Please use this identifier to cite or link to this item: http://hdl.handle.net/11527/4718
Title: İtü-hafif Ticari Helikopter Uçuş Dinamiği, Kararlılık Analizi Ve Geliştirilmiş Kontrol Sistemleri Tasarımı
Other Titles: Itu-light Commercial Helicopter Flight Dynamics, Stability Analyses And Advanced Control Systems Design
Authors: Caferov, Elbrus
Abdulhamitbilal, Erkan
Uçak ve Uzay Mühendisliği
Aerospace Engineering
Keywords: helikopter uçuş dinamiği
rotor dinamiği
performans analizi
kararlılık analizi
trim
pilot
kontrol sistemleri
modelleme
simülasyon.
helicopter flight dynamics
rotor dynamics
performance analysis
stability analysis
trim
pilot
control systems
modelling
simulation.
Issue Date: 27-May-2010
Publisher: Fen Bilimleri Enstitüsü
Institute of Science and Technology
Abstract: Bir ana rotor ve bir kuyruk rotor yapılandırmasından oluşan geleneksel helikopter tipi olarak İTÜ-ROTAM Merkezi tarafından tasarlanan helikopterin prototipi TAI tesislerinde üretim aşamasındadır. Bu hava aracının dinamik modelini oluşturmak ve kontrol sistemleri tasarlamak ve sınamak amacı ile bu tez çalışmasında altı serbestlik dereceli uçuş dinamiği, ana ve kuyruk rotor dinamiği ve aerodinamiği, hava aracının aerodinamiği, pilot, geleneksel ve geliştirilmiş kontrol sistemi modelleri oluşturulmuş ve simülasyonları yapılmıştır. Bu modelleme, simülasyon, kararlılık ve performans analizleri birbirine bağımlı çapraz etkileşimli doğrusal olmayan denklemlerden oluşmaktadır. Kontrol sistemleri tasarımlarını daha kolay kılabilmek için doğrusal olmayan helikopter uçuş dinamiği modelinin durum değişkenleri ağırlık merkezine etki eden üç asal eksendeki çizgisel hızlar (u, v, w), açısal hızlar (p, q, r) ve yönelme açıları (φ-yuvalanma, θ-yunuslama) olarak seçilmiş ve tanımlanmıştır. Bunun için rotor palasının çırpma ve gecikme dinamikleri analitik çözülerek doğrusal olmayan helikopter uçuş dinamiği modelinin serbestlik dereceleri azaltılarak basitleştirilmiş ve gerçek zamanlı benzetimi sağlanmıştır. Bunun yanında prototip helikopter doğrusal uçuş dinamik modelini kararlılık ve kontrol türevleri cinsinden yazılmış ve hesaplanmıştır. Değişik uçuş modları için transfer fonksiyonları çıkartılmıştır. Geleneksel insan operatör modelinin yetersiz kaldığı durumlar için geliştirilmiş pilot modeli tasarlanmıştır. Böylece çok girişli çok çıkışlı (MIMO) pilot-uçuş dinamiği modelinin kapalı-çevrim benzetimleri yapılmıştır ve pilotun kabiliyetleri sınanmıştır. Pilot yanında helikopter uçuş dinamiği modelini kararlı kılabilecek kararlılık arttırıcı sistemler (KAS) ve otomatik uçuş kontrol sistemleri (OUKS) tasarımına yer verilmiştir. Geleneksel kontrol tekniklerinin yetersiz kaldığı KAS tasarımında geliştirilmiş kontrol teknikleri ile uçuş dinamiği modelinin kararlılığı sağlanmıştır.
A single main rotor with a tail rotor configured conventional helicopter is designed by ITU-ROTAM Center and the rotorcraft is in manufacturing phase in Turkish Aerospace Industry (TAI). In this thesis, to model helicopter dynamics and design control systems, six degree of freedom flight dynamics, main and tail rotor dynamics and aerodynamics, aircraft aerodynamics, pilot, conventional and developed control system models are obtained and simulations are performed as objectives of prototype helicopter flight dynamics, design and examination of control systems. The modeling, simulations, stability and performance analyses are interconnected nonlinear equations. State variables of nonlinear helicopter model are selected and defined to be body velocities (u, v, w), body angular rates (p, q, r) and attitude angles (φ-roll, θ-pitch) to ensure easiness of control systems design. For this purpose rotor blade flapping and lagging dynamics are solved analytically to reduce degree of freedom for simplicity of nonlinear helicopter dynamics and to obtain simulation capability in real-time. Beside, linear helicopter dynamics are written and calculated in terms of stability and control derivatives. Transfer functions for different flight modes are obtained. Developed pilot model is designed when conventional human operator was insufficient. Therefore, multi-input multi-output (MIMO) pilot-flight dynamics model closed-loop simulations are performed and capability of the pilot is tested. Beside the pilot, the design of stability augmentation systems (SAS) and automatic flight control systems (AFCS) for stabilization of helicopter flight dynamics is studied. Developed control techniques ensure stability of flight dynamics model where conventional control techniques were insufficient in SAS design.
Description: Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2010
Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2010
URI: http://hdl.handle.net/11527/4718
Appears in Collections:Uçak ve Uzay Mühendisliği Lisansüstü Programı - Doktora

Files in This Item:
File Description SizeFormat 
10390.pdf8.35 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.