Please use this identifier to cite or link to this item: http://hdl.handle.net/11527/345
Title: Kosinüs Benzerliğini Kullanarak Belgeler Arası Anlamsal Benzerliği Kavramsal Sözlüğe Dayalı Hesaplama Yöntemi
Other Titles: A Taxonomy Based Semantic Similarity Of Documents Using The Cosine Measure
Authors: Öğüdücü, Şule Gündüz
Madylova, Ainura
Bilgisayar Mühendisliği
Computer Engineering
Keywords: Web Madenciliği
Demetleme
Anlamsal Benzerlik
Terim
Web Mining
Clustering
Semantic Similarity
Single Term Similarity
Issue Date: 6-Jul-2009
Publisher: Fen Bilimleri Enstitüsü
Institute of Science and Technology
Abstract: Bu çalışmada, belgeler arası anlamsal benzerliği hesaplamak için yeni bir yöntem önerilmektedir. Bu yöntem dökümanları simgeleyen terim vektörlerinin kosinüs benzerliği hesaplamasına dayanmaktadır. Bu terim vektörleri WordNet’in hiyerarşik yapılarından biri olan IS-A taksonomisine dayanmaktadır. Önerilen yöntemin var olan belge anlamsal benzerlik hesaplama ölçütlerinden en önemli farkı kısa zaman karmaşıklığıdır. Çalışmanın ilk bölümünde, varolan belge benzerlik ölçütleri, Türk belgelerindeki demetleme üzerinde oluşturdukları etkiler açısından karşılaştırılmaktadır. İlk deney kümesinin sonuçları, terim benzerliğini kullanarak hesaplanan ölçütlerin, insan yargılarına daha iyi uyan demetleme çözümleri ürettiğini göstermektedir. Ancak, anlamsal benzerlik ölçütleri daha uyumlu ve ayrık demetler oluşturmaktadır. Bu çalışmanın ikinci bölümünde, önerilen yöntem, kosinüs benzerliği ve Gündüz & Yücesoy tarafından önerilen belge anlamsal benzerliği ile karşılaştırılmaktadır. Karşılaştırma demetleme göstergeleri açısından yapılmıştır. Deneysel sonuç önerilen yöntemin yukarıda bahsedilen iki benzerlik ölçütünden daha başarılı sonuçlar verdiğini göstermektedir. Ayrıca, önerilen yöntemin zaman karmaşıklığı terim benzerliği ölçütünün zaman karmaşıklığı ile aynıdır.
A new method for measuring the semantic similarity between documents is present in this study. This method is based on cosine similarity calculation of concept vectors representing the documents. Those concept vectors are extracted from the IS-A taxonomy, which is one of the hierarchical structures of the WordNet. The main difference of the proposed method and existing document semantic similarity measures is its low time complexity. In the first part of this study, existing document similarity metrics are compared in terms of the effects they produce on clustering of the Turkish documents. The results of the first experiment set show that single term similarity measure produces clustering solutions that better matches the human judgments. However, semantic similarity measures produce more cohesive and separate clusters. In the second part of this study, the proposed method is compared with the cosine similarity and document semantic similarity measure introduced by Gunduz & Yucesoy. The comparison is done in terms of unsupervised cluster validity indices. The experimental result shows that the proposed method outperforms both of the similarity metrics mentioned above. Moreover, the time complexity of the proposed method is the same with the time complexity of single term similarity measures.
Description: Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2009
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2009
URI: http://hdl.handle.net/11527/345
Appears in Collections:Bilgisayar Mühendisliği Lisansüstü Programı - Yüksek Lisans

Files in This Item:
File Description SizeFormat 
9764.pdf792.7 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.