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ABSTRACT 

Protein function prediction is one of the most important and difficult problems in 
bioinformatics. Predicted or actual protein secondary structure, in addition to amino 
acid sequence, is often used for function prediction.  

Usually, alignment scores between amino acid or secondary structure sequences are 
used to predict protein function. One of the most frequently used alignment algorithms 
is the Smith-Waterman alignment which is a local alignment algorithm suitable for 
detecting remote protein similarities. The normalized compression distance (NCD) is 
another measure of distance that can be used between protein sequences as well as 
other kinds of data, such as music, text, images, spam filtering, even physics. Smith-
Waterman alignment scores and NCD have already been used for function prediction 
and it has been shown that NCD performs worse than alignment, while combination of 
NCD and alignment scores outperforms alignment scores only.  

In this study, the secondary structure is involved in protein function prediction by 
using a combined similarity metric that includes both Smith-Waterman alignment and 
normalized compression distance scores that consider the secondary structure in 
addition to the amino acid sequence.  
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HİZALAMA VE SIKIŞTIRMA TABANLI PROTEİN FONKSİYON 

ÖNGÖRÜSÜNDE İKİNCİL YAPININ KATKISI  

ÖZET 

Protein fonksiyon öngörüsü, biyoinformatik alanının başlıca zor ve önemli 
konularından biridir. Amino asit dizisine, yani birincil yapıya, ek olarak tahmin 
edilmiş veya gerçek ikincil yapı, yani proteinin üç boyutlu yapısının ilk seviyesi, bu 
problemin çözümünde sıklıkla kullanılmaktadır. 

Fonksiyon öngörüsünde genellikle amino asit dizileri ve ikincil yapıların hizalama 
puanları kullanılmaktadır. Hizalama puanları, protein dizilerinin benzerlik derecesini  
tespit etmek amacıyla bu dizileri bütünüyle (global hizalama) veya kısmen (yerel 
hizalama) eşleştirmeye çalışarak eşleşme oranını belirleyen hizalama algoritmaları 
tarafından, istatistiksel verilere dayanarak hazırlanmış yer değiştirme matrislerine göre 
belirlenen benzerlik ölçütleridir. En çok tercih edilen hizalama algoritmalarından biri, 
bir yerel hizalama algoritması olan ve uzak proteinlerin benzerliğinin bulunmasında 
oldukça başarılı sonuçlar veren Smith-Waterman algoritmasıdır.  

Normalize sıkıştırma uzaklığı (NCD) ise proteinlerde olduğu kadar müzik, metin, 
resim, istenmeyen e-posta filtreleme ve hatta fizik alanından veriler üzerinde de 
başarılı uygulamaları bulunan diğer bir uzaklık ölçütüdür. NCD, tam olarak 
hesaplanması mümkün olmayan Kolmogorov uzaklığına bir yaklaşıklık olarak 
geliştirilmiş ve belirli bir sıkıştırma algoritması kullanılarak sıkıştırılan iki protein 
dizisinin sıkıştırılmış uzunluklarının, birlikte sıkıştırıldıklarında elde edilen uzunluğa 
kıyaslanmasına dayanan bir uzaklık, başka bir deyişle benzemezlik ölçütüdür. 
Kullanıcının belirlemesi gereken bir parametre içermeyen NCD’nin, aynı zamanda 
kullanılan sıkıştırma algoritmasından da bağımsız, evrensel ve gürbüz bir ölçüt olduğu 
belirtilmektedir. 

Smith-Waterman ve NCD daha önce protein fonksiyon öngörüsünde denenmiş ve 
Smith-Waterman hizalama puanlarına dayanarak yapılan öngörünün NCD puanları ile 
yapılan öngörüden daha başarılı olduğu, ancak bu iki ölçütün kombinasyonun, ikisinin 
tek tek kullanılmasına kıyasla daha iyi sonuç verdiği belirtilmiştir. 

Bu çalışmada, her ikisi de amino asit dizisine ek olarak ikincil yapıyı da çeşitli 
oranlarda dikkate alacak biçimde düzenlenmiş Smith-Waterman hizalaması ve 
normalize sıkıştırma uzaklığının birleştirilmesi ile elde edilen yeni bir ölçüt 
kullanılmıştır.  
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1. INTRODUCTION 

Protein function prediction is one of the most important and difficult problems in 

bioinformatics. Using pattern recognition methods, function prediction deals with the 

problem of predicting the function of a protein with known structure of different 

levels, based on a set of proteins whose functions are already known. 

Protein structure is defined on four levels, which are the amino acid sequence, 

secondary structure, tertiary structure and quaternary structure, all of which can be 

used for bioinformatics applications. The most frequently used ones are the amino acid 

sequence and the secondary structure since they are less costly to evaluate and hence 

more available. Besides numerous studies on amino acid sequences, secondary 

structure has been used for fold recognition by Wallqvist et al. (2000), Soeding (2005) 

and Cheng and Baldi (2006).  

Yu and Liu (2004) propose a correlation based feature selection algorithm called the 

Fast-Correlation Based Filter (FCBF) which is also applicable to bioinformatics data 

sets where the number of features is usually very large. Çataltepe et al. (2007) 

compare FBCF to two other dimensionality reduction algorithms, principal component 

analysis (PCA) and Fisher’s linear discriminant analysis (Fisher’s LDA) using 

different classification algorithms and show that FCBF either significantly increases or 

just slightly decreases the classification accuracy whereas other dimensionality 

reduction techniques lead to dramatic decreases. 

A popular approach of using structural similarities in protein function prediction is 

using alignment-based classification. Alignment is matching similar parts of biological 

data such as gene sequences or protein structure sequences. The most frequently used 

alignment algorithms are the Needleman-Wunsch global alignment algorithm 

(Needleman and Wunsch, 1970) and the Smith-Waterman local alignment algorithm 

(Smith and Waterman, 1981) which is a variation of the first one. Smith-Waterman 

alignment algorithm is interested in partial matching of sequences; hence it is more 

suitable for detecting remote protein similarities. Liao and Noble (2003) built pairs of 

sequences in the data set and obtained pairwise alignment scores by aligning these. 
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They showed that using the pairwise alignment scores as features of input to support 

vector machine classifiers is a straight-forward method that outperforms many 

previous work (Liao and Noble, 2003), e.g. the SVM-Fisher method (Jaakkola et al., 

1999 and Jaakkola et al,. 2000), the PSI-BLAST algorithm (Altschul et al., 1997), 

SAM (Krogh et al., 1994) and FPS (Grundy, 1998), especially when working with 

large data sets. Another work on the contribution of secondary structure to protein 

function prediction is done by Aygün et al. (2008a), where the Smith-Waterman 

alignment scores are computed by considering the secondary structure in different 

levels.  

 The normalized compression distance (NCD) is another measure of distance which is 

shown to perform quite well in different domains. Keogh et al. (2004) present a 

successful application in pattern recognition, Cilibrasi et al. (2004) and Çataltepe et al. 

(2006) made applications in music domain to predict music genre and composer and 

Cilibrasi and Vitanyi (2005) provide successful implementations of NCD in many 

areas. There are also application in physics (Benedetto et al., 2002) and spam-filtering 

(Bratko and Filipic, 2005). Sculley and Brodley (2006) compare different distance 

metrics using compression, the Chen-Li metric (CLM), the compression-based 

dissimilarity measure (CDM), compression-based cosine (CosS) and show that NCD 

outperforms all. Nevill-Manning and Witten (1999) argued that proteins cannot be 

compressed which was answered by Hategan and Tabus (2004) stating that proteins 

can be compressed using appropriate compression algorithms. Later Freschi and 

Bogliolo (2005) applied the LZ78 algorithm for compressing proteins. Li and Vitanyi 

(1997) and Li et al. (2001) show the success of NCD in bioinformatics, especially on 

classifying genetic data and Ferragina et al. (2007) provide another implementation of 

NCD on biological data. 

The NCD was developed by Cilibrasi and Vitanyi (2005) based on Kolmogorov 

complexity which is not computable, but only approximated. It is a universal, 

parameter-free (dis)similarity metric which does not depend on the compressor type 

used. It computes the distance between two sequences, based on their lengths when 

they are compressed individually or together.  

Kocsor et al. (2005) compare the success of alignment-based classifiers and 

compression-based classifiers and shows that using alignment scores only outperforms 
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using NCD only. However, Kocsor et al. suggest a new similarity metric which is a 

combination of alignment scores and compression scores and report that this new 

combined metric has a better performance than both alignment (Smith-Waterman and 

BLAST) and compression (LZW and PPMZ) only.  

This study investigates the contribution of secondary structure to protein function 

prediction both in alignment-based and compression-based methods and suggests a 

combined similarity metric similar to Kocsor et al. which also includes secondary 

structure. The study on alignment-based classification uses the pairwise Smith-

Waterman alignment algorithm and analyses the contribution of different secondary 

structures to protein function prediction, the results of which are shown by Filiz et al. 

(2008). The study on normalized compression distance includes the suggestion of an 

NCD metric that encloses the secondary structure additional to the amino acid 

sequence. The compression scores are computed using the CompLearn Toolkit’s 

LZMA algorithm (Cilibrasi, 2003). Finally, a metric combined of Smith-Waterman 

alignment scores and normalized compression distance scores, each of which include 

amino acid sequence and secondary structure, is developed and tested. 

The rest of the thesis is organized as follows: Section 2 describes the mostly used 

features in protein function prediction and explains the data set used in this study in 

detail. Section 3 explains the alignment-based similarity and normalized compression 

distance, as well the new combined metric. Section 4 explains the pattern recognition 

methods used for classification and classifier evaluation. Section 5 reports the 

experimental results. Section 6 explains the conclusions. 
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2. PROTEIN FUNCTION PREDICTION 

2.1. Definition of Function 

As a general heading, function refers to the biochemical role of the protein. Protein 

function may refer to many things: The biochemical role of the protein within the cell, 

the cellular function within the tissue the cell belongs to or the structural role within 

the cell or organism (Petsko and Ringe, 2004). 

It is also known that protein function depends on the three-dimensional structure of the 

protein (Petsko and Ringe, 2004) and a large number of previous works is based on 

finding associations between the structure of the protein and its function. 

2.2. Features Used 

2.2.1 Amino acid sequence 

Proteins are macromolecules composed of amino acid chains (Tramontano, 2006). An 

amino acid is a molecule consisting from an amine and a carboxyl functional group, 

which makes it an acid, a hydrogen atom and a side chain bonded to the alpha-carbon 

which is the carbon atom the carboxyl groups is also bonded to (see Figure 2.1) 

(Petsko and Ringe, 2004). The 20 of amino acids found in nature vary only in their 

side chains. These are isoleucine, alanine, leucine, asparagine, lysine, aspartate, 

methionine, cysteine, phenylalanine, glutamate, threnonine, glutamine, tryptophan, 

glycine, valine, proline, arginine, serine, histidine and tyrosine, shown in Table 2.1. 

with their three-letter and one-letter abbreviations (IUPAC-IUB, 1984). 
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Figure 2.1: Symbolic structure of an amino acid (Plant and Soil Sciences e-Library, 
2006) 

Table 2.1: Amino acids and their abbreviations (IUPAC-IUB, 1984) 

Amino acid 
Three-letter 
abbreviation 

One-letter abbreviation 

Alanine Ala A 
Arginine Arg R 

Asparagine Asn N 
Aspartic acid (Aspartate) Asp D 

Cysteine Cys C 
Glutamine Gln Q 

Glutamic acid (glutamate) Glu E 
Glycine Gly G 

Histidine His H 
Isoleucine Ile I 
Leucine Leu L 
Lysine Lys K 

Methionine Met M 
Phenylalanine Phe F 

Proline Pro P 
Serine Ser S 

Threonine Thr T 
Tyrptophan Trp W 

Tyrosine Tyr Y 
Valine Val V 

Any amino acid Xaa X 
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The chain of amino acids or the amino acid sequence (see Figure 2.2) as referred 

frequently in this study, is the primary structure of a protein (Tramontano, 2006). The 

amino acid sequence is encoded by the DNA and it is produced with a procedure 

called protein biosynthesis which binds single amino acids with covalent peptide 

bonds (Petsko and Ringe, 2004).  

It is known that the amino acid sequence is closely related to the function of a protein 

and there are numerous studies on this relationship (Liao and Noble, 2003, Kocsor et 

al.  2005).  

 

 

Figure 2.2: Amino acid sequence of a protein, the lysozyme enzyme (Kimball, 2008) 

2.2.2 Secondary Structure 

The secondary structure of a protein is the three-dimensional form of an amino acid 

sequence occurring due to hydrogen bonds between amino acids (Petsko and Ringe, 

2004). Hence, it is a local structure and different types of secondary structures are seen 

together in one protein (Petsko and Ringe, 2004).  

The alpha-helix is a secondary structure where every amino acid can form hydrogen 

bonds (Pauling et al., 1951) and the three-dimensional form is a spiral turning to right 

(Figure 2.3). Alpha helix is mainly formed in regions where the amino acids with 

alpha - helix preference, Ala, Leu, Met, Phe, Glu, Gln, Lys, Arg, His, are the majority 

and the other amino acids are not close even if they exist (University of Guelf 

Department of Chemistry and Biochemistry, 2000). 
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Figure 2.3: An alpha-helix (University of Miami Department of Biology, n.d.) 

 

 

Figure 2.4: Side view of a beta-sheet (Science College, n.d.) 
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The beta-sheets are secondary structure forms where stretched amino acid strands are 

placed next to each other so that hydrogen bonds can form between the strands 

(Pauling and Corey, 1951) which results in a side view of a pleated sheet (see Figure 

2.4). These are formed by amino acids with beta-sheet preference, Tyr, Trp, Ile Val, 

Thr, Cys, and can be either parallel as in Figure 2.5 or anti-parallel as in Figure 2.6 

(University of Guelf Department of Chemistry and Biochemistry, 2000).   

 

Figure 2.5: Parallel beta sheet (University of Guelf Department of Chemistry and 
Biochemistry, 2000) 

 

Figure 2.6: Anti-parallel beta sheet (University of Guelf Department of Chemistry 
and Biochemistry, 2000)  
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A protein also includes regions that are neither alpha-helices nor beta-sheets. These 

are called “turns” or “loops”. 

The secondary structure is often represented using the DSSP-code introduced by 

Kabsch and Sander (1983). The 7-letter code is summed up in Table 2.2.  

Table 2.2: DSSP representation of secondary structure (Kabsch and Sander, 1983) 

DSSP code Secondary Structure  
H Alpha-helix 
B Residue in isolated beta-bridge 
E Extended strand, participates in beta ladder 
G 3-helix (310 helix) 
I 5-helix (π-helix) 
T Hydrogen bonded turn 
S Bend  

The secondary structure is also used frequently for protein function prediction (Aygün 

et al., 2008 and Filiz et al., 2008). 

2.2.3 Tertiary Structure 

Tertiary structure is an irregular structure and is therefore described many ways one of 

which is the spatial structure of a protein in terms of atomic coordinates (Petsko and 

Ringe, 2004). It is the composition of secondary structures of one amino acid sequence 

(Figure 2.7) and is also referred to as “fold” (Petsko and Ringe, 2004).  

2.2.4 Quaternary Structure 

The last level of protein structure is the quaternary structure which is the compound of 

more than one amino acid sequence called subunits or monomers (Figure 2.8) (Petsko 

and Ringe, 2004).  
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Figure 2.7: Tertiary structure of dihydrofolate reductase (7DFR) (PDB). The spirals 
are alpha-helices; arrows indicate beta-sheets and the remaining parts that look like 

threads are loops. 

2.2.5 Motifs 

In bioinformatics, motif has two meanings.  

Firstly, a motif is a partial amino acid sequence that is specific for a certain 

biochemical function, e.g. the zinc finger motif which is specific for DNA-binding 

proteins (Petsko and Ringe, 2004). 

Secondly, motif is used for a subsequence of the amino acid sequence of a protein 

which is significant for a function, known as functional motifs, or which acquire a 

certain secondary structure independent from the neighboring subsequences, known as 

structural motifs (Petsko and Ringe, 2004).  
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Figure 2.8: Quaternary structure of protein kinase C interacting (1AV5) (PDB) 

2.3. Data Set 

The data set used in this study consists of amino acid sequences and secondary 

structure of 4498 annotated proteins, that is to say proteins with known functions. This 

section explains the development and specifications of the dataset in detail. 

2.3.1 Protein Data Bank (PDB), Gene Ontology (GO) and Gene Ontology 
Annotation (GOA)  

The Protein Data Bank (PDB) (Berman et. al, 2000) is an online storage for the three-

dimensional structures of proteins, nucleic acids and protein-nucleic acid complexes. 

The PDB founded by Drs. Edgar Meyer and Walter Hamilton at Brookhaven National 

Laboratory in 1971 containing 7 structures which increased to 50,480 structures in 

April 2008 (see Figure 2.9). For each structure, sequence details, atomic coordinates, 

crystallization conditions, 3-D structure neighbors computed using various methods, 

derived geometric data, structure factors, 3-D images and a variety of links to other 

resources are available in PDB (Berman et al., 2000). 
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Molecule Type  

Proteins 
Nucleic 
Acids 

Protein/NA 
Complexes 

Other Total 

X-ray 40066 1025 1823 24 42938 
NMR 6321 805 138 7 7271 
Electron 
Microscopy 

119 11 43 0 173 

Other 88 4 4 2 98 

Exp. 
Method 

Total 46594 1845 2008 33 50480 

Figure 2.9: PDB Current Holdings Breakdown at 27th April 2008 (NCBI, 2004) 

The Gene Ontology (The Gene Ontology Consortium, 2000) is one of the ontologies 

most frequently used in bioinformatics. It was grounded in 1988 to find consistent 

annotations for proteins of three organisms: Drosophila melanogaster (fruit fly) from 

FlyBase, mus musculus (mouse) from Mouse Genome Database and saccharomyces 

cerevisiae (baker’s yeast) from Saccharomyces Genome Database (The Gene 

Ontology Consortium, 2000). By both many organisms and proteins being added to 

the database, in January 2008 GO contains over 24,500 terms which include the GO 

ID, a unique alphanumerical string, the common name and the definition of the 

protein. GO provides three ontologies: biological processes, cellular components and 

molecular functions.  

The Gene Ontology Annotation (Camon et al., 2004) database provides annotations 

for proteins of the UniProt Knowledgebase (Butler, 2002) that consists of Swiss-Prot 

(Boeckmann et al., 2003), TrEMBL (Boeckmann et al., 2003) and PIR-PSD (Wu et 

al., 2003) using the Gene Ontology (GO). GOA includes GO assignments for the 

proteins of human, mouse, rat, arabidopsis, zebra fish, chicken and cow. 

2.3.2 Retrieval of Annotated Proteins 

To obtain a list of annotated proteins, the Gene Ontology Annotation (GOA) project is 

used (Camon et al., 2004). The Gene Ontology Annotation provides a Protein Data 

Bank (PDB) (Berman et al., 2000) association file, which contains only the 

assignments for the proteins present in the PDB database where the structural 

information is obtained from. To fetch the sequence names, namely the GO IDs, this 

association file is used.  



 
 

13 
 

2.3.3 Homology Reduction 

In bioinformatics, homology refers to structural similarity depending on a shared 

ancestry, even if this original molecule cannot be specified in every case (Petsko and 

Ringe, 2004). Similarity alone is not enough to determine homology because of the 

possibility of a similar structure arose by chance (NCBI, 2004). 

Homolog amino acid sequences often tend to have similar functions (NCBI2004). This 

inclination becomes very significant at 40% homology (in other words, when 40% of 

two sequences are structurally identical) where homolog sequences usually have very 

similar or identical functions. Prediction of the function of a protein is relatively easier 

when using its homolog instead of using information obtained from non-homolog 

proteins, so the high performance of a function prediction algorithm tested on a data 

set containing homologs can be misleading since it can be caused by homology and 

not the prediction algorithm itself. Therefore, proteins with 40% sequence identity are 

removed from the database.  

To remove sequence homologs, PDB's scheme is applied. PDB provides several 

clusterings of proteins generated with CD-HIT or BLASTClust algorithms for 

different sequence identities. According to the scheme, only the best representative of 

each cluster is kept for a given clustering. Thereby, potential homologs are removed 

and non-redundant datasets are obtained. In this study, BLASTClust for 40% identity 

is used and a dataset of 4498 proteins from human, mouse, rat, arabidopsis, zebra fish, 

chicken and cow is obtained. 

2.3.4 Retrieval of Ontology 

The ontology structure is obtained from Gene Ontology (GO) (Ashburner, 1998, 

Ashburner et al., 2000 and The Gene Ontology Consortium, 2000) database. All the 

three top level GO classes, molecular function, cellular component and biological 

process, are included in the data set used in this study. In GO hierarchy, a protein may 

be associated with more than one term if it is known that it has multiple functions. An 

example introduced by (The Gene Ontology Consortium, 2000) is cytochrome c 

which is associated with the molecular function term oxidoreductase activity, the 

cellular component terms mitochondrial matrix and mitochondrial inner membrane 

and the biological process terms oxidative phosphorylation and induction of cell 

death. In such cases, all terms are captured during the labeling process and multi-
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labeled data with 1876 dimensional target vectors for all sequences in the data set is 

generated.  

To obtain a well-balanced class distribution, classes with less than 100 or more than 

550 sequences are eliminated which resulted in a dataset with 27 classes which are 

between 2nd and 8th levels in the GO hierarchy (see Figure 2.10 and Figure 2.11). 

Table 2.3 shows the 27 GO classes used.  

Table 2.3: Gene Ontology class distributions in the data set used 

Class 
No 

GO ID Class name Class type #Seq 

1 0009405 Pathogenesis Biological process 103 
2 0009055 electron carrier activity Molecular function 105 
3 0006810 Transport Biological process 107 
4 0016787 hydrolase activity Molecular function 117 
5 0005506 iron ion binding Molecular function 118 
6 0000166 nucleotide binding Molecular function 132 
7 0003676 nucleic acid binding Molecular function 137 
8 0003700 transcription factor activity Molecular function 137 
9 0006508 Proteolysis Biological process 148 

10 0006412 Translation Biological process 150 
11 0003723 RNA binding Molecular function 155 
12 0008270 zinc ion binding Molecular function 170 
13 0005975 carbohydrate metabolic process Biological process 173 
14 0005179 hormone activity Molecular function 177 
15 0016020 Membrane Cellular component 202 
16 0005515 protein binding Molecular function 210 
17 0005634 Nucleus Cellular component 214 

18 0006355 
regulation of transcription, DNA 

dependent 
Biological process 221 

19 0005737 Cytoplasm Cellular component 232 
20 0005622 Intracellular Cellular component 278 
21 0005524 ATP binding Molecular function 288 
22 0006118 electron transport Biological process 297 
23 0016491 oxidoreductase activity Molecular function 300 
24 0003677 DNA binding Molecular function 329 
25 0005576 extracellular region Cellular component 354 
26 0008152 metabolic process Biological process 361 
27 0003824 catalytic activity Molecular function 522 

Total    4498 
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Figure 2.10: GO tree for biological process. Bold circles indicate the classes included 
in the dataset. 
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Figure 2.11: GO tree for cellular component and molecular function classes. Bold 
circles indicate the classes included in the dataset. 
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2.3.5 Retrieval of Amino Acid Sequence and Secondary Structure 

The structure information of each protein downloaded from the PDB web service 

consists of its amino acid sequence and secondary structure. PDB also provides 3D 

structure, but it is not included in this work since it does not suggest a protein function 

prediction scheme specific for PDB but a general scheme including primary and 

secondary structures. 

The PDB provides amino acid sequences as a string of capital letters each of which is 

the one-letter abbreviation of an amino acid (see Table 2.1). In this study, the amino 

acid sequences are used just as they are provided by the PDB, in other words without 

any preprocessing.  

The secondary structure provided by the PDB is in DSSP representation. Since this 

study is concentrated on the contribution of the main three secondary structures, e.g. 

alpha helices, beta sheets and loops, to the function of the protein, the DSSP 

representation is converted to the HEL representation (H: alpha helix, E: beta strand, 

L: loop) according to (Kabsch and Sander, 1983) (Table 2.4).  

Table 2.4: Conversion from DSSP to HEL representation (Kabsch and Sander, 1983) 

DSSP-code HEL-code 
G, H, I H 

B,E E 
C, S, T L 

The contribution of H, E and L regions to function could rely on their portion (ratio of 

the length of a specific secondary structure to the length of the whole sequence) in the 

sequences, since a longer amino acid sequence part provides more structural 

information than a shorter sequence part. Therefore, for each function class, the 

average H, E and L portions normalized by the sequence length is calculated. 

Normalization by the sequence length is necessary since longer amino acid sequences 

naturally contain longer H, E and L regions and this would lead the relations between 

H, E and L portions to escape observation. Figure 2.12 and Table 2.5 show the average 

H, E and L portions in each function class. 
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Table 2.5: The average ratios of H, E and L regions in GO function classes 

Class  
No 

GO ID Size H % E % L % 
Seq. 

Length 
1 0009405 103 21.78 ± 0.2 24.88 ± 0.14 53.34 ± 0.19 184 
2 0009055 105 33.44 ± 0.18 16.66 ± 0.12 49.89 ± 0.13 224 
3 0006810 107 32.27 ± 0.17 25.75 ± 0.18 41.98 ± 0.14 285 
4 0016787 117 32.06 ± 0.11 23.87 ± 0.08 44.07 ± 0.06 299 
5 0005506 118 45.06 ± 0.21 12.18 ± 0.13 42.76 ± 0.13 268 
6 0000166 132 36.69 ± 0.13 18.59 ± 0.08 44.72 ± 0.11 341 
7 0003676 137 29.64 ± 0.13 19.76 ± 0.11 50.60 ± 0.14 278 
8 0003700 137 49.32 ± 0.22 9.68 ± 0.11 41.00 ± 0.16 176 
9 0006508 148 27.34 ± 0.16 24.11 ± 0.13 48.55 ± 0.14 338 
10 0006412 150 29.15 ± 0.19 16.61 ± 0.11 54.25 ± 0.22 242 
11 0003723 155 34.62 ± 0.18 19.16 ± 0.12 46.21 ± 0.14 222 
12 0008270 170 29.50 ± 0.17 14.73 ± 0.10 55.78 ± 0.18 243 
13 0005975 173 30.46 ± 0.15 23.88 ± 0.12 45.77 ± 0.08 420 
14 0005179 177 49.25 ± 0.15 4.75 ± 0.06 46.00 ± 0.15 28 
15 0016020 202 34.10 ± 0.28 20.92 ± 0.20 44.98 ± 0.17 266 
16 0005515 210 32.87 ± 0.24 16.64 ± 0.14 50.49 ± 0.18 236 
17 0005634 214 39.18 ± 0.22 12.79 ± 0.13 48.02 ± 0.16 212 
18 0006355 221 45.14 ± 0.22 12.53 ± 0.13 42.33 ± 0.16 165 
19 0005737 232 38.41 ± 0.13 19.85 ± 0.10 41.74 ± 0.07 368 
20 0005622 278 34.59 ± 0.20 14.37 ± 0.11 51.05 ± 0.20 199 
21 0005524 288 37.72 ± 0.13 19.50 ± 0.09 42.78 ± 0.09 370 
22 0006118 297 37.24 ± 0.18 17.30 ± 0.12 45.46 ± 0.12 313 
23 0016491 300 38.30 ± 0.15 19.63 ± 0.10 42.07 ± 0.09 381 
24 0003677 329 40.92 ± 0.19 14.30 ± 0.13 44.78 ± 0.14 244 
25 0005576 354 37.74 ± 0.23 12.57 ± 0.14 49.69 ± 0.17 99 
26 0008152 361 39.96 ± 0.09 18.73 ± 0.07 41.31 ± 0.06 355 
27 0003824 522 36.10 ± 0.13 19.67 ± 0.10 44.23 ± 0.10 384 

Total  4498     

Table 2.5. also shows the average sequence length in each class. Class 14 includes the 

shortest sequence with average length 28, which is c.a. 3.5 times shorter than the 

closest class, which is Class 25 with average sequence length 99. The longest 

sequences are in Class 13 which has the average sequence length 420; however the 

average sequence length for the closest class, Class 27, is 383 which is only c.a. 1.09 

times shorter than Class 13. Besides, the average ratio of beta-sheet (E regions) in 

class 14 is c.a. a half of the closest class, Class 8 with 9.68% E regions ratio.   

Therefore, Class 14 has to be considered as an outlier due to its average sequence 

length and its E regions ratio, which possibly could affect the classification results. 
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Figure 2.12: The average ratios of H, E and L regions in GO function classes 
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The statistical significance of the distribution of secondary structures (see Table 2.5) is 

tested with the analysis of variances. For each class C, the following ratio is computed 

where K indicates the number of sequences in class C, L indicates the number of 

statistics ( L = 3 since the statistics are computed for H, E and L ratios), mJ indicates 

the mean of the values for the statistic j (j=1 for H, j=2 for E and j=3 for L), m 

indicated the mean of all mJ and XiJ is the value of ith sequence for the jth statistic, e.g. 

X12 is the E-ratio in the 1st sequence: 

Table 2.6: Significance test using analysis of variance for Table 2.5 

Significance Level Class 
No 

GO ID ratio(C) 
0.99 0.95 0.90 

1 0009405 94.9 4.605 2.9957 2.30259 
2 0009055 139.0 4.605 2.9957 2.30259 
3 0006810 22.4 4.605 2.9957 2.30259 
4 0016787 160.3 4.605 2.9957 2.30259 
5 0005506 155.4 4.605 2.9957 2.30259 
6 0000166 208.3 4.605 2.9957 2.30259 
7 0003676 211.2 4.605 2.9957 2.30259 
8 0003700 208.7 4.605 2.9957 2.30259 
9 0006508 130.3 4.605 2.9957 2.30259 
10 0006412 174.0 4.605 2.9957 2.30259 
11 0003723 127.5 4.605 2.9957 2.30259 
12 0008270 315.2 4.605 2.9957 2.30259 
13 0005975 154.7 4.605 2.9957 2.30259 
14 0005179 703.5 4.605 2.9957 2.30259 
15 0016020 59.8 4.605 2.9957 2.30259 
16 0005515 166.0 4.605 2.9957 2.30259 
17 0005634 245.0 4.605 2.9957 2.30259 
18 0006355 240.0 4.605 2.9957 2.30259 
19 0005737 316.0 4.605 2.9957 2.30259 
20 0005622 305.4 4.605 2.9957 2.30259 
21 0005524 409.3 4.605 2.9957 2.30259 
22 0006118 309.3 4.605 2.9957 2.30259 
23 0016491 329.9 4.605 2.9957 2.30259 
24 0003677 378.8 4.605 2.9957 2.30259 
25 0005576 379.2 4.605 2.9957 2.30259 
26 0008152 1084.0 4.605 2.9957 2.30259 
27 0003824 692.9 4.605 2.9957 2.30259 
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For all classes, ratio(C) is compared to Fα,(L-1),L(K-1) which are obtained from F-

distribution tables (StatSoft, 2007) where α is the significance level and if ratio(C) > 

Fα,(L-1),L(K-1) then the statistics shown in Table 2.5 are proven to be statistically 

significant for the significance level (100 – α). The ratios and F values are shown in 

Table 2.6 and the H, E and L distributions are found to be significant at levels 0.99, 

0.95 and 0.90. 
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3. SEQUENCE-SEQUENCE SIMILARITY/DISTANCE COMPUTATION 
METHODS 

In this study, features used for classification of proteins are the structural information. 

However, the numbers of amino acids in proteins are very different; in the data set 

used in this study, it varies between 19 and 1733. Hence, the amino acid sequence or 

the secondary structure sequence cannot be used as a classification feature; they must 

be processed to obtain features with a constant number for each protein. The two most 

preferred and most successful methods for working with biological data are making 

use of sequence alignment and compression which are explained below in detail. 

3.1. Sequence Alignment Similarity 

Sequence alignment similarity usually points to homology and functional 

relationships. Alignment is based on matching the identical or similar sequence parts 

in proteins, either looking for the similarity of whole protein sequences as in global 

alignment or looking for partial matching as in local alignment algorithms.  

3.1.1 Needleman-Wunsch 

Needleman – Wunsch alignment algorithm (Needleman and Wunsch, 1970) is a global 

alignment algorithm trying to align the whole sequences and is therefore more suitable 

for data sets containing sequences of nearly equal length. The algorithm maximizes 

the similarity by finding the “maximum match” for the sequence which is the 

sequence most amino acids of which can be matched with the other sequence 

(Needleman and Wunsch, 1970). It is based on dynamic programming and the 

computation involves a 2-dimensional iterative matrix where every possible alignment 

of every possible amino acid is represented with an alignment score. The Needleman-

Wunsch alignment score is the summation of the scores of matched amino acids 

reduced by the gap penalties if any gaps are opened during alignment. 

3.1.2 Smith-Waterman 

Smith-Waterman (Smith and Waterman, 1981) is a local alignment algorithm; it is 

interested in finding similar sub-regions in longer sequences which do not have to be 
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similar totally and also which may have varying sequence lengths. Therefore, it is 

very suitable for detecting the similarity of distantly related proteins, which are also 

called remote proteins. The Smith-Waterman algorithm is actually a variation of the 

Needleman-Wunsch algorithm and it uses a substitution matrix which is similar to the 

matrix involved in Needleman-Wunsch computation, but it is modified by setting the 

negative alignment scores to zero to enable local alignment.  

An example Smith-Waterman alignment of two amino acid sequences is seen in 

Figure 3.1.  

Sequence 1 
VSPAGMASGYD 
 

Sequence 2 
IPGKASYD 
 

Smith-Waterman Alignment 

PAGMASGYD 
| | || || 
P-GKAS-YD 
 

Alignment Score 8.6667 

Figure 3.1: Smith-Waterman alignment of two amino acid sequences using 
BLOSUM50 substitution matrix 

3.1.2.1 Pairwise Smith-Waterman 

Pairwise alignment algorithms do not align a sequence to the whole data set; instead 

they create pairs of sequences from the data set and compute similarity scores for 

these pairs. Pairwise alignment scores could be used as input to pattern recognition 

algorithms to be used for function prediction and whether the two proteins are in the 

same class or not are the outputs, as in (Cheng and Baldi, 2006).  

Another approach is to use the alignment scores to all available training sequences as 

input. This is the approach taken in (Liao and Noble, 2003) and also in this study. 

“SVM-pairwise” (Liao and Noble, 2003) takes all sequence pairs in the database and 

aligns them to each other using the Smith-Waterman local alignment algorithm. This 

is based on the idea that two proteins belonging to the same class can be aligned 

similarly to a set of proteins containing both positive and negative instances. 

Alignment scores are then used as the constant-sized feature vector for a protein. For a 

training set of N sequences, every protein is aligned to all N sequences, including 

itself, and it has N features. These features are the input to the classification algorithm. 

Liao and Noble used this method with SVMs and they indicated that this method is 

not only easy to use, but also superior to similar algorithms (SVM-Fisher (Jaakkola et 
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al., 1999 and Jaakkola et al., 2000), PSI-BLAST (Altschul et al., 1997), SAM (Krogh 

et al., 1994) and FPS (Grundy, 1998)) due to its low complexity and outputs with 

higher accuracy because of learning from negative examples. Liao and Noble (2003) 

found that SVM-pairwise performs especially well when working with large numbers 

of protein sequences.  

In this study, the balign tool developed by Aygün and Çataltepe (2008) for 

Bioinformatics Project at ITU is used for computing the pairwise Smith-Waterman 

scores. Balign produces two types of alignment scores, the percent identity and the bit 

score, which is the sum of the substitution matrix entries for matches minus gap 

penalties, normalized with respect to the statistical parameters of the scoring system 

and is therefore comparable between different alignments (NCBI, 2004).  

3.1.2.2 Smith-Waterman incorporating secondary structure 

Smith-Waterman algorithm can also align sequences according to their secondary 

structure and balign (Aygün and Çataltepe, 2008) produces Smith-Waterman scores 

calculated from secondary structure in HEL format using the BLOSUM50 substitution 

matrix which is the default substitution matrix of MATLAB Bioinformatics Toolbox. 

Balign allows including secondary structure according to the parameter α chosen by 

the user from the interval (0, 1). The Smith-Waterman alignment score including also 

the secondary structure is then defined as below (Aygün et al., 2008):   

SWα(x, y) = SWAA(x, y) + α SWSS(x, y)                 (3.1) 

where x and y are the sequences to be aligned, SWAA(x, y) is the Smith-Waterman 

alignment score computed from their amino acid sequences and SWSS(x, y) the Smith-

Waterman alignment score computed from their secondary structure.  

Another approach is taken to find out the importance of each secondary structure 

element (H, E, L) for each function, portions of amino acid sequence that has 

corresponding secondary structure of H or E or L are isolated. Then the amino acid 

sequences that belong to 6 different secondary structure elements, namely HEL, HE, 

HL, H, E and L are produced. Figure 3.2 shows the original amino acid sequence, 

secondary structure and each of the six amino acid sequences produced for HEL, HE, 

HL, H, E and L regions. When a secondary structure element is not used, in the amino 

acid sequence, the actual residue is replaced by the “+” symbol. BLOSUM50 
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substitution matrix is modified to incorporate the “+” symbol and the parameter α is 

set to 0. The Smith-Waterman alignment scores are computed using these sequences, 

called SWHEL, SWHE, SWHL, SWH, SWE and SWL respectively. 

Original 
sequence 

QYKEVNETKWKMMDPILTTSVPVYSLKVDKEYEVRVRSKQRNSGN 

Secondary 
structure 

HHHHHEEEEELLEHLLEEEEEELLLLLLLLLLLLLLLHHHEEEEL 

HEL QYKEVNETKWKMMDPILTTSVPVYSLKVDKEYEVRVRSKQRNSGN 

HE QYKEVNETKW++MD++LTTSVP+++++++++++++++SKQRNSG+ 

HL QYKEV+++++KM+DPI++++++VYSLKVDKEYEVRVRSKQ++++N 

H QYKEV++++++++D+++++++++++++++++++++++SKQ+++++ 

E +++++NETKW++M+++LTTSVP++++++++++++++++++RNSG+ 

L ++++++++++KM++PI++++++VYSLKVDKEYEVRVR+++++++N 

Figure 3.2: Secondary structure filtering 

3.1.2.3 Conservation score   

Conservation score is the normalized version of bit score which is computed as 

follows:  

( )),(),,(max

),(
),(

yybitscorexxbitscore

yxbitscore
yxcons =               (3.2) 

where cons(x,y) is the conservation score of sequences x and y and bitscore(x,y) is the 

bitscore of sequences x and y. 

Conservation score gives a better measure of similarity due to normalization and is 

therefore preferred to raw Smith-Waterman alignment scores in this study. 

3.2. Normalized Compression Distance (NCD) 

Normalized compression distance (NCD) is a parameter-free, universal metric for 

sequence similarity developed by Cilibrasi and Vitanyi (2005) which is robust to 

compressor changes and has applications in several research areas, also in 

bioinformatics.  
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3.2.1 Distance and metric 

A distance function D is a metric if it satisfies the following properties with D(x,y) 

being the distance between x and y (Cilibrasi and Vitanyi, 2005): 

1. D(x,y) = 0 iff x = y 

2. Symmetry: D(x,y)  = D(x,y) 

3. Triangle inequality: D(x,y) ≤ D(x, z) + D(z, y). 

A frequently used distance is the Euclidean distance which is a metric in the sense 

defined above. These properties are also applicable to similarity metrics. 

3.2.2 Admissible distance 

An admissible distance D(x, y) is the length of a binary prefix codeword which 

computes the sequence x from the sequence y and also the sequence y from the 

sequence x using a certain programming language, also called the reference 

programming language (Cilibrasi and Vitanyi, 2005). The two-way computation 

makes the admissible distance symmetric. An admissible distance does not have to be 

a metric, but there are examples like the Hamming distance which are both an 

admissible distance and a metric (Cilibrasi and Vitanyi, 2005). 

3.2.3 Normalized admissible distance 

Normalized admissible distance is a similarity distance developed on the assumption 

that long sequences different only in a short region are much more similar than short 

sequences differing in a region of the same length (Cilibrasi and Vitanyi, 2005). 

Therefore, the admissible distance D is normalized by another admissible distance D+ 

which is defined as follows (Cilibrasi and Vitanyi, 2005): 

D+(x,y) = max{max{D(x,z): C(z) ≤ C(y)}, max{ D(z,y): C(z) ≤ C(x)}}            (3.3) 

where C a certain compressor, also called the reference compressor, C(.) is the 

compressed length obtained using the reference compressor C and z is any sequence. 

The normalized admissible distance is a similarity distance, in other words, it shows 

how distant the sequences are. Therefore, it is often named a dissimilarity or disparity 

metric. 
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3.2.4 Kolmogorov complexity 

Kolmogorov complexity, a definition from information theory, provides a basis for 

most of the alignment-free methods of sequence comparison (Kocsor et al., 2005). The 

conditional Kolmogorov complexity K(x | y) is the length of the shortest binary 

program which computes the sequence x from the sequence y using a universal Turing 

machine (Li and Vitanyi, 1997).  

The non-conditional Kolmogorov complexity K(x) is the same as K(x | λ) where λ 

denotes the empty sequence, that is, K(x) is the length of the shortest binary program 

which computes the sequence x without input using a universal Turing machine (Li et 

al., 2001).  

Using the Kolmogorov complexity, it is possible to produce similarity measures which 

express the decrease in complexity or conditional complexity (Kocsor et al., 2005). 

One of them is defined as below in (Li et al., 2001): 

)(

)|()(
1),(1

xyK

xyKyK
yxd

−
−=                              (3.4) 

where xy is the concatenation of the sequences x and y. 

3.2.5 Normalized information distance  

Bennett et al. (1998) introduce a new metric called the information distance E(x, y) 

which is the length of the shortest binary program which computes the sequence x 

from the sequence y using a universal Turing machine, and vice versa: 

E(x, y) = max{K(x | y), K(y | x)}               (3.5) 

It is also proven that the information distance is a metric and it is universal since  E(x, 

y) ≤ D(x, y) up to an additive constant that is independent from x and y (Cilibrasi and 

Vitanyi, 2005).  

Cilibrasi and Vitanyi (2005) present the normalized information distance NID(x, y) 

defined as below: 

)}(),(max{

)}|(),|(max{
),(

yKxK

xyKyxK
yxNID =                           (3.6) 
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NID is also a universal metric. Its weakness is that it is based on the Kolmogorov 

complexity which is not computable which makes the normalized information distance 

not computable (Cilibrasi and Vitanyi, 2005). The normalized information distance is 

also often referred to as the universal similarity metric (USM) (Krasnogor and Pelta, 

2004). 

3.2.6 Normal compressor  

A compressor C is normal if it satisfies the following properties up to an O(log n) 

additive term for a sequence of length n (Cilibrasi and Vitanyi, 2005): 

1. Idempotency: C(xx) = C(x) and C(λ) = 0, λ being the empty sequence 

2. Monotonicity: C(xy) ≥ C(x), xy the concatenated sequence of x and y 

3. Symmetry: C(xy) = C(yx) 

4. Distributivity: C(xy) + C(z) ≤ C(xz) + C(yz) 

3.2.7 Compression distance  

The compression distance is an admissible distance which is the approximation of not-

computable Kolmogorov complexity by a normal compressor. Being C a real-world 

reference compressor which approximates the properties of normal compressor, the 

compression distance Ec(x, y) defined as below (Cilibrasi and Vitanyi, 2005): 

Ec(x, y) = C(xy) – min{C(x), C(y)}              (3.7) 

where C(x) is the compressed length of the sequence x. 

3.2.8 Normalized compression distance 

The normalized compression distance NCD(x, y) is the normalized version of the 

compression distance Ec(x, y) involving the normal compressor C and is defined as 

follows (Cilibrasi and Vitanyi, 2005):  

)}(),(max{

)}(),(min{),(
),(

yCxC

yCxCyxC
yxNCD

−
=                                     (3.8) 

The NCD is a universal, parameter-free similarity distance, since does not need any 

background knowledge about the data set and is also robust because it is defined 

independently from the compressor type (Cilibrasi and Vitanyi, 2005).  
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3.2.9 Compression methods 

3.2.9.1 The LZ77 approach 

This approach is described by Lempel and Ziv in 1977 and the compressors developed 

based on this approach make up the LZ77 or LZ1 family (Sayood, 1996). It is an 

adaptive-dictionary-based technique where the dictionary corresponds to a subset of 

the already encoded sequence which is examined by a sliding window that consists of 

a search buffer, which contains a part of the encoded sequence, and a look-ahead 

buffer, which contains a part of the sequence to be encoded (Sayood, 1996). The LZ77 

approach requires no background information on the data to be compressed and is 

therefore a simple algorithm that assumes that repeating patterns are placed closely on 

the sequence (Sayood, 1996). 

3.2.9.2 The LZ78 approach  

This approach is again described by Lempel and Ziv in 1978 and compressors 

developed based on this approach make up the LZ78 or LZ2 family. This adaptive-

dictionary method does not assume the closeness of repeating patterns and therefore 

uses an explicit dictionary instead of the search buffer that stores the recently encoded 

part of the sequence (Sayood, 1996).  

3.2.9.3 LZMA 

The Lempel-Ziv-Markov chain-Algorithm (LZMA) is a variation of the LZ77 that 

compresses very fast and its compression ratio is 30% greater than that of gzip, 

another LZ77 variation, and 15% grater than bzip2, also another LZ77 variation. But 

measuring the compression time related to compression ratio shows that the best 

compression the LZMA algorithm can make takes 4-12 times longer time than the 

bzip2 algorithm (7-zip, nd.).  

3.2.9.4 Bzip2  

bzip2 is a patent-free algorithm developed by Julian Seward  that generally 

compresses the files to 10-15% twice faster at compression and six times faster at 

decompression than PPM compressors (Bzip.org), however they are much slower than 

compressors like GNU zip which cannot compress as efficient as bzip2. The algorithm 

is run in 9 steps that are as follows (Bzip.org): Run-length encoding (RLE) that 

replaces repeating symbols in a string by its first four characters, Burrows-Wheeler 
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transform (BWT) which is reversible block-sort algorithm that is essential for bzip2, 

Move to front (MTF) that identifies frequently repeating strings, Run-length encoding 

(RLE) that represents the run-length as a binary number, Huffman coding that replaces 

the binary numbers with codes the length of which depend on their frequency, 

multiple Huffman tables if the cost of using them does not exceed the cost of including 

them, unary base 1 encoding for selecting the Huffman tables, Delta encoding that 

stores each bit length as a difference from the previous one and the sparse bit array 

(Bzip.org, nd.). 

3.2.9.5 GNU zip 

GNU zip, or gzip is developed by Gailly and Adler to replace the algorithm compress 

of Linux which causes patent problems. Like compress, gzip is a variation of the LZ77 

algorithm (Lempel and Ziv, 1977) and the Huffman coding (Gzip.org, n.d.).  

Zlib is also developed by Gailly and Adler and works on gzip-formatted data. When a 

string has occurred for the second time, it is replaced by a pointer to the previous 

occurrence using a hash table including all previously seen strings of 3 bytes length. 

Previous occurrences can be searched within the recent 32KB starting from the closest 

occurrence to benefit from the Huffman coding (Gailly, n.d.).  

3.2.10 CompLearn  

In this study, to compute the normalized compression distance scores the CompLearn 

Toolkit (Cilibrasi, 2003) developed by Cilibrasi, Cruz and De Rooij is used. It is an 

open source toolkit built based on Vitanyi and Li’s work on compression-based 

learning algorithms.  

To test the validity of the package, a small data set of 50 amino acid sequences is 

randomly chosen from the data set and the 50x50 matrix of NCD scores is computed 

using the LZW compression algorithm in MATLAB and using CompLearn’s LZMA 

compressor. The comparison of the two matrices of NCD scores shows that they are 

consistent with each other, i.e. the scores differ only in a constant additional term 

which will be eliminated by when computing the distances of NCD vectors by the 

1NN classifier (see Section 4.1.1). The main difference in the scores appears along the 

diagonal of the NCD matrices: NCD(x,x) computed by CompLearn is dramatically 

greater than the one computed by the LZW of MATLAB. However this is not a 

decisive factor, since the normalized compression distance of a sequence to itself is 
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never needed for testing the classifiers, testing involves only distance of test instances 

to train instances. Therefore, the CompLearn Toolkit is preferred due to its lower time-

complexity when compared to MATLAB.  

To reduce the computational complexity, CompLearn makes an assumption in the 

denominator of the equation (3.8) and uses C(x) instead max{C(x), C(y)}. Hence, 

NCD(x, y) ≠ NCD(y, x) and the developers of the CompLearn package report, that it 

was experimentally shown that this assumption does not cause any important change 

in the classification results.  

3.2.11 NCD Incorporating Secondary Structure 

Normalized compression distance is naturally also computable for sequences of 

secondary structure. But since the study aims to involve both the amino acid sequence 

and the secondary structure, new approaches are necessary.  

The first approach is a composite NCD score that considers the amino acid sequence 

and the secondary structure in varying ratios. The NCD scores for the amino acid 

sequence (NCD(xAA, yAA)) and the NCD scores for the secondary structure (NCD(xSS, 

ySS) are computed separately and joined with a user defined parameter β:  

NCDβ(x, y) = (1 –β). NCD(xAA, yAA) + β . NCD(xSS, ySS)          (3.9) 

3.2.12 NCD Using Joint Representation 

The second approach is generating a joint representation where each letter stands for 

an amino acid with a certain secondary structure. Since there are 20 amino acids and 3 

secondary structures, the joint representation requires a mapping to an alphabet of 60 

characters. This mapping is shown in Table 3.1 and Figure 3.3. show the conversion to 

the joint representation for the beginning region of the protein 10MH:A according to 

Table 3.1. The NCD scores are computed using this joint representation and 

represented as NCD60. 

Amino Acid  
Sequence 

MIEIKDKQLTGLRFIDLFAGLGGFRLALESCGAECVYSNEWD 

Secondary  
Structure 

LLLLLLLLLLLLEEEEELLLLLHHHHHHHLLLLEEEEEELLL 

Joint  
Representation  

GXLXaIapdyRdrNWHcOCRdRPMqbAbJvFRCKE17uiL5I 



 
 

32 
 

Figure 3.3: Conversion to joint representation of the beginning part of the protein 
10MH:A 

Table 3.1: Mapping to joint representation 

Amino 
Acid 

Secondary 
structure 

Joint rep 
Amino 
Acid 

Secondary 
Structure 

Joint rep. 

A H A M H E 
A E B M E F 
A L C M L g 
C H D N H h 
C E E N E i 
C L F N L j 
D H G P H k 
D E H P E l 
D L I P L m 
E H J Q H n 
E E K Q E o 
E L L Q L p 
F H M R H q 
F E N R E r 
F L O R L s 
G H P S H t 
G E Q S E u 
G L R S L v 
H H S T H w 
H E T T E x 
H L U T L y 
I H V V H z 
I E W V E 1 
I L X V L 2 
K H Y W H 3 
K E Z W E 4 
K L a W L 5 
L H b Y H 6 
L E c Y E 7 
L L d Y L 8 

3.3. Combining Smith-Waterman and Normalized Compression Distance 

Kocsor et al. (2005) worked on comparison of alignment-based and compression-

based classification and they reported that alignment-based classification outperforms 

the compression-based classification, but combining the classification made by 

combining the alignment and compression scores outperforms both. They suggest 

combining the two scores with the formula below:  
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where F(x, y) is the combined similarity score for the sequences x and y. The Smith-

Waterman score is normalized by SW(x,x) since NCD(x, y) is also normalized by C(x), 

an assumption explained in Section 3.2.10 and it is subtracted from 1 since the Smith-

Waterman alignment score is a similarity score and the NCD is a distance 

(dissimilarity) score.  

This is suggested for amino acid sequence only, so it must be extended to incorporate 

the secondary structure. In Section 3.1.1.2 it is explained how to include the secondary 

structure in the Smith-Waterman alignment score SWα(x,y) and in 3.2.9 it is explained 

how to include secondary structure in the NCD score NCDβ(x, y). These reveal a 

combined similarity score, fαβ for SWα and NCDβ which is defined as follows:  
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
−=                         (3.11) 

However, it is possible that the Smith-Waterman alignment and the normalized 

compression perform differently on sequences with different length. In other words, 

the performance of alignment-based and compression-based classifications may 

depend on sequence length and classifying sequences of a certain length with Smith-

Waterman alignment scores can be more successful than with NCD scores, whereas 

NCD performs better on sequences of other lengths.  

To inspect the consistency of the Smith-Waterman alignment scores and NCD scores, 

the counting inversion method is implemented (Kleinberg and Tardos, 2006). The 

dataset is split into 10 bins according to the length of sequences. The 5 bins with 

longer sequences (6th, 7th, 8th, 9th and 10th bins) include only a few sequences, so these 

are discarded. The 5th bin consists of 81 sequences, therefore 80 random samples from 

each of the 5 bins are chosen and their Smith-Waterman and NCD scores are 

computed.  

Similar sequences are expected to have a higher Smith-Waterman similarity score and 

lower NCD scores than sequences with less similarity. Because of that, if sequence Si 

is closer to the sequence Sj than the sequence Sk, then SW(Si, Sj) is expected to be 
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greater than SW(Si, Sk). In this case, if the NCD scores are consistent with the Smith-

Waterman scores, which means that if they are indicating the same relations between 

the sequences, NCD(Si, Sj) must be smaller than NCD(Si, Sk) or it is an inversion. So, a 

high number of inversions show that the two scoring algorithms indicate different 

relationships in the dataset. The pseudocode for counting inversions for the sequence 

Si in a data set consisting of N sequences is given in Figure 3.4. 

for i:1→N 
 order SW-scores for Si in decreasing order 

 order NCD-scores for Si according to ordered SW-scores 
end 
for i:1→N 
 for j(i+1) →N 
  if NCD(Si, Sj) > NCD(Si, Sj) 
   #inversions++ 
  end 
 end 
end 

Figure 3.4: Pseudocode for counting inversions 

There is a faster (O(NlogN)) divide-and-conquer algorithm to count inversions; 

however since our problem size is not too big, we used this straightforward O(N2) 

algorithm (Kleinberg, 2006). 

For the given bins, Smith-Waterman alignment score for amino acid sequence only 

(SWAA) and for secondary structure only (SWSS) and NCD scores for amino acid 

sequence only (NCDAA) and for secondary structure only (NCDSS) are computed. The 

reference compressor used for NCD is the LZMA compressor of the CompLearn 

Toolkit.  
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Figure 3.5: Count of inversions for SWAA - NCDAA 
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Figure 3.6: Count of inversions for SWSS - NCDSS 
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Since the counts of inversion computed for amino acid sequences and secondary 

structures do not reveal any relation (see Figure 3.5 and Figure 3.6), the counts of 

inversions are normalized by the sequence lengths.  
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Figure 3.7: Normalized count of inversions for SWAA - NCDAA 

The counts of inversions computed for amino acid sequences and for secondary 

structure show almost the same pattern (see Figure 3.5). The number of inversions 

decreases exponentially with increasing sequence length and also the standard 

deviation decreases dramatically with increasing sequence length. For an amino acid 

sequence and secondary structure of length L, the count of inversion w is related as in 

Equation (3.11) and Equation (3.12), respectively (see Figure 3.6 and Figure 3.7). 

log(w) = 4,0365 + 0,0083 . L – 0,5486 . √L            (3.11) 

log(w) = 3,8667 + 0,0093 . L  – 0,5663 . √L            (3.12) 
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Figure 3.8: Normalized count of inversions for SWSS - NCDSS 

The decrease in the number of inversions by increasing sequence length shows that the 

two metrics indicate the same structural similarities and that these structural 

similarities are to be recognized much well in longer sequences since the alignment 

score of two sequences and their compression efficiency is expected to increase with 

increasing sequence length. For short sequences, the number of inversions is high, 

which means that one of the metrics fail recognizing the structural similarity of 

sequences. The failing one is expected to be the compression score since shorter 

sequences is harder to compress. Therefore, the compression scores should affect the 

combined similarity score with respect to the sequence length. So, the combined 

similarity score fαβ is modified to include normalization with the sequence length: 

( )),(.
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where φ is the normalization factor with:  
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To manually regulate the contribution of the secondary structure, another additive 

parameter, δ, is introduced into the equation (3.12) and the following formula is 

obtained:  
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Section 3.2.12 explains another NCD score, NCD60, for which another combined 

similarity score has to be defined. Aygün et al. report that including the secondary in 

the Smith-Waterman score at level 25%, i.e. setting α to 0.25, leads to the best 

classification results (Aygün et al., 2008), therefore Smith-Waterman score computed 

with α = 0.25 is used for the computation of the combined score F60: 

),(
),(

),(
1),( 60

25.0

25.0
60 yxNCD

xxSW

yxSW
yxF 








−=                   (3.16)  

3.4. Using Smith-Waterman and NCD Scores Together 

Another method of combining Smith-Waterman and NCD is using both of them by 
setting them together to a single feature vector. In this case, the feature vector of a 
protein consists from its pairwise Smith-Waterman scores including both primary and 
secondary structures (Equation 3.1), NCD scores including both primary and 
secondary structures (Equation 3.9), and sequence length. An example for a sequence 
X for a train set consisting of N sequences is seen in Figure 3.17. The classifier 
obtained with this feature vector is called FALL. 
 

Smith-Waterman NCD 
Seq. 

length 
[SWα(X, Seq1) … SWα (X, SeqN)] [NCDβ(X, Seq1) … NCDβ(X, SeqN)] L 

Figure 3.9: Feature vector of protein sequence X 
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4. PATTERN RECOGNITION METHODS 

4.1. Classification Algorithms 

4.1.1 K-nearest neighbor classifier 

The k-nearest neighbor (kNN) classification is a supervised learning algorithm that 

classifies the test instance to the class to which the majority of the k nearest train 

instances belong (Alpaydın, 2004). “Nearest” means having the smallest distance 

computed with a certain distance measure, e.g. Euclidean or cosine. The train 

instances can be both positive and negative, so the kNN algorithm enables learning 

from negative examples, too. The parameter k is usually chosen an odd number to 

avoid the case in which the numbers of train instances belonging to two neighboring 

classes are equal and the classifier cannot decide between them (Alpaydın, 2004). 

kNN is a quite straight-forward algorithm with low computational complexity and 

surprisingly good performance (Kocsor et al., 2005).  

1-nearest-neighbor (1NN) is a special case of kNN where k is set to 1 and the test 

instance is classified to the same as class as its nearest neighbor. This is the classifier 

used in this study with the Euclidean distance measure.  

4.1.2 Thresholded nearest neighbor classifier 

The thresholded nearest neighbor classifier (tNN) is a variation of the nearest neighbor 

classifier. Considering that the negative instances in our data set are not proven 

negatives in all cases (it is possible that a protein show a specific function, but it is 

experimentally not shown yet), this algorithm deals only with positive instances. It 

does not use a distance function, instead it decides based on the preferred similarity 

score. To decide if the test instance si belongs to the class Cj, the classifier finds the 

most similar train instance, sj, which belongs to Cj and similarity score of si and sj, 

called Dij is tested on a threshold taken from the user. If Dij  ≥ threshold, then si is 

classified to the class Cj.  

In this study, the tNN is used with the Smith-Waterman alignment scores SWHEL, 

SWHE, SWHL, SWH, SWE and SWL which are explained in Section 3.1.1.2. 
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4.1.3 Support vector machines 

Support vector machines are discriminant-based supervised learning algorithms 

learning from the linear discriminant. It is assumed that the classes are linearly 

separable from each other. The linear discriminant can be used even if no assumptions 

on class densities in the data set are possible (Alpaydın, 2004).  

SVMs define hyperplanes that separate the classes in the data set. The distances 

between the hyperplanes, or the distance between the instances closest to the 

hyperplane, are called the margin (Alpaydın, 2004). SVM obtains support vectors by 

finding the optimal hyperplanes, which means by maximizing the margin.  

If the data set is not linearly separable, it can be transformed to a new space of higher 

dimension where it is linearly separable and this transformation is done by the kernel 

function (Alpaydın, 2004). The most frequently used kernel functions are polynomial, 

radial-basis and sigmoidal, whereas homogenous, exponential, cosine, minkowksi etc. 

kernel functions are also possible.  

In this study, SVM classifier is not used, because its performance on a smaller data set 

with radial-basis kernel was found to be very close to that of 1NN and running SVM 

on our data set has a high computational complexity.  

4.2. One-Against-All 

One-against-all classification is a method where the data set is divided into two 

subsets, the first subset is the class to be predicted and the second subset is made up by 

all the other classes. The aim is to correctly isolate one certain class from the others. 

The dataset used in this study is multi-labeled since an instance may belong to more 

than one class, which means that each of the 27 classes have to be predicted 

independently from all other classes. Therefore, for the prediction of each class, it is 

set to be the class to be predicted and a one-against-all classification is done.  

4.3. Classifier Evaluation Methods 

4.3.1 K-fold cross validation 

On large data sets, the train and test sets can be obtained by randomly partitioning the 

data set. However, the data sets are usually not large enough for this and each instance 

is too substantial to be isolated from training or testing.  
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K-fold cross validation is a method of partitioning the data set which enables to use all 

instances both for training and testing without damaging the evaluation of the 

classifier. The data set is be divided into k random parts, in other words, k subsets of 

randomly selected sequences are produced (Alpaydın, 2004). On each fold, (k -1) 

subsets make up the train set and the remaining subset is used for testing (Alpaydın, 

2004).  

In this study, k-fold cross validation with k=10 is used where each of the 10 subsets 

have the same class distribution as the original (not partitioned) data set.  

4.3.2 Accuracy  

To analyze the success of the classification, accuracy is a frequently used measure. It 

is based on the class confusion matrix which is a table showing how many instances 

from each class are classified to which class by the classification algorithm used. An 

example is seen in Table 4.1 where TP stands for true positive, TN for true negative, 

FP for false positive and FN for false negative. 

Table 4.1: Class confusion matrix (Alpaydın, 2004) 

 Predicted Class 
True Class Yes No 
Yes TP FN 
No FP TN 

Accuracy is defined as follows (Bradley, 1997): 

FNTNFPTP

TNTP
accuracy

+++

+
=                 (4.1) 

4.3.3 Break-even point 

Accuracy gives the performance of a classifier at a certain parameter setting. The best 

accuracy obtained by computing the break-even point, which is the point where recall 

and precision values are equal to each other (Passerini et al., 2006): 

FPTP

TP
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+
=                            (4.2) 

FNTP

TP
recall

+
=                    (4.3) 
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The break-even point analysis is used to determine the best threshold for tNN 

classifier which is the threshold at the break-even point (Passerini et al., 2006).  

4.3.4 Area under the ROC curve (AUC) 

Another evaluation technique is the receiver operating characteristics (ROC) curve 

first used in signal detection theory (Bradley, 1997). The curve which is obtained by 

drawing the hit rate versus the false alarm rate defined as follows (Alpaydın, 2004): 

FNTP

TP
ratehit

+
=_                               (4.4) 

TNFP

FP
ratealarmfalse

+
=__                           (4.5) 

Each classification algorithm includes a parameter by moving which the number of TP 

and FP can also be moved. Increasing TPs does also increase the number of FPs, so 

with increasing hit rate, false alarm rate also increases (Alpaydın, 2004) (see Figure 

4.1). For random classification, the ROC curve is expected to be the first bisector since 

hit rate is equal to the false alarm rate, namely both are 0.5. The better the 

performance of the classifier, the greater is the curvature of the ROC curve since the 

hit rate grows much faster than the false alarm rate and the curve get closer to the line 

hit rate = 1.  
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Figure 4.1: An ROC curve (Hanley and McNeil, 1982) 

The ROC curve however defines no single operating point; it does not give a single 

measure independent from decision properties, e.g. thresholds, for comparing to 

classification algorithms (Bradley, 1997). Therefore, the area under the ROC curve 

(AUC) is used which is integral of the ROC curve. The better the performance of the 

classifier, the closer is the ROC curve to the line hit rate = 1, so it encloses a greater 

area. Consequently, the AUC is proportional to the classifier performance.  

This study compares the classifier using AUC values obtained from ROC curves 

computed for each fold of each class. The AUC value for a class is then the mean of 

the AUC values of its 10 folds. For testing the tNN, the threshold is initially set to the 

minimum D
ij 

(see Section 4.3) in the test set and moved to the maximum in equally-

sized steps. Since AUC is used to determine the classification performance, no certain 

threshold is needed for tNN.  
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5. EXPERIMENTAL RESULTS 

5.1. Alignment-Based Classification  

5.1.1 Classification using amino acid sequence and isolated secondary structure 

This section shows the experimental results obtained by using the SWHEL, SWHL, 

SWHE, SWH, SWE and SWL scores explained in Section 3.1.2.2 in detail. The 

classification is made using the one-nearest-neighbor (1NN) classifier explained in 

Section 4.1.1 and the thresholded nearest neighbor (tNN) classifier explained in 

Section 4.1.2. 

5.1.1.1 1NN classification 

Function prediction results using the 1NN classification algorithm is shown in Table 

5.1. Six  classifiers using the SWHEL, SWHL, SWHE, SWH, SWE and SWL scores, called 

the HEL, HL, HE, H, E and L classifiers respectively, are produced and compared 

using the AUC values. 

For 1NN classification, the HEL classifier, namely the classifier that uses the SWHEL 

scores or in other words that uses the amino acid regions corresponding to all 

secondary structure types, has the best performance (mean AUC: 0.90) for all 

molecular functions except for class 14 (hormone activity) where all classifiers have 

very close and high performances. The mean AUC of for the HL classifier is 0.86 

which is very close to the HEL classifier and it is followed by the H (mean AUC: 

0.79) and L classifiers (mean AUC: 0.77). The E (mean AUC: 0.74) and HE classifiers 

(mean AUC: 0.64) performed generally worse than other classifiers. The higher 

performance of the classifier using the alpha-helix (H) and loop (L) regions is to be 

expected since their ratio in the data set is higher than the beta-sheet (E) regions (see 

Figure 2.12). The fact that the HL classifier performs better than classifiers using H or 

L regions alone, shows that adding L regions to H regions results in a better 

prediction. But the facts that the AUC values of the E and HE classifiers are very close 

to each other and that both are lower than the H classifier indicate that using E regions 

introduces noise and reduces the classification performance. This also explains the 
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peak at class 14 since the portions of E regions in this class is only 4,75%, ca. a half of 

the closest E regions’ portion of other classes (see Table 2.5), which makes the 

sequences in this class far less vulnerable to the noise introduced by E regions.  

Table 5.1: Mean AUC values for HEL, HE, HL, H, E and L classifiers using 1NN 

  Classifiers  
Class 

No 
GO ID HEL HL HE H E L 

1 9405 0.86±0.02 0.83±0.02 0.68±0.04 0.62±0.03 0.78±0.02 0.72±0.02 
2 9055 0.89±0.02 0.88±0.03 0.73±0.03 0.75±0.03 0.67±0.04 0.78±0.03 
3 6810 0.90±0.02 0.86±0.03 0.64±0.03 0.74±0.03 0.78±0.03 0.76±0.04 
4 16787 0.94±0.02 0.90±0.02 0.69±0.01 0.84±0.02 0.87±0.01 0.82±0.02 
5 5506 0.93±0.01 0.89±0.02 0.66±0.01 0.86±0.02 0.64±0.03 0.75±0.02 
6 166 0.92±0.01 0.89±0.02 0.52±0.01 0.83±0.01 0.79±0.02 0.77±0.03 
7 3676 0.86±0.01 0.83±0.01 0.61±0.02 0.72±0.02 0.73±0.02 0.72±0.02 
8 3700 0.88±0.02 0.85±0.02 0.70±0.02 0.81±0.02 0.52±0.04 0.65±0.02 
9 6508 0.93±0.02 0.90±0.01 0.68±0.02 0.81±0.02 0.82±0.02 0.82±0.02 
10 6412 0.88±0.01 0.83±0.02 0.58±0.03 0.74±0.02 0.67±0.03 0.75±0.03 
11 3723 0.85±0.01 0.82±0.02 0.62±0.02 0.74±0.02 0.67±0.02 0.67±0.04 
12 8270 0.91±0.01 0.89±0.01 0.65±0.03 0.73±0.02 0.67±0.02 0.82±0.02 
13 5975 0.94±0.01 0.92±0.01 0.69±0.03 0.81±0.02 0.89±0.01 0.82±0.01 
14 5179 1.00±0.00 0.99±0.00 0.97±0.01 0.97±0.01 0.95±0.02 0.99±0.00 
15 16020 0.85±0.02 0.81±0.02 0.66±0.01 0.66±0.02 0.69±0.02 0.72±0.01 
16 5515 0.87±0.01 0.86±0.01 0.55±0.02 0.71±0.01 0.67±0.02 0.73±0.02 
17 5634 0.84±0.01 0.81±0.01 0.58±0.02 0.75±0.02 0.61±0.02 0.64±0.02 
18 6355 0.88±0.01 0.85±0.01 0.66±0.02 0.77±0.01 0.59±0.03 0.67±0.02 
19 5737 0.85±0.01 0.84±0.01 0.48±0.02 0.83±0.01 0.80±0.01 0.77±0.01 
20 5622 0.87±0.01 0.84±0.01 0.59±0.01 0.76±0.01 0.64±0.01 0.70±0.02 
21 5524 0.91±0.01 0.89±0.01 0.52±0.01 0.85±0.01 0.83±0.01 0.81±0.01 
22 6118 0.93±0.01 0.90±0.01 0.66±0.01 0.80±0.01 0.71±0.01 0.83±0.01 
23 16491 0.96±0.00 0.94±0.00 0.75±0.01 0.90±0.01 0.84±0.01 0.86±0.01 
24 3677 0.88±0.01 0.83±0.01 0.56±0.02 0.76±0.01 0.63±0.02 0.72±0.01 
25 5576 0.93±0.01 0.93±0.01 0.82±0.01 0.79±0.02 0.84±0.02 0.88±0.02 
26 8152 0.95±0.01 0.93±0.01 0.58±0.02 0.92±0.01 0.89±0.01 0.85±0.01 
27 3824 0.94±0.00 0.92±0.01 0.45±0.01 0.88±0.01 0.87±0.01 0.85±0.00 

mean  0.90 0.86 0.64 0.79 0.74 0.77 

5.1.1.2 tNN classification 

Function prediction results using the tNN classification algorithm is shown in Table 

5.2. Six  classifiers using the SWHEL, SWHL, SWHE, SWH, SWE and SWL scores, called 

the HEL, HL, HE, H, E and L classifiers respectively, are produced and compared 

using the AUC values. 
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tNN has the best performance for the HEL classifier with mean AUC 0.81, followed 

by the HL classifier (mean AUC: 0.77) as by the 1NN algorithm. Class 14 is again an 

outstanding point with best performance for each classifier. Different from 1NN, the 

AUC values for the H, E and L classifiers are very close to each other, mean AUCs 

0.66, 0.67 and 0.67 respectively; but the HE classifier performed better than these 

three classifiers with mean AUC 0.73. Another distinguishing point is the very low 

AUC values for class 27 (catalytic activity) for all classifiers which is not the case by 

1NN except for the HE classifier. The noise effect of E regions stated by the 1NN 

algorithm is not seen by classification using the tNN algorithm. The performance of 

the HL classifier being better than the HE classifier is explained by the L portion in 

the data set which is greater than the E portion. Generally, the AUC values obtained 

using the tNN algorithm is lower than the AUC values obtained using the 1NN 

algorithm. Since tNN does not use the negative examples, its lower prediction 

performance is not surprising as learning from negative examples enhances the 

prediction performance (Liao and Noble, 2003). 

5.1.2 Classification using amino acid sequence and secondary structure on 
different levels 

This section shows the experimental results obtained by using the SWα scores which is 

defined with Equation (3.1) in Section 3.1.2.2. The classification is made using the 

one-nearest-neighbor (1NN) classifier explained in Section 4.1.1. To include the 

secondary structure in different levels, α is set to 0, 0.25, 0.5, 0.75 and 1.0 and the 

classifiers obtained are called SW0, SW25, SW50, SW75 and SW100 classifiers 

respectively. The classification results are shown in Table 5.3 and Figure 5.1. 

Aygün et al. (2008) experimented using the same methodology on a different data set 

and found that all classifiers perform very close to each other whereas the SW25 

classifier outperforms the other classifiers just slightly. Experimental results for 

classifiers SW0, SW25, SW50, SW75 and SW100 are consistent with the results 

obtained by Aygün et al. (2008) since the best mean AUC value (0.92) is obtained by 

the SW25 classifier. This is followed by the SW50 and SW0 classifiers with the mean 

AUCs 0.91 and 0.90 respectively. The mean AUC value for SW75 is 0.88 and the 

mean AUC value for SW100 is 0.84 which is the worst performance. For all 

classifiers, class 14 is an outlier with an AUC of nearly 1.00.  
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Table 5.2: Mean AUC values for HEL, HE, HL, H, E and L classifiers using tNN 

  Classifiers 
Class 

No 
GO ID HEL HE HL H E L 

1 9405 0.82±0.02 0.76±0.03 0.79±0.02 0.74±0.02 0.65±0.02 0.72±0.03 
2 9055 0.84±0.01 0.78±0.02 0.81±0.01 0.68±0.02 0.72±0.01 0.72±0.01 
3 6810 0.78±0.04 0.68±0.04 0.73±0.04 0.66±0.03 0.61±0.03 0.62±0.05 
4 16787 0.84±0.02 0.74±0.01 0.78±0.02 0.61±0.01 0.70±0.03 0.72±0.02 
5 5506 0.85±0.02 0.81±0.02 0.82±0.03 0.72±0.02 0.74±0.02 0.70±0.03 
6 166 0.79±0.03 0.70±0.03 0.74±0.03 0.61±0.03 0.64±0.03 0.58±0.02 
7 3676 0.77±0.03 0.68±0.03 0.73±0.03 0.65±0.03 0.60±0.04 0.62±0.03 
8 3700 0.88±0.02 0.81±0.02 0.86±0.02 0.75±0.02 0.72±0.02 0.75±0.02 
9 6508 0.74±0.02 0.61±0.02 0.68±0.03 0.58±0.02 0.54±0.02 0.54±0.03 

10 6412 0.84±0.02 0.72±0.01 0.78±0.02 0.65±0.01 0.67±0.02 0.65±0.02 
11 3723 0.82±0.02 0.76±0.02 0.78±0.02 0.69±0.02 0.68±0.02 0.68±0.02 
12 8270 0.81±0.03 0.74±0.03 0.79±0.03 0.67±0.02 0.69±0.02 0.72±0.03 
13 5975 0.75±0.02 0.60±0.02 0.66±0.03 0.53±0.02 0.56±0.01 0.52±0.02 
14 5179 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.01 0.97±0.00 0.99±0.01 
15 16020 0.74±0.03 0.69±0.03 0.70±0.03 0.70±0.02 0.62±0.02 0.60±0.03 
16 5515 0.80±0.02 0.72±0.02 0.78±0.02 0.68±0.02 0.67±0.02 0.67±0.02 
17 5634 0.79±0.02 0.76±0.02 0.77±0.02 0.71±0.02 0.69±0.02 0.69±0.02 
18 6355 0.87±0.01 0.81±0.01 0.84±0.01 0.74±0.02 0.72±0.02 0.75±0.01 
19 5737 0.67±0.02 0.56±0.03 0.63±0.02 0.48±0.02 0.54±0.02 0.54±0.02 
20 5622 0.83±0.01 0.77±0.01 0.79±0.01 0.68±0.01 0.71±0.02 0.66±0.01 
21 5524 0.77±0.02 0.64±0.02 0.72±0.02 0.54±0.01 0.56±0.02 0.57±0.02 
22 6118 0.81±0.01 0.71±0.01 0.75±0.01 0.60±0.01 0.63±0.01 0.63±0.01 
23 16491 0.88±0.02 0.78±0.02 0.82±0.02 0.61±0.02 0.66±0.02 0.68±0.02 
24 3677 0.77±0.02 0.69±0.02 0.73±0.02 0.62±0.02 0.64±0.02 0.64±0.02 
25 5576 0.93±0.01 0.90±0.01 0.92±0.01 0.88±0.01 0.85±0.01 0.88±0.01 
26 8152 0.84±0.01 0.73±0.01 0.79±0.02 0.61±0.01 0.72±0.02 0.69±0.02 
27 3824 0.74±0.01 0.60±0.01 0.68±0.01 0.48±0.01 0.51±0.01 0.55±0.01 

mean  0.81 0.73 0.77 0.66 0.67 0.67 
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Table 5.3: Mean AUC values for SW0, SW25, SW50, SW75 and SW100 classifiers 
using 1NN 

  Classifiers 
Class 

No 
GO ID SW0 SW25 SW50 SW75 SW100 

1 9405 0.86±0.02 0.89±0.01 0.88±0.02 0.82±0.02 0.76±0.03 
2 9055 0.89±0.02 0.90±0.02 0.91±0.02 0.88±0.02 0.86±0.03 
3 6810 0.90±0.02 0.90±0.02 0.90±0.02 0.85±0.03 0.84±0.03 
4 16787 0.94±0.02 0.95±0.01 0.96±0.01 0.96±0.01 0.94±0.01 
5 5506 0.93±0.01 0.94±0.01 0.94±0.01 0.91±0.01 0.88±0.01 
6 166 0.92±0.01 0.94±0.01 0.94±0.01 0.92±0.01 0.90±0.01 
7 3676 0.86±0.01 0.91±0.01 0.90±0.01 0.84±0.01 0.78±0.01 
8 3700 0.88±0.02 0.89±0.01 0.88±0.01 0.83±0.02 0.77±0.02 
9 6508 0.93±0.02 0.94±0.01 0.93±0.01 0.90±0.01 0.86±0.01 
10 6412 0.88±0.01 0.90±0.02 0.88±0.02 0.81±0.02 0.72±0.03 
11 3723 0.85±0.01 0.87±0.01 0.88±0.01 0.82±0.01 0.80±0.01 
12 8270 0.91±0.01 0.93±0.01 0.91±0.01 0.85±0.02 0.79±0.02 
13 5975 0.94±0.01 0.95±0.01 0.95±0.01 0.94±0.01 0.92±0.01 
14 5179 1.00±0.00 1.00±0.00 0.99±0.00 0.99±0.01 0.97±0.01 
15 16020 0.85±0.02 0.87±0.01 0.86±0.02 0.82±0.02 0.77±0.02 
16 5515 0.87±0.01 0.89±0.01 0.88±0.02 0.82±0.01 0.77±0.02 
17 5634 0.84±0.01 0.86±0.01 0.86±0.01 0.81±0.01 0.77±0.02 
18 6355 0.88±0.01 0.89±0.01 0.90±0.01 0.85±0.01 0.80±0.01 
19 5737 0.85±0.01 0.88±0.01 0.88±0.01 0.87±0.01 0.86±0.01 
20 5622 0.87±0.01 0.89±0.01 0.88±0.01 0.82±0.01 0.76±0.01 
21 5524 0.91±0.01 0.93±0.01 0.92±0.01 0.90±0.01 0.88±0.01 
22 6118 0.93±0.01 0.94±0.01 0.94±0.01 0.90±0.01 0.86±0.01 
23 16491 0.96±0.00 0.97±0.01 0.98±0.01 0.96±0.01 0.94±0.01 
24 3677 0.88±0.01 0.90±0.01 0.89±0.01 0.83±0.01 0.78±0.01 
25 5576 0.93±0.01 0.95±0.01 0.93±0.01 0.90±0.01 0.87±0.02 
26 8152 0.95±0.01 0.96±0.01 0.97±0.01 0.97±0.00 0.96±0.00 
27 3824 0.94±0.00 0.95±0.01 0.96±0.00 0.94±0.01 0.92±0.01 

mean  0.90 0.92 0.91 0.88 0.84 
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Figure 5.1: AUC values for SW0, SW25, SW50, SW75 and SW100 
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5.2. Compression-Based Classification 

5.2.1 Classification using amino acid sequence and secondary structure on 
different levels 

This section shows the experimental results obtained by using the NCDβ scores which 

is defined with Equation (3.9) in Section 3.2.1.1. The classification is made using the 

one-nearest-neighbor (1NN) classifier explained in Section 4.1.1. To include the 

secondary structure in different levels, β is set to 0, 0.25, 0.5, 0.75 and 1.0 and the 

classifiers obtained are called NCD0, NCD25, NCD50, NCD75 and NCD100 

classifiers respectively. The classification results are shown in Table 5.4 and Figure 

5.2. 

Table 5.4: Mean AUC values for NCD0, NCD25, NCD50, NCD75 and NCD100 
classifiers using 1NN 

Class 
No 

GO ID NCD0 NCD25 NCD50 NCD75 NCD100 

1 9405 0.76±0.03 0.74±0.02 0.71±0.03 0.70±0.04 0.69±0.04 
2 9055 0.64±0.02 0.65±0.03 0.69±0.03 0.68±0.02 0.67±0.01 
3 6810 0.63±0.02 0.65±0.02 0.67±0.03 0.62±0.03 0.62±0.02 
4 16787 0.68±0.02 0.74±0.02 0.80±0.01 0.76±0.02 0.76±0.02 
5 5506 0.67±0.02 0.73±0.13 0.70±0.03 0.72±0.03 0.73±0.02 
6 166 0.63±0.03 0.68±0.02 0.74±0.02 0.74±0.01 0.73±0.01 
7 3676 0.61±0.03 0.61±0.02 0.65±0.02 0.65±0.01 0.65±0.02 
8 3700 0.63±0.02 0.67±0.03 0.74±0.01 0.65±0.02 0.65±0.02 
9 6508 0.66±0.02 0.71±0.02 0.72±0.03 0.71±0.03 0.68±0.03 
10 6412 0.65±0.03 0.65±0.03 0.69±0.03 0.70±0.03 0.67±0.03 
11 3723 0.57±0.02 0.57±0.02 0.58±0.02 0.58±0.02 0.57±0.02 
12 8270 0.62±0.02 0.66±0.02 0.68±0.02 0.66±0.02 0.66±0.03 
13 5975 0.73±0.02 0.89±0.01 0.78±0.02 0.77±0.02 0.77±0.01 
14 5179 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 
15 16020 0.56±0.02 0.62±0.02 0.66±0.02 0.64±0.02 0.61±0.01 
16 5515 0.58±0.02 0.60±0.02 0.62±0.02 0.63±0.02 0.61±0.02 
17 5634 0.57±0.02 0.64±0.02 0.63±0.03 0.66±0.02 0.65±0.02 
18 6355 0.62±0.02 0.66±0.01 0.65±0.02 0.66±0.02 0.66±0.01 
19 5737 0.62±0.02 0.68±0.02 0.69±0.02 0.71±0.02 0.68±0.02 
20 5622 0.56±0.02 0.60±0.01 0.61±0.01 0.62±0.01 0.60±0.02 
21 5524 0.66±0.01 0.69±0.01 0.73±0.01 0.72±0.01 0.72±0.01 
22 6118 0.61±0.00 0.66±0.01 0.69±0.01 0.69±0.01 0.68±0.01 
23 16491 0.68±0.01 0.75±0.01 0.80±0.01 0.79±0.01 0.77±0.01 
24 3677 0.57±0.01 0.61±0.02 0.61±0.02 0.60±0.02 0.59±0.01 
25 5576 0.85±0.02 0.82±0.02 0.81±0.02 0.80±0.02 0.82±0.02 
26 8152 0.70±0.01 0.77±0.01 0.82±0.01 0.82±0.01 0.82±0.01 
27 3824 0.71±0.01 0.75±0.00 0.78±0.01 0.78±0.01 0.78±0.01 

mean  0.66 0.69 0.71 0.71 0.70 
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Figure 5.2: Mean AUC values for NCD0, NCD25, NCD50, NCD75 and NCD100 
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The best mean AUC value, which is 0.71, is obtained for NCD50 and NCD75 where 

β=0.5 and β=0.75 respectively. This followed by NCD100 with a mean AUC of 0.70 

and by NCD25 with a mean AUC of 0.69. The worst performance (mean AUC: 0.66) 

is obtained for NCD00, the classifier using NCD scores obtained only from amino 

acid sequence. Class 14 is again an outlier with almost AUC = 1.00. 

5.2.2 Classification using the joint representation  

This section shows the experimental results obtained by using the NCD60 scores which 

is explained in Section 3.2.1.1 and the 1NN classifier explained in Section 4.1.1. The 

classification results are shown in Table 5.5. The mean AUC obtained by using the 

NCD60 scores is 0.69. Class 14 is again an outlier with almost AUC = 0.99. 

Table 5.5: Mean AUC values using the NCD60 scores and the 1NN algorithm 

Class 
No 

GO ID NCD60 

1 9405 0.72 ± 0.04 
2 9055 0.66 ± 0.03 
3 6810 0.66 ± 0.03 
4 16787 0.71 ± 0.02 
5 5506 0.73 ± 0.03 
6 166 0.71 ± 0.02 
7 3676 0.59 ± 0.03 
8 3700 0.70 ± 0.02 
9 6508 0.67 ± 0.02 
10 6412 0.60 ± 0.02 
11 3723 0.59 ± 0.02 
12 8270 0.61 ± 0.04 
13 5975 0.78 ± 0.02 
14 5179 0.99 ± 0.00 
15 16020 0.61 ± 0.01 
16 5515 0.61 ± 0.02 
17 5634 0.65 ± 0.02 
18 6355 0.68 ± 0.02 
19 5737 0.67 ± 0.02 
20 5622 0.58 ± 0.01 
21 5524 0.69 ± 0.02 
22 6118 0.67 ± 0.02 
23 16491 0.75 ± 0.01 
24 3677 0.61 ± 0.01 
25 5576 0.83 ± 0.01 
26 8152 0.75 ± 0.01 
27 3824 0.73 ± 0.01 

mean  0.69 
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5.3. Classification Using the Combined Similarity Metric 

5.3.1 Classification using amino acid sequence and secondary structure on 

different levels 

This section shows the experimental results obtained by using the Fαβ scores which is 

defined with Equation (3.13) in Section 3.3. The classification is made using the one-

nearest-neighbor (1NN) classifier explained in Section 4.1.1. The results obtained in 

Section 5.1.2 show that alignment-based classification had the best performance 

mostly at α = 0.25, and for some classes at α = 0 and α = 0.5 (see Figure 5.1). Section 

5.2.1 shows that compression-based classification performed best at β = 0.5 and β = 

0.75 and for some particular classes at β = 0 and β = 0.75 (see Figure 5.2). Therefore, 

Fαβ is tested for α = 0, 0.25, 0.5, 0.75 and β = 0, 0.25, 0.5, 0.75 and 1.0. The classifiers 

obtained are called as in Table 5.6. The classification results are shown in Table 5.7. 

Table 5.6: Classifier names for varying α and β values 

 Β 
α 0 0.25 0.5 0.75 1.0 
0 F0_0 F0_25 F0_50 F0_75 F0_100 

0.25 F25_0 F25_25 F25_50 F25_75 F25_100 
0.5 F50_0 F50_25 F50_50 F50_75 F50_100 
0.75 F75_0 F75_25 F75_50 F75_75 F75_100 

At any value of α, worst performance is obtained at β = 0 and the mean AUC values 

obtained at any β>0 are very close to each other. Ignoring the results at β = 0, the 

mean AUC value at α = 0 and α = 0.25 is 0.71 and the mean AUC value at α = 0.5 is 

0.72. Class 14 is again an outlier with the mean AUC very close to 1.00. 

Classification made using the Fδ scores defined in Equation (3.15) in Section 3.3. The 

classification is made using the one-nearest-neighbor (1NN) classifier explained in 

Section 4.1.1. The parameter δ which controls the contribution of secondary structure 

is changed within the interval [0.0, 4.00] and α and β are set to 0.25 and 0.5, 

respectively, based on the results in Sections 5.1.2 and 5.2.1. The classification results 

are shown in Table 5.8. 
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Table 5.7: Mean AUC values using the Fαβ scores and the 1NN algorithm 

Class 
No 

F0_0 F0_25 F0_50 F0_75 F0_100 

1 0.71  ±  0.02 0.72  ±  0.02 0.71  ±  0.03 0.71  ±  0.03 0.72  ±  0.04 
2 0.71  ±  0.03 0.74  ±  0.03 0.75  ±  0.02 0.72  ±  0.02 0.72  ±  0.02 
3 0.69 ± 0.03 0.71 ± 0.02 0.67 ± 0.02 0.66 ± 0.03 0.68 ± 0.03 
4 0.69 ± 0.02 0.72 ± 0.02 0.76 ± 0.02 0.77 ± 0.02 0.78 ± 0.02 
5 0.72 ± 0.03 0.74 ± 0.03 0.73 ± 0.04 0.72 ± 0.03 0.72 ± 0.03 
6 0.72 ± 0.02 0.74 ± 0.02 0.75 ± 0.02 0.76 ± 0.02 0.75 ± 0.02 
7 0.60 ± 0.02 0.59 ± 0.02 0.59 ± 0.02 0.60 ± 0.02 0.61 ± 0.02 
8 0.65 ± 0.02 0.69 ± 0.03 0.70 ± 0.03 0.68 ± 0.03 0.68 ± 0.03 
9 0.70 ± 0.01 0.72 ± 0.02 0.73 ± 0.02 0.74 ± 0.02 0.74 ± 0.02 
10 0.64 ± 0.03 0.61 ± 0.03 0.59 ± 0.03 0.58 ± 0.04 0.57 ± 0.04 
11 0.58 ± 0.03 0.58 ± 0.02 0.60 ± 0.02 0.59 ± 0.02 0.57 ± 0.02 
12 0.66 ± 0.03 0.66 ± 0.03 0.68 ± 0.03 0.69 ± 0.03 0.68 ± 0.03 
13 0.77 ± 0.02 0.78 ± 0.01 0.79 ± 0.01 0.79 ± 0.02 0.79 ± 0.02 
14 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 
15 0.59 ± 0.01 0.62 ± 0.01 0.62 ± 0.02 0.62 ± 0.02 0.61 ± 0.01 
16 0.62 ± 0.02 0.59 ± 0.02 0.56 ± 0.02 0.58 ± 0.02 0.59 ± 0.02 
17 0.62 ± 0.02 0.65 ± 0.02 0.66 ± 0.02 0.67 ± 0.02 0.66 ± 0.02 
18 0.68 ± 0.02 0.69 ± 0.01 0.68 ± 0.01 0.65 ± 0.01 0.64 ± 0.01 
19 0.63 ± 0.02 0.65 ± 0.02 0.69 ± 0.02 0.70 ± 0.02 0.69 ± 0.02 
20 0.61 ± 0.02 0.62 ± 0.01 0.63 ± 0.02 0.61 ± 0.02 0.60 ± 0.02 
21 0.71 ± 0.02 0.72 ± 0.02 0.75 ± 0.01 0.74 ± 0.01 0.74 ± 0.01 
22 0.66 ± 0.01 0.68 ± 0.01 0.70 ± 0.02 0.67 ± 0.01 0.67 ± 0.01 
23 0.76 ± 0.01 0.80 ± 0.01 0.81 ± 0.01 0.80 ± 0.01 0.80 ± 0.01 
24 0.63 ± 0.01 0.63 ± 0.01 0.61 ± 0.02 0.60 ± 0.02 0.61 ± 0.01 
25 0.87 ± 0.01 0.88 ± 0.01 0.84 ± 0.01 0.82 ± 0.02 0.81 ± 0.02 
26 0.76 ± 0.01 0.80 ± 0.01 0.83 ± 0.01 0.84 ± 0.01 0.82 ± 0.01 
27 0.78 ± 0.01 0.81 ± 0.01 0.82 ± 0.01 0.82 ± 0.01 0.83 ± 0.01 

mean 0.69 0.71  0.71 0.71 0.71 
Class 

No 
F25_0 F25_25 F25_50 F25_75 F25_100 

1 0.71 ± 0.02 0.71 ± 0.02 0.70 ± 0.03 0.71 ± 0.03 0.72 ± 0.04 
2 0.71 ± 0.03 0.74 ± 0.03 0.75 ± 0.02 0.72 ± 0.02 0.72 ± 0.02 
3 0.68 ± 0.02 0.69 ± 0.02 0.66 ± 0.02 0.66 ± 0.03 0.68 ± 0.03 
4 0.70 ± 0.02 0.73 ± 0.02 0.77 ± 0.02 0.78 ± 0.02 0.79 ± 0.02 
5 0.72 ± 0.03 0.74 ± 0.03 0.73 ± 0.04 0.72 ± 0.03 0.72 ± 0.03 
6 0.72 ± 0.02 0.74 ± 0.02 0.76 ± 0.02 0.77 ± 0.02 0.76 ± 0.02 
7 0.61 ± 0.02 0.60 ± 0.02 0.60 ± 0.02 0.61 ± 0.02 0.61 ± 0.02 
8 0.67 ± 0.01 0.70 ± 0.03 0.70 ± 0.03 0.69 ± 0.03 0.68 ± 0.03 
9 0.70 ± 0.03 0.73 ± 0.02 0.74 ± 0.02 0.74 ± 0.02 0.74 ± 0.02 
10 0.63 ± 0.02 0.60 ± 0.04 0.58 ± 0.04 0.57 ± 0.04 0.57 ± 0.04 
11 0.58 ± 0.03 0.58 ± 0.01 0.60 ± 0.02 0.58 ± 0.02 0.57 ± 0.02 
12 0.65 ± 0.02 0.65 ± 0.03 0.68 ± 0.03 0.68 ± 0.03 0.68 ± 0.03 
13 0.78 ± 0.01 0.78 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 
14 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 
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15 0.60 ± 0.02 0.63 ± 0.02 0.63 ± 0.02 0.63 ± 0.02 0.62 ± 0.02 
16 0.60 ± 0.02 0.58 ± 0.02 0.56 ± 0.02 0.58 ± 0.02 0.58 ± 0.02 
17 0.62 ± 0.02 0.64 ± 0.02 0.64 ± 0.02 0.66 ± 0.02 0.66 ± 0.02 
18 0.67 ± 0.02 0.67 ± 0.01 0.67 ± 0.01 0.65 ± 0.01 0.64 ± 0.01 
19 0.64 ± 0.01 0.66 ± 0.02 0.70 ± 0.02 0.71 ± 0.02 0.70 ± 0.02 
20 0.59 ± 0.02 0.60 ± 0.01 0.62 ± 0.02 0.61 ± 0.02 0.60 ± 0.02 
21 0.72 ± 0.02 0.73 ± 0.02 0.75 ± 0.01 0.75 ± 0.01 0.75 ± 0.01 
22 0.66 ± 0.01 0.67 ± 0.01 0.70 ± 0.02 0.67 ± 0.02 0.67 ± 0.02 
23 0.76 ± 0.01 0.80 ± 0.01 0.82 ± 0.01 0.80 ± 0.01 0.80 ± 0.01 
24 0.62 ± 0.01 0.62 ± 0.01 0.60 ± 0.02 0.60 ± 0.02 0.61 ± 0.02 
25 0.86 ± 0.01 0.86 ± 0.02 0.83 ± 0.01 0.82 ± 0.02 0.81 ± 0.02 
26 0.77 ± 0.01 0.81 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.83 ± 0.01 
27 0.79 ± 0.01 0.81 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 

mean 0.69 0.71 0.71 0.71 0.71 
Class 

No 
F50_0 F50_25 F50_50 F50_75 F50_100 

1 0.71 ± 0.02 0.70 ± 0.02 0.70 ± 0.02 0.71 ± 0.03 0.72 ± 0.04 
2 0.71 ± 0.03 0.74 ± 0.03 0.76 ± 0.03 0.73 ± 0.02 0.73 ± 0.02 
3 0.68 ± 0.02 0.68 ± 0.03 0.66 ± 0.02 0.67 ± 0.03 0.69 ± 0.03 
4 0.73 ± 0.02 0.76 ± 0.02 0.78 ± 0.02 0.79 ± 0.02 0.79 ± 0.02 
5 0.73 ± 0.03 0.75 ± 0.03 0.74 ± 0.03 0.72 ± 0.03 0.72 ± 0.03 
6 0.75 ± 0.02 0.76 ± 0.02 0.77 ± 0.02 0.78 ± 0.02 0.77 ± 0.02 
7 0.64 ± 0.02 0.63 ± 0.03 0.62 ± 0.02 0.63 ± 0.02 0.63 ± 0.02 
8 0.70 ± 0.02 0.71 ± 0.02 0.72 ± 0.02 0.70 ± 0.02 0.69 ± 0.03 
9 0.72 ± 0.02 0.74 ± 0.02 0.75 ± 0.02 0.75 ± 0.02 0.75 ± 0.02 
10 0.60 ± 0.04 0.61 ± 0.04 0.60 ± 0.04 0.58 ± 0.04 0.58 ± 0.04 
11 0.56 ± 0.02 0.58 ± 0.01 0.60 ± 0.01 0.60 ± 0.01 0.59 ± 0.02 
12 0.66 ± 0.03 0.66 ± 0.03 0.69 ± 0.03 0.69 ± 0.03 0.69 ± 0.03 
13 0.79 ± 0.02 0.79 ± 0.02 0.80 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 
14 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 
15 0.60 ± 0.02 0.62 ± 0.02 0.62 ± 0.02 0.63 ± 0.02 0.63 ± 0.02 
16 0.61 ± 0.02 0.60 ± 0.02 0.57 ± 0.02 0.59 ± 0.02 0.59 ± 0.03 
17 0.64 ± 0.02 0.66 ± 0.02 0.65 ± 0.02 0.66 ± 0.02 0.66 ± 0.02 
18 0.69 ± 0.01 0.68 ± 0.01 0.68 ± 0.01 0.66 ± 0.01 0.65 ± 0.01 
19 0.67 ± 0.02 0.68 ± 0.02 0.71 ± 0.02 0.72 ± 0.02 0.70 ± 0.02 
20 0.58 ± 0.02 0.60 ± 0.01 0.62 ± 0.02 0.61 ± 0.02 0.60 ± 0.02 
21 0.73 ± 0.02 0.74 ± 0.02 0.76 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 
22 0.68 ± 0.02 0.69 ± 0.02 0.71 ± 0.02 0.68 ± 0.02 0.68 ± 0.01 
23 0.79 ± 0.01 0.81 ± 0.01 0.83 ± 0.01 0.82 ± 0.01 0.81 ± 0.01 
24 0.64 ± 0.01 0.63 ± 0.01 0.61 ± 0.02 0.62 ± 0.02 0.63 ± 0.02 
25 0.85 ± 0.01 0.86 ± 0.02 0.84 ± 0.01 0.82 ± 0.02 0.82 ± 0.02 
26 0.80 ± 0.01 0.83 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.84 ± 0.01 
27 0.81 ± 0.01 0.82 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 

mean 0.71 0.72 0.72 0.72 0.72 
 



 
 

56 
 

The mean AUC values obtained with δ regulation start with 0.76 at δ = 0.25 and 

increase up to 0.78 at δ = 2, then it starts decreasing for δ > 2. Class 14 is again an 

outlier for all values of δ with the mean AUC very close to 1.00. 

Table 5.8: Mean AUC values using the Fδ scores and the 1NN algorithm 

Class 
No 

GO 
ID 

δ 

  0.25 0.50 0.75 2.00 3.00 4.00 
1 9405 0.80 ± 0.02 0.80 ± 0.02 0.80 ± 0.02 0.82 ± 0.02 0.80 ± 0.02 0.80 ± 0.02 
2 9055 0.77 ± 0.02 0.77 ± 0.02 0.77 ± 0.02 0.76 ± 0.03 0.76 ± 0.02 0.76 ± 0.02 
3 6810 0.73 ± 0.04 0.73 ± 0.03 0.73 ± 0.03 0.75 ± 0.03 0.74 ± 0.02 0.73 ± 0.02 
4 16787 0.82 ± 0.02 0.83 ± 0.02 0.83 ± 0.02 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 
5 5506 0.75 ± 0.02 0.76 ± 0.02 0.77 ± 0.02 0.80 ± 0.03 0.78 ± 0.02 0.78 ± 0.02 
6 166 0.81 ± 0.01 0.81 ± 0.01 0.81 ± 0.02 0.80 ± 0.02 0.81 ± 0.01 0.81 ± 0.01 
7 3676 0.67 ± 0.02 0.67 ± 0.02 0.69 ± 0.02 0.70 ± 0.02 0.69 ± 0.02 0.69 ± 0.02 
8 3700 0.72 ± 0.02 0.71 ± 0.02 0.72 ± 0.02 0.76 ± 0.02 0.72 ± 0.02 0.72 ± 0.02 
9 6508 0.77 ± 0.02 0.77 ± 0.01 0.78 ± 0.02 0.79 ± 0.02 0.78 ± 0.02 0.78 ± 0.02 

10 6412 0.69 ± 0.04 0.76 ± 0.04 0.77 ± 0.04 0.76 ± 0.02 0.77 ± 0.03 0.77 ± 0.03 
11 3723 0.63 ± 0.02 0.66 ± 0.02 0.67 ± 0.02 0.67 ± 0.01 0.67 ± 0.02 0.66 ± 0.02 
12 8270 0.75 ± 0.03 0.77 ± 0.03 0.78 ± 0.03 0.77 ± 0.02 0.77 ± 0.03 0.77 ± 0.03 
13 5975 0.83 ± 0.02 0.85 ± 0.02 0.85 ± 0.02 0.85 ± 0.01 0.84 ± 0.02 0.84 ± 0.02 
14 5179 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.001 1.00 ± 0.00 1.00 ± 0.00 
15 16020 0.69 ± 0.02 0.70 ± 0.01 0.72 ± 0.01 0.73 ± 0.03 0.74 ± 0.02 0.74 ± 0.02 
16 5515 0.65 ± 0.02 0.66 ± 0.02 0.67 ± 0.03 0.69 ± 0.02 0.68 ± 0.02 0.68 ± 0.02 
17 5634 0.69 ± 0.02 0.68 ± 0.02 0.68 ± 0.03 0.69 ± 0.01 0.67 ± 0.03 0.67 ± 0.03 
18 6355 0.72 ± 0.01 0.72 ± 0.01 0.71 ± 0.01 0.75 ± 0.02 0.72 ± 0.02 0.72 ± 0.02 
19 5737 0.75 ± 0.02 0.75 ± 0.01 0.76 ± 0.02 0.75 ± 0.01 0.75 ± 0.02 0.75 ± 0.02 
20 5622 0.68 ± 0.02 0.70 ± 0.02 0.70 ± 0.02 0.68 ± 0.01 0.70 ± 0.02 0.70 ± 0.02 
21 5524 0.79 ± 0.01 0.79 ± 0.01 0.80 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 
22 6118 0.76 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.80 ± 0.01 0.79 ± 0.02 0.79 ± 0.02 
23 16491 0.86 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.85 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 
24 3677 0.66 ± 0.02 0.67 ± 0.02 0.68 ± 0.01 0.70 ± 0.01 0.68 ± 0.02 0.68 ± 0.02 
25 5576 0.86 ± 0.01 0.86 ± 0.02 0.86 ± 0.02 0.88 ± 0.01 0.87 ± 0.02 0.86 ± 0.02 
26 8152 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 
27 3824 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 

mean  0.76 0.77 0.77 0.78 0.77 0.77 
 

5.3.2 Classification using the joint representation  

This section shows the experimental results obtained by using the F60 scores which is 

defined with Equation (3.16) in Section 3.3. The classification is made using the one-

nearest-neighbor (1NN) classifier explained in Section 4.1.1. The mean AUC value 

obtained is 0.71 (see Table 5.9) which is 0.20 higher than the mean AUC values 

obtained with classifying done with NCD60 scores, joint representation not including 
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the Smith-Waterman alignment scores (see Table 5.5). Class 14 is again an outlier 

with the mean AUC very close to 1.00. 

Table 5.9: Mean AUC values using the F60 scores and the 1NN algorithm 

Class 
No 

GO ID F60 

1 9405 0.72 ± 0.02  
2 9055 0.70 ± 0.03 
3 6810 0.66 ± 0.02 
4 16787 0.73 ± 0.03 
5 5506 0.74 ± 0.03 
6 166 0.75 ± 0.03 
7 3676 0.64 ± 0.03 
8 3700 0.71 ± 0.02 
9 6508 0.74 ± 0.02 
10 6412 0.58 ± 0.03 
11 3723 0.58 ± 0.01 
12 8270 0.68 ± 0.04 
13 5975 0.79 ± 0.02 
14 5179 0.99 ± 0.00 
15 16020 0.60 ± 0.02 
16 5515 0.56 ± 0.02 
17 5634 0.64 ± 0.03 
18 6355 0.67 ± 0.01 
19 5737 0.68 ± 0.02 
20 5622 0.58 ± 0.02 
21 5524 0.77 ± 0.01 
22 6118 0.67 ± 0.02 
23 16491 0.80 ± 0.01 
24 3677 0.64 ± 0.01 
25 5576 0.86 ± 0.02 
26 8152 0.81 ± 0.01 
27 3824 0.80 ± 0.00 

mean  0.71 

5.3.3 Classification using all features 

This section shows the experimental results obtained by the FALL classifiers described 

with Figure 3.7 in Section 3.4. The classification is made using the one-nearest-

neighbor (1NN) classifier explained in Section 4.1.1. The mean AUC value obtained is 

0.65 (see Table 5.10). Class 14 is again an outlier for all values of δ with the mean 

AUC very close to 1.00. 
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Table 5.10: Mean AUC values using the FALL feature vector and the 1NN algorithm 

Class 
No 

GO ID FALL 

1 9405 0.70 ± 0.03 
2 9055 0.71 ± 0.02 
3 6810 0.61 ± 0.02 
4 16787 0.65 ± 0.02 
5 5506 0.60 ± 0.03 
6 166 0.64 ± 0.03 
7 3676 0.67 ± 0.01 
8 3700 0.53 ± 0.02 
9 6508 0.60 ± 0.02 
10 6412 0.59 ± 0.03 
11 3723 0.56 ± 0.02 
12 8270 0.71 ± 0.02 
13 5975 0.72 ± 0.02 
14 5179 0.96 ± 0.01 
15 16020 0.63 ± 0.03 
16 5515 0.62 ± 0.03 
17 5634 0.57 ± 0.01 
18 6355 0.58 ± 0.02 
19 5737 0.64 ± 0.01 
20 5622 0.57 ± 0.02 
21 5524 0.68 ± 0.01 
22 6118 0.72 ± 0.01 
23 16491 0.80 ± 0.01 
24 3677 0.55 ± 0.01 
25 5576 0.82 ± 0.02 
26 8152 0.68 ± 0.02 
27 3824 0.57 ± 0.01 

mean  0.65 
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6. CONCLUSIONS AND FUTURE WORK 

In this study, it is found out that using the whole amino acid sequences, as opposed to 

portions belonging to different secondary structure elements, results in the best 

function prediction performance. Using HL regions together results in almost as good 

performance as the whole sequence. On the other hand, E regions are the least 

significant in function prediction. When learning only from positive examples (tNN), 

HE follows the performance of HL and the distribution of H, E and L does not play a 

significant role. However, using kNN algorithm which takes into account both positive 

and negative examples produces better prediction results. 

Figure 6.1 compares the AUC values for the classification SWAA and NCDAA using 

the 1NN classification algorithm. As expected, the alignment-based classification has 

a better performance than the compression-based classification when using amino acid 

sequence only.  
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Figure 6.1: Comparison of AUC values of SWAA and NCDAA using 1NN 
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Including the secondary structure to both Smith-Waterman and NCD scores leads to a 

better classification performance. The best performance for alignment-based 

classification is obtained at α = 0.25 and for compression-based classification at β = 

0.50 (see Figure 6.2).  
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Figure 6.2: α and β values at which best classification performance is obtained 

Whereas Smith-Waterman-only classification performs best at α = 0.25, the combined 

metric has the best performance with the mean AUC 0.72 at α = 0.50. For the 

combined metric, the results obtained at β = 0.25, 0.5 and 0.75 are very close and all 

three of them are higher than the results obtained at β = 0 (see Table 5.7). So, it can be 

concluded that classifiers using the combined metric that incorporates the secondary 

structure in the Smith-Waterman scores at 50% and in NCD scores at 25-75%.  

When the contribution of the NCD scores is increased using the δ parameter, the mean 

AUC values increase up to 0.78 while δ ≤ 2 and decrease for δ > 2. Therefore it can be 
concluded that using a similarity score combined of Smith-Waterman and NCD 
scores, both including the amino acid sequence and the secondary structure, can be 
obtained with δ = 2. 
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Including the Smith-Waterman scores into the NCD scores computed using the joint 

representation improves the classification performance, however these scores, as well 

using Smith-Waterman and NCD scores together, are outperformed by the previously 

reported combined similarity metric.  

Additional interesting methods to combine the alignment scores with the normalized 

compression distance scores are also possible. Amino acids and secondary structure 

elements having low substitution costs according to the substitution matrix used in the 

alignment algorithm can be represented with the same symbol by implementing a 

penalty proportional to the substitution cost and a more robust joint representation can 

be produced. Besides, the substitution matrix itself can be involved in the compression 

algorithm, especially in building up the compression dictionary. These approaches are 

not tested in this study and considered as future work. 
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