<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

DOĞRUSAL OLMAYAN İTME ANALİZİ YÖNTEMİ İLE PERFORMANS SEVİYESİ BELİRLENEN ÇELİK BİR YAPININ YAPISAL ANALİZİ

YÜKSEK LİSANS TEZİ Duygu ALTINAĞAÇ

İnşaat Mühendisliği Anabilim Dalı

Yapı Mühendisliği Programı

HAZİRAN 2016

<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

DOĞRUSAL OLMAYAN İTME ANALİZİ YÖNTEMİ İLE PERFORMANS SEVİYESİ BELİRLENEN ÇELİK BİR YAPININ YAPISAL ANALİZİ

YÜKSEK LİSANS TEZİ

Duygu ALTINAĞAÇ 501121014

İnşaat Mühendisliği Anabilim Dalı

Yapı Mühendisliği Programı

Tez Danışmanı: Yrd. Doç. Dr. Barlas Özden ÇAĞLAYAN

HAZİRAN 2016

İTÜ, Fen Bilimleri Enstitüsü'nün 501121014 numaralı Yüksek Lisans Öğrencisi Duygu ALTINAĞAÇ, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten sonra hazırladığı "DOĞRUSAL OLMAYAN İTME ANALİZİ YÖNTEMİ İLE PERFORMANS SEVİYESİ BELİRLENEN ÇELİK BİR YAPININ YAPISAL ANALİZİ" başlıklı tezini aşağıda imzaları olan jüri önünde başarı ile sunmuştur.

Tez Danışmanı :	Yrd. Doç. Dr. Barlas Özden ÇAĞLAYAN
	İstanbul Teknik Üniversitesi

Jüri Üyeleri :	Doç. Dr. Elişan Filiz PİROĞLU
-	İstanbul Teknik Üniversitesi

Yrd. Doç. Dr. Meltem ŞAHİN.... Mimar Sinan Güzel Sanatlar Üniversitesi

Teslim Tarihi: 02 Mayıs 2016Savunma Tarihi: 07 Haziran 2016

iv

Canım Anneannem Ruziye ÖZDİLEK'e,

vi

ÖNSÖZ

Yüksek lisans eğitimine başlama amacım yapısal sistemlerin davranış biçimleri ile ilgili daha detaylı bilgi sahibi olmak ve çelik yapı sistemleri konusundaki analiz yeteneğimi güçlendirmekti. Yapmış olduğum bu çalışma ile çelik çapraz sistemlerden oluşan üç farklı modeli doğrusal olmayan yöntemler ile analiz edip yapı davranış katsayısını tespit ederek deprem hareketi karşısındaki performans değerlemesini inceleme fırsatı buldum. Bu amaçla yaptığım incelemeler neticesinde deprem hareketinin yapılar üzerindeki etkisi konusunda sayısız araştırma olduğunu görerek, ülkemizde çok sayıda can kaybına sebep olan depreme dayanıksız yapıların yerini, günden güne gelişmiş yöntemler ile analiz ve inşa edilmiş yapıların aldığını gözlemlemekteyim.

Tüm bu araştırma ve öğrenim sürecim boyunca bilgi ve tecrübelerinden yararlandığım sayısız öğretmenimin yanı sıra türlü sorularımı cevaplamakla bana yol gösteren. İnş. Yük Müh. Simon Karabulut'a ve desteğini esirgemeyen çok sevgili dostlarıma teşekkür ederim.

Hayatım boyunca bana olan güvenini ve desteğini her daim hissettiğim sevgi dolu aileme ve özverili eşim Emre Altınağaç'a milyonlarca kez teşekkür ederim.

Son olarak bu süreç boyunca beni sabırla dinleyen ve destekleyen, değerli vaktini ayıran sayın danışmanım Yrd. Doç. Dr. Barlas Özden Çağlayan'a teşekkürü bir borç bilirim.

Haziran 2016

Duygu Altınağaç (İnşaat Mühendisi)

viii

İÇİNDEKİLER

<u>Sayfa</u>

ÖNSÖZ	vii
İÇİNDEKİLER	ix
KISALTMALAR	xi
SEMBOLLER	xiii
ÇİZELGE LİSTESİ	XV
ŞEKİL LİSTESİ	xvii
ÖZET	xix
SUMMARY	xxi
1. GİRİŞ	1
1.1 Çalışmanın Amacı ve İçeriği	1
2. TASARIM STRATEJİLERİ VE TAŞIYICI SİSTEMLERİN	
INCELENMESI	5
2.1 Performansa Dayalı Tasarım Kavramı	7
2.1.1 FEMA-273- Taşıyıcı sistem hasar sınırları	
2.1.2 R Katsayısı kavramı ve tespit yöntemi	11
2.1.2.1 Süneklik kavramı	
2.1.2.2 Süneklik azaltma katsayısı	
2.1.2.3 Dayanım kavramı	
2.1.2.4 Dayanım azaltma katsayısı	14
3. TEORİ VE YÖNETMELİKLER	
3.1 Deprem Tasarım Spektrumları	15
3.2 Doğrusal Hesap Yöntemleri	
3.2.1 Birinci aşama: Eşdeğer deprem yükü yöntemi	
3.2.2 İkinci aşama: Mod birleştirme yöntemi	
3.3 Doğrusal Elastik Olmayan Analiz Yöntemleri	
3.3.1 Artımsal eşdeğer deprem yükü yöntemi ile itme analizi	
3.3.3 Kuvvet-yerdeğiştirme ilişkisi ve plastik mafsal teoremi	
3.3.4 Yapısal elemanlarda doğrusal olmayan davranış	
4. ÜÇ FARKLI ÇELİK ÇAPRAZ SİSTEME AİT MODELLERİN ETA	BS
PROGRAMINDA DOĞRUSAL OLMAYAN STATİK İTME ANALİZİ.	
4.1 MODEL-1 İtme Analizi Sonuçları	
4.2 MODEL-2 İtme Analizi Sonuçları	
4.3 MODEL-3 İtme Analizi Sonuçları	41
4.5 Kapasite Eğrisinin İdealleştirilmesi ve Davranış Katsayısının	
Değerlendirilmesi	
4.5.1 Çelik taşıyıcı sitemlerin davranış katsayısına bağlı değerlendirmesi	45
5. ÇELİK YAPININ TASARIMI	
5.1 Yapının Kullanım Amacı ve Tasarım Özellikleri	
5.2 Malzeme Özellikleri	
5.3 Yük Kombinasyonları	

	5.4 Yapıya Etkiyen Yüklerin Analizi	.48
6.	AISC-360-10 İLE ÇELİK YAPININ TASARIMI	. 55
	6.1 Kesit Özellikleri	.55
	6.2 Kesit Taşıma Kapasiteleri	.56
	6.2.1 Çekme dayanımı	.57
	6.2.2 Basınç dayanımı	.57
	6.2.3 Eğilmeli burulma kontrolü (narin olmayan elemanlarda)	.58
	6.2.4 Eğilme dayanımı	.58
	6.2.5 Birleşik kuvvetler ve burulma etkisi altındaki dayanım	.60
	6.3 Merkezi Çelik Çapraz Sistem Tasarımı	.61
	6.3.1 Çapraz elemanının çevrimsel yük etkisindeki davranışı	.63
	6.3.2 Çapraz sistem tasarım yaklaşımı	.65
7.	ÇELİK YAPININ BOYUTLANDIRMASI	. 67
	7.1 Çapraz Elemanı Boyutlandırma Ve Kapasite Kontrolü	.67
	7.2 Kolon Elemanı Boyutlandırma ve Taşıma Kapasitesi Kontrolü	. 69
	7.3 Kiriş Elemanı Boyutlandırma ve Taşıma Kapasitesi Kontrolü	.72
	7.4 Kompozit Döşeme Boyutlandırma ve Taşıma Kapasitesi Kontrolü	.75
	7.5 Çapraz Bağlantı Detayı	. 80
	7.6 Kolon Taban Plakası Hesabı	. 87
	7.7 Kolon-Kiriş Bağlantı Detayı	.90
8.	SONUÇLAR	.93
K	AYNAKLAR	. 95
Ö	ZGEÇMİŞ	115

KISALTMALAR

AISC	: American Institute of Steel Construction
ASD	: Allowable Stress Design
DBYBHY	: Deprem Bölgesinde Yapılacak Binalar Hakkında Yönetmelik
DÇÇS	: Dışmerkez Çelik Çapraz Sistemler
FEMA	: Federal Emergency Management Agency
IYBDY	: İstanbul Yüksek Binalar Deprem Yönetmeliği
LRFD	: Load and Resistance Factor Design
MÇÇS	: Merkezi Çelik Çapraz Sistemler
NEHRP	: National Earthquake Hazards Reduction Program
TS	: Türk Standardı

xii

SEMBOLLER

A(T)	: Spektral ivme katsayısı
Ag	: Brüt alan (cm ²)
A	: Etkin ver ivmesi katsavısı
bf	: Baslık genisligi (cm)
d	: Bulon capi (cm)
D	: Kiris gövde vüksekliği
_ D	: Zati vük
Ē	: Elastisite modülü
e	: Bağlantı kirisi uzunluğu
g	: Yercekimi ivmesi
ĥ	: Gövde levhası vüksekliği
Ī	: Yapı önem katsayısı
N	: Eksenel kuvvet
Ρ	: Eksenel vük
R	: Tasıvıcı sistem davranıs katsavısı
Т	: Bina doğal titresim periyodu
Z	: Plastik kesit modülü
W	: Yapı ağırlığı
a _{y1}	: Birinci moda ait eşdeğer akma ivmesi
beff	: Etkin kiriş genişliği
Cr1	: Birinci moda ait spektral yerdeğiştirme oranı
d 1	: Birinci (hakim) moda ait modal yerdeğiştirme
d_{y1}	: Birinci moda ait eşdeğer akma yerdeğiştirmesi
d _{1(P)}	: En son (p)'inci itme adımı sonunda elde edilen birinci moda ait
	maksimum modal yer değiştirme (modal yer değiştirme istemi)
Fi	: Eşdeger deprem yükü yönteminde i'inci kata etkiyen esdeger
	deprem yükü (kN)
Fye	: Çelik akma dayanımı
Ix	: Çelik elemanının x yönündeki atalet momenti (cm4)
$\mathbf{I}_{\mathbf{y}}$: Çelik elemanının y yönündeki atalet momenti (cm ⁴)
lb	: Kolon uzunluğu
lc	: Kolon uzunluğu
Mp	: Eğilme mukavemeti
My	: Akma momenti
M_{x1}	: x deprem doğrultusunda doğrusal elastik davranış için tanımlanan
_	birinci (hakim) moda ait etkin kütle
$\mathbf{R}_{\mathbf{y}1}$: Birinci moda ait dayanım azaltma katsayısı
Pye	: Ongörülen eksenel akma kuvveti(AgFye)
$\mathbf{K}_{\mathbf{a}}(\mathbf{T})$: Deprem yükü azaltma katsayısı
S(T)	: Spektrum katsayısı
Sdi1	: Birinci moda ait doğrusal olmayan spektral yerdeğiştirme
I A I B	: Spektrum karakteristik periyotlari

tw	: Gövde levhası kalınlığı				
U (p)xN1	: Binanın tepesinde (N'inci katında) x deprem doğrultusunda (i)'inci				
	itme adımı sonunda elde edilen birinci moda ait yerdeğiştirme				
Qy	: Akma dönmesi				
$\mathbf{\Phi}_{\mathrm{p}}$: Plastik eğrilik istemi				
Φ_t	: Toplam eğrilik istemi				
Φ_y	: Eşdeğer akma eğriliği				
Φ _{xn1}	: Binanın tepesinde (N'inci katında) x deprem doğrultusunda birinci				
	moda ait mod şekli genliği				
Γ _{x1}	: x deprem doğrultusunda birinci moda ait katkı çarpanı				
Vd	: Tasarım dayanımı				
Vi	: Göz önüne alınan deprem dogrultusunda binanın i'inci katına etki				
	eden kat kesme kuvveti (kN)				
Vt	: Deprem etkisi ile ortaya çıkan taban kesme kuvveti				
Vy	: Akma dayanımı				
μ	: Süneklik oranı				
λ	: Narinlik				
σν	: Akma sınır gerilmesi				
ΔFn	: Binanın N'inci katına (tepesine) etkiyen ek esdeger deprem yükü				
	(kN)				
Δu	: Maksimum yer değiştirme				
Δp	: Plastik kat ötelemesi (cm)				
Δy	: Akmaya karşılık gelen yer değiştirme				

ÇİZELGE LİSTESİ

<u>Sayfa</u>

Çizelge 2.1: Yapı hasar kontrol ve bina performans seviyesi	9
Çizelge 2.2: Düşey taşıyıcı elemanlar- yapı hasar kontrol ve bina performans	
seviyesi.	10
Çizelge 2.3: Yatay taşıyıcı elemanlar- yapı hasar kontrol ve bina performans	
seviyesi.	10
Çizelge 2.4: Zemin koşullarına bağlı zemin katsayısı förmülleri	13
Çizelge 3.1: DBYBHY-2007 ile tanımlanan zemin grupları ve özellikleri	15
Çizelge 3.2: Zemin sınıflarına bağlı tabaka kalınlığı.	16
Çizelge 3.3 : Kısa periyod zemin katsayısı Fa	16
Çizelge 3.4 : 1 saniye periyodu zemin katsayısı F _v	16
Çizelge 3.5 : DBYBHY-2007 Taşıyıcı sistem davranış katsayısı	18
Çizelge 3.6 : Analizi yapılan çelik profil kesit özellikleri	27
Çizelge 3.7 : Kiriş moment-plastik dönme değerleri.	28
Çizelge 3.8 : Kiriş moment-plastik dönme değerleri.	28
Çizelge 3.9 : Kiriş moment-plastik dönme değerleri.	28
Çizelge 3.10 : Çapraz eksenel kuvvet-plastik dönme değerleri	28
Çizelge 3.11 : Y Yönü modal yer değiştirme – kapasite verileri	31
Çizelge 4.1 : Dayanım ve süneklik katsayısı formülleri	44
Çizelge 4.2 : Model-1 ve Model-2 için davranış katsayısı hesabı	45
Çizelge 4.3 : Model-3 ve Model-4 için davranış katsayısı hesabı	45
Çizelge 5.1 : Arazi nitelğine bağlı pürüzlülük katsayısı	50
Çizelge 5.2 : Rüzgar basınç değerleri.	52
Çizelge 5.3 : Katlara etkiyen eşdeğer deprem yükleri	53
Çizelge A.1: DBYBHY-2007 Bina önem katsayısı	97
Çizelge A.2 : DBYBHY-2007 deprem bölgesine bağlı yer ivmesi	97
Çizelge B.1 : Çapraz elemanları itme analizi eksenel yük değerleri	98
Çizelge B.2 : Kiriş elemanı itme analizi kesme ve moment değerleri	100
Çizelge B.3 : Kolon elemanı itme analizi kesme ve moment değerleri	110

xvi

ŞEKİL LİSTESİ

<u>Sayfa</u>

	_
Şekil 1.1 : Model-1 Diyagonal kolonlu çerçeve sistem.	2
Şekil 1.2 : Model-2 Terz V merkezi çaprazlı çerçeve sistem.	2
Şekil 1.3 : Model-3 X çaprazlı çerçeve sistem	3
Şekil 2.1 : Çelik eleman davranış eğrisi	6
Şekil 2.2 : Yapının depreme karşı davranışı.	7
Şekil 2.3 : Yapı performans limit bölgeleri	.11
Şekil 2.4 : R Katsayısının süneklik azaltma katsayısı (Rµ) ve dayanım azaltma	
katsayısı (R _s) ile ilişkisi	. 12
Şekil 3.1: Periyoda bağlı spektral ivme katsayısı.	. 17
Şekil 3.2 : Modal ivme yer değiştirme eğrisi.	.21
Şekil 3.3 : Spektral yer değiştirme-modal yer değiştirme eğrisi	. 22
Şekil 3.4 : Modal yer değiştirme isteminin hesaplanması.	. 23
Şekil 3.5 : Modal yer değiştirme isteminin ardışık yaklaşım ile hesabı	. 24
Şekil 3.6 : Plastik mafsal sınır bölgeleri	. 25
Şekil 3.7 : Omurga eğrisinin oluşumu	. 26
Şekil 3.8 : Kiriş elemanları moment-yer değiştirme eğrisi.	. 29
Şekil 3.9 : Kiriş elemanları moment-yer değiştirme eğrisi.	. 29
Şekil 3.10 : Çapraz elemanları moment-yer değiştirme eğrisi	. 30
Şekil 4.1 : Çelik malzemesinin gerilme-şekil değiştirme eğrisi	. 33
Şekil 4.2 : Çapraz elemanı plastik mafsal kapasite özellikleri	. 34
Şekil 4.3 : ETABS Z-yönünde nonlinear itme analizi yüklemesi (PushZ)	. 35
Şekil 4.4 : ETABS X-yönünde nonlinear itme analizi yüklemesi (PushX)	. 36
Şekil 4.5 : ETABS X-yönünde nonlinear itme analizi yüklemesi (PushY)	. 36
Şekil 4.6 : MODEL-1 nonlinear itme analizi plastik mafsal dağılımı.	. 37
Şekil 4.7 : MODEL-1 nonlinear itme analizi kapasite eğrisi	. 38
Şekil 4.8 : MODEL-2 Y-yönünde nonlinear itme analizi plastik mafsal dağılımı	. 38
Şekil 4.9 : MODEL-2 Y-yönünde nonlinear itme analizi kapasite eğrisi	. 39
Şekil 4.10 : MODEL-2 X-yönünde nonlinear itme analizi plastik mafsal dağılımı.	.40
Şekil 4.11 : MODEL-2 X-yönünde nonlinear itme analizi kapasite eğrisi	.40
Şekil 4.12 : MODEL-3 Y-yönünde nonlinear itme analizi plastik mafsal dağılımı.	.41
Şekil 4.13 : MODEL-3 Y-yönünde nonlinear itme analizi kapasite eğrisi	.41
Şekil 4.14 : MODEL-3 X-yönünde nonlinear itme analizi plastik mafsal dağılımı.	.42
Şekil 4.15 : MODEL-3 X-yönünde nonlinear itme analizi kapasite eğrisi	. 42
Şekil 4.16 : Kapasite eğrisinin idealleştirilmesi	.44
Şekil 5.1 : Tipik kat planı	.47
Şekil 5.2 : Bina yüzeyine etki eden rüzgar yükleri.	. 51
Şekil 5.3 : Spektrum katsayısı ve bina birinci doğal titreşim periyodu ilişkisi	. 53
Şekil 6.1 : Kesit özellikleri: Birinci sütun genişlik-kalınlık oranı, ikinci sütun	
kompakt olan, üçüncü sütun kompakt olmayan, dördüncu sütun kesit	
tiplerini listelemektedir	. 56

Şekil 6.2 : Merkezi çapraz sistem çeşitleri	61
Şekil 6.3 : Çapraz elemanının yükleme anında basınç ve çekme kuvveti etkisiyle	
şekil değiştirmesi	62
Şekil 6.4 : Çapraz elemanının ters yükleme anında basınç ve çekme kuvveti etkisiy	le
şekil değiştirmesi	63
Şekil 6.5 : Çapraz elemanının çevrimsel eksenel kuvvet altındaki davranışı	64
Şekil 6.6 : Çapraz elemanı maksimum çekme ve basınç kuvvetleri	65
Şekil 8.1 : Topolojik gelişim	93

DOĞRUSAL OLMAYAN İTME ANALİZİ YÖNTEMİ İLE PERFORMANS SEVİYESİ BELİRLENEN ÇELİK BİR YAPININ YAPISAL ANALİZİ

ÖZET

Deprem oluşumuna bağlı sismik etkiler dikkate alınarak tasarlanan günümüz yapılarında, yapı süneklik derecesi ve buna bağlı doğrusal olmayan davranış tipi önem arz etmektedir. Çelik yapıların malzeme niteliği açısından betonarme yapılara kıyasla son derece sünek davranış sergilemesi depremin hasar etkilerine karşı güvenli yapılar inşa edebilmek için tercih sebebi olmuştur.

Doğrusal olmayan yapı davranışının analiz edilebilmesi için günümüzde pek çok bilgisayar destekli sayısal analiz programından faydalanılmaktadır. Bu programlar ile yapının kapasite eğrisini oluşturan tepe yer değiştirme istemi-taban kesme kuvveti ilişkisi, plastik mafsal oluşumu gibi doğrusal olmayan davranış özellikleri gözlemlenerek sistemin deprem davranışını belirleyen katsayı elde edilmektedir.

Bu çalışma çerçevesinde doğrusal olmayan itme analizi yöntemi benimsenerek dört farklı şekilde yatay etkilere karşı güçlendirilmiş çelik çerçeve sistemi doğrusal olmayan statik tasarım yöntemi ve ETABS yapısal analiz programı ile değerlendirilmiştir. Elde edilen sonuçlara göre davranış katsayısı en yüksek olan ve imalat ve deprem sonrası hasarların onarım kolaylığı düşünülürek seçilen en ideal çapraz sistem üzerinden çalışmalar devam edilmiştir.

Çelik yapının tasarımı ve boyutlandırılması Amerikan Çelik Yapılar Enstitüsü (American Institue of Steel Construction) 360-10 yönetmeliğine göre LRFD (Load and Resistance Factor Design) çözüm yöntemi uyarınca yapılmıştır.

Tezin içeriği sekiz ana bölümden meydana gelmektedir. İlk bölümde çalışmanın amacı ve içeriği aktarılmaktadır. Burada incelenecek olan çelik sistemler ile ilgili tanımlayıcı bilgiler verilmesi amaçlanmıştır.

Çelik çapraz sistemlerin incelenmesinin ardından bu çalışma kapsamında izlenecek ana tasarım stratejisi hakkında bilgiler aktarılmıştır. Performansa dayalı analizin temel prensiplerinin açıklandığı ikinci bölümde Amerikan Federal Acil Durum Yönetim Teşkilatı (Federal Emergency Management Agency) uyarınca taşıyıcı sistem hasar sınırları hakkında bilgi verilmiştir ve davranış katsayısı kavramı detaylıca incelenerek hesap yöntemleri sunulmuştur.

Üçüncü bölümde çalışmanın bütününde kullanılan yöntemler ve teori hakkında bilgi verilerek şekil ve çizelgeler yardımıyla kavramlar daha anlaşılır şekilde ifade edilmiştir. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik 2007 uyarınca deprem tasarım spektrumları ve depreme göre tasarım yöntemleri bu bölüm içinde aktarılmıştır.

Dördüncü bölümde ETABS V.15 yapısal analiz programı ile üç farklı modelin analizi yapılmış ve bu analiz sonuçlarının irdelenmesi ile oluşturulmuş plastik dönme kapasiteleri, tepe yer değiştirme istemi ve kapasite eğrisi sunulmuştur.Doğrusal

olmayan davranış özellikleri tespit edilen sistemlerin incelenmesi ardından tercih edilen modelin tasarımı için gereken çelik yapı özellikleri, malzeme özellikleri, yük kombinasyonları ve yapıya etkiyen yükler beşinci bölümde ayrınıtıları ile aktarılmıştır.

Beşinci bölüm ile tanımlanan yapısal özellikler ve ön tasarım koşulları çerçevesinde yapının boyutlandırılması için gerekli olan formüller AISC yönetmeliğine göre altıncı bölümde tanımlanmıştır. Ayrıca merkezi çelik çapraz sistemlerin plastik davranışının incelenmesinde yine Amerikan yönetmeliğinden faydalanılmış ve çapraz sistemin çevrimsel yükleme aşamalarındaki davranışı anlatılmıştır.

Çelik yapının boyutlandırılması ile ilgili çözümler yedinci bölümde sunulmuştur. Burada çapraz, kolon ve kiriş elemanı boyutlandırılarak bağlantı elemanlarının tasarımı yapılarak matematiksel çözümler ile sunulmuştur.

Sonuç bölümünde ise yapılan araştırmalar ve izlenen yöntemler neticesinde elde edilen çıkarımlar değerlendirilmiştir. Merkezi çelik çapraz sisteme ait yapının davranış katsayısının incelenen diğer sistemlere göre daha yüksek değerde oluşunun sebepleri açıklanmış ve analiz sırasında dikkat edilmesi faydalı olacak önemli noktalara değinilmiştir.

SUMMARY

Todays structures are designed by considering the seismic effects occured by an earthquake, therefore ductility level and nonlinear behaviour became more important than early studies conducted in this field. In contrast to concrete elements, behaviour of a steel structure is more ductile under the loading effects of an earthquake. Steel structures are preferred by designers who are working to build safer buildings to resist seismic effects.

In order to analyse the nonlinear behaviour of structures fast and safe, computational analyses are widely used by designers. By the help of graphical interfaces and solution steps of these programs, one can analyse a structure to get capacity curve that reflects the demand of tip displacement versus the base shear force on each step of loading and also plastic hinge locations which are the bases to understand nonlinear behaviour. Inelastic behavior of the materials and structures have been an important research field throughout years.

Besides the advantages of inelastic nonlinear methods, inelastic behaviour of a material has to be limited with certain assumptions to have controlled yielding and rupture prevented structures. The result at this point is, inelastic design considerations allow designers to minimize costs by reducing sections and design prectically installed members while considering the limits of safety and security.

Although equivelant seismic load method and response spectrum analysis method have been one of the most preferred methods for elastic-static analysis, they are not enough comprehensive to evaluate seismic effects on structures.

A new approach "Performance Based Design" takes researchers a step further to investigate nonlinear behaviour of the structures. The reason behind why researchers adopted to use performance based design and analysis method is the need to understand the level of safety of structure and security of people inside building especcially in earthquake effects. While previous methods of force-displacement relationships give engineers only an assumption of lateral load effects, performance based design methods provides comprehensive outputs as deformation and displacement characteristic of each structure and each member of the system.

It is also discussed that structures should stay in pre determined damage limits without collapse while designing for earthquake resistance.

R, response modification factor, represents the energy absortion capacity of a structure under inelastic behaviour. This coefficient comprimises damping and ductility ratio which used to reduce design forces while designing earthquake resistant structures.

Within this study, four different types of lateral load resisting systems are analysed by using nonlinear static push over analysis method combined in ETABS structural analysis programme. The results are evaluated to select the model that has the highest response reduction factor and ease of manifacturing and maintenance after earthquake effects.

Structural components of the steel structure is analysed by using the specifications defined by American Institue of Steel Construction (AISC-360-10) and solution method defined by Load and Resistance Factor Design (LRFD).

This thesis incorporates eight chapters. The first chapter introduces the target of this study and gives a brief information about the types of models that will be analysed during following parts.

Main principles of performance based nonlinear analysis method is defined in second chapter with the additional information provided from American Federal Emergency Management Agency (FEMA) and also detailed information is presented for the response reduction factor and techniques for the analytical explanations of the method.

This method gives us the damage condition of the structure by using systems demand for displacements and deformations. Therefore, damage condition of a structure is the most basic and essential element to determine the performance of a structure under earthquake loading.

Chapter three is divided between multiple sections of theories and methods that are used throughout this study and terms are detailed for more comprehensive understanding. Specifications for Buildings to be Build In Seismic Regions-2007 is used to calculate reponse spectrum of the site area and earthquake loads on the structure. Following this specification, soil conditions and first modal period of the structure need to be determined first to achieve response spectrum curve. Then, linear and nonlinear methods for earthquake analysis are followed by using the formulations given within this chapter.

Nonlinear static push over analysis is conducted for three different models by ETABS V.15 computational program and plastic hinge capacities and capacity curve of all analysis are presented in tables in Chapter four. There are three different steel structures with different lateral load resisting systems like diagonal bracing, x type bracing and inverted v type bracing.

The method adopted to perform nonlinear static pushover analysis is that the control point of the system (top floor diaphram) is pushed to target displacement limit by applying increasing lateral load. After the static pushover results are obtained for all three models, earthquake response modification factors are calculated by the given equations in chepter. By doing a comparison between models the most effective one is selected in terms of the highest response modification factor and ease of manifacturing and maintenance after earthquake effects.

Chapter five lists the properties of the steel structure that are used in element sizing in the following section and bring in load breakdown that are applied to the structure. Material properties and load combinations are listed by using AISC specifications and the function of the building and the effect of location is explained by the selection of applied loads.

Formulations for the structural sizing according to American Specifications are listed in Chapter six and cycling loading cases are detailed for the concentrically braced frames. When the system (concentrically braced framed system) is within the inelastic region it is expected that the compression elements will buckle and tension element will yield. While brace members are in yielding and buckling condition, beams and columns are designed to stay in elastic region. Chapter seven is constituted to represent detailed element analysis of the steel sections that are belong to the selected model by utilizing the specifications for seismic design of structural components. Column, beam and brace elements' capacities are checked against the unfavorable loading cases and connections between these elements are designed. Calculations are based on AISC 360-10 specification and LRFD solution method.

At the final part of this study, overall results are presented by evaluating the performance of concentrically braced frame system under pushover analysis. It is observed that concentrically braced frames with improved topology has the highest performanse level in terms of response modification factor. All other models that are evaluated have at least 50% less energy absorbance compared to concentrically braced inverted v system. In addition to evaluations for all three models based on performance based nonlinear static pushover analysis.

Due to high values of R factor compared with specification requirements, it is concluded that some parameters have more impact while doing computational based analysis rather than real structural situation. These are mainly the soil conditions, earthquake region and rigidity of structure.

It is observed that when earthquake acceleration changes due to the effects of earthquake region and soil conditions, shear force acting on each floor changes. With the decrease in structure's weigh, lateral force acting on floors decrease accordingly. This results in inverse effect on strength factor and has an substantial increase in strength coefficient within R factor.

All models that are analysed are three story buildings and the effect of vertical loads are more than lateral loads. This causes to large column sections and therefore increases the rigidity of the overall structure. Therefore lateral stifness of the overall structure gives us an increased R value.

It is very important to design the connection of steel memebers to achieve a good level of ductility. In order to keep iterative force-displacement relationship and obtain capacity curve of the system without any rupture in elements of the steel braced system, these members should be designed considering the maximum forces applied during the cycling loading of the brace system.

Local and global buckling is an other problem that need to be prevented during nonlinear analysis of a steel brace frames. Width to thickness ratio of an element should be within required limits. By providing these properties of a steel brace member buckling can be revented an plastic hinges can occur at preferred locations.

At the very end of the thesis some recommendations are given for future researchers.

1. GİRİŞ

Ülkemiz aktif fay hatlarının yer aldığı bir çoğrafyada bulunması sebebiyle pek çok deprem neticesinde mevcut yapılar yüksek derecede hasar görmüş ve hatta göçerek can ve mal kayıpları yaşanmıştır. Mevcut yapıların güvenlik seviyelerinin sorgulanması ve yeni yapılacak yapıların deprem performansının geliştirilmesi ile günümüzde sıklıkla kullanılan ve bu tezin içeriğinde detaylıca incelenecek olan doğrusal olmayan yapısal analiz metodu en güvenilir yöntemlerden biri olarak yerini almıştır.

1.1 Çalışmanın Amacı ve İçeriği

Doğrusal olmayan statik itme analizi ile farklı çeşitlerde teşkil edilmiş çapraz elemanlardan oluşan üç farklı modelin merkezi güçlendirilmiş çelik çapraz sistemler ile performansa dayalı analizinin yapılarak irdelenmesi ve en yüksek taşıycı sistem davranış katsayısına sahip olduğu tespit edilen sistemin sayısal yöntemler ile çözümlenmesi amaçlanmaktadır.

Çalışma kapsamında farklı modellerin kıyaslanmasında eşdeğer niteliklerin göz önünde bulundurulması için aynı tip kolon ve çapraz elemanların seçimine dikkat edilmiştir. Toplamda dört farklı model üzerinde çalışılmış olup bu modellere ait aksometrik görünüşler ve tipik kat planı ve kesitleri sırasıyla verilmiştir; Şekil 1.1 ile Diyagonal kolonlara sahip MODEL-1, Şekil 1.2 ile Ters V şeklinde merkezi çelik çaprazlı sistem MODEL-2 ve son olarak Şekil 1.3 ile X çapraz sistemli MODEL-3 sunulmuştur.

Şekil 1.1 : Model-1 Diyagonal kolonlu çerçeve sistem.

Şekil 1.2 : Model-2 Terz V merkezi çaprazlı çerçeve sistem.

Şekil 1.3 : Model-3 X çaprazlı çerçeve sistem.

2. TASARIM STRATEJİLERİ VE TAŞIYICI SİSTEMLERİN İNCELENMESİ

Mühendisler karşı karşıya kaldıkları ekonomik ve mimari kısıtlar çerçevesinde maliyeti düşük fakat mimari tasarımı özgün, aynı zamanda yeteri kadar güvenli ve güçlü yapılar tasarlamaya mecbur bırakılmaktadır. Kısıtlı makine ve insan gücüyle belli bir sürede yapılacak tasarımlarda özellikle sismik aktivitesi olan bölgeler için deprem sarsıntıları sonrası yıkılmayan fakat ağır hasarlar görmesi öngörülen yapılar tasarlanabilmektedir. Günümüzde kullanılmakta olan şartnamelerde deprem etkisi sonrasında maksimum güvenlik garantileyen ve hasarsız bir yapının elde edilemeyeceği açıkça belirtilmiştir. Bu sebeple belli oranda yapısal ya da yapısal olmayan hasara izin verilebilirken maksimum can güvenliğini sağlayacak yapısal tasarım belli miktarda elastik olmayan enerji emiliminin sağlanması ile mümkün kılınmaktadır.

Bir yapının Şekil 2.1' de gösterildiği gibi elastik bölgede tutulması yatay hareket etkisi altındaki tüm yapısal ve yapısal olmayan elemanların herhangi bir bozulma ya da hasara uğramaksızın ilk durumuna döneceği anlamını taşır. Fakat tasarımı yapılan yapıların pek çoğunda elastik bölgenin içinde kalacak rijitlikte yapısal tasarım yapmak makul ve akılcı bir yaklaşım değildir.

Şekil 2.1 : Çelik eleman davranış eğrisi.

Diğer taraftan elastik bölgenin ötesine geçerek, elastik olmayan davranışı belli derecede kısıtlayan önlemler alınmaz ise yapısal elemanlarda akma ve kopma meydana gelerek felakete yol açacak sonuçlar elde edilmesi kaçınılmazdır. Bu noktada varılan sonuç şudur ki elastik olmayan davranış dikkate alınarak ve belli öngörülerde bulunarak tasarlanan sistemler daha ufak kesitlere sahip, düşük maliyetlerle imal edilebilen ve uygulanabilirlik seviyesi yüksek taşıyıcı sistemler tasarlanmasına imkan sunar.

Yapısal elemanların elastik olmayan davranışından istifade etmek için Şekil 2.2'de şematik olarak ifade edilen deprem hareketinin yapıya olan etkisini incelemek gerekir. Yapısal özelliklerin (kütle, rijitlik, sönüm oranı vs.) büyük yakınsamalarla modellenebildiği bilgisayar programları ve mühendislik metodları olmasına rağmen deprem özellikleri birbirinden eşsiz özelliklere sahip olduğu unutulmamalıdır. Bu sebeple yer hareketini izleyen ve kayıt eden istasyonlar aracılığı ile depremin karakteristiğini ortaya koyan hız, yer değiştirme, ivme gibi özellikler devamlı olarak kaydedilir ve yapı tasarımında kullanılmak üzere gerekli veriler kullanıcılara sağlanarak farklı deprem oluşumlarına ait karakteristik özellikler ile tasarım parametreleri oluşturulur.

Şekil 2.2 : Yapının depreme karşı davranışı.

Bu kayıtlar "*zaman tanım alanında analiz*" yapmak için ölçeklenir ve yönetmeliklerle tanımlı belli adımlar izlenerek gerçekleşmiş olan bir deprem hareketine karşı tasarlanan yapının davranışı değerlendirilebilir. Bu tip bir analiz yönetmeliklerin kabulleri doğrultusunda pek çok kez tekrarlanan ve uzun hesap aşamaları ve süre gerektiren araştırmalar olmasıyla birlikte yüksek katlı yapı tasarımında vazgeçilmez bir kontrol ve tasarım mekanizması olarak şart koşulmaktadır.

Yüksekliği belli sınırları geçmeyen (en fazla 8 katlı) yapılarda depreme bağlı etkileri dikkate almak amacıyla "Tepki Spektrumu Metodu" sıklıkla tercih edilmektedir. Bu metod ile her bir moda karşılık gelen ve pek çok deprem kaydının birleştirilmesi ile elde edilen tek bir yer değiştirme (maksimum) ve kuvvet bilgisi kullanılır. Basitleştirilmiş ve yönetmelikler ile takibi kolay bir yöntem olarak geçerliliğini kazanmıştır.

Elastik olmayan davranış biçimi yapısal analiz içerikli pek çok araştırmanın konusu olmuştur. Eşdeğer deprem yükü ve tepki spektrumu analiz yöntemleri depreme karşı dayanım ve yapı tasarımını değerlendirirken sıklıkla tercih edilen elastik-statik analiz yöntemleri olmasına rağmen binaların deprem etkisine maruz kaldığındaki karmaşık davranışını değerlendirmekte yeterli değildir. Yeni bir tasarım yaklaşımı olan "Performansa Dayalı Tasarım" ile elastik olmayan statik analiz (itme analizi) yukarıda bahsedilen elastik tasarım yaklaşımının ötesine geçilmektedir.

2.1 Performansa Dayalı Tasarım Kavramı

Performansa dayalı tasarım ve değerlendirme yöntemlerinin yapısal tasarım ve analiz metodu olarak benimsenmesinin ana sebebi yapı güvenlik derecesinin gerçekçi olarak belirlenmesine duyulan taleptir. Deprem etkilerinin kuvvete dayalı tasarım ilkeleri ile tahmin edilebildiği tasarım yöntemlerinin ötesinde performansa dayalı tasarım yöntemleri ile şekil değiştirme ve yer değiştirme etkilerinin gözlemlenebildiği yöntemler geliştirilmiştir.

Bu yöntemde taşıyıcı sistem hasar durumu tespit edilerek sistemin şekil ve yer değiştirme istemleri ile ilişkilendirilmiştir. Dolayısıyla yapısal taşıyıcı sistemlerin hasar durumları yapının depreme karşı performansının belirlenmesinde etkili olan ana unsurdur.

2.1.1 FEMA-273- Taşıyıcı sistem hasar sınırları

Yanal yükler altında yapıların elasto-plastik davranışı tahmin edebilmek için doğrusal olmayan analiz yöntemlerinden faydalanılması gerekmektedir.

FEMA-273 ile tanımlanan performans düzeyleri temelde üç ana aşamadan oluşmaktadır. Bunlar; Hemen Kullanım (Immediate Occupancy-S-1), Can Güvenliği (Life Safety-S-3) ve Göçme Öncesi (Collapse Prevention-S-5) olarak tariflenen bu aşamalar aynı zamanda yatay yüklere karşı dayanım göstermesi gereken düşey ve yatay taşıyıcı sistemlerin hasar sınırlarını belirleyen seviyeler ortaya koyar.

Performans seviyelerinin yanı sıra yapısal performans aralıkları olarak tanımlanan Hasar Kontrol Bölgesi (Damage Control Range-S-29 ve Sınırlı Güvenlik Bölgesi (Limited Safety Range-S-4) kabul kriteri olarak sunulmamakla beraber bir geçiş bölgesi olarak interpolasyon yapılmasıyla bu performans bölgeleri hakkında sayısal veri elde edilebilmektedir.

Bütünsel olarak yapı hasar kontrol ve performans seviyeleri Çizelge2.1'de; düşey elemanlara ait yapısal performans seviyeleri ve hasar miktarları Çizelge2.2'de ; yatay elemanların yapısal performans seviyeleri ve hasar miktarları Çizelge 2.3 'de sunulmuştur.

	Hasar Kontrol ve Bina Performans Seviyesi			
Toplam Hasar	Hemen Kullanım	Can Güvenliği	Göçme Öncesi	
	Seviyesi	Seviyesi	Seviyesi	
	S-1	S-3	S-5	
	Az	Orta	Çok	
Genel	Kalıcı bir öteleme olmaz. Yapı büyük ölçüde ilk durumdaki dayanım ve gücü korur. Cephe, bölme duvar, tavan ve yapısal elemanlarda ufak çatlaklar gözlemlenebilir. Asansörler tekrardan çalıştırılılabilir. Yangın koruma sistemleri aktifdir.	Tüm katlarda bir miktar dayanım kapasitesi kalmıştır. Düşey yük taşıyıcı sistemler işler durumdadır. Duvar ya da parapetlerlde eksen dışı bozulmalar gözlemlenmez. Bir miktar kalıcı ötelenme meydana gelir. Bölme duvarlar hasar görür. Binanın onarımı ekonomik olmaktan öteye geçmiş olabilir.	Çok az miktarda dayanım ve güç kalmıştır fakat taşıyıcı kolon ve duvarlar işler durumdadır. Bazı çıkışlar kapanmıştır. Dolgu ve güçlendirilmemiş parapetler göçmüştür ya da göçme başlangıcındadır. Bina göçme sınırındadır.	
Yapısal Olmayan Elemanlar	Ekipmanlar genel olarak güvendedir fakat mekanik bir aksaklıktan ya da elektrik arızasından dolayı çalışır durumda olmayabilir.	Göçme durumuna gelmemiş hasarlar oluşur, pek çok mimari, mekanik ve elektriksel sistem hasar görmüştür.	Geniş çaplı hasar oluşmuştur.	

Çizelge 1: Yapı hasar kontrol ve bina performans seviyesi.

FEMA -273 Tablo 2-4 ile tanımlanan performans kriterleri betonarme elemanlar, çelik moment dayanımlı çerçeveler, betonarme duvarlar, güçlendirilmiş ve güçlendirilmemiş yığma/dolgu duvarlar, ahşap duvarlar, prekast beton bağlantıları ve temeller için ayrı ayrı ifade edilmiştir. Bu çalışma kapsamında değerlendirilen sistem çapraz güçlendirilmiş çelik çerçeveler olduğu için Çizelge B ile sunulan bilgiler bu sisteme aittir.

		Düşey Elemanlar-Hasar Kontrol ve Bina Performans Seviyesi		
Eleman	Sınıf	Hemen Kullanım Seviyesi S-1	Can Güvenliği Seviyesi S-3	Göçme Öncesi Seviyesi S-5
Güçlendirilmiş Çelik Çerçeveler	Birincil	Çapraz elemanlarda çok az miktarda akma ve burulma oluşur.	Pek çok çapraz elemanda akma ve burulma meydana gelmesine rağmen toplamda göçme olmaz. Pek çok bağlantı elemanı göçer.	Çapraz elemanlarda geniş çaplı akma ve burulma meydana gelir. Pek çok çapraz eleman ve bağlantıları göçer.
	İkincil	Birincil etki ile aynı	Birincil etki ile aynı	Birincil etki ile aynı
	Ötelenme Limiti	%0.5 geçici ötelenme kalıcı ötelenme yok	%1.5 geçici ötelenme %0.5 kalıcı ötelenme	%2.0 geçici ya da kalıcı ötelenme

Çizelge 2: Düşey taşıyıcı elemanlar- yapı hasar kontrol ve bina performans seviyesi.

Yatay taşıyıcı elemanlar olarak çelik çerçeve sisteme entegre edilen kompozit döşemeler esas alınmıştır. Sayısal analiz programında da diyafram olarak tanımlanan bu sisteme dair performans seviyeleri Çizelge 2.3 ile ifade edilmiştir.

Eleman	Hemen Kullanım Seviyesi	Can Güvenliği Seviyesi	Göçme Öncesi Seviyesi
	S-1	S-3	S-5
Metal kompozit döşeme diyaframları	Metal trapez elemanları ile kiriş elemanı arasındaki bağlantılar zarar görmez. Ufak bozukluklar meydana gelir	Metal trapezin kiriş elemanına kaynaklı bağlantılarında kopmalar oluşur. Döşemede az miktarda yerel burkulmalar olur.	Bazı elemanların burulmasına bağlı büyük çaplı bozukluklar ortaya çıkar ve kaynak ve bindirme bölgelerinde yırtılmalar oluşur.

C ! 1 0	T 7 /	1 1		1	1 / 1	1 1 •	C	• •
('17elge '''	Y afay fasivici	elemanlar-	vani	hasar	kontrol	l ve hina	nertormans	sevivesi
çizeişe 5.	I atay taşıyıcı	ciciliamai	Jupi	nubui	Rontio		periormans	50 v 1 y 051.

FEMA-273 performans seviyelerinin kapasite eğrisi üzerindeki gösterimi plastik mafsal hipotezinde tanımlanan sınır değerler üzerinden Şekil 2.3'de verilmiştir.

Şekil 2.3 : Yapı performans limit bölgeleri.

Kapasite eğrisi yaklaşımının ana unsuru olan elastik olmayan davranış, R katsayısı ile ifade edilen"Taşıyıcı Sistem Davranış Katsayısı" ile tanımlanır ve sistemin depreme hareketine karşı elastik olmayan davranış seviyesi sayısal yöntemler ile tespit edilir.

2.1.2 R Katsayısı kavramı ve tespit yöntemi

1988 NEHRP şartnamesinde R katsayısı şu şekilde tanımlanmıştır: "...sistemin maksimum yer değiştirme noktasına yaklaşacak kadar büyük yer değiştirmelere izin verebilecek süneklik ve sönüm yapısını dikkate alan katsayıdır".

R, "Taşıyıcı sistem davranış katsayısı", yapının elastik olmayan davranışı boyunca enerji yutma kapasitesini ifade eder. Bu katsayı depreme dayanıklı yapı tasarımında sönüm oranı, enerji yutma kapasitesi gibi unsurları göz önünde bulundurarak tasarım kuvvetlerini azaltmak için kullanılır.

Önceki bölümde de bahsedildiği gibi depreme dayanıklı yapı tasarımı yapıların göçmesine izin vermeksizin belli miktarda hasar seviyesine ulaşmasına izin vererek tasarlanır. Bu yaklaşımla uyumlu olarak yapı gerekenden daha az taban kesme kuvveti ile tasarlanır ki bu azaltımlar temel olarak iki ana unsur üzerinden yapılır. Şekil 2.4 ile kapasite eğrisinin idealleştirilmesi için dayanım ve süneklik azaltma katsayılarının etkisi ifade edilmiştir.

Süneklik azaltma katsayısı ($R\mu$) ve dayanım azaltma katsayısı (R_s) ve aşağıdaki formül ile ifade edilir.

$$R = R_{\mu} x R_s \tag{2.1}$$

Şekil 2.4 : R Katsayısının süneklik azaltma katsayısı (Rµ) ve dayanım azaltma katsayısı (R_s) ile ilişkisi.

2.1.2.1 Süneklik kavramı

Yapının dayanımında büyük bir düşüş olmaksızın elastik olmayan şekil değiştirme kabiliyeti yapı sünekliği olarak tanımlanır. Göçme esnasındaki toplam şekil değiştirmelerin lineer şekil değiştirmelere oranı süneklik oranını verir. Sistemin süneklik oranının büyük olması ani göçme riskini azaltır, deprem esnasında sistemin enerji tüketme miktarı artırır. Bu sebeple yönetmeliklerde R katsayısının tanımında yapı süneklik azaltma katsayısından faydalanılır.

2.1.2.2 Süneklik azaltma katsayısı

Süneklik azaltma katsayısı (Rµ) elastik dayanım talebini yapının idealize edilmiş akma dayanım limitine indirger ve şu şekilde ifade edilir:

$$R_{\mu} = V_e / V_y \tag{2.2}$$

 V_e maksimum taban kesme kuvveti, V_v maksimum akma dayanımıdır.

Newmark and Hall (1973, 1982) yaptıkları çalışmada süneklik azaltma katsayısı ($R\mu$) ile global süneklik oranı (μ) maksimum tepe yer değiştirme miktarı ile akma limiti yer

değiştirme oranı) arasındaki ilişkiyi incelemiş ve birinci doğal periyodu 0.2s altında olan yapılarda süneklik oranının yapının deprem davranışına etkisinin önemsenmeyecek düzeyde olduğunu tespit etmişlerdir. Orta seviyede periyoda sahip olan yapılarda ise (T₁=0.2-0.5) elastik ve elastik olmayan sistemlerin yutacağı enerji miktarının aynı olduğu tespit edilmiştir. Bunun sonucunda süneklik aşağıdaki formül ile ifade edilebilir.

$$R_{\mu} = \mu \tag{2.3}$$

Miranda (1993) ise yaptığı çalışmada zemin koşullarının süneklik azaltma katsayısına büyük ölçüde etkisi olduğunu tespit etmiştir. Zemin koşullarının ifade edildiği formüller Çizelge 2.4'de verilmiştir.

Çizelge 4. Zemin koşunarma dağlı zemin katsayısı formunen.							
Zemin Koşulları	İlgili Formüller						
Kaya Araziler	$\phi = 1 + \frac{1}{10T - \mu T} - \frac{1}{2T} \exp\left[-\frac{3}{2}\left(\ln T - \frac{3}{5}\right)^2\right]$						
Alüvyonlu Araziler	$\phi = 1 + \frac{1}{12T - \mu T} - \frac{2}{5T} \exp\left[-2\left(\ln T - \frac{1}{5}\right)^2\right]$						
Yumuşak Zeminli Araziler	$\phi = 1 + \frac{T_g}{3T} - \frac{3T_g}{4T} \exp\left[-3\left(\ln\frac{T}{T_g} - \frac{1}{4}\right)^2\right]$						

Cizelge 4: Zemin kosullarına bağlı zemin katsayısı förmülleri

Süneklik azaltma katsayısının zemin etkileri göz önüne alınarak hesaplanması için önerilen formül aşağıdaki gibidir.

$$R_{\mu} = \left[\left(\mu - 1 \right) / \Phi \right] + 1 \ge 1 \tag{2.4}$$

2.1.2.3 Dayanım kavramı

Dayanım, bir elemanın ya da yapının kendine etki eden kuvvetlere karşı koyma kapasitesidir. Yapılar üzerine etkiyen yatay ve düşey yüklere karşı ani göçme oluşumunu engelleyecek düzeyde dayanıma sahip olmalıdır.

2.1.2.4 Dayanım azaltma katsayısı

Yapısal dayanım fazlalığı binaların göçme öncesi durumda tutulması için önemli bir role sahiptir. Dayanım azaltma katsayısı akma dayanımı ile tasarım dayanımı arasındaki oran olarak ifade edilir.

$$R_s = V_y / V_d \tag{2.5}$$

Vy yapının akma dayanımına karşılık gelen taban kesme kuvveti; Vd ise şartnamelerde tanımlı tasarımda kullanılan taban kesme kuvvetidir.

Dayanım fazlalığı yüksek dayanımlı malzeme kullanımı, malzeme pekleşmesi, seçilen kesitlerin büyümesi, detayların/güçlendirmelerin artması ve bunun gibi daha pek çok maliyet artırıcı etkisinden dolayı 2.5 formülüne göre tespit edilerek azaltma katsayısı olarak dikkate alınmalıdır.

3. TEORİ VE YÖNETMELİKLER

DBYBHY-2007 esas alınarak çelik taşıyıcı sistemlerin deprem spektrumumunun belirlenmesi için zemin şartları ve binanın birinci moda karşılık gelen periyodunun öncelikli olarak belirlenmesi gerekir. Bunların tespitine dair adımlar ilerleyen bölümlerde sırası ile verilmiştir.

3.1 Deprem Tasarım Spektrumları

Çeşitli zemin sınıfları için tanımlanmış doğal titreşim periyotlarına S_s (0.2 saniye) ve S_1 (1.0 saniye) karşı gelen spektral ivme değerleri aşağıdaki denklemler aracılığı ile hesaplanır. Zemin sınıfı tanımlanırken incelenmekte olan bölgenin Çizelge 3.1'e göre zemin grubu belirlenir ve ilgili zemin grubu Çizelge 3.2'de tanımlanan üst zemin tabaka kalınlığına göre sınıflanır.

Zemin Grubu	Zemin Grubu Tanımı	Standard Penetrayon (N/30)	Relatif Sıkılık (%)	Serbest Basınç Direnci (kPa)	Kayma Dalgası hızı (m/s)
(A)	 Masif volkanik kayaçlar ayrışmamış sağlam metamorfik kayaçlar, sert çimentolu tortul kayaçlar 			>1000	>1000
	2. Çok sıkı kum, çakıl	>50	85-100		>700
	3 Sert kil ve siltli kil	>32		>400	>700
(B)	 Tüf ve aglomera gibi gevşek volkanik kayaçlar, süreksizlik düzlemleri bulunun ayrışmış cimentolu tortul kavaclar 			500-1000	700- 1000
	2. Sıkı kum, çakıl	30-50	65-85		400-700
	3. Çok katı kil ve siltli kil	16-32		200-400	300-700
(C)	1.Yumuşak süreksizlik düzlemleri bulunan çok				
	ayrışmış metamorfik			<500	400-700
	kayaçlar ve çimentolu tortul kayaçlar				

Çizelge 5: DBYBHY-2007 ile tanımlanan zemin grupları ve özellikleri.

Yerel Zemin Sınıfları	En Üst Zemin Tabakası Kalınlığı
71	(A) grubu zeminler
Σ1	h ₁ ≤15 m olan (B) grubu zeminler
7)	h ₁ >15 m olan (B) grubu zeminler
	$h_1 \leq 15 \text{ m olan (C) grubu zeminler}$
73	$15 \text{ m} < h_1 \leq 50 \text{ m} \text{ olan} (C) \text{ grubu}$
LJ	zeminler
74	h ₁ >50 m olan (C) grubu zeminler
Z+	h ₁ >10 m olan (D) grubu zeminler

Çizelge 6: Zemin sınıflarına bağlı tabaka kalınlığı.

Çizelge 3.1 ve 3.2 baz alınarak tespit edilen zemin sınıfına göre F_a (0.2 saniye periyodu zemin katsayısı) ve F_v (1.0 saniye periyodu zemin katsayısı) zemin etki parametreleri Çizelge 3.3 ve Çizelge 3.4 yardımıyla belirlenip aşağıda verilen denklemler kullanılarak üzerinde çalışılan zemin sınıfının doğal titreşim periyodlarına karşı gelen ivme değerleri hesaplanacaktır.

Çizelge 7 : Kısa periyod zemin katsayısı F_a.

Zemin	Kısa Periyod Spektral İvmesi (g)							
Sınıfı	$S_s \leq 0.25$	$S_{s} = 0.50$	$S_s = 0.75$	$S_{s} = 1.00$	$S_s \ge 1.25$			
А	0.8	0.8	0.8	0.8	0.8			
В	1.0	1.0	1.0	1.0	1.0			
С	1.2	1.2	1.1	1.0	1.0			
D	1.6	1.4	1.2	1.1	1.0			
E	2.5	1.7	1.2	0.9	0.9			

Zemin	1.0 sn periyodunda Spektral İvme (g)								
Sınıfı	$S_s \leq 0.10$	$S_{s} = 0.20$	$S_{s} = 0.30$	$S_{s} = 0.40$	$S_{s} \ge 0.50$				
А	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
С	1.7	1.6	1.5	1.4	1.3				
D	2.4	2.0	1.8	1.6	1.5				
Е	3.5	3.2	2.8	2.4	2.4				

Çizelge 8 : 1 saniye periyodu zemin katsayısı F_v.

Şekil 3.1: Periyoda bağlı spektral ivme katsayısı.

Şekil 3.1 ile sunulan idealleştirilmiş eğri, yapının bulunduğu zemin özellikleri ve birinci moda ait doğal titreşim periyoduna bağlı olarak deprem ivmesinin belirlenmesine yardımcı olur.

$$S_{MS} = F_a \, x \, S_S \tag{3.1}$$

$$S_{M1} = F_{v} x S_{1}$$
 (3.2)

$$S(T) = 1 + 1.5 \frac{T}{T_A} \qquad (0 \le T \le T_A)$$
(3.3)

$$S(T) = 2.5 \qquad (T_A \le T \le T_B) \tag{3.4}$$

$$S(T) = 2.5 \left(\frac{T_B}{T}\right)^{0.8}$$
 $(T_B \le T)$ (3.5)

Spektrum köşe koordinatları aşağıdaki formüller ile hesaplanacaktır.

$$T_S = \frac{S_{M1}}{S_{MS}} \qquad \text{ve} \qquad T_0 = 0.2T_S$$

İstanbul ili için uzun bölge geçiş periyodu $T_L = 12s$. olarak tanımlanmaktadır.

Elastik Deprem yüklerinin belirlenmesinde esas alınacak Spektral İvme Katsayısı A(T) aşağıdaki denklemde ifade edilmiştir.

$$A(T) = A_0 I S(T) \tag{3.6}$$

A₀: Etkin Yer İvmesi Katsayısı (Ek B)

I: Bina Önem Katsayısı (Ek A)

3.2 Doğrusal Hesap Yöntemleri

3.2.1 Birinci aşama: Eşdeğer deprem yükü yöntemi

Binanın tümüne etki eden kesme kuvveti (toplam eşdeğer deprem yükü) denklem (3.8) ile hesaplanacaktır.

$$V_t = \frac{WA(T)}{R_a(T_1)} \ge 0.10A_0 IW$$
(3.7)

Burada ifade edilen taşıyıcı sistem davranış katsayısı Çizelge 3.5 ile aşağıda ifade edilen deprem yönetmeliğine göre uygun çelik yapı türüne göre değişken olarak şeçilecektir.

Çelik Binalar						
Deprem yüklerinin tamamının çerçevelerle taşındığı binalar.	5	8				
Deprem yüklerinin tamamının, üstteki bağlantıları mafsallı olan kolonlarla		1				
taşındığı binalar.	-	4				
Deprem yüklerinin tamamının çaprazlı perdeler veya yerinde betonerme						
perdeler ile taşındığı binalar:						
Çaprazların merkezi olması durumu	4	5				
Çaprazların dış merkez olması durumu	-	7				
Betonerme perdelerin kullanılması durumu	4	6				
Deprem yüklerinin çerçeveler ile birlikte çaprazlı çelik perdeler veya						
yerinde dökme betonerme perdeler tarafından birlikte taşındığı binalar:						
Çaprazların merkezi olması durumu	5	6				
Çaprazların dış merkez olması durumu	-	8				
Betonerme perdelerin kullanılması durumu	4	7				

Çizelge 9 : DBYBHY-2007 Taşıyıcı sistem davranış katsayısı.

3.2.2 İkinci aşama: Mod birleştirme yöntemi

Bu dinamik çözümleme yöntemi, sistemin davranışının, her bir serbest titreşim modunun deprem hareketine olan cevabının ayrı ayrı elde edilmesinden sonra birleştirilmesi ile bulunabileceği esasına dayanır. Mod birleştirme yönteminde, maksimum iç kuvvetler, yer değiştirmeler, kesme kuvvetleri ve momentler, yapıda yeterli sayıda doğal titreşim modunun her biri için hesaplanan maksimum katkılarının kareleri toplamının karekökü kuralı (SRSS) ve tam karesel birleştirme (CQC) kuralı gibi istatistik yöntemlerle birleştirilmesi ile elde edilir. Toplam etkin kütlenin %80-90'ına ulaşıncaya kadar yeterli sayıda mod katkısı hesaba dahil edilmelidir.

$$S_{aR}(T_n) = \frac{S_{ae}(T_n)}{R_a(T_n)}$$
(3.8)

Binalarda kütlenin katlarda toplandığı kabul edilerek her kat için iki öteleme ve bir dönme hareketi esas alınır. Dönme hareketi nedeniyle katlarda kütle merkezi ile rijitlik merkezinin üst üste düşmemesinin etkisi de (ek dışmerkezlik) hesaba katılmış olur. Kat boyutunun +%5 ve -%5'i kadar kaydırılmasıyla belirlenen noktalara ek yükleme yapılacaktır.

Hesaplanan büyüklüklere ilişkin alt sınır değeri Eşdeğer Deprem Yükü Yöntemi ile belirlenen taban kesme kuvvetine göre ölçeklendirilecektir.

$$B_D = \frac{\beta V_t}{V_{tB}} B_B \qquad \beta = 0.80 \tag{3.9}$$

3.3 Doğrusal Elastik Olmayan Analiz Yöntemleri

3.3.1 Artımsal eşdeğer deprem yükü yöntemi ile itme analizi

Doğrusal olmayan itme analizi sismik etki altındaki yapıların performansa dayalı tasarımında kullanılan özel bir analiz metodudur. Son yıllarda yapıların doğrusal olmayan davranış biçimini kavramada sıklıkla tercih edilen yöntemlerden biri olmuştur.

İtme analizi yönteminde yapının taban kesme kuvveti ile tepe yer değiştirme istemi arasındaki ilişkiyi gösteren kapasite eğrisi elde edilir. Bu eğri artan taban kesme kuvveti etkisinde yapının davranış biçimini ifade eder. Yapının öngörülen performans hedefine ulaşması için kapasitesinin gereken talebi karşılaması gerekmektedir. Artan taban kesme kuvveti etkisi altında yatay taşıyıcı sisteme ait elemanların kapasitelerinin, bu elemanlara ait akma sınır değerlerini aşmaya başlamasıyla kuvvetyer değiştirme eğrisinin eğiminde değişiklikler gözlenir.

Doğrusal olmayan itme analiz yönteminin uygulanması DBYBHY-2007 uyarınca aşağıdaki ön koşulları sağlayan yapılarda geçerlidir.

- Yapı kat sayısı zemin seviyesi üstü en fazla 8 kat olmalıdır.
- Herhangi bir katta hesaplanan burulma düzensizliği kat sayısı η_{bi} < 1.4 şartını sağlamalıdır.
- Yapı hâkim periyoduna ait etkin kütlenin, toplam yapı kütlesine oranı en az
 0.7 olmalıdır.

Bu analiz yöntemi ile yapının hakim mod şekilleri ile orantılı şekilde ilk olarak düşey yük analizi yapılıp ardından statik itme adımlarını etkiterek yapıdaki tepe yer değiştirme istemi, plastik şekil değiştirme elde edilir. Düşey yüklerin yapıya etki etmesi sonrası yatay yük artırımı iki ayrı yöntemle kontrol edilebilir; kuvvet kontrolü ya da yer değiştirme kontrolü. Bu değişkenlerden hangisine ait bilgi daha fazla ise o birim seçilip analiz yapılmalıdır.

Eşdeğer deprem yükü dağılımının her bir itme adımında önceki adımlara göre değişken olarak göz önüne alındığı durumda ise; eşdeğer deprem yükü dağılımı her bir itme adımı öncesinde taşıyıcı sistemde oluşmuş plastik mafsallar göz önüne alınarak hesaplanan hâkim titreşim modu ile orantılı olarak tanımlanırlar. Kabul edilen eşdeğer deprem yükü dağılımına göre yapılan itme analizi ile tepe yer değiştirmesi ve taban kesme kuvveti arasındaki ilişkiyi gösteren itme eğrisi elde edilir. Elde edilen itme eğrisi koordinat dönüşümü ile modal yer değiştirme-modal ivme eğrisine dönüştürülür.

Dönüştürme işlemi şu şekilde yapılmaktadır; (i)'inci itme adımında deprem doğrultusunda hâkim birinci moda ait modal ivme değerleri $a_1^{(i)}$ şu eşitlik yardımıyla hesaplanır.

$$a_1^{(i)} = \frac{V_{x1}^{(i)}}{M_{x1}} \tag{3.10}$$

Verilen eşitlikteki $V_{x1}^{(i)}$ ifadesi, x doğrultusundaki deprem etkisiyle (i)'inci itme adımı sonunda elde edilen birinci moda ait taban kesme kuvvetini, M_{x1} ifadesi, doğrusal elastik davranış için tanımlanan birinci moda ait etkin kütleyi temsil etmektedir. (i)'inci itme adımında deprem doğrultusunda hâkim birinci moda ait modal yer değiştirme $d_1^{(i)}$ şu eşitlik yardımıyla hesaplanır.

$$d_1^{(i)} = \frac{u_{xN1}^{(i)}}{\Phi_{xN1}\Gamma_{x1}}$$
(3.11)

Şekil 3.2 : Modal ivme yer değiştirme eğrisi.

Birinci moda ait modal katkı çarpanı Γ_{x1} , x doğrultusundaki deprem etkisiyle, taşıyıcı sistemin başlangıç adımındaki doğrusal elastik davranışı için tanımlanan L_{x1} ve M₁'den yararlanılarak aşağıdaki şekilde elde edilir.

Denklem (3.13) ve (3.14)' deki m_i i'inci katın kütlesini, $m_{\theta i}$ kütle eylemsizlik momentini, Φ_{xi1} , Φ_{yi1} ve $\Phi_{\theta i1}$ sırasıyla, 1. mod şeklinin i'inci katta gözönüne alınan deprem doğrultusundaki yatay bileşenine, gözönüne alınan deprem doğrultusuna dik doğrultaki yatay bileşenine ve düşey eksen etrafındaki dönme bileşenine karşılık gelmektedir.

$$\Gamma_{x1} = L_{x1} / M_1 \tag{3.12}$$

$$L_{x1} = \sum_{i=1}^{N} m_i \phi_{xi1}$$
(3.13)

$$M_{1} = \sum_{i=1}^{N} \left(m_{i} \phi_{xi1}^{2} + m_{i} \phi_{yi1}^{2} + m_{\hat{e}} \phi_{\hat{e}1}^{2} \right)$$
(3.14)

İtme analizi sonucunda elde edilen modal kapasite diyagramı ile elastik davranış spektrumu göz önüne alınarak birinci moda ait en büyük modal yer değiştirme istemi hesaplanır. Modal yer değiştirme istemi, $d_1^{(p)}$, doğrusal olmayan spektral yer değiştirme S_{di1} 'e eşittir.

$$d_1^{(P)} = S_{di1} \tag{3.15}$$

Doğrusal olmayan spektral yer değiştirme S_{di1} , itme analizini ilk adımda doğrusal elastik davranış esas alınarak hesaplanan birinci hâkim moda ait $T_1(1)$ başlangıç

periyoduna karşılık gelen doğrusal elastik spektral yer değiştirme S_{de1} 'e bağlı olarak şu şekilde ifade edilir.

$$S_{\rm di1} = C_{\rm R1} S_{\rm de1} \tag{3.16}$$

$$S_{\rm de1} = \frac{S_{ae1}}{(\omega_1^{(1)})^2} \tag{3.17}$$

 T_1 başlangıç periyotunun ivme spektrumundaki karakteristik periyot T_B 'ye eşit veya daha büyük olması durumunda, doğrusal elastik olmayan (nonlineer) spektral yer değiştirme S_{di1} , eşit yer değiştirme kuralı uyarınca doğal periyodu yine $T_1(1)$ olan eşlenik doğrusal elastik sistem'e ait doğrusal elastik spektral yer değiştirme S_{de1} 'e eşit alınır. Dolayısıyla spektral yer değiştirme oranı C_{R1} , $T_1(1)$ başlangıç periyodunun ivme spektrumundaki karakteristik periyot T_B 'ye eşit veya daha büyük olması durumunda $C_{R1} = 1$ alınır.

Şekil 3.3 : Spektral yer değiştirme-modal yer değiştirme eğrisi.

Spektral yer değiştirme oranı C_{R1} , $T_1(1)$ başlangıç periyodunun ivme spektrumundaki karakteristik periyot T_B'den küçük olması durumunda C_{R1} ardışık yaklaşımla aşağıda tariflendiği gibi hesaplanır. (i)'inci itme adımında deprem doğrultusunda hâkim birinci moda ait modal ivme değerleri $a_1^{(i)}$ hesaplanır. İtme analizi sonucunda elde edilen modal kapasite diyagramı yaklaşık olarak iki doğrulu (bi-lineer) diyagrama dönüştürülür.

Şekil 3.4 : Modal yer değiştirme isteminin hesaplanması.

Ardışık yaklaşımın ilk adımında $C_R=1$ kabulü yapılarak eşdeğer akma noktasının koordinatları eşit alanlar kuralı ile belirlenir. Böylelikle a_{y1} değeri ve buna bağlı olarak R_{y1} değeri hesaplanır. Bu değerler kullanılarak C_{R1} değeri hesaplanır.

$$C_{R1} = \frac{1 + (R_{y1} - 1)T_B / T_1^{(1)}}{R_{y1}} \ge 1 \qquad T_1^{(1)} < T_B$$
(3.18)

Bu bağıntıda R_{y1}, birinci moda ait dayanım azaltma katsayısını temsil etmekte ve şu şekilde hesaplanmaktadır;

$$R_{y1} = \frac{S_{ae1}}{a_{y1}}$$
(3.19)

 a_{y1} ise, iki doğrulu hale getirilen modal kapasite diyagramının eşdeğer akma değeridir. C_{R1} değerinin hesaplanmasından sonra, doğrusal olmayan spektral yer değiştirme değerleri, S_{di1} hesaplanır. Hesaplanan S_{di1} esas alınarak eşdeğer akma noktasının koordinatları eşit alanlar kuralı ile yeniden belirlenir ve a_{y1} , R_{y1} , C_{R1} değerleri tekrar hesaplanır. Ardışık iki adımda elde edilen sonuçların kabul edilebilinir ölçüde birbirine yaklaşması durumunda çözüm elde edilmiş olunur.

Şekil 3.5 : Modal yer değiştirme isteminin ardışık yaklaşım ile hesabı.

Son itme adımı i=p için, belirlenen modal yer değiştirme istemi $d_1^{(p)}$ kullanılarak deprem istemi şu şekilde hesaplanır;

$$u_{xN1}^{(p)} = \phi_{xN1} \Gamma_{x1} d_1^{(p)} \tag{3.20}$$

Doğrusal olmayan itme analizi yardımıyla yapının kapasite eğrisinin belirlenmesinin yanı sıra elemanların akma dizisi, göçme durumu ve yapısal seviyesi de tayin edilir. İtme analizi elastik statik ya da elastik dinamik analiz ile elde edilemeyen pek yok karakteristik davranış bilgisi sunmaktadır. Bunları şu şekilde özetleyebiliriz:

- Katlar arası ötelemeler ve yapı yüksekliği boyunca dağılımı
- Kırılgan elemanların kuvvet taleplerinim belirlenmesi (kolonlarda eksenel yük talebi, kiriş-kolon bağlantılarında moment talebi gibi)
- Sünek elemanlar için deformasyon talebinin belirlenmesi
- Yapıdaki güçsüz noktaların belirlenmesi
- Yapısal sistemin bütününde tek bir elemanın güç kaybının yarattığı sonuçlar
- Yük akışının bütüncüllüğü ve yeterliliğinin doğrulanması

3.3.3 Kuvvet-yerdeğiştirme ilişkisi ve plastik mafsal teoremi

ETABS 2015 programında yapısal elemanların doğrusal olmayan davranışları bu elemanlara tanımlanan plastik mafsallar ile incelenmiştir. Plastik mafsalların konulduğu noktalar elemanların eğilmeden dolayı akma sınırına ulaşacağı bölgeler öngörülerek seçilir. Kiriş ve kolon elemanlarının uç noktalarında, çapraz elemanlarında ise elemanın orta noktasında akmaya ulaşılacağı için bu bölgelere atanmaktadır.

Şekil 3.6 : Plastik mafsal sınır bölgeleri.

A noktası başlangıç konumudur ve orijini gösterir.

B Noktası akmayı ifade eder. Bu noktaya kadar mafsalda herhangi bir deformasyon oluşmaz. B noktasına kadar tüm şekil değiştirmeler elemanın kendisinde ve doğrusal olarak meydana gelir, mafsalda şekil değiştirme oluşmaz.

C noktası itme analizindeki en üst kapasiteyi ifade eder.

D noktası itme analizinden arta kalan dayanımı ifade etmektedir.

E noktası toplam enerji tüketimini ifade etmektedir. Bu noktadan sonra mafsal E noktasının altına düşer.

Şekil 3.6 ile tanımlanan performans seviyeleri şu şekildedir:

- IO (Immediate occupancy) Kontrollü hasar performans seviyesi: Deprem sonrası hemen kullanım koşularının olduğu hasar seviyesidir.
- LS (Life Safety) Can güvenliği performans seviyesi: Taşıyıcı sistemde belirgin hasarlar oluşur ancak toptan ya da bölgesel göçme oluşmamıştır.
- CP (Collapse Prevention) Göçmenin öncesi performans seviyesi: Taşıyıcı sistemde önemsenir derecede hasarlar oluşmuştur, dayanım kayıpları üst seviyededir.

FEMA-356 ile tanımlanan akma moment ve akma dönmesi kiriş, kolon ve çaprazlar için şu şekilde hesaplanmaktadır.

Kiriş

$$\theta_{y} = \frac{Z \cdot F_{ye} \cdot l_{b}}{6EI_{b}} \quad M_{y} = Z \cdot F_{ye}$$
(3.21)

(3.22)

$$M_y = 1.18 \cdot Z \cdot F_{ye} \left(1 - \frac{P}{P_{ye}} \right) \le Z \cdot F_{ye}$$

 $\theta_{y} = \frac{Z \cdot F_{ye} \cdot l_{c}}{6EI_{c}} \left(1 - \frac{P}{P_{ye}}\right)$

$$P_{y} = F_{ye} \cdot A \qquad \Delta_{y} = \frac{P_{y} \cdot l_{br}}{E \cdot A}$$
(3.23)

Şekil 3.8 ile ifade edilen idealize edilmiş "omurga eğrisi (backbone curve)" deneysel verilere dayanarak malzemenin histerez (zamana bağlı) davranışından oluşturulmuştur.

Şekil 3.7 : Omurga eğrisinin oluşumu.

Model-1, Model2, Model-3 ve Model-4 ile analizleri yapılan plastik mafsallı kiriş, kolon ve çaprazın akma momenti ve akma dönmeleri 3.21, 3.22 ve 3.23_ formüllerine göre hesaplanmıştır.

3.3.4 Yapısal elemanlarda doğrusal olmayan davranış

Yapının moment çerçeve sistemi olarak çalışması için kolon ve kirişlerin eğilmeye karşı dayanımlı olması ve aralarındaki bağlantının moment aktarması gerekmektedir. Nonlineer itme analizi ile kiriş ve kolon elemanlarının dönme ve momente bağlı deformasyon eğrileri bulunurken FEMA-356 ile tanımlanan "Doğrusal Olmayan

Tasarım Yöntemleri İçin Modelleme Parametreleri ve Kabul Kriterleri" tablosundan faydalanmıştır.

FEMA-356'da ifade edilen narinlik kriterleri bu çalışmada irdelenmiş olan kiriş-kolon ve çapraz elemanları için Çizelge3.6'da ifade edilmiştir. Limit değerler şu şekildedir:

Kiriş
$$bf/2tf \le \frac{52}{\sqrt{Fye}} = 7,92 \quad h/tw \le \frac{418}{\sqrt{Fye}} = 63,74$$
 (3.24)

Kolon
$$bf/2tf \le \frac{65}{\sqrt{Fye}} = 9,91 \quad h/tw \le \frac{640}{\sqrt{Fye}} = 97,60$$
 (3.25)

Çapraz

$$d/t \le \frac{1500}{Fy} = 37,50 \tag{3.26}$$

Kesit Özellikleri*									
I Kesit	bf	tf	h	tw	bf/2tf	h/tw			
W8X13	4,00	0,26	8,00	0,23	7,84	34,78			
W8X18	5,25	0,33	8,14	0,23	7,95	35,39			
W8X21	5,27	0,40	8,28	0,25	6,59	33,12			
W10X17	4,01	0,33	10,10	0,24	6,08	42,08			
W10X22	5,75	0,36	10,20	0,24	7,99	42,50			
W18X50	7,50	0,57	18,00	0,36	6,58	50,70			
W21X55	8,22	0,52	20,80	0,38	7,87	55,47			
W24X84	9,02	0,77	24,10	0,47	5,86	51,28			
W24X146	12,90	1,09	24,70	0,65	5,92	38,00			
Dairesel Kesit	d	t	d/t						
HSS 4 X 0,237	4,00	0,22	18,18	-					
HSS 5 X 0,250	5,00	0,23	21,46						
HSS 14x0.312	14,00	0,29	48,11						

Çizelge 10 : Analizi yapılan çelik profil kesit özellikleri.

*Birimler metre (m) cinsindendir.

Kiriş, kolon ve çaprazların plastik momentleri ve plastik dönme değerleri 3.21, 3.22 ve 3.23 formülleri ile hesaplanmış ve Çizelge 3.7, Çizelge 3.8, Çizelge 3.9 ve Çizelge 3.10'da sunulmuştur. Bu veriler aracılığıyla yapının davranış eğrileri ön bilgi amaçlı oluşturulmuş olup ETABS programı ile hesaplanan veriler ile kıyaslanarak doğruluğu teyit edilmiştir.

Vontual Dožialionlani		W8	x10	W8x18		W8x21	
Konuol De	gişkemen	Мр	Qp	Мр	Qp	Мр	Qp
M/Mp	Q/Qp	51,9697	0,01128	84,1372	0,01480	100,9586	0,01460
-0,4	-8	-20,7879	-0,09026	-33,6549	-0,11843	-40,3834	-0,11682
-0,4	-6	-20,7879	-0,06770	-33,6549	-0,08882	-40,3834	-0,08762
-1,199	-6	-62,3116	-0,06770	-100,8805	-08,8882	-121,0494	-0,08762
-1	0	-51,9697	0	-84,1372	0	-100,9586	0
0	0	0	0	0	0	0	0
1	0	51,9697	0	84,1372	0	100,9586	0
1,199	6	62,3116	0,06770	100,8805	08,8882	121,0494	0,08762
0,4	6	20,7879	0,06770	33,6549	08,8882	40,3834	0,08762
0,4	8	20,7879	0,09026	33,6549	0,11843	40,3834	0,11682

Çizelge 11 : Kiriş moment-plastik dönme değerleri.

Çizelge 12 : Kiriş moment-plastik dönme değerleri.

Vontual Dočialionlari		W1(W10x17		W10x22		50 x 50
Kontrol De	gişkemeri	Мр	Qp	Мр	Qp	Мр	Qp
M/Mp	Q/Qp	92,5328	0,0020811	128,6822	0,01083	499,8402	0,01310
-0,4	-8	-37,01312	-0,0166486	-51,4729	-0,11843	-199,9361	-0,10478
-0,4	-6	-37,01312	-0,0124865	-51,4729	-0,06498	-199,9361	-0,07858
-1,199	-6	-110,94683	-0,0124865	-154,2900	-0,06498	-599,3084	-0,07858
-1	0	-92,5328	0	-128,6822	0	-499,8402	0
0	0	0	0	0	0	0	0
1	0	92,5328	0	128,6822	0	499,8402	0
1,199	6	110,94683	0,0124865	154,2900	0,06498	599,3084	0,07858
0,4	6	37,01312	0,0124865	51,4729	0,06498	199,9361	0,07858
0,4	8	37,01312	0,0166486	51,4729	0,08664	199,9361	0,10478

Çizelge 13 : Kiriş moment-plastik dönme değerleri.

Vontrol Dožiskonlori		W21	x55	W24x	W24x84		W24x146	
Konuol De	gişkemen	Мр	Qp	Мр	Qp	Мр	Qp	
M/Mp	Q/Qp	623,5696	0,00596	1.060,6240	0,00522	1.940,3500	0,01107	
-0,4	-8	-249,4278	-0,04766	-424,2496	-0,04177	-776,1400	-0,08858	
-0,4	-6	-249,4278	-0,03574	-424,2496	-0,03133	-776,1400	-0,06644	
-1,199	-6	-747,6600	-0,03574	-1.271,6882	-0,03133	-2.326,4797	-0,06644	
-1	0	-623,5696	0	-1.060,6240	0	-1.940,3500	0	
0	0	0	0	0	0	0	0	
1	0	623,5696	0	1.060,6240	0	1.940,3500	0	
1,199	6	747,6600	0,03574	1.271,6882	0,03133	2.326,4797	0,06644	
0,4	6	249,4278	0,03574	424,2496	0,03133	776,1400	0,06644	
0,4	8	249,4278	0,04766	424,2496	0,04177	776,1400	0,08858	

Çizelge 14 : Çapraz eksenel kuvvet-plastik dönme değerleri.

Kontrol De	Vontual Dočialian lani		X 0,237	HSS 5 2	HSS 5 X 0,250		HSS 14x0.312	
Kontrol De	gişkemen	Рр	Δp	Рр	Δp	Рр	Δp	
P/Pp	$\Delta/\Delta p$	507,36	0,006085	679,5	0,006085	2434,12	0,007354	
-0,3	-9	-152,2080	-0,05477	-203,8500	-0,05477	-730,2360	-0,06618	
-0,3	-0,5	-152,2080	-0,00304	-203,8500	-0,00304	-730,2360	-0,00368	
-1,015	-0,5	-514,9704	-0,00304	-689,6925	-0,00304	-2.470,6318	-0,00368	
-1	0	-507,3600	0	-679,5000	0	-2.434,1200	0	
0	0	0,0000	0	0	0	0	0	
1	0	507,3600	0	679,5000	0	2.434,1200	0	
1,24	8	629,1264	0,04868	842,5800	0,04868	3.018,3088	0,05883	
0,6	8	304,4160	0,04868	407,7000	0,04868	1.460,4720	0,05883	
0,6	9	304,4160	0,05477	407,7000	0,05477	1.460,4720	0,06618	

Kuvvet yer değiştirme ilişkisine ilişkin bir önceki bölümde anlatılan plastik mafsal oluşum noktaları ve bunlara dair değerler modellemesi yapılan çalışmalar için Şekil 3.9, Şekil 3.10 ve Şekil 3.11'de sunulmuştur.

Şekil 3.8 : Kiriş elemanları moment-yer değiştirme eğrisi.

Şekil 3.9 : Kiriş elemanları moment-yer değiştirme eğrisi.

Şekil 3.10 : Çapraz elemanları moment-yer değiştirme eğrisi.

DBYBHY-2007 ile tanımlanan sabit yük dağılımına göre yapılan itme analizi ile tepe yer değiştirmesi ve taban kesme kuvveti koordinatlarından oluşan itme eğrisi modal kapasite diyagramı olarak elde edilmesi için aşağıdaki şekilde koordinat dönüşümü sağlanmalıdır.

Modal yer değiştirme istemi, d₁, doğrusal olmayan spektral yerdeğiştirmeye bağlı 3.6 formülüne göre hesaplanmıştır.

Sae(1)= A0 x I x S(T) x g= 0.300 x 1.0 x 1.087 x 9.81 = 3,19 m/s2 S_{de1}= S_{ae1}/(w₁⁽¹⁾) ² = 3.19 /30,72 = 0.103 m

 $S_{di1}=C_{R1}S_{de1}=1.0 \text{ x } 0.103=0.103 \rightarrow d_1=S_{di1}=0.183 \text{ m}$

Yapının birinci deprem doğrultusunda hakim olan moda ait modal katkı çarpanı r_{x1} hesaplanırken 3.12 formülünden faydalanır ve doğrusal elastik davranış için tanımlanmış olan L_{x1} ve M_1 verileri kullanılarak hesaplanır.

 $r_{x1=}\,L_{x1}/\,M_1\,{=}\,20.75$

Tepe yerdeğiştime isteminin hesaplanması için gerekli bir diğer çarpansa Φ_{xN1} , binanın tepesinde ve değerlendirilen deprem doğrultusundaki hakim moda ait mod şekil genişliğidir.

Çizelge 3.11 ile hesaplanan değerler ile yapının en üst noktasının tepe yer değiştirme istemi hakim moda ait 3.20 formülü ile hesaplanarak bulunmuştur.

 $U_{xN1} = \Phi_{xN1} r_{x1} d_1$

 U_{xN1} = 0.105 x 20.75 x 0.183 = 0.398 m

Uy (m)	Vy1(KN)	My1(KNs2/m)	ry1	Qy1	d1(m)	a1(m/s2)
0.0000	0.00	1,151.20	20.75	0.1050	0.0000	0.0000
0.0192	549.55	1,151.20	20.75	0.1050	0.0088	0.4774
0.0385	1,100.46	1,151.20	20.75	0.1050	0.0177	0.9559
0.0412	1,134.92	1,151.20	20.75	0.1050	0.0189	0.9859
0.0412	531.74	1,151.20	20.75	0.1050	0.0189	0.4619
0.0471	579.59	1,151.20	20.75	0.1050	0.0216	0.5035
0.0471	324.32	1,151.20	20.75	0.1050	0.0216	0.2817
0.1271	965.68	1,151.20	20.75	0.1050	0.0583	0.8388
0.1651	1,272.00	1,151.20	20.75	0.1050	0.0758	1.1049
0.1729	1,310.13	1,151.20	20.75	0.1050	0.0794	1.1381
0.1729	535.37	1,151.20	20.75	0.1050	0.0794	0.4651
0.2129	670.56	1,151.20	20.75	0.1050	0.0977	0.5825
0.2529	806.27	1,151.20	20.75	0.1050	0.1161	0.7004
0.2929	942.50	1,151.20	20.75	0.1050	0.1344	0.8187
0.3393	1,086.47	1,151.20	20.75	0.1050	0.1557	0.9438
0.3392	557.06	1,151.20	20.75	0.1050	0.1557	0.4839
0.3791	627.50	1,151.20	20.75	0.1050	0.1740	0.5451
0.3997	663.79	1.151.20	20.75	0.1050	0.1830	0.5766

Çizelge 15 : Y Yönü modal yer değiştirme – kapasite verileri.

4. ÜÇ FARKLI ÇELİK ÇAPRAZ SİSTEME AİT MODELLERİN ETABS PROGRAMINDA DOĞRUSAL OLMAYAN STATİK İTME ANALİZİ

Bu çalışmada yararlanılan bilgisayar destekli entegre analiz programı ETABS ile yapılan itme analizi adımları aşağıda sıralanmıştır.

• Şekil 4.1 ile gösterilen eğri malzemelerin doğrusal olmayan özellikleri tanımlanır.

Şekil 4.1 : Çelik malzemesinin gerilme-şekil değiştirme eğrisi.

- Doğrusal olmayan davranışın geometrik anlamda tanımlaması için P-delta etkileri dikkate alınır. Böylelikle denge denklemleri işleme girerken yapının deforme olmuş şekli göz önüne alınmış olur.
- Plastik mafsallar tanımlanır. Kirişlerde eksenel yük az olduğu için M3 moment mafsalı kullanılır. Eksenel kuvvet ve eğilmeye maruz kalan kolonlar için PMM

bağıntılı mafsallar tanımlanırken çaprazlar için en fazla yük oluşturan eksenel kuvvet etkisi için P mafsalı tanımlanmıştır. Şekil 4.2 ile ifade edilen arayüzde elemanın limit durumları grafik üzerinde ayrı ayrı gösterilmiştir.

Point	Force/SF	Disp/SF		
E	-0.3	_0		-+-₽
D-	-0,3	-0 500078		1 🏎
C-	-1.015	-0.5		
B-	-1	0		1
A	0	0		
В	1	0		1
С	1,24	8		
D	0,6	8,00007	Symmetric	
E	0,6	9		
oad Carrying C Drops To 2 Is Extrapo caling for Forc	apacity Beyond Point E Zero lated e and Disp			
Orops To 2 Orops To 2 Orops To 2 Orops To 2 Orops To 2 Orops To 2 Orops To 2	apacity Beyond Point E Zero lated e and Disp	Positive	Negative	
oad Carrying C Drops To : Is Extrapo caling for Force Use Yield	apacity Beyond Point E Zero lated e and Disp Force Force SF	Positive 853,8362	Negative 293,2719	kN
Dad Carrying C Drops To : Is Extrapo Caling for Forc Use Yield Use Yield	apacity Beyond Point E Zero Ilated e and Disp Force Force SF Disp Disp SF	Positive 853,8362 9,4	Negative 293,2719 3,2	kN
Dad Carrying C Drops To 2 Is Extrapo caling for Force Use Yield Use Yield (Steel Ob)	apacity Beyond Point E Zero Iated e and Disp Force Force SF Disp Disp SF jects Only)	Positive 853,8362 9,4	Negative 293,2719 3,2	kN
Dad Carrying C Drops To 2 Is Extrapo Caling for Force Use Yield (Steel Ob) Cceptance Crit	apacity Beyond Point E Zero lated e and Disp Force Force SF Disp Disp SF jects Only) eria (Plastic Disp/SF)	Positive 853,8362 9,4	Negative 293,2719 3,2	kN
Dad Carrying C Drops To 2 Is Extrapo caling for Force Use Yield (Steel Ob cceptance Crit	apacity Beyond Point E Zero lated e and Disp Force Force SF Disp Disp SF jects Only) eria (Plastic Disp/SF)	Positive 853,8362 9,4 Positive	Negative 293,2719 3,2 Negative	kN
Dad Carrying C Drops To 2 Is Extrapo caling for Force Use Yield (Steel Ob cceptance Crit	apacity Beyond Point E Zero lated e and Disp Force Force SF Disp Disp SF jects Only) eria (Plastic Disp/SF) iate Occupancy	Positive 853,8362 9,4 Positive 0,5	Negative 293,2719 3,2 Negative -0,5	kN mn
Dad Carrying C Drops To : Is Extrapo Caling for Force Use Yield (Steel Ob) Ccceptance Crit Immedi Life Sa	apacity Beyond Point E Zero lated e and Disp Force Force SF Disp Disp SF jects Only) eria (Plastic Disp/SF) iate Occupancy ifety	Positive 853,8362 9,4 Positive 0,5 7	Negative 293,2719 3,2 Negative -0,5 -7	kN mn

Şekil 4.2 : Çapraz elemanı plastik mafsal kapasite özellikleri.

 Statik itme analizinde yükleme üç yönlü yapılmalıdır. İlk olarak düşey yönde etkiyen yüklerin etkileri yapının p-delta etkilericile göz önüne alınarak doğrusal olmayan analiz yapılır. Burada tanımlanan yükleme durumları deprem sırasında dikkate alınacak olan kütleye göre Şekil 4.3'de gösterildiği gibi katsayılarla çarpılır.

Load Case Name	lame		PushZ Nonlinear Static ~		Design Notes
Load Case Type Exclude Objects in this Group Mass Source		Nonlinear			
		Not Applic	Not Applicable Previous		
		Previous			
tial Conditions					
Zero Initial Condition	s - Start from Unst	ressed State			
O Continue from State	at End of Nonline;	ar Case (Loads at En	d of Case ARE	Included)	
Nonlinear Case					
- de Arelie d					
aus Applieu					0
Load Type	DEAD	Load Name	1	cale Factor	Add
Load Pattern	LIVE		0.3		- Aud
Loud I ditoli	Live		0,0		Delete
her Parameters					
Modal Load Case		Modal		\sim	
Geometric Nonlinearity (Ontion	P.Delta	P.Deta		
Lood Application		1 -Deita		Madif. (Chann	
	Full Load	Full Load		Modify/Snow	
Load Application	Final State On	Final State Only		Modify/Show	
Results Saved					

Şekil 4.3 : ETABS Z-yönünde nonlinear itme analizi yüklemesi (PushZ).

- X ve Y yönünde yapılacak diğer yüklemeler ise yine Şekil 4.4 ve Şekil 4.5'de gösterildiği gibi deprem yüklemelerinin (EY ve EY) dikkate alınması ile yapılacak doğrusal olmayan itme analizi olarak tanımlanır ve her bir itme analizi bir önce tanımlanan düşey yöndeki doğrusal olmayan etkiler yapıya etkitildikten sonra gerçekleştirilir.
- Yüklemeler tepe yer değiştirme istemi olarak Çizelge 3.11 ile hesaplanmış mesafeye kadar devam ettirilir ve bu veri Şekil 4.4 ve Şekil 4.5'deki arayüz ile "Displacement Control" kontrol noktasından girilir.

Load Case Name			PushX			Design
Load Case Type Exclude Objects in this Group Mass Source		Nonlinear Static 🗸			V Notes	
		Not Applicable				
		MsSrc1 V		\sim		
itial Conditions						
O Zero Initial Condition	is - Start from	Unstressed St	ate			
Continue from State	at End of Nor	nlinear Case(Loads at End	of Case /	ARE Included)	
Nonlinear Case			PushZ			\sim
and Analiand						
				1		
Load Type		Load Na	ame		Scale Factor	
Load Pattern	EX			1		Add
						Delete
ther Parameters						
her Parameters Modal Load Case			Modal			\sim
her Parameters Modal Load Case Geometric Nonlinearity C)ption		Modal P-Delta			~ ~
her Parameters Modal Load Case Geometric Nonlinearity C Load Application)ption Displacen	nent Control	Modal P-Delta		Modify/Show	✓I
her Parameters Modal Load Case Geometric Nonlinearity C Load Application Results Saved	Dption Displacen Multiple S	nent Control tates	Modal P-Delta		Modify/Show Modify/Show	× ×

Şekil 4.4 : ETABS X-yönünde nonlinear itme analizi yüklemesi (PushX).

Load Case Name			PushY			Design
Load Case Type Exclude Objects in this Group Mass Source		Nonlinear Static V Not Applicable MsSrc1 V			Notes	
itial Conditions						
Zero Initial Condition	s - Start f	from Unstressed S	itate			
Continue from State :	at End o	f Nonlinear Case	(Loads at End	of Case ARI	E Included)	
Nonlinear Case			PushZ		~	
and Analiand						
bads Applied						6
Load Type		Load N	lame	S	cale Factor	
Load Pattern		EY		1		Add
						Delete
	_					
ther Parameters						
ther Parameters Modal Load Case			Modal		~	
ther Parameters Modal Load Case Geometric Nonlinearity C	option		Modal P-Delta		~	
ther Parameters Modal Load Case Geometric Nonlinearity C Load Application)ption Displ	acement Control	Modal P-Delta		V V Modify/Show	
ther Parameters Modal Load Case Geometric Nonlinearity C Load Application Results Saved	Dption Displ	acement Control ole States	Modal P-Delta		Modify/Show	

Şekil 4.5 : ETABS X-yönünde nonlinear itme analizi yüklemesi (PushY).

• Analiz tamamlandıktan sonra sistemin kapasite eğrisi, plastik mafsal dönme istemleri, kuvvet-moment diyagramları elde edilmektedir.

4.1 MODEL-1 İtme Analizi Sonuçları

Bu modelde sistemin düşey taşıyıcı elemanları aynı zamanda deprem etkisiyle oluşan yatay yüklere karşı koyan elemanlardır. Bu elemanlar dairesel kesit tercih edilerek eksenel yüklere karşı dayanımı daha yüksel olması öngörülmüştür. Sisteme dair aksonometrik görünüş ve plastik mafsal oluşumu Şekil 4.6'da verilmiştir.

Şekil 4.6 : MODEL-1 nonlinear itme analizi plastik mafsal dağılımı.

Mimari olarak kolonlarının tümü diyagonal olarak tasarlanmış olan bu modelde düşey taşıyıcı olarak sistem davranış biçimi olarak kolonlardan değil, çaprazlardan oluşmaktadır. Bu elemanlara etkiyen eksenel yük oldukça yüksek olup çevrimsel yükler altında analiz edidiğinde kesit ortalarında plastik mafsal oluşumu gözlemlenmektedir.

Sistem çapraz elemanların enerji yutma kapasitesinin sınırlarına ulaşması ile göçme durumuna gelmektedir. Kolon elemanlarının bulunmaması ve çaprazların lineer olmayan etkiler altında burkulma talebinin de artışı ile sistem rijitlik anlamında da incelenen diğer sistemlere göre daha elverişsiz bulunmuştur. Şekil 4.7 ile gösterilen itme analizi tepe yer değiştirme istemi-taban kesme kuvveti ilişkisine ait değerler EK-B ile aytıntılarıyla verilmiştir.

Şekil 4.7 : MODEL-1 nonlinear itme analizi kapasite eğrisi.

4.2 MODEL-2 İtme Analizi Sonuçları

Bu model kat planı aynı üç kattan oluşmakta olup yatay taşıyıcı sistemi merkezi çelik çapraz sistemlerden olan ters V şeklinde düzenlenmiştir. Sisteme dair aksonometrik görünüş ve plastik mafsal oluşumu Şekil 4.8'da verilmiştir.

Şekil 4.8 : MODEL-2 Y-yönünde nonlinear itme analizi plastik mafsal dağılımı. Merkezi çelik çapraz sistemler yüksek dayanım ve rijitliğe sahip sistemlerdir. Doğrusal olmayan itme analizi ile incelenen bu modelin Şekil 4.9'daki kapasite eğrisi çapraz sistemin çevrimsel yükler altında enerji yurma kapasitesini göstermektedir. Toplamda 312 adet plastik mafsal oluşmuştur ve bunların 100 tanesi Göçme Öncesi performans seviyesinde kalarak telep edilen tepe yer değiştirme istemine ulaşılmıştır. Meydana gelen plastik mafsallar çaprazların orta noktalarında ve çaprazların bulunduğu en kesit ortasındaki kısa-zayıf kiriş bölgesinde bulunmaktadır.

Merkezi çelik çapraz sistemlerin giriş bölümünde anlatılan geliştirilmiş özelliklerinin gözlemlendiği bu model sistemin süneklik oranındaki artış ile örtüşür niteliktedir.

Şekil 4.9 : MODEL-2 Y-yönünde nonlinear itme analizi kapasite eğrisi.

Sistemin X yönündeki davranış biçimi kolon-kiriş bağlantı noktalarında oluşan mafsallar ile gözlemlenmiştir. Kirişler kolonlardan daha zayıf tercih edildiği için plastik mafsallar Şekil 4.10'da gösterildiği gibi kirişlerin uç kesitlerinde oluşmuştur.

X-yönünde yapının yer değiştirme istemi Y-yönüne göre çok daha düşük olduğu için sistemin kapasitesi plastik mafsalların elastik bölge içinde kalmasını sağlamıştır. Programdan elde edilen kapasite eğrisi Şekil 4.11 ile gösterilmiştir.

Şekil 4.11 : MODEL-2 X-yönünde nonlinear itme analizi kapasite eğrisi.

4.3 MODEL-3 İtme Analizi Sonuçları

Bu modelde uygulanan taşıyıcı sistem X çapraz sistminden oluşmaktadır. Sisteme dair aksonometrik görünüş ve plastik mafsal oluşumu Şekil 4.12'da verilmiştir.

Şekil 4.12 : MODEL-3 Y-yönünde nonlinear itme analizi plastik mafsal dağılımı.

Model-3 ile X-çapraz formundaki merkezi çelik çapraz sistem incelenmiştir. Toplamda 336 adet plastik mafsal oluşmuştur ve özellikle çapraz elemanların orta noktasında oluşan mafsallarda göçme öncesi performans seviyesinin aşıldığı gözlemlenmiştir.

Şekil 4.13 : MODEL-3 Y-yönünde nonlinear itme analizi kapasite eğrisi.

Şekil 4.14 : MODEL-3 X-yönünde nonlinear itme analizi plastik mafsal dağılımı.

İncelenen diğer sistemlerde olduğu gibi X-yönünde ortak bir davranış biçimi segilenmektedir. Sistemin zayıf kirişlerinin bulunduğu orta aksında akma limitlerine ulaşan mafsallar oluşmaktadır. Genel olarak sistemde büyük yer değiştirmeler oluşmamaktadır.

Şekil 4.15 : MODEL-3 X-yönünde nonlinear itme analizi kapasite eğrisi.

4.5 Kapasite Eğrisinin İdealleştirilmesi ve Davranış Katsayısının Değerlendirilmesi

Önceki bölümlerde belirtildiği gibi doğrusal olmayan itme analizini gerçekleştirmek için seçilen metod, kontrol noktasının hedeflenen yer değiştirme hedefine ulaşana kadar sisteme yatay yük etkitilmesidir. Yatay yük bağıntısı yapının birinci mod şeklidir ve her bir noktanın elastik birinci mod büyüklüğü ile orantılıdır. Kontrol noktası yapının çatı katının kütle merkezi (diyafram olarak tanımlanmıştır) olarak seçilmiş olup yatay yer değiştirmeleri takip edilen noktadır. Kapasite eğrisi, kontrol noktasının artan yük karşısında yer değiştirme miktarını gösteren bir grafik oluşturmaktadır. Yapının hedeflenen tepe yerdeğiştirme miktarına ulaşması ya da bütüncül mekanizma durumuna girmesi ile kapasite eğrisi sonlanır. Bu çalışma kapsamında incelenmiş dört ayrı modele göre elde edilen kapasite eğrileri Şekil 4.7, Şekil 4.9, Şekil 4.11, Şekil 4.13, Şekil 4.15, Şekil 4.17 ve Şekil 4.19 da sunulmuştur.

Taşıyıcı sistem davranış katsayısının belirlenmesinde kapasite eğrisi öncelikli rol oynamaktadır fakat elde edilen verilerin kullanımı için kapasite eğrisinin idealleştirilmesi gerekmektedir. Böylelikle yapının dayanım ve süneklik katsayısı bulunabilmektedir.

Kapasite eğrisi ile çakışan bilineer eğri orijinden başlayarak maksimum akma dayanımına kadar devam eder ve burada ikinci segmente kırılarak maksimum yer değiştirme noktasında sona erer. Kesişen bu eğrinin birinci segmentinin eğimini bulmak için her bir adımdaki artışlar izlenir ve etkin bir farkın gözlemlendiği noktaya kadarkilerin ortalamsı alınır. Bu kısım *elastik bölge* olarak tanımlanır. İkinci segment ise elastik sonrası bölge olarak tanımlanır ve maksimum akma dayanımı elde edildikten sonra eşdeğer enerji kabulüyle kapasite eğrisi altında kalan alan ile bilineer eğri ile arasında kalan alanın eşitliği şartıyla oluşturulur.

FEMA-273 ile önerilen deneme-yanılma yöntemi bilineer eğrinin akma dayanımının %60'a ulaştığı noktada kapasite eğrisi ile kesişmesini önerirken, yapılan çalışmalar gösteriyor ki akma dayanımının %60'ı ile kesişen bölge sınır koşullarının içinde kalmamaktadır. Yukarıda tanımlanan yöntem daha gerçekçi sonuçlar verdiği için bu çalışmada da benimsenen yöntem olmuştur.

Şekil 4.16 : Kapasite eğrisinin idealleştirilmesi.

Şekil 4.20 de tanımlanan yatay ve düşey veriler şu şekildedir:

Vy: Akma Dayanımı

Vd: Tasarım Dayanımı

Δy: Akmaya karşılık gelen yer değiştirme

 Δu : Maksimum yer değiştirme

Bu verilere dayanarak dayanım katsayısı akma dayanımının tasarım dayanımına oranı olarak; süneklik katsayısı ise maksimum yer değiştirmenin akmaya karşı gelen yer değiştirmeye oranı olarak kolaylıkla bulunabilmektedir.

Çizelge 16 : Dayanım ve süneklik katsayısı formülleri.

Dayanım katsayısı	$R_s = V_y / V_d$
Süneklik katsayısı	$\mu = \frac{du}{dy}$
Soil condition ratio	$\phi = 1 + \frac{1}{12T - \mu T} - \frac{2}{5T} \exp\left[-2\left(\ln T - \frac{1}{5}\right)^2\right]$
Süneklik azaltma katsayısı	$R\mu = \frac{\mu - 1}{\phi} + 1 \ge 1$
Taşıyıcı sistem davranış katsayısı	$R = R_{S} \cdot R_{\mu} \cdot R_{\xi}$

4.5.1 Çelik taşıyıcı sitemlerin davranış katsayısına bağlı değerlendirmesi

Yukarıda tanımlanan formüller uyarında farklı tip çapraz sistemine sahip modellerin taşıyıcı sistem davranış katsayısı tespit edilmiş ve Çizelge 4.2'de verilmiştir.

MODEL-1	T=0,493	MODEL-2	T=1,13
Vy (KN)	883,7481	Vy (KN)	549,5482
dy (mm)	0,0205	dy (mm)	0,0192
Vd (KN)	468,2216	Vd (KN)	165,2271
Vu (KN)	4.228,6825	Vu (KN)	1.086,4696
du (m)	0,1151	du (m)	0,3393
Q	1,1620	Q	1,1620
μ süneklik katsayısı)	5,6146	µ süneklik katsayısı)	17,6719
Rµ (süneklik azaltma katsayısı)	4,9713	Rµ (süneklik azaltma katsayısı)	15,3476
Rs (dayanım katsayısı)	1,8875	Rs (dayanım katsayısı)	3,3260
R=Rm x Rs	9,3831	R=Rm x Rs	51,0463

Çizelge 17 : Model-1 ve Model-2 için davranış katsayısı hesabı.

Çizelge 18 : Model-3 ve Model-4 için davranış katsayısı hesabı.

-				
	MODEL-3	T=1,11	MODEL-4	T=1,13
	Vy (KN)	740,1023	Vy (KN)	420,7227
	dy (mm)	0,0151	dy (m)	0,0304
	Vd (KN)	173,8780	Vd (KN)	173,8700
	Vu (KN)	3.654,5114	Vu (KN)	2.267,1795
	du (m)	0,1485	du (m)	0,2784
	Q	1,1620	Q	1,1620
	µ süneklik katsayısı)	9,8344	µ süneklik katsayısı)	9,1579
	Rµ (süneklik azaltma katsayısı)	8,6028	Rμ (süneklik azaltma katsayısı)	8,0206
	Rs (dayanım katsayısı)	4,2564	Rs (dayanım katsayısı)	2,4198
	R=Rm x Rs	36,6173	R=Rm x Rs	19,4078

Yapısal analizi yapılan dört modelden elde edilen davranış performansları değerlendirildiğinde Model-2'nin en yüksek performanslı model olduğuna karar verilmiştir ve çalışmanın devam eden kısımlarında bu modele ait yapısal elemanların taşıma kapasitesi kontrolü yapılarak kolon-kiriş ve çapraz bağlantı detayları çözümlenmiş ve tasarlanmıştır.
5. ÇELİK YAPININ TASARIMI

5.1 Yapının Kullanım Amacı ve Tasarım Özellikleri

Bu çalışma kapsamında İstanbul, Levent Bölgesinde yapılması öngörülen 13 m yüksekliğinde toplamda 3 katlı tamamında çelik yapı elemanları kullanılan yönetim ofisi binası olarak tasarlanmıştır. Yapının genişliği 10 m, uzunluğu 20 m'dir. Dört ayrı model ile incelenen alternatif yapısal sistemlerle amaç en iyi performansa sahip yatay taşıyıcı sistemi belirlemektir.

Tüm döşemeler kompozit döşeme olarak tasarlanmış olup binanın aşağıda belirtilen kısıtlar çerçevesinde tasarım alternatifleri oluşturulmuştur.

- HSS 14 x 0.312 profiller kolon elemanı olarak tüm modellerde kullanılacaktır.
- Yapının kat yükseklikleri 4.65 m 3.00 m 3.00 m ölçüleri içinde kalacaktır.

Çözümleme yapılacak olan sisteme ait tipik kat planı Şekil 5.1'de verilmiştir.

Şekil 5.1 : Tipik kat planı.

5.2 Malzeme Özellikleri

Yapısal Çelik

- Fy = 275 MPa (Akma dayanımı)
- Fu = 430 MPa (Çekme dayanımı)
- E= 200,000 MPa (Elastisite modülü)

- G= 79,000 MPa (Kayma modülü)
- Yoğunluk= 77 kN/m³

Beton

- Fck= 30 MPa
- Ec= 32,000 MPa
- Yoğunluk= 25 kN/m^3

Trapez Sac

- Fy= 345 MPa
- Fu= 550 MPa

5.3 Yük Kombinasyonları

AISC- 360-10 standardı ile tanımlanan ve bu çalışmada esas alınmış olan yük kombinasyonları LRDF çözüm yöntemine göre yedi ana alternatiften oluşmaktadır.

- 1) 1.4D
- 2) 1.2D+1.6L+0.5(Lr or S or R)
- 3) 1.2D+1.6(Lr or S or R) + (0.5L or 0.8W)
- 4) 1.2D+1.6W+0.5L+0.5(Lr or S or R)
- 5) 1.2D+-1.0E+0.5L+0.2S
- 6) 0.9D+-1.6W or 1.0E
- D: Hareketsiz yük
- L: Hareketli yük
- S: Kar yükü
- E: Deprem yükü
- Lr: Çatı hareketli yükü
- R: Yağmur/buz yükü

5.4 Yapıya Etkiyen Yüklerin Analizi

Hareketsiz Yük :

Kompozit döşeme:	2.5 kN/m^2
İnce işler (kaplama+asma tavan vs.):	0.5 kN/m ²
Cephe yükleri:	0.5 kN/m ²
	3.5 kN/m ²

Hareketli Yük:

Ofis alanları:

 $3kN/m^2$

Kar Yükü:

TS 498'e göre yapının bulunduğu bölgeye göre kar yükü şu şekilde hesaplanmıştır:

 $P_k = P_{ko} \times m$

 $P_k = 1 \ge 0.75 = 0.75 \text{ kN/m}^2$

Pk: Kar yükü

Pko: Zati kar yükü

m: Çatı eğimine bağlı azaltma değeri (m=1; α < 30°)

Rüzgar Yükü:

Rüzgar Hızı $V(z,t) = V_m(z) + w(z,t)$

V(z,t): toplam tüzgar hızı

z: hem zemin yüzeyinden ölçülen yükseklk

 $V_m(z)$: ortalama rüzgar hızı

w(z, t): dinamik rüzgar

Ortalama Rüzgar Hızı

 $V_m(z) = C_r(z) C_t(z) V_b$

 $C_e(z)$: yüksekliğe bağlı değişen yüzey pürüzlülük katsayısı

Ct: topoğrafya katsayısı

 V_b : temel rüzgar hızı ($V_b = 25m/s$, İstanbul İli)

 $V_m(z) = 0.572 x 1.13 x 25 = 16.16 m/s$

Yüzey Pürüzlülük Katsayısı

Yüzey pürüzlülük katsayısı, rüzgarın geldiği doğrultudaki yüzey pürüzlüğünün ortalama rüzgar hızına ve hızın yükseklikle değişimine yaptığı etkileri tanımlayan bir katsayıdır. Bu katsayı aşağıdaki bağıntılarla tanımlanır:

$$z > z_{\min}; \ C_e(z) = k_t \ln \frac{z}{z_0}; \ k_t = 0.23(z_0)^{0.07}$$

$$z \leq z_{\min}; \quad C_e(z) = C_e(z_{\min})$$

 z_0 : yüzey pürüzlülük uzunluğu (m)

 z_{min} : yüzey pürüzlülük katsayısının sabit olduğu minimum yüksekliktir (m)

Arazi tipine uygun pürüzlülük katsayıları Çizelge 5.1'den seçilecektir.

Arazi Tip No	Arazi Tipi	z ₀ (m)	z _{min} (m)
0	Denize açık kıyı şeritleri	0,003	1
Ι	Göl çevreleri veya engebesiz düz ve geniş alanlar	0,01	1
	Seyrek ağaçların ve yapıların olduğu ova, çayır tipi		
II	alanlar (engebe aralıkları ortalama yüksekliğinin 20	0,3	2
	katından fazla)		
III	Köyler, banliyöler, ormanlık alanlar (engebe aralıkları ortalama yüksekliğinin 20 katından fazla)	1,0	5
IV	Şehir merkezleri ve benzeri en az %15 oranında ortalama yüksekliği 15m ve üzeri yapılarla kaplı alanlar.	1,0	10

Çizelge 19 : Arazi nitelğine bağlı pürüzlülük katsayısı.

Z=12m; $Z_0=1.0$; $Z_{min}=10$ durumuna göre pürüzlülük katsayısı aşağıdaki şekilde hesaplanır.

$$C_e(z) = 0.23 \ x \ 1.0^{0.07} \text{x} \ \ln \frac{12}{1.0} = 0.572$$

Topoğrafya Katsayısı

İstanbul'daki bütün bölgeler için topoğrafya katsayısı aşağıdaki gibi alınacaktır:

 $C_r = 1.0 + 0.001\Delta$

 Δ : deniz seviyesinden olan yükseklik

 $C_r = 1.0 + (0.001 \text{ x } 132.15) = 1.13$

Rüzgar Türbülansı

Türbülans standart sapması şu şekilde hesaplanır.

$$\sigma_w = k_t V_b k_1$$

$$k_r = 0.19 \frac{z_0}{z_{0,u}}^{0.07} = 0.19 x \frac{1}{0.05}^{0.07} = 0.234$$

 $\sigma_w = 0.234 \ge 25 \ge 1.0 = 5.86$

 $I_v = \sigma_w / v_m(z) = 5.86 / 16.16 = 0.363$

Dinamik Rüzgar Hızı

Türbülans hızının binalara etkisi standart sapmanın 3.5 katı olarak hesaplanır.

$$\overline{w}_{maz} = 3.5 \sigma_w$$

 $\overline{w}_{maz} = 3.5 \ge 5.86 = 20.5$

Maksimum rüzgar hızı ortalama rüzgar hızı ile dinamik rüzgar hızının mutlak toplamıdır.

$$|V(z,t)|max = V_m(z) + \overline{w}_{maz}$$

|V(z,t)|max = 16.6 + 20.5 = 37 m/s

Rüzgar Basıncı

Birim alana gelen maksimum rüzgar basıncı hesaplanırken havanın kütle yoğunluğu (ρ) ve maruz kalma katsayısı c_e(z) ve rüzgar basıncından faydalanır.

$$q_p(z) = [1 + 7I_v(z)] \frac{1}{2} \rho v_m^2(z)$$

 $q_p(z) = (1+7 \text{ x}0.363) \text{ x} \frac{1}{2} \text{ x} 1.25 \text{ x} 16.16^2 = 577.95 = 0.578 \text{ kN/m}^2$

q: havanın yoğunluğu (1.25 N/m3)

Yüzey rüzgar basıncı

Dış yüzeylere etkiyen rüzgar basıncı şu şekilde hesaplanmaktadır.

 $w_e = q_p(z_e) c_{pe}$

Binalara Etkiyen Rüzgar Yükü

Rüzgara dik doğrultudaki düzlemde z yüksekliğindeki bir yüzeye etkiyen maksimum rüzgar yükü Q(z), maksimum rüzgar basıncı $q_p(z)$ 'nin yüzey alanı A ve yüzey basınç katsayısı C_p ile doğru orantılıdır. Bu yüzeyler Şekil 5.2'de gösterilmiştir.

Şekil 5.2 : Bina yüzeyine etki eden rüzgar yükleri.

$$Q(z) = q_p(z)C_pA$$

$$C_{p,A} = C_{p,1} - (C_{p,1} - C_{p,10})\log_{10}A \qquad (1m^2 \le A \le 10m^2)$$

 C_{p1} katsayısı yapısal olmayan elemanlara ve bağlantılara gelen rüzgar yükleri hesabında; C_{p10} ise yapının taşıyıcı sistemine gelen yüklerin hesabında kullanılmaktadır.

Şekil 5.2 ile belirtilen yüzeylere karşılık gelen katsayılar Çizelge 5.2'de ifade edilmiştir.

KAT z	7(m)	C _e (z)	$V_m = C_e(z) * C_t * V_b$	Iv(z)	q _p (z)	Dış basınç değerleri	
	Z(111)					W _D	$W_{\rm E}$
1.kat	4,65	0,3596	10,1788	30,6788	0,4706	0,376	0,329
2.kat	8,32	0,4958	14,0321	34,5321	0,5962	0,477	0,417
3.kat	12	0,5815	16,4577	36,9577	0,6829	0,502	0,478

Çizelge 20 : Rüzgar basınç değerleri.

Deprem Yükü:

DBYBHY-2007 yönetmeliğine göre toplam yüksekliği 40m'nin altında olan yapılarda "Eşdeğer Deprem Yükü" yöntemi ile hesap yapılıp alt sınır değerleri elde edilmiştir.

$$V_t = \frac{WA(T)}{R_a(T_1)} \ge 0.10A_0IW$$

W= D+0.3L = 3040.24 kN
Ao= 0.3 (zemin smifi 2)
I= 1.0 (ofis binası)
T₁=1.113
T_a=0.15
T_b=0.40

Şekil 5.3 : Spektrum katsayısı ve bina birinci doğal titreşim periyodu ilişkisi.

Buna göre spektral ivme Şekil 5.3'te verilen eğriye göre idealleştirilerek sayısal çözümü yapılmıştır.

$$S(T)= 2.5 (Tb/T)^0, 8 = 1.087$$

 $R(T)=R=6$
 $A(T)=Ao x I x S(T) =0.326$
 $V_t = \frac{WA(T)}{R_a(T_1)} = 165.227 \text{ kN} \ge V_{tB} = 0.10A_0IW = 91.21 \text{ kN}$
 V_t : Taban kesme kuvveti
W: Yapının ağırlığı

A₀= Etkin yer ivme katsayısı

I: Yapı önem katsayısı

S(T): Spektrum katsayısı

R: Taşıyıcı sistem davranış katsayısı

Katlara etkiyen taban kesme kuvveti, modellemede kullanılan düşey yüklerin oluşturduğu toplam ağırlığın kat hizalarına gelen deprem yüklemesindeki yatay yükler olarak hesaplanmış ve Çizelge 5.3'te sunulmuştur.

	Model-2						
Kat	wi (KN)	hi(KN)	wi x hi	WiHi/∑WiHi	Fix		
3.Kat	1.296,60	11,99	15.546,23	0,58	95,86		
2.Kat	860,60	8,32	7.160,19	0,27	44,15		
1.Kat	879,60	4,65	4.090,14	0,15	25,22		

Çizelge 21 : Katlara etkiyen eşdeğer deprem yükleri.

Gözönüne alınan deprem doğrultusunda, elde edilen bina toplam deprem yükü V_{tB} 'nin, Eşdeğer Deprem Yükü Yöntemi'nde hesaplanan bina toplam deprem yükü V_t 'ye oranının aşağıda tanımlanan β değerinden küçük olması durumunda ($V_{tB} < \beta V_t$), Mod Birleştirme Yöntemi'ne göre bulunan tüm iç kuvvet ve yer değiştirme büyüklükleri büyütülmelidir (DBYBHY-2007)

 $B_D = (\beta V_t / V_{tB}) B_B$ ($\beta = 0.80$; A1, B2 veya B3 tipi düzensizlik yoktur)

 $V_{tB} = 91.21 kN$

 $\beta V_t \!=\! 0.80 x 167.23 \ = 132.18$

 $V_{tB} < \beta V_t \qquad (uygun)$

6. AISC-360-10 İLE ÇELİK YAPININ TASARIMI

Amerika Çelik Yapılar Enstitüsü tarafından hazırlanmış olan AISC 360-10 yönetmeliği çelik yapı tasarımında en yaygın olarak kullanılan yönetmelikler arasındadır. Bu yönetmelik yardımı ile çelik yapı tasarlanırken ilk olarak karar verilmesi gereken konular arasında tasarım yöntemi gelir. Temel olarak iki ana yöntem vardır, bunlar:

- ASD (Allowable Stress Design) Emniyet Gerilmelerine Göre Tasarım
- LRFD (Load and Resistance Factor Design) Taşıma Gücü Yöntemine Göre Tasarım

Bu çalışmada irdelenen çelik yapının tasarımı LRFD çözüm yöntemi ile yapılmıştır. Bu yöntem dayanıma göre limit kapasite tasarımı açısından gerçek yapı davranışıyla daha uyumludur. Genel denklemi;

$$\Phi R_n \ge \Sigma \gamma i Q i \tag{6.1}$$

Bu denkleme göre dayanım artırılmış yüklere en az eşit ya da büyük olmalıdır.

Kolon ya da kiriş elemanı boyutlandırılırken öncelikle seçilen kesitin özellikleri incelenmeli ardından kapasite kontrolleri yapılmalıdır. AISC 360-10 ile takip edilecek adımlar aşağıda özetlenmiştir.

6.1 Kesit Özellikleri

Kesitlerin özellikleri temelde üç farklı ayrımla tanımlanır. Bunlar narin kesit, kompakt kesit ve kompakt olmayan kesit özellikleridir.

- *Narin enkesitler*: Bu özellikteki enkesitte basınç etkisi altında plastikleşme oluşmaksızın elastik burkulma gerçekleşir.

λ > λr ise enkesit narindir. Kalınlık, genişlik ya da çapa bağlı bu değerler Şekil
6.1 yardımıyla her bir eleman tipine göre farklı hesaplarla tespit edilir.

- *Kompakt enkesitler:* Enkesitte yerel burkulma oluşmaksızın plastikleşme gözlemlenebilen kesitlerdir.

 $\lambda \leq \lambda p$ ise kesit kompaktır.

 Kompakt olmayan kesitler: Enkesitte basınç etkisi altında kısmen plastikleşme durumuna geçilir ve kesit tam anlamıyla plastik gerilme dağılımına geçemeden elastik olmayan burkulma oluşur. λp < λ ≤ λ ise kesit kompakt değildir.

b/t	$0.38\sqrt{\frac{E}{F_y}}$	$1.0\sqrt{\frac{E}{F_y}}$	$ \underbrace{\overset{b}{\overset{b}{}{}{}{}{}{$
b/t	$0.38\sqrt{\frac{E}{F_y}}$	$0.95\sqrt{\frac{k_c E}{F_L}}$	h
b/t	$0.54\sqrt{\frac{E}{F_y}}$	$0.91\sqrt{\frac{E}{F_y}}$	$\frac{b}{1-t}t$ $-\frac{b}{1-t}$
b/t	$0.38\sqrt{\frac{E}{F_y}}$	$1.0\sqrt{\frac{E}{F_{y}}}$	$-\frac{t}{b} - \frac{b}{t} - \frac{b}{t}$
d/t	$0.84\sqrt{\frac{E}{F_y}}$	$1.03\sqrt{\frac{E}{F_y}}$	<u>t-1-1</u> d
h/t _w	$3.76\sqrt{\frac{E}{F_y}}$	$5.70\sqrt{\frac{E}{F_y}}$	$t_{\underline{w}}$
h _c ∕t _w	$\frac{\frac{h_{e}}{h_{p}}\sqrt{\frac{E}{F_{y}}}}{\left(0.54\frac{M_{p}}{M_{y}}-0.09\right)^{2}}\leq\lambda_{r}}$	$5.70\sqrt{\frac{E}{F_y}}$	$\begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$
b/t	$1.12\sqrt{\frac{E}{F_y}}$	$1.40\sqrt{\frac{E}{F_y}}$	$\frac{1}{D}$
b/t	$1.12\sqrt{\frac{E}{F_y}}$	$1.40\sqrt{\frac{E}{F_y}}$	+
h/t	$2.42\sqrt{\frac{E}{F_y}}$	$5.70\sqrt{\frac{E}{F_{y}}}$	$-\underbrace{t-}_{-}$
D/t	$0.07 \frac{E}{F_y}$	0.31 <u></u> <i>F_y</i>	

Şekil 6.1 : Kesit özellikleri: Birinci sütun genişlik-kalınlık oranı, ikinci sütun kompakt olan, üçüncü sütun kompakt olmayan, dördüncu sütun kesit tiplerini listelemektedir.

6.2 Kesit Taşıma Kapasiteleri

Bu bölümde ifade edilen formüller, çelik yapının boyutlandırılmasında öngörülen kesitlerin taşıma kapasitesinin mevcut yük talebini karşılması için gereken dayanım koşullarının sınırlarını ifade eder.

6.2.1 Çekme dayanımı

Eksenel kuvvete maruz kalan bir elemanda şu koşul sağlanmalıdır:

$$\phi_t P_n \le P_a \tag{6.2}$$

Brüt enkesitte kesitin eksenel çekme kuvveti kapasitesi

$$P_n = F_y \, x \, A_g \tag{6.3}$$

LRFD yöntemine göre güvenlik katsayısı ile çarpılır

$$\phi_t P_n = 0.90 \ x P_n \tag{6.4}$$

Net enkesitte kopma durumuna göre hesapta

$$P_n = F_u \, x \, A_{nt} \tag{6.5}$$

LRFD yöntemine göre güvenlik katsayısı ile çarpılır

$$\phi_t P_n = 0.75 \ x P_n \tag{6.6}$$

6.2.2 Basınç dayanımı

Eksenel basınç kuvvetine maruz kalan bir elemanda şu koşul sağlanmalıdır

$$\phi_t P_n \le P_c \tag{6.7}$$

Brüt enkesitte kesitin eksenel basınç kuvveti kapasitesi

$$P_n = F_{cr} \, x \, A_g \tag{6.8}$$

Kritik gerilme elemanın narinliğine bağlı hesaplanır.

- Eğer
$$KL/r \le 4.71 \sqrt{\frac{E}{F_y}}$$
 ise

$$F_{cr} = (0.689^{\frac{F_y}{F_r}}) \times F_y$$
(6.9)

- Eğer $KL/r \le 4.71 \sqrt{\frac{E}{F_y}}$ ise

$$F_{cr} = 0.877 \times F_e \tag{6.10}$$

Buna bağlı sınır gerilme kuvveti elde edilir

$$F_e = \frac{\pi^2 \times E}{\left(\frac{K \times l}{r}\right)^2} \tag{6.11}$$

6.2.3 Eğilmeli burulma kontrolü (narin olmayan elemanlarda)

Çift simetri eksenine sahip kesitlerde

$$F_e = \left[\frac{\pi^2 E C_w}{\left(K_z L\right)^2} + G J\right] \times \frac{1}{I_x + I_y}$$
(6.12)

Burada C_w (Çarpma Katsayısı)

$$C_w = (I_y x h_o^2)/4$$
 (6.13)

6.2.4 Eğilme dayanımı

Çift simetri eksenli kompakt kesitlerin güçlü eksen etrafında akma eğilme dayanımı ve yanal burulmalı burkulmalı eğilme dayanımı durumlarından en elverişsiz olanına göre tasarım yapılır.

Akma eğilme dayanımı

$$M_n = M_p = F_y \times Z_x \tag{6.14}$$

Yanal burulmalı burkulma dayanımı

Eğer $L_p < L_b < Lr$ ise

$$M_{n} = C_{b} \left[M_{p} - \left(M_{p} - 0.7 \times F_{y} \times S_{x} \right) \right) \left(\frac{L_{b} - L_{p}}{L_{r} - L_{p}} \right) \right] \le M_{p}$$

$$(6.15)$$

Eğer $L_b > Lr$ ise

$$M_n = F_{cr} \times S_x \le M_p \tag{6.16}$$

$$F_{cr} = \frac{C_b \times \pi^2 \times E}{(\frac{L_b}{r_{ss}})} \sqrt{1 + 0.078 \times \frac{J_c}{S_s h_0} \times (\frac{L_b}{r_{ss}})^2}$$
(6.17)

$$L_p = 1.76 \times r_y \times \sqrt{\frac{E}{F_y}}$$
(6.18)

$$L_{r} = 1.95r_{ts} \frac{E}{0,7F_{y}} \sqrt{\frac{J_{c}}{S_{x}h_{0}}} \sqrt{1 + \sqrt{1 + 6.76(\frac{0.7F_{y}}{E} \frac{S_{x}h_{0}}{J_{c}})^{2}}}$$
(6.19)

$$r_{ss}^{2} = \frac{\sqrt{I_{y}C_{w}}}{S_{z}} \tag{6.20}$$

Eğer $L_b \leq L_p$ ise bu kontrol göz ardı edilir.

Eğer dairesel kesit ya da kutu kesitlerde enkesit kompakt ise burkulma meydana gelmez.

Elemanların zayıf eksen etrafında eğilme dayanımı başlık yerel burkulma durumuna ve akma limit durumuna göre en elverişsiz duruma göre tasarlanır.

Akma durumu

$$M_n = M_p = F_y \times Z_y \le F_y \times S_y \tag{6.21}$$

Başlık yerel burkulma durumu

- Eğer kesit *kompakt* ise akma durumu ile aynı hesap yapılır.
- Eğer kesit kompakt olmayan başlığa sahipse;

$$M_{n} = \left[M_{p} - \left(M_{p} - (0.7F_{y}S_{y}) \right) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right]$$
(6.22)

- Eğer başlık narin enkesitse;

$$\mathbf{M}_{n} = \mathbf{F}_{cr} \mathbf{X} \mathbf{S}_{y} \tag{6.23}$$

$$F_{cr} = \frac{0.69E}{\left(\frac{b_f}{2t_f}\right)^2} \tag{6.24}$$

$$\lambda = b/t \tag{6.25}$$

$$\lambda_{pf} = \lambda_p \tag{6.26}$$

$$\lambda_{rf} = \lambda_r$$
 (6.27)

Dairesel kesitlerde eğilme dayanımı akma limit durumu ve yerel burkulmanın en elverişsiz olanına göre hesaplanır.

- Akma Durumu

$$M_n = M_p = F_y \times Z \tag{6.28}$$

- Yerel Burkulma

Kompakt başlıklı kesitte yerel burkulma göz ardı edilir.

Kompakt olmayan başlıklı kesitlerde

$$M_n = \left(\frac{0.021E}{\frac{D}{t}} + F_y\right)S$$
(6.29)

- Narin kesitlerde ise

$$M_n = F_{cr} \times S \tag{6.30}$$

$$F_{\sigma} = \frac{0.33E}{\frac{D}{t}}$$
(6.31)

6.2.5 Birleşik kuvvetler ve burulma etkisi altındaki dayanım

Çift simetri eksenine sahip kesitlerde eğilme dayanımı etkileri birleşik olarak iki ayrı limite göre tasarlanır:

- Eğer $P_r/P_c \ge 0.2$ ise

$$\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{rc}} + \frac{M_{ry}}{M_{cy}} \right) \le 1.0$$
(6.32)

- Eğer $P_r/P_c < 0.2$ ise

$$\frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{rc}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0$$
(6.32)

Burada $P_c = \phi_c P_n (\phi_c = 0.90)$

 $M_c = \phi_b M_n (\phi_b = 0.90)$

- Eğer elemanda basınç kuvvetine bağlı sadece tek eksenli eğilme durumu gözlemlenirse

$$\frac{P_r}{P_{co}} + \left(\frac{M_r}{M_{cx}}\right)^2 \le 1.0 \tag{6.32}$$

6.3 Merkezi Çelik Çapraz Sistem Tasarımı

Kiriş, kolon ve çapraz elemanı birleşerek düşey kafes sistemleri oluştururlar ve yatay yönde etki eden deprem kuvvetlerine bu sistem ile karşı koyarlar. Çapraz elemanlarının oluşacak çekme ve basınç kuvvetleri karşısında akmaması ve burkulmaması için elastik olmayan davranış boyunca yeteri derecede sünek bir yapıya sahip olması gerekmektedir.

Bu tip çapraz yapı tasarımlarına Şekil 6.1 ile gösterilen örnekler verilebilir.

Şekil 6.2 : Merkezi çapraz sistem çeşitleri.

Merkezi çelik çapraz sistemler (MÇÇS) elastik olmayan bölge içindeyken beklenen davranış biçimi basınç elemanının burkulması, çekme elemanının akmasıdır. Çapraz elemanları akma ve burkulma ile plastik davranış halindeyken kiriş ve kolonlar büyük çoğunlukla elastik kalmalıdır. Basınca çalışan eleman burkulurken basınç dayanımını çoğunlukla kaybedecektir. Bu sebeple çapraz elemanlarının burkulması sünek olmayan özellikteyken çekmeye maruz kalan elemanda yüksek derecede sünek bir davranış gözlemlenir. Sonuç olarak Şekil 6.2 ve Şekil 6.3 ile görselleştirildiği gibi MÇÇS'nin sünek davranışı çekme etkisi altında akma dayanımı ile oluşur.

Şekil 6.3 : Çapraz elemanının yükleme anında basınç ve çekme kuvveti etkisiyle şekil değiştirmesi.

Yatay yük yön değiştirdiğinde bir önceki yükleme anında basınç etkisi altında burkulan eleman bu kez çekme kuvvetine maruz kalacak ve akma gerilmesi boyunca sünek davranacaktır. Benzer şekilde bir önceki yükleme altında çekme gerilmesine maruz kalan eleman basınç etkisi altında burkulacaktır. Dolayısıyla MÇÇS'ler depreme maruz kaldığında ard arda çekme ve basınç etkileri altında kalacaktır. Bu çevrimsel hareket devam ederken kolonlar elastik kalmaya devam etmektedir. Merkezi çapraz sistemler ile hedeflenen süneklik düzeyini yakalamak için çok sayıda çevrimsel yükleme esnasında sistem ya da bağlantı elemanları göçmeden/kopmadan çapraz elemanlarda burkulma ve akma etkileri gözlemlenmelidir.

Şekil 6.4 : Çapraz elemanının ters yükleme anında basınç ve çekme kuvveti etkisiyle şekil değiştirmesi.

Çapraz elemanlar ile oluşturulan çerçeve sistemlerde kritik elemanlar çaprazlardır. Bu elemanlar sistemin sigorta elemanıdır. Elastik olmayan davranış çapraz elemanlarda görüleceği için bu elemanların çevrimsel yükler altındaki davranışını anlamak önem arz etmektedir.

6.3.1 Çapraz elemanının çevrimsel yük etkisindeki davranışı

Şekil 6.4 ile aşama aşama çapraz elemanın çevrimsel yük altındaki davranışı incelenmiştir. Her bir grafiğin yanında yer alan numara aşağıdaki maddeler ile açıklanmaktadır.

- Eksenel kuvvet çekme durumundayken pozitif tanımlanmıştır. Kesitin ilk boyunun uzaması yönünde etki oluştuğunda eksenel şekil değiştirme pozitif tanımlanmıştır.
- Kesit öncelikle eksenel basınca maruz kalmaktadır. Basınç etkisi arttıkça eksenel kuvvet etkisiyle oluşan P-delta momenti ile düzlem dışı hareket gözlenir. Basınç yüklemesi, burkulma yükü P_{cr} değerine ulaşıncaya kadar devam eder. P_{cr} yükü sistemin narinlik derecesine ve kullanılan çeliğin kalitesine bağlıdır (Bkz. AISC 360-10)
- 3. Eğer basınç yüklemesi devam ederse çapraz elemanı burkulma kapasitesi P_{cr} değerine ulaşır ulaşmaz basınç dayanımı keskin bir şekilde düşer. Bu ard burkulmalı durumda çapraz elemanı düzlem dışı burkulmaya devam ederken yatay sapma miktarı Δ(delta) artar. Bir noktadan sonra P-delta etkisine bağlı moment açıklık ortasında belli bir büyüklüğe ulaşınca eğilmeye bağlı *plastik mafsal* oluşur. P-delta momenti elemanın plastik momentine M_p eşit olur.

- 4. Çapraz elemanına etkiyen yük ortadan kaldırıldığında elemanda kalıcı bir şekil değiştirme (eksenel kısalma) ve düzlem dışı deformasyon meydana gelmiştir.
- 5. Sistem bu defa eksenel çekme kuvveti ile yüklenmeye başlamıştır. Çekme kuvveti etkisiyle elemanın formu düzleşir ve eğer sistem bu şekilde yüklenmeye devam ederse eleman P_y= AF_y kuvveti altında akmaya başlayacaktır. Akma gerilmesi sünek bir davranış olduğu için eleman akma dayanım kapasitesini büyük deformasyonlara rağmen koruyacaktır.
- Çekme kuvveti ortadan kaldırıldığında elemanda kalıcı (eksenel uzama) ve düzlem dışı deformasyon görülür.
- 7. Çapraz eleman bir kez daha basınç kuvveti ile yüklendiğinde bu defa sistem daha az miktardaki yük altında burkulmaya başlar. Bunun iki sebebi vardır, ilki ilk yükleme altında meydana gelen kalıcı deformasyondur; ikinci sebep ise Bauschinger Effect olarak tariflenen çevrimsel hareket esnasında malzemenin sertliğinin azalması durumuna bağlıdır.
- 8. Basınç kuvveti yüklenmeye devam ettikçe elemanın basınç dayanım kapasitesi ani bir şekilde düşecektir. İlk basınç yüklemesinde olduğu şekilde elemanın açıklık ortasında P-delta momentine bağlı plastik mafsal oluşur. Arta kalan burkulma sonrası kapasite ilk çevrimdekine yakındır.

Şekil 6.5 : Çapraz elemanının çevrimsel eksenel kuvvet altındaki davranışı.

Genişlik- kalınlık oranı (b/t) yüksek olan en kesitlerde yerel burkulma, elemanın orta noktasında plastik mafsal noktasında oluşur. Çevrimsel yüklemenin uzun süre tekrarlanmasından sonra yerel burkulma olan noktada kopma gözlemlenir.

6.3.2 Çapraz sistem tasarım yaklaşımı

Çapraz elemanları yeterince sünek davranış gösterecek şekilde tasarlanmalıdır. Bu elemanlar tüm sistemin sigorta elemanldır ve dolayısıyla sistemin en zayıf kesitleri çaprazlardır. Çapraz elemanların kolon ve kirişlere olan bağlantısı, çevrimsel yükleme esnasında oluşacak maksimum kuvvetlere ve deformasyona dayanacak şekilde tasarlanmalıdır. Tasarım sırasında aşağıdaki adımlar izlenir.

- Çapraz elemanlar yönetmeliklerce tanımlanan deprem yükleri göz önüne alınarak tasarlanır. Seçilecek elemanın kesiti basınç dayanım kapasitesine göre belirlenir.
- Çerçeve sistemi oluşturan tüm elemanları (çapraz bağlantısı, kirişler, kolonlar, kolon taban plakası vs.) çaprazlar tarafından açığa çıkan en büyük kuvvetler dikkate alınarak tasarlanır.
- Şekil 6.5 ile çapraz elemanlarında oluşan maksimum çekme ve basınç kuvvetleri gösterilmiştir. Maksimum basınç dayanımı AISC Seismic Provisions'a göre R_yP_n bağıntısı ile bulunabilmektedir.

 P_n elemanın basınç dayanım kuvvetidir. Bu değer R_y ile çarpılarak öngörülen akma gerilmesi değerini de işleme katar. Son olarak 1.1 katsayısı ile çarpılan denklem elemanın gerçek burkulma kapasitesini tahmin etmek için belirsizliklerin etkisini dikkate alır.

Şekil 6.6 : Çapraz elemanı maksimum çekme ve basınç kuvvetleri.

Artık basınç kuvveti kapasitesini hesaplarken elemanın basınç dayanım değerinin %30'u işleme katılmaktadır $(0.30P_n)$.

7. ÇELİK YAPININ BOYUTLANDIRMASI

Çelik yapının boyutlandırma hesaplarında AISC 360-10 yönetmeliğinden faydalanarak LRFD kabullerine göre bir önceki bölümde tanımlanan formüllere göre işlen yapılmıştır.Aşağıda şematik olarak ifade edilen kolon, kesit ve çapraz elemanların kapasite kontrolleri yapılmış ve bağlantı detayları çözülmüştür.

7.1 Çapraz Elemanı Boyutlandırma Ve Kapasite Kontrolü

Seçilen çapraz kesiti= HSS5x0.250 L = 4941,2mm $P_u = 217.311kN$ $R_y = 1.381$ $\Phi P_{nc} = 256.65kN$ $\Phi P_{nt} = 556.43kN$ $I_y = 413.7cm^4$ $I_x = 413.7cm^4$ G = 76,903.07MPa $Y = 828.3cm^4 = 828.3x10^4mm^4$ En elverişsiz yük kombinasyonu: DSTL18=(1.2D+L+EQy)

Kesit	r(mm)	KL/r	D/t	$\Phi P_n(kN)$
HSS5x0.250	42.9	115.18	19.84	554.85

<u>Narinlik</u>

$$\frac{D}{t} \le \frac{0.11E}{F_y} = 0.11 \left(\frac{200.000}{275}\right) = 80$$

 $1984 \le 80$

Kompakt/Kompakt Olmayan Kesit Kontrolü

$$\frac{D}{t} \le \frac{0.07E}{F_y} = 0.07 \left(\frac{200.000}{275}\right) = 51$$

 $1984 \leq 51$ kesit kompakttur.

Brüt Kesit Alanında Çekme Kontrolü

 $P_n = F_y A_g = 275 \times 22.5 \times 10^2 = 616.500 = 616.5kN$

 $\Phi t = 0.90$ $\Phi P_n = 554.85$ kN

Burkulma Kontrolü

$$\frac{KL}{r} \leq {}^{?} 4.71 \sqrt{\frac{E}{F_y}} = 4.71 \sqrt{\frac{200.000}{275}} = 127.25$$
$$\frac{KL}{r} = 115.8 \leq 127.25$$
$$F_{cr_1} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y = \left[0.658^{\frac{275}{148.79}}\right] 275 = 126.77MPa$$
$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2} = 148.79$$

Eğilmeli Burulma Kontrolü

$$\begin{split} F_e &= \left[\left(\frac{\pi^2 E C_w}{(K_z L)^2} \right) + G J \right] \frac{1}{I_x + I_y} \\ (C_w &= I_y \times \frac{h_0^2}{4} = 413.7 cm^4 \times \frac{114.2^2}{4} = 1.35 \times 10^{10} mm^6) \\ F_e &= \left[\frac{\pi^2 \times 200.000 \times (1.35 \times 10^{10})}{1 \times 4941.2} + (76.903,07 \times 828.3 \times 10^4) \right] \\ &\qquad \times \frac{1}{413.7 \times 10^4 \times 2} = 728,788 MPa \\ F_{cr_2} &= \left[0.658^{\frac{275}{728,788}} \right] 275 = 273.96 MPa \\ F_{cr_2} &= 273.96 MPa \end{split}$$

 $F_{cr_1} = 126.77 MPa \rightarrow$ en düşük değere göre hesap yapılır;

$$\Phi P_n = 0.90 \times 126.77 \times (22.5 \times 10^2) = 256,709.25N = 256kN$$

Yerel Burkulma

Seçilen kesit kompakt olduğu için başlık yerel burulma kontrolü yapılmasına gerek yoktur.

Elastik Olmayan Tasarım Yükleri

Çapraz çekme durumundayken:

 $P = R_y F_y A_g = 1.381 \times 616.500 = 851,386 = 851.386 kN$

Çapraz basınç durumundayken:

 $P = 1,1R_{\gamma}P_n = 1.1 \times 1.381 \times 287 = 485.98kN$

 $P_{burkulma \ sonrasi} = 0.3 \times P_n = 0.3 \times 287 = 86.1 kN$

7.2 Kolon Elemanı Boyutlandırma ve Taşıma Kapasitesi Kontrolü

1 nolu yükleme alternatifine göre hesap:

$$\sum_{n} d \ddot{u} \$ey \ y \ddot{u}k = 1.1.R_{y}P_{n} \cos(\theta)2 = 1.1 \times (1.381) \times 287 \times \cos(19.76) \times 2$$
$$= 820.62kN$$

2 nolu yükleme alternatifine göre hesap:

$$\sum_{2} d\ddot{u}şey \ y\ddot{u}k = 0.3. P_n \cos(\theta) 2 = 0.3 \times 287 \times \cos(19.76) \times 2 = 162.06 kN$$

En elverişsiz kombinasyon

$$DSTLSI7 = 1.2D + L - E_x = 1.2D + L - (pQ_E + 0.2D) = 1.0D + L - 1\left(\frac{F_{x_1}}{4}\right)$$
$$= 1.0(1.2 + 0.189) + 1.5 + 2.043kN/m$$
$$= 4.932kN/m \times (4.650m) = 8.582kN$$
$$F_{x_1} = \frac{24.75}{4} = \frac{6.13m}{3m}$$
$$P_{total} = 820.62 + 9.582$$
$$P_u = 830.202kN$$

Moment

$$M_u = \frac{wL^2}{24} = \frac{4.932(kN/m)(4.650m)^2}{24} = 4.44kNm$$

<u>Narinlik</u>

$$\lambda = \frac{D}{t} = \frac{355.6}{8} = 44.375 \le \lambda_r = \frac{0.11E}{F_y} = 0.11 \times \frac{200.000}{274} = 80.29$$

Kompak/Kompakt olmayan kesit kontrolü

$$\lambda = \frac{D}{t} = 44.375 \le \lambda_p = \frac{0.07E}{F_y} = 0.07 \times \frac{200.000}{274} = 51.09$$

<u>Burkulma kontrolü</u>

$$\frac{K_x L_x}{r_x} \le {}^{?} 4.71 \sqrt{\frac{E}{F_y}}$$

$$\frac{1 \times 4.650}{122.7} = 37.89 \le 4.71 \sqrt{\frac{200.000}{274}} = 127.25$$

$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y = \left[0.658^{\frac{275}{1374.53}}\right] 274 = 252.07MPa$$

$$F_e = \frac{\pi^2 E}{\left(\frac{K_x L_x}{r_x}\right)^2} = 1374.93$$

$$\frac{K_x L_x}{r_x} = \frac{K_y L_y}{r_y} \text{ olduğu için u vönünde tekrer kontrol venulmer}$$

 $\frac{\kappa_x L_x}{r_x} = \frac{\kappa_y L_y}{r_y}$ olduğu için y yönünde tekrar kontrol yapılmasına gerek yoktur.

Eğilmeli Burulma Kontrolü

$$F_{e} = \left[\left(\frac{\pi^{2} E C_{w}}{(K_{z}L)^{2}} \right) + G I \right] \frac{1}{I_{x} + I_{y}} = (79.903,07 \times 26266.3) \times \frac{1}{13133.2 \times 2}$$

$$= 79902.77MPa$$

$$F_{cr} = \left[0.658^{\frac{275}{79902.77}} \right] 275 = 273.61MPa$$

$$F_{crmin}(252.07,273.61) = 252.07MPa$$

$$\Phi P_{n} = \Phi F_{cr}A_{g} = 0.90 \times 252.07MPa \times (87.2 \times 10^{2}) = 1978245N = 1978.25kN$$

$$Cekme Dayanımı Kontrolü$$

$$Akma Dayanımı = M_{n} = M_{g} = F_{y}Z = 274 \times 963.4 \times 10^{3} = 263971600Nmm$$

$$= 263.971kNm$$

$$\Phi M_{n} = 237.573kNm$$

$$Yatay Burulma Kontrolü$$

 $L_b = 4650mm$

$$L_p = 1.76(122.7mm) \sqrt{\frac{200.000}{274}} = 5834mm$$

 $L_b < L_p$: burkulma oluşmamaktadır.

Kolon elemanının yukarıda hesaplanan moment ve eksenel kuvvetlerin birleştirilmiş etkileri altında kapasite-talep oranı hesaplanır.

$$P_{req}=830.202 \text{kN}$$

$$P_{c}=1978.25 \text{kN}$$

$$\frac{P_{r}}{P_{c}} = 0.42 \ge 0.2 \text{ olduğu için aşağıdaki denklemden faydalanılır.}$$

$$\frac{P_{r}}{P_{c}} + \frac{8}{9} \left(\frac{M_{r_{x}}}{M_{c_{x}}} + \frac{M_{r_{y}}}{M_{c_{y}}} \right) \le 1.0$$

$$0.42 + \frac{8}{9} \left(\frac{4.44 \text{kNm}}{237.573 \text{kNm}} \right) = 0.437 \le 1.0$$

Kesit uygundur.

7.3 Kiriş Elemanı Boyutlandırma ve Taşıma Kapasitesi Kontrolü

Seçilen Kiriş Kesiti= W8x13 L = 33425mm

$$b = 101.6m$$

$$A = 24.8 cm^2$$

$$t_f = 6.5mm$$

 $t_w = 5.8mm$

$$I_3 = 1648.3 cm^4$$

$$I_2 = 113.6 cm^4$$

$$S_y = 22.4 cm^3$$

 $S_x = 162.4 cm^3$

 $Z_x = 186.8 cm^3$

 $Z_y = 35.2 cm^3$

$$j = 3.6 cm^4$$

$$C_w = 10,925.3cm^6$$

<u>1 nolu duruma göre (maksimum çekme ve maksimum basınç kuvvetleri altında hesap)</u>

$$\sum \text{Çapraz elemandan gelen düşey kuvvet} = R_y F_y A_g \cos(\theta) - 1.1 R_y P_n \cos(\theta)$$
$$= 851.39 \cos(19.76) - 485.98 \cos(19.76) = 801.28 - 457.36$$
$$= 843.92 kN$$

$$\sum \text{Çapraz elemandan gelen yatay kuvvet} = R_y F_y A_g \sin(\theta) + 1.1 R_y P_n \sin(\theta)$$

= 851.39 sin(19.76) + 485 sin(18.76) = 287.84 = 164.30
= 452.14kN

En büyük değer hesaba katılır.

Elemana etkiyen moment:

En elverişsiz yük kombinasyonu: DSTL19=(1.2D+0.5L+EQ_y)

$$= 1.2D + 0.5L + qQ_E + 0.2D = 1.4D + 0.5L + 1\left(\frac{F_{\chi_1}}{4}\right)$$
$$= 1.4\left(\frac{1.2kN}{m} + \frac{0.189kn}{m}\right) + 0.5\left(\frac{3kN}{m}\right) + \frac{6.13kN}{3m}$$
$$= 1.95 + 1.4 + 2.04 = \frac{5.49kN}{m}$$

ASCE 7_10 Bölüm 12.7.2 ile açıklanan deprem yükü hesaplama yöntemine göre düşey ve yatay deprem kuvvetleri göz önüne alınır.

Etkin sismik kütle

Bölme duvar ağırlığı ya da minimum kat alanının (0.48kN/m²) kadarı hesaplanır ve en büyük değer hesaba katılır.

$$EQ = E_h + E_v$$

$$E_h = qQ_E$$

$$E_v = 0.2S_{DS}D = 0.2D$$

$$EQ = qQ_E + 0.2D$$

$$M_U = \frac{WL^2}{24} = \frac{(5.49)(3.342)^2}{24} = 2.55kNm$$

(Eleman yalnıca iki uçtan mesnetli olsaydı)

$$M_{mid} \cong 2.00kNm$$

$$\sum d \ddot{u} sey \ kuvvet = R_y F_y A_g \cos(\theta) - 0.3P_n \cos(\theta) = 801.28 - 86.1 \cos(19.76)$$

$$= 720.25kN$$

 $\sum yatay \ kuvvet = R_y F_y A_g \sin(\theta) + 0.3 P_n \sin(\theta) = 287.84 + 29.11 = 316.95 kN$

→ Düşey yüklerden gelen kuvvet en yüksek değerle hesaba katılır.

<u>Narinlik</u>

$$\lambda = \frac{b}{2t_g} \le 0.38 \sqrt{\frac{E}{F_y}} \qquad \qquad \frac{101.6}{2 \times 6.5} \le 0.38 \sqrt{\frac{200.000}{274}} \ 7.82 \le 10.27$$

Kompakt/Kompakt Olmayan Kesit Kontrolü

$$\frac{h}{tw} \le 3.76 \sqrt{\frac{E}{F_y}} \qquad \frac{202.9}{5.8} \le 3.76 \sqrt{\frac{200.000}{275}} \ 34.98 \le 101.58$$

<u>Burkulma Kontolü</u>

X-yönünde kontrol:

$$\frac{K_x L_x}{r_x} \le {}^? 3.76 \sqrt{\frac{E}{F_y}}$$

$$\frac{0.65 \times 3342.5}{81.6} \le 4.71 \sqrt{\frac{200.000}{275}}$$

$$26.63 \le 127.25$$

$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y = \left[0.658^{\frac{275}{2783}}\right] 275 = 262.94MPa$$

$$F_e = \frac{\pi^2 E}{\left(\frac{K_x L_x}{r_x}\right)^2} = 2783.48$$

Y-yönünde kontrol:

$$\begin{aligned} \frac{K_y L_y}{r_y} &\leq {}^2 4.71 \sqrt{\frac{E}{F_y}} \\ \frac{0.65 \times 3342.5}{21.4} &\leq 4.71 \sqrt{\frac{200.000}{275}} \\ 101.53 &\leq 127.25 \\ F_e &= \frac{\pi^2 E}{\left(\frac{K_y L_y}{r_y}\right)^2} = 191.49 \\ F_{cr} &= \left[0.658^{\frac{F_y}{F_e}}\right] F_y = 150.54 MPa \\ \frac{Eğilmeli Burkulma Kontrolü}{F_e} &= \left[\left(\frac{\pi^2 E C_w}{(K_z L)^2}\right) + GJ \right] \frac{1}{I_x + I_y} \\ F_e &= \left[\frac{\pi^2 \times 200.000 \times (10.9253 \times 10^6)}{(0.65 \times 3342.5)^2} + (76.903.07 \times 3.6 \times 10^4) \right] \\ &\times \frac{1}{1648.3 \times 113.6 \times 10^4} = 416.438 MPa \end{aligned}$$

$$F_{cr} = \left[0.658^{\frac{274}{416.438}}\right] 274 = 208.04MPa$$

$$F_{cr} = \min(262.94, 150.54, 208.04) = 150.54MPa$$

$$\Phi P_n = 0.90 \times 150.54 \times (24.8 \times 10^2) = 336005N = 336.01kN$$
Eksenel Yük Altında Tasarım
X-yönünde akma dayanımı;
$$M_n = M_g = F_y Z_x = 274 \times 186.8 \times 10^3 = 51183.200Nmm = 51.18kNm$$

$$\Phi M_n = 46kNm$$

Kolon elemanının yukarıda hesaplanan moment ve eksenel kuvvetlerin birleştirilmiş etkileri altında kapasite-talep oranı hesaplanır.

$$P_{req}=452.14 \text{ kN}$$

$$P_{c}=476.15 \text{ kN}$$

$$\frac{P_{r}}{P_{c}} = 0.94 \ge 0.2 \text{ olduğu için aşağıdaki denklemden faydalanılır.}$$

$$\frac{P_{r}}{P_{c}} + \frac{8}{9} \left(\frac{M_{r_{x}}}{M_{c_{x}}} + \frac{M_{r_{y}}}{M_{c_{y}}} \right) \le 1.0$$

$$0.94 + \frac{8}{9} \left(\frac{2 \text{ kNm}}{46 \text{ kNm}} \right) = 0.98 \le 1.0$$

Kesit uygundur.

7.4 Kompozit Döşeme Boyutlandırma ve Taşıma Kapasitesi Kontrolü

Kompozit döşeme hesabında esas alınan veriler şu şekildedir.

$$A = 19.1cm^{2}$$

 $d = 200.4mm$
 $I_{3} = 1282cm^{4}$
 $B = 100.1mm$

 $I_2 = 87 cm^4$ $t_{f} = 5.2mm$ $Z_3 = 145.4 cm^3$ $t_{w} = 4.3mm$ $Z_2 = 27.2 cm^3$ l = 4.91m kiriş boyu $J = 1.8 cm^4$ $\ddot{O}rnekleme \ alanı = 6.52m^2$ $C_w = 8285.5 cm^6$ Stud= 19mm çaplı Malzeme Özelliği Beton f_{ck}=80 MPa, E_c=32000MPa Kiriş F_y=275MPa, F_u=430MPa Yükler Ölü Load=3.267kN/m Live Load=3.986kN/m En elverişsiz yük kombinasyonu: DCMPS2=12D+1.6L

1.2D + 1.6L = 1.2(3.267) + 1.6(3.986) = 10.298kN/m

Kesit çekme dayanımı kesabı

$$W_u = 10.298 kN/m$$

 $M_u = \frac{Wl^2}{8} = \frac{10.298(4.91)^2}{8} = 31.03 kNm$

Etkin genişliğin belirlenmesi (beff)

- a) (4.91/8)x2=1.228m (kiriş açıklığının sekizde biri, mesnetlerin orta noktası)
- b) (1.5/2)x2=1.5m (bir yandaki kirişe olan mesafenin yarısı, kirişlerin orta noktaları arasından)
- c) Döşemenin kenarına olan mesafe (içerdeki elemanlar için geçerli değildir)

Çelik kiriş ve betonarme döşeme arasındaki yük transferi

Döşemenin çatlaması durumu

$$A_c = b_{eff}(70mm) + \left(\frac{b_{eff}}{2}\right) \times (50mm) = (1.228 \times 70) + \left(\frac{1228}{2} \times 50\right)$$
$$= 116660mm^2 = 11.66cm^2$$

(%50 boşluk- %50 beton öngörülmüştür)

 $C = 0.85 f_c' A_c = 0.85 \times 30 \times 116660 = 2974830N = 2974.83kN$ <u>Celiğin akması</u>

$$C = A_s f_y = 1.910 \times 275 = 523340 = 523.34kN$$

Kesme kuvveti transferi

$$C = \sum Q_n = 50\% \left\{ min \left\{ \frac{2974.8kN}{523.34kN} \right\} \right\} = 261.67kN$$

(Basınç kuvvetine maruz kuvvetler için öncelikle %50 oranla hesap yapılmıştır) Plastik nötral eksenin bulunması (PNA-plastic neutral axis)

$$\sum F_{PNA \ "ust"unde} = F_{PNA \ alt:nda}$$

$$C + xb_f F_y = (A_s - b_f x)F_y$$

$$x = \frac{A_s F_y - C}{2b_f F_y} = \frac{1910 \times 274 - 261.67}{2 \times (100 \times 1) \times 274} = 9.536mm > t_f = 6.2mm$$

Nominal moment dayanımının belirlenmesi

$$\begin{split} &M_n = C(d_1 + d_2) + P_y(d_3 - d_2) \\ &a = \frac{C}{0.85f_c'b} = \frac{261.671}{10.85 \times 30 \times 1228} = 8.35mm < 25.4mm \\ &d_1 = t_{slab} - \frac{a}{2} = 120mm - \frac{8.35}{2} = 115.825mm \\ &d_2 = \frac{x}{2} = \frac{9.536}{2} = 4.768mm \\ &d_3 = \frac{d}{2} = \frac{200.4}{2} = 100.2mm \\ &P_y = A_s F_y = 1910 \times 274 = 523.34kN \\ &M_n = C(d_1 + d_2) + P_y(d_3 - d_2) = 261.67(115.825 + 4.768) + 523.34(100.2 - 4.768) = 81495kNmm = 81.495knM \quad (\text{spec I3.2a}) \\ &\Phi_b M_n \ge M_u \qquad (\Phi_b = 0.90) \\ &0.90 \times 81.495 \ge 31.03kN \end{split}$$

 $73.35kN \ge 31.03kN$ $Q_n = 0.5A_{sa}\sqrt{f_c'E_c} \le R_g R_p A_{sa} F_y$ $A_{sa} = \frac{\pi d^2}{4} = \frac{\pi (19mm)^2}{4} = 283.53mm^2$ OK!

$$E_{c} = 0.043W_{c}^{1.5}\sqrt{f_{c}} = 0.043(2000)^{1.5}\sqrt{30} = 21.065MPa$$

$$R_{g} = 1.0$$

$$R_{p} = 0.6$$

$$Q_{n} = 0.5(283.53)\sqrt{30(21.065)} \le 1(0.6)(283.53)430$$

$$112696N > 73150N$$

$$Q_{n} = 73,150N = 73.15kN$$
Studlari sayisi ve yerleşimi

$$N_{studs} = \frac{\sum Q_n}{Q_n} = \frac{C}{Q_n} = \frac{261.67}{7315} = 3.57$$
(I8.2c)

- Çelik studlar kesme kuvveti etkiyen yöne dik minimum 25mm beton kaplı olmalıdır.
- Stud'ın orta noktasından kesme kuvveti etkiyen kesitin en uç kısmına olan uzaklık 203mm'den az olmamalıdır.
- Studların merkezleri arası uzaklık maksimum 8.t_{slab} ya da 900mm olmalıdır.
- Studların merkezleri arası uzaklık kompozit kirişin nötral ekseni boyunca minimum 6_{dstud} olmalıdır.

Sehim Kontrolü

$$\begin{split} I_{LB} &= I_s + A_s (Y_{ENA} - d_3)^2 + \left(\frac{\sum Q_n}{F_y}\right) \times (2d_3 + d_1 - Y_{ENA})^2 \\ \sum Q_n &= 4 \times 73.19 = 292.6kN \\ a &= \frac{C}{0.85f_c'b} = \frac{\sum Q_n}{0.85f_c'b} = \frac{292.600}{0.85 \times 30 \times 1228mm} = 9.34mm \\ d_1 &= t_{slab} - \frac{a}{2} = 120 - \frac{9.34}{2} = 115.33mm \\ x &= \frac{A_s F_y - \sum Q_n}{2b_f F_y} = \frac{1910.274 - 29260}{2(100 \times 1)274} = 4.205 < 5.2 \quad \text{(başlık nötral ekseni)} \\ d_2 &= \frac{x}{2} = \frac{4.205}{2} = 2.103mm \\ d_3 &= \frac{d}{2} = \frac{200.4}{2} = 100.2mm \end{split}$$

$$Y_{ENA} = \frac{A_s d_3 + \left(\frac{\Sigma Q_n}{F_y}\right)(2d_3 + d_1)}{A_s + \left(\frac{\Sigma Q_n}{F_y}\right)}$$
$$= \frac{1910 \times 100.2 + \left(\frac{292600}{275}\right)(2 \times 100.2 + 115.33)}{1910 + \left(\frac{292600}{275}\right)} = 117.49mm$$
$$I_{LB} = (1.282 \times 10^4) + 1910(177.49 - 100.2)^2$$
$$+ \left(\frac{292600}{275}\right)(2 \times 100.2 + 115.33 - 177.49)^2 = 4463.7417mm^4$$
$$= 4463cm^4$$

 Δ = 63.5 mm maksimum izin verilen sehim değeridir.

$$I_{req} = \frac{5}{384} \frac{w_{Dl}l^4}{E\Delta} = \frac{5}{384} \frac{(2.66 \times 10^{-6})(4910mm)^4}{200.000MPA \times 63.5mm} = 1585cm^4$$
$$I_{LB} > I_{req}$$

Uygundur.

Hareketli yük etkisi altında sehim kontrolü

$$\Delta_{LL} = \frac{5}{384} \frac{\left(\frac{3kN}{m^2} \times \left(\frac{1}{1000}\right)^2 mm\right) \times (4190)^4}{\left(\frac{200.000kN}{mm^2}\right) \times 44637417mm^4} = 1.35mm < \frac{l}{360} = \frac{4190}{360} = 11.64mm$$

Kesme dayanımı kontrolü

$$V_u = \frac{10.298kN}{m} \times \frac{4.91}{2}m = 25.28kN$$

$$V_n = 0.60F_y A_w C_u = 0.60 \times 274 \times 861.72 \times 1.0 = 141.666kN$$

$$\Phi V_n = 0.90 \times 141.666 = 127.5kN$$

$$\Phi V_n > V_u$$

$$127.5 > 25.28kN$$

Uygundur.

7.5 Çapraz Bağlantı Detayı

 $P_{u_2} = 485.98kN$ $H_{u_2} = 485.98 \times \cos(45) = 343.64kN$ $V_{u_2} = 485.98 \times \sin(45) = 343.64kN$ $M_{u_1} = H_{u_1}e + V_{u_1}\Delta = (-343.64) \times (101.45) = -34,862.25kNmm$

$$M_{u_2} = H_{u_2}e - V_{u_2}\Delta = (343.64) \times (101.45) = 34,862.25kNmm$$

$$M'_{u_1} = \frac{1}{8}V_{u_1}L - \frac{1}{4}H_{u_1}h - \frac{1}{2}M_{u_1}$$

$$= \left[\frac{1}{8}(-343.64) \times (600)\right] - \left[\frac{1}{4}(-343.64) \times 300\right] - \left[\frac{1}{2}(-348.62)\right]$$

$$= 17,431.14kNmm$$

$$M'_{u_2} = \frac{1}{8}V_{u_2}L - \frac{1}{4}H_{u_2}h - \frac{1}{2}M_{u_1}$$

$$= \left[\frac{1}{8}(343.64) \times (600)\right] - \left[\frac{1}{4}(343.64) \times 300\right] - \left[\frac{1}{2}(348.62)\right]$$

$$= -17,431.14kNmm$$

<u>a-a kesiti kuvvetleri</u>

Axial $N_u = V_{u_1} + V_{u_2} = -343.64 + 343.64 = 0$ Shear $V_u = H_{u_1} - H_{u_2} = -343.64 - 343.64 = -687.25kN$ Moment $M_u = M_{u_1} - M_{u_2} = (-34862.28 - 34862.28) = 69724.56kNmm$ <u>b-b kesiti kuvvetleri</u> Axial $N_u' = \frac{1}{2}(H_{u_1} + H_{u_2}) = \frac{1}{2}(-343.64 + 343.64) = 0$ Shear $V_u' = \frac{1}{2}(V_{u_1} - V_{u_2}) - \frac{2M_u}{L} = \frac{1}{2}(-343.64 - 343.64) - \frac{2\times(-69724.56)}{600} = -343.64 + 232.415 = -111.225kN$ Moment $M_u' = M_{u_1}' + M_{u_2}' = 17431.14 - 17431.14 = 0$ <u>Capraz-guse levhasi bağlantısı</u> *Capraz elemanı çekme gerilmesi kontrolü* $\Phi R_n = \Phi F_y A_g = 0.90 \times 274 \times 2250 = 554.850 kN > 485.98 kN$ Çapraz eleman eksenel kuvvete bağlı kopma kontrolü $P_u = 0.60 [\Phi F_u Anv]$ Anv = 4tl $485.980 = 0.60[0.75 \times 430MPa \times 4 \times 5.91mm \times l] \rightarrow l = 106.24mm$ Assume \rightarrow 3mm<D<0.7tmin 3mm<D<4.137 kaynak kalınlığı w=4mm olarak seçildi. $\Phi P_n = \Phi \ 0.60 \ F_{EXX} \ \frac{1}{\sqrt{2}} w4l \ge P_u \qquad (F_{EXX} = 70ksi = 482.63MPa)$ $l \ge \frac{485.980N}{(0.75)(0.60)(482.63)\frac{1}{\sqrt{2}}(4)4}$ $l \ge 197.78mm$ $\Phi P_n = 1.3292Dl$ 485.950 = 1.392(1625)4l $D = \frac{a}{16} = \frac{4}{16\times 254}$ l = 53.69l = 200mm seçilmiştir. "shear lag" kontrolü $tg_p = 10mm$; $t_{brace} = 5.91mm$ öngörülerek $A_q = 2250mm^2$ $A_n = A_g - 2td_{slot} = 2250 - [2 \times (5.91) \times (20 + 1.58 + 1.58)] = 1976mm^2$ Dairesel kesitin değerlerine ulaşılır. $l \geq 1.3D$ \rightarrow u = 1.0 $200mm \ge 165.1$ u = 1.0 $D \leq l < 1.3D \rightarrow u = 1.0 - \frac{\bar{x}}{l}$ $\bar{x} = \frac{D}{\pi}$ $A_e = A_n U = 1976 \times 1 = 1976 mm^2$ Capraz elemandaki kopma dayanım limiti $\Phi R_n = \Phi F_u A_e = 0.75 \times 430 \times 1976 = 637.260 > 485.98 kN$

Uygundur.

<u>Guse levhasının blok kesme kuvveti kontrolü</u> $R_n = 0.60F_uA_{nv} + U_{bs}F_uA_{nt} \le 0.60F_yA_{gv} + U_{bs}F_uA_{nt}$
Kesme akması hesabı

$$\begin{aligned} A_{gv} &= A_{nv} = 2t_g l = 2 \times 10 \times 200 = 4000 mm^2 \\ 0.60F_y A_{gv} &= 0.60 \times 274 \times 4000 = 657600N = 657.6kN \\ 0.60F_u A_{nv} &= 0.60 \times 430 \times 4000 = 1032000N = 1,032kN \\ \underline{Cekme \ kopmast \ hesabl} \\ U_{bs} &= 1 \qquad (bulonlar \ uniform \ y\"uklenmektedir) \\ A_{gt} &= A_{nt} = t_g D = 10 \times 127 = 1270mm^2 \\ U_{bs} F_u A_{nt} &= 1 \times 430 \times 1270 = 546100 \\ 0.60F_u A_{nv} + U_{bs} F_u A_{nt} &= 1032000 + 546100 = 157100N \\ 0.60F_y A_{gv} + U_{bs} F_u A_{nt} &= 657600 + 546100 = 1203700N \\ R_n &= 1203,700N \\ \Phi R_n &= 0.75(1203700) = 902775N = 902.78kN > 485.98kN \end{aligned}$$

Uygundur.

$$\begin{split} & \underline{Whitmore \ kesitinden \ guse \ levhasının \ kesme \ kontrolü} \\ & l_w = D + 2ltan(30) = 127 + [2 \times 200 \times tan(30)] = 357.94mm \\ & (t_w = 5.8mm \ t_{gp} = 20mm) \\ & A_w = 354.94mm \times 10mm = 3549.4mm^2 \\ & \Phi R_n = 0.90F_yA_w = 0.90 \times 274 \times 3549.4 = 875288N = 875.29kN > 485kN \\ & Uygundur \end{split}$$

Whitmore kesitinden guse levhasının burkulma kontrolü $\frac{KL}{r} = \frac{0.65 \times 180}{\frac{10mm}{\sqrt{12}}} = 40.53 > 25r = t_g/\sqrt{12}$ L=180mmChapter E $\Rightarrow \frac{KL}{r} \leq ^? 4.71 \sqrt{\frac{E}{F_y}}$ 40.53 \leq 127.251

Uygundur

$$F_{cr} = \left(0.658^{\frac{F_y}{F_e}}\right) F_y = \left(0.658^{\frac{274}{1201}}\right) 274 = 249.06N/mm^2$$
$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2} = 1201MPa$$
$$\Phi P_n = \Phi F_{cr} A_g = 0.90 \times 249 \times 2250 = 504.225kN > 485.98kN$$

Uygundur

<u>Guse levhası kiriş bağlantısı (a-a)kesiti</u> $V_u = 687.28kN$
$$\begin{split} N_u &= 0\\ M_u &= 69724.56 kNmm = 69.724 kNm\\ \underline{Kiris\ başlığı\ boyunca\ kesme\ akması\ ve\ çekme\ akması\ kontrolü}\\ \underline{Kesme\ gerilmesi}\\ \text{Kesme\ gerilmesi\ kontrolü\ yapılmıştır.}\\ f_{uv} &= \frac{V_u}{A_g} = \frac{687,280N}{10mm\times800mm} = 85.91 MPa\\ R_n &= 0.60 F_y A_{gv} = 1 \times 0.60 \times 274 \times 4000 = 657,600 MPa \qquad (\Phi = 1) \end{split}$$

 $f_{uv} < \Phi R_n$ 85.91 < 657.600

Uygundur

<u>Çekme gerilmesi</u>

...

Çekme gerilmesi kontrolü yapılmıştır.

$$f_{ua} = \frac{N_u}{A_g} = 0$$

$$f_{ua} = \frac{M_u}{z} = \frac{69,724.56}{(10mm) \times (800)^2} = 43.58kN$$

Toplam eksenel yük

$$\begin{split} f_{un} &= f_{ua} + f_{ua} = 0 + 43.58 = 43.58 kN \\ \Phi R_n &= \Phi F_y A_g \ \Phi = 0.90 \\ \Phi R_n &= 0.90 \times 274 \times 10 \times 800 = 1972800 MPa \\ f_{un} &< \Phi R_n \end{split}$$

Uygundur

$$Guse levhasi-kiriş arası kaynak hesabi$$

$$Etki eden kesme kuvvetinin eksenel olmayan sapma miktarı$$

$$e = \frac{M_u}{V_u} = \frac{69724.56}{687.28} = 101.45mm$$

$$Açı=0, k=0, a = \frac{101.45}{800} = 0.127$$
Interpolasyon ile; c=3.222
$$R_n = C \times C_1 \times D \times l \ (\Phi = 0.75) \quad l = \text{kaynak uzunluğu}$$

$$C_1 = 1 \ (\text{ E70XX elektrodu})$$

$$D_{req} = \frac{P_u}{\Phi CC_1 l} = \frac{687.28 \times 125}{(0.75)(3.222)(1.0)(800)} = 0.444 = 180mm$$

Guse levhası iç kuvvet kontrolü (b-b kesiti)

$$\begin{split} &V_{u}' = -111.225kN \\ &N_{u}' = 0 \\ &M_{u}' = 0 \\ \hline Guse levhast b-b kesiti kesme akmayst kontrolii \\ &R_{n} = 0.60F_{y}A_{gv} = 1 \times 0.60 \times 274 \times 5 \times 300 = 246600N = 246.6kN \\ &M_{u_{1}} = H_{u_{1}}e + V_{u_{1}}\Delta = (-343.64)(101.45) + 0 = -34862.28kNmm \\ &M_{u_{2}} = H_{u_{2}}e + V_{u_{2}}\Delta = (-343.64)(101.45) = -34,862.28kNmm \\ &M_{u_{2}} = \frac{1}{8}V_{u_{1}}L - \frac{1}{4}H_{u_{1}}h - \frac{1}{2}M_{u_{1}} \\ &= \left[\frac{1}{8}(-343.64) \times (600)\right] - \left[\frac{1}{4}(-343.64) \times 300\right] - \left[\frac{1}{2}(-348.62)\right] \\ &= 17431.14kN \\ &M'_{u_{2}} = \frac{1}{8}V_{u_{2}}L - \frac{1}{4}H_{u_{2}}h - \frac{1}{2}M_{u_{1}} \\ &= \left[\frac{1}{8}(343.64) \times (600)\right] - \left[\frac{1}{4}(343.64) \times 300\right] - \left[\frac{1}{2}(348.62)\right] \\ &= -17431.14kN \\ &N_{u} = -343.64 - 343.64 = -687.28 \\ &V_{u} = -343.64 - 343.64 = 0 \\ &M_{u} = M_{u_{1}} - M_{u_{2}} = 0 \\ &N_{u}' = \frac{1}{2}(-343.64 - (-343.64)) - \frac{2 \times 0}{300} = 0 \\ &M_{u}' = \frac{1}{2}(-343.64 - (-343.64)) - \frac{2 \times 0}{300} = 0 \\ &M_{u}' = M_{u_{1}}' - M_{u_{2}}' = 17431.14 + 17431.14 = 34,862.28 \\ &N_{u_{e}} = 343.64 + \left(\frac{34862.28}{150}\right) = 576.06kN \\ &\lambda = \frac{\left(\frac{b}{tw}\right)\sqrt{F_{y}}}{\sqrt{F_{y}}} = \frac{\left(\frac{300}{10}\right)\sqrt{274}}{\sqrt{T5} + \frac{1,120}{\left(\frac{600}{300}\right)^{2}}} = 3.61 \\ \end{split}$$

Whitmore kesitinde guse levhası burkulma kontrolü

$$\frac{KL}{r} = \frac{0.65 \times 140}{\frac{10}{\sqrt{12}}} = 33.46$$

Basınç dayanımı kontrolü $\Phi F_{cr} = 35.4 ksi = 244.07 \text{ Mpa}$ $\Phi_c P_n = \Phi_c F_{cr} A_w = 244.07 \times 3543.4 = 866302N = 866.3 kN > 485.98$ Uvgu

Uygundur

Guse levhasını yanal burkulma kontrolü

Çaprazlar (a-a) kesitinde 687.28kN basınç altındadır.

$$\frac{\kappa_L}{r} = 33.46 > 25$$

$$\Phi R_n = \Phi F_{cr} tL = 244.07 \times 10 \times 800 = 1952560 = 1,953kN > 687.28kN$$

Uygundur

Kiriş gövdesi yerel akma kontrolü

Kirişe etkiyen normal kuvvet tespit edilir, akma kontrolü yapılır.

$$N_{max} = |N_u| + \left|\frac{2M_u}{U_2}\right| = 0 + \left|4\frac{69724.56}{800}\right| = 348kN$$

$$\Phi R_n = F_{jw} t_w (5k + lb) = 1.0 \times 275 \times 5.8 \times (5.14 + 800) = 1382.60kN > 348kN$$

Uygundur.

Kiriş gövdesi kayma gerilmesi kontrolü

$$\begin{split} V_u &= -687.28 kN \\ \Phi R_n &= \Phi 0.60 F_y A_{gv} = 1 \times 0.60 \times 275 \times (5.8 + 800) = 762.816 kN > 687.28 kN \\ Kiriş gövde buruşma kontrolü \end{split}$$

$$\Phi R_n = \Phi 0.80tw^2 \left[1 + 3\left(\frac{L_b}{d}\right) \left(\frac{tw}{tf}\right)^{1.5} \right] \sqrt{\frac{EF_y wtf}{tw}} = 0.75 \times 0.80$$
$$\times \left(5.81^2 \left[1 + 3\left(\frac{800}{202.9}\right) \left(\frac{5.8}{6.5}\right)^{1.5} \right] \sqrt{\frac{200.000 \times 274 \times 6.5}{5.8}}$$
$$= 1577,035N = 1577.04kN > 348kN$$

Uygundur.

En kesitin gövde akma kontrolü

$$V_u = 343.64 - 111.225 = 232.415kN$$

$$\Phi V_n = \Phi 0.6F_y A_w C_v = 1.0 \times 0.6 \times 275 \times 7.2 \times 202.9 \times 1.0 = 241045 N$$

$$= 241.05kN > 232.415kN$$

Uygundur.

7.6 Kolon Taban Plakası Hesabı

<u>Beton:</u> $f_c' = 20MPa$

<u>Taban plakası:</u> $F_y = 275MPa$

 $A_1 = A_2$ (taban plası alanı ile beton alanı aynıdır)

Eksenel kuvvetler sebebiyle mevcut dayanım

 $P_u = 1978.25 kN$ (Çaprazların dep. har. sonrası oluşan duruma göre)

Taban plakası alanının hesaplanması

$$A_{1(req)} = \frac{P_u}{\Phi(0.85)f_c'} = \frac{1978250}{0.65 \times 0.85 \times 20} = 179.027 mm^2$$

Taban plakası ebatlarının optimize edilmesi

$$\Delta = \frac{0.95d - 0.8b_f}{2} = \frac{0.15 \times 355.6mm}{2} = 26.67mm$$
$$N \approx \sqrt{A_{1(req)}} + \Delta \approx 423.12 + 26.67 \approx 450mm$$

A2 alanını A1 alanı ile geometrik olarak benzer boyutlandırmak için A2nin hesaplanması:

$$N = 450mm$$

$$B = \frac{179027}{450} = 397.8$$

$$B = 400mm$$

$$A_1 = 400 \times 450 = 180.000mm^2$$

$$A_1 > A_{1(req)}$$

Uygundur.

Eksenel gerilme kontrolü

$$\begin{split} P_u &\leq \Phi P_p = \Phi 0.85 f_c' A_1 \sqrt{\frac{A_2}{A_1}} = 0.65 \times 0.85 \times 20 \times 180.000 \sqrt{1} = 1989000 N \\ P_u &= 1978250 < \Phi P_p = 1989000 \end{split}$$

Uygundur.

Plaka kalınlığının hesaplanması

$$m = \frac{N - 0.80d}{2} = \frac{450 - 0.80(355.6)}{2} = 82.76mm$$
$$n = \frac{B - 0.80bf}{2} = \frac{400 - 0.80(355.6)}{2} = 57.76mm$$
$$X = \left\{\frac{4dbf}{(d + b_f)^2}\right\} \frac{P_u}{\Phi P_p} = \left\{\frac{4(355.6)^2}{(355.6 \times 2)^2}\right\} \frac{1978250}{1989000} = 0.995$$

[X teriminin dairesel HSS kesitlerde kullanılmasına gerek yoktur]

$$n' = \frac{\sqrt{db_f}}{4} = \frac{355.6}{4} = 88.9mm$$

$$l = \max(m, n, n') = \max(82.76, 57, 76, 88.9) = 88.9mm$$

$$t_{min} = l \sqrt{\frac{2P_u}{\Phi F_y BN}} = 88.9 \sqrt{\frac{2 \times 1978250}{0.90 \times 275 \times 400 \times 450}} = 26.49mm$$

 $t_{min} = 30mm$

Saplamaların boyutlandırılması

 $R_n = 0.70 F_u A_r = 0.70 \times 400 \times 285 = 79.800 N$

20mm çaplı saplamalar seçilmiştir.

$$F_{u} = 400MPa$$

$$A_{r} = 285mm^{2}$$

$$\Phi R_{n} = 0.75 \times 79800 = 59850N = 59kN \text{ mevcut eksenel kuvvet}$$
Eksenel kuvvet etkisi altında kolonun ankraj hesabı
$$Z \text{ yönünde rüzgarın kaldırma kuvveti} = 89kN$$

$$\frac{T}{saplama} = \frac{89}{4} = 22.25kN$$

$$\Phi R_{n} = 59 > 22.25kN$$

Uygundur.

Taban plakasının moment dayanım kontrolü

 $M_u = 22.25 \times 50mm = 1125kNmm$ $b_{eff} = 52mm$

$$t_{req} = \sqrt{\frac{4M_u}{b_{eff}(\Phi F_y)}} = \sqrt{\frac{1125 \times 4}{52 \times 0.90 \times 275}} = 18mm$$

Kolonun taban plakasına kaynaklanması

$$\begin{aligned} &Maksimum \, kaynak \, gerilmesi = \frac{T/Bulon}{b_{eff}} = \frac{22.25/4}{52} = 0.11 kN/mm \\ &Mevcut \, gerilme = R_n = F_w A_w = 1.5 \times 0.60 \times 483.63 \times 5 \times 0.707 = \frac{1538.67N}{mm} \\ &\Phi R_n = 0.75 \times 1538.67 = \frac{1154N}{mm} \\ &110N/mm < 1154N/mm \end{aligned}$$

Uygundur.

5mm küt kaynak : 6 ila 13mm plaka kalınlığına yapılır.

E70 elektrodu dayanımı=70ksi=482.63Mpa

Kolon kaynak yüzeyinin kontrolü

Gerilme =
$$\frac{2 \times 110N/mm}{355.6/2}$$
 = 1.237N
 $\Phi R_n = 0.90F_y = 0.90 \times \frac{275N}{mm}$
1.237N < 247.5

Uygundur.

7.7 Kolon-Kiriş Bağlantı Detayı

Bulonlar arası minimum mesafe

$$s = 3d = 3 \times 18 = 54$$

s = 55 seçilmiştir.

Bulonun guse plakası kenarına minimum uzaklığı

$$L_e = 1.5d = 1.5x18 = 27mm$$

$$L_e = 28mm \ seçilmiştir.$$

Bulon deliği çapı

h = d + 3.175 = 18 + 3.175 = 22mm

Çekme elemanı ve guse plakasının dayanım kontrolü

$$L_{c} = L_{e} - \frac{h}{2} = 28 - \frac{22}{2} = 17mm$$

$$R_{n} = 1.2L_{c}tF_{u} \le 2.4dtF_{u}$$

$$1.2L_{c}tF_{u} = 1.2 \times 17 \times 10 \times 430 = 87720N$$
Üst limit kontolü
$$2.4dtF_{u} = 2.4 \times 18 \times 10 \times 430 = 185760N$$

$$87720 < 185760$$

Use
$$R_n = \frac{87720N}{bulon}$$

[L_c mesafesinin yeteri kadar küçük olduğunu gösterir]

Bu sonuç;

Diğer bulon denklemi için;

 $L_c = s - h = 55 - 22 = 33mm$

$$\begin{split} R_n &= 1.2 L_c t F_u \leq 2.4 d t F_u \\ 1.2 L_c t F_u &= 1.2 \times 33 \times 10 \times 430 = 170280 N \\ 170280 N &< 185760 N \end{split}$$

Use $R_n = 170280N/bulon$

[Bu sonuç L_c 'nin yeteri kadar büyük olduğunu gösterir.

Çekme elemanının dayanımı

 $R_n = 87720 \times 2 + 170280 \times 2 = 516000N$

W-kesit kiriş ve guse plakası kenarına en yakın bulonun gerilmesi

$$\begin{split} & L_c = L_e - \frac{h}{2} = 28 - \frac{22}{2} = 17mm \\ & R_n = 1.2L_c tF_u = 1.2 \times 17 \times 5.8 \times 430 = 50877kN \\ & \text{Üst limit: } 2.4dtF_u = 2.4 \times 18 \times 5.8 \times 430 = 107740N \\ & 50877N < 107740N \\ & \text{Use } R_n = 50877N/bulon \\ & \text{Diger bulonlar (içtekiler)} \\ & L_c = s - h = 55 - 22 = 33mm \\ & R_n = 1.2L_c tF_u = 1.2 \times 33 \times 5.8 \times 430 = 98762N \\ & 98762N < 107740N \\ & \text{Use } R_n = 98762N/bulon \\ & \text{W-kesit kirişin dayanım gerilmesi} \\ & R_n = 2 \times (50877 + 2 \times 98762) = 299278N \\ & \text{Kirişe ait dayanım sınır değerleri en elverişsiz durumu verir.} \\ & R_n = 0.75 \times 299kN = 224kN \\ & \text{Analiz sonucunda gereken gerilmeye göre kontrol} \\ & R_u = 1561N < \Phi R_n = 224kN \end{split}$$

Uygundur.

Plaka kesme dayanımı

$$R_n = F_{nv}A_b = 372 \times 254 = 94488N \qquad A_b = \frac{\pi D^2}{4} = \frac{\pi 18^2}{4} = 254mm^2$$

4 delik için;
$$4R_n = 4 \times 94488 = 377952N$$

$$\Phi R_n = 0.75 \times R_n = 0.75 \times 377952 = 283464N$$

$$283kN > 156kN$$

Uygundur.

Blok Kesme Dayanımı

Kesme Alanı

 $A_{qv} = 2 \times (L_e + s) \times t_p = 2 \times (28 + 55) \times 10 = 1660 mm^2$ $A_{nv} = 2 \times (L_e + s - 1.5d_b) \times t_p = 2 \times (28 + 55 - 1.5 \times 18) \times 10 = 1120 mm^2$ Gerilme alanı $A_{nt} = t_p(55 - 18) = 370mm^2$ $U_{bs} = 1.0$ (düzgün yayılı gerilme) $R_n = 0.6F_u A_{nv} + U_{bs}F_u A_{nt} = (0.6 \times 430 \times 1120) + (1 \times 430 \times 370)$ = 448060NÜst limit $R_n = 0.6F_v A_{av} + U_{bs}F_u A_{nt} = (0.6 \times 275 \times 1600) + (1 \times 430 \times 370)$ = 433000N $\Phi R_n = 0.75 \times 433000 = 324750N$ $\Phi R_n = 325kN > R_u = 156kN$ Bağlantı plakası - kolon kaynak dayanımı L=110mm $3mm < D < 0.7t_{min}$ $3mm < D < 0.7 \times 10$ w = 6mm $F_w = E70XX = 483MPa$ Kaynak taşıma kapasitesi kontrolü $R_n = 0.707 w L F_w = 0.707 \times 6 \times 110 \times 483 \times 2 = 450754 N$ $\Phi R_n = 0.75 \times 450754 = 338kN$ $\Phi R_n = 338kN > R_u = 156kN$

Uygundur.

8. SONUÇLAR

Yapılan analizler gösteriyor ki yapısal sistemde yatay yük etkilerine karşı koyma amaçlı tasarlanan çapraz sistemlerin taşıyıcı sistem davranış katsayısı üzerindeki etkileri gözle görülür farklar doğurmaktadır. Merkezi V çaprazların enerji sönümleme performansı analiz edilen diğer çapraz sistemlerin performansından yaklaşık %50 daha fazladır.

Süneklik katsayısının hesabında dikkate alınan maksimum yer değiştirme miktarı modeller arasındaki en büyük performans farkını ortaya koymaktadır. Model-2 ile yapının Y-yönündeki maksimum tepe yer değiştirme miktarı incelenen dört model arasında maksimum yer değiştirme toleransına sahip olandır. Bu sebeple yapının davranış katsayısını belirlemede yaralanılan süneklik katsayısının en yüksek değerinin gözlendiği model olmaktadır.

Şekil 8.1 ile ifade edilen durum Model-2 ile elde edilen yüksek performansı açıklar nitelikte olup mimari düzenleme ile çapraz aksında meydana getirilen açıklığın hibrit bir sisteme dönüşmesini tarifler. Bu açıklık arttıkça sistem merkezi çapraz sistemden dışmerkezi çapraz sistem konumuna yükselir ve çaprazlarda meydana gelen plastikleşme belli bir yeterliliğe (can güvenliği seviyesi) ulaştıktan sonra bağlı olduğu açıklıktaki kirişte plastikleşme oluşacak şekilde yük aktarır.

Şekil 8.1 : Topolojik gelişim.

Dayanım katsayısı en düşük olan model-1 olmuştur. Çünkü yapının düşey aksta kolonlara sahip olmayıp tümü diyagonal çaprazlardan oluşması yapının burkulma

oranını artırmış ve plastik mafsalların yapının ana taşıyıcılarında oluşması ile yapı göçme öncesi performans seviyesinde olduğu tespit edilmiştir.

Taşıyıcı sistem davranış katsayısının yönetmelikler ile kıyaslandığında yüksek rakamlara ulaşmasındaki sebepler irdelendiğinde şu parametrelerin etkisi gözlemlenmektedir.

- Zemin şartlarına ve deprem bölgesinin derecesine bağlı deprem ivmesinin değişmesi sebebiyle yapıya etki eden kesme kuvveti önemli ölçüde değişmektedir. Yapının buna bağlı hafifleşmesi ile beraber taban kesme kuvveti düşmekte ve ters orantılı olarak dayanım katsayısı ciddi miktarda yükselmektedir.
- Çalışma kapsamında analizi yapılan az katlı yapılarda hakim yükler düşey yönde olduğu için kolon gibi düşey elemanların kesitleri büyümekte ve katların yatay dayanımı olması gerektiğinden fazla artmaktadır. Bu durum dayanım katsayısını yükseltmektedir.

Çapraz elemanların ve bağlantı noktalarının çok iyi düzeyde tasarlanması ile sistemin sünek davranışı sağlanabilir. Çapraz elemana ait kapasite eğrsininde de gözlemlendiği gibi göçme durumuna ulaşmaksızın sistemin kuvvet-yer değiştirme hareketine devam edebilmesi için bağlantı elemanında kopma yaşanmamalı, bu elemanlar çapraz elemanlarından aktarılan en yüksek kuvvet göz önüne alınarak boyutlandırılmalıdır.

Çapraz elemanlarda lokal ya da global burkulmanın önlenmesi gerekir. Genişlik ve kalınlık oranları ile narinlik oranı sınır değerlerini sağlamalıdır. Bu değerlerin sağlanması ile çapraz elemanda oluşabilecek burkulmaya bağlı kırılma engellenmiş olur.

Guse levhasının çapraz eleman ile bağlanan noktasında 2t genişliğinde bir mesafe sağlanarak bu noktanın serbest plastik dönmesine izin verilmelidir.

Elemanların boyutlandırılmasında dikkat edilecek hususlarda göz önünde bulundurularak, Model-2 ile tasarımı yapılmış olan merkezi çelik çapraz sistemin deprem sonrası hasarlardan sonra onarım kolaylığı da göz önüne alınarak incelenen sistemler içinde en ideal sistem olduğu sonucuna varılmıştır.

KAYNAKLAR

- AISC (2010). Specification for structural steel buildings (AISC 360-10) and commentary, American Institute of Steel Construction, Chicago, IL
- AISC (2012). Seismic design manual, (AISC 341) American Institute of Steel Construction, Chicago, IL.
- ASCE (2010). *Minimum design loads for buildings and other structures* (ASCE/SEI 7-10), American Society of Civil Engineers, Reston, VA
- **DBYBHY** (2007). Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Ankara, Bayındırlık ve İskan Bakanlığı.
- Faruk K., Sumru P., Ercan Y. ve Yavuz D. "Yapı Mühendisliğine Giriş Yapısal Çözümleme" Birsen Yayınevi, İstanbul, 2011.
- Jack C., McCormac and Stephen F. Csernak "Structural Steel Design" Fifth Edition, Pearson Education Limited, England, 2012
- John L. Harris and Matthew S.Speicher "Assesment Of First Generation Performance Based Seismic Design Methods For New Steel Buildings, Volume 2:Special Concentrically Braced Frames", NIST Technical Note 1863-2, 2015.
- Mazzolani, F.M. and Victor G. "Seismic resistant steel structures", CISM Courses and Lectures No.420, International Center For Mechanical Sciences, New York, 2000.
- Michel B., Chia-Ming U. And Rafael S. "Ductile Design of Steel Structures", McGraw-Hill, 2015.
- Riddell, R. and Newrnark, N.M., "Statistical Analysis of the Response of Nonlinear Systems Subjected to Earthquakes" Structural Research Series No. 468, University of Illinois, Urbana, 1979.
- **TS498** (1997). Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri, Türk Standartları Enstitüsü, Ankara.
- **TS648** (1980). *Çelik yapıların Hesap ve Yapım Kuralları*, Türk Standartları Enstitüsü, Ankara

EKLER

EK A

DBYBHY ile tanımlanan bina önem katsayısı ve yer ivmesine ait tablolar bu bölümdeki ekler ile sunulmmuştur.

Çizelge A.22: DBYBHY-2007 Bina önem katsayısı.						
Binanın Kullanım Amacı veya Türü	Bina Önem Katsayısı (I)					
 Deprem sonrası kullanımı gereken binalar ve tehlikeli madde içeren binalar: a) Deprem sonrasında hemen kullanılması gerekli binalar (Hastaneler, dispanserler, sağlık ocakları, itfaiye bina ve tesisleri, PTT ve diğer haberleşme tesisleri, ulaşım istasyonları ve terminalleri, enerji üretim ve dağıtım tesisleri; vilayet, kayamakamlık ve belediye yönetim binaları, ilk yardım ve afet planlama istasyonları) 	1.5					
 2. Insanların uzun süreli ve yoğun olarak bulunduğu ve değerli eşyanın saklandığı binalar: a) Okullar, diğer eğitim ve bina tesisleri, yurt ve yatakhaneler, askeri kışlalar, cezaevleri vb. b) Müzeler. 	1.4					
 İnsanların kısa süreli ve yoğun olarak bulunduğu binalar: Spor tesisleri, sinema, tiyatro ve konser salonları vb. 	1.2					
4. Diğer binalar: Yukarıdaki tanımlara girmeyen diğer binalar (Konutlar, işyerleri, oteller bina türü endüstriyel yapılar vb)	1.0					

(`izelge	Δ 23	• T)R'	YRHY.	.2007	denrem	hölge	sine	hağlı	ver	ivmesi	
`	, izcige	A. 45	• 1	\mathcal{D}	I DII I '	2007	ucpicini	ooig	Joint	Uagn	yer	I VIIICOL	•

Deprem Bölgesi	Ao
1	0.40
2	0.30
3	0.20
4	0.10

EK B

MODEL-2'ye ait doğrusal olmayan statik itme analizi ile elde edilen yükleme değerleri bu bölümdeki çizelgeler ile sunulmuştur.

KAT	ÇAPRAZ	KOD	YÜKLEME	P (KN)
STORY3	D2	104	PushY Max	190,3762
STORY3	D2	104	PushY Max	190,6088
STORY3	D2	104	PushY Max	190,6088
STORY3	D2	104	PushY Max	190,6136
STORY3	D2	104	PushY Max	190,6183
STORY3	D2	104	PushY Max	190,6183
STORY3	D2	104	PushY Max	190,8509
STORY3	D4	142	PushY Max	189,8093
STORY3	D4	142	PushY Max	190,0419
STORY3	D4	142	PushY Max	190,0419
STORY3	D4	142	PushY Max	190,0466
STORY3	D4	142	PushY Max	190,0514
STORY3	D4	142	PushY Max	190,0514
STORY3	D4	142	PushY Max	190,284
STORY3	D6	282	PushY Max	185,7587
STORY3	D6	282	PushY Max	185,9913
STORY3	D6	282	PushY Max	185,9913
STORY3	D6	282	PushY Max	185,9961
STORY3	D6	282	PushY Max	186,0008
STORY3	D6	282	PushY Max	186,0008
STORY3	D6	282	PushY Max	186,2334
STORY3	D8	278	PushY Max	183,7862
STORY3	D8	278	PushY Max	184,0188
STORY3	D8	278	PushY Max	184,0188
STORY3	D8	278	PushY Max	184,0235
STORY3	D8	278	PushY Max	184,0283
STORY3	D8	278	PushY Max	184,0283
STORY3	D8	278	PushY Max	184,2609
STORY2	D2	102	PushY Max	396,583
STORY2	D2	102	PushY Max	396,8156
STORY2	D2	102	PushY Max	396,8156
STORY2	D2	102	PushY Max	396,8203
STORY2	D2	102	PushY Max	396,8251
STORY2	D2	102	PushY Max	396,8251
STORY2	D2	102	PushY Max	397,0577
STORY2	D4	106	PushY Max	417,2943
STORY2	D4	106	PushY Max	417,6053
STORY2	D4	106	PushY Max	417,6053
STORY2	D4	106	PushY Max	417,6116

Çizelge B.1 : Çapraz elemanları itme analizi eksenel yük değerleri.

STORY2	D4	106	PushY Max	417,618
STORY2	D4	106	PushY Max	417,618
STORY2	D4	106	PushY Max	417,929
STORY2	D6	280	PushY Max	413,775
STORY2	D6	280	PushY Max	414,086
STORY2	D6	280	PushY Max	414,086
STORY2	D6	280	PushY Max	414,0924
STORY2	D6	280	PushY Max	414,0987
STORY2	D6	280	PushY Max	414,0987
STORY2	D6	280	PushY Max	414,4098
STORY2	D8	276	PushY Max	401,6267
STORY2	D8	276	PushY Max	401,8594
STORY2	D8	276	PushY Max	401,8594
STORY2	D8	276	PushY Max	401,8641
STORY2	D8	276	PushY Max	401,8688
STORY2	D8	276	PushY Max	401,8688
STORY2	D8	276	PushY Max	402,1015
STORY1	D2	54	PushY Max	287,7793
STORY1	D2	54	PushY Max	288,1734
STORY1	D2	54	PushY Max	288,1734
STORY1	D2	54	PushY Max	288,1815
STORY1	D2	54	PushY Max	288,1895
STORY1	D2	54	PushY Max	288,1895
STORY1	D2	54	PushY Max	288,5836
STORY1	D4	56	PushY Max	289,0113
STORY1	D4	56	PushY Max	289,4053
STORY1	D4	56	PushY Max	289,4053
STORY1	D4	56	PushY Max	289,4134
STORY1	D4	56	PushY Max	289,4214
STORY1	D4	56	PushY Max	289,4214
STORY1	D4	56	PushY Max	289,8155
STORY1	D6	144	PushY Max	288,0376
STORY1	D6	144	PushY Max	288,4317
STORY1	D6	144	PushY Max	288,4317
STORY1	D6	144	PushY Max	288,4397
STORY1	D6	144	PushY Max	288,4478
STORY1	D6	144	PushY Max	288,4478
STORY1	D6	144	PushY Max	288,8419
STORY1	D8	235	PushY Max	289,0988
STORY1	D8	235	PushY Max	289,4929
STORY1	D8	235	PushY Max	289,4929
STORY1	D8	235	PushY Max	289,5009
STORY1	D8	235	PushY Max	289,5089
STORY1	D8	235	PushY Max	289,5089
STORY1	D8	235	PushY Max	289,903

Çizelge B.1 (devam): Çapraz elemanları itme analizi eksenel yük değerleri.

KAT	ÇAPRAZ	KOD	YÜKLEME	V2 (KN)	M3 (kNm)
STORY3	B8	1	PushX Max	41,3994	108,5654
STORY3	B8	1	PushX Max	41,4957	106,5098
STORY3	B8	1	PushX Max	41,4883	106,5111
STORY3	B9	2	PushX Max	32,9856	106,8627
STORY3	B9	2	PushX Max	33,1884	105,0616
STORY3	B9	2	PushX Max	33,1832	105,0626
STORY3	B22	11	PushX Max	41,9035	108,3185
STORY3	B22	11	PushX Max	41,9871	106,2383
STORY3	B22	11	PushX Max	41,9804	106,2395
STORY3	B24	12	PushX Max	33,8103	107,2866
STORY3	B24	12	PushX Max	33,9989	105,441
STORY3	B24	12	PushX Max	33,9939	105,4419
STORY3	B28	14	PushX Max	86,5402	112,5662
STORY3	B28	14	PushX Max	86,6486	110,1153
STORY3	B28	14	PushX Max	86,6513	110,1137
STORY3	B29	18	PushX Max	40,1888	107,9059
STORY3	B29	18	PushX Max	40,3681	105,9083
STORY3	B29	18	PushX Max	40,3617	105,9094
STORY3	B30	19	PushX Max	33,1955	107,9813
STORY3	B30	19	PushX Max	33,3983	106,1688
STORY3	B30	19	PushX Max	33,3909	106,1701
STORY3	B43	33	PushX Max	40,9114	108,2551
STORY3	B43	33	PushX Max	41,0779	106,222
STORY3	B43	33	PushX Max	41,0724	106,223
STORY3	B45	34	PushX Max	33,8381	108,2218
STORY3	B45	34	PushX Max	34,0267	106,3747
STORY3	B45	34	PushX Max	34,0201	106,3759
STORY3	B50	40	PushX Max	-87,2965	134,5925
STORY3	B50	40	PushX Max	-52,5156	134,5925
STORY3	B50	40	PushX Max	-52,1945	155,5346
STORY3	B50	40	PushX Max	-51,8733	176,3481
STORY3	B50	40	PushX Max	-51,5522	197,0332
STORY3	B50	40	PushX Max	-17,8384	197,0332
STORY3	B50	40	PushX Max	-17,4813	204,8875
STORY3	B50	40	PushX Max	-17,1242	212,583
STORY3	B50	40	PushX Max	-16,7672	220,1197
STORY3	B50	40	PushX Max	16,435	220,1197
STORY3	B50	40	PushX Max	16,7905	212,7629
STORY3	B50	40	PushX Max	17,1461	205,2487
STORY3	B50	40	PushX Max	17,5016	197,577
STORY3	B50	40	PushX Max	54,5547	197,577
STORY3	B50	40	PushX Max	54,9313	171,9017

Çizelge B.2 : Kiriş elemanı itme analizi kesme ve moment değerleri.

STORY3	B50	40	PushX Max	55,3078	146,0497
STORY3	B50	40	PushX Max	55,6844	120,0212
STORY3	B50	40	PushX Max	91,8872	120,0212
STORY3	B50	40	PushX Min	-87,4483	128,7755
STORY3	B50	40	PushX Min	-52,6674	128,7755
STORY3	B50	40	PushX Min	-52,3462	149,7474
STORY3	B50	40	PushX Min	-52,0251	170,5907
STORY3	B50	40	PushX Min	-51,704	191,3008
STORY3	B50	40	PushX Min	-17,9946	191,3008
STORY3	B50	40	PushX Min	-17,6375	199,1835
STORY3	B50	40	PushX Min	-17,2805	206,9071
STORY3	B50	40	PushX Min	-16,9234	214,4715
STORY3	B50	40	PushX Min	16,2788	214,4715
STORY3	B50	40	PushX Min	16,6343	207,1422
STORY3	B50	40	PushX Min	16,9898	199,652
STORY3	B50	40	PushX Min	17,3454	191,9946
STORY3	B50	40	PushX Min	54,3937	191,9946
STORY3	B50	40	PushX Min	54,7703	166,3359
STORY3	B50	40	PushX Min	55,1468	140,5007
STORY3	B50	40	PushX Min	55,5234	114,4888
STORY3	B50	40	PushX Min	91,7262	114,4888
STORY3	B50	40	PushY Max	-68,9784	121,0905
STORY3	B50	40	PushY Max	-68,6172	152,0495
STORY3	B50	40	PushY Max	-68,2559	182,8459
STORY3	B50	40	PushY Max	-33,475	182,8459
STORY3	B50	40	PushY Max	-33,1539	196,1717
STORY3	B50	40	PushY Max	-32,8327	209,369
STORY3	B50	40	PushY Max	-32,5116	222,4379
STORY3	B50	40	PushY Max	1,2014	222,4378
STORY3	B50	40	PushY Max	1,5585	221,8241
STORY3	B50	40	PushY Max	1,9155	221,0516
STORY3	B50	40	PushY Max	2,2726	220,1471
STORY3	B50	40	PushY Max	35,4747	220,1471
STORY3	B50	40	PushY Max	35,8303	212,7629
STORY3	B50	40	PushY Max	36,1858	205,2487
STORY3	B50	40	PushY Max	36,5413	197,577
STORY3	B50	40	PushY Max	73,5954	197,577
STORY3	B50	40	PushY Max	73,9719	171,9017
STORY3	B50	40	PushY Max	74,3485	146,0497
STORY3	B50	40	PushY Max	74,725	120,0212
STORY3	B50	40	PushY Max	110,9279	120,0212
STORY3	B50	40	PushY Min	-87,2965	134,5925
STORY3	B50	40	PushY Min	-52,5156	134,5925
STORY3	B50	40	PushY Min	-52,1945	155,5346
STORY3	B50	40	PushY Min	-51,8733	176,3481

Çizelge B.2 (devam) : Kiriş elemanı itme analizi kesme ve moment değerleri.

STORY3	B50	40	PushY Min	-51,5522	197,0332
STORY3	B50	40	PushY Min	-17,8384	197,0332
STORY3	B50	40	PushY Min	-17,4813	204,8875
STORY3	B50	40	PushY Min	-17,1242	212,583
STORY3	B50	40	PushY Min	-16,7672	220,1197
STORY3	B50	40	PushY Min	16,435	220,1197
STORY3	B50	40	PushY Min	16,7905	204,3318
STORY3	B50	40	PushY Min	17,1461	188,386
STORY3	B50	40	PushY Min	17,5016	172,2827
STORY3	B50	40	PushY Min	54,5547	172,2827
STORY3	B50	40	PushY Min	54,9313	137,677
STORY3	B50	40	PushY Min	55,3078	102,8947
STORY3	B50	40	PushZ Max	-87,2965	134,5925
STORY3	B50	40	PushZ Max	-52,5156	134,5925
STORY3	B50	40	PushZ Max	-52,1945	155,5346
STORY3	B50	40	PushZ Max	-51,8733	176,3481
STORY3	B50	40	PushZ Max	-51,5522	197,0332
STORY3	B50	40	PushZ Max	-17,8384	197,0332
STORY3	B50	40	PushZ Max	-17,4813	204,8875
STORY3	B50	40	PushZ Max	-17,1242	212,583
STORY3	B50	40	PushZ Max	-16,7672	220,1197
STORY3	B50	40	PushZ Max	16,435	220,1197
STORY3	B50	40	PushZ Max	16,7905	212,7629
STORY3	B50	40	PushZ Max	17,1461	205,2487
STORY3	B50	40	PushZ Max	17,5016	197,577
STORY3	B50	40	PushZ Max	54,5547	197,577
STORY3	B50	40	PushZ Max	54,9313	171,9017
STORY3	B50	40	PushZ Max	55,3078	146,0497
STORY3	B50	40	PushZ Max	55,6844	120,0212
STORY3	B50	40	PushZ Max	91,8872	120,0212
STORY3	B50	40	PushZ Min	-87,2965	134,5925
STORY3	B50	40	PushZ Min	-52,5156	134,5925
STORY3	B50	40	PushZ Min	-52,1945	155,5346
STORY3	B50	40	PushZ Min	-51,8733	176,3481
STORY3	B50	40	PushZ Min	-51,5522	197,0332
STORY3	B50	40	PushZ Min	-17,8384	197,0332
STORY3	B50	40	PushZ Min	-17,4813	204,8875
STORY3	B50	40	PushZ Min	-17,1242	212,583
STORY3	B50	40	PushZ Min	-16,7672	220,1197
STORY3	B50	40	PushZ Min	16,435	220,1197
STORY3	B50	40	PushZ Min	16,7905	212,7629
STORY3	B50	40	PushZ Min	17,1461	205,2487
STORY3	B50	40	PushZ Min	17,5016	197,577
STORY3	B50	40	PushZ Min	54,5547	197,577
STORY3	B50	40	PushZ Min	54,9313	171,9017

Çizelge B.2 (devam) : Kiriş elemanı itme analizi kesme ve moment değerleri.

STORY3	B50	40	PushZ Min	55,3078	146,0497
STORY3	B50	40	PushZ Min	55,6844	120,0212
STORY3	B50	40	PushZ Min	91,8872	120,0212
STORY3	B51	42	PushX Max	49,7591	123,0082
STORY3	B51	42	PushX Max	49,9296	120,6934
STORY3	B51	42	PushX Max	49,9149	120,6959
STORY3	B3	39	PushX Max	-87,4374	101,7156
STORY3	B3	39	PushX Max	-87,0761	140,9812
STORY3	B3	39	PushX Max	-52,2953	140,9812
STORY3	B3	39	PushX Max	-51,9741	161,8351
STORY3	B3	39	PushX Max	-51,653	182,5605
STORY3	B3	39	PushX Max	-51,3318	203,1574
STORY3	B3	39	PushX Max	-17,6126	203,1522
STORY3	B3	39	PushX Max	-17,2555	210,9402
STORY3	B3	39	PushX Max	-16,8984	218,6528
STORY3	B3	39	PushX Max	-16,5414	226,2066
STORY3	B3	39	PushX Max	16,6608	226,2066
STORY3	B3	39	PushX Max	17,0163	218,8668
STORY3	B3	39	PushX Max	17,3719	211,3696
STORY3	B3	39	PushX Max	17,7274	203,7149
STORY3	B3	39	PushX Max	54,786	203,7222
STORY3	B3	39	PushX Max	55,1625	178,0637
STORY3	B3	39	PushX Max	55,5391	152,2285
STORY3	B3	39	PushX Max	55,9156	126,2168
STORY3	B3	39	PushX Max	92,1185	126,2168
STORY3	B3	39	PushX Min	-87,5342	134,5931
STORY3	B3	39	PushX Min	-52,7533	134,5931
STORY3	B3	39	PushX Min	-52,4322	155,5351
STORY3	B3	39	PushX Min	-52,111	176,3486
STORY3	B3	39	PushX Min	-51,7899	197,0337
STORY3	B3	39	PushX Min	-18,0704	197,0253
STORY3	B3	39	PushX Min	-17,7133	204,8786
STORY3	B3	39	PushX Min	-17,3563	212,5732
STORY3	B3	39	PushX Min	-16,9992	220,1089
STORY3	B3	39	PushX Min	16,203	220,1089
STORY3	B3	39	PushX Min	16,5585	212,7511
STORY3	B3	39	PushX Min	16,914	205,2359
STORY3	B3	39	PushX Min	17,2696	197,5632
STORY3	B3	39	PushX Min	54,3276	197,5704
STORY3	B3	39	PushX Min	54,7041	171,8935
STORY3	B3	39	PushX Min	55,0807	146,0399
STORY3	B3	39	PushX Min	55,4572	120,0097
STORY3	B3	39	PushX Min	91,6601	120,0097
STORY3	B3	39	PushY Max	-73,2494	129,8695
STORY3	B3	39	PushY Max	-73,1654	137,5332

Çizelge B.2 (devam) : Kiriş elemanı itme analizi kesme ve moment değerleri.

STORY3	B3	39	PushY Max	-73,167	137,5336
STORY3	B3	39	PushY Max	-72,8813	163,5256
STORY3	B3	39	PushY Max	-72,5955	189,416
STORY3	B3	39	PushY Max	-72,3097	215,2047
STORY3	B3	39	PushY Max	-37,113	215,2047
STORY3	B3	39	PushY Max	-36,7517	231,8242
STORY3	B3	39	PushY Max	-36,3905	248,2812
STORY3	B3	39	PushY Max	-36,0292	264,5757
STORY3	B3	39	PushY Max	-1,2483	264,5757
STORY3	B3	39	PushY Max	-0,9272	265,0108
STORY3	B3	39	PushY Max	-0,606	265,3174
STORY3	B3	39	PushY Max	-0,2849	265,4956
STORY3	B3	39	PushY Max	33,4303	265,4875
STORY3	B3	39	PushY Max	33,7874	250,5397
STORY3	B3	39	PushY Max	34,1445	235,4332
STORY3	B3	39	PushY Max	34,5016	220,1678
STORY3	B3	39	PushY Max	67,7037	220,1678
STORY3	B3	39	PushY Max	68,0592	212,7511
STORY3	B3	39	PushY Max	68,4148	205,2359
STORY3	B3	39	PushY Max	68,7703	197,5632
STORY3	B3	39	PushY Max	105,8244	197,5704
STORY3	B3	39	PushY Max	106,201	171,8935
STORY3	B3	39	PushY Max	106,5775	146,0399
STORY3	B3	39	PushY Max	106,9541	120,0097
STORY3	B3	39	PushY Max	143,1569	120,0097
STORY3	B3	39	PushY Min	-87,2964	134,5931
STORY3	B3	39	PushY Min	-52,5155	134,5931
STORY3	B3	39	PushY Min	-52,1944	155,5351
STORY3	B3	39	PushY Min	-51,8732	176,3486
STORY3	B3	39	PushY Min	-51,5521	197,0337
STORY3	B3	39	PushY Min	-17,8362	197,0253
STORY3	B3	39	PushY Min	-17,4791	204,8786
STORY3	B3	39	PushY Min	-17,122	212,5732
STORY3	B3	39	PushY Min	-16,765	220,0988
STORY3	B3	39	PushY Min	16,4372	220,0988
STORY3	B3	39	PushY Min	16,7927	190,107
STORY3	B3	39	PushY Min	17,1482	159,8889
STORY3	B3	39	PushY Min	17,5038	129,5133
STORY3	B3	39	PushY Min	54,5582	129,5223
STORY3	B3	39	PushZ Max	-87,2964	134,5931
STORY3	B3	39	PushZ Max	-52,5155	134,5931
STORY3	B3	39	PushZ Max	-52,1944	155,5351
STORY3	B3	39	PushZ Max	-51,8732	176,3486
STORY3	B3	39	PushZ Max	-51,5521	197,0337
STORY3	B3	39	PushZ Max	-17,8362	197,0253

Çizelge B.2 (devam) : Kiriş elemanı itme analizi kesme ve moment değerleri.

STORY3	B3	39	PushZ Max	-17,4791	204,8786
STORY3	B3	39	PushZ Max	-17,122	212,5732
STORY3	B3	39	PushZ Max	-16,765	220,1089
STORY3	B3	39	PushZ Max	16,4372	220,1089
STORY3	B3	39	PushZ Max	16,7927	212,7511
STORY3	B3	39	PushZ Max	17,1482	205,2359
STORY3	B3	39	PushZ Max	17,5038	197,5632
STORY3	B3	39	PushZ Max	54,5582	197,5704
STORY3	B3	39	PushZ Max	54,9347	171,8935
STORY3	B3	39	PushZ Max	55,3113	146,0399
STORY3	B3	39	PushZ Max	55,6878	120,0097
STORY3	B3	39	PushZ Max	91,8907	120,0097
STORY3	B3	39	PushZ Min	-87,2964	134,5931
STORY3	B3	39	PushZ Min	-52,5155	134,5931
STORY3	B3	39	PushZ Min	-52,1944	155,5351
STORY3	B3	39	PushZ Min	-51,8732	176,3486
STORY3	B3	39	PushZ Min	-51,5521	197,0337
STORY3	B3	39	PushZ Min	-17,8362	197,0253
STORY3	B3	39	PushZ Min	-17,4791	204,8786
STORY3	B3	39	PushZ Min	-17,122	212,5732
STORY3	B3	39	PushZ Min	-16,765	220,1089
STORY3	B3	39	PushZ Min	16,4372	220,1089
STORY3	B3	39	PushZ Min	16,7927	212,7511
STORY3	B3	39	PushZ Min	17,1482	205,2359
STORY3	B3	39	PushZ Min	17,5038	197,5632
STORY3	B3	39	PushZ Min	54,5582	197,5704
STORY3	B3	39	PushZ Min	54,9347	171,8935
STORY3	B3	39	PushZ Min	55,3113	146,0399
STORY3	B3	39	PushZ Min	55,6878	120,0097
STORY3	B3	39	PushZ Min	91,8907	120,0097
STORY2	B 8	96	PushX Max	44,0777	110,1283
STORY2	B8	96	PushX Max	44,1434	107,9408
STORY2	B 8	96	PushX Max	44,1423	107,9409
STORY2	B9	97	PushX Max	36,7485	108,637
STORY2	B9	97	PushX Max	36,882	106,633
STORY2	B9	97	PushX Max	36,8808	106,6332
STORY2	B10	98	PushY Max	6,4905	122,6854
STORY2	B10	98	PushY Max	115,0193	122,6853
STORY2	B22	120	PushX Max	44,3755	110,2422
STORY2	B22	120	PushX Max	44,4331	108,04
STORY2	B22	120	PushX Max	44,4321	108,0402
STORY2	B24	121	PushX Max	37,4357	109,1758
STORY2	B24	121	PushX Max	37,5603	107,1346
STORY2	B24	121	PushX Max	37,5592	107,1348
STORY2	B28	123	PushX Max	179,4785	226,1235

Çizelge B.2 (devam) : Kiriş elemanı itme analizi kesme ve moment değerleri.

STORY2	B28	123	PushX Max	179,5539	221,0426
STORY2	B28	123	PushX Max	179,5542	221,0425
STORY2	B28	123	PushX Max	180,8421	133,8732
STORY2	B29	124	PushX Max	70,3116	172,5584
STORY2	B29	124	PushX Max	70,4329	169,0684
STORY2	B29	124	PushX Max	70,4316	169,0686
STORY2	B29	124	PushX Max	71,5066	137,0941
STORY2	B29	124	PushX Max	72,5344	104,6459
STORY2	B30	125	PushX Max	36,8061	109,2753
STORY2	B30	125	PushX Max	36,9397	107,2681
STORY2	B30	125	PushX Max	36,9385	107,2683
STORY2	B43	131	PushX Max	43,7341	109,8447
STORY2	B43	131	PushX Max	43,8443	107,673
STORY2	B43	131	PushX Max	43,8433	107,6732
STORY2	B45	132	PushX Max	37,4514	109,6365
STORY2	B45	132	PushX Max	37,576	107,5945
STORY2	B45	132	PushX Max	37,5749	107,5947
STORY2	B50	135	PushY Max	-26,8384	101,6756
STORY2	B50	135	PushY Max	-26,5106	113,6791
STORY2	B50	135	PushY Max	-4,3163	113,6791
STORY2	B50	135	PushY Max	-4,0249	115,3474
STORY2	B50	135	PushY Max	-3,7335	116,899
STORY2	B50	135	PushY Max	-3,4421	118,3341
STORY2	B50	135	PushY Max	18,1236	118,3341
STORY2	B50	135	PushY Max	18,4476	110,2015
STORY2	B50	135	PushY Max	18,7716	101,9248
STORY2	B51	136	PushX Max	62,3343	144,5531
STORY2	B51	136	PushX Max	62,4479	141,6556
STORY2	B51	136	PushX Max	62,446	141,656
STORY2	B51	136	PushX Max	63,5862	112,2752
STORY2	B1	101	PushY Max	6,3363	111,8426
STORY2	B1	101	PushY Max	17,2842	111,8429
STORY2	B1	101	PushY Max	17,3003	122,2217
STORY2	B1	101	PushY Max	119,489	122,222
STORY2	B3	134	PushY Max	1,1885	281,1308
STORY2	B3	134	PushY Max	1,2647	281,0024
STORY2	B3	134	PushY Max	1,2647	281,0024
STORY2	B3	134	PushY Max	1,524	280,5061
STORY2	B3	134	PushY Max	1,7833	279,9175
STORY2	B3	134	PushY Max	2,0426	279,2366
STORY2	B3	134	PushY Max	24,5448	279,2366
STORY2	B3	134	PushY Max	24,8726	268,1177
STORY2	B3	134	PushY Max	25,2004	256,8512
STORY2	B3	134	PushY Max	25,5282	245,4373
STORY2	B3	134	PushY Max	47,7225	245,4373

Çizelge B.2 (devam) : Kiriş elemanı itme analizi kesme ve moment değerleri.

STORY2	B3	134	PushY Max	48,0139	226,29
STORY2	B3	134	PushY Max	48,3053	207,0261
STORY2	B3	134	PushY Max	48,5967	187,6457
STORY2	B3	134	PushY Max	70,1625	187,6451
STORY2	B3	134	PushY Max	70,4865	156,3678
STORY2	B3	134	PushY Max	70,8105	124,9465
STORY1	B8	8	PushX Max	52,948	131,1722
STORY1	B8	8	PushX Max	53,0158	128,5446
STORY1	B8	8	PushX Max	53,0151	128,5447
STORY1	B8	8	PushX Max	53,658	104,5175
STORY1	B9	9	PushX Max	44,6935	128,451
STORY1	B9	9	PushX Max	44,8295	126,0144
STORY1	B9	9	PushX Max	44,8288	126,0145
STORY1	B9	9	PushX Max	46,0727	103,3817
STORY1	B15	15	PushX Max	517,7564	146,8494
STORY1	B15	15	PushX Max	517,7618	142,0776
STORY1	B15	15	PushX Max	517,7616	142,0776
STORY1	B20	20	PushX Max	520,363	147,3883
STORY1	B20	20	PushX Max	520,3684	142,5924
STORY1	B20	20	PushX Max	520,3682	142,5925
STORY1	B22	22	PushX Max	53,1681	130,3948
STORY1	B22	22	PushX Max	53,2279	127,7566
STORY1	B22	22	PushX Max	53,2273	127,7567
STORY1	B22	22	PushX Max	53,7968	103,6504
STORY1	B24	24	PushX Max	36,6835	107,8032
STORY1	B24	24	PushX Max	36,8081	105,8029
STORY1	B24	24	PushX Max	36,8075	105,803
STORY1	B28	28	PushX Max	173,5217	218,4936
STORY1	B28	28	PushX Max	173,597	213,5813
STORY1	B28	28	PushX Max	173,5972	213,5812
STORY1	B28	28	PushX Max	174,8852	129,2934
STORY1	B29	29	PushX Max	68,8009	168,1366
STORY1	B29	29	PushX Max	68,9221	164,7215
STORY1	B29	29	PushX Max	68,9213	164,7217
STORY1	B29	29	PushX Max	69,9963	133,4276
STORY1	B29	29	PushX Max	71,0241	101,6598
STORY1	B30	30	PushX Max	44,6815	129,3345
STORY1	B30	30	PushX Max	44,8174	126,8985
STORY1	B30	30	PushX Max	44,8166	126,8987
STORY1	B30	30	PushX Max	46,0605	104,2719
STORY1	B36	36	PushX Max	515,4652	146,8959
STORY1	B36	36	PushX Max	515,4734	142,1613
STORY1	B36	36	PushX Max	515,4732	142,1614
STORY1	B 41	41	PushX Max	517,4433	145,97
STORY1	B41	41	PushX Max	517,4514	141,201

Çizelge B.2 (devam) : Kiriş elemanı itme analizi kesme ve moment değerleri.

STORY1	B41	41	PushX Max	517,4513	141,2011
STORY1	B43	43	PushX Max	52,3905	129,7056
STORY1	B43	43	PushX Max	52,5029	127,1046
STORY1	B43	43	PushX Max	52,5023	127,1047
STORY1	B43	43	PushX Max	53,4965	103,2258
STORY1	B45	45	PushX Max	36,7469	107,7454
STORY1	B45	45	PushX Max	36,8715	105,7416
STORY1	B45	45	PushX Max	36,8708	105,7418
STORY1	B49	49	PushX Max	-35,0262	102,6162
STORY1	B49	49	PushX Max	-11,3897	102,6152
STORY1	B49	49	PushX Max	-11,0671	107,6729
STORY1	B49	49	PushX Max	-10,7445	112,5877
STORY1	B49	49	PushX Max	-10,4219	117,3597
STORY1	B49	49	PushX Max	10,7948	117,3597
STORY1	B49	49	PushX Max	11,1188	112,5723
STORY1	B49	49	PushX Max	11,4428	107,6407
STORY1	B49	49	PushX Max	11,7668	102,5651
STORY1	B49	49	PushX Max	33,3328	102,566
STORY1	B49	49	PushX Min	-11,3124	102,7658
STORY1	B49	49	PushX Min	-10,9898	107,6408
STORY1	B49	49	PushX Min	-10,6671	112,3729
STORY1	B49	49	PushX Min	10,5496	112,3729
STORY1	B49	49	PushX Min	10,8736	107,5454
STORY1	B49	49	PushX Min	11,1976	102,5738
STORY1	B49	49	PushY Max	-11,1697	102,7658
STORY1	B49	49	PushY Max	-10,8471	107,6408
STORY1	B49	49	PushY Max	-10,5245	112,3729
STORY1	B49	49	PushY Max	10,6922	112,3729
STORY1	B49	49	PushY Max	11,0162	143,8198
STORY1	B49	49	PushY Max	11,3402	175,1328
STORY1	B49	49	PushY Max	11,6642	206,3017
STORY1	B49	49	PushY Max	33,23	206,3024
STORY1	B49	49	PushY Max	33,5214	225,5854
STORY1	B49	49	PushY Max	33,8128	244,7519
STORY1	B49	49	PushY Max	34,1042	263,8017
STORY1	B49	49	PushY Max	56,2985	263,8017
STORY1	B49	49	PushY Max	56,6263	275,1061
STORY1	B49	49	PushY Max	56,9541	286,2629
STORY1	B49	49	PushY Max	57,2819	297,2722
STORY1	B49	49	PushY Max	79,784	297,2722
STORY1	B49	49	PushY Max	80,0433	297,8664
STORY1	B49	49	PushY Max	80,3026	298,3683
STORY1	B49	49	PushY Max	80,562	298,778
STORY1	B49	49	PushY Max	80,5617	298,778
STORY1	B49	49	PushY Max	80,638	298,8809

Çizelge B.2 (devam) : Kiriş elemanı itme analizi kesme ve moment değerleri.

STORY1	B49	49	PushY Min	-92,1076	112,3613
STORY1	B49	49	PushY Min	-70,8909	112,3613
STORY1	B49	49	PushY Min	-70,5668	107,5454
STORY1	B49	49	PushY Min	-70,2428	102,5738
STORY1	B49	49	PushZ Max	-11,1697	102,7658
STORY1	B49	49	PushZ Max	-10,8471	107,6408
STORY1	B49	49	PushZ Max	-10,5245	112,3729
STORY1	B49	49	PushZ Max	10,6922	112,3729
STORY1	B49	49	PushZ Max	11,0162	107,5454
STORY1	B49	49	PushZ Max	11,3402	102,5738
STORY1	B49	49	PushZ Min	-11,1697	102,7658
STORY1	B49	49	PushZ Min	-10,8471	107,6408
STORY1	B49	49	PushZ Min	-10,5245	112,3729
STORY1	B49	49	PushZ Min	10,6922	112,3729
STORY1	B49	49	PushZ Min	11,0162	107,5454
STORY1	B49	49	PushZ Min	11,3402	102,5738
STORY1	B50	50	PushX Max	-11,3511	102,554
STORY1	B50	50	PushX Max	-11,0271	107,5304
STORY1	B50	50	PushX Max	-10,7031	112,3627
STORY1	B50	50	PushX Max	10,5136	112,3627
STORY1	B50	50	PushX Max	10,8362	107,6354
STORY1	B50	50	PushX Max	11,1589	102,7652
STORY1	B50	50	PushX Min	-11,6072	103,1468
STORY1	B50	50	PushX Min	-11,2832	108,1707
STORY1	B50	50	PushX Min	9,9335	108,1707
STORY1	B50	50	PushX Min	10,2561	103,6341
STORY1	B50	50	PushY Max	-39,0444	113,0856
STORY1	B50	50	PushY Max	-38,7851	126,9369
STORY1	B50	50	PushY Max	-38,5258	140,6959
STORY1	B50	50	PushY Max	-16,0237	140,6959
STORY1	B50	50	PushY Max	-15,6959	147,8328
STORY1	B50	50	PushY Max	-15,3681	154,8222
STORY1	B50	50	PushY Max	-15,0402	161,6641
STORY1	B50	50	PushY Max	7,154	161,6641
STORY1	B50	50	PushY Max	7,4455	158,7442
STORY1	B50	50	PushY Max	7,7369	155,7077
STORY1	B50	50	PushY Max	8,0283	152,5547
STORY1	B50	50	PushY Max	29,5938	152,5547
STORY1	B50	50	PushY Max	29,9178	139,3206
STORY1	B50	50	PushY Max	30,2418	125,9424
STORY1	B50	50	PushY Max	30,5658	112,4201
STORY1	B50	50	PushY Max	51,7825	112,4201
STORY1	B50	50	PushY Max	52,1051	107,6354
STORY1	B50	50	PushY Max	52,4277	102,7652
STORY1	B50	50	PushY Min	-11,3511	102,554

Çizelge B.2 (devam) : Kiriş elemanı itme analizi kesme ve moment değerleri.

STORY1	B50	50	PushY Min	-11,0271	107,5304
STORY1	B50	50	PushY Min	-10,7031	112,338
STORY1	B50	50	PushY Min	10,5136	112,338
STORY1	B50	50	PushZ Max	-11,3511	102,554
STORY1	B50	50	PushZ Max	-11,0271	107,5304
STORY1	B50	50	PushZ Max	-10,7031	112,3627
STORY1	B50	50	PushZ Max	10,5136	112,3627
STORY1	B50	50	PushZ Max	10,8362	107,6354
STORY1	B50	50	PushZ Max	11,1589	102,7652
STORY1	B50	50	PushZ Min	-11,3511	102,554
STORY1	B50	50	PushZ Min	-11,0271	107,5304
STORY1	B50	50	PushZ Min	-10,7031	112,3627
STORY1	B50	50	PushZ Min	10,5136	112,3627
STORY1	B50	50	PushZ Min	10,8362	107,6354
STORY1	B50	50	PushZ Min	11,1589	102,7652
STORY1	B51	51	PushX Max	60,9629	141,5644
STORY1	B51	51	PushX Max	61,0764	138,7306
STORY1	B51	51	PushX Max	61,0749	138,7309
STORY1	B51	51	PushX Max	62,2152	109,9894

Çizelge B.2 (devam) : Kiriş elemanı itme analizi kesme ve moment değerleri.

Çizelge B.3: Kolon elemanı itme analizi kesme ve moment değerleri.

KOLON	KOD	YÜKLEME	$\mathbf{P}(\mathbf{KN})$	V2	V3	M2	M3
KOLON	KOD	TİPİ	I (IXIV)	(KN)	(KN)	(KN)	(KN)
C19	250	PushX Max	200,3954	33,1953	15,3201	22,703	31,2868
C19	250	PushX Max	200,4199	33,1953	15,3201	22,1384	30,3446
C19	250	PushX Max	200,4199	33,1982	15,3233	22,1394	30,3452
C19	250	PushX Max	201,5575	33,1982	15,3233	-0,0945	0,0471
C19	250	PushX Max	202,6951	33,1982	15,3233	-2,2142	-0,6619
C19	250	PushX Max	202,6951	33,1879	15,3198	-2,2111	-0,6619
C19	250	PushX Max	202,7197	33,1879	15,3198	-2,2519	-0,6772
C20	253	PushX Max	199,6673	29,8298	-0,1465	1,0823	16,0251
C20	253	PushX Max	199,6919	29,8298	-0,1465	1,0877	15,3763
C20	253	PushX Max	199,6919	29,8337	-0,1477	1,0868	15,3763
C20	253	PushX Max	200,8295	29,8337	-0,1477	10,7448	-0,0421
C20	253	PushX Max	201,967	29,8337	-0,1477	31,7252	-0,5307
C20	253	PushX Max	201,967	29,8363	-0,1504	31,7264	-0,5307
C20	253	PushX Max	201,9916	29,8363	-0,1504	32,1876	-0,5412
C23	269	PushX Max	205,9457	29,7881	12,7032	15,784	14,7423
C23	269	PushX Max	205,9703	29,7881	12,7032	15,3176	14,1254
C23	269	PushX Max	205,9703	29,7865	12,7044	15,3177	14,1254
C23	269	PushX Max	207,1079	29,7865	12,7044	-0,4681	0,1861
C23	269	PushX Max	208,2455	29,7865	12,7044	-2,2511	0,9394
C23	269	PushX Max	208,2455	29,7751	12,7009	-2,2511	0,9394
C23	269	PushX Max	208,2701	29,7751	12,7009	-2,2896	0,9556

C24	272	PushX Max	206,0789	29,7749	-0,6832	0,2216	14,626
C24	272	PushX Max	206,1035	29,7749	-0,6832	0,255	14,0119
C24	272	PushX Max	206,1035	29,7733	-0,6832	0,254	14,0119
C24	272	PushX Max	207,2411	29,7733	-0,6832	11,0521	0,2116
C24	272	PushX Max	208,3787	29,7733	-0,6832	31,3513	1,1249
C24	272	PushX Max	208,3787	29,7618	-0,6831	31,3507	1,1249
C24	272	PushX Max	208,4033	29,7618	-0,6831	31,7973	1,1447
C1	203	PushX Max	101,9065	60,7467	5,5999	12,4529	148,0649
C1	203	PushX Max	101,9311	60,7467	5,5999	12,2468	145,8963
C1	203	PushX Max	101,9311	60,7467	5,6	12,2469	145,8964
C1	203	PushX Max	103,068	60,7467	5,6	2,7805	46,0136
C1	203	PushX Max	104,2049	60,7467	5,6	-0,0711	1,2061
C1	203	PushX Max	104,2049	60,7467	5,6	-0,0711	1,2061
C1	203	PushX Max	104,2295	60,7467	5,6	-0,0764	1,2477
C13	227	PushY Max	140,224	5,094	0,1142	-0,4742	12,8015
C13	227	PushY Max	140,2486	5,094	0,1142	-0,4669	12,6112
C13	227	PushY Max	140,2486	5,094	0,1142	-0,4669	12,6112
C13	227	PushY Max	141,3684	5,094	0,1142	-0,137	4,0288
C13	227	PushY Max	142,4881	5,094	0,1142	1,8171	16,9845
C13	227	PushY Max	142,4881	5,094	0,1143	1,8231	16,984
C13	227	PushY Max	142,5127	5,094	0,1143	2,5949	17,4274
C18	248	PushX Max	105,2704	61,3173	-0,2485	-0,569	149,3754
C18	248	PushX Max	105,2949	61,3173	-0,2485	-0,5599	147,1906
C18	248	PushX Max	105,2949	61,3173	-0,2485	-0,5599	147,1907
C18	248	PushX Max	106,4318	61,3173	-0,2485	-0,1392	46,5833
C18	248	PushX Max	107,5687	61,3173	-0,2485	8,0941	1,2907
C18	248	PushX Max	107,5687	61,3173	-0,2485	8,0942	1,2907
C18	248	PushX Max	107,5933	61,3173	-0,2485	8,3409	1,3352
C18	248	PushY Max	134,6547	-0,5124	8,0508	13,8044	0,5475
C18	248	PushY Max	134,6793	-0,5124	8,0508	13,4893	0,5652
C18	248	PushY Max	134,6793	-0,5124	8,0508	13,4893	0,5652
C18	248	PushY Max	135,8162	-0,5124	8,0508	-0,1392	1,3909
C18	248	PushY Max	136,9531	-0,5124	8,0508	2,0677	22,8826
C18	248	PushY Max	136,9531	-0,5124	8,0508	2,0677	22,8821
C18	248	PushY Max	136,9777	-0,5124	8,0508	2,7772	23,5522
C19	251	PushX Max	352,2994	70,544	19,3284	43,7537	147,5967
C19	251	PushX Max	352,324	70,544	19,3284	43,0217	145,5166
C19	251	PushX Max	352,324	70,5255	19,3212	43,0192	145,5152
C19	251	PushX Max	353,4553	70,5255	19,3212	16,9438	51,4647
C19	251	PushX Max	354,5867	70,5255	19,3212	-0,0839	-0,6125
C19	251	PushX Max	354,5867	70,5385	19,3247	-0,0851	-0,6125
C19	251	PushX Max	354,6113	70,5385	19,3247	-0,0839	-0,6259
C20	254	PushX Max	288,0444	67,5263	-0,385	-0,8289	153,0192
C20	254	PushX Max	288,069	67,5263	-0,385	-0,8149	150,7924
C20	254	PushX Max	288,069	67,5324	-0,385	-0,8149	150,7948

Çizelge B.3 (devam) : Kolon elemanı itme analizi kesme ve moment değerleri.

C20	254	PushX Max	289,2065	67,5324	-0,385	-0,1622	49,7898
C20	254	PushX Max	290,3441	67,5324	-0,385	19,0667	-0,3212
C20	254	PushX Max	290,3441	67,5367	-0,385	19,0666	-0,3212
C20	254	PushX Max	290,3687	67,5367	-0,385	19,7213	-0,3294
C8	257	PushX Max	173,1301	119,1331	-0,3588	-1,1361	244,6167
C8	257	PushX Max	173,1547	119,1331	-0,3588	-1,123	240,4782
C8	257	PushX Max	173,1547	119,1331	-0,3588	-1,123	240,478
C8	257	PushX Max	174,2718	119,1331	-0,3588	-0,5261	54,4347
C8	257	PushX Max	175,3889	119,1331	-0,3588	19,9316	0,4382
C8	257	PushX Max	175,3889	119,1331	-0,3588	19,9315	0,4382
C8	257	PushX Max	175,4135	119,1331	-0,3588	20,48	0,4493
C23	270	PushX Max	381,5002	71,9869	16,6359	43,2955	157,6341
C23	270	PushX Max	381,5247	71,9869	16,6359	42,7052	155,3282
C23	270	PushX Max	381,5247	71,9886	16,6356	42,7054	155,3284
C23	270	PushX Max	382,6623	71,9886	16,6356	16,1574	51,4185
C23	270	PushX Max	383,7999	71,9886	16,6356	-0,2316	0,3941
C23	270	PushX Max	383,7999	71,9901	16,6356	-0,2316	0,3941
C23	270	PushX Max	383,8245	71,9901	16,6356	-0,2422	0,4069
C24	273	PushX Max	381,0539	72,0411	-0,1189	-0,0775	157,8164
C24	273	PushX Max	381,0785	72,0411	-0,1189	-0,0731	155,5081
C24	273	PushX Max	381,0785	72,0426	-0,1189	-0,0731	155,5082
C24	273	PushX Max	382,216	72,0426	-0,1189	0,1294	51,493
C24	273	PushX Max	383,3536	72,0426	-0,1189	17,4768	0,488
C24	273	PushX Max	383,3536	72,0441	-0,1189	17,4766	0,488
C24	273	PushX Max	383,3782	72,0441	-0,1189	18,0747	0,5034
C1	204	PushX Max	192,9431	78,9744	3,7591	6,53	367,628
C1	204	PushX Max	192,9742	78,9744	3,7591	6,3574	363,9674
C1	204	PushX Max	192,9742	78,9751	3,7592	6,3576	363,9673
C1	204	PushX Max	194,4317	78,9751	3,7592	-0,0302	195,005
C1	204	PushX Max	195,8891	78,9751	3,7592	-0,4624	28,8909
C1	204	PushX Max	195,8891	78,9754	3,7588	-0,4624	28,9019
C1	204	PushX Max	195,9202	78,9754	3,7588	-0,4716	25,3677
C11	222	PushY Max	296,7928	9,0054	52,5909	156,9685	17,5109
C11	222	PushY Max	296,824	9,0054	52,5909	154,5265	17,0926
C11	222	PushY Max	296,824	9,0054	52,591	154,5266	17,0926
C11	222	PushY Max	298,2753	9,0054	52,591	43,8642	0,062
C11	222	PushY Max	299,7267	9,0054	52,591	0,4854	0,2921
C11	222	PushY Max	299,7267	9,0054	52,591	0,4854	0,2921
C11	222	PushY Max	299,7578	9,0054	52,591	0,4919	0,297
C13	228	PushY Max	456,4393	3,9872	51,1932	152,9024	4,2588
C13	228	PushY Max	456,4704	3,9872	51,1932	150,5285	4,0802
C13	228	PushY Max	456,4704	3,9872	51,1933	150,5286	4,0802
C13	228	PushY Max	457,9118	3,9872	51,1933	46,4923	-0,5149
C13	228	PushY Max	459,3533	3,9872	51,1933	0,3029	4,8163
C13	228	PushY Max	459,3533	3,9872	51,1933	0,3029	4,8163

Çizelge B.3 (devam) : Kolon elemanı itme analizi kesme ve moment değerleri.

C13	228	PushY Max	459,3844	3,9872	51,1933	0,3066	5,0053
C18	249	PushX Max	198,4643	78,7023	-0,0633	0,0128	366,4279
C18	249	PushX Max	198,4954	78,7023	-0,0633	0,0158	362,7811
C18	249	PushX Max	198,4954	78,7023	-0,0633	0,0158	362,7812
C18	249	PushX Max	199,9528	78,7023	-0,0633	2,5659	194,5718
C18	249	PushX Max	201,4103	78,7023	-0,0633	7,8001	29,3532
C18	249	PushX Max	201,4103	78,7023	-0,0633	7,8001	29,3756
C18	249	PushX Max	201,4414	78,7023	-0,0633	7,9149	25,8611
C18	249	PushY Max	464,9251	0,6212	55,0177	247,4093	-0,9348
C18	249	PushY Max	464,9563	0,6212	55,0177	244,9121	-0,9537
C18	249	PushY Max	464,9563	0,6212	55,0176	244,912	-0,9537
C18	249	PushY Max	466,4137	0,6212	55,0176	128,7484	0,7566
C18	249	PushY Max	467,8711	0,6212	55,0176	15,838	12,9488
C18	249	PushY Max	467,8711	0,6212	55,0175	15,8668	12,9488
C18	249	PushY Max	467,9023	0,6212	55,0175	14,6198	13,2737
C19	252	PushX Max	738,9288	103,6734	13,5329	20,9225	359,146
C19	252	PushX Max	738,9599	103,6734	13,5329	20,2951	356,2149
C19	252	PushX Max	738,9599	103,6774	13,5329	20,2951	356,2147
C19	252	PushX Max	740,4113	103,6774	13,5329	0,2186	218,3619
C19	252	PushX Max	741,8626	103,6774	13,5329	-0,8086	78,744
C19	252	PushX Max	741,8626	103,6789	13,5326	-0,8086	78,5506
C19	252	PushX Max	741,8938	103,6789	13,5326	-0,8235	75,5461
C19	252	PushY Max	108,9049	12,5863	71,0677	272,379	15,075
C19	252	PushY Max	108,9361	12,5863	71,0677	269,077	14,4899
C19	252	PushY Max	108,9361	12,5863	71,0678	269,077	14,4899
C19	252	PushY Max	110,3874	12,5863	71,0678	117,992	-0,1094
C19	252	PushY Max	111,8388	12,5863	71,0678	-0,8086	-0,4064
C19	252	PushY Max	111,8388	12,5862	71,0678	-0,8086	-0,4064
C19	252	PushY Max	111,8699	12,5862	71,0678	-0,8235	-0,4128
C20	255	PushX Max	695,3784	103,4168	0,561	1,7728	353,963
C20	255	PushX Max	695,4095	103,4168	0,561	1,7467	351,0902
C20	255	PushX Max	695,4095	103,4168	0,561	1,7467	351,0904
C20	255	PushX Max	696,8609	103,4168	0,561	8,7849	216,102
C20	255	PushX Max	698,3122	103,4168	0,561	35,1765	79,5405
C20	255	PushX Max	698,3122	103,4168	0,561	35,1764	79,5661
C20	255	PushX Max	698,3434	103,4168	0,561	35,7874	76,6284
C20	255	PushY Max	280,8058	0,1276	52,3189	249,7266	0,1831
C20	255	PushY Max	280,8369	0,1276	52,3189	247,3193	0,1771
C20	255	PushY Max	280,8369	0,1276	52,3192	247,3194	0,1771
C20	255	PushY Max	282,2883	0,1276	52,3192	128,064	13,3029
C20	255	PushY Max	283,7396	0,1276	52,3192	8,0975	41,5381
C20	255	PushY Max	283,7396	0,1276	52,3193	8,1104	41,5378
C20	255	PushY Max	283,7708	0,1276	52,3193	6,8384	42,1205
C8	258	PushX Max	301,6439	93,4865	-0,2925	-0,1528	365,3632
C8	258	PushX Max	301,6751	93,4865	-0,2925	0,0298	361,1335

Çizelge B.3 (devam) : Kolon elemanı itme analizi kesme ve moment değerleri.

C8	258	PushX Max	301,6751	93,4865	-0,2925	0,0298	361,1335
C8	258	PushX Max	303,1138	93,4865	-0,2925	8,5492	175,2144
C8	258	PushX Max	304,5526	93,4865	-0,2925	17,6036	0,2616
C8	258	PushX Max	304,5526	93,4866	-0,2925	17,6037	0,2433
C8	258	PushX Max	304,5837	93,4866	-0,2925	17,8098	0,1818
C8	258	PushY Max	112,1781	2,9509	59,6782	216,7433	11,1411
C8	258	PushY Max	112,2093	2,9509	59,6782	213,9705	11,0835
C8	258	PushY Max	112,2093	2,9509	59,6782	213,9704	11,0835
C8	258	PushY Max	113,6481	2,9509	59,6782	88,0987	8,5538
C8	258	PushY Max	115,0868	2,9509	59,6782	0,9191	8,4088
C8	258	PushY Max	115,0868	2,9509	59,6782	0,9191	8,4088
C8	258	PushY Max	115,118	2,9509	59,6782	0,9326	8,5155
C21	262	PushY Max	101,0268	0,1728	69,0022	265,8805	0,2514
C21	262	PushY Max	101,058	0,1728	69,0022	262,6915	0,2433
C21	262	PushY Max	101,058	0,1728	69,0018	262,6913	0,2433
C21	262	PushY Max	102,5093	0,1728	69,0018	116,6228	11,3408
C21	262	PushY Max	103,9607	0,1728	69,0018	-0,6783	38,2842
C21	262	PushY Max	103,9607	0,1728	69,0017	-0,6783	38,2841
C21	262	PushY Max	103,9918	0,1728	69,0017	-0,6911	38,87
C23	268	PushX Max	841,7458	101,9858	11,5243	16,2761	337,5741
C23	268	PushX Max	841,777	101,9858	11,5243	15,7422	334,9013
C23	268	PushX Max	841,777	101,9859	11,5243	15,7422	334,9013
C23	268	PushX Max	843,2283	101,9859	11,5243	-0,0882	209,6078
C23	268	PushX Max	844,6797	101,9859	11,5243	0,4121	83,2384
C23	268	PushX Max	844,6797	101,9861	11,5242	0,4145	83,1824
C23	268	PushX Max	844,7108	101,9861	11,5242	0,4352	80,4663
C24	271	PushX Max	839,9311	101,9459	-0,1324	-0,121	337,3424
C24	271	PushX Max	839,9622	101,9459	-0,1324	-0,1148	334,6759
C24	271	PushX Max	839,9622	101,9461	-0,1324	-0,1148	334,6759
C24	271	PushX Max	841,4136	101,9461	-0,1324	7,5432	209,6276
C24	271	PushX Max	842,8649	101,9461	-0,1324	35,5664	83,4326
C24	271	PushX Max	842,8649	101,9463	-0,1324	35,5659	83,4044
C24	271	PushX Max	842,8961	101,9463	-0,1324	36,22	80,6916

Çizelge B.3 (devam) : Kolon elemanı itme analizi kesme ve moment değerleri.

ÖZGEÇMİŞ

Ad-Soyad	: Duygu Altınağaç
Doğum Tarihi ve Yeri	: 1989 İstanbul
E-posta	: kokoc@itu.edu.tr

ÖĞRENİM DURUMU:

• Lisans

: 2012, İstanbul Teknik Üniversitesi, İnşaat Fakültesi, İnşaat Mühendisliği