Vejetasyon Yüzeyinin Co2 Ve H2o Akılarının Eddy Kovaryans Yöntemi İle Belirlenmesi

thumbnail.default.placeholder
Tarih
2015-01-30
Yazarlar
Aslan, Toprak
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science And Technology
Özet
2012 yılı verilerine göre küresel sera gazı bütçesinde tarımın payı %10’dur. Ancak dünyada tarım sektöründen kaynaklanan sera gazı akıları ile ilgili çalışmalar orman alanları ile karşılaştırıldığında yeterli düzeyde değildir. Bu sebeple özellikle gelişmekte olan ülkelerde tarımdan kaynaklanan sera gazı hesabında IPCC tarafından önerilen üç aşamadan birinci aşama yani diğer ülkelerde yapılan araştırmaların sonuçlarına dayanan emisyon ve yutak katsayıları ve ilişkiler kullanılmak durumundadır. Ancak ülkeler farklı iklim toprak ve bitki çeşitlerine sahiptirler bu sebeple bu şartlarda yapılacak çalışmalardan elde edilecek sonuçlar ve geliştirilecek modellerle IPCC’nin tavsiye ettiği ikinci ve üçüncü aşamadaki sera gazı hesaplama alternatifleri kulllanılabilir. Dolayısıyla ülkeler kendi şartları ve bitki çeşitleri için atmosfere verdikleri ve aldıkları sera gazları miktarını belirlemek durumundadır. Ülkemizde ne yazık ki tarımsal bitkilerden kaynaklanan sera gazı emisyonları ile ilgili uluslararası kabul gören yöntem ve teknoloji ile yapılmış araştırmaların sayısı yok denecek kadar azdır. Bu sebeple atmosfer ve biyosfer arasındaki gaz ve enerji akı değişimlerinin uluslararası kabul gören yöntem ve standartlarda yapılacak ölçümlerle belirlenmesi gerekmektedir. Bu tez çalışmasında Kırklareli’nde bulunan Atatürk Toprak Su ve Tarımsal Meteoroloji Araştırma Enstitüsü deneme alanında 2012 yılında vejetasyon yüzeyi olarak karpuz bitkisi ile atmosfer arasındaki karbondioksit ve su buharı akılarının değişimi uluslararası kabul gören mikrometeorolojik yöntemlerden Eddy Kovaryans yöntemi ile bir gelişme dönemi boyunca ölçülmüş ve belirlenmiştir. Çalışmada ana amaç tarım alanlarından kaynaklanan sera gazı değişiminin ülkemizdeki şartlar ve bitkiler için belirlenmesidir. Bu kapsamda karpuz bitkisi üzerinde yapılan bu ölçümler ve analizler sonucunda bu bitkiden dikimden ölçümler sonlandırılıncaya kadar geçen sürede atmosfere solunum ile salınan (emisyon), atmosferden fotosentez ile alınan ve bitki bünyesinde biriktirilen karbon miktarı ilk kez Dünya’da ve ülkemizde bu yöntem ve teknoloji ile belirlenmiş bulunmaktadır. İlgili vejetasyon yüzeyi ile atmosfer arasında yukarıda bahsedilen periyotta yapılan ölçümler ve analizler sonucunda brüt fotosentez faaliyeti toplam 1160.2 g C m-2 (4246.3 g CO2 m-2), toplam ekosistem solunumu 846.35 g C m-2 (3097.6 g CO2 m-2) ve toplam net ekosistem değişimi (yutak ) -299.03 g C m-2 (-1094.45 g CO2 m-2) olarak belirlenmiştir. Günlük ortalama GPP, NEE ve Reco değerleri ise 8.99, -2.31 ve 6.56 g C m-2 olarak belirlenmiştir. Gelişme dönemi içerisinde günlük maksimum ve minimum GPP sırasıyla 17.64 ve 1.27 g C m-2 olarak tespit edilmiştir. Karpuz bitkisinden atmosfere solunum faaliyeti ile salınan maksimum karbon miktarı 10.08 g C m-2 ve minimum karbon miktarı ise 2.91 g C m-2 olarak elde edilmiştir. İlgili bitki tarafından atmosferden yutulan maksimum karbon miktarı ise -9.09 g C m-2 olarak ölçülmüştür. Bitkinin gelişme dönemi byounca CO2’nin yanı sıra ilgili yüzeyden atmosfere salınan su buharı miktarıda (transpirasyon ve evaporasyon ile) EC yöntemiyle belirlenmiş ve sonuçta ilgili ölçüm döneminde meydana gelen gerçek evapotranspirasyon (ETa) değeri 422.01 mm olarak ölçülmüştür. Karpuz bitkisinden meydana gelen günlük toplam en düşük ETa 1.01 mm ve en yüksek de 7.26 mm olarak belirlenmiştir. Gelişme dönemindeki günlük ortalama ETa 3.27 mm olarak hesaplanmıştır. Bu çalışmanın bir diğer amacıda ilgili bitki yüzeyinden CO2 ve H2O akıları ile meteorolojik ve bitki ile ilgili değişkenler arasındaki ilişkilerin araştırılmasıdır. Bu kapsamda GPP, NEE ve Reco ile büyüme derece gün ve biyokütle arasında ilişkiler araştırılmıştır.
It is a common fact that global climate change is caused by increasing greenhouse gases concentration in the atmosphere. There are lots of gas flux measurements over surfaces such as forest, soil, croplands etc. 10 % of global green house gas budget is caused by agricultural sector (FAO, 2012). In the world, however; studies about greenhouse gas fluxes resulting from agricultural sector are insufficient when compared with the forest lands. Each countries should calculate their national greenhouse gas budget by considering IPCC recommendations, which consist of three approaches. One of them (Tier 1) can be used by developing countries which do not have special emmision and storage factors for the calculation of GHG budget for agricultural activities until now. However, countries have different climate, soil and plant varieties. For this reason, together with the results obtained from studies by defined circumstances and developed models, the second (Tier 2) and third (Tier 3) alternatives of greenhouse gas calculation, which are recommended by IPCC, should be used. Therefore, countries are responsible to determine the greenhouse gas amount given to the atmosphere and taken back from the atmosphere according to their conditions and plant varieties. In our country, the number of studies conducted by internationally accepted methods and technology about greenhouse gas emissions and sink caused by agricultural crops are unfortuanetly insufficient. That’s why, gas and energy flux changes between atmosphere and biosphere must be determined by measurements, which represent internationally accepted methods, instruments and standards. In this study, carbon dioxide and water vapor flux exchanges between the vegetative surface and atmosphere are measured by an internationally accepted micrometeorological method, namely the Eddy Covariance method (EC) during one growing period of watermelon in 2012 at Kırklareli Atatürk Soil, Water and Agricultural Meteorology Research Institue, in the Kirklareli city of Turkey. Main goal of the study is to determine greenhouse gas exchange arising from agricultural field for domestic crop conditions. Turkey is the second major watermelon producer with 20% production rate in the world after China, which has a 23% production rate (FAO, 2011). This product ratio has a big economical role in Turkey, although no study exists in Turkey or in the rest of the world about CO2 and H2O above watermelon vegetation, using the EC method. In this contex, carbon and water vapor fluxes above watermelon canopy were measured using EC method between plantation and harvest periods in the world for the first time. The EC method is widely used to measure gas fluxes within the atmoshperic boundary layer. After thechnological developements in 1990s, this technique has become one of the most used flux measurement methods. Corresponding technological developements let the wind velocity and gas concentration to be measured in 10 Hz interval. Covariance between the vertical wind velocity and gas concentration is the main principle of the method. Major assumptions of method can be expressed as the measurements are conducted inside the boundary layer, fetch/footprint is adequate, flux is fully turbulent, as well as the terrain is horizontal and uniform. Moreover, the instruments are able to detect very small variations. The method requires two main instruments, namely the 3D sonic anemometer and infrared gas analyzer. These intruments need to be mounted according to the fetch length/footprint, which are indicators whether the measured fluxes belong to the interested field. Generally, the fetch length can be determined as at least 100 times of plant height with respect to the horiontal distance between measurement point and the edge of the field. To analyze the flux data, additional meteorological variables such as precipitation, global solar radiation, photosynthetic photon flux density (PPFD), net radiation, soil water content, soil temperature etc. should be measured at the same experiment field. The flux can be obtained after the covariance calculation between the measured vertical wind velocity and gas concentration. Time series of the flux can have defective measuremets. This type of incorrect data measured by the open path infrared gas analyzer can be resulted from frequency responses, precipitation, wind direction and calm wind. Once these erroneous fluxes have been detected, they should be removed from the related time series. Then, corresponding corrections are to be applied to the flux data such as the tilt correction, rotation correction and Webb, Pearman, Leuning (WPL) correction. Finally; gaps in data should be filled. After this last process net ecosystem exchange (NEE) and latent heat flux (LE) data can be obtained definitevely. The above mentioned process is the same for the carbon and water vapour fluxes. For the carbon fluxes, however, an additional step is to be taken to obtain the ecosystem respiraiton (Reco). The NEE should be divided into Reco and gross primary production (GPP). The method is mathematically complex, and requires a lot of caution for setting up and processing data. Also, the necesarry instruments for the application of this method is costly. Although there are such disadvantages, the EC is one of the most directly and widely used methods in order to measure gas fluxes in the world. After the measurements and analysis of CO2 fluxes above watermelon surface for given period, the accumulated gross primary production (GPP), cumulative total ecosystem respiration (Reco) and cumulative net ecosystem exchange (NEE) were determined as 1160.2 g C m-2 (4246.3 g CO2 m-2), 846.35 g C m-2 (3097.6 g CO2 m-2) and 299.03 g C m-2 (-1094.45 g CO2 m-2); respectively. Daily mean GPP, NEE and Reco values were calculated as 8.99, -2.31 and 6.56 g C m-2, respectively. During the growing period, daily maximum GPP was determined as 17.64 g C m-2 and daily minimum GPP was found as 1.27 g C m-2. Maximum and minimum carbon amounts emmited to the atmosphere from watermelon surface by respiration activity were calculated as 10.08 and 2.91 g C m-2. Maximum carbon amount sinked from the atmosphere by the crop was measured as -9.09 g C m-2. Emmision factor for watermelon was determined as 6.56 g C m-2 d-1 (24 g CO2 m-2d-1). Additionally, daily avarage carbon sink was estimated as 2.31 g C m-2 (8.45 g CO2 m-2). In addition to the CO2 flux measurements in the growing period of crop, the water vapor amount given to the atmosphere (by transpiration and evaporation), which was determined by EC method and the actual evapotranspiration value was measured as 422.01 mm. Concordantly; daily total minimum and maximum ETa during the growing period were determined as 1.01 and 7.26 mm, respectively. Daily mean total ETa was calculated as 3.27 mm in the developing period of the watermelon plant. As a result, it is obvious that this type of measurements should be carried out for additional growing periods and the flux studies above all agricultural crops should be increased, especially in the developing countries.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2015
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2015
Anahtar kelimeler
eddy kovaryans, karbon akısı, gerçek evapotranspirasyon, karpuz, eddy covariance, carbon flux, actual evapotranspiration, watermelon
Alıntı