DONMUŞ ZEMİNİN KAYMA MUKAVEMETİ

İstanbul Teknik Üniversitesi İnşaat Fakültesince «Doktor» unvanının verilmesi için kabul edilen tezdir.

TURGUT ERSOY

Tezin Fakülteye Verildiği Tarih : 9 Aralık 1975
Tezin Müdafaa Edildiği Tarih : 6 Mayıs 1976

Doktorayı Yöneten Profesör : Prof. Dr. Ergün TOĞROL
Diğer Jüri Üyeleri : Ord. Prof. Dr. - Ing. Hamdi PEYNİRCİOĞLU
 : Prof. Dr. - Ing. Necati ACUN

İSTANBUL TEKNİK ÜNİVERSİTESİ
İNSAAT FAKÜLTESİ MATBAASI
1976

T. C.
Yükseköğretim Kurulu
Dokümantasyon Merkezi
Bu araştırma:

Türkiye Bilimsel ve Teknik Araştırma Kurumu tarafından
MAC/373 No.1 lu proje ile, ve

İ.T.Ü. Araştırma İşleri Mütevelli Heyeti tarafından
60 No.1 lu proje ile
desteklenmiştir.

Çalışma boyunca göstermiş oldukları sürekli alakâ ve kıymetli yardımlarından dolayı Sayın Prof. Dr. Ergün Toğrol'a teşekkürlerimi sunarım.

Zemin Mekaniği Laboratuvarında sağlanan imkânlardan dolayı Sayın Ord. Prof. Dr. - İng. A. H. Peynircioğlu'na teşekkür ederim.
İÇINDEKİLER

ÜZET II
SUMMARY IV
KULLANILAN NOTASYON VI

1. GİRİŞ 1
2. ELE ALINAN KONU İLE İLGİLİ ÇALIŞMALAR 3
3. METOT 12
 A. DENEY ODASI 12
 B. ALET 14
 C. MALZEME 33
 D. NUMUNE HAZIRLANMASI 39
 E. DENEYLERİN YAPILIŞI 49
 F. VERİLERİN DEĞERLENDİRİLMESİ 60
4. DENEYSEL SONUÇLAR 63
5. DENEY SONUÇLARININ KORELASYONU ve SONUÇLARIN TARTIŞILMASI 90

REFERANSLAR 98

Ek. I : Deney odası ile ilgili hesaplar 107
Ek.II : Şekiller 114
ÖZET

Zayıf zeminlerde tünel açma ve tünel çevresinin stabilizasyonu, keson indirme şev göçmesine karşı geçici tedbir alınması işlemlerinde zeminin yapay olarak dondurulması metotları kullanılmaktadır. Donmuş zeminlerin mekanik davranışı ile ilgili geniş uygulama alanı bulunmasına rağmen bu konudaki bilgiler sınırlıdır.

Bu çalışmada donmuş zeminin kaynağı mukavemetine etkienen faktörler incelenmiş özellikle sıfır derecenin altındağı sıcaklığın ve deney hızının zemin mukavemetine nasıl etkidiğini araştırılmıştır.

Bu maksatla, sıfır derecenin altındağı sıcaklıklarla çalışabilme için sıcaklığı -13°C ye indirebilen ve sıcaklığı ±0.5°C lik bir aralıktan sabit tutulabilen 2.65 x 1.64 x 2.26 m boyutlarında bir deney odası teşkil edilmiştir. Düşük sıcaklıklarda çalışabilme için mevcut üç eksenli basınç aletinde geliştirme yapılmış ve diğli kutusu ile motor yataklarına ısıtıcı takılmıştır. Deney odası içinde meydana gelebilecek sıcaklık değişmelerinin numuneye aktarılmaması için standart üç eksenli deney hücresinin dışında geçen ikincı bir hücre yapılmış ve numunedeği sıcaklık değişiminin ±0.03°C den daha düzüük olması sağlanmıştır. Sıcaklık ölçmeleri termoleman-potansiyometrik milivoltmetre sistem ile ve ayrıca özel laboratuvar termometreleri ile yapılmıştır. Hücre sıvısı olarak sıvı parafin kullanılmıştır.

Deneylede kullanılan numuneler özellikleri her tarafından aynı olan bir malzeme harmanından alınarak kompaksiyona, sonra sabit hacımda suya doyurma işlemine ve bundan sonra donmaya tabi tutularak hazırlanmıştır. Kullanılan zemin "Topser Sarı Kili"dir.

Deneysel çalışma, hazırlık deneyleleri, ön deneyler ve esas deneyle olmak üzere üç kısımda olmuştur. Çeşitli sıcaklıkarda ve deney hızlarında 9 kesme kutusu deneyi 33 serbest basınç deneyi ve 101 üç eksenli basınç deneyi yapılmıştır.
Deneyler sonunda aşağıdaki genel sonuçlar elde edilmiştir.

1. Donmuş zeminin kayma mukavemeti sıcaklık azaldıkça artmaktadır. Donmuş zeminin deformasyon modülü 0°C nin altında sıcaklığa bağlı olarak değişmektedir.

Mohr dairelerinden her sıcaklık için bulunan c(kohezyon) değerleri 0°C nin altında sıcaklıklı çizgisel olarak değişmektedir.

2. Deney hızı donmuş zeminin kayma mukavemetine ikinci derecede etkimekte, incelenen şartlarda kompaksiyon su muhtevası ve donma programi sonucu etkili olmamaktadır.

3. Proktor enerjisinin %100 ila %75 arasında değişmesi halinde zeminin dondurulduktan sonraki mukavemeti numune hazırlanırken verilen sıkıştırma enerjisinden bağımsızdır.
SUMMARY

Knowledge of the mechanical behaviour of frozen soils is needed in a wide range of Civil Engineering applications, such as slope stabilization and the improvement of tunnel excavation by artificial ground freezing. However the available data in this subject is limited.

In this experimental study, the factors affecting the shear strength of frozen soils are investigated with particular reference to the temperatures below zero degrees (°C) and to the loading rates.

For the purpose of obtaining and controlling test temperatures, a cold room with the dimensions of 2.65 x 1.64 x 2.26 meters was built. The inside temperature of the cold room can be lowered down to -13°C, and can be kept constant within ±0.5°C. A second cell which encloses the standard triaxial test cell was designed and constructed in order to reduce the transfer of temperature variation to the specimen. By means of this arrangement, the temperature variation on the specimen was insured to be less than ±0.03°C. The existing standard triaxial loading machine was conditioned to work in low temperatures by installing heaters on the gear box and on the drive-motor shaft. The temperatures were recorded by a potensiometric milivoltmeter utilizing copper-constantan thermocouples. In addition, precision glass thermometers were used. Liquid paraffin was used as cell fluid.

The test specimens were prepared using "Topser Yellow Clay" from a well mixed and sieved (BS No.36) dry batch. The specimens were compacted and then soaked at a constant volume. Finally, freezing was applied according to the freezing program.

The tests carried out for this study can be grouped in three sections. These are preparatory tests, initial tests and
final tests. During the course of this study, 9 direct shear tests, 33 unconfined compression tests and 101 triaxial compression tests were performed at various temperatures and loading rates.

Conclusions drawn from the test results are summarized below.

1. The strength of frozen soil is increased with decreasing temperatures. The deformation modulus of frozen soil is dependent on the temperatures below 0°C.

 The c(cohesion) values obtained from the Mohr envelopes at various temperatures, varies linearly with the temperatures below 0°C.

2. The loading rate affects the shear strength at second order and under the test conditions, the compaction moisture content and the freezing program did not affect the results.

3. Within the limits of 75% and 100% Proctor energy, the strength of the frozen soil is independent of the compaction energy.
KULLANILAN NOTASYON

$A (cm^2)$ Kesit alanı
$A_o (cm^2)$ Başlangıç kesit alanı
$c (kg/cm^2)$ Kohezyon
$D (mm)$ Dane çapı
$E (kg/cm^2)$ Deformasyon modülü
$l_o (mm)$ Numunenin deney başlangıcındaki boyu
$l (mm)$ Numune boyu
P Normal basınç
$q (kg/cm^2)$ Eksenel gerilme
$T (^{\circ}C)$ Deney sıcaklığı
$T_d (^{\circ}C)$ Donma sıcaklığı
$V (mm/dak)$ Yükleme hızı (deney hızı)
W Su muhtevası
W_k Kompaksiyon su muhtevası
$\gamma_k (gr/cm^3)$ Kuru birim hacim ağırlığı
$\gamma_s (gr/cm^3)$ Dane birim hacim ağırlığı
ε Birim boy değişimi (deformasyon)
ε Plastik boy kısalmasında gerçek birim boy değişimi
$\sigma_1, \sigma_2, \sigma_3 (\text{kg/cm}^2)$ Asal gerilmeler

σ_3 (kg/cm2) Hücre basıncı

τ (kg/cm2) Kayma gerilmesi

ϕ İçsel sürtünme açısı
Tablolar

<table>
<thead>
<tr>
<th>No</th>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Topser Sarı Kılının Mühendislik Özellikleri</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>Modifiye Prokörtor Enerjisi ile Hazırlanan Numunelerin Kompaksiyonu ile İlgili Veriler</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>Standart Prokörtor Enerjisi ile Hazırlanan Numunelerin Kompaksiyonu ile İlgili Veriler</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>Standart Prokörtor Enerjisi ile Minyatür Harvard Kalıbında Hazırlanan Numunelerin Kompaksiyonu ile İlgili Veriler</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>Ön Deneylerde Kullanılan Değişkenler ve Seviyeleri</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>Deneylerin Greko-Latin Karesindeki Dağılışları</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>Serbest Basınç Deneyi Numunelerinin Hacimsal Özellikleri</td>
<td>65</td>
</tr>
<tr>
<td>8</td>
<td>Serbest Basınç Deneyi Sonuçları</td>
<td>66</td>
</tr>
<tr>
<td>9</td>
<td>Serbest Basınç Mukavemetlerinin Varyans Analizi</td>
<td>67</td>
</tr>
<tr>
<td>10</td>
<td>%0.8 Birim Boy Kısalmasına Tekabül Eden Gerilme Değerleri</td>
<td>69</td>
</tr>
<tr>
<td>11</td>
<td>%0.8 Birim Boy Değişimine Tekabül Eden Gerilmelerin Varyans Analizi</td>
<td>70</td>
</tr>
<tr>
<td>12</td>
<td>Üç Eksenli Basınç Deneyi Sonuçları</td>
<td>72</td>
</tr>
<tr>
<td>13</td>
<td>Maksimum Deviatör Gerilmenin, Deney Sıcaklığı ve Deney Hızına Bağlı Olarak Varyans Analizi</td>
<td>86</td>
</tr>
<tr>
<td>14</td>
<td>Sıkıştırma Enerjisinin Donmuş ve Donmamış Zeminlerde Maksimum Deviator Gerilmeye Etkisi</td>
<td>87</td>
</tr>
<tr>
<td>15</td>
<td>Deformasyon Modülünün Deney Sıcaklığı ve Deney Hızına Göre Aldığı Değerler</td>
<td>88</td>
</tr>
<tr>
<td>Şekil</td>
<td>Sayfa</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>1. Vialov modeli</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2. Deney odası</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3. Dış hücre</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>4. Yükleme çubuğu</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>5. Deney düzeni</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>6. Tokmak</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>7. Deney sıcaklığına getirme kabı</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>8. Granülometri eğrisi</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>9. X-ışını saptırma analizi</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>10. Optimum su muhtevasının belirlenmesi</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>11. Donma esnasında sıcaklığın zamanına bağlı olarak değişmesi</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>12. Yükleme hızının değişmesi</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>13. Maksimum deviator, gerilme sıcaklık ve deney hızı arasındaki bağlantı</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>14. Maksimum deviator gerilme, deney hızı ve sıcaklık arasındaki bağlantı</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>15. Deformasyon modülünün sıcaklıkla değişmesi</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>16. Deformasyon modülünün deney hızı ile değişmesi</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>17. Buzun ve kılın deformasyon modülünün sıcaklıkla değişmesi</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>18. Mohr daireleri ile bulunan c değerlerinin sıcaklıkla değişmesi</td>
<td>97</td>
<td></td>
</tr>
</tbody>
</table>
Fotoğraflar

<table>
<thead>
<tr>
<th>Fotoğraf</th>
<th>Açıklama</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kesme kutusu</td>
<td>15</td>
</tr>
<tr>
<td>2.</td>
<td>İç ve dış hücre</td>
<td>16</td>
</tr>
<tr>
<td>3.</td>
<td>Basınç tankı</td>
<td>22</td>
</tr>
<tr>
<td>4.</td>
<td>Deney düzeni</td>
<td>24</td>
</tr>
<tr>
<td>5.</td>
<td>Sıcaklık ölçüme aletleri</td>
<td>26</td>
</tr>
<tr>
<td>6.</td>
<td>Sıkıştırma da kullanılan aletler</td>
<td>28</td>
</tr>
<tr>
<td>7.</td>
<td>Numunelerin dondurulduğu alet</td>
<td>31</td>
</tr>
<tr>
<td>8.</td>
<td>Numunelerin suya doyurulması</td>
<td>44</td>
</tr>
<tr>
<td>9.</td>
<td>Deney sıcaklığında getirme kabı</td>
<td>48</td>
</tr>
<tr>
<td>10.</td>
<td>Deney odası</td>
<td>112</td>
</tr>
<tr>
<td>11.</td>
<td>Deney odası</td>
<td>113</td>
</tr>
</tbody>
</table>
BÜLÖM 1

GİRİŞ

Yeryüzünde karaların toplam alanının yaklaşık %23 ü sürekli olarak donmuş halde bulunan zeminlerden (permafrost) meydana gelmektedir. Öteyandan dünya nüfusunun hızlı artışı her geçen gün bu geniş alanın daha fazla iskân edilmesi mecburiyetini doğurmakta, böylece donmuş zeminlerin mühendislik özelliklerinin, ve çeşitli gerilme sistemleri etkisindeki mekanik davranışlarının anlaşılmasını önemi ve gereği ortaya çıkmaktadır.

Donmuş zeminlerle ilgili mühendislik problemleri yalnızca sürekli don şartlarındaki bölgelerde değil mevsim sıcaklıkları 0°C nin altında düşen bölgelerde de kendisini göstermektedir. Ayrıca zeminin donmasını her zaman güçlüklük doğran bir olay olmadığı birçoğ hallerde mühendise yardımcı olduğu olduğunu da belirtmek gerekir. Zayıf bir zeminde kazı işlemi zemini dondurmak sureti ile kolaylaştırılan metotlar geçen yüzyılın sonlarından beri kullanılmaktadır. Zayıf zeminlerde tünel açma ve tünel çevresinin stabilizasyonu, keson indirme, şev göçmesine karşı geçici tedbir alınması işlemlerinde yapay olarak zeminin dondurulması metotlarına başvurulmaktadır.

Donmuş zeminler ile ilgili bilgilerin yetersizliği "Kanada-Alaska Karayolu" nun yapımı sırasında ilk defa ciddi bir şekilde kendini hissettirmiştir. Bu yolun yapımında yüzeyde beliren buzlaşma alev makinaları ile, ekonomik olmayan ve zeminin 151 dengesini bozacak şekilde yok edilmeye çalışılmıştır. Halbuki bu konudaki bilgilerin artması ile donmuş zeminlerin kendi özelliklerinden faydalanarak yüzeydeki buzlaşma önune geçecek metotlar geliştirilmiş ve uygulanmaya başlanmıştır.

Donmuş zeminlerin çeşitli gerilme sistemlerinin etkisindeki mekanik davranışları ile ilgili az sayıda bilimsel çalışma vardır ve kompaksiyona tabi tutmuş kohezyonlu zeminlerin donmuş haldeki gerilme-boy değişimi davranışları ve kayma
mukavemetleri ile ilgili bilgiler ise oldukça sınırlıdır. Bu konudaki bilgimizin artırılması donmuş bölgelerde yol kaplamalarının kalınlık tahkikinde, don süresince zemin mukavemetinin ne kadar artacağı belirlenmesinde ve bu mukavemet artışının karayollarındaki yük sınırlamasının azaltılmasına nasıl yardımcı olabileceği araştırılmasında, donmuş zeminlerin sökülmesinde kazıçılara (riper) gelecek kuvvetin hesaba-bında faydalı olacaktır. Ayrıca, geçici olarak don gören bölgelerdeki zeminlerin fiziksel özellikleri daha yakından tani- kaçak, Türkiye'de Doğu Anadolu'da aylarca don şartlarında kalın yol kaplamaları ile ilgili çalışmalarında ve don bölgelerindeki temellerin projelendirilmesinde kullanılabilecek esaslar kurulmasında faydalı olacaktır.

Bu araştırmanın amacı, standart Proktor enerjisinde sıkıştırılmış ve suya doygun hale getirildikten sonra dondurulmuş siltli kil (Topser Sarı Kili) numunelerinin mekanik davranış- şının incelemesidir. Çalışma hipotezimiz olarak kayma mukave- metinin (1) sıcaklığının azalması, (2) deney hızının artması ile artacağı kabul edilmiştir.

Bu çalışmanın ilk kısmında yükleme hızı ve sıcaklığının yanında kompaksiyon su muhtevasının ve donma programının serbest basınç mukavemetine nasıl etkidiği incelenmiş ve su muhteva- sı ile donma programının, yükleme hızı ve sıcaklığa oranla daha belirli birer etken olup olmadığı araştırılmıştır. Aydın- ca donmuş zeminin çeşitli fiziksel özellikleri belirlenmeye çalışılmıştır.

Çalışmanın ikinci ve esas kısmında donmuş zeminin kayma mukave- metinin sıcaklık ve yükleme hızı ile nasıl değiştiği silin- дирık numuneleri deformasyon kontrolü üç eksenli basınç aletinde belir bir çevre basınç altında drenajsız deneylere tabi tutarak araştırılmıştır.
BÖLÜM II

ELE ALINAN KONU İLE İLGİLİ ÇALIŞMALAR

Deneysel çalışma ve sonuçlarına geçmeden önce, şimdiye kadar konumuzla ilgili olarak yapılmış çalışmalarдан ve bu çalışmalarıın sonuçlarından bahsedilecektir.

Donan zeminlerin kabarması sonucu yol menfezlerinde ve köprü ayaklarında hasara sebep olduğu üç yüz yıl kadar önce gözlenmiş ve bu mühendislik yönünden donmuş zeminlerle ilgili belki ilk gaz zemini Teğkil etmiştir (Beskow, 1935). Donmuş zeminlerle ilgili ilk bilimsel çalışmalar ise donan zeminin kabarmasını konu olarak ele almıştır (Beskow 1935; Ruckli 1950).

Donmuş zeminlerin mekanik davranışıyla ilgili çalışmaları gözden geçirmediğimiz önce donmuş zeminlerin yapısı ile ilgili çalışmalarından söz açmak uygun olacaktır.

Donmuş zemin tabiatte bulunmuş şekli ile zemin daneleri, buz, su, hava ve bazı hallerde organik maddelerden oluşur. Laboratuvar numuneleri ise daha çok zemin daneleri, buz ve sudan müteşekkilidir (Bläck, 1967). Zemin daneciklerinin suyun buzhaleine geçmesinden sonra birbirlerine sıkıca bağlanması donmuş zeminin donmanlı zemininden ayıran en ötesi özelliklendir. Bu nedenle sadece 0°C nin altında bir sıcaklık sahib olan bir zemin (meselâ kuru kum) donmuş zemin tarifine girmez; donmuş zemin, zemin suyunun hiç olmazsa bir kısının donarak zemin daneciklerini birbirine bağladığı bir zemin (Tsytoch, 1958). Beskow (1935) donmuş zeminlerini yapı bakımından masif ve tabakalı olarak iki gruba ayırmıştır. Beskow'a göre masif yapı, su muhtevası kapiler doygunluk derecesine erişmemiş zeminlerde her zaman, kapiler doygunluktan daha yüksek su muhtevotlukları zeminlerde ise donma hızının yüksek olması halinde görülür. Zeminin donuktan sonra masif veya tabakalı bir yapıya sahip olması a) dane boyutuna, b) donma hızına, c) basınca ve d) hidrolik şartlara bağlıdır (Beskow 1935).

Donmuş zemin içindeki donmamış su miktarı dilatometrik ve kalorimetrik metotlarla belirlenebilmektedir (Williams, 1967; Yong, 1963). Dillon ve Andersland (1966) övgül yüzeyi ve di-ğer fiziksel özellikleri bilinen bir zeminde belir bir nega- tif sıcaklıkta bulunabilecek donmamış su miktarını hesap yolu ile bulabilmek için bir metot geliştirmiştir. Nersesova ve Tsytovich (1963) donmuş zeminde bulunan donmamış su muhtevası- nin zemin cinsine ve sıfrinin altındaki sıcaklığa bağlı olarak değiştiği sıcaklık azaldıkça ve dane boyutu büyüdükçe don- mamış su muhtevasının azaldığını ifade etmişlerdir. 1.0 ilâ 0.5 mm ve 0.05 ilâ 0.01 mm arasında değişen dane boyutları- da ve -0.6°C de donmamış su muhtevası %0.2 ilâ %1 arasında değişirken, 0.001 mm den küçük boyutlu "kuartz" da donmamış su muhtevası -1.0°C de %6.4 ü bulmuştur (Nersesova ve Tsytovich, 1963). Anderson ve diğerleri (1973) -0.15°C ile -5°C arasında yapılan kolorimetrik araştırmalarında, daneciklerin birim toplam yüzey alanı esas alındığında "kaolinit" in "montmoril- lonit" ten daha fazla donmamış su tuttuğunu gözlemişlerdir. Yong (1963) killi ve siltli numunelerin optimum su muhtevası- nin altında, optimum su muhtevasına eğit ve optimum su muhte- vasının üstündeki su muhtevalarında hazırlanmasının zemin içindeki donmamış su miktarına etkilediği, donmamış su mikta- rinin artan su muhtevası ile arttığı sonucuna varmıştır. Don- nuş zeminler incelenirken donmamış zeminlerdeki mutad ince- leme güçlüklerine ilâve olarak (1) sıcaklığın önemli bir de-ğişken olduğu, (2) zeminin buz muhtevası, (3) boşluk suyunun
kısaca donma sonucu zemin içinde donmamış su bulunması, (4) buz kristallerinin sayısı, (5) kristallerin oryantasyonu, (6) buz kristallerinin büyüklüğünün dikkate alınması gerekmektedir. Öte yandan Williams (1963) killi zeminler üzerinde yaptığı kalorimetrik deneylerde donmuş zemindeki donmamış su muhtevasının toplam su muhtevasından ve soğuma hızından başmış olduğunu gözlemişti.

Donmuş zeminlerin iç yapısı ile ilgili çalışmalar, zemin içinde iyi bir bağlayıcı niteliğindeki buz ile donmamış suyun birlikte bulunabildiğini, donmamış su miktarının zemin cinsine ve sıcaklığa büyük ölçüde bağlı olduğunu göstermektedir. Zemin içindeki buz ise dane boyutu, donma hızı, basınç ve hidrolik şartlara bağlı olarak donmuş zemine donmamış zeminden çok farklı bir iç yapısı kazandırmaktadır. Yine bu şartlara bağlı olarak buz kristallerinin sayısı, yönelmeleri, büyüklükleri değişmektedir.

Donmuş zeminlerin mekanik davranışını tayin eden önemli unsurlardan biri zemin içinde bulunan buzdur. Bu bakımdan buzun mekanik davranış ile ilgili araştırmaların gözden geçirilmesi donmuş zeminin yük altında davranışını anlayabilmek yönünden faydali olacaktır.

Butkovich (1954) doğal ve yapay buzlar üzerinde 0°C den -50°C ye kadar değişen sıcaklıklarda serbest basınç, burulma ve çekme deneyleri yaparak buz numunelerinin şekillerinin sıvıbasınç mukavemetini etkilediğini ve silindir şeklinde numunelerin en yüksek mukavemete sahip olduğunu gözlemiştir. 0, -5, -10, -20, -30, -40, -50°C lerde saniyede 5 kg/cm² gerilme artırmı altında yapılan serbest basınç deneylerinde buzun serbest basınç mukavemetinin sıcaklık azaldıkça arttığı gözlemmiştir. Saniyede 4 kg/cm² gerilme artırmı ile yapılan burulma deneylerinde kayma mukavemetinin sıcaklık azaldıkça büyüküğünü; çeşitli deney hızlarında yapılan burulma deneylerinde ise gerilme artırmının saniyede 1.0 kg/cm² den büyük olmak şartı ile yükleme hızında burulma mukavemetini etkilemediği gözlemmiştir. Çekme deneylerinin sonucu olarak Butkovich çekme mukavemetinin de numune sıcaklığının azalması ile arttığını gözlemmiştir.
Gold (1958), buzun elastisite modülünün mekanik ve sonik metotlarla \(-3^\circ C\) den \(-40^\circ C\) ye kadar değişen sıcaklıklarda ölçülmüş ve (1) saniyede 2 kg/cm\(^2\) gerilme artırmı ile maksimum gerilme değeri 10 kg/cm\(^2\) yi aşanın kısa süreli yüklemelerde buzun birim boy değişiminin gerilme ile çizgisel olarak değiştiği, (2) çok daneli buzun Young modülünün azalan sıcaklıkla arttığı buna mukabil tek bir kristalin Young modülünün sıcaklıkla değişmediği, (3) buz danelerinin birbiri üstünde kayma mukavemetinin sıcaklığa ve uygulanı gerilmenin büyüklüğüne bağlı olduğu sonucuna varmıştı.

Dillon ve Andersland (1967) çeşitli araştırmacılar tarafından yapılan sünme deneylerinden elde edilen verileri karşılaştırarak \(-10^\circ C\) ila \(-14.0^\circ C\) arasındaki sıcaklıklarda buzun iç yapısında bazı değişiklikler meydana geldiği kanısına varmıştı.

Gold (1963) buzun şekil değiştirmeye mekanizmasını incelemek için yaptığı deneylerde çok kristalli, çubuk şeklinde daneli buzun, uygulanan bir yük altında, daneler içinde gerilmeler meydana gelmeksizin şekil değiştiremiyeceği sonucuna varmıştı ve bu gerilmelerin danelerin birbiri üstünde kaymasına sınırlı altı ve zigzag (kink) şeritleri adı verilen bölgelerin teşekkürüne, gözeneklerin ve yerleşme çatlaklarının meydana gelmesine sebep olduğunu ileri sürmüştür. Çatlak teşekkürünün buz numunesinin kırılma davranışındaki rolü sabit yükleme hızlı deneylerle Gold (1970) tarafından incelenmiş birim boy değişimini hıznın dakikada 5 x \(10^{-5}\) den daha büyük olması halinde kırılma veya göçmenin çatlak teşekkülünden dolayı meydana geldiği gözlemmiştir.

Goughnour ve Andersland (1968) çok kristalli buzun elastisite modülünün \(-4^\circ C\) ila \(-12^\circ C\) arasındaki sıcaklıklarda, artan plasti birim boy değişimi ve azalan sıcaklık ile azaldığını ve çok kristalli buzun sünme hıznın gerilme, sıcaklık, birim boy değişimi ve buz tarafından yutulan şekil değiştirmeye enerjisine bağlı olduğunu gözlemişlerdir. Bu çalışmalar, buzun ortam şartlarına (özellikle pratikte söz konusu olabilecek sıcaklıklara) bağlı olarak, farklı iç yapıları bulunanabileceğini göstermektedir. Öteyandan donmuş zeminin iç yapısı, daha önce anlatılan malzeme ve ortam şartlarına bağlı olarak meydana gelmektedir. Bu durumda, buzun çeşitli sıcaklıklardaki davranışı ile donmuş
zeminin davranışı arasında doğrudan ilişkiler kurulması ihtimali az olacaktır.

Zeminlerin donmuş haldeki kayma mukavemetinin çeşitli faktörlerle bağlı olmakla beraber en az üç değişkene bağlı olarak

(1) \[\tau = f(T, p, t) \]

şeklinde ifade edilebileceği Tsytovich (1958) tarafından ileri sürülmüştür. Burada \(\tau \): kayma mukavemeti, \(T \): zeminin \(0^\circ C \) nin altındaki sıcaklığı, \(p \): normal basınç ve \(t \): yüklemesı süresini göstermektedir.

Donmuş zeminin mukavemetinin sıcaklık azaldıkça arttığı çeşitli araştırmacılar tarafından gözlemmiştir (Tsytovich, 1957; Yong, 1963; Neuber ve Wolters, 1970; Heiner, 1972). Hoekstra (1969) donmuş zeminlerin mühendislik özelliklerinin bilhassa \(0^\circ C \) ila \(-10^\circ C \) arasındaki sıcaklığa büyük ölçüde bağlı olduğunu ileri sürülmüştür. Amerika Birleşik Devletleri Soğuk Bölgede Araştırma ve Mühendislik Laboratuvarında (USA CRREL) \(0^\circ C \) ila \(-200^\circ C \) arasındaki sıcaklıklarda buz, beton, kum, silt ve killi zeminler üzerinde yapılan deneyler sıcaklığın azalmasını ile serbest basınç mukavemetinin arttığını göstermiştir (Scott, 1969).

Çeşitli küp ve silindirik numuneler üzerinde farklı araştırmacılar tarafından \(-0.1^\circ C \) ila \(-24.7^\circ C \) arasında 1936 dan bu yana kumlu numuneler ile daki kada 4 kg/cm\(^2\) ile 69 kg/cm\(^2\) gerilme artımı altında yapılan deneyler, sıcaklık azaldıkça serbest basınç mukavemeti arttuğını göstermiştir (Heiner, 1972). Tsytovich (1957) mukavemetin sıcaklıkla değişmesini, sıcaklık azaldıkça buz yapısındaki hidrojen atomlarının hareket kabiliyetlerinin azalması ve bu nedenle mukavemetin artması şeklinde izah etmiştir.

Heiner (1972), minyatür Harvard kalıbında ve % 2, 5, 8 ve 10 su muhtevalarında sıkıştırılmış ve \(-50^\circ C \) de dondurulduktan sonra deney sıcaklığına getirilmiş kumlu ve siltli numuneler üzerinde \(-0.5^\circ C \), \(-2^\circ C \), \(-5^\circ C \) ve \(-10^\circ C \) sıcaklıklarında ve daki kada 1 kg/cm\(^2\) ve 15 kg/cm\(^2\) gerilme artımı altında yaptığı serbest basınç deneylerinde, serbest basınç mukavemetinin sıcaklık azamasına bağlı olarak artığını ve artış hızının \(-5^\circ C \) den da-
ha düşük sıcaklıklarda azalma başladığını gözlemiştir. Artan su muhtevası ile serbest basınç mukavemetinin arttığını da yine Heiner (1972) tarafından gözlemmiştir. Heiner'in çalışmalarında çevre sıcaklığı ± 1.5°C, numune merkezindeki sıcaklık ise ± 0.2°C lik bir aralıktaki değişmiş (Heiner 1972). Yong (1963) donmuş kum, silt ve kil üzerinde −4.7°C ve −17.8°C de sıcaklığın ve yüklenme hızının serbest basınç mukavemetine etkisini incelemiş dakikada 4.2 kg/cm² ve 35.2 kg/cm² lik gerilme artımı altında yapılan deneylerde sıcaklığın yüklenme hızından daha fazla etkili olduğunu gözlemiştir.

Neuber ve Wolters (1970) ince kum ve kil numuneler üzerinde −5°C, −15°C ve −25°C sıcaklıklarda 0.04 saat ilâ 50 saat süren serbest ve üç eksenli basınç deneylerinde kırılma gerilmesinin sıcaklığın azalması ile bariz olarak arttığını, deney süresinin ise ancak −25°C sıcaklıklıktaki deneylerde kayma mukavemetine etkileyen bir faktör olarak ortaya çıktığını görmüştür.

Çevre basıncının, donmuş kumların kayma mukavemetinin belirlemesinde etkili bir faktör olduğu buna mukabil donmuş kilerin kayma mukavemetine özellikle −5°C ve −15°C deki deneylerde etkilemediği Neuber ve Wolters (1970) tarafından gözlemmiştir. Chamberlain ve diğerleri (1972) yüksek çevre basınçlı (35 kg/cm² ilâ 2817 kg/cm²) altında ve −10°C sıcaklıkta doygun kum, silt ve kili numuneler üzerinde (1.4 inç çapında ve 3.5 inç yükseklikte silindirik numuneler) dakikada 6% birim boy değişimi yüklenme hızı ile yapılan üç eksenli basınç deneylerinde kayma mukavemetinin artan ortalama gerilmeye $[\sigma_m = (\sigma_1 + 2\sigma_3)/3]$, σ_1 : eksenel asal gerilme, σ_3 : çevre basınç, bağlı olarak üç bariz bölgede değiştiğini görmüşler-

*Başınç değerleri lb./inç kare den kg/cm kareye çevrilerek buraya alınmıştır.
dir. Birinci bölgede ($\sigma_M = 0 - 634$ kg/cm2) kum numune ile siltli kil numunenin aynı kayma mukavemetine sahip olduğu, çevrede basıncındaki artışın numunenin kayma mukavemetini artırdığı fakat siltli kil numunenin kayma mukavemetini çok az etkilediği görülmüştür. Bu davranış farkının kumu numune, siltli danelerin birbirine temasının artan çevrede basını ile artmasından siltli kil numunede ise artan çevrede basıncın numunenin donmamış su muhtevasını artıarak danelerin birbiri ne temasını engellemesinden dolaylı meydana geldiği ileri sürülmüştür. İkinci bölgede ($\sigma_M = 634 - 127$ kg/cm2) her iki cins zeminin kayma mukavemetinde artan ortalama gerilme ile bir azalma görülmüştür. Bu bölgede yüksek çevrede basıncı sonucu buz/su oranının değişmesi olayının kayma mukavemetini etkilediği düşünülmüştür. Üçüncü bölgede ($\sigma_M = 127 - 2817$ kg/cm2) her iki zeminin kayma mukavemetinin artan ortalama gerilme ile arttığı gözlenmiştir. Bu davranış, tamamlanmamış konsolidasyonlu-drenajsız üç eksenli deneylerdeki davranışa benzemektedir.

Donmuş zeminlerin çekme mukavemeti Heiner (1972) tarafından kumu ve siltli numuneler üzerinde $-0.5^\circ C$, $-2^\circ C$, $-5^\circ C$ ve $-10^\circ C$ deney sıcaklıklarında %5, 8 ve 10 su muhtevasında ve dakikada 26 kg/cm2 yüklemeye hızında Brezilya deneyi adı verilen dolaylı çekme deneyleri yapılarak incelemiştir. Brezilya deneyinde silindirik numune iki ana doğrusu boyunca gerit yükleme maruz olup çap boyunca sabit olarak meydana gelen çekme gerilmesi 2P/πD_1 ve eşittir (P numuneye uygulanan toplam yük, D silindirin çapı ve 1 silindirin uzunlugudur) (Heiner, 1972). Heiner (1972) çekme mukavemetinin ise azalan sıcaklık ve artan başlangıç su muhtevası ile arttığını gözlemiştir.

Gerilme kontrollu kesme deneyleri ile donmuş kumu ve siltli numunelerin kayma mukavemetlerini inceleyen Heiner (1972) kayma mukavemetinin artan su muhtevası ve uygulanan normal basınç ve azalan sıcaklık ile arttığını gözlemiştir.

Yong (1963) donmuş zeminlerin mukavemetine etkileyen değişkenlerin yalnız sıcaklık, zemin cinsi, çevrede basıncı ve su muhtevasından ibaret olmadığını, zeminin kütesinin donma veya erime tarihçesinin de mukavemete etkileyen birer değişken olдумuunu ileri sürmüştür.
Donmuş zeminlerde suyun katı ve sıvı fazlarında aynı zamanda bulunmasından dolayı Vialov (1963), donmuş zeminin "elasto-visko-plastik" bir malzeme olarak kabul etmiş ve Şekil 1 de gösterilen relojik modeli ileri sürmüştür.

Şekil- 1 Vialov'un donmuş zeminler için teklif ettiği relojik model.
Vialov ve Skibitsky (1957) gerilme gradyanının etkisi altında buzun erimesinden meydana gelen su filminin daha düşük gerilme bölgelerine doğru hareket ettirini ve düşük basıncınta dolaşı tekrar donduğuunu ileri sürmüştür. Bu olay sırasında hava kabarcıklarının zemini terk ettiği ve buzun plastik olarak aktığı, bu plastik akım ve erime sonucu zeminin yapışal bağlarının (yapışal kohezyyonun ve buzun bağlayıcılığından ileri gelen kohezyyonun) bozulduğu iddia edilmiştir. Bununla beraber, kohezyyonun şekil değiştirmeden dolayı azalmasına karşılık zemin danelerinin birbirine daha çok yaklaşıması nedeni ile moleküller kohezyyonun arttığını da ileri sürmüştür. Vialov ve Skibitsky (1957) tarafından donmuş zeminin herhangi bir andaki şekil değiştirime miktarının geçici ve kalıcı deformasyonların toplamına eşit olduğu düşüncelere \(\gamma \) deformasyonu (açısal değişim) ile \(\tau \) kaynağı gerilmesi arasında şu bağıntı verilmiştir:

\[
\gamma = \frac{\tau}{G(t)} + \left[\frac{\tau}{A(t)} \right]^{1/\alpha}
\]

Burada \(A' \) ve \(G \) zamana bağlı parametreleri göstermektedir. \(0 < t < \infty, A_0 > A(t) > A_\infty, G_0 > G(t) > G_\infty \) olup. 0 endisi \(t = 0 \) ani yüklemeyi, \(\infty \) endisi \(t = \infty \) çok uzun süreli yüklemeyi ve \(\alpha \) bir sabiti göstermektedir.

BÖLÜM III
METOT

A. DENEY ODASI

Suyun donma noktası altındaki sıcaklıklarda çalışabilmek için sıcaklığı -13°C ye indirilebilen ve bir termostat yardımcı ile iç sıcaklığı ± 0.5°C lik bir aralıkta otomatik olarak sabit tutulabilen refrigeratorlül bir deney odası teşkil edilmiş- tir. Deney odasının net döşeme alanı 2.65 x 1.64 metre kare olup iç yüzeyi 2.26 metredir (Şekil 2). Duvarların ve ta- van plaklarının iç yüzleri ile döşeme üstü piyasada Styropor adı ile satılan polistiren esaslı bir tecrit malzemesi ile kap- lanmıştır. Soğutma 2.2 kW lik trifaze motorla çalıştırılan kompresör-evaporatör sistemi ile ve Freon gazı kullanılarak sağlanmıştır. Deney odasının ısı geçirgenliğinin hesabı Ek-I de verilmiştir.

Deney sürelerine, sıcaklığına ve kapının açılıp kapanma sıklığına bağlı olarak evaporatörde toplanan buzun her on ila onbeş gündebir eritilmesi gerekmiştir. Eritme işlemi evaporatör vantilatörünün durdurulması sadece, soğutucu motorunun durdu- rarak yapılmıştır.

Sıcaklığın odanın her noktasında aynı olup olmadığı incelen- mişti. Bu amaçla odanın çeşitli yerlerinde sıcaklık ölçümeleri yapılmış ve odanın iki noktası arasındaki en büyük sıcaklık farkının 1.5°C yi bulduğu görülmüştür. Deneylerde sıcaklığın 0.1 °C den daha fazla değişimi istenmediğinden numuneler odanın hep aynı bir yerinde donmaya ve aynı bir yerinde deneye tabi tutulmuş, böylece yer değişimininden dolayı olabilecek sıcaklık farkları önlenmiş.
Özellikle düşük sıcaklıklarda oda içerisinde meydana getirilen isinin minimumda tutulabilmesi için oda içerisinde çalışan gözlemcinin işi kaybına karşı iyi bir şekilde giyinmiş olması gerekmistir. Kısa süreli deneylerde dahi bu hususun önemli olduğu görülmüştür. Odanın aydınlatılması için 60 Watt gücünde bir ampul kullanılmıştır.

B. ALET

1. Kesme kutusu

Hazırlık deneyleri yükleme oranı 1 : 1 olan gerilme kontrolü bir kesme aletinde yapılmıştır (Fotoğraf 1). Kesme kutusunun çapı 64.3 mm olan, alttağı sabit üstteki hareketli iki silindirik çenesi vardır. Kutuya konulacak numunelerin yüksekliği 42.7 mm olarak seçilmiştir. Bu kesme aletinde normal kuvvet düşey bir boyunduruk, yatay kuvvet ise yükleme çerçevesindeki düşey yükü yatay eksenli bir mesned yardımı ile yatay kuvvete çeviren kalsıma süslemi ile uygulanmaktadır. Yüklemeye sisteminin yatay çubuğu kesme kutusunun üst yarısındaki çeneye geçer. Aletin yükleme kafesine yeteri kadar ağırlik konulamadığından, 300 kg a kadar ağırlık konulabilecek ayrı bir yükleme çerçevesi imal edilmiş ve alete eklenmiştir. Hazırlık deneyleri esas olarak, hazırlanan numunenin kesme mukavemeti hakkında bir fikir edinmek amacı ile yapıldığı için alet sürünmesinden dolayı meydana gelebilecek ±0.2 kg lik bir hataya müsaade edilmiştir. Yer değiştirilmeler 0.01 mm taksimatlı bir komparatör ile ölçülmuştur.

2. Öç eksenli deney aleti

Değişkenlerin belirlenmesi için gerekli olan ön deneyler ve esas deneyler için standart üç eksenli yükleme aleti (Wykeham Farrance) ve numune hücresi kullanılmış ancak deney şartlarına uygun olarak şu ek ve değişiklikler yapılmıştır:

(1) Standart küçük üç eksenli basınç hücresi ikinci bir silindirik hücre içine oturtulmuştur (Fotoğraf 2). Böylece iç hücrede meydana gelebilecek sıcaklık değişimi azaltılmıştır. İkinci hücresin silindirik yüzeyi saydam, basınca dayanıklı bir maddeden (pleksiglas) alt ve üst tablaları pircinçten
Fotograf 2. İç ve dış hücre
yapılmıştır (Şekil 3). Alt tabla numune hücresinin tabanı üzerine oturmakta, numune hücresi de bu alt tabla üzerinde oturmaktadır. Tabla üzerindeki yive geçirilen halka biçiminde lastik conta geçirmisizliği sağlanmaktadır. Numune hücresinin taban saplamaları çıkarılmış ve yerine ikinci hücrenin alt tablasının kalınlığı kadar daha uzun olan saplamalar takılmıştır. İkinci hücrenin alt tablası içinde termo eleman çiğneleri için 1.5 mm çapında iki ayrı kanal açılmıştır. Bu suretle numune hücresi üzerinde termo eleman çiğnisi için ayrı bir kanal açamaño lüzum kalmamıştır. İkinci hücrenin üst tablası numune hücresinin üst başlığında açılan yuvaya giren halka biçimindeki lastik contaya ve pleksiglas yan yüzeye kendi ağırlığı ile eşit miktarda oturacak şekilde yapılmiştir. Üst tablada termo eleman çiğneleri için vidalı bir boşluk bırakılmıştır. Termo eleman kullanılmadığında bu boşluk vidalı bir tapa ile kapatılabilmektedir.

Numunenin boy değişimini, birim boy kısalması % 25 e ulaşın- caya kadar gözleyebilmek için uzun bir yükleme çubuğu kullanmak yerine numune hücresinin kaidesi ile numune arasına konan diskin yüksekliği artırılmıştır. Disk 40.5 mm çapında ve 40 mm yüksekliğindeğin ve sarıdan yapılımıstır.

(2) Deney odasının tabanı hafif eğimli olduğundan Wykeham Farrance yükleme aleti su terazisi ile yataylığı kontrol edilerek ve takozlarla beslenerek yerleştirilmiştir. Düșeme be-tonu altında bulunan 14 cm kalınlığındaki Stropor tabaka labaratuvarda vuku bulacak sarsıntıların alete intikal etmeden sönümlenmesine yardımcı olmuştur. Bununla beraber oda içerisinde herhangi darbeli bir hareketin numuneye ve düşey boy değişimini ölçen komparatöre etkilemesi ihtimali gözünden tutularak deney sürelerince oda içerisinde sarsıntı meydana getirmemege ihtimam gösterilmiştir. Dişli kutusu ve tahrik
Şekil-3 DIŞ HÜCRE
SEKİL-4 YÜKLEME ÇUBUĞU
edici motor alete rijit bir şekilde tesbit edilmiş olup dışlı çark hareketlerinden dolayı bir titreşim meydana gelmemektedir.

ma noktası ise yine deneyle 330°C olarak bulunmuştur. Sıvı parafin inert bir mayıdır ve 2 kg/cm² lik basınç altında numunenin gözeneğerinden içeri nüfuz etmedi kullanılabilmştir. Bu nedenle deneylerde lateks kılıf kullanılmaga gerek kalmamıştır.

Hücre basıncı, içi yarıya kadar sıvı parafin doldurulan ve 10 kg/cm² lik basınca dayanıklı bir tankın sıvı yüzüne hava basılarak ve tankın sıvı çıkış musluğu ketenli lastik hortum ile hücreye bağlamak sureti ile sağlanmıştır. Tank içinde basıncı hava bir otomobil lastik şişirme pompası ile basılmıştır. İlk uç deneyden sonra tank çıkış muslubundaki bağlantı rakoğ ve hortumundaki sürümümlerden dolayı sıvının ısınması ve akış hızının yetersiz bulunması nedeni ile tank yerine 2.5 litre haciminde bir üç eksenli konsolidasyon hücresi kullanılmış ve bağlıları daha büyük çaplı hortumla yapılmıştır (Şekil 5, Fotoğraf 3). Bununla beraber tank da yedek olarak ve muslukları kapatılmak sureti ile sistemde bırakılmıştır. Hücre basıncını ölçmek için 10 kg/cm² kapasiteli ve 0.2 kg/cm² takşimları bir metal manometre kullanılmış, basıncı sabit tutmak için de 3/8 inçlik bir "monostat" sisteme takılmıştır (Fotoğraf 4). Deneyler esnasında hücre basıncındaki maksimum oynama ±0.1 kg/cm² nin altında kalmıştır. Sıvı parafinin viskozitesinin deney sıcaklığı azaldıkça daha da artması hücresin boşaltılması için sıvı parafinin üst yüzeyine basınç tättikini zorunlu kılmıştır. Sıvı parafinin -50°C de kendi ağırlığı altında hücresden tanka boşalması 40 dakika sürmüştür, halbuki 2 kg/cm² basınç altında bu süre 3 dakikaya inmiştir. Basıncı üst bağlantılı hava tahliye vanasının yerine takılan redüksiyona pompa ile hava basmamak sureti ile temin edilmiştir.

3. Sıcaklık ölçme düzeni

Numunenin ve hücres sıvisının sıcaklığı termo eleman-milivoltmetre tertibatı yardımı ile ve maksimum ±0.05°C hata ile ölçülmuştur. Sabit referans sıcaklığı A.S.T.M.* nin termoelemanlarla sıcaklık ölçülmesine dair kabul ettiği standartlara uyularak elde edilmiştir.** Termoelemanlar olarak önce elektronmotor kuvvetinin nisbeten yüksek olmasından dolayı Demir-

* American Society for Testing and Materials
Fotograf 3. Basınç tankı olarak kullanılan konsolidasyon hücresi (ortada)
Şekil - 5 ÜÇ EKSENLI BASINC DENEYİ DÜZENİNİN SEMATİK DIYAGRAMI
Fotograf 4. Üç eksenli deney düzeni
Konstantan (%60 Bakır, %40 Nikel) kullanılmış fakat demir tel-lerde paslanma görüldüğünden bunun yerine Bakır-Konstantan çifti tercih edilmiştir. Numune hücresinin tabanına oturan dış hülcre alt tablasında açılan kanallardan eşit uzunlukta ve 0.2 mm çaplı iki çift Bakır-Konstantan geçirilmiştir. Kanal ile termo elemanların arasında kalan açıklik poliamid reçine ve demir tozu esaslı bir dolgu madde ile doldurularak siz-dirmazlık sağlanmıştır. Termo-elemanların hasil ettiği elektromotor kuvvet potansiometrik bir milivoltmetre tarafından sürekli olarak kaydedilmiştir (Fotoğraf 5). Kullanılan kaydedici milivoltmetrenin ölçebileceği en düşük potansiyel farkı 2.5 mikrovolttur. Bu fark ise kullanılan termo elemanlarda 0.06°C lik bir sıcaklık farkına tekbül etmektedir. Kaydedici 8 muhtelif híza ayarlanabilirmektedir.

Termo-eleman ile ölçülen sıcaklığın kontrolu için 0.1°C tak-simatlı civalı özel laboratuvar termometreleri kullanılmıştır. Civalı termometrelerden ASTM 52 C nin ölçme aralığı -10°C ile +5°C , ASTM 62 C nin ölçme aralığı ise -38°C ile +20°C arasındadır. Bu termometreler ile 0.05°C ye kadar okuma yapılabilmektedir.

Ayrıca, maksimum-minimumlu bir termometre ile muhtemel bir elektrik kesilmesinden dolayı oda sıcaklığının, ayarlanan sıcaklığın üstüne çıkıp çıkmadığı ± 0.5°C hata ile gözlenmiştir.

Oda duvarlarının iç ve dış yüzey sıcaklıklarını ölçme aralığı -45°C ile +65°C olan ve ± 0.5°C hata ile ölçme yapabilen sanayi tipi, taşınabilir, termistörlü bir termometre ile ölçülmüştür. Ön deneyler ve hazırlık deneylerinde sıcaklık ölçmesi 1°C taksimatlı laboratuvar termometreleri ile yapılmiştir.

4. Numune kalıpları ve kompaksiyon aleti

(1) Kesme kutusu deneylerinde kullanılabacak numuneler için üç adet, iç çapı 64.8 mm yüksekliği 70 mm olan 2.5 mm et kalınlığında bakır boru kalıp olarak kullanılmıştır. Boru iç çapını kesme kutusu çapına indirmek için kalıp içine polietilen sarılmıştır. Bakır boru daha sonra 27.3 mm yüksekliğinde ve 64.7 mm çapında silindirik bir çıkıntısı olanquirrelen yapılmış bir kaideye oturtulmuştur. Böylece 42.7 mm yüksekliğinde
Fotograf 5. Sıcaklık ölçmede kullanılan teçhizat ve numune dondurma kabı (parlak sarı kova)
numune elde edilmiştir. Bu numunelerin kompaksiyonu için stand-
dard proktor tokmağı kullanılmıştır. Bu üç kompaksiyon kalı-
bından başka üç adet iç çapı 64.8 mm ve yüksekliği 43 mm olan
yine aynı bakır borudan iki parçalı kalıp yapılmıştır. İki par-
ça birbirine silindirik bir yay ile tutturulmuştur.

(2). Serbest basınç ve üç eksenli basınç deneylerinde kullanı-
lacak numuneler için 9 adet minyatür Harvard tipi kompaksiyon
kalıbı yapılmıştır (Fotograf 6). Kalıplar numunenin dondük-
tan sonra kolayca çıkarılabilmesi için iki parçalıdır. Bu iki
parça bir kelepçe vasıtası ile birbirine tıkkırtulmaktadır. Ka-
lıbin iç çapı 33.34 mm, yüksekliği 71.53 mm olup, imalatta mü-
saade edilen ölçü farkı ± 0.01 mm dir. Kalıbın üst kısmında
başlığın oturması için bir yuva ve alt kısmında tabana tutturul-
ması için bir yiv vardır. Kalıplar pırcıçten yapılmıştır. Ka-
lıp, bir başlık yardımı ile Soil Test Fırmasının imalatı olan
bir kaideye oturmaktadır. Kaidenin alanı 10x10 cm2 olup 11 cm
yüksekliğinde bir çatalı vardır. Kaidenin başlıklı birlikte
ağırlığı 432 gr dir. Kalıp kaidesi 5 cm kalınlıkta bir kaçak
tabana oturtulmuş ve üç civata ile tesbit edilmiştir. Bu suret-
le kompaksiyon esnasında kalıbın hareket etmemesi sağlanmıştır.
minyatür Harvard kalıbında standard proktor enerjisi ile kom-
paksiyon yapabilmek için 29.5 mm çapında ve 550 gr ağırlığın-
da bir tokmak yapılmıştır (Şekil 6). Tokmak ve tokmağın için-
de hareket ettiği boru Pırcıçten.

Numuneyi kalıptan çıkarmak için Soil Test Fırmasının minyatır
Harvard numune çıkarıcısı kullanılmıştır. Numune çıkarıcı
32 mm çapında bir piston, bu pistona hareket etirecek bir ma-
nleva tertibatı ve minyatür Harvard kalıbının oturabileceği
ortası delik bir yuvadan ibarettir (Fotograf 6). Kalıplara
ek olarak numuneleri suya doygun hale getirme işleminde kul-
lanılmak üzere Pırcıçten 35 mm çaplı, 2 mm kalınlığında 18
disk yapılmıştır. Bu disklerden 9 unda suyu geçirmeleri için
1 mm çapında delikler vardır.
Fotograf 6. Sıkıştırmda kullanılan aletler ve numune çıkartıcı
Şekil-6 Tokmak
5. Dondurmada kullanılan düzen

(2) Numuneyi deney sıcaklığına getirmek için yarısına kadar sıvı parafin doldurulmuş 10 litrelik bir cam kap ve bu kabin içerisine yerleştirilen 2 litrelik bir kavanoz kullanılmıştır (Şekil 7). İçteki kavanoza numuneler konulmuş ve hava şizdirmaz bir kapakla kapatılmıştır. Dıştaki cam kap üzerinde 30 cm x 30 cm x 7 cm lik Stropor blok kapatılmıştır. Odanın iç sıcaklığının ± 0,5°C lik bir aralıktaki değişmesi halinde iç kavanozdaki sıcaklık değişiminin termodinamik milivoltmetre sistemi ile kaydedilemiycecek kadar küçük (0,03 °C den daha küçük) olduğu gözlenmiştir.

6. Deneyden sonra su muhtevalarının belirlenmesi

Fotograf 7. Numunelerin dondurulduğu alet
Şekil-7 Numuneleri deney sıcaklığına getirme kabı
7. Referans ve donma sıcaklığının elde edilmesi

8. Diğer deney aletleri

Yukarıda açıklanan aletlere ek olarak standartlaştırılmış Zemin Mekanı Laboratuvar deney aletleri kullanılmıştır (Lambe, 1951), (Bishop ve Henkel, 1962).

Üç eksenli alette eksenel yüklen ölçülmesinde kullanılan ring deney odasında -30°C de kalibre edilmiştir.

C. MALZEME

1. Malzemenin aldığı yer

Deneylede kullanılan malzeme (Topser Sarı Kılı) Büyükdere'de Topser Tuğla Fabrikasının açık ocağından sağlanmıştır. Malzeme yaz aylarında ocak kuru iken taze kazılmış bir kesimden alınmıştır.

2. Ön muamele

Malzemenin aldığı sıralarda kazi makinaları faaliyette olduğundan malzemenin çoğu taze kazıdan toplanmış, bir kısmı ise aynadan kazılarak alınmıştır. Ocak tabanından ve aynasından bu şekilde toplanan 230 kg kadar malzeme alınmıştır. Laboratuvara getirilen malzeme, görünen taş ve bitkisel artıklardan
temizlenmiş, ahşap tokmakla dövülerek toz haline getirilmiş,
d = 0.422 mm lik elekten (No. 36 BS) eленmiştir. Her tarafın-
da özellikleri aynı olan bir malzeme ele etmek için malzeme
4 parçaya ayrılmış ve bu parçalar ızgaralı karıştırma kutusun-
da (rifflle box) birbirine katılmak sureti ile karıştırmılmış-
tır. Karıştırma kutusunda, üst kısmından serbestçe düşmeye bir-
arakılan toz halindeki numuneyi sağ ve soldaki kaplara ayrıran
çok sayıda oluk vardır. Bu şekilde hazırlanan 180 kg kadar
malzeme 40 x 80 x 40 cm lik, demir çerçeveli cam bir kaba
konmuş ve üzeri kalın cam plakalar ile toz girmeyecek şekil-
de örtülmüştür. Bu çalışmada bahsedilen "malzeme" sözü ile,
hazırlanmış ve özellikleri her tarafında aynı olan bu malze-
me kastedilmektedir.

3. Malzemenin özellikleri

Malzemenin standart laboratuvar deneyleri (Lambe, 1951) ile
bulunan özellikleri Tablo 1. de verilmiştir.

Malzemenin dane yüzde frekansları dağılım eğrisi (granü-
lometri eğrisi) Şekil 8 de verilmiştir. Topser sahasından
alınan Sari Kıl Zemin Mekaniği Laboratuvarında daha önce baş-
ka araştırmacılar\(^x\) tarafından da kullanılmış olup özellikleri
bilinen bir malzemedir. Deneylerde kullanılan malzemenin temel
mineresinin kaolinit olduğu Şekil 9 da verilmiş bulunan
X-ışını saptırmaya analizi sonucundan\(^xx\) anlaşılmaktadır. Malze-
menin pH sı pH metre ile ölçülmuş ve 6.4 bulunmuştur.

\(^{x}\) E.Töğrol ve M.Tümay, (1967) ; V.Kumbasar ve E.Töğrol (1966);
R.Ulker (1966) ; V.Kumbasar ve E.Töğrol (1970) ; M.Tümay

\(^{xx}\) X-ışını Saptırmaya Analizi bu çalışma için United States
Department of the Interior Geological Survey dairesi tara-
fından yapılmıştır. Analiz, birinci seri havada kurumuş
numune üzerinde, ikinci seri gliserin ile çözeltülenmiş mal-
zemede, üçüncü seri 300°C sıcaklıkta tutulmuş malzemede, dör-
düncü seri 550°C sıcaklıkta tutulmuş malzemede olmak sure-
ti ile dört seride yapılmıştır.
Tablo 1

Topser Sarı Kilinin Laboratuvara Belirlenen Mühendilik Özellikleri

<table>
<thead>
<tr>
<th>Dane birim hacım ağr. limit</th>
<th>Likit limit</th>
<th>Plastik endisi</th>
<th>Plastisite de-</th>
<th>pH</th>
<th>2 mikrondan küçük dane</th>
<th>Aktivite:</th>
<th>Minyatür Har-</th>
<th>plastisite standart prokt. endisi</th>
<th>2 mikron-</th>
<th>enerjisi ile bulunan optim. dane</th>
<th>su muhtevası</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>gr/cm³</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>% si</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>2.74</td>
<td>40.2</td>
<td>24.7</td>
<td>15.5</td>
<td>6.4</td>
<td>16-20</td>
<td>0.97-0.78</td>
<td>18.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minyatür Harvard kalıbında standart proktor enerjisi ile bulunan optimum su muhtevası

<table>
<thead>
<tr>
<th>Dane birim hacım ağ. limit</th>
<th>Likit limit</th>
<th>Plastik 2 mikrondan küçük dane</th>
<th>pH</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deney sayısı</td>
<td>3</td>
<td>7seri</td>
<td>24</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ortalama değer</td>
<td>2.74</td>
<td>40.2</td>
<td>24.7</td>
<td>6.4</td>
<td></td>
<td>18.7</td>
</tr>
<tr>
<td>En büyük değer</td>
<td>2.747</td>
<td>41.5</td>
<td>28.0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>En küçük değer</td>
<td>2.740</td>
<td>39.2</td>
<td>22.8</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standart sapma</td>
<td>0.71</td>
<td>1.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standart hata</td>
<td>0.10</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Şekil-8 Granülometri eğrisi

çapları 0 den küçük olan danlerin ağrılık yüzdeleri

DANE
ÇAPI
D. mm
4. Numune harmanının hazırlanması

Malzeme ve numune hazırlanmasında damıtık su kullanılmıştır. Cam kap içinde sabit sıcaklık ve rutubette muhafaza edilen kuru toz halindeki malzemenin su muhtevası standart labortuvar deneyi ile % 2.4 bulunmuştur. Cam muhafaza kabından zaman zaman 1 ila 2 kg lik kütleler halinde alınan malzeme istenilen su muhtevasına getirilmek üzere 30 x 40 x 5 cm boyutlarında emaye kaplı metal tepsiye konmuştur. Tepside yayılan malzeme üzerine bir püskürtücü ile su serpilmek ve tahta bir kaşıkla karıştırılmak sureti ile istenilen su muhtevasına getirilmiştir. Malzeme ince tabaka halinde yayılıp üzerine bir miktar püskürtüldükten sonra 20 dakika kadar suyun malzeme- ye nüfuz etmesi beklenmiş ve sonra karıştırma işlemi başlamıştır. Her defasında malzemenin su muhtevası % 3-4 aracak şekilde su verilmiş ve bu işlem istenilen su muhtevasına eşiğiln- ceye kadar tekrar edilmiştir. Bu şekilde hazırlanan harman son bir defa daha fakat su verilmeden karıştırılmış, bu suretle topaklaşan parçacıklar da uфalanmıştır. Su muhtevasının %20 den büyük olduğu hallerde topaklaşmış malzemeyi ayırmak için harman 1.2 x 1.2 mm² delikli elekten (B.S. 14) geçirilmiştir. Harmanın harmanın çeşitli yerlerinden numuneler alınmış ve su muhtevası tayin edilmiştir. Aynı bir harmanın çeşitli yerlerindeki su muhtevalleri arasındaki fark %0.05 yi geçmemiştir. Belli bir su muhtevasını haiz bu harman 10 litrelik cam kavanolar içine konmuş ve cam kavanozun üstü dış bir camla örtülmüştür. Cam plak ile kavanozun temas edeceği yüzey vaze- linde sıvanmak sureti ile geçirimsizlik sağlanmıştır. Daha sonra altı vazein yerine silikon gres kullanılmış ve daha iyi sonuç alınmıştır. Belli su muhtevasındaki bu harman en fazla 1 ay içerisinde tüketilmiştir. Bir ay bekleyen harmanın ilk ve son su muhtevaları arasındaki azalmanın en büyük değeri %0.34 olmuştur.
D. NUMUNE HAZIRLANMASI

1. Hazırlık deneyleri numuneleri

Kesme kutusunda yapılacak hazırlık deneyleri için Bölüm III B.4.(1) de anlatılan özgün modifiye ve standart Prok-
tor enerjisi kullanılarak kalıpların optiğine uyunması ta-
yını yaptırmış modifiye proktor için %14.5, Standart Proktor için %15.5 bulunmuştur. Kompaksiyon ile ilgili bilgiler Tablo 2 ve Tablo 3 de verilmiştir.

Kompaksiyon işleminden sonra numune kalıptan çıkarılmadan sabit hacimde suya doyurulmuştur. Suya doyumunun önce numunenin içinde 1 cm derinlindeki su bulunan yayvan bir kağıb batırıp üzerine ağırlık koymak süreci ile yapılmıştır. Numunenin çişme basıncı-
in karşılayabilmesi için üst yüzeye 1.2 kg/cm² lik bir basınc
tabiki gerektirmştir. Dahil sonra ağırlık koyma usulunun yaz-
geçilmiştir; yüksek bir ûc kenili alénin yüklemenin tesisi ile tadbik edilmştir. Kompaksiyon kalıbındaki numunenin üst yüzü kalan üst yüzü ile aynı düzlemdedir, fazat anyk yüksek kalıp alt yüzünden 27 mm kadar içerdiği (Bölüm III B.4.(1)re bekenir). Bu sebeple kalıp alt yüzü üstü gelecek şekilde döndürülmiştir, numu-
nenin her iki yüzüne temas edecek şekilde dairesel metal pla-
kalar kommuş ve üst taraf 2.54 cm çaplı ve 5.5 cm yüksekliği
ginde paslanmış kalıf bir uymış, temin boruların doğurulmuştur. Üzerin-
de bilaya yatağı bulunun bir tabla demir boruya oturtulmuş ve bu şekilde tabla yerleştirilmiş üç kalıp bir ûcgen teskiade-
cek şekilde beraberce suya basılmıştır. Tabloların üzerlerine birer bilaya yerleştirilmiş ve üzerine üç tablalı kapak yapılı-

Standart ve Modifiye proktor enerjileri ile optimum su muhte-
avasına yakın su muhtevalardında (kururtaşı), sıkıştırılın-
numuneler 2 ile 12 gün mütددetle basınc altında suya batık pi-
rakılmıştır.
Tablo 2

Modifiye Proktor Enerjisi ile Optimum Su Muhtevasında Hazırlanan Numunelerin Kompaksiyonu ile İlgili Veriler

<table>
<thead>
<tr>
<th>Numune boyutları</th>
<th>Tokmak ağırlığı</th>
<th>Tabaka düşüş sayısı</th>
<th>Vuruş sayısı</th>
<th>Birim hacim maagna düşen sıkıştırma enerjisi</th>
<th>Kompaksiyon esnasında çevre sıkışma çarklığı</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm (çap) x yükseklik</td>
<td>cm³ (Hacım)</td>
<td>kg</td>
<td>cm</td>
<td>kg.m/m³</td>
<td>°C</td>
</tr>
<tr>
<td>63.1 x 42.7</td>
<td>133.5</td>
<td>4.54</td>
<td>1</td>
<td>45.7</td>
<td>17+</td>
</tr>
</tbody>
</table>

1 vuruş yarım yükseklikte

Tablo 3

Standart Proktor Enerjisi ile optimum Su Muhtevasında Hazırlanan Numunelerin Kompaksiyonu ile İlgili Veriler

<table>
<thead>
<tr>
<th>Numune boyutları</th>
<th>Tokmak ağırlığı</th>
<th>Tabaka düşüş sayısı</th>
<th>Vuruş sayısı</th>
<th>Birim hacim maagna düşen sıkıştırma enerjisi</th>
<th>Kompaksiyon esnasında çevre sıkışma çarklığı</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm (çap) x yükseklik</td>
<td>cm³ (Hacım)</td>
<td>kg</td>
<td>cm</td>
<td>kg.m/m³</td>
<td>°C</td>
</tr>
<tr>
<td>53.1 x 42.7</td>
<td>133.5</td>
<td>2.5</td>
<td>1</td>
<td>30.5</td>
<td>11</td>
</tr>
</tbody>
</table>
Suya doyurma işleminden sonra numuneler, kalıplardan bir piston yardımı ile dikkate çıkarılmış Bölüm III B.4 (1) de bahsedilen iki parçalı kalıplara konmuş ve parafinlendikten sonra donma programına uygun olarakdongurulmuştur.

2. Ön deney ve esas deney numuneleri

Serbest basınç ve üç eksenli basınç deneyleri için, Bölüm B.4 (2) de anlatılan Minyatür Harvard kalıbında standart şoktor enerjisi kullanılarak 12 seri kompaksıyon deneyi yapılmış ve malzemenin optimum su muhtevasını %8.7 olarak bulunmuştur (Şekil 10). Kompaksıyon ile ilgili bilgiler Tablo 4 de verilmiştir.

(1) Ön deney numuneleri optimum su muhtevasından daha düşük, optimum su muhtevasına eşit ve optimum su muhtevasından daha yüksek su muhtevalarında Tablo 4 de verilen özellikleri haiz kompaksıyon tabi tutularak hazırlanmıştır. Her seri kompaksıyon işlemi sonunda yine kompaksıyon tabi tutulmuş bir numune su muhtevası tayini için kullanılmıştır. Su muhtevasının tayini için 0.1 mg a kadar okuma yapabildi bir terazi kullanılmış, ancak okumalar 0.01 gr a kadar yapılmış son iki hane atılmıştır. Kompaksıyon tabi tutulmuş numuneler alt ve üst yüzleri kaplı uçları ile aynı düzlemde olacak şekilde bir spatula ile traş edilmiş ve kalıpları ile birlikte 1 gr taksimatlı terazide (± 0.2 gr maksimum hata ile) tărtıldiktan sonra suya doygun hale getirme işlemine geçilmiştir. Kalıbın alt ve üst yüzlerine metal diskler konmuş (alttaki disk poroz olmak üzere) ve üçlü gruplar halinde içinde 3 ilâ 4 cm derinliğinde su bulunan yassı bir kaba konduktan sonra sabit laboratuvar sıcaklığında (± 21°C ± 1°C) üç eksenli aletin yükleme tesisine yerleştirilmiştir. Üst disklerin üzerine 1/2 inçlik galvanı borularından kesilmiş suretiyle yapılmış 1 cm yüksekliğinde bile yatakları, yatakların üzerine de bılyalar konmuştur. Bılyaların üzerine 9 bılayı da örtücek şekilde rijit, kalın bir disk konmuş, yükleme tesiği ringi bu diske bir bılya ve bılya yatağı vasıtası ile temas ettirilmştir (Fotograf 8). Bu suretle ringdeki yüksek 9 numuneye de eşit miktarda aktarılmıştır. Suya basilacak numunelerin 9 dan az olması halinde 72 mm yüksekliğinde, 30 mm çapında sıra borular eksik kalıpların yerine konmuş böylece hep aynı yükleme
Şek. 10
<table>
<thead>
<tr>
<th>Numune boyutları (mm)</th>
<th>Hacım (cm³)</th>
<th>Tokmak ağırlığı (kg)</th>
<th>Tabaka sayısı</th>
<th>Düşüş yüksekliği (cm)</th>
<th>Her tabakaya düşen sıvı上市</th>
<th>Enerji (kgm/m³)</th>
<th>Kompaksiyon esnasında çevre sıcaklığı (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>çap</td>
<td>yükseklik</td>
<td>33.34</td>
<td>71.53</td>
<td>62.446</td>
<td>0.550</td>
<td>3</td>
<td>15.24</td>
</tr>
</tbody>
</table>
Fotograf 8. Sabit hacimde suya doyurmada kullanılan düzen
durumu elde edilmiştir. Numunelerin suya basılma müddetinin doygunluk derecesine etkisini anlayabilmek için 2 gün suda kalmış numune, 6 gün suda bırakılmış numune ile kıyaslanmış 2 günlük numunenin doygunluk derecesinin %94–99 arasında, 6 günlük numunenin doygunluk derecesinin %95–99 arasında değiştiği görülmüştür.

Altta suya doyurulan numunede şişmeyi önlemek için kalıp üzerine verilmesi gereken minimum kuvvet deneyle bulunmuştur. İlk 9 numunede her bir kalıba düşen yük 7.3 kg alınmış sonraki numunelerde ise bu yük 14.6 kg a çıkılarılmıştır. Numunelerin sabit hacim altında doyurulmasında gözlenen şişme basıncı ve doygunluk dereceleri Seed ve Chan (1959)* in kompaksiyona tabi tutulmuş killer üzerinde yaptıkları araştırmalar sonucu ile uygulan göstermiştir.

Suya doyurma işleminden sonra numuneler kalıpları ile birlikte tartılmış ve hacminin değişmediği gözününde tutularak su muhtevası ve doygunluk derecesi hesaplanmıştır. Hesapların kontrolü için tartılmış numunelerden bir kağı tanesinin su muhtevası deneyle bulunmuş ve hesapla bulunan su muhtevası ile olan farkın ± 0.09 u geçmediği görülmüştür.

Suya doyurulmuş numuneler tartılduktan sonra ağızları hava sızdırmaz bir şekilde kapanan 1 litrelik cam kavanozlara konmuş ve kavanozlar deney odasında muhafaza edilen ve içinde %50 etilen glikol %50 su bulunan 10 litrelik bir cam kaba yerleştirilmiştir. Etilen glikollü kabin sıcaklığı donma programına uygun olarak ayarlanmıştır. Ön deneyler sırasında sunlandırılmış etilen glikoldaki sıcaklık değişimi 0.5°C ye kadar okuma yapabilen termometre ile gözlenmiş ve okunabilir bir değişim görülmemiştir. Numuneler ilk donma sıcaklığında en az 48 saat tutulmuştur. Deney sıcaklığına geçiş içinde ayrıca 48 saat beklenmiştir.

(2) Esas deney numuneleri optimum su muhtevasına kuru tarafa
tan yakın su muhtevalarında Tablo 4 de ayrıntıları verilen
kompaksiyona tabi tutularak hazırlanmıştır. Esas deney numu-
nelerinde 58 no.1 u numuneden itibaren kalıpların içsi li-
kon gresle ince bir film halinde sıvandıktan sonra kompaksi-
yon yapılmıştır. Bu tedbir kalıpların parçalı olmasına rağmen
-5°C den daha düşük sıcaklıklarda numuneyi kalıptan çıkarma-
nın zorlaşması üzerine alınmıştır. Kompaksiyona tabi tutulmuş
numuneler ön deney numunelerinde olduğu gibi üzerinde yük
tatbik ederek sabit hacımda suya doyurulmuştur. Burada doygun-
luk derecesini artırmak için su basıncına azaltmak yoluna gi-
dilmiş ve su seviyesi numunenin alt yüzünden 0.5 cm kadar
yüksekte kalacak şekilde su kommuştur. Buharlaşmadan dolayı
suyun daha da azalmaması için kabin üzerine ışak bez örtül-
müş ve su seviyesi aralıklı olarak kontrol edilmiştir. Su
seviyesini azaltmak sureti ile hidrostatik bir basınç olmak-
sızın ve numune içinde hava hâbecikleri hapsedilmeksin ka-
piler yükselenminin vuku bulacağı düştülmüşdür. Fakat su sevi-
yesi azaltılmış halde yapılan suya doyurma neticesinde doygun-
luk derecesinde belli bir artış görülmüştür. Sabit hacımda
duya doyurulmuş numunelerin doygunluk dereceleri %93-99 ara-
sında değişmiştir.

Suya doyurulmuş numune, kalıbı ile birlikte tartıldıktan sonra
özelle reknli lastik balon geçirilmiş ve bu şekilde hazırla-
lanan 1 ilâ 9 numune, deney odasında bulunan ve Bölüm III B.5 de
anlatılmış olan ve içinde tuz-buz karışımı bulunan ilk denona
kabına yerleştirilmiştir. Kalıp numaraları balonun içinde
kalğıından numuneleri numara sırası ile tanımlayabilmek için
bir renk kodu kullanılmıştır.

İlk denona esnasında numune sıcaklığının zamanla değişimi tipik
bir eğri vermiştir (Şekil 11). İlk denona kabinin sıcaklığının
-21°C den bağlıyarak deney odası sıcaklığına erişmesi deney
odasının sıcaklığına bağlı olarak 8 ilâ 20 saat arasında de-
ğişmiştir. Numuneler 6 ilâ 10 saat müddetle ilk denaya tabi tu-
tulduktan sonra Bölüm III B.5 (2) de bâhsedilen cam kavanoz
konomuş (Fotoğraf 9). Cam kavanozun etrafında bulunan likit
parafinin sıcaklığı deney sıcaklığına eşittir. Numune bu ka-
vanozda en az 14 saat birakılmıştır. Bazı hallerde numune ilk
denmayi müteakip cam kavanoz içine konacak yerde doğrudan doğ-
ruya üç eksenli deney hücresi içine konmuş ve deney sıcaklığı-
Şekil 11 Donmaya tabi tutulan numunenin sıcaklığının zamanla değişimi
na gelmesi için hücre içinde en az 14 saat bırakılmıştır. Hücre içindeki sıcaklık değişiminin de kullandığımız termo-eleman-milivoltmetre sistemi ile ölçülemeyişi bu sıcaklık değişiminin 0.03°C den daha küçük olduğunu göstermiştir. Hücre içindeki sıvı parafinin sıcaklığı ile numunelerin deney sıcaklığına gelmesi için bekletildikleri kavanozun etrafındaki sıvı parafinin sıcaklıklarını eşittir. Bu sebeple kavanozdan çıkan alan numuneler, hücre içine konduklarında numunelerde yer değişimi-minden dolayı bir sıcaklık gradyanı meydana gelmemiştir.

E. DENEYLERIN YAPILIŞI

1. Genel
Bu çalışmada 9 kesme kutusu deneyi, 33 serbest basınç, 101 üç eksenli drenajlı deney yapılmıştır. Bunlardan başka malzemenin çeşitli fizik özelliklerinin tayini için 3 adet birim hacim ağırlığı deneyi, 7 granülometri analizi, 24 plastik limit ve 7 seri likit limit tayini yapılmıştır.

2. Kesme kutusu deneyleri
Kompaksiyona tabi tutulmuş ve su ile doygun hale getirilmiş deney numunelerinin 0°C nin altındaki sıcaklıklarındaki mekanik davranışa hakkında bir fikir edinebilmek için Bölüm III. B.1 de anlatılan kesme aleti ile hazırlık deneyleri yapılmış-tır. Standard proktor enerjisi ile sıkıştırılmış numuneler ile 3, modifiye proktor enerjisinde sıkıştırılmış numuneler ile 6 deney yapılmıştır. Bu deneylerin 1 i-2°C de 7 si -3°C de ve 1 i de -5°C sıcaklıkta yapılmıştır.

Kompaksiyondan sonra sabit hacımda suya doyurulmuş, parafin-lenmiş ve doma programına uygun olarak değişik doma hizları-na sahip olmak üzereдонdurulmuş numune, etrafındaki parafin temizlendikten sonra hafifçe vurularak parça kalıbından çıkarılmış ve kesme kutusuna yerleştirilmiştir. Donmuş numuneler her zaman eldiven ile tutulmuştur.

Yatay yüklemeyi sademesiz yapabilmek için kesme kutusunun yükleme çerçevesinin alta üç hidrolık kriko yerleştirilmiş-tir. Çerçeve üzerine ağırlıklar konulduktan sonra iki yandaki krikolar indirilerek bütün yük ortadaki krikoya verilmiştir. Ortadaki krikonun 3-4 saniyelik bir zamanda indirilmesi ile
yatay yük sadmesiz olarak uygulanmıştır. Düşey yük ise numune üzerine yerleştirilen diske bir bilya ile temas eden bir boyunduruk ile tatbik edilmiştir. Düşey yükün (normal kuvvet) numune üstüne konması esnasında ani bir düşme olmamasına çalışılmıştır. Yatay kuvvetin kriko yardımıc olmadan uygulanması halinde ağırlıkları koymak için geçen zamanda numunenin sümme yaptığı görülmüş yüklemenin muntazam ve kısa bir zamanda yapılması için kriko kullanmak gerekmştir.

Numunenin kesilme durumuna erişmesi, kesme kutusunun üst yarısının yatay hareketini 0.01 mm ye kadar ölçebilen bir okuma saatı ile gözlemmiştir. Komparatör ibresinin hızlanmaga bağlı olduğu anda krikonun valfı kapatılarak deney durdurulmuştur.

Yükleme hızının kontrol edilememesi ve yüklemeye kapasitesinin 300 kg, geçmişmesine rağmen kesme kutusu deneyleri donmuş numunenin mekanik davranışını hakkında bir fikir verme yönünden faydalı olmuştur. Bı deneylerde sıcaklık numune üstünden değiş, deney sırasında kesme iletinin yanıına konan ve 0.5°C ye kadar ölçme yapabilen bir termometre ile ölçülmüştür.

3. Serbest basınç deneyleri

Sabit hacımda suya doygun hale getirilmiş ve donmaya maruz bırakılmış numunelerin tek eksenli basınç altında gerilme-deformasyon karakteristikleri ve kayma mukavemetleri serbest basınç deneyleri yapılarak incelenmiştir. Bu ön deneyler Bölüm III.B.2 de bahsedilen iletin eksenel yükleme tesirini ve numune hürcesini kullanarak yapılmıştır. Eksenel yükleme tesisi deformasyon kontrolludur.

Donma programına uygun olarak dondurulmuş deney numunesi kovanızdan çıkartıldktan sonra boyu kompasla ölçülmüş ve boy 71.5 mm olacak şekilde iki uçağı fazlaç kazılmıştır. Bu kazıma esnasında numuneyi öresselemeye de dikkat edilmiş kazınıp atılan kısımların altında çatlık veya çızik meydana getirilmemesine dikkat edilmiştir. Yalnız ilk 9 numunede (S1 den S9 a kadar) kazıma yapılmamıştır. Numune boyu 71.5 mm ye getirildikten sonra kalıp kepçesi geşetilmiş ve minyatür Harvard numune çıkarcısı yardımcı ile numune kalıptan çıkarılmıştır. Ön deney numunelerinin kompaksiyonunda kalıp içi greslenmemiş idi ve donmuş numunelerin kepçesi
Deney sırasında boy kısalması %1 mm ye kadar ölçülebilen bir okuma saatı ile tesbit edilmiştir. Rınk okumaları, %4 birim boy değişimine kadar 0.2 mm aralarla,%4 birim kısalmadan sonra 0.5 mm aralarla %12.6 birim kısalmaya erişilinceye kadar yapılmıştır.

Ön deneylerde sıcaklık numune üzerinden ölçülmemiş 0.5°C ye kadar okuma yapılabilen civalı termometre ile hücre çevresindeki sıcaklık ölçümek sureti ile bulmuştur. Hücre çevresindeki sıcaklığın ±0.5°C kadar oynadığı görülmüştür. Ön deneyler sırasında odada kullanılan termostatın devreyi kesme aralığı 2.0°C kadar olduğundan oda içindeki sıcaklık değişimi ±1.0°C yi bulmuştur. Ancak numune iç içe iki hücre içinde bulunduğundan, bu sıcaklık değişimi numuneye doğrudan doğruya aktarılmamıştır. Deney süresince deney odasının kapısını açıklamamıştır. Numuneler hücre içine konulduktan sonra deneye tabi tutulmadan evvel termostatın en az iki çalışma devresi kaddr beklennmiş ve son devre kesilir kesilmez odaya girilerek deneye başlanmıştır. Bu suretle aynı sıcaklıkta yapılması gereken deneylerde sıcaklık farkı meydana getirmemeğe çalışılmasıdır.

Deney hızı Bölüm III.E.5.1 de açıklandığı şekilde seçilmiştir.

Deney sonunda numune su muhtevaları bulunmak üzere dilimler halinde kesilmiştir. Kesilen dilimler cam kaplara konmuş ve tartılımak üzere deney odasından çıkarılmıştır. Havadaki su buharının soğuk cam kap ve numune üzerinde derhal yoğunlaşması için cam kap deney odasından çıkarılmadan evvel 25 x 25 x 24 cm boyutlarında bir tahta kutu içine konmuştur. Bu şekilde muhafaza edilen terazi yanına getirilen cam kabin cidarları üzerinde yoğunma görülmemiş ancak kutudan çıkarılıp tartı alınıcaya kadar geçen zamanda yoğunma olmuştur. Yoğunmanın değeri deneyle 0.02 gr bulunmuştur. Bu yoğunma değerinin su muhtevası ölçümlerinde doğruduğu en büyük hata (numunenin üç dilime ayrılmış olarak ölçüldüğü halinde)± 0.07 olmuştur.Hatanın büyük olmaması nedeni ile hassas terazinin deney odasına taşınıp tartıların yoğunma olmadan oda içinde yapılmışından vazgeçilmiştir. Tartının deney odası içinde yapılmış halinde, deney odasının sıcaklığı terazinin normal çalışma sıcaklığıının altında olduğu için, bu farktan dolayı tartı hatalarının ortaya çıkabileceği de düşünülmüştür.
Deney sıcaklığına bağlı olarak dışlı kutusunu ve motoru ısıtacak devre, deneylere başlamadan önce 1 ila 10 dakika müdделte çalıştırılmıştır.

4. Öç eksenli basınç deneyleri

Çalışmanın esas deneylerini standart proktor enerjisi ile sıkıştırılmış, sabit hacımda suya doygun hale getirilmiş ve belirli bir donna programına uygun olarak dondurulmuş, numuneler üzerinde yapılan üç eksenli basınç deneyleri teşkil etmiştir. Deneyler, sabit bir çevre basınç altında ve drenajı müsaade etmeden eksenel yükü artıracak yapılmıştır.

Donma programına göre dondurulmuş numune kavanozdan alındıktan sonra kılıftan çıkarılmış ve iki uçta disk hafifçe vurularak alınmıştır. Bundan sonra numune boyu kompasla 0.1 mm ye kadar ölçülmüş ve numune boyu kalıp boyuna eşit oluncaya kadar iki uçta fazlalık, numuneyi örselemeden kazılmıştır. Kazınp atılan kısımların altında çatlık veya çizikler meydana getirilmesine özen gösterilmiştir. Boy ölçü mü tekrarlandıktan sonra kalıp kelepçesi geçiştilmiş ve minyatür Harvard numune çıkarıcısı yardımı ile numune kalıptan çıkarılmıştır. Kalıpların içi kompaksiyonun önce silikon gresle ince bir film halinde sıvandığından numunelerin kelepçesi geçiştilmiş kalıptan çıkarılması için numune üzerine 10 kg lik bir kuvvet tatbik edilmiştir.

Numuneyi hücreye yerleştirmeden önce numune kairesine oturtulan alt diskin üzerine 38 mm çaplı bir daire halinde kesilmiş ince alüminyum levha konmuş ve üzeri savı parafinle ince bir film halinde sCompatmıştır. Numune el değiştirilmeden bir pensle tutularak alüminyum levha üzerine ortalanarak konulmuştur. Yine 38 mm çaplı bir ince alüminyum levha savı parafinle sCompat olan numunenin üst yüzüne konulmuştur. Alüminyum levhaların parmak yüzleri daima numune tarafına getirilmiştir. Bundan sonra termoelemanın ucu numunenin ortasında bir noktaya temas edecek şekilde ince bir lastik band numune üzerine geçirilmiştir. Bu şekilde yerleştirilen numunenin üzerine hafif metal başlık ortalanarak konulmuştur.
Numune sıcaklığı kaydedicide zaman eksenine paralel bir doğru olarak görüldükten en az iki saat sonra deneye başlanmıştır. Bu suretle numune içinde bir sıcaklık gradyanı kalmadığına emin olunmuştur. Deney yapılacağı zaman cam termometre hücreden çıkarılmış, B tapası yerine takılmış ve A valfi açılmıştır. Sıvı parafin seviyesinin yükseltilmesi ile hücre tavanında sıkışan hava C vanasından (Şekil 5) başlatılmıştır. Bundan sonra hücre basıncı monometrede istenen değer okununcaya kadar monostat yardım ile ayarlanmıştır. Deneylerde Bölüm III,B.2(4) de açıklanıldığı gibi önceleri metal tank sonraları bir konsolasyon hücresi kullanılmıştır. Her iki halde de deney süresince hücre basıncının müsaade edilen en büyük değişimi 0,05 kg/cm² yi geçmemiştir. Hücre basıncı istenen değeri aldıktan, aletin dişli kutusu Bölüm III,B.2(3) de anlatıldığını gibi ısılıldıkta ve komparatörler sıfıra getirildikten sonra yükleme tablasını hareket ettiren elektrik motoru çalıştırılmıştır. Boy kısalmaları %0,2 mm ye kadar ölçülebilen bir okuma saati ile tesbit edilmiştir. Deviatör gerilim gösteren yüksek halkası okumaları %4 birim boy değişimine kadar boy kısalmasının her 0,2 mm sine, %4 birim kısalmadan sonra 0,5 mm aralarla %18 birim kısalmaya veya kırılma durumuna erişilinceye kadar yapılmuştur. Deney bitiminde depo üzerindeki rekor geşetilerek basınç düşürülmüş ve hücre basıncı atmosfer basıncına eşit olunca B tapası yerinden çıkarılmış ve tapa deliğinden cıvatal termometre hücreye dalırılarak deney sonu sıcaklık okuması yapılmıştır. Bu arada C vanası yerinden çıkarılarak pompa lastığının ucundaki rakora takılabilen bir redüksiyon vana yerine geçirilmiştir. Termometre dışarı çıkarıldıkta sonra B tapası yerine takılarak sıkılmış ve pompa ile hücreye hava basılmıştır. Hücredeki sıvı parafinin tamamı depoya döndükten sonra pompa ucundaki redüksiyon çıkarılmış, C vanası yerine takılmıştır. Bundan sonra yükleme tablası alçaltılarak yük halkasının yükleme çubuğunu ile teması kesilmiştir. Diş hücrenin üst tablası ve pleksiglas cidarı yük halkası yana doğru çekilmek sureti ile çıkarılmış, bu arada termoeleman tellerinin zedelenmesine dikkat edilmiştir. Hücre başlığı çıkarıldızdan önce kaydedici giriş ucları daha önce açıklanan nedenle kısa devre başarılıdır. Hücre başlığı çıkarıldızdan önce yükleme çubuğunun orta parçası elle döndürülecek yükseltilmiş ve numune üzerindeki alt parçadan tam olarak ayrılıdıktan sonra hücre çıkarılmıştır. Bu işlemden sonra termoeleman ucu numumeden ayrılmış, numune başlığı yükleme çubuğuna alt parçası ile beraber kaydılırarak
numeneden çıkarılmıştır. Numune üstündeki İnce alüminyum levhalar alındıktan sonra kompasla numunenin boyu ölçülmüş ve su muhtevasını bulmak üzere eșit boyda silindirler halinde kesilmişdir. Kesilmiş numuneler cam kaplar içine konduktan sonra tartin Bölüm III,E,3 de anlatıldığı şekilde yapılmıştır.

Üç eksenli deneylere başlamadan önce yapılan bir kontrolda eksenel yüklenme aletinin elektronik motorunun çalışması sırasında potansiyometr kaydediciden kaydediciye parazit akımlar meydana geldiği görülmüş bunun üzerine aletin elektrik motorunun giriş hattı, potansiyometr kaydedicinin beslendiği hattın dışında bir hattan almıştır. Hatlar ayrıldıktan sonra yüklenme aletinin motoru çalışırken kaydediciyi etkilememiştir.

5. Değişkenler

Değişkenlerin seçimi donmuş zeminlerin mekanik davranışı hakkında bu çalışmaya başlamadan evvel edilen belirildi, bu çalışmamız hazırlık deneylerinin ve konu ile ilgili diğer araştırmacılar tarafından bugüne kadar elde edilmiş deney sonuçlarının ışığı altında yapılmıştır.

5.1. Ön deneyler için seçilen değişkenler şunlardır

i. Kompaksiyon su muhtevaşi
ii. Numuneye uygulanan ilk donma sıcaklığı
iii. Deney sıcaklığı
iv. Deney hızı
v. Eksenel gerilme

Kullanılan Greko-Latin karesi şöyle gösterilebilir:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>αa</td>
<td>βb</td>
<td>γc</td>
</tr>
<tr>
<td>II</td>
<td>γb</td>
<td>αc</td>
<td>βa</td>
</tr>
<tr>
<td>III</td>
<td>βc</td>
<td>γa</td>
<td>αb</td>
</tr>
</tbody>
</table>

Burada, I, II, III : Kompaksiyon su muhtevasının optimum su muhtevasından küçük, optimum su muhtevasına eşit ve optimum su muhtevasından büyük olan belirli üç seviyesini, A, B, C: deney sıcaklığının, α, β, γ: deney hızının, a, b, c: ilk donma sıcaklığının üç seviyesini gösterir.

Değişkenlerin seviyeleri aletin kapasitesi ve eldeki imkanlar ile sınırlanmıştır.

Bu çalışmada sünme (creep) olayı incelememiş olduğu için deney hızı daha önceki araştırmalarda kesme mukavemetinin belirlenmesinde kullanılan hızın alınmıştır.

5.2. Üç eksenli basınç deneyleri için seçilen değişkenler

Ön deney sonuçlarından faydalananarak varyans analizi yapılmış ve üç eksenli deneylerde kullanılacak iki bağımsız değişken belirlenmiştir. Bunlar:

i. Deney sıcaklığı, T
ii. Deney hızı, v
dir. Bu iki değişkenden başka bağımlı değişken olarak da:

iii. Deviatör gerilme, q = (σ₁ - σ₃)

seçilmiştir. Burada σ₁ = düşey eksenel gerilme, σ₃ = hücre

1. United States Army Cold Regions Science and Engineering Laboratory çalışmaları
2. Chamberlain et al. 1972
basıncıdır. Daha önce de belirtildiği gibi düşey eksenel gerilme asal gerilmendir. Numunenin düşey yüzleri kayma gerilmesi almadiğından hücre basınıncının verdiği $\sigma_2 = \sigma_3$ gerilmeleri de asal gerilmeleridir.

6. Kontroller

Deneysel çalışmalarında sonuçların güvenilir olabilmesi için bağımsız olarak kabul edilen değişkenlerin dışında kalan şartların sabit tutulması gerekir. Bağımsız değişkenler de kademeli olarak uygulandığında her kademinin kendi seviyesinde sabit tutulması gerekir. Bu çalışmada uygulanan kontroller şunlardır:

(2) Deneyle rın kontrolu. Numunelerin hücreye yerleştirilme- sinden, hücreden alınarak su muhtevasının bulunmasına kadar işlemler hep aynı sıra ile yapılmış, deneyci ile ilgili diğer deney şartlarının da bütün deneylerde aynı tutulmasına dikkat edilmiştir.

Deneyle rın, aynı şartlarda hazırlanmış numuneler ve aynı deney şartları ile tekrarlanarak sonuçlar kontrol edilmiştir.

Sıcaklık okumaları elektronik ve mekanik iki ayrı yolla yapı- larak kontrol edilmiştir.

Eksenel yükün, yük halkası kullanarak ölçüldüğü deneylerde, de- ney hızı aletin yükleme plakasının birim zamandaki yüksekme miktarı sabit olduğu halde yük halkasının esnemesinden sola- yı sabit değildir (Şekil 12).
ŞEKİL-12 Yükleme hızının değişmesi: a) Yükleme başlangıcında, b) Yükleme başlangıcından birim zaman sonra yükleme sisteminin durumu.

Şekil 12 den:

(3) \[L + H + 1 = L - \Delta L + H + 1 - \Delta l + v \]

\[\Delta l = v - \Delta L \]

yazılabilir.

Burada:

\(L \): yük halkasının yüklenmeden önceki düzey çapı
\(H \): yükleme çubuğu uzunluğu, artı alt başlık kalınlığı
\(l \): numunenin yüklenmeden önceki boyu
ΔL : birim zamanda yük halkasının düzey çapındaki kıs alma
Δl : birim zamanda numune boyundaki kıs alma
V : dişli kutusu üzerinde okunan nominal yükleme hızı

Böylece herhangi bir anda gerçek deney hızı dişli kutusu yardımı ile uygulanan nominal deney hızından yük halkasının düzey çapının değişme hızını çıkarılarak bulunur. Gerçek deney hızının ortalama değeri okunan düzey boy değişimi değerinin o ana kadar geçen zamanın kronometreden okunan değere bölünmesi ile de bulunabilir. Deneylerde kontrol için her iki metot da uygulanmıştır. Eksenel yük ölçümü için sert bir ring kullanılmış, böylece ring esnemesinden dolayı deney hızının değişmesi azaltılmıştır.

Düzey boy değişiminin ölçen sistemdeki esneklik, numune yerine aynı boyutlarda sert bir çeliş takoz konmak sureti ile ölçülmüştür.

(3) Verilerin kontrolu. Deney sonuçları, deneylerin aynı şartlar altında tekrarlanması ile kontrol edilmiştir.

F. VERILERİN DEĞERLENDIRILMESİ

1. Kesme kutusu deneyleri

2. Ün deneyler ve üç eksenli basınç deneyleri

Birim boy değişiminin belirli basamaklarında ring komparatö-
ründen okunan değerlerden yük halkasının kalibrasyon eğrisi
yardımı ile numuneye uygulanacak eksenel yükler bulunur. Bulunan
eksenel yük (P) numunenin yatay kesit alanına (A) bölünerek
eksenel gerilme (σ) hesaplanmıştır. Kesme sırasında numunenin
yatay kesit alanı büyüyecektir. Hacim değişmesi olmadığı ve nu-
munenin sılindirik kaldığı gözönünde tutularak birim boy kıs-
masının (ε) herhangi bir değerinde numunenin kesit alanı :

\[A = \frac{A_0}{1-\varepsilon} \]

bağıntısından bulunur. Burada \(A_0 \), numunenin başlangıçtaki
yatay kesit alanıdır.

Birim boy değişimi, numunenin eksenel boy değişiminin ölçülen kom-
paratörden okunan değerlerin numunenin deney başındaki uzun-
luğuna (\(l_0 \)) bölünmesi ile elde edilir. Numune boyunun \(l_1 \) de-
ğerini aldığı andaki gerçek birim boy değişimi \(\varepsilon \) ise

\[\varepsilon = \ln\left(\frac{l_1}{l_0}\right) \]

bağıntısı ile bulunur [Calladine, 1969, Bölüm I, sf.22]

Birinci yöntemle bulunan birim boy değişimi ile gerçek birim
boy değişimi arasındaki fark boy değişimi arttırılca artmaktadır.
\(\varepsilon = \%20 \) için \(\varepsilon = \%22 \) olur. Bununla beraber aradaki bu
fark gerilme-birim boy kısaltması diyagramlarının genel görün-
üşünde bir fark meydana getirmediğinden birim boy değişimi
değerleri olarak mühendislik uygulamalarında alışgılalagılmış
yöntemle, boy kısaltmasının başlangıçtaki uzunluğa bölünmesi
ile bulunan değerler kullanılmıştır.

Ün deney sonuçlarından faydalanılarak eksenel gerilmenin, bi-
rım boy değişiminin belirli kademelerinde aldığı değerler ile,
kompaksiyon su muhtevası, deney sıcaklığı, deney hızı ve ilk
donma sıcaklığı değerleri gözönünde alınarak bir varyans anali-
zi yapılmıştır. Kayma mukavemetine etkiyen en belirli etkenler
verilen varyans analizi yapılarak değerlendirilmesi sonunda
bulunmuştur. Deney sonuçları eksenel gerilme-birim boy kısalması diyagramları ile gösterilmiştir.

Üç eksenli deney sonuçları deviatör gerilme-birim boy kısalması; deviatör gerilme-sıcaklık-deneý hızı diyagramları ile gösterilmiştir. Ayrıca deformasyon modülü-sıcaklık-deneý hızı ve Mohr daireleri ile bulunan c değerleri-sıcaklık, diyagramları çizilmiştir.
Bölüm IV

DENEYSEL SONUÇLAR

A. ÖN DENEYLER

Donmuş nümunelerin kayma mukavemetini etkileyebilecek değişkenlerin tatbikatta ve dolayısıyle deneylerimizde söz konusu olabilecek çeşitli seviyeleri gözönüne alınmış ve değişkenlerin sonuca ne ölçüde etkili olduğu araştırılmıştır. Bu iş için etkin ve ekonomik bir istatistik metot olan Greko-Latin karesi'nden yararlanmıştır (Bk. Bölüm III E 5.1). Bu seri deneylerde dört değişkenin üçer seviyesine bağlı olarak serbest basınç mukavemeti bulunmuştur (Tablo 5).

Tablo 5. Ön deneylerde kullanılan değişkenler ve seviyeleri

<table>
<thead>
<tr>
<th>Değişkenler</th>
<th>Değişkenlerin deneylerde kullanılan seviyeleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompaksiyon su muhtevası</td>
<td>I = % 13.9 ~ 15.4</td>
</tr>
<tr>
<td></td>
<td>II = % 18.5 ~ 18.7</td>
</tr>
<tr>
<td></td>
<td>III = % 21.3 ~ 21.7</td>
</tr>
<tr>
<td>Deney sıcaklığı</td>
<td>A = -1°C ± 0.5°C</td>
</tr>
<tr>
<td></td>
<td>B = -5°C ± 0.5°C</td>
</tr>
<tr>
<td></td>
<td>C = -8°C ± 0.5°C</td>
</tr>
<tr>
<td>Donma sıcaklığı</td>
<td>a = -1°C ± 0.5°C</td>
</tr>
<tr>
<td></td>
<td>b = -5°C ± 0.5°C</td>
</tr>
<tr>
<td></td>
<td>c = -8°C ± 0.5°C</td>
</tr>
<tr>
<td>Deney hızı</td>
<td>α = 0.229 0.217 mm/dak.</td>
</tr>
<tr>
<td></td>
<td>β = 1.143 1.063 mm/dak.</td>
</tr>
<tr>
<td></td>
<td>γ = 5.715 5.515 mm/dak.</td>
</tr>
</tbody>
</table>

Tablo 6. Deneylerin Greko-Latin karesindeki dağılışları

<table>
<thead>
<tr>
<th>S1</th>
<th>S7</th>
<th>S28</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>S8</td>
<td>S29</td>
</tr>
<tr>
<td>S3</td>
<td>S9</td>
<td>S30</td>
</tr>
<tr>
<td>S16</td>
<td>S13</td>
<td>S10</td>
</tr>
<tr>
<td>S17</td>
<td>S14</td>
<td>S11</td>
</tr>
<tr>
<td>S18</td>
<td>S15</td>
<td>S12</td>
</tr>
<tr>
<td>S25</td>
<td>S19</td>
<td>S22</td>
</tr>
<tr>
<td>S26</td>
<td>S20</td>
<td>S23</td>
</tr>
<tr>
<td>S27</td>
<td>S21</td>
<td>S24</td>
</tr>
</tbody>
</table>

Serbest basınç deneylerinden elde edilen eksenel gerilme ve birim boy kısalması değerleri Şekil 19 ile 27 de, q-ε diyagramları ile gösterilmiştir.

Deney S16, S17, S18, S19, S20, S21, S25, S26, S27 de kayma mukavemetine boy değişiminin okuma sınırı içinde erişilememiştir. Bununla beraber, okuma sınırı olan %12.6 birim boy kısalmasına yaklaştıkça gerilme değerlerindeki artışın azalduğu gerilme-birim boy değişimini eğrisinin yataylaştırığı görülmüştür.

Serbest basınç deneyinde eksenel gerilmenin maksimum değeri bütün hallerde kayma mukavemetinin iki katına eşit olduğundan, maksimum eksenel gerilme değerleri ile yapılan varyans analizi kayma mukavemeti için de geçerli olur. Elde edilen maksimum eksenel gerilme değerleri deney numaraları ile birlikte Tablo 8 de verilmiştir.
<table>
<thead>
<tr>
<th>Numunenin kullanıldığı deney numarası</th>
<th>Kuru birim hacim ağırlığı (gr/cm³)</th>
<th>Su muhtevası %</th>
<th>Sabit hacimde suya doyurulduktan sonra su muhtevası %</th>
<th>Doğunluk derecesi %</th>
<th>Deneyden sonraki ortalama su muhtevası %</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1.694</td>
<td>14.9</td>
<td>22.5</td>
<td>99</td>
<td>21.4</td>
</tr>
<tr>
<td>S2</td>
<td>1.691</td>
<td>14.8</td>
<td>21.9</td>
<td>97</td>
<td>21.4</td>
</tr>
<tr>
<td>S3</td>
<td>1.678</td>
<td>14.7</td>
<td>22.2</td>
<td>96</td>
<td>21.0</td>
</tr>
<tr>
<td>S7</td>
<td>1.670</td>
<td>14.2</td>
<td>22.5</td>
<td>96</td>
<td>22.7</td>
</tr>
<tr>
<td>S8</td>
<td>1.666</td>
<td>14.0</td>
<td>22.6</td>
<td>96</td>
<td>22.7</td>
</tr>
<tr>
<td>S9</td>
<td>1.681</td>
<td>13.9</td>
<td>21.8</td>
<td>95</td>
<td>22.4</td>
</tr>
<tr>
<td>S10</td>
<td>1.748</td>
<td>18.7</td>
<td>20.1</td>
<td>97</td>
<td>19.8</td>
</tr>
<tr>
<td>S11</td>
<td>1.757</td>
<td>18.7</td>
<td>19.6</td>
<td>96</td>
<td>19.0</td>
</tr>
<tr>
<td>S12</td>
<td>1.748</td>
<td>18.7</td>
<td>19.9</td>
<td>96</td>
<td>19.2</td>
</tr>
<tr>
<td>S13</td>
<td>1.746</td>
<td>18.7</td>
<td>20.0</td>
<td>96</td>
<td>19.7</td>
</tr>
<tr>
<td>S14</td>
<td>1.748</td>
<td>18.7</td>
<td>20.2</td>
<td>97</td>
<td>19.7</td>
</tr>
<tr>
<td>S15</td>
<td>1.748</td>
<td>18.7</td>
<td>20.1</td>
<td>97</td>
<td>19.4</td>
</tr>
<tr>
<td>S16</td>
<td>1.747</td>
<td>18.8</td>
<td>20.6</td>
<td>99</td>
<td>20.1</td>
</tr>
<tr>
<td>S17</td>
<td>1.746</td>
<td>18.8</td>
<td>20.5</td>
<td>98</td>
<td>19.7</td>
</tr>
<tr>
<td>S18</td>
<td>1.744</td>
<td>18.5</td>
<td>20.1</td>
<td>96</td>
<td>19.7</td>
</tr>
<tr>
<td>S19</td>
<td>1.692</td>
<td>21.7</td>
<td>21.8</td>
<td>96</td>
<td>21.7</td>
</tr>
<tr>
<td>S20</td>
<td>1.692</td>
<td>21.7</td>
<td>21.9</td>
<td>96</td>
<td>21.6</td>
</tr>
<tr>
<td>S21</td>
<td>1.692</td>
<td>21.7</td>
<td>21.9</td>
<td>96</td>
<td>21.5</td>
</tr>
<tr>
<td>S22</td>
<td>1.692</td>
<td>21.7</td>
<td>21.9</td>
<td>96</td>
<td>21.5</td>
</tr>
<tr>
<td>S23</td>
<td>1.698</td>
<td>21.7</td>
<td>21.7</td>
<td>96</td>
<td>21.5</td>
</tr>
<tr>
<td>S24</td>
<td>1.697</td>
<td>21.0</td>
<td>21.2</td>
<td>94</td>
<td>21.5</td>
</tr>
<tr>
<td>S25</td>
<td>1.698</td>
<td>21.7</td>
<td>21.9</td>
<td>98</td>
<td>21.7</td>
</tr>
<tr>
<td>S26</td>
<td>1.701</td>
<td>21.5</td>
<td>21.7</td>
<td>97</td>
<td>21.6</td>
</tr>
<tr>
<td>S27</td>
<td>1.697</td>
<td>21.3</td>
<td>21.5</td>
<td>96</td>
<td>21.5</td>
</tr>
<tr>
<td>S28</td>
<td>1.697</td>
<td>15.7</td>
<td>21.2</td>
<td>94</td>
<td>21.0</td>
</tr>
<tr>
<td>S29</td>
<td>1.705</td>
<td>15.6</td>
<td>21.2</td>
<td>96</td>
<td>19.9</td>
</tr>
<tr>
<td>S30</td>
<td>1.708</td>
<td>15.4</td>
<td>21.0</td>
<td>95</td>
<td>21.5</td>
</tr>
<tr>
<td>Deney No.</td>
<td>Maksimum eksenel gerilme</td>
<td>Varyans analizinde kullanılan ortalama maksimum gerilme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kg/cm²</td>
<td>kg/cm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>4.85</td>
<td>4.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>4.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>22.15</td>
<td>22.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>26.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td>19.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>39.03</td>
<td>38.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S11</td>
<td>39.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S12</td>
<td>37.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S13</td>
<td>21.13</td>
<td>18.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S14</td>
<td>17.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S15</td>
<td>16.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S16</td>
<td>9.43</td>
<td>9.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S17</td>
<td>9.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S18</td>
<td>9.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S19</td>
<td>27.54</td>
<td>24.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S20</td>
<td>23.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S21</td>
<td>21.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S22</td>
<td>29.43</td>
<td>29.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S23</td>
<td>28.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S24</td>
<td>31.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S25</td>
<td>7.36</td>
<td>7.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S26</td>
<td>6.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S27</td>
<td>7.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S28</td>
<td>41.91</td>
<td>40.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S29</td>
<td>40.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S30</td>
<td>39.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Seçilen dört değişkenin mukavemete ne mertebede etkilediğini belirleyebilmek için Tablo 8'in son kolonunda verilen maksimum eksenel gerilme değerlerinin varyans analizi Tablo 9 da özetlenmiştir.

Tablo 9. Serbest basınç mukavemetlerinin varyans analizi

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4.7</td>
<td>22.9</td>
<td>40.7</td>
</tr>
<tr>
<td>II</td>
<td>9.7</td>
<td>18.4</td>
<td>38.7</td>
</tr>
<tr>
<td>III</td>
<td>7.1</td>
<td>24.2</td>
<td>29.9</td>
</tr>
</tbody>
</table>

\[\begin{array}{ccc}
\alpha & \beta & \gamma \\
a & 4.7 & 38.7 & 24.2 \\
b & 29.9 & 22.9 & 9.7 \\
c & 18.4 & 7.1 & 40.7 \\
\end{array} \]

<table>
<thead>
<tr>
<th>Değişim kaynağı</th>
<th>Kareler toplamları</th>
<th>Serbestlik derecesi</th>
<th>Varyans tahmini</th>
<th>F</th>
<th>P (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompaksiyon su muhtevası (I, II, III)</td>
<td>934</td>
<td>2</td>
<td>4.67</td>
<td>2.02</td>
<td>P>0.10</td>
</tr>
<tr>
<td>Deney sıcaklığı (A, B, C)</td>
<td>1284.81</td>
<td>2</td>
<td>642.41</td>
<td>278.10</td>
<td>0.01>P</td>
</tr>
<tr>
<td>Donma sıcaklığı (a, b, c)</td>
<td>4.63</td>
<td>3</td>
<td>2.31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deney hızı (α, β, γ)</td>
<td>83.10</td>
<td>2</td>
<td>41.55</td>
<td>17.99</td>
<td>0.10>P>0.05</td>
</tr>
</tbody>
</table>

\(x\) Croxton,(1959) sf.336. Tablo Ek X
0.01 anlamlılık seviyesi kriter olarak seçilirse deney sıcaklığının diğer değişkenlere göre daha anlamlı olduğu, sonucu öncelikle etkilediği görülmektedir.

Deneyin ilk sahalarında değişkenlerin serbest basınç mukavemetini nasıl etkilediğini anlamak için birim boy değişiminin aynı değerine tekbül eden eksenel gerilmelerin değişimi de benzer bir Greko-Latin karesi ile incelenebilir. Tablo.10'da % 0.8 birim deformasyona tekbül eden gerilmeler verilmektedir. Bu değerlerin varyans analizi sonuçları ile Tablo. 11'de gösterilmiştir.

Deney S31 de kullanılan numune -5°C de 2 gün süre ile ilk donmaya tabi tutulmuş daha sonra 2.5 ay içinde -8°C den -1°C ye kadar değişen sıcaklıklara maruz bırakıldıkta sonra -1°C de ve dakikada 1.143 mm yükleme hızı ile yapılan deneyde maksimum eksenel gerilme 7.45 kg/cm² bulunmuştur. Bu sonuç donma programı farklı numunelerle fakat aynı yükleme hızı ve sıcaklıkta yapılan deneylerden (S25, S26, S27) elde edilen sonuçlara çok yakındır. Bu gözlem yükleme hızı ve sıcaklığın deneylerimizde donma programından daha belirli bir etken olduğunu doğrulamaktadır.

Deney S32 ve S33 de, öğütülmüş buzu minyatür Harvard kalıbında standart proktor enerjisi ile sıkıştırılmak sureti ile hazırlanmış numuneler kullanılmıştır. Buz numuneleri aşırı soğutulmuş (0°C nin altında buz haline geçmemiş) suyla kapılariyte maruz bırakılarak doygun hale getirilmiş ve deney sıcaklığında 5 gün bekletilmiştir. S32 deneyi -2.5°C de ve 1.143 mm/dak yükleme hızı ile, S33 deneyi -2.5°C de ve 0.229 mm/dak. yükleme hızı ile yapılmıştır. S32 de maksimum eksenel gerilme 32.74 kg/cm² bulunmaktadır. Bu değer aynı hızda ve -5°C de zemin numunelerinden elde edilen değerden daha büyütür. S33 de maksimum gerilme 25.99 kg/cm² bulunmaktadır ve bu değer -5°C de aynı hızdaki deneylerde zemin numunelerinden elde edilen değerlerden daha büyütür.
<table>
<thead>
<tr>
<th>Deney No.</th>
<th>$\sigma_{0.008}$</th>
<th>$\sigma_{0.008}$ ort</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>2.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>2.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>13.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>20.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td>12.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>23.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S11</td>
<td>26.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S12</td>
<td>22.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S13</td>
<td>13.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S14</td>
<td>11.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S15</td>
<td>10.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S16</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S17</td>
<td>4.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S18</td>
<td>4.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S19</td>
<td>15.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S20</td>
<td>15.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S21</td>
<td>14.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S22</td>
<td>20.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S23</td>
<td>22.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S24</td>
<td>22.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S25</td>
<td>3.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S26</td>
<td>2.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S27</td>
<td>3.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S28</td>
<td>27.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S29</td>
<td>28.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S30</td>
<td>28.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* S16 ve S30 deneylerinde eksenel yük $\epsilon = \%0.8$ için okunmamış, S16 da $\epsilon = \%1.1$, S30 da $\epsilon = \%1.4$ için okunmuştur. Bu tabloda verilen değerler q- ϵ egrilerinde $\epsilon = \%0.8$ e tekbül eden değerlerdir.
Tablo 11. %0.8 birim boy değişimine tekabül eden gerilimele-
rin varyans analizi

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2.4</td>
<td>15.7</td>
<td>27.8</td>
</tr>
<tr>
<td>II</td>
<td>4.5</td>
<td>11.9</td>
<td>24.4</td>
</tr>
<tr>
<td>III</td>
<td>3.3</td>
<td>15.3</td>
<td>21.9</td>
</tr>
</tbody>
</table>

\[\alpha \quad \beta \quad \gamma \]

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2.4</td>
<td>24.4</td>
<td>15.3</td>
</tr>
<tr>
<td>b</td>
<td>21.9</td>
<td>15.7</td>
<td>4.5</td>
</tr>
<tr>
<td>c</td>
<td>11.9</td>
<td>3.3</td>
<td>27.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Değişim kaynağı</th>
<th>Kareler toplamı</th>
<th>Serbestlik derecesi</th>
<th>Varyans tahmini</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompaksiyon su muhtevası (I, II, III)</td>
<td>6.14</td>
<td>2</td>
<td>3.07</td>
<td>34.11</td>
<td>0.05>P>0.01</td>
</tr>
<tr>
<td>Deney sıcaklığı (A, B, C)</td>
<td>680.66</td>
<td>2</td>
<td>340.33</td>
<td>3781.44</td>
<td>0.001>P</td>
</tr>
<tr>
<td>Donma sıcaklığı (a, b, c)</td>
<td>0.18</td>
<td>2</td>
<td>0.09</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Deney hızı (α, β, γ)</td>
<td>22.16</td>
<td>2</td>
<td>11.08</td>
<td>123.11</td>
<td>0.01>P</td>
</tr>
</tbody>
</table>

Tablo 11. daki sonuçlardan anlamlılık seviyesinin %1 değeri için deney sıcaklığının ve deney hızının değişimi anlamlı olmaktaadır.
B. ÇÇ EKSENLİ BASINÇ DENEYLERİ

Bu deneylerde optimum su muhtevasında standart Proctor enerjisi ile sıkıştırlmış, sabit hacımda suya doyurulmuş ve belirli bir domina programına uygun olarak dondurulmuş numunelerin 2.0', 4.0', 6.0 kg/cm² hücre basınıcı altında 0.508, 1.143, 2.540 mm/dak deney hızlarında ve -0.5°C den -14.0°C ye kadar değişen deney sıcaklıklarda deviatör gerilme-birim boy değişimi davranışları incelenmiştir.

Numunelerin suya doygunluk dereceleri %92 ile %99 arasında değişmiştir. (Ortalama doygunluk derecesi %95.10, doygunluk derecesinin standard sapması 1.42 ve standart hatası 0.15 dir).

Bütün numuneler Bölüm III.B.5 de anlatılan ilk domina kabında, Bölüm III.D.2(2) de açıklanışı gibi dondurulmuştur.

Deney sonuçları maksimum deviatör gerilme-deney sıcaklığı, maksimum deviatör gerilme-deney hızı, q-ε diyagımları, ve deformasyon modülü-sıcaklık-deney hızı diyagramları ile gösterilmiştir (Şekil 13 ~ 17, Şekil 28 ~ 48).
<table>
<thead>
<tr>
<th>Deney No.</th>
<th>Kompaksiyon su muhtevası</th>
<th>Sabit hacimda suya doyurulduktan sonra su muhtevası</th>
<th>Kompaksiyon kuru birim hacim ağırlığı</th>
<th>Doğruluk derecesi</th>
<th>Deney sicaklığı</th>
<th>Deney suyu muhtevası</th>
<th>Maksimum deviator gerilme</th>
<th>Maksimum deviator gerilmeye tekbüldeden boy kısaması</th>
<th>Hücre basınç</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>20.8</td>
<td>21.0</td>
<td>1.704</td>
<td>94.0</td>
<td>1.143 -1.5</td>
<td>20.6</td>
<td>11.2</td>
<td>16.8</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>20.8</td>
<td>20.9</td>
<td>1.691</td>
<td>92.0</td>
<td>1.143 -1.6</td>
<td>20.6</td>
<td>13.39</td>
<td>16.8</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>20.8</td>
<td>21.0</td>
<td>1.704</td>
<td>94.0</td>
<td>1.43 -0.9</td>
<td>20.8</td>
<td>10.64</td>
<td>15.4</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>20.9</td>
<td>21.0</td>
<td>1.702</td>
<td>94.0</td>
<td>1.143 -0.9</td>
<td>20.6</td>
<td>10.28</td>
<td>16.8</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td>18.3</td>
<td>20.1</td>
<td>1.727</td>
<td>94.0</td>
<td>1.143 -1.0</td>
<td>18.3</td>
<td>10.56</td>
<td>15.4</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>T7</td>
<td>18.3</td>
<td>19.8</td>
<td>1.737</td>
<td>93.5</td>
<td>1.143 -2.1</td>
<td>18.4</td>
<td>16.85</td>
<td>14.0</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

* Deney sicaklığı ± 0.05°C hata ile ölçümüştür.
** Üst ve alt sıradaki değerler numunenin üst ve alt parçasının su muhtevasını göstermektedir. Numunenin çok sayıda dilimlere bölünerek su muhtevasının bulunması halinde su muhtevası değerleri üstten alta doğru sıralanmıştır.
*** Numune kelepçesiz kalıpta donduruldu; sonuç analizde kullanılmadı.
<table>
<thead>
<tr>
<th>Deney No.</th>
<th>s Su muhtevası</th>
<th>Sabit hacimde Kompaksiyon uygulandıktan sonra kuru birim hacım ağırlığı</th>
<th>Kompaksiyon Doynuluk derecesi</th>
<th>Sicaklık</th>
<th>Deney sonu su muhtevası</th>
<th>Maksimum deviatör gerilme</th>
<th>Maksimum deviatör gerilme tekabül eden boy kısalması</th>
<th>Hücre sonu su basıncı</th>
</tr>
</thead>
<tbody>
<tr>
<td>T8</td>
<td>18.3</td>
<td>19.8</td>
<td>1.759</td>
<td>97.0</td>
<td>1.143</td>
<td>-2.0</td>
<td>18.7</td>
<td>15.29</td>
</tr>
<tr>
<td>T9</td>
<td>18.3</td>
<td>19.5</td>
<td>1.761</td>
<td>96.0</td>
<td>1.143</td>
<td>-1.6</td>
<td>18.3</td>
<td>15.39</td>
</tr>
<tr>
<td>T10</td>
<td>18.3</td>
<td>19.6</td>
<td>1.741</td>
<td>94.0</td>
<td>1.143</td>
<td>-1.6</td>
<td>18.2</td>
<td>15.43</td>
</tr>
<tr>
<td>T11</td>
<td>18.3</td>
<td>19.3</td>
<td>1.759</td>
<td>95.0</td>
<td>1.143</td>
<td>-1.7</td>
<td>19.0</td>
<td>16.54</td>
</tr>
<tr>
<td>T12</td>
<td>18.7</td>
<td>20.0</td>
<td>1.742</td>
<td>96.0</td>
<td>1.143</td>
<td>-2.9</td>
<td>19.1</td>
<td>20.22</td>
</tr>
<tr>
<td>T13</td>
<td>18.7</td>
<td>20.1</td>
<td>1.735</td>
<td>94.5</td>
<td>1.143</td>
<td>-3.0</td>
<td>19.1</td>
<td>20.05</td>
</tr>
<tr>
<td>T14</td>
<td>18.7</td>
<td>20.1</td>
<td>1.731</td>
<td>94.0</td>
<td>1.143</td>
<td>-2.9</td>
<td>18.7</td>
<td>18.38</td>
</tr>
<tr>
<td>T15</td>
<td>18.7</td>
<td>20.7</td>
<td>1.715</td>
<td>95.0</td>
<td>1.143</td>
<td>-2.9</td>
<td>18.7</td>
<td>17.52</td>
</tr>
</tbody>
</table>

Üst başlıkta kayma görülüdü ve deney durduruldu.
<table>
<thead>
<tr>
<th>Deney No.</th>
<th>su muhtevası %</th>
<th>kuru birim ağrılığı %</th>
<th>Kompaksiyon doyurulduktan sonra su muhtevası %</th>
<th>Doygunluk derecesi</th>
<th>Deney hızı mm/dak</th>
<th>Deney sıcaklığı °C</th>
<th>Deney sonu su muhtevası %</th>
<th>Maksimum deviatör gerilme kg/cm²</th>
<th>Maksimum deviatör gerilme eden boy kısalmaları %</th>
<th>Hücre başı basınç %</th>
<th>kg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>T16</td>
<td>18.7</td>
<td>20.4</td>
<td>1.721</td>
<td>94.0</td>
<td>2.540</td>
<td>-2.9</td>
<td>18.2</td>
<td>21.34</td>
<td>16.8</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>T17</td>
<td>18.7</td>
<td>20.1</td>
<td>1.721</td>
<td>93.0</td>
<td>2.540</td>
<td>-3.0</td>
<td>18.3</td>
<td>20.87</td>
<td>16.8</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>T18</td>
<td>18.7</td>
<td>20.9</td>
<td>1.721</td>
<td>96.0</td>
<td>2.540</td>
<td>-2.9</td>
<td>18.1</td>
<td>20.65</td>
<td>15.4</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>T19</td>
<td>18.7</td>
<td>20.6</td>
<td>1.721</td>
<td>95.0</td>
<td>0.508</td>
<td>-3.0</td>
<td>18.4</td>
<td>18.86</td>
<td>16.8</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>T20</td>
<td>19.1</td>
<td>20.7</td>
<td>1.716</td>
<td>95.0</td>
<td>0.508</td>
<td>-3.0</td>
<td>19.0</td>
<td>18.42</td>
<td>8.4</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>T21</td>
<td>18.7</td>
<td>20.0</td>
<td>1.734</td>
<td>94.0</td>
<td>0.508</td>
<td>-1.0</td>
<td>19.0</td>
<td>9.22</td>
<td>12.6</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>T22</td>
<td>18.7</td>
<td>20.1</td>
<td>1.739</td>
<td>95.0</td>
<td>0.508</td>
<td>-1.0</td>
<td>18.7</td>
<td>9.57</td>
<td>16.8</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

Üst başlıkta kayma görüldü deney durduruldu.
<p>	Deney No. muhtevası	Su %	Kırık %	Doygunluk	Deney Sicaklığı	Deney sonu deviatör gerilme	Maksimum deviatör gerilme	Hücre basıncı tekabül eden boy kısalması	Maksimum deviatör gerilme kısalması	Doygunluk derecesi	Doygunluk %	gr/cm³	mm/dak oC	%	kg/cm²
T23	18.7	20.2	1.731	94.0	0.508 -0.9	18.7	8.42	16.8	2.0						
T24	18.7	20.0	1.731	94.0	2.540 -1.0	18.4	11.54	16.8	2.0						
T25	18.7	19.6	1.748	95.0	2.540 -0.95	18.6	10.51	16.8	2.0						
T26	18.7	19.6	1.737	93.0	2.540 -1.0	18.5	11.19	18.2	2.0						
T27	18.7	20.1	1.750	97.5	2.540 -2.0	19.0	16.46	16.8	2.0						
T28	18.7	20.0	1.742	96.0	2.540 -2.0	18.8	16.30	18.2	2.0						
T29	18.7	20.0	1.728	94.0	2.540 -2.0	18.9	15.91	16.8	2.0						
<table>
<thead>
<tr>
<th>Deney No. muhtevası</th>
<th>Sabit hacımda doyurulmuş suya doyurulmuş kuru birim ağırlığı</th>
<th>Kompaksiyon derecesi</th>
<th>Doygunluk hızı</th>
<th>Deney sıcaklığı</th>
<th>Deney sonu muhtevası</th>
<th>Maksimum deviatör gerilme</th>
<th>Maksimum deviatör gerilmeye neden olan boy kısalmaları</th>
<th>Hücre basıncı</th>
</tr>
</thead>
<tbody>
<tr>
<td>T30</td>
<td>18.7</td>
<td>19.6</td>
<td>1.748</td>
<td>95.0</td>
<td>0.508</td>
<td>-2.0</td>
<td>19.1</td>
<td>20.2</td>
</tr>
<tr>
<td>T31</td>
<td>18.7</td>
<td>19.5</td>
<td>1.762</td>
<td>96.5</td>
<td>0.508</td>
<td>-1.9</td>
<td>18.9</td>
<td>19.9</td>
</tr>
<tr>
<td>T32</td>
<td>18.7</td>
<td>19.5</td>
<td>1.762</td>
<td>96.0</td>
<td>0.508</td>
<td>-2.0</td>
<td>18.8</td>
<td>19.6</td>
</tr>
<tr>
<td>T33</td>
<td>18.7</td>
<td>19.3</td>
<td>1.760</td>
<td>95.0</td>
<td>1.143</td>
<td>-2.0</td>
<td>18.8</td>
<td>18.5</td>
</tr>
<tr>
<td>T34</td>
<td>18.7</td>
<td>19.6</td>
<td>1.742</td>
<td>93.5</td>
<td>1.143</td>
<td>-2.0</td>
<td>19.0</td>
<td>18.5</td>
</tr>
<tr>
<td>T35</td>
<td>18.7</td>
<td>19.6</td>
<td>1.736</td>
<td>94.0</td>
<td>1.143</td>
<td>-2.0</td>
<td>18.6</td>
<td>20.6</td>
</tr>
<tr>
<td>T36</td>
<td>18.3</td>
<td>19.9</td>
<td>1.760</td>
<td>98.0</td>
<td>1.143</td>
<td>-1.0</td>
<td>19.5</td>
<td>10.12</td>
</tr>
<tr>
<td>Deney No.</td>
<td>Sabit hacimda Kompaksiyon suyu doyurulduktan sonra kuru birim hacim ağırlığı</td>
<td>Doygunluk derecesi</td>
<td>Deney hızı</td>
<td>Deney sıcaklığı</td>
<td>Deney sonu su muhtevası</td>
<td>Maksimum deviatör gerilme</td>
<td>Maksimum deviatör gerilmeye tekbül eden boy kısalması</td>
<td>Hücre basıncı</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>---------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>T37</td>
<td>18.3</td>
<td>20.0</td>
<td>1.747</td>
<td>96.0</td>
<td>0.508</td>
<td>-1.0</td>
<td>19.6</td>
<td>9.80</td>
</tr>
<tr>
<td>T38</td>
<td>18.3</td>
<td>19.7</td>
<td>1.753</td>
<td>97.0</td>
<td>2.540</td>
<td>-1.0</td>
<td>19.6</td>
<td>11.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.1</td>
<td>19.9</td>
</tr>
<tr>
<td>T39</td>
<td>18.3</td>
<td>19.2</td>
<td>1.761</td>
<td>94.0</td>
<td>2.540</td>
<td>-0.5</td>
<td>18.7</td>
<td>9.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.8</td>
<td>19.9</td>
</tr>
<tr>
<td>T40</td>
<td>18.3</td>
<td>19.8</td>
<td>1.755</td>
<td>97.0</td>
<td>2.540</td>
<td>-0.5</td>
<td>19.9</td>
<td>8.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.3</td>
<td>20.6</td>
</tr>
<tr>
<td>T41</td>
<td>18.3</td>
<td>19.9</td>
<td>1.750</td>
<td>96.5</td>
<td>2.540</td>
<td>-0.5</td>
<td>19.0</td>
<td>8.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.0</td>
<td>20.6</td>
</tr>
<tr>
<td>T42</td>
<td>18.2</td>
<td>19.7</td>
<td>1.742</td>
<td>94.0</td>
<td>0.508</td>
<td>-0.5</td>
<td>18.5</td>
<td>7.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.7</td>
<td>22.3</td>
</tr>
<tr>
<td>Deney No.</td>
<td>Kompaksiyon %</td>
<td>Suya doyurulduktan sonra %</td>
<td>Doygunluk</td>
<td>Kompaksiyon kuru birim ağrılığı</td>
<td>Doygunluk derecesi</td>
<td>Deney hizi</td>
<td>Deney sonu su muhtevasi %</td>
<td>Maksimum deviatör gerilme</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>----------</td>
<td>-------------------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>T43</td>
<td>18.2</td>
<td>19.4</td>
<td>1.758</td>
<td>95.0</td>
<td>0.508</td>
<td>-0.5</td>
<td>19.1/18.6/20.4</td>
<td>7.40/16.8/2.0</td>
</tr>
<tr>
<td>T44</td>
<td>18.2</td>
<td>19.5</td>
<td>1.736</td>
<td>92.5</td>
<td>0.508</td>
<td>-0.5</td>
<td>19.6/18.5/20.8</td>
<td>7.88/16.8/2.0</td>
</tr>
<tr>
<td>T45</td>
<td>18.6</td>
<td>19.8</td>
<td>1.760</td>
<td>98.0</td>
<td>1.143</td>
<td>-0.5</td>
<td>19.0/18.7/20.3</td>
<td>8.32/18.2/2.0</td>
</tr>
<tr>
<td>T46</td>
<td>18.6</td>
<td>19.8</td>
<td>1.759</td>
<td>97.0</td>
<td>1.143</td>
<td>-0.5</td>
<td>18.5/19.9</td>
<td>7.84/16.8/2.0</td>
</tr>
<tr>
<td>T47</td>
<td>18.6</td>
<td>19.9</td>
<td>1.746</td>
<td>96.0</td>
<td>1.143</td>
<td>-0.5</td>
<td>19.4/18.7/20.4</td>
<td>7.87/16.8/2.0</td>
</tr>
<tr>
<td>T48</td>
<td>18.4</td>
<td>19.9</td>
<td>1.742</td>
<td>95.0</td>
<td>1.143</td>
<td>-4.9</td>
<td>18.8/18.4/21.1</td>
<td>29.62/14.0/2.0</td>
</tr>
<tr>
<td>No.</td>
<td>Deney muhtevası %</td>
<td>Kompaksiyon su</td>
<td>Sabit hacimde suya doyurulduktan sonra, kuru birim hacim ağırlığı gr/cm³</td>
<td>Doygunluk derecesi %</td>
<td>Deneysel hızı mm/dak</td>
<td>Deney sıcak vasi °C</td>
<td>Deney sonu su muhtevasi %</td>
<td>Maksimum deviatör gerilme kg/cm²</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>----------------</td>
<td>---</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>T49</td>
<td>18.4</td>
<td>19.7</td>
<td>1.760</td>
<td>96.5</td>
<td>2.540</td>
<td>-5.0</td>
<td>19.0</td>
<td>18.8</td>
</tr>
<tr>
<td>T50</td>
<td>18.4</td>
<td>20.0</td>
<td>1.740</td>
<td>95.0</td>
<td>2.540</td>
<td>-5.05</td>
<td>18.5</td>
<td>18.7</td>
</tr>
<tr>
<td>T51</td>
<td>18.2</td>
<td>20.1</td>
<td>1.735</td>
<td>94.5</td>
<td>2.540</td>
<td>-5.0</td>
<td>18.2</td>
<td>18.8</td>
</tr>
<tr>
<td>T52</td>
<td>18.2</td>
<td>20.0</td>
<td>1.737</td>
<td>95.0</td>
<td>0.508</td>
<td>-5.0</td>
<td>19.3</td>
<td>19.2</td>
</tr>
<tr>
<td>T53</td>
<td>18.2</td>
<td>19.6</td>
<td>1.748</td>
<td>95.0</td>
<td>0.508</td>
<td>-5.0</td>
<td>18.9</td>
<td>20.3</td>
</tr>
<tr>
<td>T54</td>
<td>18.1</td>
<td>19.8</td>
<td>1.762</td>
<td>98.0</td>
<td>0.508</td>
<td>-5.0</td>
<td>18.6</td>
<td>20.8</td>
</tr>
<tr>
<td>T55</td>
<td>18.1</td>
<td>19.9</td>
<td>1.751</td>
<td>96.0</td>
<td>0.508</td>
<td>-7.0</td>
<td>19.7</td>
<td>33.78</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>T56</td>
<td>18.1</td>
<td>19.6</td>
<td>1.752</td>
<td>96.0</td>
<td>0.508</td>
<td>-7.0</td>
<td>19.3</td>
<td>18.8</td>
</tr>
<tr>
<td>T57</td>
<td>18.2</td>
<td>19.6</td>
<td>1.755</td>
<td>96.0</td>
<td>0.508</td>
<td>-7.0</td>
<td>18.6</td>
<td>18.7</td>
</tr>
<tr>
<td>T58</td>
<td>17.8</td>
<td>19.6</td>
<td>1.752</td>
<td>95.0</td>
<td>2.540</td>
<td>-6.9</td>
<td>18.9</td>
<td>19.0</td>
</tr>
<tr>
<td>T59</td>
<td>17.8</td>
<td>19.6</td>
<td>1.764</td>
<td>97.0</td>
<td>2.540</td>
<td>-7.0</td>
<td>19.0</td>
<td>19.9</td>
</tr>
<tr>
<td>T60</td>
<td>17.8</td>
<td>19.2</td>
<td>1.758</td>
<td>94.0</td>
<td>2.540</td>
<td>-7.0</td>
<td>18.5</td>
<td>18.5</td>
</tr>
<tr>
<td>T61</td>
<td>18.1</td>
<td>19.7</td>
<td>1.743</td>
<td>94.0</td>
<td>1.143</td>
<td>-7.0</td>
<td>19.2</td>
<td>19.2</td>
</tr>
<tr>
<td>T62</td>
<td>18.1</td>
<td>19.8</td>
<td>1.737</td>
<td>93.0</td>
<td>1.143</td>
<td>-7.0</td>
<td>18.6</td>
<td>18.6</td>
</tr>
<tr>
<td>T63</td>
<td>18.1</td>
<td>20.1</td>
<td>1.750</td>
<td>97.5</td>
<td>0.508</td>
<td>-2.0</td>
<td>19.2</td>
<td>18.7</td>
</tr>
<tr>
<td>T64</td>
<td>18.0</td>
<td>19.9</td>
<td>1.744</td>
<td>95.0</td>
<td>0.508</td>
<td>-2.0</td>
<td>18.8</td>
<td>19.2</td>
</tr>
</tbody>
</table>

*r: Üst başıltta kayma görüldü deney durduruldu.
<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T65</td>
<td>18.0</td>
<td>19.8</td>
<td>1.745</td>
<td>95.0</td>
<td>1.143</td>
<td>-2.0</td>
<td>19.05</td>
<td>16.62</td>
<td>16.8</td>
<td>2.0</td>
</tr>
<tr>
<td>T66</td>
<td>18.0</td>
<td>19.8</td>
<td>1.748</td>
<td>95.5</td>
<td>1.143</td>
<td>-2.0</td>
<td>19.4</td>
<td>16.30</td>
<td>16.8</td>
<td>2.0</td>
</tr>
<tr>
<td>T67</td>
<td>16.6</td>
<td>19.7</td>
<td>1.731</td>
<td>92.0</td>
<td>1.143</td>
<td>-11.0</td>
<td>19.8</td>
<td>45.64</td>
<td>9.1</td>
<td>2.0</td>
</tr>
<tr>
<td>T68</td>
<td>17.8</td>
<td>19.1</td>
<td>1.764</td>
<td>94.5</td>
<td>1.143</td>
<td>-10.0</td>
<td>19.10</td>
<td>46.22</td>
<td>11.2</td>
<td>2.0</td>
</tr>
<tr>
<td>T69</td>
<td>16.6</td>
<td>19.7</td>
<td>1.751</td>
<td>95.0</td>
<td>1.143</td>
<td>-10.1</td>
<td>19.9</td>
<td>45.21</td>
<td>11.2</td>
<td>2.0</td>
</tr>
<tr>
<td>T70</td>
<td>17.8</td>
<td>19.2</td>
<td>1.754</td>
<td>94.0</td>
<td>2.540</td>
<td>-10.0</td>
<td>18.6</td>
<td>49.16</td>
<td>11.2</td>
<td>2.0</td>
</tr>
<tr>
<td>T71</td>
<td>17.8</td>
<td>19.1</td>
<td>1.763</td>
<td>94.0</td>
<td>2.540</td>
<td>-9.9</td>
<td>-</td>
<td>49.40</td>
<td>14.0</td>
<td>2.0</td>
</tr>
<tr>
<td>T72</td>
<td>18.2</td>
<td>19.2</td>
<td>1.773</td>
<td>97.0</td>
<td>2.540</td>
<td>-9.9</td>
<td>19.1</td>
<td>47.69</td>
<td>14.0</td>
<td>2.0</td>
</tr>
<tr>
<td>T73</td>
<td>18.2</td>
<td>19.5</td>
<td>1.758</td>
<td>96.0</td>
<td>0.508</td>
<td>-10.0</td>
<td>-</td>
<td>44.36</td>
<td>12.6</td>
<td>2.0</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
<td>(11)</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>T74</td>
<td>18.4</td>
<td>19.4</td>
<td>1.764</td>
<td>96.0</td>
<td>0.508</td>
<td>-10.1</td>
<td>18.5</td>
<td>43.49</td>
<td>9.1</td>
<td>2.0</td>
</tr>
<tr>
<td>T75</td>
<td>18.2</td>
<td>19.5</td>
<td>1.749</td>
<td>94.0</td>
<td>0.508</td>
<td>9.95</td>
<td>19.4</td>
<td>43.25</td>
<td>8.4</td>
<td>2.0</td>
</tr>
<tr>
<td>T76</td>
<td>18.4</td>
<td>19.5</td>
<td>1.760</td>
<td>96.0</td>
<td>0.381</td>
<td>-2.0</td>
<td>-</td>
<td>15.61</td>
<td>15.4</td>
<td>2.0</td>
</tr>
<tr>
<td>T77</td>
<td>18.4</td>
<td>19.2</td>
<td>1.766</td>
<td>96.0</td>
<td>0.381</td>
<td>-2.0</td>
<td>18.8</td>
<td>15.53</td>
<td>15.4</td>
<td>2.0</td>
</tr>
<tr>
<td>T78</td>
<td>18.2</td>
<td>20.6</td>
<td>1.732</td>
<td>96.0</td>
<td>1.143</td>
<td>-3.0</td>
<td>20.6</td>
<td>20.63</td>
<td>16.8</td>
<td>2.0</td>
</tr>
<tr>
<td>T79</td>
<td>18.2</td>
<td>19.4</td>
<td>1.762</td>
<td>95.5</td>
<td>0.508</td>
<td>-2.2</td>
<td>18.8</td>
<td>16.69</td>
<td>15.4</td>
<td>2.0</td>
</tr>
<tr>
<td>T80</td>
<td>18.2</td>
<td>19.1</td>
<td>1.762</td>
<td>94.0</td>
<td>0.508</td>
<td>-2.1</td>
<td>19.2</td>
<td>16.61</td>
<td>15.4</td>
<td>2.0</td>
</tr>
<tr>
<td>T81</td>
<td>18.2</td>
<td>19.6</td>
<td>1.752</td>
<td>95.5</td>
<td>0.508</td>
<td>-3.0</td>
<td>19.2</td>
<td>20.09</td>
<td>15.4</td>
<td>2.0</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
<td>(11)</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T82</td>
<td>18.2</td>
<td>19.6</td>
<td>1.774</td>
<td>99.0</td>
<td>0.508</td>
<td>-3.0</td>
<td>19.8</td>
<td>20.49</td>
<td>15.4</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T83</td>
<td>18.2</td>
<td>19.3</td>
<td>1.770</td>
<td>97.0</td>
<td>0.508</td>
<td>-1.8</td>
<td>19.4</td>
<td>14.53</td>
<td>15.4</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T84</td>
<td>18.3</td>
<td>21.0</td>
<td>1.699</td>
<td>94.0</td>
<td>1.143</td>
<td>-2.0</td>
<td>20.0</td>
<td>14.92</td>
<td>16.8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T85</td>
<td>18.3</td>
<td>20.8</td>
<td>1.699</td>
<td>93.0</td>
<td>1.143</td>
<td>-2.1</td>
<td>20.1</td>
<td>15.51</td>
<td>16.8</td>
<td>2.0</td>
</tr>
</tbody>
</table>

* Numuneler standart proktor enerjisinin 2/3 ü ile sıkıştırılmıştır.
<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T86</td>
<td>18.3</td>
<td>21.5</td>
<td>1.688</td>
<td>94.0</td>
<td>1.143</td>
<td>-2.05</td>
<td>20.6</td>
<td>14.76</td>
<td>16.8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>20.4</td>
<td>21.4</td>
<td>20.5</td>
<td>23.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T87</td>
<td>18.1</td>
<td>19.7</td>
<td>1.758</td>
<td>95.0</td>
<td>1.143</td>
<td>+22</td>
<td>18.5</td>
<td>3.02</td>
<td>15.4</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>19.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T88</td>
<td>18.1</td>
<td>18.9</td>
<td>1.764</td>
<td>94.0</td>
<td>1.143</td>
<td>+22</td>
<td>18.6</td>
<td>3.17</td>
<td>15.4</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>18.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T89</td>
<td>18.1</td>
<td>18.9</td>
<td>1.760</td>
<td>93.5</td>
<td>1.143</td>
<td>+22</td>
<td>19.0</td>
<td>3.20</td>
<td>15.4</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>18.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T90</td>
<td>17.5</td>
<td>19.5</td>
<td>1.745</td>
<td>94.0</td>
<td>1.143</td>
<td>+22</td>
<td>19.2</td>
<td>2.46xx</td>
<td>9.1</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T91</td>
<td>17.5</td>
<td>19.6</td>
<td>1.759</td>
<td>96.0</td>
<td>1.143</td>
<td>+22</td>
<td>19.8</td>
<td>2.87</td>
<td>16.8</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>19.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T92</td>
<td>17.5</td>
<td>19.3</td>
<td>1.779</td>
<td>98.0</td>
<td>1.143</td>
<td>+22</td>
<td>19.2</td>
<td>3.24</td>
<td>15.4</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x Numuneler standard Proctor enerjisinin 2/3 ü ile sıkılaştırılmıştır.
xx Numunede düşey çatlık belirdiği görüldü, deney durduruldu.
<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T93</td>
<td>19.8</td>
<td>21.6</td>
<td>1.693</td>
<td>95.5</td>
<td>1.143</td>
<td>+22</td>
<td>20.5</td>
<td>1.68</td>
<td>16.8</td>
<td>2.0</td>
</tr>
<tr>
<td>T94</td>
<td>19.8</td>
<td>21.7</td>
<td>1.699</td>
<td>96.5</td>
<td>1.143</td>
<td>+22</td>
<td>21.3</td>
<td>1.83</td>
<td>15.4</td>
<td>2.0</td>
</tr>
<tr>
<td>T95</td>
<td>19.8</td>
<td>21.2</td>
<td>1.706</td>
<td>94.5</td>
<td>1.143</td>
<td>+22</td>
<td>21.7</td>
<td>1.80</td>
<td>16.8</td>
<td>2.0</td>
</tr>
<tr>
<td>T96</td>
<td>19.1</td>
<td>20.0</td>
<td>1.736</td>
<td>94.5</td>
<td>1.143</td>
<td>+22</td>
<td>19.5</td>
<td>2.74</td>
<td>15.4</td>
<td>4.0</td>
</tr>
<tr>
<td>T98</td>
<td>18.9</td>
<td>20.7</td>
<td>1.719</td>
<td>95.5</td>
<td>1.143</td>
<td>-6.7</td>
<td>18.6</td>
<td>35.16</td>
<td>16.8</td>
<td>4.0</td>
</tr>
<tr>
<td>T99</td>
<td>18.9</td>
<td>19.8</td>
<td>1.752</td>
<td>96.0</td>
<td>1.143</td>
<td>-7.0</td>
<td>19.5</td>
<td>37.89</td>
<td>15.4</td>
<td>6.0</td>
</tr>
<tr>
<td>T100</td>
<td>18.9</td>
<td>19.8</td>
<td>1.750</td>
<td>96.0</td>
<td>1.143</td>
<td>-2.0</td>
<td>19.1</td>
<td>17.18</td>
<td>18.2</td>
<td>6.0</td>
</tr>
</tbody>
</table>

*Numuneler standard Proktor enerjisinin 2/3 ü ile sıkıştırılmıştır.
Deney sıcaklığı ve deney hızının değişiminin anlamlı olup olmadığını belirlemek için standart Prokter enerjisinde minyatür Harvard kalıbında sıkıştırılmış numuneler üzerinde yapılan üç ekseni deneylerde $-10 \pm 0.1^\circ C$, $-2.0 \pm 0.1^\circ C$, $-3.0 \pm 0.1^\circ C$ sıcaklıklarında ve 2.540 mm/dak, 1.143 mm/dak ve 0.508 mm/dak yükleme hızlarında, 2.0 kg/cm² çevre basınıcı altında bulunan maksimum deviator gerilimler ile Tablo 13. de verilen varyans analizi yapılmıştır. Her kutuda 3 deney bulunmaktadır için, verilen hata sınırları içinde değişkenleri kontrol edilen gelişigüzel üçer deney seçilmiştir.

Tablo 13. Maksimum deviator gerilmenin, deney sıcaklığı ve deney hızına bağlı olarak varyans analizi

<table>
<thead>
<tr>
<th></th>
<th>$-3.0 \pm 0.1^\circ C$</th>
<th>$-2.0 \pm 0.1^\circ C$</th>
<th>$-1.0 \pm 0.1^\circ C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.540 mm/dak</td>
<td>T16 21.34</td>
<td>T27 16.46</td>
<td>T24 11.54</td>
</tr>
<tr>
<td>T17 20.87</td>
<td>T28 16.30</td>
<td>T26 11.19</td>
<td></td>
</tr>
<tr>
<td>T18 20.65</td>
<td>T29 15.91</td>
<td>T33 11.15</td>
<td></td>
</tr>
<tr>
<td>ort. 21.0</td>
<td>ort. 16.2</td>
<td>ort. 11.3</td>
<td></td>
</tr>
<tr>
<td>1.143 mm/dak</td>
<td>T12 20.22</td>
<td>T33 15.55</td>
<td>T4 10.64</td>
</tr>
<tr>
<td>T13 20.05</td>
<td>T34 15.91</td>
<td>T5 10.28</td>
<td></td>
</tr>
<tr>
<td>T78 20.63</td>
<td>T35 14.82</td>
<td>T36 10.12</td>
<td></td>
</tr>
<tr>
<td>ort. 20.3</td>
<td>ort. 15.4</td>
<td>ort. 10.4</td>
<td></td>
</tr>
<tr>
<td>0.508 mm/dak</td>
<td>T19 18.86</td>
<td>T30 15.65</td>
<td>T21 9.22</td>
</tr>
<tr>
<td>T81 20.09</td>
<td>T32 15.04</td>
<td>T22 9.57</td>
<td></td>
</tr>
<tr>
<td>T82 20.49</td>
<td>T64 15.35</td>
<td>T37 9.80</td>
<td></td>
</tr>
<tr>
<td>ort. 19.8</td>
<td>ort. 15.3</td>
<td>ort. 9.5</td>
<td></td>
</tr>
</tbody>
</table>

| Değişim kaynağı toplamu | Serbestlik derecesi | Varyans tahmini | F (deney hızı) | p^\times (deney hızı) $n_1=2$ $n_2=2$ |
|--------------------------|------------------|----------------|----------------|----------------|----------------|----------------|
| Deney sıcaklığı | 149.13 2 | 74.56 57.80 | 0.05 $p<0.01$ |
| Deney hızı | 2.58 2 | 1.29 1 | - |
| Hata | 0.25 4 | 0.0625 0.05 | - |

* Sayfa 67 deki dipnotuna bakınız.
Dondurulmamış numuneler ile 2.0 kg/cm² ve 4 kg/cm² hücre basınçında yapılan T87, T88, T89, T91, T92, T96 deneylerinin sonucu olarak kompaksiyona tabi tutulduktan sonra sabit hacimda suya doyurulmuş numunelerde içsel sürünme açısının sıfır olduğu bulunmuştur. Dondurulmuş numuneler ile 2.0, 4.0, 6.0 kg/cm² hücre basınçında ve -1.0, -1.6, -2.0, -7.0°C sıcaklıklarda yapılan T5, T6, T7, T8, T9, T10, T11, T35, T61, T98, T99, T100 deneylerinin sonucundan donmuş numunelerin içsel sürünme açısının sıfır olduğu bulunmuştur.

T84, T85, T86 deneyleri standart Prokтор enerjisinin 2/3 ü ile sıkıştırılmış, sabit hacimda suya doyurulmuş ve dondurulmuş numuneler ile, T93, T94, T95 deneyleri standart Proktor enerjisinin 2/3 si ile sıkıştırılmış, sabit hacimda suya doyurulmuş numuneler ile normal laboratuar sıcaklığında (+22°C) yapılmıştır. Deney sonuçları Tablo 14. de verilmiştir.

Tablo 14. Sıkıştırma enerjisinin donmuş ve donmamış zeminlerde maksimum deviator gerilime etkisi
<table>
<thead>
<tr>
<th>Deney sıcaklığı (°C)</th>
<th>0.381</th>
<th>0.508</th>
<th>1.143</th>
<th>2.540</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5</td>
<td>300.00</td>
<td>296.42</td>
<td>303.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>230.00</td>
<td>256.42</td>
<td>286.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>286.42</td>
<td>296.42</td>
<td>356.42</td>
<td></td>
</tr>
<tr>
<td>-1.0</td>
<td>356.42</td>
<td>380.00</td>
<td>480.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>366.42</td>
<td>393.57</td>
<td>433.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>393.57</td>
<td>372.14</td>
<td>403.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>390.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.5</td>
<td>466.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>610.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.8</td>
<td>560.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.0</td>
<td>620.00</td>
<td>630.00</td>
<td>780.00</td>
<td>735.57</td>
</tr>
<tr>
<td></td>
<td>636.42</td>
<td>650.00</td>
<td>616.42</td>
<td>716.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>563.57</td>
<td>637.57</td>
<td>703.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>720.00</td>
<td>616.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>636.42</td>
<td>723.57</td>
<td></td>
</tr>
<tr>
<td>-2.2</td>
<td>637.57</td>
<td></td>
<td>663.57</td>
<td></td>
</tr>
<tr>
<td>-2.8</td>
<td></td>
<td></td>
<td>810.00</td>
<td></td>
</tr>
<tr>
<td>-3.0</td>
<td>966.42</td>
<td>986.42</td>
<td>960.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>996.42</td>
<td>1013.57</td>
<td>993.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>836.42</td>
<td>973.57</td>
<td>1013.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>950.00</td>
<td>946.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5.0</td>
<td>1543.57</td>
<td>1656.42</td>
<td>1633.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1533.57</td>
<td></td>
<td>1713.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1686.41</td>
<td></td>
</tr>
<tr>
<td>-7.0</td>
<td>1873.57</td>
<td>1940.00</td>
<td>2073.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1913.57</td>
<td>2012.14</td>
<td>2100.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1900.00</td>
<td></td>
<td>2093.57</td>
<td></td>
</tr>
<tr>
<td>-10.0</td>
<td>2466.42</td>
<td>2553.57</td>
<td>2806.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2466.42</td>
<td>2573.57</td>
<td>2773.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2440.00</td>
<td></td>
<td>2706.42</td>
<td></td>
</tr>
<tr>
<td>-11.0</td>
<td></td>
<td></td>
<td>2700.00</td>
<td></td>
</tr>
</tbody>
</table>
Tablo 14 den sıkıştırma enerjisinde meydana getirilen 2/3 oranındaki bir azalmanın donmuş zeminin kayma mukavemetini etkilemediği halde donmuş zeminin kayma mukavemetini etkilemediği görülmektedir.
Çalışma hipotezini tahkik edebilmek için minyatür Harvard kalıplarında sıkıştırılmış sonra sabit hacımda suya doygun hale getirilmiş ve sonra da dondurulmuş kılı kumuneler üzerinde çok sayıda serbest basınç ve üç eksenli basınç deneyi yapılmıştır. Sonuçlar başlıca 3 naktada toplanmaktadır.

Şekil 13 de maksimum deviator gerilmenin −0.5°C ila −3°C arasında sıcaklıkla çizgisel olarak değiştiği görülmuştur. Sıcaklığın (T) bu aralığa bulunması halinde maksimum deviator gerilme ile sıcaklık arasında şu bağıntı yazılabilir:

\[(σ_1−σ_3)_{max} = -4.65 \cdot T + b\]

burada b deney hızına bağlı olarak değişmektedir. Deneylerimizde kullanılan hızlar için b şu değerleri almaktadır.

\[V = 0.508 \ \text{mm/dak} \ \text{için} \ b = 5.3\]
\[V = 1.143 \ " " " \ b = 6.5\]
\[V = 2.540 \ " " " \ b = 7.7\]

(6) eşitliğinde T, cebrik değeri ile °C si cinsinden yazılırsa deviator gerilme kg/cm² olarak bulunmaktadır.

Sıcaklığın −5°C den daha küçük değerler alması halinde kayma mukavemetindeki artış oranının azaldığı, buna mukabil deney hızının kayma mukavemeti üzerinde etkili olmağa başladığını Şekil 13 ve Şekil 14 de görülmektedir. Şekil 13 de verilen...
Maksimum deviatör gerilme, sıcaklık ve deney hızı arasındaki bağlantı

\(C_s = 2.0 \, \text{kg/cm}^2 \)

\(\Delta 2.540 \, \text{mm/dak.} \)

\(\circ 1.143 \, \text{mm/dak.} \)

\(+ 0.508 \, \text{mm/dak.} \)

\(T_{67}, T_{69} \)

\(T_{71}, T_{72} \)

\(T_{56}, T_{55} \)

\(T_{50}, T_{51} \)

\(T_{49}, T_{52} \)

\(T_{45}, T_{47} \)

\(T_{32}, T_{34} \)

\(T_{30}, T_{76} \)

\(T_{28}, T_{66} \)

\(T_{13}, T_{61}, T_{62} \)

\(T_{57} \)

\(T_{59} \)

\(T_{60} \)

\(T_{73}, T_{75} \)

\(\text{Şek. 13} \)
Maksimum deviatör gerilme, deney hızı ve sıcaklık arasındaki bağlantı

g'_s = 2.0 kg/cm^2

-10°C ▲ -7 ● -5 ▲ -3 △ -2 + -1 ○ -0.5

Şek. 14
maksimum deviator gerilme-sıcaklık eğrisinin -5°C
den küçük sıcaklıklarında eğiminin değişmesi bu sıcaklıklarında
numunede bulunan donmamış su miktarının azalma hızında bir
değişiklik olması ile açıklanabilir.

Donmuş zeminin deformasyon modülü 0°C nin altında sıcaklıklar-
larla değişmektedir (Şekil 15, Şekil 16). Ayrıca deney hızına
bağlı olarak bu sat ve donmuş zeminin deformasyon modülleri de
karşılaştırmıştır (Şekil 17).

Mohr dairelerinden her sıcaklık için bulunan c(koheyzyon) de-
ğerleri (φ= 0) 0°C nin altında sıcaklıklara çizgisel olarak
değişmektedir (Şekil 18). Sıcaklığın -1°C ilâ -7°C arasında
bulunması halinde koheyzyon ile sıcaklık arasında şu bağıntı
verilebilir.

\begin{equation}
(7) \quad c = -2.24T + 3.12
\end{equation}

(7) denkleminde T, 0°C cinsinden cebrik değeri ile yazılıdı-
ğında c, kg/cm² cinsinden bulunur.

2. Deney hızı donmuş zeminin kayma mukavemetine ikinci derecede
etkimekte incelenen şartlarda kompaksiyon su muhtevası ve
donma programı sonucu etkili olmamaktadır.

3. Proktor enerjisinin %100 ilâ %75 arasında değişmesi halin-
de zeminin dondurulduktan sonraki mukavemeti numune hazırla-
nırken verilen sıkıştırma enerjisinin bağımsızdır.
\begin{align*}
E (\text{kg/cm}^2) & \quad \bullet \ 0.508 \text{ mm/dak.} \\
& \quad \triangle \ 1.143 \text{ mm/dak.} \\
& \quad + \ 2.540 \text{ mm/dak.}
\end{align*}
\begin{align*}
\text{Şek.15} & \quad -12 \quad -10 \quad -8 \quad -6 \quad -4 \quad -2 \quad 0 \\
\text{T(°C)} & \quad \text{E (kg/cm}^2) \quad 2500 \quad 2200 \quad 1900 \quad 1600 \quad 1300 \quad 1000 \quad 700 \quad 400 \quad 100 \quad 0
\end{align*}
The diagram shows the relationship between E (in kg/cm^2) and v (in mm/dak) for different temperatures: -10°C, -7°C, -5°C, -3°C, -2°C, -1°C, and -0.5°C. The graph illustrates how the value of E increases with v as the temperature decreases.
REFERANSLAR

Yükseköğretim Kurulu
Dokümantasyon Merkezi

Ek I
DENEF ODASI İLE İLGİLİ HESAPLAR
DENEN ODASININ ISI GEÇİRGENLİĞİNİN HESABİ

İletim yolu ile ısı geçirenliğin hesabında

\[
q_i = \frac{\theta_2 - \theta_1}{\sum \frac{1}{h} + \sum \frac{d}{\lambda}}
\]

(I-1)

bağintısı kullanılabılır.

Burada:

- \(q_i\): birim yüzeyden birim zamanda iletim yolu ile geçen ısı miktarı [kilo kalori/metre kare x saat]
- \(h\): yüzey film katsayısi [kilo kalori/metre kare x saat x derece (Selsiyus)]
- \(d\): tabaka kalınlığı [metre]
- \(\lambda\): ısı iletim katsayısi [kilo kalori/metre x saat x derece]
- \(\theta_2\): dış çevre sıcaklığı [derece (selsiyus) °C]
- \(\theta_1\): iç çevre sıcaklığı [derece (selsiyus) °C]

olarak alınmıştır.

Ytong ve Styropor'un ısı iletim katsayları için imalatçıları tarafından 0.17 ve 0.03 değerleri verilmiştir. Beton için 0.72 ve adi tuğla için 0.54 değerleri alınabilir. İç ve dış yüzler için yüzey film katsayısı değeri yaklaşık olarak 10 alınabilir. Dış çevre sıcaklığı Zemin Mekanîği Laboratuvarının sıcaklığına eşit olup, bu sıcaklık deney odasının bulunduğu kısım da bütün yıl boyunca 23 ±1°C olmaktadır. Bu verilere göre (I-1) bağıntısında yalnız iç çevre sıcaklığı değişken olacak kalmaktadır. İç çevre sıcaklığı -13°C olduğuna göre bulunan ısı miktarı odaya iletim yolu ile giren en büyük ısı miktarını verecektir. Birim yüzeyden birim zamanda geçen ısı miktarı:

yan yüzler ve ön yüz(kapı hariç) için: \(q_1 = 5.89 \) kilo kalori
arka yüz için: \(q_2 = 6.72 \) kilo kalori
tavan için: \(q_3 = 6.23 \) kilo kalori
döşeme için (dış çevre sıcaklığı 18°C): \(q_4 = 6.16 \) kilo kalori
kapı için: \(q_5 = 7.40 \) kilo kalori
olur.

Toplam ısı miktarı bu değerlerin tekabül ettikleri yüzey alanları ile çarpılıp toplandığıyla elde edilir. Ön yüz için kapıdan dolayı olan fark da gözönünde tutularak, bir saatte geçen ısı miktarı:

\[
2.72 \times 2.34 \times 5.89 + 2 \times 1 (7.40-5.89) = 40.51 \text{ kilo kalori} \\
2.72 \times 2.34 \times 6.72 = 42.77 \text{ kilo kalori} \text{ (arka yüz)} \\
1.72 \times 2.34 \times 5.89 \times 2 = 47.21 \text{ kilo kalori} \text{ (yan yüzler toplam)} \\
1.72 \times 2.72 \times 6.23 = 29.15 \text{ kilo kalori} \text{ (tavan)} \\
1.72 \times 2.72 \times 6.16 = 28.82 \text{ kilo kalori} \text{ (kapı)}
\]

Böylece iletim yolu ile giren toplam ısı ~ 190 kilo kalori/saat-i bulmaktadır.

\[X\footnote{American Institute of Physics Handbook, New York : 1957 den alınan değerler.} \]

\[
\frac{Q}{A_y} = \varepsilon_y \frac{k(T_1^4 - T_2^4)}
\]

(I-2)

Burada;

\[
Q : \text{Işına yolu ile giren i̇şına enerjisini [watt/metre kare]}
\]

\[
A_y : \text{Yüzey alanını [metre kare]}
\]

\[
\varepsilon_y : \text{Yüzey emisivitesini (yayma katsayısını) burada gri-cisim şartının gerçekleştiği ve emisivitenin absorbtansa eşit olduğu kabul edilmiştir}
\]

\[
k : \text{Stefan-Boltzmann sabitini,}
\]

\[
T_1 : \text{Laboratuvar duvarlarının sıcaklığını (Kelvin derecesi olarak),}
\]

\[
T_2 : \text{Deney odası duvarlarının dış yüzeyinin Kelvin derecesi cinsinden sıcaklığını,}
\]

göstermektedir.

Stefan-Boltzmann sabitinin değeri : 5.668 \times 10^{-8} \text{[Watt/m}^2\text{xK}^4\text{]} (Kelvin derecesi) \text{dir.} \varepsilon_y : \text{yüzey emisivitesi boyuysuz bir sayısı olup, sivilay yüz için 0.92, paslanmaz çelik kapı yüzeyi ve alüminyum tabaka kaplı tavan yüzeyi için 0.09 alınıbilir. Bu veriler (I-2) eşitliğine uygulanırsa i̇şına yolu ile ön ve yan yüzlerden 5.27 Watt/m}^2\text{, arka yüzden 7.89 Watt/m}^2\text{, tavandan}

0.26 Watt/m², kapidan 1.53 Watt/m², kapı çerçevesinden 2.53 Watt/m² enerjinin ısı halinde girdiği bulunur. Sekil 2 den hesaplanan alan değerleri kullanılır ve 1 kilo kalori = 1/860 kilowatt saat alınırsa, ısıma yolu ile giren toplam ısıının 160 kilo kalori/saat olduğu bulunur.

Fotograf 10. Deney odasının duvar tabakalarının inşaat sırasındaki görünüşü
Fotograf 11. Deney odasının duvarlarının inşaat sırasındaki görünüşü
Ek II
ŞEKİLLER
q (kg/cm²)

$T = -1^\circ C$
$v = 0.229 \text{ mm/dak.}$
$w_k = \% 14.8$
$T_d = -1^\circ C$

Şek. 19
\(q \) (kg/cm\(^2\))

\[T = -5^\circ C \]
\[v = 1.143 \text{ mm/dak.} \]
\[w_i = 14.0 \% \]
\[T_b = -5^\circ C \]
T = -8°C
v = 1,143 mm/dak.

\(w_k = \% 18.7 \)
\(T_d = -1°C \)
$T = -5^\circ C$

$v = 0.229 \text{ mm/dak.}$

$w = \% 18.7$

$T_e = -8^\circ C$

Şek. 22
T = -1°C
ν = 5.715 mm/dak.
w_k = %18.7
T_d = -5°C

Şek. 23
Şek. 24

q (kg/cm²)

S19 ○ T = -5°C
S20 △ v = 5.715 mm/dak.
S21 ★ w₀ = % 21.7

Td = -1°C
$T = -8^\circ C$

$v = 0.229 \text{ mm/dak.}$

$w_k = \% 21.5$

$T_d = -5^\circ C$

S22
S23
S24

(q) (kg/cm^2)

Şek. 25
Şek. 26

\(q \) (kg/cm²)

\(T = -1 \degree C \)
\(v = 1.143 \text{ mm/dak.} \)
\(w_f = 21.5 \% \)
\(T_f = -8 \degree C \)
\(q \) (kg/cm²)

- \(T = -8^\circ C \)
- \(v = 5.715 \) mm/dak
- \(\omega_s = 15.6 \% \)
- \(T_d = -8^\circ C \)

\(\nu \)

\(\varepsilon (\%) \)

\(S 28 \circ \)
\(S 29 \bullet \)
\(S 30 \ast \)

\(\text{Sek. 27} \)
$C_i - C_s$ (kg/cm²)

$T = -0.5^\circ C$
$v = 0.508$ mm/dak.
$C_s = 2.0$ kg/cm²

Şek. 28
Şek. 30

\[C_1 - C_2 \text{ (kg/cm}^2\text{)} \]

\[T = -0.5^\circ C \]
\[v = 2.540 \text{ mm/dak.} \]
\[C_3 = 2.0 \text{ kg/cm}^2 \]

T39:
T40:
T41:
$T = -1^\circ C$
$V = 0.508 \text{ mm/dak.}$
$\xi = 2.0 \text{ kg/cm}^2$

Şek. 31

$\sigma - \sigma_s$ (kg/cm2)

0 2 4 6 8 10 12 14 16

$T21$ $T22$ $T37$
Şek. 32

$G_f - G_i$ (kg/cm²)

$T = -1°C$
$v = 1.143$ mm/dak.
$G_i = 2.0$ kg/cm²

T4
T5
T36
Şek. 33

\(G_{Y} - G_{s} \) (kg/cm²)

\[T = -1^\circ C \]
\[v = 2.540 \text{ mm/dak.} \]
\[G_{s} = 2.0 \text{ kg/cm}^2 \]

- T 24
- T 26
- T 38
T = -2°C
v = 0.508 mm/dak.
Y = 20 kg/cm²
T30
T32
T54

Şek. 34
\(C_t - C_a \) (kg/cm²)

\(T = -2^\circ C \)
\(v = 1.143 \text{ mm/dak.} \)
\(C_s = 2.0 \text{ kg/cm}^2 \)

\(\text{Şek. 35} \)

T 33
T 34
T 35
Şek. 36

\(T = -2^\circ C \)
\(v = 2.540 \text{ mm/dak.} \)
\(\sigma_3 = 2.0 \text{ kg/cm}^2 \)

T 27
T 28
T 29
G_i ve G_3 (kg/cm²)

$T = -3^\circ C$

$v = 0.508$ mm/dak.

$G_3 = 2.0$ kg/cm²

Şek. 37
$T = -3^\circ C$
$v = 1.143 \text{ mm/dak.}$
$G_x = 2.0 \text{ kg/cm}^2$

Şek. 38
Şek. 39

$T = -3^\circ C$

$v = 2.540 \text{ mm/dak.}$

$G_s = 2.0 \text{ kg/cm}^2$

T16
T17
T18
Şek. 40

$G_i - G_s$ (kg/cm²)

$T = -5^\circ C$

$v = 0.508$ mm/dak.

$G_s = 2.0$ kg/cm²

$T 52$ ○

$T 53$ ▲

$T 54$ ●
$\sigma_4 - \sigma_3$
(kg/cm^2)

$T = -5^\circ\text{C}$
$v = 1.143 \text{ mm/dak.}$
$\sigma_s = 2.0 \text{ kg/cm}^2$

Şek. 41
$C_t - C_s$ (kg/cm²)

$T = -5^\circ C$
$v = 2.540 \text{ mm/da.k.}$
$C_s' = 2.0 \text{ kg/cm}^2$

T 49
T 50
T 51
$\sigma_f - \sigma_y$ (kg/cm²)

$T = -7^\circ C$
$v = 0.508 \text{ mm/dak.}$
$G_s = 2.0 \text{ kg/cm}^2$

T 55 •
T 56 ▲
T 57 ♦

Şek. 43
$C_1 - C_2$ (kg/cm2)

$T = -7^\circ C$

$v = 1.143$ mm/dak.

$C_2 = 2.0$ kg/cm2

T 61
T 62

Şek. 44
Şek. 45

\[\sigma_i - \sigma_s \] (kg/cm²)

\[T = -7^\circ C \]

\[v = 2.540 \text{ mm/dak.} \]

\[G_s = 2.0 \text{ kg/cm}^2 \]

T 58 ○
T 59 △
T 60 ▽

\[\xi \text{ (\%)} \]
\(\zeta_i - \zeta_s \) (kg/cm²)

\(T = -10^\circ C \)

\(v = 0.508 \text{ mm/dak.} \)

\(\sigma_s = 2.0 \text{ kg/cm}^2 \)

- T73
- T74
- T75

\(\mathcal{Sek.} 46 \)
$C_s - C_s' \text{ (kg/cm}^2\text{)}$

$T = -10^\circ\text{C}$
$v = 1.143 \text{ mm/dak}$
$C_s' = 2.0 \text{ kg/cm}^2$

T 68
T 69

Figure 47
$T = -10 \, ^\circ C$
$v = 2.540 \, \text{mm/dak.}$
$c_s = 2.0 \, \text{kg/cm}^2$
Üzgeçmiş

T. C.
Yüksekoğretim Kurulu
Dokümantasyon Merkezi