Please use this identifier to cite or link to this item: http://hdl.handle.net/11527/4715
Title: Leıpholz Problemi İçin Farklı Kiriş Modellerinin Analizi Ve Karşılaştırılması
Other Titles: A Comparison And An Analysis Of Beam Models For Leipholz Problem
Authors: Özkol, İbrahim
Ihlamur, Mustafa Emre
Uçak ve Uzay Mühendisliği
Aerospace Engineering
Keywords: Leipholz
Euler-Bernoulli
Rayleigh
Shear
Timoshenko
Kiriş
Çizgiler Metodu
Leipholz, Euler-Bernoulli, Rayleigh, Shear, Timoshenko, Beam, Method of Lines
Publisher: Fen Bilimleri Enstitüsü
Institute of Science and Technology
Abstract: Bu çalışmada farklı kiriş teorileri kullanılarak Leipholz kolon-model yüklemesi altındaki bir kiriş analiz edilmiştir. Üniform, yayılı ve eksenel bir kuvvetin etkisi altında enine titreşen kirişler için Euler-Bernoulli, Rayleigh, Shear ve Timoshenko kiriş teorileri karşılaştırılmış; kiriş modellerine ait hareket denklemleri ve çeşitli sınır koşulları, Hamilton varyasyonel prensibi kullanılarak elde edilmiştir. Bu denklemler Leipholz problemi için ifade edilmiştir. Çizgiler metodu ve buna bağlı olarak sonlu fark yöntemi anlatılmıştır. Elde edilen hareket denklemleri çizgiler metodu kullanılarak ayrıklaştırılmış ve hatlar boyunca sadece zamana bağlı adi diferansiyel denklem haline getirilmiştir. Bu denklemler sayısal olarak çözülmüştür. Farklı sınır koşullarının etkisini incelemek için her iki ucu da sabit ve dönmeyen ve de bir ucu sabit ve dönmeyen diğer ucu serbest sınır koşulunda olan kirişin deplasman-zaman grafikleri elde edilmiştir. Dönme ataleti ve kayma deformasyonunun etkileri araştırılmış ve kiriş teorileri kullanılarak karşılaştırılmıştır. Yine kirişlerin dinamik davranışını inceleyebilmek için belirtilen sınır koşullarında Euler-Bernoulli, Rayleigh, Shear ve Timoshenko kiriş modellerine ait faz diyagramları çizdirilmiştir. Leipholz kolon-model yüklemesi altındaki kirişin titreşimi hakkında fikir sahibi olabilmek için Poincaré diyagramları elde edilmiştir.
In this study, transversely vibrating beam subjected to the Leipholz column-model loading condition is analyzed by using different beam theories. Euler-Bernoulli, Rayleigh, Shear and Timoshenko beam models are compared for the transversely vibrating beams subjected to the uniform, distributed and axial load. The boundary conditions and the equations of motion of the beam models are obtained by Hamilton variational principle. These expressions are denoted for the Leipholz problem. Method of Lines and correspondingly the finite difference approach are presented. The equations of motion of the beam models are discretized by the method of lines. Thus, the ordinary differential equations with time as the independent variables are obtained at the grid points. These differential equations are solved numerically. To analyze the effect of the boundary conditions, the displacement-time plots for clamped-clamped and clamped-free boundary conditions are figured. The effect of rotary inertia and shear deformation are investigated and are compared for different beam models. Also phase diagrams are plotted for beam models to analyze the dynamic behaviours of the transversely vibrating beams under the stated boundary conditions. The Poincaré maps of the transversely vibrating beams subjected to the Leipholz column-model loading condition for the clamped-clamped and clamped-free boundary conditions are plotted to determine the vibration is whether periodic or not.
Description: Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2008
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2008
URI: http://hdl.handle.net/11527/4715
Appears in Collections:Uçak ve Uzay Mühendisliği Lisansüstü Programı - Yüksek Lisans

Files in This Item:
File Description SizeFormat 
7985.pdf573.9 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.