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UHF RF POWER AMPLIFIER DESIGN AND IMPLEMENTATION FOR 

SMALL SATELLITES 

SUMMARY 

In this thesis, the radio frequency power amplifier which can be used for small 

satellites is designed. The RF power amplifier has 23 dB gain and 0.6 Watt output 

power theoretically. It is designed in Microwave Office AWR (Applied Wave 

Research) program. The power amplifier center frequency is 435.250 MHz which is 

the standard frequency of small satellites. The bandwidth is about 7 MHz and the 

gain is flat around the center frequency. 

In the thesis, there are five chapters and the chapter one covers an introduction part 

which gives preliminary information about the thesis. The second chapter tells about 

the power amplifier basics which are given with four subtitles. One of the subtitles 

includes gain, output power, efficiency, linearity, stability, distortion, etc. The other 

subtitle gives information about S parameters and S parameters specifications. Later, 

the classes of power amplifiers and amplifier design fundamentals are given in the 

other subtitles. In the third chapter, the experiments are written in detail. The 

materials and the equipment are also given in this chapter. Experiments which are 

done in Microwave Office AWR program and in the real world are given in the third 

chapter too. The forth chapter shows the results and discussion about the experiments 

done in program and in real. There are also comparisons in this chapter. Finally, the 

last chapter which has conclusion part is given. 

As a start point of this work, the literature was researched very deeply among the 

M.Sc. theses, RF power amplifier books, IEEE publications, the articles and B.Sc. 

theses which were analyzed well. Later, it was decided that the power amplifier 

could be designed with SGA9289z medium discrete power transistor which is taken 

from RFMD (RF Micro Devices). 

The bias circuit for the transistor was designed according to the circuit specifications. 

The input and output circuit of the transistor were designed and impedance matching 

circuits were added. The optimum circuit was reached with controlling the S 

parameters, VSWR (voltage standing wave ratio), stability, etc. All of the 

components which were used in the circuit were SMD (surface mount device) 

product and they were very small, as a result, the power amplifier circuit dimensions 

were 2,5cm   3.3cm. The components used in the amplifier circuit were explained in 

detail in the thesis. 

The circuit layout is drawn in the same program that is Microwave Office AWR. 

Later, it is printed out to the PCB (printed circuit board) and all of the components 

are soldered to the PCB. The SMA (subminiature version A) connectors are soldered 

to the input and output of the circuit to measure characteristics of the power 

amplifier. Finally, graphic results which are gain, output power, S11, S12, S21, S22 
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values and efficiency are obtained with using spectrum analyzer, oscilloscope, signal 

generator and the other equipment which are given in the third chapter. 

In the conclusion chapter of the thesis, it is given that why this thesis is important in 

the literature and why it can be used for small satellites. There is also information 

about the other works that can be done after this thesis work. Finally, there are 

appendix sections at the end of the thesis; some of the knowledge is given in this 

part.   
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KÜÇÜK BOYUTTA UYDULAR ĠÇĠN UHF BANDINDA ÇALIġAN RF GÜÇ 

KUVVETLENDĠRĠCĠ TASARIMI VE GERÇEKLENMESĠ 

ÖZET 

Küçük boyutta uydular için üretilen güç kuvvetlendiricilerinde kullanılması şart olan 

standart bir merkez frekans değeri belirlenmiştir. Bu tezde, belirlenen standart değer 

olan 435.250 MHz merkez frekanslı olarak çalışan ve bant genişliği yaklaşık olarak 7 

MHz olan radyo frekansı güç kuvvetlendiricisi tasarımı yapılmıştır. Üretilen güç 

kuvvetlendiricisinin teorik olarak hesaplanan kazanç değeri 23 dB ve çıkış güç değeri 

0.6 Watt değerindedir. Üretilecek olan devrenin bütün çizimleri ve bilgisayar 

ortamındaki simulasyonları Microwave Office AWR programı ile yapılmıştır. 

Bu tez beş bölümden oluşmaktadır. Bölüm bir, tez hakkında kısa bilgiler veren ve tez 

konusunun neden seçildiğini belirten ön bilgilerden oluşmaktadır. Bu bölüm içinde 

genel olarak teze giriş yapılmıştır. 

Kendi içinde dört alt başlığa ayrılan ikinci bölüm, radyo frekansı güç 

kuvvetlendircilerinin temellerini konu almaktadır. Bu bölümdeki alt başlıklardan 

ilkinde kazanç, çıkış gücü, verimlilik, doğrusallık, kararlılık, bozulmalar vs. 

hakkında literatür bilgileri verilmiştir. Ayrıca tez için oluşturulan grafik ve devre 

şematikleri bu alt başlıkta yer almıştır. İkinci bölümün bir diğer alt başlığında S 

parametrelerine geniş bir giriş yapılmış ve S parametrelerinin çeşitleri ile voltaj 

durağan dalga oranı hakkında bilgiler verilmiştir. Üçüncü alt başlıkta güç 

kuvvetlendirici sınıfları üzerinde durulmuş ve doğrusal olarak çalışan A sınıfı, B 

sınıfı, AB sınıfı ve C sınıfı detaylı olarak incelenmiştir. Tez için oluşturulan güç 

kuvvetlendiricisi A sınıfı olduğu için bu sınıf derinlemesine incelenmiştir. İkinci 

bölümün son alt başlığında güç kuvvetlendiricisi tasarım temelleri aktarılmıştır.  

Tezin üçüncü bölümünde bilgisayar ortamında Microwave Office AWR programıyla 

yapılan deneylere ve gerçek ortamda baskı devrenin spectrum analizörü, osiloskop 

vb. ölçüm aletleri ile yapılan deneylerine yer verilmiştir. Bilgisayar ortamında ve 

gerçek ortamda yapılan deneyler iki ayrı alt başlık altında yer  almaktadır. Her bir 

ölçüm detaylı olarak tezde anlatılmıştır. Tez için üretilen güç kuvvetlendiricisi 

devresinde kullanılan malzemelere ve devrenin ölçüm aşaması için gerekli olan 

cihazlara da bu bölüm içinde iki ayrı alt başlık verilmiştir. Bu alt başlıklarda 

malzemeler ve cihazlar tanıtılmıştır. 

Dördüncü bölümde bilgisayar ortamında ve gerçek ortamda yapılan deneylerin 

sonuçları karşılaştırılmış ve elde edilen bulgular hakkında yorumlar yapılmıştır. 

Tezin bütün bölümlerinde olmakla birlikte özellikle dördüncü bölümde önemli 

karşılaştırmalar yapılmış ve bu karşılaştırmalar tablolar halinde aktarılmıştır. Bu 

bölümde ayrıca; güç kuvvetlendiriciler konusu üzerine daha önceden yapılan bazı 

yüksek lisans tez çalışmaları hakkında bilgiler verilmiştir. Üzerinde çalışılan tezin 

daha önceden yapılan tezler ile karşılaştırılması yapılmış ve aralarındaki farklar 

özetle anlatılmıştır. 
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Son bölüm olan beşinci bölümde, üzerinde çalışılan tezin neden seçildiği anlatılmış 

ve literatürde neden önemli olduğuna dair bilgiler verilmiştir. Küçük boyutta uydular 

için neden kullanıldığı tekrarlanmış ve tezin önemli sonuçları üzerinde tekrar 

durulmuştur. Ayrıca bu tezden sonra, tezin devamı için doktora aşamasında 

yapılabilecek çalışmalar aktarılmıştır.  

Son bölümden sonra, ayrı olarak, tezin bölümlerinde anlatılmayan bazı bilgiler ek 

kısmında aktarılmıştır. Tezin yazım aşamasında elde edilen bütün sonuçlar detaylı 

olarak paylaşılmış ve devre şematikleri, grafikler özenle teze eklenmiştir. 

Teze başlama aşamasında literatür çalışmaları iyi bir şekilde araştırılmış ve yüksek 

lisans tezleri, radyo frekansı güç kuvvetlendirici kitapları, IEEE yayınları, makaleler, 

bildiriler ve lisans tezleri detaylıca incelenmiştir. Daha sonra tez çalışmasının 

RFMD’nin üretmiş olduğu SGA9289z güç kuvvetlendiricisi ile yapılması danışman 

ve tez öğrencisi tarafından uygun görülmüştür. 

Transistor için tasarımı yapılacak olan kutuplama devresi, A sınıfı güç 

kuvvetlendirici devresinin çalışma prensibine uygun olarak dizayn edilmiştir. 

Kutuplama devresinde kullanılan direnç değerlerine analitik hesaplamalara göre ve 

transistorun veri sayfasından elde edilen bilgilere göre karar verilmiştir. Transistorun 

çalıştığı gerilim değerleri ve kutuplama akımı da veri sayfasındaki bilgiler esas 

alınarak oluşturulmuştur.  

Kutuplama devresinin tasarımından sonra devrenin giriş kısmına ve çıkış kısmına 

istenilen bant genişliği, kazanç değeri ve S parametrelerini verecek giriş ve çıkış 

devreleri eklenmiştir. Empedans uyumuna dikkat edilerek giriş ve çıkış devreleri 

güncellenmiş ve bilgisayar ortamında yapılan simulasyonlara devam edilmiştir. 

Empedans uyumunun gerçekleştirilmesi sırasında Microwave Office AWR 

programının iFilter özelliğinin yanı sıra; S11, S12, S21 ve S22 değerlerinin standart bir 

güç kuvvetlendirici devrede olması gereken değerleri de dikkate alınmıştır. Kararlılık 

analizlerine ve voltaj durağan dalga oranına göre güç kuvvetlendiricisinin 

çalışmasına en uygun görülen devre şematiği oluşturulmuştur. 

Elde edilen devre şemasının baskı devre işlemine geçmesi için bakır plaka üzerine 

yerleşim planının çıkarılması gerekmektedir. Microwave Office AWR programı ile 

baskı devre yerleşim planı çıkartılmıştır. Bu aşamada devrenin boyutunun yeterince 

küçük olmasına özen gösterilmiştir. Devrede kullanılacak olan bütün elemanların 

SMD eleman olması istenmiştir. Bu sayede devrenin olabildiğince küçük olması 

sağlanmıştır. Devredeki 24mm uzunluğundaki hat gibi bazı hatların uzun olmasından 

dolayı bu hatlar kıvrılmış bir şekilde baskı devreye çizilmiştir. MWO AWR 

programının bu özelliği sayesinde devrenin boyutu önemli ölçüde küçülmüştür.  

Sonuç olarak bilgisayar programında baskı devreye hazır hale getirilen devrenin 

boyutu 2,5cm en ve 3,3cm boy oranındadır. Üretilen baskı devrede kullanılan 

elemanların özellikleri hakkında ve baskı devrenin karakteristik özellikleri hakkında 

detaylı bilgilere tezde yer verilmiştir. 

Devredeki toprak bağlantılarının yeterince çok olması radyo frekansı güç 

kuvvetlendirici devreleri için gerekli bir durumdur. Bu durumun sağlanması için 

devrenin üst yüzeyinde toprak için yeterince büyük bir alan ayrılmıştır. Devrenin alt 

kısmı tamamen toprak olarak basılmıştır. Üst yüzeydeki toprak bağlantılarını alt 

yüzeydeki toprağa bağlamak için devrenin birçok yerinde hole olarak 

adlandırdığımız delikler açılmıştır. Bu sayede devrenin toprak bağlantısı istenilen 

ölçütlere ulaşmış olacaktır. 
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Bilgisayar ortamında üretilen baskı devre gerçek ortamda üretilmiş ve devredeki 

kapasite, indüktans, direnç ve transistorlar devreye lehimlenmiştir. Son olarak 

devrenin giriş ve çıkışına SMA konnektörler lehimlenmiş ve devre gerçek ortamda 

deney ölçümlerine hazır hale getirilmiştir. Bilgisayar ortamında çizilen devre ve 

gerçek ortamda bakır levha üzerine basılan devre resimlerine tezde yer verilmiştir. 

Üretilen baskı devrenin kazanç değeri, S parametreleri, çıkış gücü ve verimi sinyal 

jeneratörü, osiloskop ve spectrum analizörü vb. ölçüm aletleri sayesinde ölçülmüş ve 

gerçek ortamda yapılan deney ile bilgisayar ortamında yapılan deneyler 

karşılaştırılmıştır. Sonuçlar ve karşılaştırmalar tezde başlıklar halinde detaylı olarak 

incelenmiştir. 

Sonuç olarak, küçük boyutta uydular için kullanılmaya elverişli bir radyo frekansı 

güç kuvvetlendirici devresi tasarlanmış ve gerçekleştirilmiştir. 
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1. INTRODUCTION 

In the last few years, there have been a remarkable amount of growth in the electrical 

and electronics engineering areas. Consequently, the demand for optimizing the 

circuits involved in radio frequency devices has increased drastically. Not only has 

the demand for the circuits increased drastically, but also the amount of research 

done in this area has grown as well. This growth also spread to amplifier circuits. 

Power is the most important and primary cause for this spread. As the amplifier 

circuits takes important place in everyday life, an optimized design of power 

amplifiers (PA) becomes a necessity. Since in radio frequency devices, all circuits 

are drawing power from a small battery, it seems clear that one of the most important 

aspects of the circuits that need to be optimized is the power consumption. 

Additionally, the cost of the circuits must be lowered as well, because these devices 

must be used in a low cost product. 

There are some bands defined to make the systems compatible for amplifier circuits. 

UHF (ultra high frequency) Band is one of them.  Its operating frequency band is 

between 421 MHz and 470 MHz, sometimes UHF operating band frequency is given 

within 300 MHz and 3 GHz. In this thesis, 435.250 MHz center frequency band is 

chosen and the requirements are fixed according to UHF Band definitions. 

435.250MHz frequency is chosen specifically because this frequency has been used 

for small satellites. The other bands are VHF, SHF, EHF, etc.  

There are many power amplifier implementation techniques for designing an 

amplifier. In a Monolithic Microwave Integrated Circuit (MMIC), high efficient 

power amplifiers such as Class E, Class F, or Class S can be preferred but in this 

thesis, it is decided that the linearity and stability are more important and hence Class 

A power amplifier is designed. This class of operation also gives higher output 

power by implementing some of the power techniques. High power and highly linear 

amplification cannot be easily achieved at the same time. The power amplifier 

classes are explained elaborately in this thesis. 
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Although GaAs (Gallium Arsenide) and some other technologies are commonly used 

in the integrated power amplifiers, SiGe (Silicon Germanium) technology also finds 

a wide implementation area for amplifier designs. Devices in SiGe HBT 

(Heterojunction Bipolar Technologies) medium power discrete technology can 

operate at between 50MHz and 3000MHz. It can be said that SiGe technology is easy 

to implement rather than III-V compound semiconductor technologies which are 

GaAs, GaSb (Gallium Antimonide), GaP (Gallium Phosphide), GaN (Gallium 

Nitride), etc. Also it is cheaper than the other technologies so it is an advantage while 

implementing. Therefore, it is decided to design the amplifier with SiGe HBT 

technology because of these several advantages.    

In this thesis, a power amplifier is designed using SGA9289Z Medium Power 

Discrete SiGe transistor. In general, capacitors, resistors and transmission lines are 

used. Most of the inductors are implemented by transmission lines. As explained 

above, the amplifier is designed according to UHF Band. The center frequency is 

435.250MHz and the band width is about 6.8MHz. Gain is about 23 dB and output 

power is about 27 dBm theoretically. 

All the simulations are performed in Microwave Office Advancing the Wireless 

Revolution (or Applied Wave Research) Design Environment (MWOAWRDE). First 

of all, the center frequency and band width are performed with band pass filters 

which are located base of the transistor and collector of the transistor. Gain is also 

considered in this stage according to the transistor datasheet. Emitter of the transistor 

is connected to the ground which is explained in detail in the thesis. The operating 

bias values are found for a single-stage Class-A power amplifier and for transistor. 

Later desired input and output impedances are found. Matching circuits are created 

according to these analyses and final performance of a single-stage amplifier is 

obtained. It is also considered that gain value at the center frequency should be flat 

throughout about 300 kHz. As a result, there will be flat gain at the top of the gain 

figure. S Parameters have been very important while implementation.  

The ideal and real models of passive components are compared in this amplifier. 

Firstly, the power amplifier is designed according to the ideal components; secondly, 

the real AWR library models are used in the design. Finally, layout is created 

according to final design and layout simulations are done. All simulation results are 

compared as a conclusion.   
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Later in the thesis, general information about the power amplifier design theory is 

given. Architecture of an RF system is explained in detail.  Then, some basic 

characteristics of a power amplifier is explained and defined. Biasing and linear 

classes of power amplifier are introduced especially. These linear classes are A, B, 

AB, and C operating classes for power amplifier. The other power amplifier classes 

are also introduced in the thesis. Later, power amplifier is designed. The 

improvement of a power amplifier can be seen stage by stage. As a last step, the 

layout of the power amplifier is created in MOAWRDE. The simulations are 

repeated with this layout and the most realistic behavior of the circuit is derived. The 

circuit is printed to PCB (printed circuit board) and the graphs have been analyzed in 

the real world. The comparison is done in the fourth chapter between simulations and 

the reality.  Finally, the conclusion chapter is given. 
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2. POWER AMPLIFIER BASICS 

An electronic amplifier is an electronic device used for increasing the power of a 

signal. The amplifier takes energy from power supply and controls the output to 

match the input signal shape but with a larger amplitude. As a result, an amplifier can 

be considered as modulating the output of the power supply. There are several 

amplifiers such as power amplifiers, vacuum-tube amplifiers, operational amplifiers, 

fully differential amplifiers etc. [Url-6]  

Today, power amplifiers are being used in a wide variety of applications including 

Wireless Communication, TV transmissions, Radar, and RF heating, etc. Power 

amplifiers are the last stage of the transmitter chain where highest RF power is 

generated and highest DC (direct current) power is consumed. The term power 

amplifier is a relative term with respect to the amount of power delivered to the load 

and/or sourced by the supply circuit (Bowick, C., Blyler, J., Ajluni, C., RF Circuit 

Design 2008). 

Power amplifiers may be separated application by application. Audio power 

amplifiers, RF power amplifiers, servo motor controlling amplifiers, piezoelectric 

audio amplifiers and so on. In this thesis, generally RF power amplifiers are 

explained. A schematic of a basic RF power amplifier is given in Fig. 2.1. 

 

Figure 2.1: Schematic view of a basic RF amplifier. 

http://en.wikipedia.org/wiki/Power_(physics)
http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Amplitude
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In Fig.2.1, Port 1 is the input and Port 2 is the output terminals. There is a bias circuit 

connected to the base and collector of transistor. There are also RF Chokes on the 

base and collector. PA transistor can be seen in the middle of the Fig. 2.1. This 

schematic can also be seen like in Fig. 2.2. Here, instead of ports input and output 

impedances can be seen. 

 

Figure 2.2 : Schematic view of a basic RF power amplifier with input 

and output impedances. 

The power amplifier consists of DC biasing circuit, RFC (radio frequency choke), 

RF transistor, input and output matching circuits and 50Ω source and load 

impedances in most of the devices (Cripps, S.C., Advanced Techniques in RF Power 

Amplifier Design, 2002). 

2.1 Power Amplifier Performance Parameters 

Most important parameters that define an RF Power Amplifier are gain, output 

power, linearity, stability, DC supply voltage, efficiency, ruggedness, etc. The 

requirements of the PA vary depending on application. When linearity is important 

for some of the PA, efficiency may be important for the others. According to the 

application, both of them can be important sometimes. In this chapter, power 

amplifier parameters will be explained; then power amplifier classes will be 

mentioned. 

2.1.1 Gain 

In electronics, gain is a measure of the ability of a circuit (often an amplifier) to 

increase the power or amplitude of a signal from the input to the output, by adding 

http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Electrical_network
http://en.wikipedia.org/wiki/Amplifier
http://en.wikipedia.org/wiki/Power_(physics)
http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Signal_(electrical_engineering)
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energy to the signal converted from power supply. It may also be defined on a 

logarithmic scale, in terms of the decimal logarithm of the same ratio ("dB gain"). 

A gain greater than one (zero dB), that is, amplification, is the defining property of 

an active component or circuit, while a passive circuit will have a gain of less than 

one. An amplifier’s gain may imply that either the voltage, current or the power gain. 

Most often this will mean a voltage gain for audio and general purpose amplifiers, 

especially operational amplifiers, but a power gain for radio frequency amplifiers. 

The small signal power gain can be described by three definitions such as transducer 

power gain (GT), operating power gain (GP) and available power gain (GA) [Url-19]. 

In Fig.2.3 the GT, GP and GA values can be seen: 

  

Figure 2.3 : GT, GP and GA values. 

In this thesis, the RF power amplifier is designed for 435.250 center frequency, as a 

result, the values in the graph shows at the center frequency values. Transducer 

power gain is the ratio of power delivered to the load to the source’s available power. 

This is simply a measure of how much power from the source gets to the load. The 

transducer power gain is the most widely used gain definition for PA.  

Transducer power gain is defined by: 

   
         

               
      (2.1) 

where 

 PLoad is the average power delivered to the load 

 PSource is the maximum available average power at the source 

Gain [dB] 

http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Active_component
http://en.wikipedia.org/wiki/Passive_circuit
http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/Electric_current
http://en.wikipedia.org/wiki/Electric_power
http://en.wikipedia.org/wiki/Amplifier
http://en.wikipedia.org/wiki/Operational_amplifier
http://en.wikipedia.org/wiki/Radio_frequency
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The GT can be given with scattering parameters as: 

                 
      (2.2) 

Operating power gain is defined by: 

   
         

          
      (2.3) 

where 

 Pload is the maximum time averaged power delivered to the load 

 Pinput is the time averaged power entering the network 

 

The operating power gain is defined as the ratio of the power delivered to the load 

from the power input of the amplifier. The power input to the amplifier is considered 

instead of power available from source. 

Available power gain is defined by: 

   
             

               
      (2.4) 

The available gain is the ratio of available load power to available source power. The 

available power is defined as the maximum power capable of being delivered by a 

source to a load under conditions of conjugate matching and that available gain is 

only defined under conditions of conjugate matching. 

In the conjugate matched conditions, all above the gain values are equal. On the 

other hand, it can be said that       and       . 

The saturated gain can be defined as: 

                                   (2.5) 

It is so important that the gain of the amplifier is required to be flat over the 

operating frequency band. 

An example of gain graph which is drawn with Microwave Office AWR Design 

Environment is shown in Fig. 2.4. 
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Figure 2.4 : Gain graph of a power amplifier. 

2.1.2 Output power 

In radio transmission, transmitter power output (TPO) is the actual amount 

of power (in watts) of radio frequency energy that a transmitter produces at 

its output. Power Amplifier’s output power is the important design parameter for an 

amplifier. The power level is defined by the communication standards. In some of 

the countries, power amplifiers with extremely high output power may be illegal. 

Countries around the world also have different restrictions on maximum radiated 

power on the wireless bands so this is always worth checking with local regulatory 

body. 

The RF power varies between manufacturers and is typically 13-30 dBm 

(approximately 20mW-1W). Some high power amplifiers are capable of supplying 

up to a few watts. 

The formulas for calculating between dBm and miliwatts are shown as: 

                  (2.6) 

     
   

        (2.7) 

2.1.3 Efficiency 

One of the other consequential figure of merit is the efficiency for a power amplifier. 

Efficiency in general describes the extent to which time, effort or cost is well used 

for the intended task or purpose. It is often used with the specific purpose of relaying 

the capability of a specific application of effort to produce a specific outcome 

effectively with a minimum amount or quantity of waste, expense, or unnecessary 

Gain [dB] 

http://en.wikipedia.org/wiki/Radio_transmission
http://en.wikipedia.org/wiki/Power_(physics)
http://en.wikipedia.org/wiki/Watt
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Transmitter
http://en.wikipedia.org/wiki/Output
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effort. "Efficiency" has widely varying meanings in different disciplines. Power 

amplifiers are the most power consuming system. Because of consuming most of the 

power, the overall efficiency is determined by efficiency of power amplifier. Overall 

efficiency can be described simply as: 

                   
            

                
    (2.8) 

Drain efficiency, power added efficiency and total efficiency are the most important 

efficiency terms of a PA [Url-9]. 

2.1.3.1 Drain efficiency 

Drain (or collector) efficiency is the ratio of output RF power to input DC power, 

both measured at the chip level (de-embedding bond wire or other terminal DC 

resistance). Generally drain efficiency is slightly better than overall efficiency, and is 

used to characterize the transistor at chip/die level. 

Drain efficiency is the ratio of output power to DC power consumption: 

         
    

   
     (2.9) 

Drain efficiency is a measure of how much DC power is converted to the RF power. 

Drain efficiency doesn't take into account the incident RF power that goes into a 

device. In the case of a single-stage RF amplifier, the RF input power can be 

substantial, because the gain is low.  

2.1.3.2 Power added efficiency 

The power added efficiency is defined in Eq. 2.10 

    
        

   
     (2.10) 

Power added efficiency (PAE) is similar to drain efficiency, but it takes into account 

the RF power that is added to the device at its input, in the numerator. The ratio of 

the RF power added by the power amplifier to the DC power consumption gives 

PAE. In the theory, the power amplifier with infinite gain will have PAE which 

equals to drain efficiency. For real, PAE will always be less than the drain efficiency. 

The difference between these efficiency terms extends as the gain of the amplifier 

increases. The maximum possible power added efficiency of a device always 
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decreases with frequency. Natural tendency for maximum gain of an active device 

decreases with frequency too. 

2.1.3.3 Total efficiency 

Total efficiency, sometimes called overall efficiency as explained in the efficiency 

main title, gives a complete picture of the ratio of output power to both types of input 

power (DC and RF). 

         
    

       
     (2.11) 

2.1.4 Linearity 

In electronics, the linear operating region of a device, for example a transistor, is 

where a dependent variable (such as the transistor collector current) is 

directly proportional to an independent variable (such as the base current). This 

ensures that an analog output is an accurate representation of an input, typically with 

higher amplitude (amplified). A typical example of linear equipment is a high 

fidelity audio amplifier, which must amplify a signal without changing its waveform. 

For a given frequency the gain is constant in the linear region of a power amplifier. 

Linearity measures that how much power can be delivered to the load.  

2.1.4.1 1 dB compression point 

Output power is only a fixed part of the input power for a linear device such as most 

passive devices, connectors, cable, waveguides, etc. Nonlinear devices exhibit 

complex behavior when input power is compared to output power. However, most of 

the nonlinear devices tend to lose more with increasing input power. The gain 

response of device will become reduced by a specific amount at some power level. 

This power level is the compression point. Microwave engineers often refer to the 1-

dB compression point, but 2 or 3 dB compression points are often important in PA 

chains. Thus we refer to the quantities P1dB, P2dB, P3dB [Url-10]. 

1 dB compression point is defined as the power level for which the gain of the power 

amplifier drops down 1 dB with respect to the linear gain for a specific frequency. 

After the 1 dB compression point for an amplifier the linear operation ends. P1dB (1 

dB compression point) can be seen in Fig. 2.5. 1 dB compression point can be found 

by intersecting the actual gain easily. 

http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Electric_current
http://en.wikipedia.org/wiki/Proportionality_(mathematics)
http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/High_fidelity
http://en.wikipedia.org/wiki/High_fidelity
http://en.wikipedia.org/wiki/Audio_amplifier
http://www.microwaves101.com/encyclopedia/nonlineardevices.cfm
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Figure 2.5 : 1 dB compression point characteristics [Url-14]. 

In the Fig. 2.6, P1dB point can be found in another way easily. Here gain 

compression, normalized to small signal gain, is plotted against input power. 0.25 dB 

compression point may be found too. Unfortunately, P2dB and P3dB are out of range 

for this measurement. 

 

Figure 2.6 : Alternative technique for 1 dB compression point [Url-14]. 

2.1.4.2 Third order intercept point 

Third order intercept point (IP3) is a measure for nonlinear systems and devices, such 

as receivers, linear amplifiers and mixers in telecommunications. The device 

http://en.wikipedia.org/wiki/Nonlinear_system
http://en.wikipedia.org/wiki/Electronic_amplifier
http://en.wikipedia.org/wiki/Frequency_mixer
http://en.wikipedia.org/wiki/Telecommunication
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nonlinearity can be modeled using a low order polynomial, derived by means 

of Taylor series expansion. The IP3 relates nonlinear products caused by the third 

order nonlinear term to the linearly amplified signal, in contrast to the second order 

intercept point that uses second order terms. The intercept point is mathematical 

concept, and does not correspond to a practically occurring physical power level. 

The intercept point is obtained by plotting the output power versus the input power 

on logarithmic scales. Both curves are drawn; one for the linearly amplified signal at 

an input tone frequency, one for a nonlinear product. On a logarithmic scale, the 

function x
n
 translates into a straight line with slope of n. As a result, the linearly 

amplified signal will bode a slope of 1. A third order nonlinear product will increase 

by 3 dB in power when the input power is raised by 1 dB. 

Both curves are extended with straight lines of slope 1 and 3. The intercept point is 

curves intersect point. It can be read off from the input or output power axis, leading 

to input or output intercept point. In Fig. 2.7 IP3 can be seen. 

 

Figure 2.7 : Third order intercept point. 

The IP3 can be found by guessing the fundamental term and third order 

intermodulation term as given in Fig. 2.8 and the output referred third order intercept 

point can be given as Eq. 2.12. 

http://en.wikipedia.org/wiki/Taylor_series
http://en.wikipedia.org/wiki/Logarithmic_scale
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Figure 2.8 : Linear gain, second and third order intercept points. 

                     
             

 
    (2.12) 

2.1.5 Stability 

Stability is an important figure of merit to design an amplifier especially power 

amplifier. Oscillations in the system can be bound to happen if stability is not 

considered because of high gain. K factor is the most commodious stability factor to 

measure stability. If K factor is greater than 1, the power amplifier is stable. In this 

situation, input and output impedances are not important because amplifier is 

unconditionally stable. Some of the amplifier is conditionally stable which means the 

input and output impedances should be 50Ω. If the impedances values do not tuned 

50Ω, the system could be unstable (Kesik, E.P. UHF Güç Kuvvetlendirici Tasarımı 

ve Gerçeklenimi). In Eq. 2.13, the K factor formula is given: 

  
       

       
      

         
     (2.13) 

                        (2.14) 

K factor graph is shown in Fig. 2.9. 
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Figure 2.9 : K factor for stability analysis. 

Another measure of stability is B1 factor. Microwave Office AWR Design 

Environment is also measure B1 factor like K factor. B1 factor should be greater than 

0. B1 factor graph is shown in Fig. 2.10. 

 

Figure 2.10 : B1 factor for stability analysis. 

With stability circles which are drawn in the Smith chart is also a measure of 

stability. This measurement is mostly used for conditionally stable power amplifiers. 

The amplifier will be stable in the area between circle and the rest of the Smith chart 

on the side which contains the center of the Smith chart. The input stability circles 

K 

B1 
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and the output stability circles is shown in the Fig. 2.11 and Fig. 2.12 respectively. 

The Smith chart graphs are drawn between 434 MHz and 436 MHz with 0.5 MHz 

intervals (Kesik, E.P. UHF Güç Kuvvetlendirici Tasarımı ve Gerçeklenimi). 

 

Figure 2.11 : The input stability circles. 

 

Figure 2.12 : The output stability circles. 

2.1.6 DC supply voltage 

DC Supply voltage is another important substance to design an amplifier. The higher 

supply voltage is being, the higher the cost of the system gets. It should be tuned 

according to the power amplifier needs especially transistors. DC supply voltage 

which is 5V can be seen in Fig. 2.13. 
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Figure 2.13 : DC supply voltage. 

2.1.7 Ruggedness 

Ruggedness is a cardinal metric in high power radio frequency amplifier designs. Not 

only providing great performance characteristics about gain, output power and 

efficiency, but also sustaining that performance for more than 10 years in the area is 

expected by radio frequency power amplifiers. Generally, designers have built 

amplifiers using components fabricated in cost-effective silicon-based technologies 

while these technologies can operate at high voltages; they suffer from low 

ruggedness ratings.  

The ability of the RF power transistor to stand load mismatch conditions under high 

output power conditions can be referred as ruggedness. Under this mismatched load 

conditions, a lot of power can be fed back into the active device where it is dissipated 

in the semiconductor. The ability to handle this large power dissipation internally in 

the active area without altering the performance of system shows that PA is reliable 

device. The ruggedness of a specific transistor is typically a function of the 

magnitude and phase of the mismatch, the output power level conditions, and the 

thermal dissipation properties of the power amplifier.  

2.1.8 Error vector magnitude 

The error vector magnitude (EVM) is a measure which can be used to quantify the 

performance of digital radio transmitter or receiver. A signal sent by an ideal 

transmitter or received by a receiver would have all constellation points precisely at 
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the ideal locations; however various imperfections in the implementation cause the 

actual constellation points to deviate from the ideal locations. Informally, EVM is a 

measure of how far the points are from the ideal locations. In other words, it is the 

difference between actual received symbols and ideal symbols. The error vector 

magnitude (EVM) is equal to the ratio of the power of the error vector (in RMS) to 

power of the reference (in RMS). 

              
      

          
     (2.15) 

In Fig. 2.14 error vector magnitude is shown. 

 

Figure 2.14 : Error vector magnitude. 

The nonlinear PA cause deterioration in digital modulation systems and it can also 

produce distortion in phase and amplitude, consequently, a distorted constellation 

diagram occurs.  

2.1.9 Adjacent channel power ratio 

Adjacent Channel Power Ratio (ACPR) is a measurement of the amount of 

interference, or power, in the adjacent frequency channel. ACPR is usually defined 

as the ratio of the average power in the adjacent frequency channel to the average 

power in the transmitted frequency channel. It is a critical measurement for code 

division multiple access (CDMA) transmitters and their components. ACPR 

describes the amount of distortion generated due to nonlinearities in RF components. 

In the other words, the adjacent channel power ratio is between the total power 
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adjacent channel (intermodulation signal) to the main channel's power (useful signal) 

[Url-12]. 

2.1.10 Distortion 

To operate correctly without any distortion to the output signal for a signal amplifier, 

it requires some form of DC bias on its base or gate terminal; as a result, it can 

amplify the input signal over its entire cycle with the bias "Q-point (quiescent point)" 

set as near to the middle of the load line [Url-13]. 

The power, voltage or current gain amplification provided by the amplifier is the 

ratio of the peak output value to its peak input value. However, if we incorrectly 

design our amplifier circuit and set the biasing Q-point at the wrong position on the 

load line or apply too large an input signal to the amplifier, the resultant output signal 

may not be an exact reproduction of the original input signal waveform. In other 

words the amplifier will suffer from distortion. The common emitter amplifier circuit 

distortion is shown in the Fig. 2.15. (Intermodulation Distortion, Aeroflex 

Application Note, Issue 2, 2004) 

 

 Figure 2.15 : Amplifier circuit distortion [Url-6]. 

The reason of the distortion of the output signal is: 

 Amplification may not be taking place over the all signal cycle due to 

incorrect biasing. 

 The input signal may be too large, causing the amplifier to be limited by the 

supply voltage. 
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 The amplification may not be linear over the entire frequency range of inputs. 

All of these explanations mean some form of amplifier distortion has occurred. 

2.1.10.1 Amplitude distortion 

Amplitude distortion occurs when the peak values of the frequency waveform are 

attenuated causing distortion due to a shift in the Q-point and amplification may not 

take place over the whole signal cycle. This non-linearity of the output waveform is 

shown in Fig. 2.16: 

 

Figure 2.16 : Amplitude distortion due to incorrect biasing [Url-6]. 

2.1.10.2 Frequency distortion 

Frequency Distortion occurs in a power amplifier when the level of amplification 

varies with frequency. The input signals that an amplifier will amplify consist of the 

required signal waveform called the "fundamental frequency" plus a number of 

different frequencies called "harmonics". Normally, the amplitude of these 

harmonics are a fraction of the fundamental amplitude and therefore have very little 

or no effect on the output waveform. However, the output waveform can become 

distorted if these harmonic frequencies increase in amplitude with regards to the 

fundamental frequency [Url-13]. For example, Fig 2.17: 
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Figure 2.17 : Frequency distortion due to harmonics [Url-6]. 

2.1.10.3 Phase distortion 

Phase Distortion occurs in a nonlinear power amplifier if there is a time delay 

between the input signal and its appearance at the output. This time delay will 

depend on the construction of the PA and will increase progressively with frequency 

within the BW (bandwidth) of the PA. For example, Fig.2.18: 

 

Figure 2.18 : Phase distortion due to delay [Url-6]. 

2.1.10.4 Intermodulation distortion 

Intermodulation distortion (IMD) is a common problem in a variety of areas of 

electronics. In RF communications, it represents a difficult challenge to designers 

who face tougher requirements on component and sub system linearity. IMD is the 

result of two or more signals interacting in a nonlinear device to produce additional 

unwanted signals. These additional signals occur mainly in devices such as 

amplifiers and mixers, they also occur in passive devices. For example, RF 

connectors on transmission feeds may become corroded over time resulting in them 

behaving as nonlinear diode junctions. In Fig.2.19 the higher order intermodulation 

products are shown: 
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Figure 2.19 : Three tone intermodulation products. 

In Fig.2.20 two tone intermodulation products are shown. Here the third order 

intermodulation products (                 ) are really critical products because 

they are the closest products to the fundamental products (         ). It is very hard 

to eliminate them from the pass band. 

 

Figure 2.20 : Two tone intermodulation products. 

2.1.10.5 Total harmonic distortion 

The total harmonic distortion (THD) is defined as the ratio of the sum of whole 

harmonic components powers to power of the fundamental. 

    
                 

                      
 

          

  
    (2.16) 

The total harmonic distortion is generally expressed in dB or in percent. It is used for 

distortion attenuation or distortion factor, respectively. 

2.2 S Parameters 

S-parameters refer to the scattering matrix. The scattering matrix is a mathematical 

construct that quantifies how RF energy propagates through a multi-port network. A 

multi-port network can be seen in Fig. 2.21. 

For an RF signal incident on one port, some fraction of the signal bounces back out 

of that port, some of it scatters and exits other ports and some of it disappears as heat 

or even electromagnetic radiation [Url-14]. 
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Figure 2.21 : A multi-port network. 

S-parameters are complex and have magnitude and angle because both the magnitude 

and phase of the input signal are changed by the network. Most of the time, 

magnitude is main consideration. The important topic in here is that how much the 

gain loss than can be achieved. S-parameters are defined for a given frequency and 

system impedance, and vary as a function of frequency for any non-ideal network. 

For the S-parameter subscripts “ij”, j is the input port, and “i” is the output port. Thus 

S11 refers to the ratio of signal that reflects from port 1 for a signal incident on port 1. 

Parameters along the diagonal of the S-matrix are referred to as reflection 

coefficients because they only refer to what happens at a single port, while off-

diagonal S-parameters are referred to as transmission coefficients, because they refer 

to what happens from one port to another. In Fig. 2.22 two port network is shown as: 

 

Figure 2.22 : Two port network. 

The following gives the S-matrices for one, two and three-port networks: 

                for one port network 

 
      
      

           for two port network 

 

         
         
         

            for three port network 
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S-parameters describe the response of an n-port network to voltage signals at each 

port. If we assume that each port is terminated in impedance   , we can define the 

four S-parameters of the 2-port as: 

    
  

  
      (2.17) 

    
  

  
      (2.18) 

    
  

  
      (2.19) 

    
  

  
      (2.20) 

    means the response at port 2 due to a signal at port 1. In Eq. 2.21, the matrix 

algebraic representation of 2-port S-parameters is shown: 

 
  
  
   

      
      

   
  
  
      (2.21) 

In order to measure    , a signal is given at port 1 and measure its reflected signal 

again port 1. In this case, no signal is given into port 2, so a2=0. We only inject one 

signal at a time. In order to measure    , the signal is given at port 1, and measure 

the resulting signal exiting port 2. In order to measure    , the signal is given into 

port 2, and measure the signal leaving port 1, and for    , the signal is given at port 2 

and measure its reflected signal at port 2 [Url-15]. 

The meanings of the S parameters: 

     is the input port voltage reflection coefficient. 

     is the reverse voltage gain. 

     is the forward voltage gain. 

     is the output port voltage reflection coefficient. 

S parameters can also be measured in dB. Eq. 2.22 shows us how to convert 

magnitude to dB. 

                               (2.22) 

The S-parameters are members of a family of similar parameters such as Y-

parameters, Z-parameters, H-parameters, T-parameters or ABCD-parameters. Most 

commonly usage is on S-parameters. They differ from these, in the sense that S-
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parameters do not use open or short circuit conditions to characterize a linear 

electrical network; instead, matched loads which are much easier to use at high 

signal frequencies are used. Moreover, the quantities are measured in terms of power. 

S-parameters can express most of the components electrical properties like inductors, 

capacitors, resistors, transistors, etc. These properties are gain, return loss, voltage 

standing wave ratio (VSWR), reflection coefficient and amplifier stability, etc. In 

Fig. 2.23 Gain is obtained with S-Parameters and Transducer power gain formula 

with Microwave Office AWR Design Environment. 

 

Figure 2.23 : Gain with GT and S21. 

S-parameters are commonly used for network systems operating at RF and 

microwave frequencies where signal power and energy considerations are more 

easily quantified than currents and voltages. Because of changing with the 

measurement frequency, S-parameter measurements are different for each frequency, 

in addition to the characteristic impedance or system impedance. 

The following information must be defined when specifying a set of S-parameters: 

 The frequency 

 The characteristic impedance (often 50Ω) 

 The allocation of port numbers 

 Conditions, such as temperature, control voltage, and bias current. 

Gain [dB] 
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2.2.1 Types of S parameters 

Small signal S-parameters are mostly used and nearly have same meaning with S 

parameters for electronics engineers. By small signal S-parameters, the signals have 

only linear effects on the network. Small signal S-parameters is enough for passive 

networks, because of acting linearly at any power level. 

Large signal S-parameters are more complicated. In this case, the S- parameters will 

vary with input signal strength. 

Mixed-mode S-parameters refer to a special case of analyzing balanced circuits. 

Pulsed S-parameters are measured on power devices; consequently, an accurate 

representation is captured before the device heats up. 

2.2.2 Reciprocity 

If the network is passive and it contains only reciprocal materials the network will be 

reciprocal such as attenuators, cables, splitters and combiners.  For this situation, the 

S-parameter matrix will be equal to its transpose (       ). Networks which include 

non-reciprocal materials such as those containing magnetically biased ferrite 

components or an amplifier will be non-reciprocal. 

2.2.3 Lossless and lossy networks 

If a network does not dissipate any power, it is called a lossless network. The sum of 

the incident powers at all ports is equal to the sum of the reflected powers at all ports. 

     
       

      (2.23) 

Lossless networks are only in the simulation programs and cannot be realize in the 

real world.  

     
       

      (2.24) 

A lossy passive network is one in which the sum of the incident powers at all ports is 

greater than the sum of the reflected powers at all ports. 

     
       

      (2.25) 
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2.2.4 Insertion loss 

If the two measurement ports use the same reference impedance i.e. 50Ω, the 

insertion loss (  ) is the dB expression of the transmission coefficient.    can be 

given by: 

                      (2.26) 

The extra loss can be introduced by mismatch or intrinsic loss. In case of extra loss 

the insertion loss is defined to be positive. 

2.2.5 Input return loss 

Input return loss (       ) is a scalar measurement and expressed in logarithmic 

magnitude. It measures that closeness of actual input impedance of the network to 

the nominal system impedance. 

                            (2.27) 

The lower input return loss provides the higher performance for the power amplifier 

system. If the     parameter is low, loss of the amplifier will be low. In Fig.2.24 the 

power amplifier’s    graph is shown. According to the     value,         can be 

calculated by the following: 

                                        (2.28) 

In this thesis the power amplifier is designed for 435.250 MHz, consequently, the 

value for 435.250 MHz is considered for the calculations. 

 

Figure 2.24 : The power amplifier’s S11 graph. 

S11 [dB] 
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For an RF power amplifier, if    value is under -8 dB, the amplifier has very small 

input return loss. In this design     is -11.69 dB. 

2.2.6 Output return loss 

The output return loss (        ) is a scalar measurement and expressed in 

logarithmic magnitude.          is applied to the output port instead of the input 

port. It can be given by: 

                             (2.29) 

The lower output return loss provides the higher performance for the power amplifier 

system. If the     parameter is low, loss of the amplifier will be low. In Fig.2.25 the 

power amplifier’s     graph is shown. According to the     value,          can be 

calculated by the following: 

                                         (2.30) 

In this thesis the power amplifier is designed for 435.250 MHz, consequently, the 

value for 435.250 MHz is considered for the calculations. 

For an RF power amplifier, if    value is under -8 dB, the amplifier has very small 

output return loss. In this design     is -8.206 dB. 

In Fig.2.26 the power amplifier’s     and      graphs are shown together. 

 

Figure 2.25 : The power amplifier’s S22 graph. 

S22 [dB] 
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Figure 2.26 : The power amplifier’s S11 and S22 graphs. 

2.2.7 Reverse gain and reverse isolation 

The reverse gain (    ) is a logarithmic measurement and expressed in dB. It is 

measured by    . 

                       (2.31) 

The reverse gain is often given in magnitude version and it is called reverse isolation. 

                                (2.32) 

In Fig. 2.27     is given: 

 

Figure 2.27 : The power amplifier’s S12 graph. 

S11 [dB] 
S22 [dB] 

S12 [dB] 



30 

 

According to Eq.2.31 and Eq.2.32:       29.79 dB and       29.79 dB, too. 

                                             (2.33) 

In this thesis the power amplifier is designed for 435.250 MHz, consequently, the 

value for 435.250 MHz is considered for the calculations. 

    is always the smallest one. As a result, reverse gain and reverse isolation are the 

smallest values in the system. Because there is no input signal in the port 2 and there 

is no output signal except the reflections in the port 1. 

If the    value is under -30 dB, it will be a great design for an RF power amplifier. 

In this thesis,     is -30.89 dB so that the amplifier nearly has no reverse gain. 

2.2.8 Reflection coefficient 

The reflection coefficient is used in physics, electrical and electronics engineering 

while wave propagation in a medium containing discontinuities is considered. A 

reflection coefficient describes either the amplitude or the intensity of a reflected 

wave. The reflection coefficient is closely related to the transmission coefficient. 

In electronics, the reflection coefficient (Γ) is the ratio of the amplitude of the 

reflected wave (  ) to the amplitude of the incident wave (  ) [Url-18]. 

  
  

  
     (2.34) 

According to the circuit properties reflection coefficients can be given in other 

terminations. If   is the source impedance and   is the load impedance, reflection 

coefficient can be given as Eq.2.35.    and    are showed in Fig.2.28. 

  
     

     
      (2.35) 

  

Figure 2.28 : Simple circuit configuration showing measurement 

location of reflection coefficient. 
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2.2.8.1 Voltage reflection coefficient 

The voltage reflection coefficient is (   ) at the input port and (    ) at the output 

port. They are equivalent to             and respectively. Voltage reflection 

coefficients are complex quantities and can be represented on polar diagrams or 

Smith Charts. 

        and              (2.34) 

2.2.9 Standing wave ratio 

In electronics, standing wave ratio (SWR) is the ratio of the amplitude of a partial 

standing wave at a maximum node to the amplitude at a minimum node. Standing 

Wave Ratio is used for an efficiency measure for transmission lines (TL), electrical 

cables that conduct radio frequency signals, used for purposes such as connecting 

radio transmitters and receivers with their antennas, and distributing cable television 

signals.  

The impedance mismatches in the cable tend to reflect the radio waves back toward 

the source end of the cable which is really great problem with TL. SWR measures 

the relative size of these reflections. An ideal transmission line would have an SWR 

of 1:1, with all the power reaching the destination and there is no reflected power. 

The SWR of a transmission line can be measured with an instrument called an SWR 

meter, and checking the SWR is a standard part of installing and maintaining 

transmission lines. 

The absolute magnitude of the reflection coefficient can be calculated from the SWR. 

    
     

     
      (2.35) 

2.2.9.1 Voltage standing wave ratio 

The SWR is usually defined as a voltage ratio called the VSWR (voltage standing 

wave ratio).     is enough to calculate the VSWR. Let’s say,      . 

  
     

     
      (2.36) 

     
    

   
      (2.37) 

  can be -1, +1, 0 or between -1 and +1. 
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     : maximum negative reflection, when the line is short-circuited, 

      : no reflection, when the line is perfectly matched, 

     : maximum positive reflection, when the line is open-circuited. 

According to  ,   can be [0,1]. As a result, VSWR is always  . In Fig. 2.29 VSWR 

of the power amplifier is shown: 

 

Figure 2.29 : VSWR of the power amplifier. 

It is also possible to define the SWR in terms of current as ISWR (current standing 

wave ratio) or in terms of power as PSWR (power standing wave ratio) which is 

defined as the square of the VSWR. 

2.2.10 S parameters values for RF power amplifier of the thesis 

In Table 2.1, the S parameter values are given for the RF power amplifier: 

Table 2.1 : The S parameter values for the RF power amplifier 

S Parameter Value [dB] 

    -11.69 

    -30.89 

    22.85 

    -8.206 

In Fig. 2.30, the S parameters graph is shown together: 

VSWR 
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Figure 2.30 : The S parameters graph. 

2.3 Classes of Power Amplifiers 

There are so many power amplifier classes such as Class A, AB, B, C, D, E, F and 

Class G, etc. Some of the classes are used for linearity and some of them are used for 

efficiency. The designers choose the class that they would like to use according to 

wishes. If the linearity is important for an RF power amplifier, most of the time Class 

A power amplifier is chosen. On the other hand, if linearity is not so important but 

efficiency is very important, Class E power amplifier can be chosen. Linearity 

decreases and efficiency increases while going from Class A amplifier to Class F 

amplifier (Vendelin, G.D., Design of Amplifiers and Oscillators by the S-Parameter 

Method, 1982). 

Power amplifier classes may be separated by their operating mode such as linear RF 

power amplifiers and non-linear RF power amplifiers as mentioned the previous 

paragraph. The non-linear RF power amplifiers can be called switching mode RF 

power amplifiers (Kenington, P.B., High Linearity RF Amplifier Design, 2000). 

Class A, AB, B and C can be classified for linear amplifiers and they work in linear 

mode. The output signal is a linear multiplication of the input signal for this kind of 

power amplifier. The efficiency drops dramatically in this group of amplifier (Cripps, 

S.C., Advanced Techniques in RF Power Amplifier Design, 2002). 

S Parameter 

Values [dB] 
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Class D, E and F are non-linear power amplifiers. The efficiency improves for this 

group of amplifier but the output signal is not the linear multiplication of the input 

signal because of nonlinearities. 

The topology determines the class of amplifier. The bias conditions and the input 

signal is the important measure for choosing the class. If a designer wants to design 

an amplifier for modulated signals, he/she has to choose linear power amplifier 

classes. The designer can not choose switching mode power amplifier for this 

mission. 

The bias points of an RF power amplifier may determine the level of performance as 

mentioned before with that PA. By comparing PA bias approaches, bias conditions 

can evaluate the tradeoffs for: output power, efficiency, linearity, etc. 

The transistor’s active region (base biasing) is extremely important to decide the 

class. Base bias voltage added to the input signal allowed the transistor to reproduce 

the full input waveform at its output with lossless of signal. However, by altering the 

position of this base bias voltage, it is possible to operate the power amplifier in an 

amplification mode. With the introduction to the amplifier of a base bias voltage, 

different operating ranges and modes of operation can be obtained which are 

categorized according to their classification. 

None class of the class operation is "better" or "worse" than any other class with the 

type of operation being determined by the use of the amplifying circuit. 

In this thesis, the power amplifier is designed in Class A power amplifier. The other 

classes will be explained but Class A will be emphasized more than the other classes. 

The graphs and schematics will be given in the thesis in detail. 

2.3.1 Class A power amplifier 

Class A power amplifiers are used for linearity amplifications. They are usually 

biased like small signal amplifiers and they nearly have no distortion. The 

transistor(s) in the Class A power amplifier design is always biased on during the 

amplification (Kenington, P.B., High Linearity RF Amplifier Design, 2000). 

Class A amplifier is the most linear power amplifier class in all PA classes. If 

linearity is important design parameter for the application, this class may be chosen. 

On the other hand, the efficiency is the lowest design parameter in this class.  
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The Class A power amplifier gives the constant multiply of input signal at the output 

as all linear amplifier. 

                     (2.38) 

In Eq.2.37, A is a constant gain of application. 

As mentioned in the main heading which is “Classes of Power Amplifiers” before, 

the operating point decides the amplifier class. Here, for Class A, the operating point 

(bias condition) is in the linear region, as a result, the amplifier is linear.  

Conduction angle is also a consequential figure of merit for RF power amplifiers. 

The conduction angle is 360
o
 (2π) for Class A power amplifier. The 360

o
 conduction 

angle means the transistor in the output stage conduct for the full cycle of the input 

signal. In Fig.2.31, output current of the amplifier is shown.  

 

Figure 2.31 : The output current of the amplifier. 

None of the transistor can be perfectly linear but the transistor that is used for Class 

A power amplifier is the most linear one. 

The purpose of class A bias is to make the amplifier fairly free from distortion by 

keeping the signal waveform out of the region between 0V and about 0.7V where the 

transistor’s input characteristic is nonlinear as shown in Fig.2.32.  
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Figure 2.32 : Transistor’s nonlinear region. 

The Class A power amplifiers are good for linearity but their output power is not 

high. The output power is theoretically 50%, but practically only about 10 to 30%, 

compared with the DC power supply. 

To achieve high linearity and gain, the amplifier’s bias conditions should be chosen 

properly so that the amplifier operates in the linear region. Because of working in the 

linear region, the amplifier conducts at all times and it is conducting current all the 

time. Consequently, there is a continuous loss of power in the PA. This continuous 

loss of power makes the output power low.  

    
   
 

 
            (2.39) 

In Eq.2.39,     is the DC power consumption and     is the quiescent output current 

which is approximately half of the maximum output current.     is the supply 

voltage. 

The Class A amplification process is linear, hence increasing the quiescent current or 

decreasing the input signal level decreases intermodulation distortion and harmonic 

levels of the design. To have low harmonics, for Class A, nearly all of the transistor 

frequencies can be used to operate the amplifier during the design. If an application 

require low power, high linearity, high gain, broadband operation, or high-frequency 

operation the Class A power amplifier can be used. 

In this thesis, the power amplifier is Class A and the small signal S parameters are 

used to design the amplifier. In Class A amplifiers small signal S parameters can be 

used in simulations even if the large signal amplifier is operating. 
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The quiescent current which is also called standing bias current (Fig.2.33), makes the 

collector voltage to drop to the half of the supply voltage. As a result, the power will 

be half of the           as mentioned in Eq.2.39 before. 

To conduct the signal, whether there is signal, all the time makes power dissipate for 

transistors and amplifiers. But this situation is not a big problem for designers in 

Class A voltage amplifiers because the collector current is not big one but very small 

one. On the other hand, it is a big problem in Class A power amplifiers because 

output currents are huge currents considering input base current. So that efficient use 

of power is critical issue. 

 

Figure 2.33 : Class A input and output wave form. 

These types of amplifications run all the time, therefore, the PA is on and it heats 

easily. Heat dissipation is also high due to this 360
o
 conduction angle. Because of 

these factors, Class A amplifiers consume at least 4-5 watts as heat for every watt of 

output power. The transistors which are used in Class A power amplifier needs 

additional components for cooling and heat regulation. 

Although, there are some disadvantages to use Class A power amplifier, there are 

also some big advantages to implement this class in the amplifier design such as 

linearity, low distortion and so on as mentioned before. 

In Fig.2.34, the input waveform and the output wave form of an amplifier are showed 

in horizontal mode to see the linear amplification easily. 

Class A power amplifier output stages are used in low to medium power output 

stages of 1 to 2 watt or below, such as domestic radio or TV receivers and headphone 

amplifiers. In this thesis, the transistor is chosen as medium discrete power transistor 
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and the power amplifier which will be implemented in the following chapter will use 

for satellite systems, because linearity is so important in satellite systems to control 

and give command. 

These classes of amplifications are also used for musical instruments, because the 

power amplifier reproduces all of the audio waveform without ever cutting off. 

Consequently, the musical instruments sound is cleaner, more linear and has low 

distortion. 

 

Figure 2.34 : Class A input and output wave form. 

The basic schematic version of Class A is shown in the Fig.2.35. There is a load 

impedance in the right hand side of the schematic. The input impedance follows to 

the base of the transistor. Voltage divider is used to bias the base and collector of the 

transistor. There are RF choke connected both side of the transistor. The supply 

voltage provides the energy that circuit needs. Finally, the fourth leg of transistor is 

connected to the ground (Kenington, P.B., High Linearity RF Amplifier Design, 

2000). 
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Figure 2.35 : The basic schematic version of Class A. 

According to the figures and the explanations that mentioned before, these equations 

can be written: 

                     (2.40) 

Here,       is the peak value of AC current. 

                   (2.41) 

               (2.42) 

According to Eq.2.41 and 2.42, we can give Eq.2.43: 

                   (2.43) 

The quiescent current can be chosen like in Eq.2.44, so that, the amplifier gives the 

maximum RF current swing where Eq.2.45. 

    
    

 
       (2.44) 

      
    

 
      (2.45) 

The peak voltage can be given by the multiplication of peak current and the load 

resistor. 

                              (2.46) 
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The DC power was given in Eq.2.39. The output radio frequency power is: 

    
     
    

 
      (2.47) 

According to equations above, the efficiency can be represented as: 

  
     
    

       
      (2.48) 

The other form of Eq.2.48 is: 

  
   

   
      (2.49) 

The maximum efficiency occurs when the current and voltage swings take on their 

maximum values. Notice that    is generally 50Ω and can not be changed. If       is 

taken equally with     and       is taken equal as         , the Eq.2.50 can occur: 

  
   
    

       
      (2.50) 

Because of Eq.2.51: 

                 (2.51) 

The maximum efficiency can be written as: 

     
        

    
     (2.52) 

Theoretically, if the      is chosen “0”,      will be    . That means Class A power 

amplifier has 50% efficiency theoretically. 

2.3.1.1 Transformer Coupled Class A Power Amplifier 

The efficiency of Class A power amplifier can be improved by adding a transformer 

at the output of the transistor. This transformer is replaced with the resistor which is 

connected between supply voltage and collector of the transistor. The transformer’s 

primary winding side has high impedance (    ) at the audio frequencies.    is 

primary side turns of the transformer and    is the secondary side  turns of the 

transformer.      can be shown as: 

           
  

  
 
 

     (2.53) 
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     (primary winding side impedance) will be equal with the       multiplied by 

the square of the turns ratio. The transformer coupled Class A power amplifier can be 

shown in Fig.2.36: 

 

Figure 2.36 : The transformer coupled Class A power amplifier. 

Although the Class A amplifier’s efficiency improves when transformer is used in 

the output of the transistor, the transformer can itself produce additional distortion. 

This additional distortion can be minimized by limiting amplitude of the signal. 

2.3.2 Class B power amplifier 

For Class B power amplifier, bias of the transistor and output signal of the amplitude 

are only placed in positive half cycle of the input signal. When there is no signal 

(zero signal), the collector current is zero and there will be no biasing system in 

Class B power amplifiers.  

The operating point is selected according to transistor’s collector cutoff voltage. The 

negative half cycle is eliminated in this type of amplifier; as a result, the distortion 

can have high values. 

If the Class A power amplifiers and Class B power amplifiers are compared, average 

current and power dissipation of Class B will be less. Consequently, overall 

efficiency is increased. Theoretically, efficiency in Class B is about 78.5% while it is 

only 50% in Class A amplifier. 



42 

 

The Class B amplifier operates usually and ideally at zero quiescent current, 

therefore, the DC power will be small. Class B power amplifier is less linear than 

Class A power amplifier. 

The conduction angle is approximately 180
o
 for Class B amplifier. In Fig.2.37 the 

conduction angle graph can be seen.  

 

Figure 2.37 : The conduction angle for Class B power amplifier. 

This class almost use no electricity, they only consume small electricity  which are 

small signals. They need the base-emitter voltage (Vbe) to be greater than the 0.7 V 

(approximately value) required for the BJT (bipolar junction transistor) to start 

conducting. There are two transistors in the amplifier, one transistor conducts during 

positive half cycles of the input signal and the second transistor conducts during the 

negative half cycle, Therefore, the all of the input signal is reproduced at the output. 

There is a distortion in small part of the output waveform at the zero voltage 

(crossover point). This distortion is called by crossover distortion. In Fig.2.38 the 

Class B push-pull power amplifier schematic is shown.  The quiescent point is shown 

in Fig.2.39. There is also Class B PA which can be designed with one transistor but 

in this time a resonant circuit must be placed in the output network to reproduce the 

half of the input signal. 
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Figure 2.38 : The Class B push-pull power amplifier. 

 

Figure 2.39 : The Class B power amplifier input and output signals. 

2.3.3 Class AB power amplifier 

The Class AB power amplifier can be classed between Class A and Class B PA. Its 

efficiency and linearity are also between these two amplifiers. The output bias is set, 

therefore, output current flows in a specific output device. The output current flows 

more than a half cycle but less than a full cycle. Only small amount of current is 

allowed to flow through both devices unlike the complete load current of Class A 

power amplifier. It is enough to keep each device operating so they respond instantly 

unlike Class B power amplifier. 

According to these situations, efficiency increases and the amplifier is still linear. For 

a Class AB power amplifier, the conduction angle is between 180
o
 and 360

o
. In 

Fig.2.40 the conduction angle can be seen and in Fig.2.41 the quiescent point of 

Class AB which is above than the zero point and lower than the Class A bias point is 

shown: 
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Figure 2.40 : The conduction angle of Class AB power amplifier. 

 

Figure 2.41 : The quiescent point of Class AB. 

The Class AB schematic is shown in Fig.2.42: 
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Figure 2.42 : The Class AB schematic. 

2.3.4 Class C power amplifier 

The conduction angle is less than 180
o
 for Class C power amplifier. This type of 

amplifier will operate only with a tuned or resonant circuit which provides a full 

cycle of operation. They are biased and the output current will be zero for more than 

one half of an input signal cycle.   

The Class C power amplifiers can be used for radio and communications. They are 

restricted to the broadcast industry for radio frequency transmission. 

The operation is worked by turning on one device at a time for less than a half cycle. 

Each output device is pulsed on for some percentage of the half cycle. Consequently, 

the Class C power amplifiers are more efficient Pas than Class A, B and AB.  

A kind of Class C power amplifier schematic is shown in Fig.2.43. The inductor is an 

RF choke in the schematic. 
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Figure 2.43 : The Class C power amplifier schematic. 

Theoretically, the efficiency of the Class C PA can be reached to 85% that is better 

than Class A, B and AB Pas. They have low average output power because the 

transistor conducts only for short periods. The conduction angle and quiescent point 

of the amplifier is shown in Fig.2.44 and 2.45, respectively. 

 

Figure 2.44 : The Class C power amplifier conduction angle. 
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Figure 2.45 : The Class C power amplifier quiescent point. 

In the Table 2.2 The conduction angle, position of the quiescent point, overall 

efficiency and distortion are given for Class A, B, AB and C power amplifiers. 

Table 2.2 : The comparison of the Class A, B, AB and C power 

amplifiers 

Class A B AB C 

 

Conduction 

Angle 

 

360
o
 180

o
 180

o
 to 360

o
 ≤180

o
 

Position of 

Quiescent 

Point 

Centre Point 

of 

the Load Line 

On the 

X axis 

Between the 

X axis and 

the 

Centre Load 

Line 

Below the 

X axis 

Overall 

Efficiency 
25 to 30% 

Better, 70 to 

80% 

Better than A 

but less than 

B 

50 to 70% 

Higher than 

80% 

Distortion 

None if 

Correctly 

Biased 

At the X axis 

Crossover Point 

Small 

Amounts 

Large 

Amounts 

2.3.5 Class D power amplifier 

The Class D power amplifier is a switching mode amplifier like Class E power 

amplifier. The transistor works as a switch and it has “on” state where amplifier acts 

as a short circuit and “off” state where amplifier acts as an open circuit. 



48 

 

Theoretically, Class D PA has 100% efficiency. The amplifier does not have analog 

state, so that the analog changes in the input signal will disappear.  

The Class D power amplifiers can be used in frequency modulation, pulse width 

modulation and Gaussian minimum shift keying (GMSK) modulation but cannot be 

usually used for amplitude modulation. 

Class D power amplifiers use two or more transistors and most of the time these 

transistors will be field effect transistors. These types of amplifiers are difficult to 

realize at high frequencies. The device parasitic and lead inductance lead the power 

loss in each cycle. On the other hand, the main advantage of Class D amplifier is the 

amplifier is on only for short intervals. 

Class D power amplifiers are designed to operate with digital or pulse type signals. 

Digital techniques make it possible to have a signal that varies over the entire cycle 

to recreate the output from many pieces of input signal. 

In this thesis, a linear power amplifier which is Class A power amplifier is used, 

therefore, linear power amplifiers are explained in detail. The other power amplifiers 

as Class D, E, F, G and H etc. will be given in basic form. 

2.3.6 Class E power amplifier 

The Class E power amplifier’s operation involves amplifiers designed for rectangular 

input pulses instead of sinusoidal input waveforms. It operates with a single 

transistor as a switch.  

The efficiency is ideally 100%. Class E power amplifiers are offering more complex 

output filtering design. They are including some additional wave shaping of the pulse 

width modulation signal to prevent distortion. 

In the ideal Class E PA, the shunt capacitor does not loss any power unlike Class D 

PA. Class E amplifier will exhibit an upper limit on its frequency of operation biased 

on the output capacitance. The RFC is large, so that only DC current flows through 

it.  

Because of the quiescent point is high enough, the output current and output voltage 

consist of only fundamental part. As a result, all harmonics will be eliminated.  
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2.3.7 Class F power amplifier 

The Class F power amplifier is similar to Class D power amplifier. It is including 

some additional wave shaping of the pulse width modulation signal to prevent 

distortion. This amplifier is the one of the highest efficiency amplifier, because of 

having harmonic resonator. In example, this amplifier may have some circuits 

(resonators) to prevent third harmonic signals. Also the output resonator is used to 

eliminate the harmonic and only keep the fundamental frequency output signal.  

In Class F power amplifiers, lumped element traps are used at low frequencies and 

transmission lines can be used at microwave frequencies. 

The Class F power amplifier is quite difficult because of having complex output 

circuit. If output matching network is implemented in the design, the harmonics can 

be eliminated. If matching network provides high impedance like open circuit, odd 

harmonics are eliminated and if matching network provides low impedance like short 

circuit, even harmonics are eliminated.  

A     transmission line transforms an open circuit into a short circuit or vice versa.  

In Table 2.3 the power amplifier classification can be seen from Class A to Class F. 

Table 2.3 : The comparison of the power amplifiers from Class A to 

Class F 

Class Mode Efficiency Linearity 

A 

Trans-conductance 

50% Good 

B 78.5% Moderate 

C 100% Lower than B 

D 

Switch 

100% Poor 

E 100% Poor 

F 100% Poor 

2.3.8 Class G power amplifier 

The Class G power amplifier can be used for large output signals with changing the 

power supply voltage level. The simple Class G power amplifier involve with Class 
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AB PA output stage which is connected to two power supply rails by a diode or 

transistor switch.  

This type of amplifier can also be implemented by using two Class AB amplifier 

each has a different power supply. Its efficiency improves if this implementation is 

realized.  

Class G may be used in pro audio designs and musical program material. It has 

satisfied the need for narrow band tuned amplifiers and high efficiency. 

2.3.9 Class H power amplifier 

The Class H power amplifier improves on Class G PA by continually varying the 

power supply voltage. It modulates the higher power supply voltage by the input 

signal, therefore, the power supply tracks the audio input and provide enough voltage 

for optimum operation. 

Both of the Classes G and H require more complex power supplies, as a result it 

costs too much to implement. 

2.3.10 Class J power amplifier 

The Class J power amplifier provides a solution for the adverse effects of switch 

mode amplification; as a result, potentially high efficiency, linearity and wideband 

behavior can be seen simultaneously.  

2.3.11 Class S power amplifier 

The Class S power amplifier is a switching mode PA which has 100% efficiency. It 

is used for amplification of low frequency signals. This amplifier requires pulse 

width modulated signal. 

2.4 Amplifier Design Fundamentals 

In this part general power amplifier design fundamentals will be explained. The bias 

point and impedance matching will be discussed in detail. The DC operating point is 

very important figure of merit for the amplifier design. This point can also determine 

class of the amplifier. Each transistor has its own bias point, as a result, it should be 

chosen carefully for the amplifier. The matching network is also an important figure 

of merit. If the simulation results do not meet the requirements, the design of the 
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amplifier and the matching networks should be changed (Bowick, C., Blyler, J., 

Ajluni, C., RF Circuit Design, 2008). 

2.4.1 The bias point 

The operating point of a device, also known as bias point, quiescent point, or Q point 

can be found by biasing the circuit. Biasing is the method of establishing 

predetermined voltages or currents at various points of an electronic circuit for the 

purpose of establishing proper operating conditions in electronic components. Many 

electronic devices whose function is signal processing time-varying (AC) signals 

also require a steady (DC) current or voltage to operate correctly. The Q point is 

chosen to keep the transistor operating in the active mode, using a variety of circuit 

techniques, establishing the Q point DC voltage and current for BJT. 

In Fig.2.46, a generic power amplifier circuit for optimum transistor analysis for each 

class is shown. The capacitors on the base and collector are the by-pass capacitors 

and RF chokes are used for biasing. In Fig.2.47, the bias circuit which is used for this 

thesis is shown: 

 

Figure 2.46 : A generic power amplifier circuit. 
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Figure 2.47 : The bias circuit. 

There are resistors to divide the voltage which is supplied by    . There is also an 

RF choke as mentioned above.  

Transmission lines are used for each of the connections to see the solder effects. As a 

result, we can know that what the solders change in PA design.  Instead of 

inductance, transmission lines can be used in an RF power amplifier too. The circuit 

properties will be mentioned later in the third chapter.  

To find the bias point circuit components, current source is connected to the base of 

transistor. This source is increased volume by volume. When the ICEQ current value 

equals to 280mA which is the datasheet value of transistor the base current will be 

obtained. According to the ICEQ current value bias circuit elements value will be 

obtained too. In Fig.2.48, the base current graph is given: 
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Figure 2.48 : The base current graph. 

According to the Fig.2.48 the base current is 3.846mA for the 280.1mA collector 

current of transistor. To obtain 3.846mA base current R2 (ID=S13 in Fig.2.47) is 

chosen 1200Ω and R3 (ID=S14 in Fig.2.47) is chosen 300Ω. Not to have 300Ω for 

realization, R3 is taken 270Ω and another resistor is added series to R3, and its value 

is 33Ω (ID=S15 in Fig.2.47). 

VCEQ should be between 0V and 5V according to transistor datasheet. To obtain 0-5V 

0.07V is given from the port 1. The 0.07V value is obtained by sweeping. Later, it is 

proved by Fig.2.49. VCEQ graph can be seen in Fig.2.50. Vout is also shown in the 

same graph. 

 

Figure 2.49 : The port 1 voltage. 
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Figure 2.50 : The VCEQ and Vout graph. 

The last bias circuit element R3 (S12 in Fig.2.47) is obtained by calculation: 

   
   

 

   
 

 

 

    
           (2.54) 

This value can be approximated to 9Ω but for realization we have 8.2Ω, as a result, 

R3 is chosen 8.2Ω. 

The circuit elements will be explained in detail in chapter 3. 

2.4.2 Impedance matching 

In electronics, impedance matching is the practice of designing the input impedance 

of a load (or the output impedance of its corresponding signal source) to maximize 

the power transfer or minimize reflections from the load. The input and output 

impedances must be matched to the source and the load impedances to prohibit 

reflections and to maximize power transference (Kesik, E.P., UHF Güç 

Kuvvetlendirici Tasarımı ve Gerçeklenimi). 

In the case of a complex source impedance ZS and load impedance ZL, maximum 

power transfer is obtained when: 

     
       (2.55) 

In Fig.2.51, the source and load impedance can be seen: 

V 
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Figure 2.51 : The source and load impedance. 

In RF power amplifier systems, the impedance matching is a bit different from the 

normal circuits. The transistor is used to amplify the system; as a result, two 

impedance matching circuit should be used. One of them is before the transistor and 

the other one is after the transistor. It means the matching circuits are located before 

the base of the transistor and after collector of the transistor. 

Most of the discrete components are designed for 50Ω in an RF amplifier. 

Consequently, there is not any reflection between them. The input impedance (   ) 

and the output impedance (    ) should be 50Ω for this reason. Therefore the 

optimum load (  ) and source (  ) impedance should be transformed to 50Ω. An 

amplifier schematic represents    ,     ,    and    is shown in Fig.2.52: 

  

Figure 2.52 : An amplifier schematic showing Zin, Zout, ZL and ZS. 

The impedance matching circuit can be implemented by L type network, T type 

network, pi type network or with transmission lines. Capacitances and inductance are 

used for matching. In this thesis, capacitances and transmission lines are used for 

matching. In order to implement the inductances into the circuit is difficult, the 

transmission lines is used. 

The MWOAWR program has impedance matching circuit wizard which is named 

with iFilter Wizard. In this thesis, firstly, iFilter Wizard is used; secondly, according 

to the gain and S parameters characteristics, the impedance circuits are designed 

again. 
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In Fig. 2.53 the single-stage PA with matching circuits is shown and in Fig.2.54 the 

input matching circuit and in Fig.2.55 the output matching circuit which are used in 

this thesis are shown. In Fig.A.3, Fig.A.4 and Fig. A.5, the input, output and RF 

circuits are shown respectively. 

  

Figure 2.53 : The single-stage PA with matching circuits. 

 

Figure 2.54 : The input matching circuit. 

 

Figure 2.55 : The output matching circuit. 
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3 . EXPERIMENTAL 

In this chapter, the experiments done in MWOAWR program with computer and the 

experiments done in real world are explained in detail. The circuit schematics and the 

result graphs will be shown clearly. From the basic schematic to the realization of the 

last schematic will be given step by step.  

Firstly, the materials and the equipment will be introduced in upcoming titles. 

Secondly, experiments in the computer program and lastly, experiments in the 

realization will be illustrated. 

3.1 Materials 

3.1.1 Capacitances 

Capacitance is the ability of a body to store an electrical charge. Due to store 

electrical charge it can provide stability of voltage. There are four capacitances at the 

input side and again four capacitances at the output side of the circuit used in this 

thesis. There are also bias capacitances in the circuit schematic. In Table 3.1, the 

capacitances values are shown: 

Table 3.1 : The capacitances values 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

3.6pF 82pF 1pF 47pF 1pF 7.5pF 5.1pF 68pF 1000pF 220pF 

Generally, Johanson’s 603 body SMD FR4 base capacitances will be used in this 

thesis. In MWO program, firstly, ideal components are used, later in order to realize 

the circuit in the real world, the real AWR capacitances values are used. It is 

interesting that the ideal 220pF capacitance equals to 82pF Johanson’s 603 body FR4 

(flame resistant 4) base real capacitance and the ideal 100pF capacitance equals to 

68pF. While using the real AWR capacitances the gain characteristics of the circuit is 
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considered. When the gain graph changed, the changes are removed by the 

transmission lines. 

3.1.2 Inductances 

It is difficult to implement the inductances to the circuit so that there is only one 

inductance used in the circuit. This inductance is used for RF Choke that is explained 

in the following title. In RF line, the inductances are exchanged to the transmission 

lines which are explained in the “Transmission Line” title. The band pass circuits and 

impedance matching circuits are designed by capacitances and transmission lines 

instead of inductances. 

3.1.3 RF choke 

The RFC (radio frequency choke) is an inductance that can be used in the bias 

circuit. In this thesis, 330nH Johanson Monolitic 805 body RFC is used. It raises the 

power in the power amplifier. Meanly, it is a bar for reflecting power from the 

transistor. 

An RF choke is a coil of insulated wire and it is often wound on a magnetic core, 

used as a passive inductor which blocks higher-frequency alternating current in an 

electrical circuit while passing signals of much lower frequency and direct. Chokes 

are typically used as the inductive components in electronic filters. 

3.1.4 Transmission line 

A transmission line is a specialized cable which is designed to carry alternating 

current of RF, the currents with a frequency high enough that their wave nature must 

be taken into account. 

A transmission line can be used for inductances or capacitances. In order to 

implement inductances in the circuit is difficult, transmission lines are used most of 

the time instead of inductances. In this thesis, some of the inductances are exchanged 

to the transmission lines when realization of the circuit. 

Transmission lines are used for purposes such as connecting radio transmitters and 

receivers with their antennas, distributing cable TV signals and computer network 

connections. 
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In this thesis, generally, transmission lines have 1mm width are used. Their length is 

between 0.3mm and 22.75mm. In example in the Fig.3.1 the transmission line length 

is 1.637mm. 

 

Figure 3.1 : The transmission lines. 

There are “T” lines between three lines and there are “+” lines between four lines 

which is shown in Fig.3.2. These “T” and “+” lines are drawn in order to see the 

effect of solders. Their width is also 1mm except the “T” lines which are connected 

to the transistor. Their one of three line is 0.5mm because of transistors pin. 

 

Figure 3.2 : The “+” transmission line. 
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The transmission lines that are used in this thesis will be shown in the following 

chapters as layout and the real printed circuit board (PCB) pictures.  

3.1.5 Transistor 

In this thesis, RFMD’s SGA9289z medium power discrete SiGe transistor is used. 

This transistor is a high performance transistor designed for operation to 50 MHz to 

3000 MHz. Our design is operated for 435.250 MHz. SGA9289z transistor has about 

27.5 dBm P1dB. It is cost-effective for applications requiring high linearity even at 

moderate biasing levels. It is well suited for operation at 5 V. It can be used in 

wireless infrastructure driver amplifiers, CATV (cable TV) amplifiers, wireless data 

and power amplifiers. The gain, P1dB and OIP3 graph is shown in Fig. 3.3: 

 

Figure 3.3 : The gain, P1dB and OIP3 graph (SGA9289Z Medium 

Power Discrete SiGe Transistor Datasheet, 2006). 

The other specifications of SGA9289z transistor will be examined in Appendix A.1. 

There are also other transistors that are examined for the realization of thesis. These 

transistors are listed in Appendix A.2. SGA9289Z is the most suitable transistor for 

this thesis. 

The modules are also examined but it is decided that if the modules were used for 

power amplifier it could be too easy for a M.Sc. thesis. So, the transistor was chosen 

to amplify the circuit. 
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3.1.6 Resistors 

The resistors are used in bias circuit as a voltage divider. As mentioned before in the 

bias point section (2.4.1), there are four resistors used in the circuit. Their values are 

1200Ω, 300Ω, 33Ω and 8.2Ω. In Equation (2.54), the 8.2Ω was explained in detail. 

3.1.7 Voltage source 

The 5V DC voltage source is used for the power amplifier. The whole circuit 

including voltage source can be seen in Fig.3.4. The voltage source will be the power 

supply when realization of the circuit. 

3.1.8 FR4 PCB 

FR4 is a type of printed circuit board. FR4 is the primary insulating backbone upon 

which the vast majority of rigid printed circuit boards (PCBs) are produced. A thin 

layer of copper foil is laminated to one, or both sides of an FR4 glass epoxy panel. 

These are commonly referred to as “copper clad laminates.” In this thesis, 1.6mm 

FR4 is used with 35um copper width. 

3.1.9 Connectors 

There will be two connectors connected to the port one and port two. They can be 

SMA connectors and they may turn 90
o
. The connectors and FR4 with all 

components in the PCB will be shown in the following chapters. 
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Figure 3.4 : The circuit schematic. 
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3.2 Equipment 

3.2.1 Power supply 

It is a device which supplies electric power to an electric load. A regulated power 

supply is one that controls the output voltage or current to a specific value; the 

controlled value is held nearly constant despite variations in either load current or the 

voltage supplied by the power supply’s energy source. In this thesis, 5V power 

supply is used. 

3.2.2 Multimeter 

It is an electronic measuring instrument that combines several measurement 

functions in one unit.  

3.2.3 Oscilloscope 

It is a type of electronic test instrument which allows observation of constantly 

varying signal voltages. It is usually as a two dimensional graph of one or more 

electrical potential differences using the vertical and horizontal axis. 

3.2.4 Spectrum analyzer 

It measures the magnitude of an input signal versus frequency within the full 

frequency range of the instrument. The major use is to measure the power of the 

spectrum of known and unknown signals. 

Dominant frequency, power, distortion, harmonics, bandwidth and other spectral 

components of a signal can be observed by analyzing the spectra of electrical signals.  

3.2.5 Signal generator 

It can also be called function generator or RF and microwave signal generator. It is 

an electronic device which generates repeating or nonrepeating electronic analog or 

digital signals. It is usually used in designing, testing, troubleshooting and repairing 

electronic devices. 

3.2.6 Soldering machine 

It is used to implement the components to the printed circuit board. 
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3.3 Experiments in MWO Program 

Most of the experiments are done in MWO Design Environment Program on 

computer. The tenth version of this program is used. According to the transistor 

specifications, S Parameters and result charts of the power amplifier schematic, the 

circuit is completed. 

3.3.1 Transistor characterization 

The transistor is characterized in MWO program with S Parameters. Transistor’s 

emitter is connected to the ground directly in order to reduce lead inductance. Firstly, 

project >>> add data file >>> new data file >>> touchstone data file is chosen and 

transistor parameters are added to the MWO Program. Later, add subcircuit element 

is chosen and transistor is added to the circuit. As mentioned before, its emitter is 

connected to the ground. Transistor specifications are mentioned in the 3.1.5 chapter 

and will be mentioned in the Appendix A.1. 

3.3.2 Filters 

After adding the transistor in the circuit, the band pass filters are added to the circuit. 

In the beginning, there is one band pass filter in the input of the circuit and there is 

one band pass filter in the output of the circuit. Each band pass filter is formed with 

one low pass filter and one high pass filter. 

To use these filters the 435.250 MHz center frequency is wanted to be created. 

MWO program has “Tune” and “Optimize” option. These options are used to create 

the center frequency. While creating the center frequency, the bandwidth and the 

other characteristics are observed in detail. Gain is also a figure of merit to design a 

power amplifier, so that, the gain is observed too. 

Sometimes, the capacitances and inductances values can be huge values. To fix this 

problem, another band pass filter is added to the circuit. Gain at the center frequency 

should be flat, as a result, adding another band pass filter is necessary too. 

After adding new band pass filters to the circuit, the “Tune” and “Optimize” options 

are used to determine new capacitance and inductance values. Sometimes, the series 

inductance values can be very small. In this situation, the series inductance can be 

removed from the circuit. 
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3.3.3 Bandwidth 

The bandwidth is also an important figure of merit for amplifiers. In the Power 

Amplifier Performance Parameters (2.1), gain is explained (2.1.1). The bandwidth 

can be determined with gain graph (Fig.2.4). The bandwidth of this power amplifier 

should be 6 MHz approximately. In order to tune the bandwidth to this value, the 

capacitances and inductances values should be changed again. While these values are 

changed, the gain and the gain flatness at the center frequency should be the same.  

The bandwidth is determined according to the top of the gain value. When this value 

is dropped to 3 dB below for each of side, the frequency that shows these 3 dB below 

is noted. These two frequency values are subtracted from each other.  

                          (3.1) 

3.3.4 Transmission line changes 

The inductance element is difficult to imply in an electronic circuit, as a result, the 

inductances in the circuit are changed with transmission line. Each transmission line 

has inductance value. While changing the inductances, the characteristics that 

obtained before should not be changed. 

This changing process is done with “TXLine” option which is in MWO Program 

(Fig.3.5). The “Tune” and “Optimize” options are also used for optimizing the 

transmission line width and length values. These transmission line values and other 

properties are mentioned in 3.1.4 section. 

 

Figure 3.5 : TXLine. 



66 

 

3.3.5 Transmission line for solder effects 

In order to implement the components in the circuit for layout and in order to see the 

solder effects in the amplifier the transmission lines should be added before and after 

for the all circuit components.  

Firstly, the transmission line is only used for inductances because of difficulty to 

implement inductances in the circuit. After the transmission line is used only before 

and after the transistor because of importance of transistor in the circuit. The 

amplifier characterization can be totally changed according to transistor. Later, it is 

decided that transmission line should be used before and after for all of the 

components. In Fig.3.4, the transmission lines that are used for all components can 

be seen. 

The “T” and “+” lines (Fig.3.1 and Fig.3.2) are also necessary to see the solder 

effects for all joint nodes. 

3.3.6 Impedance matching for circuit 

The impedance matching as mentioned in the previous sections is very important in 

order to block the power loss. While tuning the impedance to the 50Ω, the 

characterizations that obtained before should not be changed. The bandwidth and 

center frequency are very accurate for this situation. 

If all the characterization like gain, S11, S22, S12, and S21, VSWR, stability etc. are 

suitable for amplifier, the impedance matching is suitable for amplifier most likely. 

In Fig.3.6 and Fig.3.7, the impedance values should be greater than 0Ω and near the 

50Ω. 

The impedance matching was discussed in detail in section 2.4.2. 

3.3.7 Bias circuit 

It is very important for an amplifier to operate in the right class. In this thesis, the 

amplifier is operated in Class A. Therefore, the bias circuit is designed in order to 

make the amplifier linear. The bias circuit of the amplifier was shown in Fig.2.47. 
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Figure 3.6 : Zin. 

 

Figure 3.7 : Zout. 

3.3.8 The 2D layout 

After the circuit is drawn in MWO Program, the 2D (two dimension) layout should 

be created. There is “View layout” button in the program. If this button is pressed the 

2D layout is created but the components cannot connect to each other by themselves. 

They are connected by user. After connecting all of them, the “Select all” and “Snap 

together” function can be chosen from “Edit” menu. As a result, the right connection 

is created. 

[ohm] 

[ohm] 
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While doing this work, some of the lines can’t be connected to each other so that 

they should be extended or shortened. If they are extended or shortened, the 

characterization of the circuit can be changed but it is undesirable situation. 

Consequently, the circuit can be redesigned.  

Generally, if the bias circuit lines are changed, the circuit characterization does not 

change. After all these stages, the 2D layout is created. Now the via holes and copper 

for ground etc. are added to the 2D layout. The 2D layout is shown in Fig.3.8: 

 

Figure 3.8 : The 2D Layout. 

The 2D layout can also be created with Altium Designer Program but if it has been 

created with Altium Designer Program, the microwave and RF effect could not be 

seen by the designer. As a result, 2D and 3D (three dimension) are created with 

MWOAWR Design Environment Program.
 

3.3.9 The 3D layout 

The 3D layout is very easy to create. After creating the 2D layout, by clicking the 

“View 3D layout” it can be seen (Fig.3.9): 



69 

 

 

Figure 3.9 : The 3D Layout. 

3.4 Experiments in Real World 

The circuit is printed out to the FR4 PCB which has 1.6mm thickness and 35µm 

copper thickness. In Fig.3.10, the PCB is shown: 

 

Figure 3.10 : The PCB. 

3.4.1 Material class 

In this thesis the SMD materials are used. 

3.4.2 PCB with components 

The PCB with all of its components and SMA connectors is shown in Fig. 3.11.  
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Figure 3.11 : PCB with Components. 

3.4.3 Real experiments 

In real experiments, the results have been obtained at 393 MHz center frequency. 

The S parameters are very close to the MWOAWR computer program tests. In the 

following figures the real S parameter values are shown: 

 

Figure 3.12 : Real S11 Figure. 

In Fig. 3.12, the S11 parameter value is about -10 dB at the 393 MHz. The center 

frequency shifted 42 MHz approximately. 
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Figure 3.13 : Real S22 Figure. 

In Fig. 3.13, the S22 parameter value is about -10 dB at the 393 MHz. The center 

frequency shifted 42 MHz too. 

 

 

Figure 3.14 : Real S21 Figure. 

In Fig. 3.14, the S21 parameter value is about 14 dB at the 393 MHz. 
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In real experiment, the collector current is 230mA, consequently, the power which is 

consumed is shown as: 

                          (3.2) 

Here the resistor is implemented in the value of 10Ω. The output power is about 0.65 

Watt. 

In the Fig.3.15, the power amplifier circuit’s final version is shown: 

 

Figure 3.15 : Final version of the power amplifier. 
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4 . RESULTS AND DISCUSSION 

In this chapter, the comparison of experiments which are done in the Microwave 

Office AWR program and in the real world will be given and the results will be 

explained. There is also information about the theses which were done before. 

4.1 The Comparison 

In the Table 4.1, the real experiment values and the MWOAWR computer program 

values are comparised. The center frequency shifted about 42 MHz. It can be fixed 

with changing the microstrip lines. The real experiment values are very close to the 

MWOAWR computer program. 

Table 4.1 : The comparison of the real experiment values and the 

MWOAWR computer program values 

Experiments 

Center 

Frequency 

(MHz) 

S11 S22 S21 
Collector 

Current 

 

MWOAWR 

Values 

 

435.250 -11.69dB -8.206dB 22.85dB 280mA 

 

Real Values 

 

393 -10dB -10dB 14dB 230mA 

4.2 The Other Theses 

There are some other M.Sc. theses and articles about RF power amplifier. One of 

them which name is “Design of Combined Power Amplifier Using 0.35 micron SiGe 

HBT Technology for IEEE 802.11.a Standart” works on 5 GHz for IEEE 802.11a 

wireless local area network and it is also operated in Class A biasing like this thesis. 

Its output power changes from 40mW to 800mW. The other thesis is “The Design of 

a High Efficiency RF Power Amplifier for an MCM Process”. It is designed for 2.3 
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GHz and it has 63.9% PAE. Its output power is 30 dBm. “High Efficiency 

Broadband Parallel-Circuit Class E RF Power Amplifier with Reactance-

Compensation Technique” is the other article and it is about high efficiency. It is 

operated in Class E biasing. LDMOS (laterally diffused metal oxide semiconductor) 

is used in this article. The other article’s name is “0.1 – 10 GHz 0.5W High 

Efficiency Single Transistor GaAs pHEMT (pseudomorphic high-electron mobility 

transistor) Power Amplifier Design Using Load Pull Simulations”. It’s output power 

is greater than 0.5W and PAE is greater than 45%. The other M.Sc. thesis is about 

distributed amplifier and its gain is 8 dB. 0.35 micron transistor technology is used in 

that thesis. In “Reference” section the other theses and articles is given. 

In this thesis, the power amplifier works on 435.250 MHz which is the specific 

frequency for small satellites. Its output power is about 0.6W and the gain is about 23 

dB theoretically. The bandwidth is 6.8 MHz and SGA9289z power discrete power 

transistor is used. 
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5. CONCLUSION 

In conclusion, a radio frequency power amplifier was designed in the computer 

program which name is Microwave Office AWR and it is realized in the RF 

laboratory. This thesis is written to explain this amplifier. The amplifier can be used 

for small satellites. It can provide 23 dB gain and 0.6 Watt output power. The lossy 

power of this RF power amplifier is not so much; as a result, it is useful for 

implementing to the satellites. The other properties of this power amplifier were 

given in the thesis in detail. 

The power amplifier was designed very small as 3.3cm 2.5cm dimensions not to 

cover so much area and it can be operated 435.250 MHz center frequency which is 

the standard frequency of small satellites. 

These types of power amplifiers are so important to design our own satellites; 

consequently, we do not have to buy these electronic circuits from the other 

countries. Thus, in ten years, our own satellites may be sent to the space with 100% 

inland produce. 

Nowadays, homeland satellites are started to designed and sent to the space such as 

Göktürk-2 Satellite and TÜRKSAT-3USAT which is designed and realized in the 

radio frequency laboratory of Istanbul Technical University. The power amplifier 

that is designed by me can also be used in this satellite. 

After the master of science, it is planned that, new researches about small satellites 

will be done and new RF power amplifiers will be designed in the Ph.D. 

 

 

 

 

 

 



76 

 

 

 

 

 

 



77 

 

REFERENCES 

Abrie, P.L., (1999). Design of RF and Microwave Amplifiers and Oscillators, 

Artech House Microwave Library, ISBN 978-0890067970. 

Albuet, M., (1962). RF Power Amplifiers, Nouble Publishing Corp., ISBN 

1884932126. 

Al-Dhahir, N., Saulnier, G., (1998). A High-Performance Reduced-Complexity 

GMSK Demodulator, vol. 46, IEEE Transactions on 

Communications. 

Arıcıoğlu, G.R., Palamutçuoğulları, O., Ilhan, K., (2004). Zarf Yoketme ve 

Yeniden Oluşturma Tekniğinin Uygulanımı Amacıyla Optimize 

Edilmiş E Sınıfı Güç Kuvvetlendirici Tasarımı, IEEE. 

Battaglia, B., Rice, D., Le, P.,  (2009). Measuring Ruggedness in High Power RF 

Amplifier Designs, HVVi Semiconductor, Inc. 

Biçen, A., (2010). AWR Programı ile Lineer ve Non-lineer Devrelerin Simulasyonu, 

Staj Raporu, RFLAB, İTÜ. 

Bowick, C., Blyler, J., Ajluni, C. (2008). RF Circuit Design, 2
nd

 Edition, Newnes,  

ISBN 9780750685184. 

Boylestad, R.L., Nasheresky, L., (2002). Electronic Devices and Circuit Theory, 9
th

 

Edition, Pearson Education. 

Carr, J.J., (2002). RF Components and Circuits, Newnes, ISBN 0750648449. 

Chang, K., (2000). RF and Microwave Wireless Systems, Wiley Series in 

Microwave and Optical Engineering, John Wiley & Sons, ISBN 

0471351997. 

Cheng, D.K., (1989). Field and Wave Electromagnetics, 2
nd

 Edition, Addison-

Wesley Publishing Com., ISBN 0201012391. 

Çiflikli, C., Yapıcı, A.Ç., ÖzĢahin, A.T., (2006). RF Güç Kuvvetlendiricilerinin 

Doğrusallaştırılması için Analog/Sayısal Karma Önceden Bozucu 

Tasarımı, ELECO, Bursa. 

CoĢkun, A.A., (2010). High Power High Efficiency Microwave Power Amplifier 

Design Using Class-E Topology, M.Sc. Thesis, Bilkent University. 

Cripps, S.C. (2002). Advanced Techniques in RF Power Amplifier Design, Artech 

House Microwave Library, ISBN 1580532829. 

Dilek, S.M., Bayram, Ġ., ġafak, M.E., Ceylan, O., Yağcı, H.B., (2011). Nano-

Uydular için GMSK Modülasyonlu Yazılım Tanımlı Radyo Tasarımı, 

IEEE 19. Sinyal İşleme ve İletişim Uygulamaları Kurultayı. 

Esame, O., (2005). Yeni Tranzistor Teknolojileri Kullanılarak Mikrodalga Devre 

Tasarımı, YL Tezi, İTÜ. 



78 

 

Esame, O., Kaynak, M., Kavlak, C., Bozkurt, A., Tekin, I., Gurbuz, Y., (2006). 

IEEE 802.11a Standart Uyumlu, RF Alıcı-Verici Alt-Blok 

Devrelerinin Gerçeklenmesi, pp. 571-573, URSI. 

Gentzler, C.G., Leong, S.K., (2003). Broadband VHF/UHF Amplifier Design Using 

Coaxial Transformers, pp. 42-51, High Frequency Electronics, 

Summit Technical Media, LLC. 

Gonzalez, G., (1996). Microwave Transistor Amplifiers Analysis and Design, 2
nd

 

Edition, Prentice Hall, ISBN 0132543354. 

Grebennikov, A., Sokal, N.O., (2007). Switchmode RF Power Amplifiers, 

Communication Engineering Series, Linacre House, ISBN 

9780750679626. 

Intermodulation Distortion, (2004). Aeroflex Application Note, Issue 2. 

KarakaĢ, N.T., (2007). Design of Combined Power Amplifier Using 0.35micron 

SiGe HBT Technology for IEEE 802.11a Standart, M.Sc. Thesis, 

Sabanci University. 

Kavlak, C., Tekin, Ġ., (2006). AMS 0.35 µm SiGe BiCMOS Teknolojisi ile 802.11a 

WLAN Standardı için 5 GHz Güç Kuvvetlendiricisi Tasarımı, URSI. 

Kaymaksüt, E., (2008). A 5.2 GHz RF Combined Power Amplifier with Fully 

Integrated On-Chip Impedance Matching Wilkinson Power Combiner 

and Splitter, M.Sc. Thesis, Sabanci University. 

Kaymaksüt, E., Tekin, I., (2008). Empedans Uyumlu Wilkinson Güç Bölücü 

Yöntemi ile Birleştirilmiş Güç Kuvvetlendiricisi Tasarımı, URSI. 

Kaynak, M., Bozkurt, A., Tekin, I., Gurbuz, Y., (2006). Tek Kırmık 2.4-2.5 GHz 

(WLAN) ve 3.3-3.9 GHz (WiMAX) için Çift-Bandlı A Sınıfı Güç 

Yükselteci, URSI. 

Kenington, P.B., (2000). High Linearity RF Amplifier Design, Artech House Pub., 

ISBN 9781580531436. 

Kesik, E.P., UHF Güç Kuvvetlendirici Tasarımı ve Gerçeklenimi, Bitirme Projesi, 

İTÜ. 

Kesik, E.P., Canbey, H.H., Ceylan, O., Yağcı, H.B., (2010). Ön Kuvvetlendiricili 

UHF Güç Kuvvetlendiricisi Tasarımı ve Gerçeklenimi, pp. 375-378, 

URSI. 

Kılıç, A.E., (2007). 0.1-8 GHz CMOS Distributed Amplifier, M.Sc. Thesis, ITU. 

Kılıç, U., Memetic Optimizasyon ile Geniş Band Mikrodalga Kuvvetlendirici 

Tasarımı, YL Tezi. 

Kocakırın, Ġ., (2011). RF Power Amplifier Design Operating at 433 MHz, M.Sc. 

Thesis, Yeditepe University. 

Kubowicz, R., (2000). Class E Power Amplifier, M.Sc. Thesis, University of 

Toronto. 

Kumar, N., Prakash, C., Grebennikov, A., Mediano, A., (2008). High Efficiency 

Broadband Parallel Circuit Class E RF Power Amplifier with 

Reactance Compensation Technique, IEEE Transactions on 

Microwave Theory and Techniques, vol. 56, no. 3. 



79 

 

Maas, S.A., (2003). Nonlinear Microwave and RF Circuits, 2
nd

 Edition, Artech 

House Microwave Library, ISBN 1580534848. 

MEGEP, (2007). Elektrik Elektronik Teknolojisi, Yerel Anten Yapımı, T.C. Milli 

Eğitim Bakanlığı, Ankara. 

Merat, F., (1988). Gain Expressions, pp. 80-86. 

Microwave Office / Analog Office 2004, Measurement Reference, Applied Wave 

Research, Inc. 

Millman, Halkias, C., (1991). Integrated Electronics, TMH. 

Mohan, N., Undeland, T.M., Robbins, W.P., (2007). Güç Elektroniği Çeviriciler, 

Uygulamalar ve Tasarım, Literatür Yayınları, ISBN 9758431994. 

Morris, K., Kenington, P., (1998). A Broadband Linear Power Amplifier for 

Software Radio Applications, vol. 3, pp. 2150-2154, Vehicular 

Technology Conference, IEEE. 

Noonan, J., (2005). The Design of a High Efficiency RF Power Amplifier for an 

MCM Process, M.Sc. Thesis, Massachusetts Institute of Technology. 

Palamutçuoğulları, O., Kınalı, M., (2010). 2-14 GHz Ultra-Geniş Bantlı SiGe 

Düşük Gürültülü Kuvvetlendirici, pp. 340-343, URSI. 

Pozar, D.M., (2005). Microwave Engineering, 3
rd

 Edition, John Wiley & Sons Inc., 

ISBN 0471448788. 

Raab, F.H., Asbeck, P., Cripps, S., Kenington, P.B., Popovic, Z.B., Pothecary, 

N., Sevic, J.F., Sokal, N.O., (2002). Power Amplifiers and 

Transmitters for RF and Microwave, pp. 814-826, vol. 50, no.3, IEEE, 

Transactions on Microwave Theory and Techniques. 

Razavi, B., (1998). RF Microelectronics, Prentice Hall Communications 

Engineering and Emerging Technologies Series, ISBN 0138875715. 

Reynaert, P., Steyaert, M., (2006). RF Power Amplifiers for Mobile 

Communications, Springer, ISBN 1402051166. 

Roislien, N.T., (2009). 5.8 GHz, 1 W High Efficiency Power Amplifier in 90nm 

CMOS, M.Sc. Thesis, Norwegian University of Science and 

Technology. 

Rosu, I. RF Power Amplifiers, RF Technical Articles, Yo3dac – Va3iul. 

Sahu, B., Rincon-Mora, G.A., (2004). A High-Efficiency Linear RF Power 

Amplifier with a Power Tracking Dynamically Adaptive Buck-Boost 

Supply, pp. 112-120, IEEE Transactions on Microwave Theory and 

Techniques, vol. 52, no. 1. 

Salivahanan, S., Kumar, N.S., Vallavaraj, A., (2007). Electronic Devices and 

Circuits, 2
nd

 Edition, TMH. 

Saygıner, M., Yazgı, M., Kuntman, H., (2011). 0.1-10 GHz 0.5W Yüksek Verimli 

Tek Transistörlü GaAs pHEMT Güç Kuvvetlendiricisinin Yük 

Taraması Yöntemi Kullanılarak Tasarımı, pp. 841-844, IEEE 19. 

Sinyal İşleme ve İletişim Uygulamaları Kurultayı. 



80 

 

Secuderi, A., Scuderi, A., Carrara, F., Palmisano, G., (2005). A VSWR-Rugged 

Silicon Bipolar RF Power Amplifier, Bipolar/BiCMOS Circuits and 

Technology Meeting, pp. 116-119, IEEE. 

Sedra, Smith, (2004). Micro Electronic Circuits, Oxford University Press. 

SGA9289(Z) Medium Power Discrete SiGe Transistor Datasheet, (2006). RF Micro 

Devices, Inc. 

Sharma, B.K., (2009). AE - Lecture 12 - Tuned Amplifiers, The Connection Project, 

Creative Commons Attribution. 

Shirvani, A. RF Power Amplifiers, SCV SSCS RFIC Course pdf., MARVELL. 

Simon, R., John, W., Theodore, V.D. Fields and Waves in Communications 

Electronics, John Wiley & Sons, New York. 

Sischka, F., (2002). Basics of S Parameters, Characterization Handbook, 1sbasic1. 

Sokal, N.O., (1997). RF Power Amplifiers, Classes A Through S – How They 

Operate and When to Use Each, President Design Automation, 

Inc.,pp. 179-252, IEEE. 

TaĢ, D.G., (2012). RF Power Amplifier Design, B.Sc. Thesis, ITU. 

Topaloğlu, S., (2002). High Efficiency 1 W Class B Push-Pull Amplifier Design for 

Hiperlan/2, M.Sc. Thesis, ITU. 

Tsai, K., Oyang, T., Phan, J., Yang, C.C., Schneier, N., (2000). Gaussian 

Minimum Shift Keying Modulator, vol.5, pp. 235-241, Aerospace 

Conference Proceedings, IEEE. 

Url-1<http://en.wikipedia.org/wiki/Amplifier> accessed at 01.06.2012 

Url-2< http://www.circuitstoday.com/power-amplifiers> accessed at 22.06.2012 

Url-3<http://ian.r.scott.tripod.com/rf_amp_design.htm> accessed at 10.08.2012 

Url-4<http://www.rfcafe.com/references/electrical.htm> accessed at 11.08.2012 

Url-5<http://www.home.agilent.com/agilent/facet.jspx?t=79831.g.1&page 

Mode=TM&cc=TR&lc=eng> accessed at 15.09.2012 

Url-6<http://www.electronics-tutorials.ws/amplifier/amp_1.html> accessed at 

05.11.2012 

Url-7<https://awrcorp.com/download/faq/english/appnotes/appnotes.aspx> accessed 

at 06.11.2012 

Url-8< http://www.diyot.net/transistor.htm> accessed at 11.01.2013 

Url-9<http://www.microwaves101.com/encyclopedia/efficiency.cfm> accessed at 

18.01.2013 

Url-10<http://www.microwaves101.com/encyclopedia/compressionpoint.cfm 

#linearizer> accessed at 19.01.2013 

Url-11< http://scholar.lib.vt.edu/theses/available/etd-07152001-172453/> accessed at 

20.01.2013 

Url-12<http://www.javvin.com/wireless/ACPR.html> accessed at 27.03.2013 

http://en.wikipedia.org/wiki/Amplifier
http://www.circuitstoday.com/power-amplifiers
http://ian.r.scott.tripod.com/rf_amp_design.htm
http://www.rfcafe.com/references/electrical.htm
http://www.home.agilent.com/agilent/facet.jspx?t=79831.g.1&page%20Mode=TM&cc=TR&lc=eng
http://www.home.agilent.com/agilent/facet.jspx?t=79831.g.1&page%20Mode=TM&cc=TR&lc=eng
http://www.electronics-tutorials.ws/amplifier/amp_1.html
https://awrcorp.com/download/faq/english/appnotes/appnotes.aspx
http://www.diyot.net/transistor.htm
http://www.microwaves101.com/encyclopedia/efficiency.cfm
http://www.microwaves101.com/encyclopedia/compressionpoint.cfm#linearizer
http://www.microwaves101.com/encyclopedia/compressionpoint.cfm#linearizer
http://scholar.lib.vt.edu/theses/available/etd-07152001-172453/
http://www.javvin.com/wireless/ACPR.html


81 

 

Url-13<http://www.radio-electronics.com/info/rf-technology-design/receiver-

overload/intermodulation-distortion.php> accessed at 27.03.2013 

Url-14<http://www.microwaves101.com/encyclopedia/sparameters.cfm> accessed at 

28.03.2013 

Url-15<http://en.wikipedia.org/wiki/Scattering_parameters> accessed at 31.03.2013 

Url-16<http://eetimes.com/design/microwave-rf-design/4018951/Understanding-RF-

power-amplifiers> accessed at 01.04.2013 

Url-17<http://tr.wikipedia.org/wiki/Frekans> accessed at 02.04.2013 

Url-18<https://en.wikipedia.org/wiki/Reflection_coefficient> accessed at 03.04.2013 

Url-19<https://en.wikipedia.org/wiki/Gain> accessed at 03.04.2013 

Vendelin, G.D., (1982). Design of Amplifiers and Oscillators by the S-Parameter 

Method, John Wiley & Sons. 

Vuolevi, J., Rahkonen, T., (2003). Distortion in RF Power Amplifiers, Artech 

House Microwave Library, ISBN 1580535399. 

Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R., (2001). Band parameters for III–

V compound semiconductors and their alloys, vol.89, number 11, 

Journal of Applied Physics. 

White, J.F., (2004). High Frequency Techniques An Introduction to RF and 

Microwave Engineering, John Wiley & Sons, ISBN 0471455911. 

Yamaçlı, S., (2007). Standart Yarıiletken Teknolojisi Kullanılarak C-Bandında 

Çalışan Mikrodalga Güç Kuvvetlendiricisi Tasarımı ve Prototipinin 

Yapılması, YL Tezi, Mersin Üniversitesi. 

Yarman, B.S., (2010). Design of Ultra Wide Band Power Transfer Networks, 

Wiley–Blackwell, ISBN 9780470319895. 

Yumak, F., Palamutçuoğulları, O., (2006). Telsiz Uygulamaları için Yüksek 

Verimli E Sınıfı Güç Kuvvetlendiricisi Tasarımı, ELECO, Bursa. 

Yumak, F.F., Palamutçuoğulları, O., (2006). 5.7 GHz E Sınıfı Güç 

Kuvvetlendiricisi Tasarımı, pp. 382-385, URSI. 

Ziomek, C.D., Hunter, M.T. Extending the Useable Range of Error Vector 

Magnitude (EVM) Testing, ZTEC Instruments, Inc., New Mexico. 

 

 

 

 

 

 

 

 

 

http://www.radio-electronics.com/info/rf-technology-design/receiver-overload/intermodulation-distortion.php
http://www.radio-electronics.com/info/rf-technology-design/receiver-overload/intermodulation-distortion.php
http://www.microwaves101.com/encyclopedia/sparameters.cfm
http://en.wikipedia.org/wiki/Scattering_parameters
http://eetimes.com/design/microwave-rf-design/4018951/Understanding-RF-power-amplifiers
http://eetimes.com/design/microwave-rf-design/4018951/Understanding-RF-power-amplifiers
http://tr.wikipedia.org/wiki/Frekans
https://en.wikipedia.org/wiki/Reflection_coefficient
https://en.wikipedia.org/wiki/Gain


82 

 

 

 

 

 

 

 

 



83 

 

APPENDICES 

APPENDIX A.1 : The transistor specifications 

APPENDIX A.2 : The other transistors 

APPENDIX A.3 : Input, output and RF circuits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 

 

APPENDIX A.1 

Table A.1 : SGA9289z absolute maximum ratings 

Parameter Rating Unit 

Max Base Current (IB) 10 mA 

Max Device Current (ICE) 400 mA 

Max Collector-Emitter 

Voltage (VCEO) 
7 V 

Max Collector-Base 

Voltage (VCBO) 
20 V 

Max Emitter-Base Voltage 
(VEBO) 

4.8 V 

Max Junction Temp (TJ) +150 oC 

Max Storage Temp +150 Max Storage Temp 

 
Figure A.1 : Transistor dimensions in inch. 

 

Figure A.2 : Recommended mounting configuration. 
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Table A.2 : SGA9289z datasheet specifications 

Parameter 

Specification 

Unit Condition 

Min. Typ. Max. 

Maximum Available Gain  20.5  dB 900 MHz, ZS=ZS*, ZL=ZL* 

  13.1  dB 1960 MHz 

Power Gain 16.2 17.7 19.2 dB 
900 MHz [1], ZS=ZSOPT, 

ZL=ZLOPT 

 11.0 12.0 13.0 dB 1960 MHz [2] 

Output Power at 1dB 

Compression 
 28.0  dBm 900 MHz, ZS=ZSOPT, ZL=ZLOPT 

 26.0 27.5  dBm 1960 MHz [2] 

Output Third Order 
Intercept Point 

 42.0  dBm 
900 MHz, ZS=ZSOPT, ZL=ZLOPT, 

POUT=+13dBm per tone 

 40.0 42.5  dBm 1960 MHz [2] 

Noise Figure  2.4  dB 900 MHz, ZS=ZSOPT, ZL=ZLOPT 

  2.5  dB 1960 MHz 

DC Current Gain 100 180 300   

Breakdown Voltage 7.5 8.5  V collector - emitter 

Thermal Resistance  32  oC/W junction - lead 

Device Operating Voltage   5.5 V collector - emitter 

Operating Current 250 280 320 mA  

 

The other specifications of the transistor can be seen in the datasheet of SGA9289z 

medium power discrete SiGe HBT transistor. (SGA9289Z Medium Power Discrete 

SiGe Transistor Datasheet, 2006.) 

 

 

 

 

 

 

 

 

 

 

 

Test Conditions: VCE=5V, ICQ=280mA (unless otherwise noted), TL=25°C. [1] 100% Tested [2] Sample Tested 
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APPENDIX A.2 

These transistors are also examined for the thesis: 

 TGF2960-SD from TriQuint 

 T1G4005528-FS from TriQuint 

 MAGX-000035-030000 from MACOM 

 SGA8543ZDS from RFMD 

 BLT50 from Philips 

 BLT81 from Philips 

 CLY2 from TriQuint 

 CLY5 from TriQuint 

 MRF321 from MACOM 

 MRF327 from MACOM 

 ms1649 from Advanced Power Technology RF 

 NDS-023 from Nitronex 

 NPTB00025 from Nitronex 

 SGA9089ZDS from RFMD 

 SGA9189ZDS from TriQuint 

 T1G6000528 from TriQuint 

 T1G6003028 from TriQuint 

 umil3 from Advanced Power Technology RF 

 utv005 from GHz Technology 

 utv040 from GHz Technology 
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APPENDIX A.3 

In Figure A.3, the input circuit is shown with using MWOAWR. 

 

Figure A.3 : Input circuit schematic. 

In Figure A.4, the output circuit is shown with using MWOAWR. 

 

Figure A.4 : Output circuit schematic. 

In Figure A.5, all of the RF circuit is shown with using MWOAWR. 

 

Figure A.5 : RF circuit schematic. 
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