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Abstract

The proper management of renal lithiasis presents a challenge, with the recur-
rence rate of the disease being as high as 46%. To prevent recurrence, the first
step is the accurate categorization of the discarded renal calculi. Currently, the
discarded renal calculi type is determined with the X-ray powder diffraction
method which requires a cumbersome sample preparation. This work presents
a new approach that can enable fast and accurate classification of discarded
renal calculi with minimal sample preparation requirements. To do so, first, the
measurements of the dielectric properties of naturally formed renal calculi are
collected with the open-ended contact probe technique between 500 MHz to 6
GHz with 100 MHz intervals. Cole-Cole parameters are fitted to the measured
dielectric properties with the generalized Newton-Raphson method. The re-
nal calculi types are classified based on their Cole—Cole parameters as calcium
oxalate, cystine, or struvite. The classification is performed using nearest neigh-
bors (kNN) machine learning algorithm with the 10 nearest neighbors, where
accuracy as high as 98.17% is achieved.

Keywords: Dielectric properties of renal calculi, kidney stone, open-ended
coaxial probe, Cole-Cole parameters, classification of kidney stones, machine
learning, k-nearest neighbors

1. Introduction

Renal lithiasis, defined as the biomineralization of the urinary system, af-
fects 14% of the population globally [I 2]. The disease has to be well managed
to prevent recurrence, which has been reported to be as high as 46% in five-year
follow-up patient studies [3]. Prevention of disease recurrence is possible via
proper medication and dietary restrictions. However, to designate the appro-
priate prescription, the renal calculi types should be determined by analyzing
the discarded material. There are four major renal calculi types: calcium ox-
alate (CaOx), cystine, struvite, and uric acid. Types of renal calculi can be
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determined based on physical and chemical features, and several methods of
determining the types have been proposed in the literature. Commercial kits
measuring the ionic conductivity of samples can be used to determine renal
calculi types in a laboratory environment, but while the commercial kits are
affordable, the method requires long processing times and cannot differentiate
the compounds in a sample [4]. The type of renal calculi can also be determined
through a material’s reaction to heat using the thermogravimetric method.
However, the sensitivity of this method is not adequate, and it permanently
damages the discarded renal calculi sample [3], 6]. Another method is polarised
microscopy, where sample fragments are examined by adding a refractive index
liquid. The drawback of this method is the inability to perform component
distinction; therefore, this method suffers from low accuracy rates [7]. Infrared
radiation has also been investigated to determine renal calculi type, but the re-
sults of a study were inconclusive due to a similarity to the absorbance range of
some stone types [8]. X-ray powder diffraction method is widely used because of
the unique diffraction patterns of the different renal calculi types [9, [10]. How-
ever, this method requires cumbersome sample preparation as well as a trained
radiologist. Considering the high cost, difficulty of application, low efficacy, and
low sensitivity of the listed methods, it is clear that there is a need for new
modalities to classify the stones. One such technique, recently proposed by [11],
collects pictures of the renal calculi samples with a standard camera, and a ran-
dom forest classifier is employed to categorize the renal calculi based on the color
and texture of the samples. The obtained accuracies ranged from 63% to 83%,
helping to prove that machine learning algorithms can be effectively utilized
for classification of renal calculi, and the accuracy can be increased with data
collection. Nevertheless, visual examination may not reveal enough information
regarding the molecular structure of renal calculi. This factor may contribute
to relatively low accuracy rates because samples with similar appearances may
have different molecular structures.

Table 1: Summary of previously reported studies on renal calculi dielectric properties.

Study  Frequency Temperature ( °C)  Type

12 10 kHz - 1.5 MHz N/A Natural stones (solid
and powdered)

[13] 1 kHz — 1 MHz 30 - 80 Single diffusion gel

[14] 1 Hz - 1 MHz R.T. Phantoms

[15] 100 kHz — 1 MHz 40 - 110 Silica gel

[16] 1 Hz - 1 MHz 40 - 100 Natural stones (pow-
dered)

[17] 22GHz-29GHz N/A Natural stones and

crystals grown
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One other approach that has not been explored in the literature is the em-
ployment of dielectric properties for classification of the discarded renal calculi.
Dielectric properties are associated with the molecular structure of a material,
and it governs the interactions between electromagnetic waves and materials.
Thus, the dielectric properties of a medium can be determined by analyzing the
electromagnetic wave behavior in that medium. In order to exploit potential
microwave diagnostic and therapeutic technologies, researchers have performed
extensive microwave dielectric property analysis on different biological tissues
and biomaterials [18| 19 20]. However, microwave dielectric properties of renal
calculi have not been fully explored in the literature. Reported studies mostly
cover the low frequencies and require machining of the renal calculi. These
studies are performed with the motivation of providing insight into the disease
pathogenesis in order to develop new treatment techniques. In [I3], the dielec-
tric properties of the grown struvite crystal were studied at low frequencies to
investigate the potential for heat dissipation leading to the disintegration of the
renal calculi. In [14], an evaluation of the stress effect on renal calculi phantoms
was studied in five phantom categories. In [I5], the dielectric properties of cal-
cium oxalate grown in silica gel were reported in order to reveal pathogenesis
of renal calculi. [I6] investigated the growth mechanism of renal calculi by in-
terpreting the dielectric constant via X-ray diffraction (XRD) analysis. In [I7],
the microwave cavity perturbation technique was used to collect and compare
the dielectric properties of in-vitro and naturally formed stones. However, the
reported dielectric properties only cover a narrow band and the study only an-
alyzed a small number of samples. Reported studies on dielectric properties of
renal calculi are listed in Table [T} where the listed studies performed below 1.5
MHz employed parallel plate technique to measure the dielectric properties.

This study proposed to employ the open-ended coaxial probe technique to
collect dielectric property measurements. In comparison to the techniques pre-
viously employed in studies, the open-ended coaxial probe technique requires
minimal sample preparation (e.g., machining of the sample is not required) and
is able to perform broadband dielectric property measurement. In this work,
dielectric properties of samples belonging to three different renal calculi types
of calcium oxalate, cystine, and struvite were measured between 500 MHz to
6 GHz. One pole Cole—Cole equations, a mathematical expression frequently
used for expressing the dielectric property behavior of biological tissues over
wide frequency ranges, were fitted to the measurements, and the parameters of
the Cole—Cole equations were used as features for the k-nearest neighbors algo-
rithm. The algorithm was then utilized for determining the class of renal calculi
samples. The promising results indicated that the technique can be employed
for rapid determination of discarded renal calculi types to enable the necessary
measures for prevention of the disease.

This paper is organized as follows: dielectric property measurement and the
machine learning algorithm are explained in Section [2] The sample preparation
and dielectric property measurement setup are given in Section[3] The dielectric
property measurements are provided in Section and the kNN algorithm
results are given in Section Finally, the conclusions drawn are discussed in
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Section [7

2. Background

The microwave dielectric properties, namely permittivity and conductivity
have been widely used to exploit the diagnostic and therapeutic potential of
microwaves. This is enabled by the inherent dielectric property discrepancy be-
tween healthy and abnormal tissues. Although the dielectric properties of many
different biological tissues and biological anomalies have been widely reported
in the literature, there are very few reported studies on the microwave dielectric
property behavior of renal calculi. This work explored the inherent dielectric
property discrepancy between different renal calculi types and exploited this
property to classify the discarded samples by utilizing a machine learning al-
gorithm. In this section, we first emphasize the significance of the open-ended
coaxial probe dielectric property measurement method and explain the features
that were given as inputs to the kNN algorithm. Both the open-ended coaxial
probe technique and the kNN algorithm are explained in great length in the
literature; thus, both topics are discussed only briefly in this work.

2.1. Open-ended coazial probe technique

Dielectric properties of biomaterials have been widely investigated to en-
able the advancements in microwave diagnostic and therapeutic technologies.
Different techniques have been used for measurement of dielectric properties,
including resonant cavity perturbation, parallel plate, free space, waveguide,
and the open-ended coaxial probes. Choosing the proper technique depends
on the frequency, material properties, and application requirements. For exam-
ple, the parallel plate technique is suitable for low-frequency measurements and
requires heavy machining of the sample. Similarly, the cavity perturbation tech-
nique can only perform narrowband measurements, and the sample needs to be
heavily machined. On the other hand, the open-ended coaxial probe technique
is simple to operate, does not require machining of the sample, and is able to
perform broadband measurements [21]. The technique is mostly used for dielec-
tric property measurements of biological materials with high permittivity and
loss. Despite all the advantages, the technique is only utilized in laboratory
environments, and multiple measurements from one sample are required due to
high error and low measurement repeatability rates.

Advantages of the technique make it attractive for using to measure renal
calculi dielectric properties. In this study, we aimed to eliminate the heavy ma-
chining of the sample, and the disadvantages of the technique were mitigated via
the machine learning algorithm. Therefore, this study enables the classification
of renal calculi with a single dielectric property measurement. In addition, the
discarded renal calculi sample will not be destroyed and can be used for further
processing.

One important requirement of this technique is to place the aperture of the
probe on the sample under test without leaving an air gap. To provide direct
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contact, all renal calculi samples, which tend to have rough surface, were sanded
to make their surfaces smoother. The open-ended coaxial probe measurement
system used in this study consisted of a vector network analyzer (VNA) com-
mercial software to calculate dielectric properties, and a coaxial probe kit, as
shown in Fig.

Computer

Network

Analyzer

Figure 1: The open-ended coaxial probe set-up for dielectric property measurement.

VNA essentially consists of a signal source, a receiver, and a display. VNA
is used for measuring microwave network parameters; that is, scattering pa-
rameters (S-parameters). The source transmits the signal to the renal calculi
through a coaxial probe, and the receiver measures the signal reflected back to
the probe from the sample. After obtaining S-parameters, dielectric constant
and dielectric loss values of each stone have been computed over the frequency
range of 500 MHz to 6 GHz with 100 MHz intervals by the commercial software.

2.2. Machine learning algorithm: the k-nearest neighbors (kNN)

Predictive or descriptive machine learning algorithms have been applied to
solve many different problems, including but not limited to data mining, natural
language processing, image recognition, and expert systems. Machine learning
algorithms are known to be particularly effective when the exact relationship
between inputs and outputs of a process are not apparent. Machine learning,
a subfield of artificial intelligence, refers to the computer’s ability to learn from
training data or past experiences and successfully generalize the model to a test
set. In machine learning algorithms, data can be processed with supervised or
unsupervised learning approaches. Both inputs and their corresponding outputs
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are used in supervised machine learning algorithms, while unsupervised ones uti-
lize only inputs to train the algorithm. Considering this description, the type
of machine learning algorithm is determined by input types, the presence of
outputs, and desired outputs. For classification of renal calculi, supervised ma-
chine learning models such as support vector machine (SVM), artificial neural
network (ANN), k-nearest neighbors (kNN)and other supervised learning algo-
rithms, can be used since both the inputs and the outputs of the training set
are known.

In [22], negligible differences were observed between the SVM and kNN al-
gorithms with data sets that had few or moderate number of features. However,
SVM aims to find the best classification function to discriminate the samples of
two classes in the training set. Since it is a binary classifier, it needs to be mod-
ified for a multi-class problem [23]. In the study conducted by [24], cumulative
error performances of machine learning algorithms were analyzed with respect
to sample size. According to the study, the kNN algorithm showed better per-
formance for data sets that were closest to our sample size. As a consequence,
the kNN algorithm was preferred for the present study in order to decrease the
complexity and improve the performance of classification.

The kNN algorithm works by categorizing data via correlating inputs to
similar outputs. In a sense, as the algorithm confronts unknown data, it inves-
tigates similar instances from the training set. Two design parameters — the
number of nearest neighbors, k, and the distance between data points — were
adjusted while developing the kNN model. The distance could be calculated
with Euclidean distance, Manhattan distance, or Minkowski distance relations.
To train the model, data in the training set were positioned on a coordinate
system that is compatible with the data dimensions. During the testing stage,
unknown data were placed into same coordinate system to specify the kNN.
The class of unknown data, then, was estimated from the majority classes of
neighbors.

3. Experiments

A detailed work on the dielectric properties of three renal calculi categories,
calcium oxalate, cystine, and struvite, was carried out for classification. Addi-
tionally, another study was performed by the authors on the dielectric properties
of renal calculi with a limited number of samples covering the frequency range
of 0.5 GHz to 18 GHz [25]. Complex permittivity data composed of dielec-
tric constant (e/) and dielectric loss factor € were obtained via the open-ended
coaxial probe technique, which is widely used to measure broadband dielectric
properties of biomaterials in a laboratory environment. The properties of the
renal calculi samples, the experimental setup, and the classification procedures
used are detailed in the following sections.

3.1. Samples

A total of 105 naturally occurring renal calculi samples were obtained from
the Department of Urology, Cerrahpasa Medical School. The renal calculi sam-
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ples were gathered from 40 patients by utilizing various treatment methods
including percutaneous nephrolithotomy (PCNL). The samples obtained were
sorted into two groups, where the first group included a total of 49 samples with
21 calcium oxalate, 7 cystine, and 11 struvite renal calculi samples. The second
group included a total of 66 samples with 14 calcium oxalate, 28 cystine, and
24 struvite renal calculi samples. While the obtained number of renal calculi
samples was greater than 105, some of the samples were eliminated in both
measurement periods due to their small dimensions. The radius of measured
samples used ranged from 2.5 mm to 10 mm. Pictures from the obtained renal
calculi samples are shown in Fig. The sample preparation was minimally
laborious compared to other methodologies. Since the aperture of the probe
has to be fully in contact with the material being tested, the surfaces of the
renal calculi samples were sanded lightly to obtain a flat surface.

(©) (d)

Figure 2: Some of the renal calculi samples utilized for dielectric property measurements, (a)
a portion of the calcium oxalate samples, (b) a portion of the cystine samples, (c) a portion
of the struvite samples, (d) a cystine sample.
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3.2. Fxperimental setup

The dielectric properties of the renal calculi samples were measured using
a slim-form open-ended coaxial probe with an aperture size of 2.2 mm. The
S-parameters were measured with an Agilent N5245A PNA-X Microwave Net-
work Analyzer (shown in Fig. . The PNA-X was connected to the probe with
a 50 Q@ RF-cable. Both the VNA and the open-ended coaxial probe have char-
acteristic impedance of 50 (2 as well, which ensures impedance matching. The
impedance of the open-ended coaxial probe was determined by the diameters
of the inner and outer conductors and the relative permittivity of the dielectric
material sandwiched between them. The probe utilized in this work had an
outer conductor diameter of 2.2 mm and an inner conductor diameter of 0.6
mm, and the material between the concentric conductors was Teflon. The VNA
was also connected via local area network (LAN) to a notebook computer, where
a commercially available Agilent 85070E software was used for converting the
scattering parameters to material dielectric properties.

3.8. Measurement procedure

Before starting the measurement process, the slim-form dielectric probe was
calibrated by implementing the standard open, short, and deionizedwater cali-
bration procedure. After performing the calibration, complex permittivity mea-
surements of pure methanol were collected to validate the calibration. Then the
probe aperture was pressed against the flat surface of the renal calculi sample,
ensuring that the probe tip was fully in contact with the sample. At least five
measurements were obtained from different points on each sample surface when-
ever appropriate. The measurements were taken between 500 MHz and 6 GHz,
with 100 MHz intervals.

4. Methods

Measured dielectric properties are expressed with Cole—Cole equation. First,
the median of measurements collected from each sample was calculated. Next,
the Cole-Cole parameters were fitted to the median dielectric property data.

4.1. Measured wideband dielectric property analysis
In the literature, dielectric properties of biological materials are widely rep-
resented with a Cole—Cole model formulated as follows [26]:

’ Nz i €s — € g
€ —i€ =€x . »
(1 +dwr)—2)  jweg

(1)

where € is the dielectric constant, €' is the dielectric loss factor, €5, and €
are dielectric constants measured at higher and lower frequencies, respectively,
w is angular frequency, 7 is relaxation time, « is the distribution of relaxation
time, and o is the ionic conductivity of the sample. The terms, €., €5, T, @,
and o, are called Cole—Cole parameters.
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In this study, by substituting measured ¢ and € values of renal calculi sam-
ples in a 500 MHz to 6 GHz frequency range into (1), an equation with five
unknown Cole-Cole parameters was obtained at each measurement frequency
point for a single stone. In order to find the Cole-Cole parameters, the equa-
tion set of each sample was solved by the generalized Newton—Raphson (GNR)
method, which is a numerical method making use of the partial derivatives of
the equation. The error in GNR is defined as the Euclidean distance of the
calculated data to the measured data given in :

1 N ’ A 2 " R4 2
€w, — €w, €w, — €w,
[p— PR S et | — i 2
aror=TN ; (median(e@J) <median(e;i)> @)

where e;U and e; are the measured dielectric properties obtained with the

open-ended coaxial probe technique and élwi and é;i are calculated dielectric
properties. In this work, these dielectric properties were calculated with the
Cole—Cole equation to evaluate the performance of the suggested Cole—Cole pa-
rameters. Last, N is the number of points used within the frequency range
of 0.5 GHz to 6 GHz [27]. N was set at 56 in this study, which is the num-
ber of points at the measured frequency of interest. The calculated Cole—Cole
parameters were saved to use as inputs for the classification algorithm. The
iterative process stops when the algorithm finds the first Euclidean distance
below a determined threshold and picks the Cole-Cole parameters that result
in a minimum Euclidean distance. Note that the threshold picked in this study
was 0.05.

4.2. Classification of renal calculi samples

Renal calculi samples were categorized using the kNN algorithm, where the
calculated Cole—Cole parameters were given as inputs to the classification algo-
rithm. In the first stage, input vectors were normalized in the range of (-1, 1)
since normalization allows faster convergence during training. After normaliza-
tion, the data were divided into training and testing sets by applying 10 fold
cross-validation. In this method, the data set was split into 10 equal folds. Dur-
ing each round, the data in nine folds were used for training, and the remaining
fold was used for testing. A fair test of validation for limited sample size can be
obtained with 10 fold cross-validation by using features for both training and
testing.

In our renal calculi classifier, k was set to 10 because it is a common practice
to set the k parameter equal to the square root of the number of training samples
[28]. The distance parameter chosen was Euclidean distance. By utilizing these
parameters, the kNN model was then trained and tested. The performance of
the kNN model was calculated with a two-by-two confusion matrix consisting of
true positive (tp), false positive (fp), false negative (fn), and true negative (tn)
counts in the classification. In this study, accuracy, sensitivity, specificity, preci-
sion, recall, and F1 score performance measures were calculated from confusion
matrices and used to evaluate the model.
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5. Results

Section [5.1] reports the dielectric measurement results for the renal calculi
samples, the Cole—Cole fitting results for the dielectric properties are given in
Section and Section[5.3]describes the renal calculi classification results using
kNN.

5.1. Dielectric measurement results of renal calculi samples

The median dielectric properties of the renal calculi samples that were cal-
culated from measurements collected with the open-ended coaxial probe are
represented with variability bars in Fig[3(a) and Fig. [3(b). To better em-
phasize the dielectric property discrepancy between stone types, the median
permittivity and conductivity values of calcium oxalate, cystine, and struvite
samples are given in Table [2| at six different frequency points. Medians of the
measured relative permittivity of calcium oxalate, cystine, and struvite between
1 GHz and 6 GHz were ranges of, respectively, 2.28 to 2.35, 2.17 to 2.63 and
3.16 to 3.38. The median conductivity of calcium oxalate, cystine, and struvite
between 0.5 GHz and 6 GHz were ranges of, respectively, 0.45x10-2 (S m™1) to
1.6x10-2 (S m™1), 0.19x10-1 (S m~1) to 1.5x10-1 (S m~1), and 2.0x10-2 (S m~1)
to 3.5x10-2 (S m~1!). The permittivity discrepancy between renal calculi types
tends to decrease with increasing frequency, whereas the conductivity discrep-
ancy increases with increasing frequency. Cystine had the lowest and struvite
had the highest relative permittivity at microwave frequencies as seen in Fig.
a). Although the conductivity parameter was very low for all stone types, the
conductivity of struvite was relatively higher than the other two types.

Table 2: Median of dielectric property measurements for calcium oxalate, cystine, and struvite.

Frequency Calcium Oxalate Cystine Struvite
(GH=z) ¢ g (Sm™) € o (Sm™) ¢ o (Sm™h)
1.0 2.3525 0.0045 2.6335 0.0190 3.3131 0.0199
2.0 2.3067 0.0079 2.5113 0.0481 3.3779 0.0269
3.0 2.3271 0.0091 2.3991 0.0760 3.2421 0.0265
4.0 2.2392 0.0113 2.3241 0.1342 3.1628 0.0275
5.0 2.2771 0.0150 2.3675 0.1498 3.3729 0.0303
6.0 2.3226 0.0161 2.1708 0.1491 3.2165 0.0349

5.2. Cole-Cole fitting results for renal calculi dielectric properties

The Cole-Cole parameters were fitted to the measured relative permittivity
and conductivity of each stone sample by utilizing GNR method. Two examples
of the Cole—Cole fitting to median measurements of each type are shown in Fig.
a) and Fig. b). A good agreement was achieved between the median of
the measurement data and the Cole-Cole fitting. A comparison of the fitted

10
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Figure 3: Median dielectric property measurements of renal calculi samples with variability
bars, (a) median relative permittivity measurement, (b) median conductivity measurement.

Cole—Cole parameters is given in Table The error parameter of Euclidean
distance was lower than the threshold value. One can classify the renal calculi
just by looking into the Cole-Cole parameters or median measurements. How-
ever, the measurement system suffered from low measurement accuracy and low
repeatability rates. Therefore, machine learning algorithm was implemented to
compensate for the errors stemming from the measurement methodology and
other systematic errors.

11
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Figure 4: Comparison of calculated median values with ColeCole fittings, (a) relative per-
mittivity comparisons for calcium oxalate, cystine, and struvite samples, (b) conductivity
comparisons for calcium oxalate, cystine, and struvite samples.

5.8. Renal calculi classification results with kNN

We have tested our method on a data set collected from 35 calcium oxalate,
35 cystine, and 35 struvite renal calculi samples. Training and testing data
were selected by applying 10 fold cross-validation to avoid over-fitting and to
achieve unbiased classification results. Calculated performance measures are
demonstrated in Fig.

As seen from Fig. [5] all performance measures of this classifier reached to
100% in at least one fold. Among 10 folds, the minimum obtained values of ac-

12
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Table 3: A sample of Cole—Cole parameters fitted to the median of each stone type.

Cole-Cole parameters  €co €s T a o (S mfl) error
CaOx 1.96 12.84 1.41e-06 0.73 8.11e-05 0.0151
Cystine 1.93 16.78 6.04e-07 0.62 0.0071 0.0111
Struvite 3.50 14.66 1.80e-07 0.39 0.0365 0.0099

curacy, sensitivity, specificity, precision, recall, and F1 score were, respectively,
90.00%, 80.00%, 85.71%, 75.00%, 87.50%, and 88.89%. These results are quite
promising for categorizing the renal calculi based on their dielectric properties.
By further testing the model with a larger data set, a new renal calculi anal-
ysis tool could emerge that can be utilized in hospitals, research centers, and
laboratories.
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Figure 5: Performance measures of the kNN for classification of all renal calculi samples.
Error bars show the maximum and minimum values of performance measures among the 10
folds used in testing.

6. Discussion

The prevalence of renal calculi and the types depend on the geographic, cli-
matic, and dietary conditions as well as the race, sex, and age of the patient.
Therefore, the availability of these samples depends on the patients visiting a
clinic, the location of the clinics, and also the severity of the disease (e.g., the
renal calculi can be disintegrated in vivo by response to a nonsurgical treatment
such as oral medications and extracorporeal shockwave lithotripsy (ESWL) al-
lowing it to be passed naturally). Uric acid is a relatively rarely diagnosed renal

13
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calculi type that composes 10% of all renal calculi types globally, and the preva-
lence varies geographically, being 2.1% in Texas, USA, and 15.8% in Okinawa,
Japan [29]. More importantly, uric acid is known to be soluble in high pH urea.
Since it is known to be responsive to nonsurgical treatments, for patients with
uric acid renal calculi, oral chemolysis is generally prescribed [30] B1]. Most
urolithasis patients with uric acid respond well to oral medications. In some
cases, this treatment is accompanied with ESWL and PCNL, and PNCL is pre-
ferred when the uric acid sample is larger than 2 cm [32]. Due to the high
solubility of uric acid renal calculi, the uric acid samples were not available at
the hospital. Hence, uric acid was not included in this work.

To compare the performance of the kNN for three renal calculi types with
other machine learning algorithms, we applied the ANN method to the problem
of classification of renal calculi. The ANN algorithm mimics the neural structure
of the brain and has been utilized in other studies for different tasks, including
but not limited to autonomous driving and medical diagnostics. Briefly, the
ANN algorithm employs concatenated artificial neurons, where weighted arti-
ficial neuron inputs mimic the dendrites, node represents the soma, and the
weighted output represents the axon in a biological neuron. The nodes sum the
weighted inputs and pass them from an activation function that can be a linear,
step, or sigmoid function. In this study, a tangent sigmoid function was used
as an activation function. Then the output was taken and passed to another
layer of concatenated neurons. The ANN algorithm works by optimizing the
weights of the inputs and outputs via gradient descent backpropagation. The
number of layers and inputs depend on the neural net, and for this work, it was
determined via trial and error. In this work, we employed one hidden layer with
15 neurons. The input chosen for the neural network was the Cole-Cole param-
eters along with bias, and the outputs of the network were the three classes of
calcium oxalate, cystine, and struvite. The inputs were normalized in the range
of (-1, 1) since the normalization enabled fast convergence. Finally, the chosen
learning rate was between 0 to 1, adjusted along with the weights through back
propagation during training. The training and testing were then performed,
and the results of the ANN algorithm, as well as the kNN results, are given in
Table (@

As seen in Table @] kNN outperformed the ANN, especially when the F1
score is considered. The performance of the ANN could be further optimized
by adopting different activation functions or even by adding layers to the neural
network. Ultimately, we expect that the performance of both algorithms would
improve with a significant increase in sample size. One should also consider that
the computational cost of kNN is higher for more data.

When we analyzed the dielectric property data, the median relative per-
mittivity of struvite was approximately 1 unit higher than cystine and calcium
oxalate for all frequencies between 0.5 GHz and 6 GHz, as shown in Fig. (a).
Therefore, we can state that when the relative permittivity was considered, stru-
vite separated quite well from the other two classes. Similarly, it can be seen
from Fig. [d|(b) that the conductivity of the cystine seperated well from the other
two stone types. Since the kNN algorithm was based on closest ten neighbors,
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Table 4: A comparison of performance measures of ANN and kNN algorithms employed for
renal calculi classification.

Performance Measures ANN kNN

Accuracy (%) 98.1 98.2
Sensitivity (%) 97.1  98.0
Specificity (%) 98.6  98.6
Precision (%) 97.2 975

Recall (%) 98.6  98.8
F1 Score (%) 96.0 98.1

permittivity and conductivity could be two parameters that may help seperate
the classes.

Finally, to the best of authors’ knowledge, classification based on the dielec-
tric property measurement has not been previously explored in the literature,
except in [27], where a binary classification algorithm SVM is applied to the
collected dielectric property data, and malignant hepatic tissues were classified
with a 99.2% F1 score. As the dielectric property contrast grows, the perfor-
mance of the machine learning algorithms slightly increases. However, we can
clearly state that despite the relatively low dielectric property contrast in this
work (relative permittivity discrepancy between the malignant and healthy hep-
atic tissues in [27] was 5 to 10 units), the machine learning algorithms were very
effective for classifying discarded renal calculi.

7. Conclusion

A microwave dielectric property based kNN renal calculi classification method
was presented in this work. Dielectric properties of three different renal calculi
types were measured with the slim-form open-ended coaxial probe technique
between 500 MHz and 6 GHz, with 100 MHz frequency steps. The medians
of the dielectric properties were calculated, and an inherent dielectric property
discrepancy was observed in the different renal calculi types. The Cole-Cole
parameters were then fitted to measurement data, which aided in the represen-
tation of dielectric property measurement data with only five parameters. The
kNN algorithm was then employed for classification of the renal calculi, and the
Cole—Cole parameters were used for training and testing the algorithm. The
benefits of the proposed method include rapid measurement, minimal sample
preparation requirements, and an automated decision making mechanism that
can eliminate personnel costs, decrease diagnosis time, and decrease equipment
costs. It should also be noted that the system itself is simple and requires very
little output power. In addition, unlike X-rays, no special chamber is required
to confine the low-power microwaves.
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A good performance (98.17% accuracy) was achieved for renal calculi classi-
fication with a kNN model based on the Cole-Cole parameters. However, there
could still be some error sources that may decrease the method’s performance,
which can be categorized as measurement errors, data analysis errors, or the
diversity of samples. Measurement errors can be due to an air gap between
the samples and aperture of the probe. Data analysis errors can stem from the
errors that emerge due to representation of the data with few parameters. For
example, Cole-Cole parameters that can represent a curve are not necessarily
unique, and different combinations can satisfy the requirements. Finally includ-
ing a more diverse data set containing more than 105 renal calculi samples could
improve performance of the machine learning algorithm.
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