined when the magnetometers are the only onboard
measurement sensors. Identification of the parameters e.g. unknown constant
external torques, magnetometer bias and gyro bias is achieved in case of Inertial
Measurement Unit (IMU) usage as an additional sensor. Besides, Adaptive
Unscented Fading Kalman Filter (AUFKF) with single and multiple fading factors
are proposed so as to secure filter robustness against measurement malfunctions.
Developed Kalman filter algorithms are tested as a part of the attitude determination
system of ITU PSAT I satellite by the use of simulations.
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ITU-PSAT I UYDUSUNUN YONELIM KESTIRIiMi UZERINE KALMAN
SUZGECLEMESi UYGULAMALARI

OZET

Ozellikle 1990lar’dan sonra, uzay endiistrisi nispeten daha kiiciik ve hafif olan uzay
araclarina karst kagmmilmaz bir ilgi kazandi. Bu durum bir ¢ok nedenle
aciklanabilmesine ragmen, temel sebep uzay gorevlerini daha az ekonomik isterlerle
gerceklestirebilmekti. Piko uydular ve bu tip uydularin 6zel bir tiirii olan kiip uydular
bu fikrin bir getirisidir. Istanbul Teknik Universitesinin ilk uydusu olan ITU-PSAT I
de bu diislincenin bir parcasi olarak ele alinabilir.

Giliniimiize degin, Kalman siizgeci temeline dayanan yonelim kestirim algoritmalari
bir ¢ok uzay gorevinde kullanilmigtir. Piko uydu yonelim kestirimi konusu
diisiiniildiiginde, Kalman siizgeclemesine dogrusal yaklagim yetersiz kalir.
Genisletilmis Kalman Stizgeci (GKS) bu problemi ¢6zmek icin gelistirilmistir.
Lakin, ITU-PSAT 1 uydusu icin gegerli oldugu gibi, uydu iizerinde tasman
sensOrlerden biri manyetometreler olunca, uydunun dogasinda var olan dogrusal
olmayan dinamiklerin yanisira ortaya ¢ikan dogrusal olmayan 6l¢iim modellemesi
sebebiyle, dogrusal olmama durumunun derecesinde artis gdzlenir. Buna bagl olarak
da GKS’nin dogru sonuglar vermemesi olagandir. Bu tarz durumlarda GKS’nin
yerine dogrusallastirma safhasina ve Jacobian hesaplamalarina ihtiya¢ duymayan
Sezgisiz Kalman Siizgeci (SKS) tercih edilebilir. GKS ve SKS’yi uydunun yonelim
durum degiskenlerinin yanisira, bilinmeyen sabit bozuntu torklar1 ve 6l¢iim cihazi
kayimlar1 gibi uydu dinamigine ait parametreleri tanilamak ig¢in kullanmak da
miimk{indiir.

Bununla beraber, hem GKS hem de SKS o6l¢iim sisteminin hatalarina karsi
dayaniksizdirlar (hataya kars1 duyarhdirlar). Fakat Kalman silizgeci algoritmasi hatali
Olctimlerin kestirim silirecini etkilemeyecegi sekilde uyarlamali bir anlayisla
olusturulursa, dl¢lim sisteminin ariza durumlart i¢in dahi dogru kestirim sonuglar
saglanabilir. Bu tiir bir anlayis icin yeni sayilabilecek iki teknik, tek ve g¢ogul
zayiflatic1 faktorlii slizge¢ kazang diizeltimi temel alinarak gelistirlmis uyarlamali
Kalman stizgegleridir.

Bu tezde, farkli gbrev dilimleri igerisinde bir piko uydunun yonelim kestirimini
gergeklestirmek i¢in ¢esitli Kalman siizgeci algoritmalart gelistirilmigtir. GKS ve
SKS’nin durum degiskeni kestirim performanslar1 manyetometrenin tek 6l¢iim cihazi
olarak kullanildig1 durum igin incelenmistir. Ataletsel Ol¢iim Birimi (AOB) ek bir
sensoOr olarak kullanildiginda bilinmeyen sabit dis torklar, manyetometre ve jiroskop
kayimlar1 gibi parametreler tanilanmistir. Ayni1 zamanda, slizgecin Ol¢liim
bozuntularina kars1 dayanikliligini1 saglamak adina tek ve ¢ogul zayiflatic1 faktorlii
Uyarlamal1 Sezgisiz Zayiflatic1 Kalman Siizgeci (USZKS) algoritmalar1 6nerilmistir.
Gelistirilen Kalman siizgeci algoritmalari, simiilasyonlar yardimiyla ITU-PSAT I
sisteminin yonelim belirleme sisteminin bir parcgasi olarak test edilmistir.
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1. INTRODUCTION

In this section, importance of the thesis is stated by introducing the main motivation
and purpose of doing such study together with the literature survey, which examines

past and recent similar studies as an argument.

1.1 Motivation and Purpose of the Thesis

Since the world’s first Earth orbiting artificial satellite, Sputnik I, was launched on 4
October 1957, humankind has always been on a track to reach to the better in space
missions. Until now, technology improved unexpectedly and today, there are more
than 500 satellites on orbit where many of them are more functional and generally

lesser in size and weight than their pioneers.

In astronautics, as a satellite specification, pico refers to the satellites which have
mass no more than 1 kg. These types of satellites are the outcomes of a search for
lighter, smaller and so cheaper spacecrafts and recently, they have been mostly

considered as a part of the research projects of the organizations like universities [1].

Cubesats are special pico satellites with cubic dimensions of 10cm X 10cm X
10cm. Idea was first proposed by Professor Robert Twigs from Stanford University
in 1999. They are also referred as S3-SAT in the light of their main utilization
purpose; student-space-study satellites [2]. By the use of cubesats, university like
organizations have an opportunity to produce their own satellite, educate their
students/personnel practically and demonstrate their capability to develop new
technologies. Presently, there are several running cubesats projects all over the world

including ITU-PSAT I.

ITU-PSAT I is the first satellite project of Istanbul Technical University. Main aim
of the project is to educate students of the Astronautical Engineering Department by
giving them a chance to gain practical experience in the basis of their theoretical
background. Also it will be an initiative for Turkey in point of view of being the first

student designed satellite.



Satellite will carry a low resolution camera for the Earth imaging and meanwhile
other sensors. Besides, the ground station located in the university will communicate
with the satellite and take the incoming sensor data. Satellite with the approximate
weight of 1 kg, will satisfy its energy from the sophisticated solar cells on it [3].
Project is at the last phase as the flight model and space qualification tests continue.

Launch is planned to be realized in 2009.

As well as ITU-PSAT I, one of the main problems of cubesat projects is the limited
size of the satellites. That is also reflected to the design progress of all subsystems of
them as attitude determination and control system (ADCS). When the ADCS is
limited in size and mass (also in point of view of energy budget for some missions),
that means the number of onboard devices going to be used must be as low as
possible. However, that does not annihilate the requirement of precise attitude
determination and control in most cases. Hence, the question is, is there any possible
way to determine and control attitude of a cubesat accurately despite using a limited
number of onboard sensors and actuators? Besides, what happens if the

measurements are not reliable because of device biases or any kind of malfunctions?

Main motivation behind this study is to deal with these engineering design problems.
Since the attitude of the ITU-PSAT will not be controlled, control part of the ADCS
is not necessary but the question is still valid for the attitude determination procedure
of the satellite. Aim is to find out if there is possibility to develop an efficient and
reliable attitude determination system (ADS) for a pico satellite. While doing this, a
scheme based on Kalman filtering will be followed and in general, relatively new

techniques like UKF will be used.

Developing an accurate Kalman filter algorithm which is adaptive against the
measurement faults can be stated as the main purpose of the thesis. Via the
comparison of the EKF and UKF, the superior attitude estimation algorithm will be
detected firstly. Then, alongside with the attitude states of the satellite, parameters
e.g. unknown constant external torques, magnetometer and gyro biases will be
identified. By that way, it will be guaranteed that the both process and measurement
models are true and free of errors. At last, as the main objective, the most appropriate
adaptive Kalman filter algorithm for the pico satellite, which secures its accurate
estimation characteristic even in case of measurement malfunctions, will be

developed.



1.2 Literature Survey

Kalman filter plays an important role in the attitude estimation procedure of the
spacecrafts since it was firstly proposed [4]. Regarding the obstacles met during
development process of the attitude estimation systems, various types of Kalman
filters have been developed. One of these difficulties is the inherent nonlinear
dynamics and kinematics of the satellites similarly to the many real world systems.
Extended Kalman Filter is proposed so as to overcome this problem and it is used

instead of linear Kalman filter for estimating the attitude of the satellite [5].

On the other hand, EKF has some disadvantages, especially for the highly nonlinear
systems. Generally this is caused by the mandatory linearization phase of EKF
procedure and so Jacobians derived with that purpose. For most of the applications,
generation of Jacobians is hard, time consuming and prone to human errors [6, 7].
Nonetheless, linearization brings about an unstable filter performance when the time
step intervals for update are not sufficiently small and that, results with the filter
divergence [8]. Per contra, small time step intervals increase the computational
burden because of the larger number of Jacobian calculations. As a result of these
facts, EKF may be efficient only if the system is almost linear on the timescale of

update intervals [7].

A relatively new Kalman filtering technique, which does not have the shortcomings
of EKF for nonlinear systems, is Unscented Kalman Filter. UKF generalizes Kalman
filter for both linear and nonlinear systems and in case of nonlinear dynamics, UKF
may afford considerably more accurate estimation results than the known observer
design methodologies such as Extended Kalman Filter. The basic of UKF is the fact
that; the approximation of a nonlinear distribution is easier than the approximation of
a nonlinear function or transformation [9]. UKF introduces sigma points to catch
higher order statistic of the system and by securing higher order information of the

system, it satisfies both better estimation accuracy and convergence characteristic
[6].

As a spacecraft attitude estimation algorithm, UKF has many implementation
examples in literature. In [10, 11] it is used as a state estimator, while both the states
and the parameters of the satellite are estimated by UKF in [6, 12]. Besides, in [13]

control of the multibody satellites is achieved by the use of UKF. However, in those



studies [6, 10-13] it is not considered as an identification algorithm for the unknown
constant components of the external torques (the gravity-gradient, magnetic field

pressure and the sun radiation) acting on the pico satellite.

On the other hand, both EKF and UKF have no capability to adapt themselves to the
changing conditions of the measurement system. Malfunctions such as abnormal
measurements, increase in the background noise etc. affects instantaneous filter
outputs and process may result with the failure of the filter. In order to avoid from

such condition, the filter must be operated adaptively.

The Kalman filter approach to the state estimation is quite sensitive to any
measurement malfunctions (abnormal measurements, sudden shifts in the
measurement channel, and other difficulties such as decrease of instrument accuracy,
an increase of background noise, etc.). If the condition of the operation of the
measurement system does not correspond to the models, used in the synthesis of the
filter, then these changes resulting from some possible failures at the measurement
channels significantly decrease the effectiveness of the estimation systems. In such
cases to recover the possible malfunctions, the Adaptive Kalman Filters (AKF) can

be used [14-24].

The basic approaches to the adaptive Kalman filtering problem are Multiple-model-
based adaptive estimation (MMAE) [14-16], Innovation-based adaptive estimation
(IAE) [17-19] and Residual-based adaptive estimation (RAE) [20, 21]. While in the
first approach bank of Kalman filters run in parallel under different models for the
filter’s statistical information, in the rest the adaptation is done directly to the
covariance matrices of the measurement and/or system noises based on the changes

in the innovation or residual sequences.

In methods described in [14-16], the faults are assumed to be known, and the Kalman
filters are designed for the known sensor/actuator faults. As the MMAE approach
requires several parallel Kalman filters, and the faults should be known, it can be

used in limited applications.

Estimation of the covariance matrices by IAE and RAE requires the usage of the
innovation vectors or residual vectors of m epoch. This increases the storage burden
and presents the determination of the width of the moving window m as another

problem. Furthermore, IAE and RAE estimators require that the number, type and



distribution of the measurements for all epochs within a window should be
consistent. If they do not, the covariance matrices of the measurement noises cannot

be estimated based on the innovation or the residual vectors.

The Adaptive KF presented in [22] has been applied to fuse position signals from the
GPS and INS for the autonomous mobile vehicles. The Extended Kalman Filter
(EKF) and the noise characteristic have been modified using the Fuzzy Logic
Adaptive System. In the paper [23], a method of multi-sensor data fusion based on
the Adaptive Fuzzy Kalman Filter is presented. This method is applied in fusing
position and orientation signals from Dead Reckoning (DR) system and the GPS for
landing vehicle navigation. The EKF and the characteristics of the measurement
noise are modified by using the Fuzzy Adaptive System, which is based on a
covariance matching technique. It has been demonstrated that the Fuzzy Adaptive
Kalman Filter gives better results (more accurate) than the EKF [22, 23]. In [24]
fuzzy logic-based adaptive Kalman filter is used to build adaptive centralized,
decentralized, and federated Kalman filters for adaptive multi sensor data fusion. The
adaptation carried out is in the sense of adaptively adjusting the measurement noise
covariance matrix of each local filter to fit the actual statistics of the noise profiles
present in the incoming measured data. A fuzzy inference system based on a
covariance-matching technique is used as the adaptation mechanism in the paper.
The simulation results show that the proposed architectures by authors are effective
in situations where there are several sensors measuring the same parameters, but each
one has different measurement dynamic and noise statistics. Although fuzzy logic
based adaptive Kalman filter algorithms perform well under specific circumstances,
they are knowledge-based systems operating on linguistic variables and these
methods, which are based on the human experiences, are not widely applicable to the

vital systems such as attitude control systems.

Another concept is to scale noise covariance matrix by multiplying it with a time
dependent variable. One of the methods for constructing such algorithm is to use a
single adaptive factor as a multiplier to the process or measurement noise covariance
matrices [25-30]. In other words, these algorithms, which may be named as Adaptive
Fading Kalman Filter (AFKF), can be both used when the information about process
or measurement noises is absent [28]. However, estimation performance of the

Kalman filter differs for each variable, when it is utilized for complex systems with



multivariable and it may be not sufficient to use single fading factor as a multiplier
for the covariance matrices [31]. Single factor may not reflect corrective effects for
the faulty measurement to the estimation process, accurately. The technique, which
can be implemented to surmount this problem, is to use multiple fading factors to fix
the relevant component of the gain matrix, individually. Unfortunately, thus far any
investigation about the comparison of the AFKF with the single and multiple fading

factors have not been achieved.

In literature, it is possible to meet with a limited number of adaptive unscented
Kalman filtering (AUKF) applications, which integrate the mentioned adaptive
Kalman filtering algorithms with the unscented Kalman filter. In [32], a cost function
is defined in order to minimize the filter computed covariance and the actual
innovation covariance. However, presented algorithm requires calculation of partial
derivatives and that increases the computational burden as well as being inconsistent
with the mentality of UKF. Besides, in [33] a two-stage adaptive UKF is proposed in
the base of the process noise and measurement noise covariances matrices
adaptation. Basically, it applies the methodology presented in [28] to the nonlinear
systems by the use of UKF. However, as a disadvantage, it secures the adaptation
using only single fading factor and as it is aforementioned, that may be a problem for

implementations on complex systems like spacecrafts.



2. PICO SATELLITE MATHEMATICAL MODEL

2.1 Attitude Representations

In his theorem, Leonhard Euler, a Swiss mathematician and physicist, states that “the
most general displacement of a rigid body with one fixed point is a rotation about
some axis” [34]. Moreover, so as to represent this rotation uniquely, at least three
parameters are needed. However, there is not a single certain technique to achieve
that and several representation methods may be used. In many of these techniques, it

is worked with more than three parameters.

Two of commonly used techniques are Euler angles and quaternions (or Euler
symmetric parameters). In this thesis, one of these two representation methods have
been preferred for the construction of the mathematical model of the pico satellite,
depending to the estimation algorithm. Related to their application area, Euler angles
and quaternions may be more convenient than each other. Table 2.1 presents a brief

comparison between them [34, 35].

Table 2.1: Characteristics of attitude representations of Euler angles and

quaternions.
Representation ~ Number of Advantages Disadvantages
Parameters
-Trigonometric
functions in both
-No redundant rotation matrix and
parameters kinematic relations.
Euler Angles 3 -Clear physical -Singular for specific
interpretation. rotations.
-Minimal set. -No convenient product
rule.
-Convenient product -No clear physical
rule. interpretation.
-Simple kinematic -One redundant
Quaternions 4 relation. parameter.

-No trigonometric
functions.
-No singularities.




2.1.1 Euler angles

A transformation from one coordinate frame to another can be carried out by three

consecutive rotations about different axes.

While describing the rotation of the axis with respect to another one, rotation
matrixes formed by Euler angles are used. The direction cosine matrix of

transformation will be the product of these three matrices.

According to [34] there are 12 possible Euler angle representations and so direction

cosine matrixes for transformation. They are categorized in two as:

Type 1: Case where three successive rotations take place around three

different axes.
Type 2: In this case first and third rotations are performed around same axis
and the second one takes place about one of the other two axes.

2.1.1.1 Euler angles for vector transformation

Suppose that ) = 8 — ¢ rotation order about z, y and x axes, which may be also

referred as 3-2-1 Euler angle rotation [33, 35], is followed. That means;

e arotation 1 about z axis and a rotation matrix of,

cos () sin(y) O
As = [—sin () cos (¥) 0] (2.1)
0 0 1
e arotation 8 about y axis and a rotation matrix of,
cos(8) 0 —sin(0)
A, = 0 1 0 ] 2.2)
sin(@) 0 cos(0)
e arotation ¢ about x axis and a rotation matrix of,
1 0 0
A;=|0 cos(¢) sin (¢)] (2.3)
0 —sin(¢p) cos(¢)

Then the direction cosine matrix (or attitude matrix) that is used for transformation

from reference to body frame can be obtained as the product of these three matrices.



Azzq = [A1][A,][A5] =
c(@)c@) c(@)s@) —s(0)
—c(@)s@) +s(@)s(@)c@)  c(@)c@) +s(p)s@)s@)  s(p)c(d) (2.4)
s(@)s@) +c(@)s(@)c(@) —s(@)c@) + c(p)s(@)s@) c(p)c(6)
Here c(+) and s(-) represent the cosines and sinus functions. Per contra, matrix,

which transforms a vector from body to reference frame, is simply the transpose of

this matrix as A%,; = [43]7[4,]7[A4,]".

Besides, for the small angle rotations, the sinus functions become sin (Y) — v,
sin (6) — 0 , sin (¢p) = ¢ as well as the cosines functions approaches to the unity.
When these approximations are used and the products of angles, which become
insignificant, are ignored as Y8 = @@ = --- = 0, then the skew symmetric direction

cosine matrix for small angles can be gained.

1 ¢ -6
Azzq & [_lp 1 4 (2.5)
6 - 1

2.1.1.2 Propagation of Euler angles by time

In order to found kinematic equations, which relate the Euler angles with the angular
velocities in body frame, first, derivatives of the Euler angles must be transformed to

the body angular rates.

0

P 0 @
[Q] = [A11[A2][A5] | 0| + [A1][A2]|6] + [A1] ] O (2.6)
r Y 0 0
After the matrix multiplications;
p = ¢ —ysin (6) @.7)
q = 6 cos(¢) + 1 cos(8) sin (¢) (2.8)
r =1 cos(0) cos(¢p) — Bsin (@) 2.9)

If these equations are solved for ¢, 8 and v, then the kinematic equation via Euler

angles can be determined.

¢ = p + sin(p) tan(0) q + cos(p) tan(6) r (2.10)
8 = cos(p)p —sin(p)q (2.11)
Y = sin(@) / cos(0) q + cos(¢) / cos(0) r (2.12)



2.1.2 Quaternions

The quaternion attitude representation is a technique based on the idea that a
transformation from one coordinate frame to another may be performed by a single
rotation about a vector € defined with respect to the reference frame. The quaternion,
denoted here by the symbol g, is a four element vector, the elements of which are

functions of vector € and the magnitude of the rotation, ®:

g1 = e;sin3 2.13)
a; = é; sin% (2.14)
4z = €3 5111% (2.15)

Qs = cos% (2.16)

Here ey, e,, e5 are the components of the vector € which is to be rotated around with
an angle of ®. As a result by the use of quaternions a transfer from reference frame
to body frame can be denoted by a single rotation around a vector defined in the

reference frame.

A quaternion with components q;, q,, g3 and g, may also be expressed as a four
parameter complex number with a real component g, and three imaginary

components, q;, q, and g as follows:

qd=4qstiqs+jq +kqs , (2.17)

where i, j, k are hyper-imaginary numbers with characteristics of;

i2=j2=k2=-1 (2.18)
ij=—ji=k (2.19)

jk = —kj =i (2.20)
ki=—ik =j (2.21)

Also, redundancy of quaternions must be noted as;

G+a+q5+qi=1 (2.22)

10



2.1.2.1 Quaternions for vector transformation

A vector quantity defined in body axes, rz may be expressed in reference axes as 1y

using the quaternion directly. First define a quaternion, 75, in which the complex

components are set equal to the components of 75, and with a zero scalar component,

that is, if:
rg =ix +jy+ kz (2.23)
g =0+ix+jy+kz (2.24)
This is expressed in reference axes as 1 using:
" =q15q" (2.25)

where q* = (q4 — iq1 — jq, — kq3) ,the complex conjugate of g.
Hence,
Ta=(qa + iqy + jqz + kqs)(0 + ix + jy + kz)(qs — iq1 — jq, — kq3)
=0+{(qf +qf — 45 — a)x + 2(q192 — 9493)y + 2(q195 + q4q2)Z}i
+H2(q192 + quq)x + (q% — 41 + g5 — q3)y + 2(q293 — q4q1)Z}
+{2(q193 — 9492)% + 2(q295 + 949y + (45 — qf + @5 — g7}k (2.26)

Alternatively, 7] may be expressed in matrix form as follows:

e = A1y 2.27)
where A’ = [8 g , T4 = [075] and
9t — a5 —q5 +qi  2(q192 + 4394) 2(9193 — 9294)
A=| 2(1q92 — q39s) —9i+a5—a5+aq;  2(q203 + 9194) (2.28)
2(q193 + 9294) 2(9293 — 9194)  —91 —q5 + 45 +q;

which is equivalent to writing:
T‘R == AT‘B (2.29)

Here A is the same direction cosine matrix that is used for transformation from body

to reference frame.

11



2.1.2.2 Propagation of quaternions by time

While defining the kinematic equations of motion with quaternions, time dependence

of them must be used and that can be derived from the product relation [34].

Multiplication of quaternion is performed in a way not too different from complex
number multiplications. However the order of the process must be regarded. By

using characteristic of hyper-imaginary numbers;
q" =99 = (g4 +iq1 +jq2 + kq3)(qs + iq1 +jqz + kq3)  (2.30)
q" = (=191 — 4292 — 4393 + q4q4)
1(q194 + 9293 — Q392 + qaq1) +
J(—01q3 + 42G4 + 391 + 44q2) +
k(9192 — 9291 + G394 + 44q3) (2.31)

If it is written in matrix form,

@l [ 9 4 9% G|;:
qz _ |43 qlf qé qgl q2 (2.32)
a5 l @ —q; 0 g5 |93
qil l—qi —-q5 —-q5 q,lte

Now assume that, ¢ and gq"' correspond to the orientation of the body at ¢ and
t + At, respectively. Also @’ is for the representation of position at t + At in a

relative way to the position that has been occupied at ¢ .

qi = e, sin"> (2.33)
q5 = e;sin~ (2.34)
q5 = e3sin~ (2.35)
q, = cos% (2.36)

When the necessary multiplication is done it is obvious that

0 e3 — €2 €
_ _ AD . AD|—e€3 0 er e || -
q(t + At) =< cos 1+ sin= e, —e 0 e q(t) (2.37)
_el _ez —83 0

12



where e;, e,, e; are the components of rotation axis unit vector and I is the 4 X 4

identity matrix. After that by small angle approximation
cos =~ 1 (2.38)
- (2.39)

It is possible to show that

0O r —qPp
Gt +a0) ~ {1+ 77 _% g ‘i At b q(t) (2.40)
—P —q -r 0
here p, q,r are components of @gg and they indicate angular velocity of the rigid

body with respect to the reference frame. Hence if a skew-symmetric matrix is

defined as
0 r —4q p
_ —r 0
@) =0 —p o o 2.41)

equation becomes

Gt + At) ~ {1 + %QAt} g(t) (2.42)
Finally it is known that
da() _ aCHb-a®) _ 1 -
10 o 2020210 = Log(r) (2.43)

2.1.3 Euler angles and quaternions relationship

Quaternions can be expressed in terms of Euler angles as well as angles can be used

to define quaternions. Formulas used for transformation are simple and given below:

e Euler Angle to Quaternion:

g; B sin (E) cos (%) sin (%) + cos sin cos
Zi  fsin (g) cos (%) cos (%) + cos ( sin (2.44)

NS NS NS NS
I\_/\_/V\_/I
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e Quaternion to Euler Angle:

@ = sin"*(2(q; g3 + g1 q4)) (2.45)
— tan~1 (812 -1 (43792

6 = tan (q4+q1) + tan (q4_q1) (2.46)
_ - q3+q - q3—q

¥ = tan~1 (ﬁ) — tan~? (ﬁ) (2.47)

2.2 Pico Satellite Dynamics

The fundamental equation of the satellite dynamics relates the time derivative of the

angular momentum vector with the overall torque affecting the satellite [34];
(2.48)

L=]wg , (2.49)
where L is the angular momentum vector, N is the external torque vector, @pg; is the
angular velocity vector of the body frame with respect to the inertial frame and J is
the moment of inertia matrix. When the vectors of L and @g,; are parallel, as the
rotation is about the principal axis of the satellite, then the moment of inertia matrix

is formed of principal moments of inertia as

/., 0 0
J=10 J, 0}. (2.50)
0 0 J,

Note that, this condition is an obligation for the rotation without nutation [34].

By the use of (2.48) and (2.49), main equation for the dynamics part of the pico

satellite mathematical model can be gained;

d@ i = _

="' (N ~ @p X J@p). (2.51)

Besides, if the vectors are decomposed into their components as

_ T

Wp; = [a)x wy, a)Z] , (2.52)
N=[N,N,N,], (2.53)

open form of (2.51) can be given as

Jx 5= Ny + (Jy = I )wyw,, (2.54)

14



d
Jy =2 =Ny + Uy = )@y, (2.55)

IZ% = NZ + (]x _]y)wxwy' (2-57)

One the most dominant external torque that affects Low Earth Orbit (LEO) satellites
like ITU-PSAT I is the gravity gradient torque. This torque is inherent for LEO
satellites and can not be neglected when the satellite model is built [36, 37]. Gravity
gradient torque components can be determined as;

N, (Iy - Iz)A23A33

Nyl = =335| Uz = [)A1sdas | (2.58)

N, (I — 1,)A134,3
Here u is the gravitational constant, 1yis the distance between the centre of mass of
the satellite and the Earth and A;; represents the corresponding element of the

direction cosine matrix.

2.3 Pico Satellite Kinematics

Related to the chosen attitude representation, derived equations of the satellite
kinematics may be different. In this study, as a part of the preferred representations,
Euler angles and quaternions, two different version of pico satellite kinematics can

be given.

2.3.1 Kinematics with Euler angles

When the Euler angles are used as the attitude representation technique, Kinematic

equations of motion of the pico satellite can be expressed in matrix form as

¢ 1 s(t®@) c(e)t@) |pp
6= |0 c(p) —s(¢) M (2.59)
Y 0 s(p)/c(8) c(p)/c®)]'r

Here, c(-),s(-)and t(-) stand for the cosines, sinus and the tangent functions
successively and p, g, and r are the components of wgr vector which indicates the

angular velocity of the body frame with respect to the reference frame;
wgr =[P q T, (2.60)

In satellite attitude estimation problems, generally it is worked with the angular

velocity of the body frame with respect to the inertial frame since the satellite’s

15



orientation with respect to the inertial coordinates is more significant for the
designer, especially when the Earth orbiting spacecrafts are the point at issue.
Nonetheless, on board inertial measuring instruments like gyros gives measurement
outputs in the body frame with respect to the inertial frame [36]. Hence, wp; and

wpgr Mmust be related. That association is possible by the equation of;

a_)BR == EBI +A

0
—wy |- (2.61)
0

where A represents the direction cosine matrix constituted of trigonometric functions
of Euler angles. Note that, A matrix may vary in accordance with the chosen axis
sequence for the Euler angle rotation as well as the kinematic equations. Here matrix

is given for 3-2-1 Euler angle rotation of [34].

A=Az =
c(0)c(@) c(@)s@) —s(0)
—c(@)s@) + s(@)s(@c@)  c(p)c@) +s(@)s(@)s@)  s(p)c(@)|  (2.62)
s(@)s@) + c(@)s@c@)  —s(@)c@) +c(@)s(@)s@) c(p)c(6)
Also, w, denotes the angular velocity of the orbit with respect to the inertial frame,

found as wo = (u/r$)/?, where u is the gravitational constant and 7,is the distance

between the centre of mass of the satellite and the Earth.

2.3.2 Kinematics with quaternions

Kinematic equations of the pico satellite with quaternions is based on the time

derivation of quaternions and it can be given by the equation of:

aq 1 — —
- =5 U@5R)q (2.63)

Here Q(wpgg) is the skew symmetric matrix, formed of elements of the angular

velocity vector in body frame with respect to the reference frame as [34];

0 r —-q p
Q=77 _‘2)9 g ‘i (2.64)

P —q -r 0
If the Q(wggr) matrix is written in terms of angular velocity vector in body frame
with respect to the inertial frame, wp; , then the equations that are going to be used
for attitude estimation process can be determined. Simplified versions of these

equations are [6]:
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1 = [wx‘h — Wyq3 + w;q; + wo%]

N |-

.1
92 =3 [w.qs + Wyq4 — WGy + Woq4]

[_(UxCIz + wyq1 + Wyq4 — wo‘h]

N |-

qz =

. 1
s =3 [_wah — Wy(y; — Wz(q3 — onz]
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(2.65)

(2.66)

(2.67)

(2.68)
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3. MODELS FOR MEASUREMENT SENSORS

In this section, measurement sensor models for ITU-PSAT 1 attitude estimation
procedure are presented. The Earth magnetic field is modelled so as to simulate
magnetometer measurements and determine magnetic field tensor vector, which is
going to be used for Kalman filter observation vector prediction, while the model for

IMU is derived in order to gain gyro outputs.

Performing measurements with magnetometers and/or gyros and so having the
magnetic field and/or an inertial sensor as the attitude estimation reference source
have various advantages and drawbacks. Table 3.1 summarizes these characteristics

[34, 35]:

Table 3.1: Characteristics of the attitude estimation reference sources.

Reference Performance Advantages Disadvantages

-Poor accuracy.
-Good only for near
Earth satellites.

-Limited by modelling
Accuracy of -Economical. accuracy.
Y -Low power. -Orbit and attitude are

Magnetic Field 0.5 deg-

(Magnetometers) 5 deg -Always available strongly coupled.

for LEO spacecrafts. -Spacecraft must be
magnetically clean (or
in flight calibration
must be done).
-Sensitive to biases.

-Senses change in
-No need for orientation (orientation
external sensors. rate) only.
-Orbit independent.  -No absolute

Inertial Space Drift rate of  -High accuracy for measurement.

(Gyros) 0.002deg/h -  limited time -Subject to drift.
Ideg/h intervals. -Wear and friction
-Easily done caused by rapidly
onboard. moving parts.
-Relatively high power
and mass.
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For all of the attitude estimation scenarios, magnetometers are used as one of the
measurement sensors. Nonetheless, in case of torque, magnetometer bias and gyro

bias identification, gyros (or IMU), are used as the supplementary device.

3.1 The Earth Magnetic Field Modelling

In literature there are more than one methods for modelling the Earth magnetic field
(EMF). One of them is to use directly the data of International Geomagnetic
Reference Field (IGRF) [38], as it is given in [39].

On the other hand, analytical calculation of the magnetic field is also possible, as it is
realized in this study. As the satellite navigates along its orbit, magnetic field vector
differs in a relevant way with the orbital parameters. If those parameters are known,
then, magnetic field tensor vector that affects satellite can be shown as a function of
time, analytically [6, 34]. Note that, these terms are obtained in the orbit reference

frame.

H (t) = %{cos((uo t) [cos(€) sin(i) — sin(e) cos(i) cos(w,t)] —

sin(wgyt) sin(e) sin (w,t)} 3.1
Hy(t) = — M— [cos(€) cos (i) + sin(e) sin(i) cos(w,t)] (3.2)
Hy(t) = 2”’ {sin(wyt) [cos(€) sin(i) — sin(e) cos(i) cos(w,t)] +
2 sin(wyt) sin(e) sin (w,t)} 3.3)
Here

e M, = 7.943 x 10'°Whb.m; the magnetic dipole moment of the Earth,
e 1 =3.98601x 10*m3/s?; the Earth Gravitational constant,

e | = 97°; the simulation value for the orbit inclination of ITU-PSAT I,
e w, =7.29 x 10~%rad/s; the spin rate of the Earth,

e ¢ = 11.7° the magnetic dipole tilt,
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e 715, =06,928,140 m ; the distance between the centre of mass of the satellite
and the Earth (simulation value if the altitude of ITU-PSAT I is accepted as
550 km).

Three onboard magnetometers of pico satellite measures the components of the
magnetic field vector in the body frame. Therefore for measurement model, which
characterizes the measurements in body frame, gained magnetic field terms must be
transformed by the use of direction cosine matrix, A. Overall measurement model

may be given as;

H,{4q/¢.6,9},t) Hy(t)
Hy({c_l/(pl 0, l/)}, t) = A|H, (t) 3.4
Hz ({C_I/(p' 9! l/)}, t) H3 (t)

where, H;(t),H,(t), and H;(t) represents the Earth magnetic field vector

components in orbit frame as a function of time and H,({q/¢,6,¥},t), H,({q/
@,0,Y}Lt), and H,({q/p,0,¢¥},t) shows the Earth magnetic field vector

components in body frame as a function of time and varying attitude quaternions /

Euler angles.

3.2 Model for IMU

Inertial Measurement Unit (IMU) consists of three rate gyros aligned through three
axes, orthogonally to each other. Rate gyros supply directly the angular rates of the
body frame with respect to the inertial frame. Hence the model for rate gyros can be

given as;
Wpr Meas = Wpr + Eg + 7. 3.5)

where, @p| peqs 18 the measured angular rates of the satellite, l_)g is the gyro bias

formed of three bias components of three different gyros as by = [bx by, b, ]"

and 7, is the zero mean Gaussian white noise with the characteristic of

E[UkUJT] = 13x30g25kj ) 3.6)

Here, I3,3 is the identity matrix with the dimension of 3 X 3, g, is the standard

deviation of each rate gyro and & is the Kronecker delta function as,

3.7
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Nevertheless, characteristic of gyro bias is given as:

dbg _

20 =, (38)

where, 7, is also the zero mean Gaussian white noise.
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4. KALMAN FILTERING APPLICATIONS

In this section, algorithms of Kalman filter (KF) types that are going to be used for
ITU-PSAT I attitude estimation process are introduced. In order to form a base for

the further Kalman filter studies, linear Kalman filter algorithm is also given.

After the first part that presents the Kalman filter algorithms in a general scheme,
application procedures of these filters to the attitude estimation process of the ITU-

PSAT I are proposed. Thus, it is aimed at clarifying the study for the reader.

4.1 Optimal Kalman Filters

For Kalman filters, optimality means that the filter’s gain is derived optimally.
Optimal Kalman Filter (OKF) uses filter gain of case, where expected value of the
square of the magnitude of error in posterior state estimation is minimized. In other
words, filter runs under some certain optimization law defined by minimization rule
of indicated vector and so it has the optimal gain. If this optimal gain is modified in
order to adapt filter to the changing conditions, that means filter is not optimal

anymore and can be called as adaptive Kalman filter.

Under these circumstances, linear Kalman filter (LKF), extended Kalman filter and
unscented Kalman filter are all optimal unless an adaptation process is run on their

gains.
4.1.1 Linear Kalman filter

Linear Kalman filter is the filter type which may be utilized for linear systems in
point of view of both system process model and measurement model. Related to this
statement, it cannot be used for attitude estimation procedure of a satellite since the
satellite dynamics are inherently nonlinear. Besides, as in case, measurement model

of the satellite may be nonlinear too.
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However, linear Kalman filter is the fundamental of other Kalman filter types that
are going to be used for the attitude estimation of ITU-PSAT. Hence, its algorithm

should be presented to make the latter studies more understandable.

First, let introduce the process and observation models for a dynamical system in the

state space form as follow (note that, system is not controlled):
X = Fkxk_1 + Gka (4.1)
yk S Hkxk + vk, (4.2)

where, Fj, is the system dynamics matrix, By, is the control distribution matrix, xj, is
the state vector, y;, is the measurement vector, G is the transition matrix of system
noises, Hj is the measurement matrix and wj, and v, are successively, white

Gaussian system process and measurement noises;

E[WkWJT] = Qk5kj , (4.3)
E[Ukva] - Rk5kj 5 (4'4)
E[wev]] = 0. (4.4)

Here, Q, is the process noise covariance matrix, Rj is the measurement noise

covariance matrix and &y is the Kronecker delta function.

After that, optimal Kalman filter (OKF) can be given by those following steps [40]:

State prediction:

Xijk—1 = FiXi—1 k-1 4.5)
Covariance prediction:
Pyjk—1 = FiPr—1/k-1Fp + GxQiGr, 4.6)
Innovation:
éx = Yr — HxXy k-1 4.7)
Optimal Kalman Gain:
Ky = Pk/k—lHI{(HkPk/k—lle + Rk)_l 4.8)
State estimation:
Xk = Xiepie—1 + Ki€y 4.9)
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Covariance estimation:
Pyje = (I — K Hy )Py jie—1.- (4.10)

Here X 4 is the predicted state vector, Py /x4 is the predicted covariance matrix,
€, is the innovation sequence, K is the optimal Kalman gain, X is the estimated
state vector and Py is the estimated covariance matrix for discrete step k. Subscript
k/k — 1 denotes that computation is done in current step k by using measurements
of step k — 1. Same as, subscript k — 1/k — 1 means the variable has computed at

the step k — 1 by taking measurements of step k — 1 into consideration.

4.1.2 Extended Kalman filter

Extended Kalman filter is the version of Kalman filter developed for systems with
nonlinear system process or/and measurement models. It is simply based on
derivation of the system dynamics and measurement matrices constituted of partial

derivatives (the Jacobians).

First step of extended Kalman filter algorithm design procedure must be describing
the real world by a set of non-linear equations and these equations may be shown in

state-space form as a set of first order non-linear differential equations [40].
x=fx(®),t)+w 4.11)

where x is the system state vector, f(x) is nonlinear functions of these state and w is

the white process noise.

Besides, measurement equation needed for Kalman filter application is also non-

linear function of the states and
y = h(x(®),t) +v 4.12)

where y is the measurement vector, h(x)is the nonlinear functions that relates the

systems states with the measurements and v is the white measurement noise.

The f function can be used for prediction of states from the last outputs of the
Kalman filter (estimated states) and h function can be operated to find out predicted
measurements from predicted states. However in order to participate these functions
in the process they must be first linearized. Hence Jacobian matrices constituted of

partial derivatives with respect to the states must be derived.
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Fa®,0 ~ O, + L2 ox 4.13)

h(x(6),t) ~ h(Z(t), ) + %L 5x 4.14)

And then
F= % . (4.15)
=20 (4.16)

X

Here F is system dynamics matrix, H is measurement matrix, X is the estimated state
from the previous step, u is the control vector, and X is the predicted state of the
present step. To find out F and H matrixes in discretized form an approximation with

HAt

Taylor series expansion for ef2¢and ef’2t can be done and generally first two terms

of such expansion is sufficient for efficient result. Hence;
F, =1+ FAt 4.17)
H, =1+ HAt (4.18)

where F;, and Hj are system dynamics and measurement matrices in discretized

form, I is the identity matrix and At is the sampling time in second.

Remaining progress of EKF is identical with the linear case and equations of (4.5)-
(4.10) are used for prediction and update phases of the filter. However, remind that,
at each iteration, the Jacobians must be recalculated in accordance with the changing

state prediction and estimation values.

4.1.3 Unscented Kalman filter

In order to utilize Kalman filter for nonlinear systems without any linearization step,
the unscented transform and so Unscented Kalman Filter is one of the techniques.
UKEF uses the unscented transform, a deterministic sampling technique, to determine
a minimal set of sample points (or sigma points) from the a priori mean and
covariance of the state. Then, these sigma points go through nonlinear
transformation. The posterior mean and the covariance are obtained from these

transformed sigma points [12].
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As it is stated, UKF procedure begins with the determination of 2n + 1sigma points
with a mean of X(k|k) and a covariance of P(k|k). For an n dimensional state

vector, these sigma points are obtained by

xo(klk) = 2(k|k) (4.19)
xi(klk) = 2(k|k) + (/(n + [P (klk) + Q(K)]), (4.20)
Xin(klK) = 2(klk) — (V (0 + [P (klk) + Q()]), (4.21)

where, yo(kl|k), x;(k|k) and y;,,(k|k) are sigma points, Q(k) is the process noise
covariance matrix, n is the state number and k is the scaling parameter which is used
for fine tuning and the heuristic is to chose that parameter asn + k = 3 [8]. Also, i is

givenasi=1..n.

Next step of the UKF process is transforming each sigma point by the use of system

dynamics,
xi(k + 11k) = flx;(k|k), k]. 4.22)

Then these transformed values are utilized for gaining the predicted mean and the

covariance [10].

1
#(k+ 11k) =7

K

[% (ke + 1lk) —I-%Z;n[k+ 1|ij 4.23)
i=1

P(k + 11k) = —— {[xo(k + 11k) — £k + 1]k)]

[xo(k + 1|k) — x(k + 1|k)]

2n

+%Z[xi(k +11k) — £(k + 1]K)] -

[x,(k + 1]k) — 2 + 1]})]7) (4.24)

Here, X(k + 1|k)is the predicted mean and P (k + 1|k) is the predicted covariance.

Nonetheless, predicted observation vector is,

Pk +1lk) =

T

1 1w
. {x:fu (k + 1lk) + EZ y;(k + 1] k)}- (4.25)

i=1
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where,
yi(k + 1|k) = hlx;(k + 1|k),v(k), k] . (4.26)

After that, observation covariance matrix is determined as,
1 ~
Byy (ke + 11K) = = {iclyo (k + 11k) — §k + 11K)] -

[yo(k + 11k) = Y (k + 1]k)]

2n

1
53 [yiCk + 11K = 90k + 1K)

i=1

[y:(k + 1lk) — 9(k + 1[k)]"} 4.27)
where innovation covariance 1s
P,,(k+1|k) = Pyy(k +1lk) + R(k + 1). (4.28)

Here v(k) is the white Gaussian measurement noise and R(k+ 1) is the
measurement noise covariance matrix. On the other hand the cross correlation matrix

can be obtained as,
Pey (k + 11J) = — {ic[xo (k + 1]k) — £(k + 1]K)] -

[yo(k + 11k) — Y (k + 1]k)]

2n

+%Z[xi(k +1k) — 2(k + 1]6)] -

i=1

[yi(k + 11k) = 9(k + 1]})]"3 . 4.29)

Following part is the update phase of UKF algorithm. At that phase, first by using

measurements, y(k + 1), residual term (or innovation sequence) is found as
etk +1)=yk+1) -y + 1]k), (4.30)
and then Kalman gain is computed via equation of,
K(k +1) = Py, (k + 1|k) Pyt (k + 1]k). (4.31)
At last, updated states and covariance matrix are determined by,
Xk+1k+1)=x(k+1lk)+K(k+ De(k +1) 4.32)

P(k+1lk+1)=P(k+ 1lk) — K(k + 1)P,,(k + 1|k)KT (k + 1). 4.33)
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Here, x(k + 1|k + 1) is the estimated state vector and P(k + 1|k + 1) is the

estimated covariance.

4.2 Adaptive Fading Kalman Filters

As it is aforementioned if the Kalman filter is modified in order to secure filter’s
robustness against the estimation system malfunctions, that means filter is not

optimal anymore and can be called as adaptive Kalman filter.

In this part of the section, two different adaptive Kalman filter algorithms with the
filter gain correction for the case of measurement malfunctions are introduced. By
the use of defined variables named as fading factor, the faulty measurements are
taken into the consideration with a small weight and the estimations are corrected
without affecting the characteristic of the accurate ones. As they use fading factors to
correct the estimation process, presented AKFs may be named as adaptive fading
Kalman filter (AFKF). In this study, Adaptive Fading Kalman Filter (AFKF)

algorithms with single and multiple fading factors are proposed.

4.2.1 Adaptive fading Kalman filter with single fading factor

In normal operation conditions, where any kind of measurement malfunction is not
observed, any of the optimal Kalman filters, i.e. linear Kalman filter, extended
Kalman filter and unscented Kalman filter, gives sufficiently good estimation results.
However, when the measurements are faulty because of malfunctions in the
estimation system such as abnormal measurements, sudden shifts or step-like

changes in the measurement channel etc. filter estimation outputs become inaccurate.

Therefore, an adaptive Kalman filter algorithm, which brings the fault tolerance to
the filter and secures accurate estimation results in case of faulty measurements
without affecting the remaining good estimation characteristic, should be introduced.

This part presents the adaptation scheme, which can be applied to LKF and EKF.

Base of the adaptive Kalman filter is the comparison of real and theoretical values of
the covariance of the innovation sequence [29]. When the operational condition of
the measurement system mismatches with the model used in the synthesis of the

filter, then the Kalman filter gain changes according the differentiation in the
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covariance matrix of the innovation sequence. Under these circumstances, covariance

matrix of the innovation sequence differs as:
P, = HyPyyr—1Hy + iRy, (4.34)
and so the Kalman gain becomes
-1
Kie = Pije—1Hy (HePeji—1Hi + SiRy) (4.35)
Here Sy, is the adaptive factor or the single fading factor (SFF).

Due to the approach, the Kalman gain is changed when the predicted observation
Hy Xy /k—118 considerably different from the actual observation yj, because of the

significant changes in the operational condition of the measurement system. In other

word, if the real value of filtration error exceeds the theoretical error as
tr{éxér} = tr{H, Py k-1 Hf + Ry} (4.36)
filter must be run adaptively. Here tr(-) denotes the trace of the related matrix.

In order to determine adaptive factor, Sy, let substitute (4.34) into the (4.36) and put

in that adaptation begins at the point where condition (4.36) is satisfied,
tr{épér} = tr{HyPejx-1HE } + Setr{Ry} 4.37)
Then, in light of tr{&, &l }=él &, equality, S) can be written as

égék—tT{HkPk/k_lH,’{}

Sk = tr{Ry}

(4.38)

If there is some kind of malfunction in the measurement system, that means the
condition (4.36) is met, then it brings out an increase in the adaptive factor Sj.
Higher Sj causes a smaller Kalman gain (4.35) because of the covariance of the
innovation sequence (4.34) which is also increased in adaptive case. Consequently,
small Kalman gain value reduces the effect of the faulty innovation sequence on the
state estimation process (4.9). In all other cases, where measurement system operates

normally, adaptive factor takes the value of S, = 1 and so filter runs optimally.

Nevertheless, adaptive algorithm is operated only when the measurements are faulty
and in all other cases procedure is run optimally with LKF or EKF. Process is
controlled by the use of a kind of statistical information. At that point, following two

hypotheses may be introduced:
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® V,; the system is normally operating
e Y, ; there is a malfunction in the estimation system.

To detect failures a statistical function may be defined as,
~ -1,
B = & [HxPejk—1Hi + Rie] & 4.39)

This statistical function has yZ2distribution with n degree of freedom where n is the

dimension of the state vector.
If the level of significance, «, is selected as,
Pix*>xiul=a O0<a<l (4.40)

the threshold value, 3 ¢ can be found. Hence, when the hypothesis y; is correct, the

statistical value of B will be greater than the threshold value yZ , i.e.:

Yo : Br < Xas vk
Y1t Br > Xas 3k 4.41)

4.2.2 Adaptive fading Kalman filter with multiple fading factors

As it is discussed, it is possible to adapt filter by using single adaptive factor as a
corrective term on the filter gain [29], but that is not a healthy procedure as long as
the filter performance differs for each state for the complex systems with
multivariable [31]. The preferred method is to use an adaptive matrix built of
multiple fading factors (MFF) to fix the relevant term of the Kalman gain matrix,

individually.

In order to determine the adaptive matrix, an innovation based process may be
followed. It is known that, Kalman filter innovation sequence can be determined by
(4.7). Then, as the next step, real and theoretical values of the innovation covariance

matrix must be compared as,

L & ér = H, P, HI +R
€L Cy e -1y b (4.42)

Here, p is the width of the moving window. In case, where the system operates

normally, the real and the theoretical innovation covariance matrix values match as
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in (4.42). However, when there is a measurement malfunction in the estimation
system, the real error will exceed the theoretical one. Hence, if an adaptive matrix,

Sy, 1s added in to the algorithm as,

k

ptl

==

=k

then, it can be determined by the formula of,
Se=1\— Z Exéy — HyPyp o Hy |RL. (4.44)

In case of normal operation, the adaptive matrix will be a unit matrix as S, = I. Here

I represents the unit matrix.

Nonetheless, as the p is a limited number because of the number of the
measurements and the computations performed with computer implies errors such as
the approximation errors and the round off errors; S; matrix, found by the use of
(4.44) may not be diagonal and may have diagonal elements which are “negative” or

lesser than “one” (actually, that is physically impossible).

Therefore, in order to avoid such situation, composing adaptive matrix by the

following rule is suggested:
S* =diag(s1,53, --,Sn) (4.45)
where,
s; = max{1,S;} i=1,n. (4.46)

Here, S;; represents the i™ diagonal element of the matrix S. Apart from that point, if

the measurements are faulty, S; will change and so affect the Kalman gain matrix;
e -1
Ky = Pyjie—1Hj (HiPeje—1Hi + Si"Ry) (4.47)

Therefore, in case of any kind of malfunctions, related element of the adaptive
matrix, which corresponds to the faulty component of the measurement vector,
increases and that brings out a smaller Kalman gain, which reduces the effect of the
innovation on the state update process. As a result, more accurate estimation results

can be obtained.
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Nevertheless, the adaptive algorithm is again operated only when the measurements
are faulty and in all other cases procedure is run optimally with regular OKF. Same
statistical information with the single fading factor based algorithm, which is defined

by (4.39)-(4.41), is used as the supervision criteria.

4.2.3 Adaptation procedure of unscented Kalman filter

Since the filtration algorithm of the UKF is different from LKF and EKF, its
adaptation procedure must be given separately. In this part, adaptive unscented
fading Kalman filter (AUFKF) algorithms with the single and multiple fading factors

are proposed.

4.2.3.1 Adaptation with single fading factor

Adaptive algorithm affects characteristic of filter only when the condition of the
measurement system does not correspond to the model used in the synthesis of the
filter. Otherwise filter works with regular UKF algorithm (4.19)-(4.33) in an optimal
way. Same as the case with LKF and EKF, adaptation occurs as a change in the

covariance matrix of the innovation sequence,
Py, (k + 1|k) = Py, (k + 1]k) + S(K)R(k + 1) (4.48)

where S(k) is the adaptive factor calculated in the base of innovation sequence,

e(k + 1)analyses. In adaptive case filter gain becomes
K(k+1) = Py (k+ 11k)[P,, (k + 11k) + SGOR(k + 1] (4.49)
The gain matrix is changed when the condition of
trle(k + DeT(k + 1)] = tr[P,, (k + 1]k) + R(k + 1)] (4.50)

is the point at issue. Here tr(+) is the trace of the related matrix. Left hand side of
(4.50) represents the real filtration error while the right hand side is the accuracy of
the innovation sequence known as a result of priori information [29]. When the
predicted observation vector y(k + 1|k) is reasonably different from measurement
vector, y(k + 1), real filtration error exceeds the theoretical one. Hence gain matrix
must be fixed hereafter by the use of adaptive algorithm and so adaptive factor S(k) .

In order to calculate adaptive factor equality of

trle(k + DeT (k + 1)] = tr[P,, (k + 11k) + S()R(k + 1)] (4.51)
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is used. Equation (4.51) can be rewritten as
trle(k + el (k + 1)] = tr[B,, (k + 11k)] + S(k)er[R(k + 1)] (4.52)
If the knowledge of
trle(k + DeT(k+ D] =eT(k + De(k + 1) (4.53)
is taken into consideration (36) becomes
el (k + De(k + 1) = tr[P,, (k + 1|k)] + SUk)tr[R(k + 1)]. (4.54)
As a result, adaptive factor can be obtained as

eT(k+1)e(k+1)—tr[Py, (k+1]k)]
tr[R(k+1)]

S(k) =

(4.55)

Adaptive factor rises in case of malfunctions. That makes up an increment in
covariance matrix of innovation sequence and a decrement in Kalman gain as it can
be seen from (4.48) and (4.49). Consequently, faulty measurements are regarded with

a small weight in the identification process and filter outputs are not affected.

On the other hand, adaptive algorithm is used only in case of faulty measurements
and in all other cases procedure is run optimally with regular Unscented Kalman
filter. Same checkout procedure is used with the one presented in 4.2.1. However,

note that, this time statistical function is build in a convenient way with the UKF as

B = €T (k + 1)[P,, (k + 1]k) + R(k + 1)] "e(k + 1) (4.56)

4.2.3.2 Adaptation with multiple fading factors

As in other cases, AUFKF with multiple fading factors runs when the condition of
the measurement system mismatches with the model used in the synthesis of the
filter. Otherwise filter works with optimal UKF algorithm. For a normally operating
system, the real and the theoretical innovation covariance matrix values match as in

(4.57).

k
1

- Z e(k +De(k+1)" =P, (k+1lk) + R(k+ 1),

J=k—pu+l

(4.57)

here, u is the width of the moving window.
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However, when there is a measurement malfunction in the estimation system, the
real error will exceed the theoretical one. Hence, if an adaptive matrix, S(k), is

added into the algorithm as,

k

1 Z e(k+1e(k+1)" =P, (k+1lk) + S(K)R(k + 1), (4.58)

Jek—pu+l

then, it can be determined by the formula of,

i

S5(k) = .L_l{ Z e(k+ 1)e(k + 1:]T_P}-}-(k+1|k:] R(k+1) 1. (4.59)

J=k—pu+l

In case of normal operation, the adaptive matrix will be a unit matrix as S(k) = I.

Here I represents the unit matrix.

Nonetheless, as p is a limited number because of the number of the measurements
and the computations performed with computer implies errors such as the
approximation errors and the round off errors; S(k) matrix, found by the use of
(4.59) may not be diagonal and may have diagonal elements which are “negative” or

lesser than “one” (actually, that is physically impossible).

Therefore, in order to avoid such situation, composing adaptive matrix by the

following rule is suggested:

S* =diag(s1,53, -,Sn) (4.60)
where,

s; = max{1,S;;} i=1,n. (4.61)

Here, S;; represents the i™ diagonal element of the matrix S. Apart from that point, if
the measurements are faulty, S*(k) will change and so affect the Kalman gain

matrix;
K(k +1) = Py (k + 1]K)[P, (k + 11k) + S* ()R + 1)] . (4.62)

In case of any kinds of malfunctions, the related element of the adaptive matrix,
which corresponds to the faulty component of the measurement vector, increases and

that brings out a smaller Kalman gain, which reduces the effect of the faulty
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innovation term on the state update process (4.32). As a result, accurate estimation

results can be obtained even in case of measurement malfunctions.

On the other hand, adaptive algorithm is used only in case of faulty measurements
and in all other cases procedure is run optimally with regular Unscented Kalman

filter. Checkout is satisfied by the procedure formed of (4.56) with (4.40) and (4.41).

4.3 Kalman Filtering for Attitude Estimation

Throughout the study, several Kalman filter algorithms are proposed for the attitude
estimation of a pico satellite. In this part, utilization methodology of these algorithms

for ITU-PSAT I is investigated.

Generally, by the use of optimal EKF or UKF, attitude parameters of a satellite can
be estimated. In this sense, acquiring information about the attitude angles (in Euler
angles or quaternions) and the angular rates of the satellite may be sufficient.
Nevertheless, for general scheme, it is assumed that all the torques, affecting the
satellite, are known and measurement sensors, i.e. magnetometers and gyros are bias
free. However, that is not a realistic approach, since these unknown terms always has
an effect on the estimation accuracy. One of the techniques to overrun this problem is
to take these unknown parameters into account and estimate them as well as the

attitude angles and the angular rates.

On the other hand, performing a Kalman filter algorithm for estimation of more
states means a degrading filter performance by time. In other words, estimating
parameters as less as possible may bring about more precise Kalman filter results.
Hence, the filter algorithms for the estimation of the unknown constant components
of the external torques and the magnetometer and gyro biases should be run for short

durations.

If these torque and bias terms do not change significantly for a period of time (since
the external torques and the bias of the magnetometers are assumed to be constant
and the bias of the gyros changes only within a limited bound), then it is possible to
utilize Kalman filter algorithms that identify them, initially, and then use the general
scheme for the estimation of only attitude and the angular rates. If it is needed,
estimations of these parameters may be corrected by running the relevant Kalman

filter algorithm periodically.
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Besides, as it is mentioned, Kalman filter algorithms must be built adaptively so as to
be not affected by the measurement malfunctions. Thus, main aim is to develop an
accurate adaptive Kalman filter where the formerly estimated parameters such as
torques and biases are taken into consideration. Table 4.1 gives the details of the

mentioned Kalman filter algorithms.

Table 4.1: Characteristics of Kalman filter algorithms.

Filter Type Measurement Estimated parameters No. of
Sensors estimated
parameters'
Filter for attitude Attitude angles +
3 magnetometers .
parameter attitude rates 6 or7
estimation

Attitude angles+attitude
rates+ constant

Filter for torque 3 components of the 9or10
S magnetometers+
estimation unknown external
3gyros
torques
. . St
Filter for 3 Attitude angles+attitude
. rates+ magnetometer 9or10
magnetometer bias  magnetometers+ biases
estimation 3gyros
. . 3 Attitude angles+attitude 9or 10
Filter for gyro bias .
e magnetometers+ rates+ gyro biases
estimation
3gyros
Adaptive Kalman 3 magnetometers Attitude angles + 6 or7
filter for parameter attitude rates
estimation

4.3.1 Attitude parameter estimation scenario

In this scenario, only attitude angles and the angular rates of the pico satellite are
estimated. For two different versions of attitude representation, Euler angles and

quaternions, estimated state vectors are individually, formed as;

e Euler angles

x=[p 0 Y wy w, T (4.63)

"If quaternions is chosen as an attitude representation, one more parameter is required to be estimated,
since there are 4 quaternion components instead of 3 Euler angles.
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e Quaternions

¥x=[0 qd2 q3 qa Wx Wy @7 (4.64)

4.3.2 Torque estimation scenario

In this scenario, along with the attitude angles and the angular rates, the unknown
constant components of the external torques (magnetic field pressure and the sun
radiation) are also estimated. Since the estimated torque components are constant, it

is possible to say that
-0 (4.65)

where N is the vector of constant unknown external torques as in (2.53).
Under these, circumstances estimated state vector will be

x=[¢ 0 Y wy w, w, Ny N, NJT (4.66)
Note that, torque estimation scenario is achieved with only Euler angle
representation.
4.3.3 Magnetometer bias estimation scenario

As well as attitude angles and the angular rates, magnetometer biases are also

estimated in this scenario. It is assumed that, bias of each magnetometer is constant

such that
Dm_yg | (4.67)
Here b, is the magnetometer bias vector as;
by = [Pmy  bm, bm,] (4.68)
As a result, the estimated state vector is
x=[¢ 0 ¥ @ w, @ bp, by, by, . (4.69)

Note that, magnetometer bias estimation scenario is achieved with only Euler angle

representation.
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4.3.4 Gyro bias estimation scenario

This time, instead of magnetometer bias, biases of the three onboard gyroscopes are
estimated along with the Euler angles and the angular rates. Characteristic of gyro

biases is same as the model given with (3.8). It may be repeated for convenience

dEg _
—Z=n, (4.70)
where
— T
bg = [bg, bg, bg,] 4.71)

Then the estimated state vector can be given as,
x=[0 0 ¥ o @ w, by by by] 4.72)

Note that, gyro bias estimation scenario is achieved with only Euler angle

representation.
4.3.5 Scenario for estimation in case of measurement malfunctions

In that last case, again only attitude angles and the angular rates of the pico satellite
are estimated, but as a difference with the initial scenario, this time filter is built

adaptively. Estimated state vectors are same with the ones given by (4.63) and (4.64).
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5. SIMULATIONS

In this last section of the thesis, results of the simulations for the attitude estimation
of the ITU-PSAT I are presented. Proposed Kalman filter algorithms run as an
attitude estimator for the pico satellite and the obtained simulation outputs are given

with a discussion on each of them.

Mainly, a scheme as described in 4.3 is followed and it is dealt with five separate
scenarios; attitude parameter estimation, torque estimation, magnetometer bias
estimation, gyro bias estimation and estimation in case of measurement
malfunctions. All of these scenarios are considered for UKF while EKF is used only

for attitude estimation and estimation in case of measurement malfunctions.

Also, note that, not all of the figures obtained by the simulations are given in this
section. Only, figures which reflect the results clearly are chosen and presented here.
If the algorithm is an extensive and important one for the thesis i.e. torque estimation

and estimation by AUFKF, then the rest of the figures are put into appendix section.

5.1 Attitude Estimation via Extended Kalman Filter

5.1.1 Attitude parameter estimation

In this simulation, attitude angles and the angular rates of the pico satellite are
estimated via EKF. As the attitude representation method, Euler angles are used.
Simulations are realized in 10000 steps for a period of 100 seconds with 0.01

seconds of sampling time, At.

First part of figures gives EKF parameter identification results and the actual values
in a comparing way. Second part of the figures shows the error of the estimation
process based on the actual attitude values of the satellite. The last part indicates the

variance of the estimation.

As it is seen in Fig.5.1, Fig.5.2 and Fig.5.3, EKF algorithm accurately estimates both
the attitude angles and the angular velocities of the satellite with respect to the

inertial frame.
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Figure 5.3 : Estimation of angular velocity about “x” axis with EKF.
5.1.2 Estimation in case of measurement malfunctions

As it is explained in the previous sections, both EKF and UKF can be made robust
against the measurement malfunctions by the use of proposed adaptive Kalman filter
algorithms. This scenario presents the results for an adaptive extended Kalman filter
(AEKF) algorithm which is used for estimation in case of measurement faults. Since
the filter uses single fading factor to adapt the filter gain, it may be also called as
adaptive extended fading Kalman filter (AEFKF) with SFF. Simulations are realized
in 10000 steps for a period of 100 seconds with 0.01 seconds of sampling time, At.

In case of measurement fault, which is formed by adding a constant term to the
measurement of one magnetometer at 40™ second, the simulations are also done with

EKF so as to compare results with AEKF.

Nonetheless, xa¢ is taken as 12.592 and this value comes from chi-square

distribution when the degree of freedom is 6 and the reliability level is %95.

First part of figures gives EKF or AEKF state estimation results and the actual values
in a comparing way. Second part of the figures shows the error of estimation process
based on the actual attitude estimation values of the satellite. The last part indicates

the variance of the estimation.
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As the Fig.5.4 shows, when the measurement malfunction is implemented to the
system, EKF estimates the roll angle with a great error. Per contra, AEKF secures its
estimation characteristic even in case of faulty measurements by reducing the effect
of the innovation terms on the state estimation phase (Fig. 5.6). That means, if the
measurements have error, the filter gain is decreased due to the adaptive factor which

is much larger than 1. Variation of adaptive factor by time proofs that (Fig. 5.7).

x 10° Variation of Adaptive Factor by Time
7 T T T T T

Adaptive Factor

0 L 1 L L L I | |
0 10 20 30 40 50 60 70 80 90 100

time (sec)

Figure 5.6 : Variation of adaptive factor by time for AEKF.

Similar results have been obtained for the estimation of other attitude parameters.

5.2 Attitude Estimation via Unscented Kalman Filter

5.2.1 Attitude parameter estimation

In this simulation, attitude angles and the angular rates of the pico satellite are
estimated via UKF. As the attitude representation method, both Euler angles and the

quaternions are used.

First part of figures gives UKF parameter identification results and the actual values
in a comparing way. Second part of the figures shows the error of the estimation
process based on the actual attitude values of the satellite. The last part indicates the

variance of the estimation.
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5.2.1.1 Attitude parameter estimation with Euler angles

Simulations are realized in 20000 steps for a period of 2000 seconds with 0.1

seconds of sampling time, At.

By examining results, it can be understood that UKF gives accurate estimation
results for both Euler angles and the angular velocities (Fig.5.7 and Fig 5.8). Besides
if the EKF and UKF algorithms for the attitude estimation are compared, and the data
presented in Table 5.1 is regarded, it is possible to say that UKF is more efficient
than EKF. Also, UKF algorithms can work with a larger sampling time than EKF
algorithms without failing and usually, that brings about a lesser computational

burden.
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Figure 5.7 : Pitch angle estimation by UKF.
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Figure 5.8 : Estimation of angular velocity about “x” axis with UKF.

Table 5.1: Comparison of EKF and UKF estimation performances”.

Parameter Absolute Estimation Absolute Estimation
Error Values for Error Values for
EKF UKF
¢ (deg) 9.0644 0.0278
0 (deg) 2.7221 0.2191
Y (deg) 8.9144 2.8457
w, (deg/s) 0.6473 0.0003
w,, (deg/s) 0.8236 0.0018
w, (deg/s) 1.3286 0.0018

? Note that, values are gained at time steps where the indicated filter is converged and giving accurate
estimation results. Since EKF and UKF can be run for different periods because of the filter
characteristics, the results do belong to two separate times.
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5.2.1.2 Attitude parameter estimation with quaternions

UKF is also used for attitude estimation when the quaternions are chosen as the
attitude parameterization technique. This time simulations are realized with 0.005

seconds of sampling time, At, for a period of 50 seconds in 10000 steps.

As it is apparent form Fig.5.9 and 5.10, accurate estimation results may be obtained
in this case too. However, as the number of the states to be estimated is increased,
UKF with quaternion representation may require more computation than UKF with
Euler angles representation. Besides, quaternion representation means one redundant
parameter, as a result of the characteristic of (2.22). When this constraint is not taken
into consideration, UKF process may break down because of the covariance matrix
which becomes singular by time. Hence, to get out of the problem, this constraint

must be implicated into model as a dummy measurement,
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Figure 5.9 : Estimation of parameter “q2” by UKF with quaternion representation.
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This redundant parameter makes filter, prone to the divergence. If the constrain is not
checked within short periods, filter may fail. That is why; a smaller sampling period

is needed as in case.
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Figure 5.10 : Estimation of angular velocity about “y” axis with UKF with
quaternion representation.

5.2.2 Torque estimation

In this estimation scenario, unknown constant components of the external torques
affecting the satellite are estimated in addition to the Euler angles and the angular
rates. As it is aforementioned, in this case, IMU is also used as a supplementary
sensor. Simulations are realized in 20000 steps for a period of 2000 seconds with 0.1

seconds of sampling time, At.

First part of figures gives UKF parameter identification results and the actual values
in a comparing way. Second part of the figures shows the error of the estimation
process based on the actual attitude estimation values of the satellite. The last part

indicates the variance of the estimation.

In Fig.5.11, an attitude Euler angle estimation example is given. As it is obvious,
UKF accurately estimates the roll angle of the satellite within the bounds of

maximum +2/-2 deg. of estimation error and especially after the 1400th second of the
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estimation, the filter output becomes highly precise. Besides as it is presented in

Fig.5.12, UKF also has a good estimation characteristic for the angular rates.
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Figure 5.11 : Roll angle estimation by UKF for torque estimation scenario.

Another fact about the UKF algorithm is the exact estimation of the unknown
constant components of the external torques, which coincides with the actual value
approximately after 250 seconds from the origin (Fig. 5.13). That is also obvious
from Fig. 5.14 that reflects the estimation error percentages for torques with respect
to the actual values. Therefore, it is possible to say that; proposed UKF algorithm
estimates all of the states (Euler angles, angular rates and the unknown constant

components of the external torques) accurately.
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Figure 5.14 : Error percentages for estimations of torques.

5.2.3 Magnetometer bias estimation

In this estimation scenario, magnetometer biases are estimated as well as Euler
angles and the angular rates. As it is aforementioned, in this case, IMU is also used
as a supplementary sensor. Simulations are realized in 20000 steps for a period of

2000 seconds with 0.1 seconds of sampling time, At.

First part of figures gives UKF parameter identification results and the actual values
in a comparing way. Second part of the figures shows the error of the estimation
process based on the actual attitude estimation values of the satellite. The last part

indicates the variance of the estimation.

In this case, UKF again gives accurate estimation results for Euler angles and the
angular velocities as it is evident from Fig.5.15 and Fig.5.16. Nonetheless, although
it is hard to estimate constant parameters, which do not change by time according to
any dynamical rule, UKF algorithm estimates magnetometer biases with a sufficient

precision (5.17). For magnetometer bias estimation scenario, filter must be tuned
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carefully, in order to obtain good estimation characteristics for both bias terms and

the attitude angles and angular rates.
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magnetometer bias estimation scenario.
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Figure 5.17 : Estimation of bias of the magnetometer which is aligned in “x” axis.

Furthermore, error percentages of magnetometer bias estimation procedure with
respect to the actual values of the biases may be given to show how accurately biases

can be identified with a fine tuned UKF (Fig. 5.18).
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Figure 5.18 : Error percentages for estimations of magnetometer biases.
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5.2.4 Gyro bias estimation

This time, gyro biases are estimated instead of magnetometer biases in addition to
the attitude angles and the angular rates. Simulations are realized in 20000 steps for a

period of 2000 seconds with 0.1 seconds of sampling time, At.

First part of figures gives UKF parameter identification results and the actual values
in a comparing way. Second part of the figures shows the error of the estimation
process based on the actual attitude estimation values of the satellite. The last part

indicates the variance of the estimation.
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Figure 5.19 : Pitch angle estimation by UKF for gyro bias estimation scenario.

UKEF algorithm estimation outputs of both attitude angles and the angular velocities
are accurate again (Fig. 5.19 and Fig. 5.20). Nevertheless, by the use of UKF, gyro
biases can be also estimated precisely. That is clear in Fig. 5.21. However, as it is
valid for magnetometer bias estimation process, UKF for gyro bias is a hard to tune
algorithm too. Especially, initial values of the covariance matrix, P(0/0), and the

process noise covariance matrix, Q (k) should be determined ably.
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Figure 5.20 : Estimation of angular velocity about “x” axis by UKF for gyro bias
estimation scenario.
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5.2.5 Estimation in case of measurement malfunctions

In that last scenario, results for AUFKF algorithms with SFF and MFF are presented.
Simulations are realized in 20000 steps for a period of 2000 seconds with 0.1

seconds of sampling time, At.

During simulations, for testing AUFKF algorithms, two kinds of measurement
malfunction scenarios are taken into consideration; instantaneous abnormal

measurements, and continuous bias.

Besides, in case of measurement faults, the simulations are also done with UKF so as
to compare results with AUFKFs and understand efficiency of the adaptive

algorithms in a better way.

Nonetheless, xas is taken as 12.592 and this value comes from chi-square

distribution when the degree of freedom is 6 and the reliability level is %95.

First part of figures gives UKF or AUFKF state estimation results and the actual
values in a comparing way. Second part of the figures shows the error of estimation
process based on the actual attitude estimation values of the satellite. The last part

indicates the variance of the estimation.

5.2.5.1 Instantaneous abnormal measurements

Instantaneous abnormal measurements are simulated by adding a constant term to the
magnetic field tensor measurement of one magnetometer at the 500" second. As it is
seen from Fig. 5.22, Fig. 5.23 and Fig 5.24, both AUFKF algorithms (with SFF and
MFF) give more accurate estimation results than UKF in case of the instantaneous
abnormal measurements. The results obtained by regular UKF are not reliable when
the measurements are gained with an error. However, AUFKFs with SFF and MFF
maintain their estimation characteristic for the whole process and afford precise
estimation outputs in case of the abnormal measurements, as well as the normal
operation condition. Similar results have been obtained when the measurement

malfunction is implemented to another magnetometer.

Table 5.2 compares absolute estimation errors of three filters for two different time
steps. Note that, highlighted results are gained at seconds where the measurement

malfunction is implemented.
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Figure 5.22 : Roll angle estimation by optimal UKF in case of instantaneous
abnormal measurements.
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Figure 5.23 : Roll angle estimation by AUFKF with SFF in case of
instantaneous abnormal measurements.
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Figure 5.24 : Roll angle estimation by AUFKF with MFF in case of instantaneous
abnormal measurements.

Table 5.2: Comparison of absolute estimation errors in case of instantaneous
abnormal measurements.

Abs. Err. Values Abs. Err. Vall.les Abs. Err. Vall.les
for Regular UKF for AUFKF with for AUFKF with
SFF MFF
Parameter 500 s. 1000 s. | 500 s. 1000 s. 500 s. 1000 s.
o (deg) 2.6941 | 0.9987 |0.1992 | 0.6871 0.0652 0.1286
0 (deg) 1.1066 | 0.8125 | 1.8899 | 0.3089 0.3746 0.0705
Y (deg) 0.7437 | 5.1317 | 3.5498 |4.7176 0.7132 0.9247
w, (deg/s) |0.028 0.002 0.0014 | 0.0018 0.0003 0.0003
wy (deg/s) |0.0181 |0.0055 |0.0037 | 0.0036 0.0007 0.0007

w, (deg/s) 10.0007 |0.0005 |0.0056 | 0.0002 0.0013 0.00004

When the measurements are faulty, AUFKF with SFF compensates that by
increasing its single fading factor (adaptive factor) and disregarding all of the
measurements for these time steps. Besides, AUFKF with MFF secures the
robustness of the filter by increasing related fading factors of the adaptive matrix
individually. Increment of the related fading factors brings out a decrement in the

related components of the Kalman gain, so as to reduce the corrective effect of the
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innovation sequences of the faulty measurements on the state estimation process
(4.32). Progress may be understood better by examining the graph of the adaptive
factor of the AUFKF with SFF (Fig. 5.25) and the adaptive matrix itself of AFKF
with MFF at the 500" second (5.2).

6 x 10° Adaptive Factor Variation by Time
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Figure 5.25 : Variation of adaptive factor by time for AUFKF with SFF in case of
instantaneous abnormal measurements.

16000002 0 O
S*(k) = 0 1 0 (5.2)
0 0 1.58

Even though both of the adaptive Kalman filters give similar estimation results in
case of instantaneous abnormal measurements, AUFKF with MFF can be thought as
a more advantageous algorithm as it takes the faulty measurements into account
individually. Disregarding all of the measurements, as AUFKF with SFF does,
affects estimation procedure of the all states. However, since the abnormal
measurement is implemented only to the one measurement channel, keeping out the
related measurement would be more significant. As a result of the dynamics and the
measurement models of the satellite which are nonlinear and constituted of coupled

states, any malfunction in one of the magnetometers affects the estimation
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characteristic of all states, but not in same degree. Hence, for this kind of
measurement malfunction, AUFKF with MFF proves its high performance capability
as it can correct estimation characteristic of each state, individually and secure

accurate estimation characteristic for all states at the same time.

Proposed AUFKF algorithms are free of computational burden and they can be easily
run by simple microprocessors. If the general %10 constrain for the mass and the
power consumption of the ADCS of a pico satellite is regarded [2], these algorithms
do not brings out an extra requirement and they can be used with the systems suitable

for general EKF or UKF processing.

Furthermore, note that it is possible to obtain same kind of results for AUFKF
algorithms when they are built with the quaternion representation. Fig. 5.26 and Fig.
5.27 gives UKF and AUFKF with SFF estimation results for a quaternion component

in case of instantaneous abnormal measurements.
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Figure 5.26 : Estimation of parameter “q2” by optimal UKF in case of instantaneous
abnormal measurements.
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Figure 5.27 : Estimation of parameter “q2” by AUFKF with SFF in case of

instantaneous abnormal measurements.

5.2.5.2 Continuous bias at measurements

Continuous bias term is formed by adding a constant term to the measurements of
one of the magnetometer in between 500" and 530™ seconds. As Fig. 5.28, Fig. 5.29,
Fig. 5.30 and Table 5.3 show, again optimal UKF fails about estimating states
accurately. Per contra, AUFKF algorithms with SFF and MFF reduce the effect of
the innovation sequence and eliminate the estimation error which is caused by the
biased measurements of one magnetometer. Besides, by the use of the predicted

states which are more weighted than the innovation sequence in (4.32), they secure

accurate estimation outputs throughout this period.
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Figure 5.28 : Roll angle estimation by optimal UKF in case of continuous bias at
measurements.
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Figure 5.29 : Roll angle estimation by AUFKF with SFF in case of continuous bias
at measurements.
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Figure 5.30 : Roll angle estimation by AUFKF with MFF in case of continuous bias
at measurements.

Table 5.3: Comparison of absolute estimation errors in case of continuous bias at
measurements.

Abs. Err. Values Abs. Err. Vall.les Abs. Err. Vall.les
for Regular UKF for AUFKF with for AUFKF with
SFF MFF
Parameter 500 s. 1000 s. | 500 s. 1000 s. 500 s. 1000 s.
@ (deg) 5.0535 | 15.759 | 0.1571 | 0.461 0.0928 0.2329
0 (deg) 2.7733 | 23.431 |1.2893 |0.2172 0.6617 0.1156
Y (deg) 1.2492 | 192.76 |2.4375 |3.2138 1.256 1.6444
w, (deg/s) 10.0558 |0.0798 |0.0009 | 0.0012 0.0005 0.0006
w, (deg/s) [0.0352 |0.2307 |0.0025 | 0.0024 0.0013 0.0013

w, (deg/s) 10.0043 |0.1422 |0.0039 | 0.0001 0.0021 0.0001

Even though, it can not be stated that AUFKF with MFF is superior than AUFKF
with SFF according to the figures (Fig. 5.29 and Fig. 5.30), Table 5.3 shows that
estimation outputs of AUFKF with MFF are more precise as it is expected. Already,
it is a known fact that individual increase of related fading factors, which
corresponds to the faulty measurements, is advantageous than disregarding all

measurements at the same time.
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6. CONCLUSION

In this study, various Kalman filter algorithms for the attitude estimation of ITU-
PSAT I satellite in different mission periods are developed. State estimation
performances of both EKF and UKF are investigated when the magnetometers are
the only onboard measurement sensors. Identification of the parameters e.g.
unknown constant external torques, magnetometer bias and gyro bias is achieved in
case of Inertial Measurement Unit (IMU) usage as a supplementary sensor. Besides,
Adaptive Unscented Fading Kalman Filter (AUFKF) with single and multiple fading
factors are proposed so as to secure filter robustness against measurement
malfunctions. Developed Kalman filter algorithms are tested as a part of the attitude

determination system of ITU PSAT I satellite by the use of simulations.

Individual UKF algorithm gave accurate outputs for the estimation of unknown
components of the external torques acting on the satellite, magnetometer bias and the
gyro bias, as well as Euler angles and angular rates. The simulation results approve
that, the developed UKF based identification algorithms of the attitude dynamics
parameters gives sufficiently accurate estimation results to be utilized on a pico

satellite. Moreover, they may be considered for other satellite types too.

If EKF and UKF algorithms are compared regarding the satellite attitude estimation
problem, it is possible to say that UKF is superior to EKF. Nonetheless, when it is
thought in point of view of usage on pico satellites and their limited computer

processor capacity, being free of computational burden is an advantage for UKF.

Also adaptive unscented fading Kalman filter algorithms with single fading factor
and multiple fading factors for the case of measurement malfunctions are developed.
By the use of defined variables named as fading factor, faulty measurements are
taken into consideration with small weight and the estimations are corrected without
affecting the characteristic of the accurate ones. In the presented AUFKFs, the filter
gain correction is performed only in the case of malfunctions in the measurement

system.
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Proposed AUFKF algorithms are applied for the attitude estimation process of ITU-
PSAT I satellite’s attitude dynamics model. Algorithms are tested for two different
measurement malfunction scenarios and results are compared with the outputs of
optimal UKF for the same cases; Instantanecous abnormal measurements and
continuous bias at measurements. At both circumstances, UKF becomes faulty while
the introduced AUFKF algorithms stand robust to the measurement errors
(insensitive to failure). Comparison of simulation results show that, the performance
of AUFKEF algorithms are significantly better than UKF in the case of measurement
malfunctions. On the other hand, if these two adaptive Kalman filter algorithms are
compared, it is thought that AUFKF with MFF is more advantageous. However,
especially for the attitude estimation problem, further studies on that topic are

required.

The proposed approach does not require a priori statistical characteristics of the
faults. Furthermore, the presented AUFKF algorithms are simple for practical
implementation and their computational burden are not heavy. These characteristics
make introduced AUFKF algorithms extremely important in point of view of
supplying reliable state estimation for the attitude determination and control system

of pico satellites.
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Figure A.1 : Pitch angle estimation by UKF for torque estimation scenario.
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Figure A.3 : Estimation of angular velocity about “x” axis by UKF for torque
estimation scenario.
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Figure A.4 : Estimation of angular velocity about “z” axis by UKF for torque
estimation scenario.
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Figure B.2 : Yaw angle estimation by UKF for magnetometer bias estimation
scenario.
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Figure B.6 : Estimation of bias of the magnetometer which is aligned in “z” axis.
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Figure C.1 : Yaw angle estimation by UKF for gyro bias estimation scenario.
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Figure C.2 : Roll angle estimation by UKF for gyro bias estimation scenario.
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APPENDIX D
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Figure D.1 : Pitch angle estimation by optimal UKF in case of instantaneous
abnormal measurements.
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Figure D.2 : Yaw angle estimation by optimal UKF in case of instantaneous
abnormal measurements.
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Figure D.3 : Angular velocity about “x” axis estimation by optimal UKF in

case of instantaneous abnormal measurements.
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Figure D.4 : Angular velocity about “y” axis estimation by optimal UKF in

case of instantaneous abnormal measurements.
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Figure E.1 : Pitch angle estimation by AUFKF with SFF in case of
instantaneous abnormal measurements.
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Figure E.2 : Yaw angle estimation by AUFKF with SFF in case of
instantaneous abnormal measurements.
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Figure E.3 : Angular velocity about “x” axis estimation by AUFKF with SFF
in case of instantaneous abnormal measurements.
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Figure E.4 : Angular velocity about “y” axis estimation by AUFKF with SFF
in case of instantaneous abnormal measurements.
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Figure E.5 : Angular velocity about “z” axis estimation by AUFKF with SFF
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Figure F.1 : Pitch angle estimation by AUFKF with MFF in case of
instantaneous abnormal measurements.
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Figure F.2 : Yaw angle estimation by AUFKF with MFF in case of
instantaneous abnormal measurements.
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Figure F.3 : Angular velocity about “x” axis estimation by AUFKF with MFF in
case of instantaneous abnormal measurements.
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Figure F.5 : Angular velocity about “z” axis estimation by AUFKF with MFF in
case of instantaneous abnormal measurements.
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Figure G.1: Pitch angle estimation by optimal UKF in case of continuous bias at
measurements.
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Figure G.2: Yaw angle estimation by optimal UKF in case of continuous bias at
measurements.
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Figure G.3: Angular velocity about “x” axis estimation by optimal UKF in case of
continuous bias at measurements.
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Figure G.4: Angular velocity about “y” axis estimation by optimal UKF in case of
continuous bias at measurements.
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Figure G.5: Angular velocity about “z” axis estimation by optimal UKF in case of
continuous bias at measurements.
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Figure H.1: Pitch angle estimation by AUFKF with SFF in case of continuous bias
at measurements.
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Figure H.2: Yaw angle estimation by AUFKF with SFF in case of continuous bias
at measurements.
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Figure H.3: Angular velocity about “x” axis estimation by AUFKF with SFF in
case of continuous bias at measurements.
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Figure H.4: Angular velocity about “y” axis estimation by AUFKF with SFF in
case of continuous bias at measurements.
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Figure H.5: Angular velocity about “z” axis estimation by AUFKF with SFF in
case of continuous bias at measurements.
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Figure I.1:  Pitch angle estimation by AUFKF with MFF in case of continuous
bias at measurements.
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Figure I.2: Yaw angle estimation by AUFKF with MFF in case of continuous bias
at measurements.
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Figure 1.3:  Angular velocity about “x” axis estimation by AUFKF with MFF in
case of continuous bias at measurements.
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Figure 1.4:  Angular velocity about “y” axis estimation by AUFKF with MFF in
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Figure 1.5:  Angular velocity about “z” axis estimation by AUFKF with MFF in
case of continuous bias at measurements.
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