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ABSTRACT

Protein function prediction is one of the most important and difficult problems in
bioinformatics. Predicted or actual protein secondary structure, in addition to amino
acid sequence, is often used for function prediction.

Usually, alignment scores between amino acid or secondary structure sequences are
used to predict protein function. One of the most frequently used alignment algorithms
is the Smith-Waterman alignment which is a local alignment algorithm suitable for
detecting remote protein similarities. The normalized compression distance (NCD) is
another measure of distance that can be used between protein sequences as well as
other kinds of data, such as music, text, images, spam filtering, even physics. Smith-
Waterman alignment scores and NCD have already been used for function prediction
and it has been shown that NCD performs worse than alignment, while combination of
NCD and alignment scores outperforms alignment scores only.

In this study, the secondary structure is involved in protein function prediction by
using a combined similarity metric that includes both Smith-Waterman alignment and
normalized compression distance scores that consider the secondary structure in
addition to the amino acid sequence.
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HiZALAMA VE SIKISTIRMA TABANLI PROTEIN FONKSiYON
ONGORUSUNDE iKiNCIiL YAPININ KATKISI

OZET

Protein fonksiyon ©ngoriisii, biyoinformatik alaninin baslica zor ve Onemli
konularindan biridir. Amino asit dizisine, yani birincil yapiya, ek olarak tahmin
edilmis veya gercek ikincil yapi, yani proteinin ii¢ boyutlu yapisimin ilk seviyesi, bu
problemin ¢oziimiinde siklikla kullanilmaktadir.

Fonksiyon ongoriisiinde genellikle amino asit dizileri ve ikincil yapilarin hizalama
puanlar1 kullanilmaktadir. Hizalama puanlari, protein dizilerinin benzerlik derecesini
tespit etmek amaciyla bu dizileri biitiiniiyle (global hizalama) veya kismen (yerel
hizalama) eslestirmeye calisarak eslesme oranini belirleyen hizalama algoritmalari
tarafindan, istatistiksel verilere dayanarak hazirlanmis yer degistirme matrislerine gore
belirlenen benzerlik 6l¢iitleridir. En cok tercih edilen hizalama algoritmalarindan biri,
bir yerel hizalama algoritmasi olan ve uzak proteinlerin benzerliginin bulunmasinda
oldukca basarili sonuglar veren Smith-Waterman algoritmasidir.

Normalize sikistirma uzakligi (NCD) ise proteinlerde oldugu kadar miizik, metin,
resim, istenmeyen e-posta filtreleme ve hatta fizik alanindan veriler ilizerinde de
basarili uygulamalar1 bulunan diger bir uzaklik Olgiitiidir. NCD, tam olarak
hesaplanmas1 miimkiin olmayan Kolmogorov uzakligmna bir yaklasiklik olarak
gelistirilmis ve belirli bir sikistirma algoritmasi kullanilarak sikistirilan iki protein
dizisinin sikistirilmis uzunluklarinin, birlikte sikistirildiklarinda elde edilen uzunluga
kiyaslanmasma dayanan bir uzaklik, baska bir deyisle benzemezlik Olciitiidiir.
Kullanicinin belirlemesi gereken bir parametre icermeyen NCD’nin, aynit zamanda
kullanilan sikistirma algoritmasindan da bagimsiz, evrensel ve giirbiiz bir olciit oldugu
belirtilmektedir.

Smith-Waterman ve NCD daha 6nce protein fonksiyon Ongoriisiinde denenmis ve
Smith-Waterman hizalama puanlarina dayanarak yapilan 6ngoriiniin NCD puanlari ile
yapilan 6ngoriiden daha basarili oldugu, ancak bu iki 6l¢iitiin kombinasyonun, ikisinin
tek tek kullanilmasina kiyasla daha iyi sonug verdigi belirtilmistir.

Bu calismada, her ikisi de amino asit dizisine ek olarak ikincil yapiyr da cesitli
oranlarda dikkate alacak bicimde diizenlenmis Smith-Waterman hizalamas1 ve
normalize sikistirma uzakligmin birlestirilmesi ile elde edilen yeni bir Olciit
kullanilmastir.
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1. INTRODUCTION

Protein function prediction is one of the most important and difficult problems in
bioinformatics. Using pattern recognition methods, function prediction deals with the
problem of predicting the function of a protein with known structure of different

levels, based on a set of proteins whose functions are already known.

Protein structure is defined on four levels, which are the amino acid sequence,
secondary structure, tertiary structure and quaternary structure, all of which can be
used for bioinformatics applications. The most frequently used ones are the amino acid
sequence and the secondary structure since they are less costly to evaluate and hence
more available. Besides numerous studies on amino acid sequences, secondary
structure has been used for fold recognition by Wallqvist et al. (2000), Soeding (2005)
and Cheng and Baldi (2006).

Yu and Liu (2004) propose a correlation based feature selection algorithm called the
Fast-Correlation Based Filter (FCBF) which is also applicable to bioinformatics data
sets where the number of features is usually very large. Cataltepe et al. (2007)
compare FBCF to two other dimensionality reduction algorithms, principal component
analysis (PCA) and Fisher’s linear discriminant analysis (Fisher’s LDA) using
different classification algorithms and show that FCBF either significantly increases or
just slightly decreases the classification accuracy whereas other dimensionality

reduction techniques lead to dramatic decreases.

A popular approach of using structural similarities in protein function prediction is
using alignment-based classification. Alignment is matching similar parts of biological
data such as gene sequences or protein structure sequences. The most frequently used
alignment algorithms are the Needleman-Wunsch global alignment algorithm
(Needleman and Wunsch, 1970) and the Smith-Waterman local alignment algorithm
(Smith and Waterman, 1981) which is a variation of the first one. Smith-Waterman
alignment algorithm is interested in partial matching of sequences; hence it is more
suitable for detecting remote protein similarities. Liao and Noble (2003) built pairs of

sequences in the data set and obtained pairwise alignment scores by aligning these.



They showed that using the pairwise alignment scores as features of input to support
vector machine classifiers is a straight-forward method that outperforms many
previous work (Liao and Noble, 2003), e.g. the SVM-Fisher method (Jaakkola et al.,
1999 and Jaakkola et al,. 2000), the PSI-BLAST algorithm (Altschul et al., 1997),
SAM (Krogh et al.,, 1994) and FPS (Grundy, 1998), especially when working with
large data sets. Another work on the contribution of secondary structure to protein
function prediction is done by Aygiin et al. (2008a), where the Smith-Waterman
alignment scores are computed by considering the secondary structure in different

levels.

The normalized compression distance (NCD) is another measure of distance which is
shown to perform quite well in different domains. Keogh et al. (2004) present a
successful application in pattern recognition, Cilibrasi et al. (2004) and Cataltepe et al.
(2006) made applications in music domain to predict music genre and composer and
Cilibrasi and Vitanyi (2005) provide successful implementations of NCD in many
areas. There are also application in physics (Benedetto ef al., 2002) and spam-filtering
(Bratko and Filipic, 2005). Sculley and Brodley (2006) compare different distance
metrics using compression, the Chen-Li metric (CLM), the compression-based
dissimilarity measure (CDM), compression-based cosine (CosS) and show that NCD
outperforms all. Nevill-Manning and Witten (1999) argued that proteins cannot be
compressed which was answered by Hategan and Tabus (2004) stating that proteins
can be compressed using appropriate compression algorithms. Later Freschi and
Bogliolo (2005) applied the LZ78 algorithm for compressing proteins. Li and Vitanyi
(1997) and Li et al. (2001) show the success of NCD in bioinformatics, especially on
classifying genetic data and Ferragina et al. (2007) provide another implementation of

NCD on biological data.

The NCD was developed by Cilibrasi and Vitanyi (2005) based on Kolmogorov
complexity which is not computable, but only approximated. It is a universal,
parameter-free (dis)similarity metric which does not depend on the compressor type
used. It computes the distance between two sequences, based on their lengths when

they are compressed individually or together.

Kocsor et al. (2005) compare the success of alignment-based classifiers and

compression-based classifiers and shows that using alignment scores only outperforms



using NCD only. However, Kocsor et al. suggest a new similarity metric which is a
combination of alignment scores and compression scores and report that this new
combined metric has a better performance than both alignment (Smith-Waterman and

BLAST) and compression (LZW and PPMZ) only.

This study investigates the contribution of secondary structure to protein function
prediction both in alignment-based and compression-based methods and suggests a
combined similarity metric similar to Kocsor et al. which also includes secondary
structure. The study on alignment-based classification uses the pairwise Smith-
Waterman alignment algorithm and analyses the contribution of different secondary
structures to protein function prediction, the results of which are shown by Filiz et al.
(2008). The study on normalized compression distance includes the suggestion of an
NCD metric that encloses the secondary structure additional to the amino acid
sequence. The compression scores are computed using the CompLearn Toolkit’s
LZMA algorithm (Cilibrasi, 2003). Finally, a metric combined of Smith-Waterman
alignment scores and normalized compression distance scores, each of which include

amino acid sequence and secondary structure, is developed and tested.

The rest of the thesis is organized as follows: Section 2 describes the mostly used
features in protein function prediction and explains the data set used in this study in
detail. Section 3 explains the alignment-based similarity and normalized compression
distance, as well the new combined metric. Section 4 explains the pattern recognition
methods used for classification and classifier evaluation. Section 5 reports the

experimental results. Section 6 explains the conclusions.



2. PROTEIN FUNCTION PREDICTION

2.1. Definition of Function

As a general heading, function refers to the biochemical role of the protein. Protein
function may refer to many things: The biochemical role of the protein within the cell,
the cellular function within the tissue the cell belongs to or the structural role within

the cell or organism (Petsko and Ringe, 2004).

It is also known that protein function depends on the three-dimensional structure of the
protein (Petsko and Ringe, 2004) and a large number of previous works is based on

finding associations between the structure of the protein and its function.

2.2. Features Used

2.2.1 Amino acid sequence

Proteins are macromolecules composed of amino acid chains (Tramontano, 2006). An
amino acid is a molecule consisting from an amine and a carboxyl functional group,
which makes it an acid, a hydrogen atom and a side chain bonded to the alpha-carbon
which is the carbon atom the carboxyl groups is also bonded to (see Figure 2.1)
(Petsko and Ringe, 2004). The 20 of amino acids found in nature vary only in their
side chains. These are isoleucine, alanine, leucine, asparagine, lysine, aspartate,
methionine, cysteine, phenylalanine, glutamate, threnonine, glutamine, tryptophan,
glycine, valine, proline, arginine, serine, histidine and tyrosine, shown in Table 2.1.

with their three-letter and one-letter abbreviations (IUPAC-IUB, 1984).



hydrogen
atom

group
side chain

carboxyl
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Figure 2.1: Symbolic structure of an amino acid (Plant and Soil Sciences e-Library,

2006)

Table 2.1: Amino acids and their abbreviations (IUPAC-IUB, 1984)

Amino acid Three-letter One-letter abbreviation
abbreviation
Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartic acid (Aspartate) Asp D
Cysteine Cys C
Glutamine Gln Q
Glutamic acid (glutamate) Glu E
Glycine Gly G
Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe F
Proline Pro p
Serine Ser S
Threonine Thr T
Tyrptophan Trp \\
Tyrosine Tyr Y
Valine Val \Y
Any amino acid Xaa X




The chain of amino acids or the amino acid sequence (see Figure 2.2) as referred
frequently in this study, is the primary structure of a protein (Tramontano, 2006). The
amino acid sequence is encoded by the DNA and it is produced with a procedure
called protein biosynthesis which binds single amino acids with covalent peptide

bonds (Petsko and Ringe, 2004).

It is known that the amino acid sequence is closely related to the function of a protein
and there are numerous studies on this relationship (Liao and Noble, 2003, Kocsor et

al. 2005).

HiN*

Figure 2.2: Amino acid sequence of a protein, the lysozyme enzyme (Kimball, 2008)

2.2.2 Secondary Structure

The secondary structure of a protein is the three-dimensional form of an amino acid
sequence occurring due to hydrogen bonds between amino acids (Petsko and Ringe,
2004). Hence, it is a local structure and different types of secondary structures are seen

together in one protein (Petsko and Ringe, 2004 ).

The alpha-helix is a secondary structure where every amino acid can form hydrogen
bonds (Pauling et al., 1951) and the three-dimensional form is a spiral turning to right
(Figure 2.3). Alpha helix is mainly formed in regions where the amino acids with
alpha - helix preference, Ala, Leu, Met, Phe, Glu, Gln, Lys, Arg, His, are the majority
and the other amino acids are not close even if they exist (University of Guelf

Department of Chemistry and Biochemistry, 2000).



Figure 2.4: Side view of a beta-sheet (Science College, n.d.)



The beta-sheets are secondary structure forms where stretched amino acid strands are
placed next to each other so that hydrogen bonds can form between the strands
(Pauling and Corey, 1951) which results in a side view of a pleated sheet (see Figure
2.4). These are formed by amino acids with beta-sheet preference, Tyr, Trp, Ile Val,
Thr, Cys, and can be either parallel as in Figure 2.5 or anti-parallel as in Figure 2.6

(University of Guelf Department of Chemistry and Biochemistry, 2000).

Figure 2.5: Parallel beta sheet (University of Guelf Department of Chemistry and
Biochemistry, 2000)

Figure 2.6: Anti-parallel beta sheet (University of Guelf Department of Chemistry
and Biochemistry, 2000)



A protein also includes regions that are neither alpha-helices nor beta-sheets. These

are called “turns” or “loops”.

The secondary structure is often represented using the DSSP-code introduced by

Kabsch and Sander (1983). The 7-letter code is summed up in Table 2.2.

Table 2.2: DSSP representation of secondary structure (Kabsch and Sander, 1983)

DSSP code | Secondary Structure

Alpha-helix

Residue in isolated beta-bridge

Extended strand, participates in beta ladder
3-helix (3¢ helix)

5-helix (m-helix)

Hydrogen bonded turn

Bend

= - o

The secondary structure is also used frequently for protein function prediction (Aygiin

et al., 2008 and Filiz et al., 2008).

2.2.3 Tertiary Structure

Tertiary structure is an irregular structure and is therefore described many ways one of
which is the spatial structure of a protein in terms of atomic coordinates (Petsko and
Ringe, 2004). It is the composition of secondary structures of one amino acid sequence

(Figure 2.7) and is also referred to as “fold” (Petsko and Ringe, 2004).

2.2.4 Quaternary Structure
The last level of protein structure is the quaternary structure which is the compound of
more than one amino acid sequence called subunits or monomers (Figure 2.8) (Petsko

and Ringe, 2004).



Figure 2.7: Tertiary structure of dihydrofolate reductase (7DFR) (PDB). The spirals
are alpha-helices; arrows indicate beta-sheets and the remaining parts that look like
threads are loops.

2.2.5 Motifs

In bioinformatics, motif has two meanings.

Firstly, a motif is a partial amino acid sequence that is specific for a certain
biochemical function, e.g. the zinc finger motif which is specific for DNA-binding

proteins (Petsko and Ringe, 2004).

Secondly, motif is used for a subsequence of the amino acid sequence of a protein
which is significant for a function, known as functional motifs, or which acquire a
certain secondary structure independent from the neighboring subsequences, known as

structural motifs (Petsko and Ringe, 2004).

10



Figure 2.8: Quaternary structure of protein kinase C interacting (1AVS5) (PDB)

2.3. Data Set

The data set used in this study consists of amino acid sequences and secondary
structure of 4498 annotated proteins, that is to say proteins with known functions. This

section explains the development and specifications of the dataset in detail.

2.3.1 Protein Data Bank (PDB), Gene Ontology (GO) and Gene Ontology
Annotation (GOA)

The Protein Data Bank (PDB) (Berman et. al, 2000) is an online storage for the three-
dimensional structures of proteins, nucleic acids and protein-nucleic acid complexes.
The PDB founded by Drs. Edgar Meyer and Walter Hamilton at Brookhaven National
Laboratory in 1971 containing 7 structures which increased to 50,480 structures in
April 2008 (see Figure 2.9). For each structure, sequence details, atomic coordinates,
crystallization conditions, 3-D structure neighbors computed using various methods,
derived geometric data, structure factors, 3-D images and a variety of links to other

resources are available in PDB (Berman et al., 2000).

11



Molecule Type
Proteins Nuc.lelc Protein/NA Other Total
Acids | Complexes
X-ray 40066 1025 1823 24 42938
NMR 6321 805 138 7 7271
Exp. Electron
Method | Microscopy 19 1 43 0 173
Other 88 4 4 2 98
Total 46594 1845 2008 33 50480

Figure 2.9: PDB Current Holdings Breakdown at 27" April 2008 (NCBI, 2004)

The Gene Ontology (The Gene Ontology Consortium, 2000) is one of the ontologies
most frequently used in bioinformatics. It was grounded in 1988 to find consistent
annotations for proteins of three organisms: Drosophila melanogaster (fruit fly) from
FlyBase, mus musculus (mouse) from Mouse Genome Database and saccharomyces
cerevisiae (baker’s yeast) from Saccharomyces Genome Database (The Gene
Ontology Consortium, 2000). By both many organisms and proteins being added to
the database, in January 2008 GO contains over 24,500 terms which include the GO
ID, a unique alphanumerical string, the common name and the definition of the
protein. GO provides three ontologies: biological processes, cellular components and

molecular functions.

The Gene Ontology Annotation (Camon et al., 2004) database provides annotations
for proteins of the UniProt Knowledgebase (Butler, 2002) that consists of Swiss-Prot
(Boeckmann et al., 2003), TTEMBL (Boeckmann et al., 2003) and PIR-PSD (Wu et
al., 2003) using the Gene Ontology (GO). GOA includes GO assignments for the

proteins of human, mouse, rat, arabidopsis, zebra fish, chicken and cow.

2.3.2 Retrieval of Annotated Proteins

To obtain a list of annotated proteins, the Gene Ontology Annotation (GOA) project is
used (Camon et al., 2004). The Gene Ontology Annotation provides a Protein Data
Bank (PDB) (Berman et al.,, 2000) association file, which contains only the
assignments for the proteins present in the PDB database where the structural
information is obtained from. To fetch the sequence names, namely the GO IDs, this

association file is used.

12



2.3.3 Homology Reduction

In bioinformatics, homology refers to structural similarity depending on a shared
ancestry, even if this original molecule cannot be specified in every case (Petsko and
Ringe, 2004). Similarity alone is not enough to determine homology because of the

possibility of a similar structure arose by chance (NCBI, 2004).

Homolog amino acid sequences often tend to have similar functions (NCBI2004). This
inclination becomes very significant at 40% homology (in other words, when 40% of
two sequences are structurally identical) where homolog sequences usually have very
similar or identical functions. Prediction of the function of a protein is relatively easier
when using its homolog instead of using information obtained from non-homolog
proteins, so the high performance of a function prediction algorithm tested on a data
set containing homologs can be misleading since it can be caused by homology and
not the prediction algorithm itself. Therefore, proteins with 40% sequence identity are

removed from the database.

To remove sequence homologs, PDB's scheme is applied. PDB provides several
clusterings of proteins generated with CD-HIT or BLASTClust algorithms for
different sequence identities. According to the scheme, only the best representative of
each cluster is kept for a given clustering. Thereby, potential homologs are removed
and non-redundant datasets are obtained. In this study, BLASTClust for 40% identity
is used and a dataset of 4498 proteins from human, mouse, rat, arabidopsis, zebra fish,

chicken and cow is obtained.

2.3.4 Retrieval of Ontology

The ontology structure is obtained from Gene Ontology (GO) (Ashburner, 1998,
Ashburner et al., 2000 and The Gene Ontology Consortium, 2000) database. All the
three top level GO classes, molecular function, cellular component and biological
process, are included in the data set used in this study. In GO hierarchy, a protein may
be associated with more than one term if it is known that it has multiple functions. An
example introduced by (The Gene Ontology Consortium, 2000) is cytochrome c
which is associated with the molecular function term oxidoreductase activity, the
cellular component terms mitochondrial matrix and mitochondrial inner membrane
and the biological process terms oxidative phosphorylation and induction of cell

death. In such cases, all terms are captured during the labeling process and multi-
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labeled data with 1876 dimensional target vectors for all sequences in the data set is

generated.

To obtain a well-balanced class distribution, classes with less than 100 or more than
550 sequences are eliminated which resulted in a dataset with 27 classes which are
between 2™ and 8" levels in the GO hierarchy (see Figure 2.10 and Figure 2.11).
Table 2.3 shows the 27 GO classes used.

Table 2.3: Gene Ontology class distributions in the data set used

C;?Oss GO ID Class name Class type #Seq
1 0009405 Pathogenesis Biological process 103
2 0009055 electron carrier activity Molecular function 105
3 0006810 Transport Biological process 107
4 0016787 hydrolase activity Molecular function 117
5 0005506 iron ion binding Molecular function 118
6 0000166 nucleotide binding Molecular function 132
7 0003676 nucleic acid binding Molecular function 137
8 0003700 transcription factor activity Molecular function 137
9 0006508 Proteolysis Biological process 148
10 0006412 Translation Biological process 150
11 0003723 RNA binding Molecular function 155
12 0008270 zinc ion binding Molecular function 170
13 0005975 | carbohydrate metabolic process Biological process 173
14 0005179 hormone activity Molecular function 177
15 0016020 Membrane Cellular component 202
16 0005515 protein binding Molecular function 210
17 0005634 Nucleus Cellular component 214

regulation of transcription, DNA . .
18 0006355 Biological process 221
dependent
19 0005737 Cytoplasm Cellular component 232
20 0005622 Intracellular Cellular component 278
21 0005524 ATP binding Molecular function 288
22 0006118 electron transport Biological process 297
23 0016491 oxidoreductase activity Molecular function 300
24 0003677 DNA binding Molecular function 329
25 0005576 extracellular region Cellular component 354
26 0008152 metabolic process Biological process 361
27 0003824 catalytic activity Molecular function 522
Total 4498
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biological

Figure 2.10: GO tree for biological process. Bold circles indicate the classes included
in the dataset.
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molecular

cellular

Figure 2.11: GO tree for cellular component and molecular function classes. Bold
circles indicate the classes included in the dataset.
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2.3.5 Retrieval of Amino Acid Sequence and Secondary Structure

The structure information of each protein downloaded from the PDB web service
consists of its amino acid sequence and secondary structure. PDB also provides 3D
structure, but it is not included in this work since it does not suggest a protein function
prediction scheme specific for PDB but a general scheme including primary and

secondary structures.

The PDB provides amino acid sequences as a string of capital letters each of which is
the one-letter abbreviation of an amino acid (see Table 2.1). In this study, the amino
acid sequences are used just as they are provided by the PDB, in other words without

any preprocessing.

The secondary structure provided by the PDB is in DSSP representation. Since this
study is concentrated on the contribution of the main three secondary structures, e.g.
alpha helices, beta sheets and loops, to the function of the protein, the DSSP
representation is converted to the HEL representation (H: alpha helix, E: beta strand,

L: loop) according to (Kabsch and Sander, 1983) (Table 2.4).

Table 2.4: Conversion from DSSP to HEL representation (Kabsch and Sander, 1983)

DSSP-code | HEL-code
G, H, 1 H
B.E E
CS, T L

The contribution of H, E and L regions to function could rely on their portion (ratio of
the length of a specific secondary structure to the length of the whole sequence) in the
sequences, since a longer amino acid sequence part provides more structural
information than a shorter sequence part. Therefore, for each function class, the
average H, E and L portions normalized by the sequence length is calculated.
Normalization by the sequence length is necessary since longer amino acid sequences
naturally contain longer H, E and L regions and this would lead the relations between
H, E and L portions to escape observation. Figure 2.12 and Table 2.5 show the average

H, E and L portions in each function class.
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Table 2.5: The average ratios of H, E and L regions in GO function classes

C;f‘(fs GOID | Size H % E % L % Lfﬁ(glih
1 | 0009405 | 103 | 2178202 | 2488014 | 53342010 | 184
2 | 0009055 | 105 | 33442018 | 1666+0.12 | 49.89%0.13 | 224
3 | 0006810 | 107 | 32272017 | 25.75£0.18 | 41.98£0.14 | 285
4 | 0016787 | 117 | 32.06£0.11 | 23.87£008 | 4407006 | 299
5 | 0005506 | 118 | 45062021 | 12182013 | 4276 £0.13 | 268
6 | 0000166 | 132 | 36.69+0.13 | 18592008 | 44722011 | 341
7 | 0003676 | 137 | 29.64£0.13 | 19.76£0.11 | 50.60£0.14 | 278
8 | 0003700 | 137 | 49322022 | 9.68=0.11 | 41.00£0.16 | 176
9 | 0006508 | 148 | 27.34£0.16 | 2411013 | 4855014 | 338
10 | 0006412 | 150 | 29.15£0.19 | 16.61£0.11 | 54252022 | 242
11 | 0003723 | 155 | 34622018 | 19162012 | 4621 £0.14 | 222
12 | 0008270 | 170 | 29.50£0.17 | 1473£0.10 | 55.78£0.18 | 243
13 | 0005975 | 173 | 3046 £0.15 | 23.8820.12 | 4577008 | 420
14 | 0005179 | 177 | 49252015 | 475006 | 4600015 | 28
15 | 0016020 | 202 | 34.10£028 | 2092020 | 4498%0.17 | 266
16 | 0005515 | 210 | 32872024 | 1664014 | 5049%018 | 236
17 | 0005634 | 214 | 39.18 2022 | 12792013 | 48.02£0.16 | 212
18 | 0006355 | 221 | 45142022 | 12532013 | 42332016 | 165
19 | 0005737 | 232 | 38412013 | 19852£0.10 | 41742007 | 368
20 | 0005622 | 278 | 34592020 | 14372011 | 51052020 | 199
21 | 0005524 | 288 | 37.72£0.13 | 19502009 | 42782009 | 370
22 [ 0006118 | 297 | 37242018 | 17.30£0.12 | 4546+0.12 | 313
23 | 0016491 | 300 | 38.30£0.15 | 19.63£0.10 | 42072009 | 381
24 | 0003677 | 329 | 40.92%0.19 | 14302013 | 447820.14 | 244
25 | 0005576 | 354 | 3774023 | 12572014 | 49.692017 | 99
26 | 0008152 | 361 | 39.96£0.09 | 18.73 2007 | 41312006 | 355
27 | 0003824 | 522 | 36.1020.13 | 19.67£0.10 | 442320.10 | 384

Total 4498

Table 2.5. also shows the average sequence length in each class. Class 14 includes the

shortest sequence with average length 28, which is c.a. 3.5 times shorter than the

closest class, which is Class 25 with average sequence length 99. The longest

sequences are in Class 13 which has the average sequence length 420; however the

average sequence length for the closest class, Class 27, is 383 which is only c.a. 1.09

times shorter than Class 13. Besides, the average ratio of beta-sheet (E regions) in

class 14 is c.a. a half of the closest class, Class 8 with 9.68% E regions ratio.

Therefore, Class 14 has to be considered as an outlier due to its average sequence

length and its E regions ratio, which possibly could affect the classification results.
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Figure 2.12: The average ratios of H, E and L regions in GO function classes
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The statistical significance of the distribution of secondary structures (see Table 2.5) is
tested with the analysis of variances. For each class C, the following ratio is computed

where K indicates the number of sequences in class C, L indicates the number of
statistics ( L = 3 since the statistics are computed for H, E and L ratios), m; indicates
the mean of the values for the statistic j (j=/ for H, j=2 for E and j=3 for L), m

indicated the mean of all m, and X;; is the value of i" sequence for the j* statistic, e.g.

X5 is the E-ratio in the 1* sequence:

Table 2.6: Significance test using analysis of variance for Table 2.5

Class . Significance Level
No | GOID | ratio(C) o8 " == og
1 0009405 94.9 | 4.605 | 2.9957 | 2.30259
2 0009055 139.0 | 4.605 | 2.9957 | 2.30259
3 0006810 22.4 | 4.605 | 2.9957 | 2.30259
4 0016787 160.3 | 4.605 | 2.9957 | 2.30259
5 0005506 155.4 | 4.605 | 2.9957 | 2.30259
6
7
8

0000166 208.3 | 4.605 | 2.9957 | 2.30259
0003676 211.2 | 4.605 | 2.9957 | 2.30259
0003700 208.7 | 4.605 | 2.9957 | 2.30259
9 10006508 130.3 | 4.605 | 2.9957 | 2.30259
10 | 0006412 174.0 | 4.605 | 2.9957 | 2.30259
11 | 0003723 127.5 | 4.605 | 2.9957 | 2.30259
12 | 0008270 315.2 | 4.605 | 2.9957 | 2.30259
13 | 0005975 154.7 | 4.605 | 2.9957 | 2.30259
14 | 0005179 703.5 | 4.605 | 2.9957 | 2.30259
15 | 0016020 59.8 1 4.605 | 2.9957 | 2.30259
16 | 0005515 166.0 | 4.605 | 2.9957 | 2.30259
17 | 0005634 245.0 | 4.605 | 2.9957 | 2.30259
18 | 0006355 240.0 | 4.605 | 2.9957 | 2.30259
19 | 0005737 316.0 | 4.605 | 2.9957 | 2.30259
20 | 0005622 305.4 | 4.605 | 2.9957 | 2.30259
21 | 0005524 409.3 | 4.605 | 2.9957 | 2.30259
22 | 0006118 309.3 | 4.605 | 2.9957 | 2.30259
23 | 0016491 329.9 | 4.605 | 2.9957 | 2.30259
24 | 0003677 378.8 | 4.605 | 2.9957 | 2.30259
25 | 0005576 379.2 | 4.605 | 2.9957 | 2.30259
26 | 0008152 | 1084.0 | 4.605 | 2.9957 | 2.30259
27 10003824 692.9 | 4.605 | 2.9957 | 2.30259
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(K*i(mj—m)2 /(L—-1)
ratio(C) = T jzl
> > (Xij—m,) |/ L*(K -1)

j=1 i=1

2.1

For all classes, ratio(C) is compared to Fy-1)1k-1) Which are obtained from F-
distribution tables (StatSoft, 2007) where a is the significance level and if ratio(C) >
Fo -1 1k1) then the statistics shown in Table 2.5 are proven to be statistically

significant for the significance level (100 — a). The ratios and F values are shown in
Table 2.6 and the H, E and L distributions are found to be significant at levels 0.99,
0.95 and 0.90.
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3. SEQUENCE-SEQUENCE SIMILARITY/DISTANCE COMPUTATION
METHODS

In this study, features used for classification of proteins are the structural information.
However, the numbers of amino acids in proteins are very different; in the data set
used in this study, it varies between 19 and 1733. Hence, the amino acid sequence or
the secondary structure sequence cannot be used as a classification feature; they must
be processed to obtain features with a constant number for each protein. The two most
preferred and most successful methods for working with biological data are making

use of sequence alignment and compression which are explained below in detail.

3.1. Sequence Alignment Similarity

Sequence alignment similarity usually points to homology and functional
relationships. Alignment is based on matching the identical or similar sequence parts
in proteins, either looking for the similarity of whole protein sequences as in global

alignment or looking for partial matching as in local alignment algorithms.

3.1.1 Needleman-Wunsch

Needleman — Wunsch alignment algorithm (Needleman and Wunsch, 1970) is a global
alignment algorithm trying to align the whole sequences and is therefore more suitable
for data sets containing sequences of nearly equal length. The algorithm maximizes
the similarity by finding the “maximum match” for the sequence which is the
sequence most amino acids of which can be matched with the other sequence
(Needleman and Wunsch, 1970). It is based on dynamic programming and the
computation involves a 2-dimensional iterative matrix where every possible alignment
of every possible amino acid is represented with an alignment score. The Needleman-
Wunsch alignment score is the summation of the scores of matched amino acids

reduced by the gap penalties if any gaps are opened during alignment.

3.1.2 Smith-Waterman
Smith-Waterman (Smith and Waterman, 1981) is a local alignment algorithm; it is

interested in finding similar sub-regions in longer sequences which do not have to be
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similar totally and also which may have varying sequence lengths. Therefore, it is
very suitable for detecting the similarity of distantly related proteins, which are also
called remote proteins. The Smith-Waterman algorithm is actually a variation of the
Needleman-Wunsch algorithm and it uses a substitution matrix which is similar to the
matrix involved in Needleman-Wunsch computation, but it is modified by setting the

negative alignment scores to zero to enable local alignment.

An example Smith-Waterman alignment of two amino acid sequences is seen in

Figure 3.1.
VSPAGMASGYD
Sequence 1
Sequence 2 IPGKASYD
PAGMASGYD
: - | LI
Smith-Waterman Alignment P-GKAS-YD
Alignment Score 8.6667

Figure 3.1: Smith-Waterman alignment of two amino acid sequences using
BLOSUMS0 substitution matrix

3.1.2.1 Pairwise Smith-Waterman

Pairwise alignment algorithms do not align a sequence to the whole data set; instead
they create pairs of sequences from the data set and compute similarity scores for
these pairs. Pairwise alignment scores could be used as input to pattern recognition
algorithms to be used for function prediction and whether the two proteins are in the

same class or not are the outputs, as in (Cheng and Baldi, 2006).

Another approach is to use the alignment scores to all available training sequences as
input. This is the approach taken in (Liao and Noble, 2003) and also in this study.
“SVM-pairwise” (Liao and Noble, 2003) takes all sequence pairs in the database and
aligns them to each other using the Smith-Waterman local alignment algorithm. This
is based on the idea that two proteins belonging to the same class can be aligned
similarly to a set of proteins containing both positive and negative instances.
Alignment scores are then used as the constant-sized feature vector for a protein. For a
training set of N sequences, every protein is aligned to all N sequences, including
itself, and it has N features. These features are the input to the classification algorithm.
Liao and Noble used this method with SVMs and they indicated that this method is

not only easy to use, but also superior to similar algorithms (SVM-Fisher (Jaakkola et
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al., 1999 and Jaakkola et al., 2000), PSI-BLAST (Altschul et al., 1997), SAM (Krogh
et al., 1994) and FPS (Grundy, 1998)) due to its low complexity and outputs with
higher accuracy because of learning from negative examples. Liao and Noble (2003)
found that SVM-pairwise performs especially well when working with large numbers

of protein sequences.

In this study, the balign tool developed by Aygiin and Cataltepe (2008) for
Bioinformatics Project at ITU is used for computing the pairwise Smith-Waterman
scores. Balign produces two types of alignment scores, the percent identity and the bit
score, which is the sum of the substitution matrix entries for matches minus gap
penalties, normalized with respect to the statistical parameters of the scoring system

and is therefore comparable between different alignments (NCBI, 2004).

3.1.2.2 Smith-Waterman incorporating secondary structure

Smith-Waterman algorithm can also align sequences according to their secondary
structure and balign (Aygiin and Cataltepe, 2008) produces Smith-Waterman scores
calculated from secondary structure in HEL format using the BLOSUMS0 substitution
matrix which is the default substitution matrix of MATLAB Bioinformatics Toolbox.
Balign allows including secondary structure according to the parameter a chosen by
the user from the interval (0, 1). The Smith-Waterman alignment score including also

the secondary structure is then defined as below (Aygiin et al., 2008):
SWy(X, y) = SWaa(Xx, y) + o SWss(X, y) 3.1)

where x and y are the sequences to be aligned, SWaa(x, y) is the Smith-Waterman
alignment score computed from their amino acid sequences and SWss(x, y) the Smith-

Waterman alignment score computed from their secondary structure.

Another approach is taken to find out the importance of each secondary structure
element (H, E, L) for each function, portions of amino acid sequence that has
corresponding secondary structure of H or E or L are isolated. Then the amino acid
sequences that belong to 6 different secondary structure elements, namely HEL, HE,
HL, H, E and L are produced. Figure 3.2 shows the original amino acid sequence,
secondary structure and each of the six amino acid sequences produced for HEL, HE,
HL, H, E and L regions. When a secondary structure element is not used, in the amino

acid sequence, the actual residue is replaced by the “+” symbol. BLOSUMSO0
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substitution matrix is modified to incorporate the “+” symbol and the parameter a is
set to 0. The Smith-Waterman alignment scores are computed using these sequences,

called SWuer, SWhg, SWhr, SWy, SWg and SWi, respectively.

S(Z(‘;ifi‘l:i‘l QYKEVNETKWKMMDPILTTSVPVYSLKVDKEYEVRVRSKQRNSGN
SS‘::’I‘C’?:‘;Y HHHHHEEEEELLEHLLEEEEEELLLLLLLLLLLLLLLHHHEEEEL
HEL QYKEVNETKWKMMDPILTTSVPVYSLKVDKEYEVRVRSKQRNSGN
HE QYKEVNETKW++MD++LTTSVP+++++++++++++++SKQRNSG+
HL QYKEV+++++KM+DPI++++++VYSLKVDKEYEVRVRSKQ++++N

H QYKEV++++++++D+++++++++++++++++++++++ SKQ+++++
+++++NETKW++M+++LTTSVP++++++++++++++++++RNSG+

L ++++++++++KM++PI++++++VYSLKVDKEYEVRVR+++++++N

Figure 3.2: Secondary structure filtering

3.1.2.3 Conservation score
Conservation score is the normalized version of bit score which is computed as

follows:

bitscore(x,y)

cons(x,y) = (3.2)

max(bitscore(x, x),bitscore(y, y))
where cons(x,y) is the conservation score of sequences x and y and bitscore(x,y) is the

bitscore of sequences x and y.

Conservation score gives a better measure of similarity due to normalization and is

therefore preferred to raw Smith-Waterman alignment scores in this study.

3.2. Normalized Compression Distance (NCD)

Normalized compression distance (NCD) is a parameter-free, universal metric for
sequence similarity developed by Cilibrasi and Vitanyi (2005) which is robust to
compressor changes and has applications in several research areas, also in

bioinformatics.
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3.2.1 Distance and metric
A distance function D is a metric if it satisfies the following properties with D(x,y)

being the distance between x and y (Cilibrasi and Vitanyi, 2005):
1. D(x,y)=0iffx=y
2. Symmetry: D(x,y) = D(x,y)
3. Triangle inequality: D(x,y) < D(x, z) + D(z, y).

A frequently used distance is the Euclidean distance which is a metric in the sense

defined above. These properties are also applicable to similarity metrics.

3.2.2 Admissible distance

An admissible distance D(x, y) is the length of a binary prefix codeword which
computes the sequence x from the sequence y and also the sequence y from the
sequence x using a certain programming language, also called the reference
programming language (Cilibrasi and Vitanyi, 2005). The two-way computation
makes the admissible distance symmetric. An admissible distance does not have to be
a metric, but there are examples like the Hamming distance which are both an

admissible distance and a metric (Cilibrasi and Vitanyi, 2005).

3.2.3 Normalized admissible distance

Normalized admissible distance is a similarity distance developed on the assumption
that long sequences different only in a short region are much more similar than short
sequences differing in a region of the same length (Cilibrasi and Vitanyi, 2005).
Therefore, the admissible distance D is normalized by another admissible distance D*

which is defined as follows (Cilibrasi and Vitanyi, 2005):
D*(x,y) = max{max{D(x,z): C(z) < C(y)}, max{ D(z,y): C(z) <C(x)}} (3.3)

where C a certain compressor, also called the reference compressor, C(.) is the

compressed length obtained using the reference compressor C and z is any sequence.

The normalized admissible distance is a similarity distance, in other words, it shows
how distant the sequences are. Therefore, it is often named a dissimilarity or disparity

metric.
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3.2.4 Kolmogorov complexity

Kolmogorov complexity, a definition from information theory, provides a basis for
most of the alignment-free methods of sequence comparison (Kocsor et al., 2005). The
conditional Kolmogorov complexity K(x | y) is the length of the shortest binary
program which computes the sequence x from the sequence y using a universal Turing

machine (Li and Vitanyi, 1997).

The non-conditional Kolmogorov complexity K(x) is the same as K(x | 4) where A
denotes the empty sequence, that is, K(x) is the length of the shortest binary program
which computes the sequence x without input using a universal Turing machine (Li et

al., 2001).

Using the Kolmogorov complexity, it is possible to produce similarity measures which
express the decrease in complexity or conditional complexity (Kocsor et al., 2005).

One of them is defined as below in (Li ef al., 2001):

_K(y)-K(ylx)
K (xy)

d(x,y)=1 (3.4)

where xy is the concatenation of the sequences x and y.

3.2.5 Normalized information distance
Bennett er al. (1998) introduce a new metric called the information distance E(x, y)
which is the length of the shortest binary program which computes the sequence x

from the sequence y using a universal Turing machine, and vice versa:
E(x, y) = max{K(x | y), K(y | x)} (3.5)

It is also proven that the information distance is a metric and it is universal since E(x,
y) < D(x, y) up to an additive constant that is independent from x and y (Cilibrasi and

Vitanyi, 2005).

Cilibrasi and Vitanyi (2005) present the normalized information distance NID(x, y)

defined as below:

~max{K(xly),K(ylx)}
) (K0, K () 30
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NID is also a universal metric. Its weakness is that it is based on the Kolmogorov
complexity which is not computable which makes the normalized information distance
not computable (Cilibrasi and Vitanyi, 2005). The normalized information distance is
also often referred to as the universal similarity metric (USM) (Krasnogor and Pelta,

2004).

3.2.6 Normal compressor
A compressor C is normal if it satisfies the following properties up to an O(log n)

additive term for a sequence of length n (Cilibrasi and Vitanyi, 2005):
1. Idempotency: C(xx) = C(x) and C(A) = 0, 1 being the empty sequence
2. Monotonicity: C(xy) > C(x), xy the concatenated sequence of x and y
3. Symmetry: C(xy) = C(yx)
4. Distributivity: C(xy) + C(z) < C(xz) + C(yz)
3.2.7 Compression distance
The compression distance is an admissible distance which is the approximation of not-
computable Kolmogorov complexity by a normal compressor. Being C a real-world

reference compressor which approximates the properties of normal compressor, the

compression distance E.(x, y) defined as below (Cilibrasi and Vitanyi, 2005):
E.(x, y) = C(xy) — min{C(x), C(y)} (3.7)

where C(x) is the compressed length of the sequence x.

3.2.8 Normalized compression distance
The normalized compression distance NCD(x, y) is the normalized version of the
compression distance E.(x, y) involving the normal compressor C and is defined as

follows (Cilibrasi and Vitanyi, 2005):

C(x,y)—min{C(x),C(y)}
max{C(x),C(y)}

NCD(x,y) = (3.8

The NCD is a universal, parameter-free similarity distance, since does not need any
background knowledge about the data set and is also robust because it is defined

independently from the compressor type (Cilibrasi and Vitanyi, 2005).
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3.2.9 Compression methods

3.2.9.1 The LZ77 approach

This approach is described by Lempel and Ziv in 1977 and the compressors developed
based on this approach make up the LZ77 or LZ1 family (Sayood, 1996). It is an
adaptive-dictionary-based technique where the dictionary corresponds to a subset of
the already encoded sequence which is examined by a sliding window that consists of
a search buffer, which contains a part of the encoded sequence, and a look-ahead
buffer, which contains a part of the sequence to be encoded (Sayood, 1996). The LZ77
approach requires no background information on the data to be compressed and is
therefore a simple algorithm that assumes that repeating patterns are placed closely on

the sequence (Sayood, 1996).

3.2.9.2 The LZ78 approach

This approach is again described by Lempel and Ziv in 1978 and compressors
developed based on this approach make up the LZ78 or LZ2 family. This adaptive-
dictionary method does not assume the closeness of repeating patterns and therefore
uses an explicit dictionary instead of the search buffer that stores the recently encoded

part of the sequence (Sayood, 1996).

3.29.3 LZMA

The Lempel-Ziv-Markov chain-Algorithm (LZMA) is a variation of the LZ77 that
compresses very fast and its compression ratio is 30% greater than that of gzip,
another LZ77 variation, and 15% grater than bzip2, also another LZ77 variation. But
measuring the compression time related to compression ratio shows that the best
compression the LZMA algorithm can make takes 4-12 times longer time than the

bzip2 algorithm (7-zip, nd.).

3.2.9.4 Bzip2

bzip2 is a patent-free algorithm developed by Julian Seward that generally
compresses the files to 10-15% twice faster at compression and six times faster at
decompression than PPM compressors (Bzip.org), however they are much slower than
compressors like GNU zip which cannot compress as efficient as bzip2. The algorithm
is run in 9 steps that are as follows (Bzip.org): Run-length encoding (RLE) that

replaces repeating symbols in a string by its first four characters, Burrows-Wheeler
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transform (BWT) which is reversible block-sort algorithm that is essential for bzip2,
Move to front (MTF) that identifies frequently repeating strings, Run-length encoding
(RLE) that represents the run-length as a binary number, Huffman coding that replaces
the binary numbers with codes the length of which depend on their frequency,
multiple Huffman tables if the cost of using them does not exceed the cost of including
them, unary base 1 encoding for selecting the Huffman tables, Delta encoding that
stores each bit length as a difference from the previous one and the sparse bit array

(Bzip.org, nd.).

3.2.9.5 GNUzip
GNU zip, or gzip is developed by Gailly and Adler to replace the algorithm compress
of Linux which causes patent problems. Like compress, gzip is a variation of the LZ77

algorithm (Lempel and Ziv, 1977) and the Huffman coding (Gzip.org, n.d.).

Zlib is also developed by Gailly and Adler and works on gzip-formatted data. When a
string has occurred for the second time, it is replaced by a pointer to the previous
occurrence using a hash table including all previously seen strings of 3 bytes length.
Previous occurrences can be searched within the recent 32KB starting from the closest

occurrence to benefit from the Huffman coding (Gailly, n.d.).

3.2.10 CompLearn

In this study, to compute the normalized compression distance scores the CompLearn
Toolkit (Cilibrasi, 2003) developed by Cilibrasi, Cruz and De Rooij is used. It is an
open source toolkit built based on Vitanyi and Li’s work on compression-based

learning algorithms.

To test the validity of the package, a small data set of 50 amino acid sequences is
randomly chosen from the data set and the 50x50 matrix of NCD scores is computed
using the LZW compression algorithm in MATLAB and using CompLearn’s LZMA
compressor. The comparison of the two matrices of NCD scores shows that they are
consistent with each other, i.e. the scores differ only in a constant additional term
which will be eliminated by when computing the distances of NCD vectors by the
INN classifier (see Section 4.1.1). The main difference in the scores appears along the
diagonal of the NCD matrices: NCD(x,x) computed by CompLearn is dramatically
greater than the one computed by the LZW of MATLAB. However this is not a

decisive factor, since the normalized compression distance of a sequence to itself is
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never needed for testing the classifiers, testing involves only distance of test instances
to train instances. Therefore, the CompLearn Toolkit is preferred due to its lower time-

complexity when compared to MATLAB.

To reduce the computational complexity, CompLearn makes an assumption in the
denominator of the equation (3.8) and uses C(x) instead max{C(x), C(y)}. Hence,
NCD(x, y) # NCD(y, x) and the developers of the CompLearn package report, that it
was experimentally shown that this assumption does not cause any important change

in the classification results.

3.2.11 NCD Incorporating Secondary Structure
Normalized compression distance is naturally also computable for sequences of
secondary structure. But since the study aims to involve both the amino acid sequence

and the secondary structure, new approaches are necessary.

The first approach is a composite NCD score that considers the amino acid sequence
and the secondary structure in varying ratios. The NCD scores for the amino acid
sequence (NCD(xaa, yas)) and the NCD scores for the secondary structure (NCD(xss,

yss) are computed separately and joined with a user defined parameter f:

NCDg(x, y) = (1 —B). NCD(xaa, yaa) + B . NCD(Xss, yss) (3.9)

3.2.12 NCD Using Joint Representation

The second approach is generating a joint representation where each letter stands for
an amino acid with a certain secondary structure. Since there are 20 amino acids and 3
secondary structures, the joint representation requires a mapping to an alphabet of 60
characters. This mapping is shown in Table 3.1 and Figure 3.3. show the conversion to
the joint representation for the beginning region of the protein 10MH:A according to

Table 3.1. The NCD scores are computed using this joint representation and

represented as NCDgp.

Amino Acid MIEIKDKQLTGLRFIDLFAGLGGFRLALESCGAECVYSNEWD
Sequence

Secondary LLLLLLLLLLLLEEEEELLLLLHHHHHHHLLLLEEEEEELLL
Structure

Joint .| GxLxaTapdyRd rNWHCOCRARPMbAbIVFRCKEL7uiL5I
Representation
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Figure 3.3: Conversion to joint representation of the beginning part of the protein
10MH: A

Table 3.1: Mapping to joint representation

Amino | Secondary Amino | Secondary

Acid structure Joint rep Acid Structure Joint rep.

>
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3.3. Combining Smith-Waterman and Normalized Compression Distance

Kocsor et al. (2005) worked on comparison of alignment-based and compression-
based classification and they reported that alignment-based classification outperforms
the compression-based classification, but combining the classification made by
combining the alignment and compression scores outperforms both. They suggest

combining the two scores with the formula below:
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| SW(x, y)

NCD(x,
SW(x. x)] (x,y) (3.10)

F(x,y)= (
where F(x, y) is the combined similarity score for the sequences x and y. The Smith-
Waterman score is normalized by SW(x,x) since NCD(x, y) is also normalized by C(x),
an assumption explained in Section 3.2.10 and it is subtracted from 1 since the Smith-
Waterman alignment score is a similarity score and the NCD is a distance

(dissimilarity) score.

This is suggested for amino acid sequence only, so it must be extended to incorporate
the secondary structure. In Section 3.1.1.2 it is explained how to include the secondary
structure in the Smith-Waterman alignment score SW,(x,y) and in 3.2.9 it is explained

how to include secondary structure in the NCD score NCDp(x, y). These reveal a

combined similarity score, f,s for SW, and NCDg which is defined as follows:

_SW,(x,y)

faﬂ(-x’ y): 1 SWa()C,)C)

NCD,B (X, y) (3.11)

However, it is possible that the Smith-Waterman alignment and the normalized
compression perform differently on sequences with different length. In other words,
the performance of alignment-based and compression-based classifications may
depend on sequence length and classifying sequences of a certain length with Smith-
Waterman alignment scores can be more successful than with NCD scores, whereas

NCD performs better on sequences of other lengths.

To inspect the consistency of the Smith-Waterman alignment scores and NCD scores,
the counting inversion method is implemented (Kleinberg and Tardos, 2006). The
dataset is split into 10 bins according to the length of sequences. The 5 bins with
longer sequences (6™, 7™, 8™, 9™ and 10" bins) include only a few sequences, so these
are discarded. The 5" bin consists of 81 sequences, therefore 80 random samples from
each of the 5 bins are chosen and their Smith-Waterman and NCD scores are

computed.

Similar sequences are expected to have a higher Smith-Waterman similarity score and
lower NCD scores than sequences with less similarity. Because of that, if sequence S;

is closer to the sequence §; than the sequence S, then SW(S;, §;) is expected to be
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greater than SW(S;, Sy). In this case, if the NCD scores are consistent with the Smith-
Waterman scores, which means that if they are indicating the same relations between
the sequences, NCD(S;, S;) must be smaller than NCD(S;, S) or it is an inversion. So, a

high number of inversions show that the two scoring algorithms indicate different

relationships in the dataset. The pseudocode for counting inversions for the sequence

S; in a data set consisting of N sequences is given in Figure 3.4.

for i:1-N
order SW-scores for S; in decreasing order
order NCD-scores for S; according to ordered SW-scores
end
for i:1-N
for j(i+1) »N
if NCD(S;, Sj) > NCD(S;, Sj)
#inversions++
end
end
end

Figure 3.4: Pseudocode for counting inversions

There is a faster (O(NlogN)) divide-and-conquer algorithm to count inversions;
however since our problem size is not too big, we used this straightforward O(N?)

algorithm (Kleinberg, 2006).
For the given bins, Smith-Waterman alignment score for amino acid sequence only
(SWy44) and for secondary structure only (SWss) and NCD scores for amino acid

sequence only (NCDg4) and for secondary structure only (NCDgs) are computed. The

reference compressor used for NCD is the LZMA compressor of the CompLearn

Toolkit.
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Figure 3.5: Count of inversions for SWas - NCDaa
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Since the counts of inversion computed for amino acid sequences and secondary
structures do not reveal any relation (see Figure 3.5 and Figure 3.6), the counts of

inversions are normalized by the sequence lengths.
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Figure 3.7: Normalized count of inversions for SWas - NCDaa

The counts of inversions computed for amino acid sequences and for secondary
structure show almost the same pattern (see Figure 3.5). The number of inversions
decreases exponentially with increasing sequence length and also the standard
deviation decreases dramatically with increasing sequence length. For an amino acid
sequence and secondary structure of length L, the count of inversion w is related as in

Equation (3.11) and Equation (3.12), respectively (see Figure 3.6 and Figure 3.7).

log(w) = 4,0365 + 0,0083 . L — 0,5486 . \L (3.11)

log(w) = 3,8667 + 0,0093 . L —0,5663 . L (3.12)
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Figure 3.8: Normalized count of inversions for SWgs - NCDsgs

The decrease in the number of inversions by increasing sequence length shows that the
two metrics indicate the same structural similarities and that these structural
similarities are to be recognized much well in longer sequences since the alignment
score of two sequences and their compression efficiency is expected to increase with
increasing sequence length. For short sequences, the number of inversions is high,
which means that one of the metrics fail recognizing the structural similarity of
sequences. The failing one is expected to be the compression score since shorter
sequences is harder to compress. Therefore, the compression scores should affect the

combined similarity score with respect to the sequence length. So, the combined

similarity score f,4 is modified to include normalization with the sequence length:

_SW,(x,y) (

.NCD ,(x,
SW. (x.x) @ 5( y)) (3.13)

Faﬁ’(x’y) =

where ¢ is the normalization factor with:
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min{l x1,| y |l
¢=( UELIDA j (3.14)

max{l s |, s € dataset}

To manually regulate the contribution of the secondary structure, another additive
parameter, 0, is introduced into the equation (3.12) and the following formula is

obtained:

_SW,(x,y)

W x))(ww).NCDﬁ(x, ) (3.15)

Fé‘(x’y)z(l

Section 3.2.12 explains another NCD score, NCDgp, for which another combined

similarity score has to be defined. Aygiin et al. report that including the secondary in
the Smith-Waterman score at level 25%, i.e. setting a to 0.25, leads to the best
classification results (Aygiin et al., 2008), therefore Smith-Waterman score computed

with a = 0.25 is used for the computation of the combined score Fip.

/AMES)

NCD_, (x,
W, () ) 60(X5 Y) (3.16)

Foo(x,y) = (

3.4. Using Smith-Waterman and NCD Scores Together

Another method of combining Smith-Waterman and NCD is using both of them by
setting them together to a single feature vector. In this case, the feature vector of a
protein consists from its pairwise Smith-Waterman scores including both primary and
secondary structures (Equation 3.1), NCD scores including both primary and
secondary structures (Equation 3.9), and sequence length. An example for a sequence
X for a train set consisting of N sequences is seen in Figure 3.17. The classifier
obtained with this feature vector is called Fap .

Seq.

Smith-Waterman NCD
length

[SWa(X, Seqy) ... SWa (X, Seqn)] | [NCDg(X, Seq)) ... NCDg(X, Seqn)] L

Figure 3.9: Feature vector of protein sequence X
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4. PATTERN RECOGNITION METHODS

4.1. Classification Algorithms

4.1.1 K-nearest neighbor classifier

The k-nearest neighbor (kNN) classification is a supervised learning algorithm that
classifies the test instance to the class to which the majority of the k nearest train
instances belong (Alpaydin, 2004). “Nearest” means having the smallest distance
computed with a certain distance measure, e.g. Euclidean or cosine. The train
instances can be both positive and negative, so the kNN algorithm enables learning
from negative examples, too. The parameter k is usually chosen an odd number to
avoid the case in which the numbers of train instances belonging to two neighboring
classes are equal and the classifier cannot decide between them (Alpaydin, 2004).
kNN is a quite straight-forward algorithm with low computational complexity and

surprisingly good performance (Kocsor et al., 2005).

I-nearest-neighbor (INN) is a special case of kNN where k is set to 1 and the test
instance is classified to the same as class as its nearest neighbor. This is the classifier

used in this study with the Euclidean distance measure.

4.1.2 Thresholded nearest neighbor classifier

The thresholded nearest neighbor classifier (tNN) is a variation of the nearest neighbor
classifier. Considering that the negative instances in our data set are not proven
negatives in all cases (it is possible that a protein show a specific function, but it is
experimentally not shown yet), this algorithm deals only with positive instances. It

does not use a distance function, instead it decides based on the preferred similarity

score. To decide if the test instance s; belongs to the class Cj, the classifier finds the
most similar train instance, s;, which belongs to C; and similarity score of s; and s;,
called Dj; is tested on a threshold taken from the user. If Dij > threshold, then s; is
classified to the class C;.

In this study, the tNN is used with the Smith-Waterman alignment scores SWygs,

SWhe, SWhr, SWy, SWg and SW,, which are explained in Section 3.1.1.2.
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4.1.3 Support vector machines

Support vector machines are discriminant-based supervised learning algorithms
learning from the linear discriminant. It is assumed that the classes are linearly
separable from each other. The linear discriminant can be used even if no assumptions

on class densities in the data set are possible (Alpaydin, 2004).

SVMs define hyperplanes that separate the classes in the data set. The distances
between the hyperplanes, or the distance between the instances closest to the
hyperplane, are called the margin (Alpaydin, 2004). SVM obtains support vectors by

finding the optimal hyperplanes, which means by maximizing the margin.

If the data set is not linearly separable, it can be transformed to a new space of higher
dimension where it is linearly separable and this transformation is done by the kernel
function (Alpaydin, 2004). The most frequently used kernel functions are polynomial,
radial-basis and sigmoidal, whereas homogenous, exponential, cosine, minkowksi etc.

kernel functions are also possible.

In this study, SVM classifier is not used, because its performance on a smaller data set
with radial-basis kernel was found to be very close to that of INN and running SVM

on our data set has a high computational complexity.

4.2. One-Against-All

One-against-all classification is a method where the data set is divided into two
subsets, the first subset is the class to be predicted and the second subset is made up by

all the other classes. The aim is to correctly isolate one certain class from the others.

The dataset used in this study is multi-labeled since an instance may belong to more
than one class, which means that each of the 27 classes have to be predicted
independently from all other classes. Therefore, for the prediction of each class, it is

set to be the class to be predicted and a one-against-all classification is done.

4.3. Classifier Evaluation Methods

4.3.1 K-fold cross validation
On large data sets, the train and test sets can be obtained by randomly partitioning the
data set. However, the data sets are usually not large enough for this and each instance

is too substantial to be isolated from training or testing.
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K-fold cross validation is a method of partitioning the data set which enables to use all
instances both for training and testing without damaging the evaluation of the
classifier. The data set is be divided into k random parts, in other words, k subsets of
randomly selected sequences are produced (Alpaydin, 2004). On each fold, (k -1)
subsets make up the train set and the remaining subset is used for testing (Alpaydin,

2004).

In this study, k-fold cross validation with k=10 is used where each of the 10 subsets

have the same class distribution as the original (not partitioned) data set.

4.3.2 Accuracy

To analyze the success of the classification, accuracy is a frequently used measure. It
is based on the class confusion matrix which is a table showing how many instances
from each class are classified to which class by the classification algorithm used. An
example is seen in Table 4.1 where TP stands for true positive, TN for true negative,

FP for false positive and FN for false negative.

Table 4.1: Class confusion matrix (Alpaydin, 2004)

Predicted Class
True Class | Yes No
Yes TP FN
No FP TN

Accuracy is defined as follows (Bradley, 1997):

accuracy = [P+ 1N 4.1
Y TP+ FP+TN+ FN @.D

4.3.3 Break-even point
Accuracy gives the performance of a classifier at a certain parameter setting. The best
accuracy obtained by computing the break-even point, which is the point where recall

and precision values are equal to each other (Passerini et al., 2006):

.. TP
pr€ClSZOI’l = —P N FP (4.2)

recall = L
TP+ FN @.3)
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The break-even point analysis is used to determine the best threshold for tNN

classifier which is the threshold at the break-even point (Passerini et al., 2006).

4.3.4 Area under the ROC curve (AUC)

Another evaluation technique is the receiver operating characteristics (ROC) curve
first used in signal detection theory (Bradley, 1997). The curve which is obtained by
drawing the hit rate versus the false alarm rate defined as follows (Alpaydin, 2004):

hit _rate = L
- TP+ FN @4
FP
alse _alarm _rate = ———
Jalse _ - FP+TN 4.5)

Each classification algorithm includes a parameter by moving which the number of TP
and FP can also be moved. Increasing 7Ps does also increase the number of FPs, so
with increasing hit rate, false alarm rate also increases (Alpaydin, 2004) (see Figure
4.1). For random classification, the ROC curve is expected to be the first bisector since
hit rate is equal to the false alarm rate, namely both are 0.5. The better the
performance of the classifier, the greater is the curvature of the ROC curve since the
hit rate grows much faster than the false alarm rate and the curve get closer to the line

hit rate = 1.
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Figure 4.1: An ROC curve (Hanley and McNeil, 1982)

The ROC curve however defines no single operating point; it does not give a single
measure independent from decision properties, e.g. thresholds, for comparing to
classification algorithms (Bradley, 1997). Therefore, the area under the ROC curve
(AUC) is used which is integral of the ROC curve. The better the performance of the
classifier, the closer is the ROC curve to the line hit rate = 1, so it encloses a greater

area. Consequently, the AUC is proportional to the classifier performance.

This study compares the classifier using AUC values obtained from ROC curves
computed for each fold of each class. The AUC value for a class is then the mean of
the AUC values of its 10 folds. For testing the tNN, the threshold is initially set to the

minimum Dij (see Section 4.3) in the test set and moved to the maximum in equally-

sized steps. Since AUC is used to determine the classification performance, no certain

threshold is needed for tNN.
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S. EXPERIMENTAL RESULTS

5.1. Alignment-Based Classification

5.1.1 Classification using amino acid sequence and isolated secondary structure
This section shows the experimental results obtained by using the SWgygr, SWhy,
SWhg, SWy, SWEg and SWp, scores explained in Section 3.1.2.2 in detail. The
classification is made using the one-nearest-neighbor (1NN) classifier explained in

Section 4.1.1 and the thresholded nearest neighbor (tNN) classifier explained in
Section 4.1.2.

5.1.1.1 1NN classification

Function prediction results using the 1NN classification algorithm is shown in Table
5.1. Six classifiers using the SWggr, SWyr, SWhg, SWy, SWE and SWp, scores, called

the HEL, HL,, HE, H, E and L classifiers respectively, are produced and compared
using the AUC values.

For 1NN classification, the HEL classifier, namely the classifier that uses the SWggr
scores or in other words that uses the amino acid regions corresponding to all
secondary structure types, has the best performance (mean AUC: 0.90) for all
molecular functions except for class 14 (hormone activity) where all classifiers have
very close and high performances. The mean AUC of for the HL classifier is 0.86
which is very close to the HEL classifier and it is followed by the H (mean AUC:
0.79) and L classifiers (mean AUC: 0.77). The E (mean AUC: 0.74) and HE classifiers
(mean AUC: 0.64) performed generally worse than other classifiers. The higher
performance of the classifier using the alpha-helix (H) and loop (L) regions is to be
expected since their ratio in the data set is higher than the beta-sheet (E) regions (see
Figure 2.12). The fact that the HL classifier performs better than classifiers using H or
L regions alone, shows that adding L regions to H regions results in a better
prediction. But the facts that the AUC values of the E and HE classifiers are very close
to each other and that both are lower than the H classifier indicate that using E regions

introduces noise and reduces the classification performance. This also explains the
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peak at class 14 since the portions of E regions in this class is only 4,75%, ca. a half of

the closest E regions’ portion of other classes (see Table 2.5), which makes the

sequences in this class far less vulnerable to the noise introduced by E regions.

Table 5.1: Mean AUC values for HEL, HE, HL, H, E and L classifiers using INN

Classifiers
C;f‘(fs GOID |HEL HL HE H E L
1 9405 | 0.86+0.02 | 0.83+0.02 | 0.68+0.04 | 0.62+0.03 | 0.78+0.02 | 0.72+0.02
2 9055 |0.89+0.02|0.88+0.03 | 0.73+0.03 | 0.75+0.03 | 0.67+0.04 | 0.78+0.03
3 6810 |0.90+0.02 | 0.86+0.03 | 0.64+0.03 | 0.74+0.03 | 0.78+0.03 | 0.76+0.04
4 | 16787 |0.94%0.02]0.90+0.02]0.69+0.01|0.84+0.02 | 0.87+0.01 | 0.82+0.02
5 5506 |0.93+0.010.89+0.02 | 0.66+0.01 | 0.86=0.02 | 0.64+0.03 | 0.75+0.02
6 166 |0.92+0.01|0.89+0.02 | 0.52+0.01 | 0.83+0.01 | 0.79+0.02 | 0.77+0.03
7 3676 |0.86+0.01|0.83+0.01 | 0.61+0.02 | 0.72+0.02 | 0.73+0.02 | 0.72+0.02
8 3700 | 0.88+0.02|0.85%0.02 | 0.70+0.02 | 0.81+0.02 | 0.52+0.04 | 0.65+0.02
9 6508 |0.93+0.02|0.90+0.01 | 0.68+0.02 | 0.81%0.02 [ 0.82+0.02 | 0.82+0.02
10 | 6412 |0.88+0.01|0.83+0.02]0.58+0.03 | 0.74+0.02 | 0.67+0.03 | 0.75+0.03
11 | 3723 |0.85%0.01]0.82+0.02]0.62+0.02 [0.74+0.02 [ 0.67+0.02 | 0.67+0.04
12 | 8270 |0.91+0.01|0.89+0.01]0.65+0.03 | 0.73+0.02 [ 0.67+0.02 | 0.82+0.02
13 | 5975 |0.94+0.01]0.92+0.01]0.69+0.03 | 0.81%0.02 [0.89+0.01 | 0.82+0.01
14 | 5179 [1.00+0.00]0.99+0.00]0.97+0.01 | 0.97+0.01 | 0.95+0.02 | 0.99+0.00
15 | 16020 |0.85+0.02]0.8120.02]0.6620.01|0.66=0.02 [0.69+0.02 | 0.72+0.01
16 | 5515 |0.87+0.01|0.86+0.01]0.55+0.020.71%0.01 | 0.67+0.02| 0.73+0.02
17 | 5634 |0.84+0.01|0.8120.01]0.58+0.02|0.75+0.02 [ 0.61+0.02 | 0.64+0.02
18 | 6355 |0.88+0.01]0.85+0.01]0.6620.02|0.77+0.01 | 0.59+0.03 | 0.67+0.02
19 | 5737 |0.85%0.01]0.84+0.01 ] 0.48+0.02 [0.83+0.01 | 0.8020.01 | 0.77+0.01
20 | 5622 |0.87+0.01]0.84+0.01|0.59+0.01|0.7620.01 | 0.64+0.01 | 0.70%0.02
21 | 5524 |0.91%0.01]0.89+0.01|0.52+0.01]0.85+0.01 | 0.83%0.01 | 0.81%0.01
22 | 6118 |0.93%0.01]0.90+0.01|0.66+0.01]0.80+0.01 | 0.71=0.01 | 0.83%0.01
23 | 16491 |0.9620.000.94+0.000.75+0.01]0.90+0.01 | 0.84=0.01 | 0.86=0.01
24 | 3677 |0.88+0.01]0.83+0.01|0.56+0.02]0.7620.01 | 0.63%0.02 [ 0.72%0.01
25 | 5576 |0.93%0.01]0.93+0.01|0.82+0.01]0.79+0.02 | 0.84=0.02 | 0.88+0.02
26 | 8152 |0.95+0.01]0.93+0.01|0.58+0.02]0.92+0.01 | 0.89=0.01 | 0.85+0.01
27 | 3824 |0.94+0.00|0.92+0.010.45+0.01]0.88+0.01 | 0.87%0.01 | 0.85+0.00
mean 0.90 0.86 0.64 0.79 0.74 0.77

5.1.1.2 tNN classification

Function prediction results using the tNN classification algorithm is shown in Table

5.2. Six classifiers using the SWggr, SWgr, SWyg, SWg, SWE and SWp, scores, called

the HEL, HL, HE, H, E and L classifiers respectively, are produced and compared

using the AUC values.
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tNN has the best performance for the HEL classifier with mean AUC 0.81, followed
by the HL classifier (mean AUC: 0.77) as by the 1NN algorithm. Class 14 is again an
outstanding point with best performance for each classifier. Different from 1NN, the
AUC values for the H, E and L classifiers are very close to each other, mean AUCs
0.66, 0.67 and 0.67 respectively; but the HE classifier performed better than these
three classifiers with mean AUC 0.73. Another distinguishing point is the very low
AUC values for class 27 (catalytic activity) for all classifiers which is not the case by
INN except for the HE classifier. The noise effect of E regions stated by the 1NN
algorithm is not seen by classification using the tNN algorithm. The performance of
the HL classifier being better than the HE classifier is explained by the L portion in
the data set which is greater than the E portion. Generally, the AUC values obtained
using the tNN algorithm is lower than the AUC values obtained using the 1NN
algorithm. Since tNN does not use the negative examples, its lower prediction
performance is not surprising as learning from negative examples enhances the

prediction performance (Liao and Noble, 2003).

5.1.2 Classification using amino acid sequence and secondary structure on
different levels

This section shows the experimental results obtained by using the SW,, scores which is
defined with Equation (3.1) in Section 3.1.2.2. The classification is made using the
one-nearest-neighbor (INN) classifier explained in Section 4.1.1. To include the
secondary structure in different levels, a is set to 0, 0.25, 0.5, 0.75 and 1.0 and the
classifiers obtained are called SWO0, SW25, SW50, SW75 and SW100 classifiers

respectively. The classification results are shown in Table 5.3 and Figure 5.1.

Aygiin et al. (2008) experimented using the same methodology on a different data set
and found that all classifiers perform very close to each other whereas the SW25
classifier outperforms the other classifiers just slightly. Experimental results for
classifiers SW0, SW25, SW50, SW75 and SW100 are consistent with the results
obtained by Aygiin et al. (2008) since the best mean AUC value (0.92) is obtained by
the SW25 classifier. This is followed by the SW50 and SWO classifiers with the mean
AUCs 0.91 and 0.90 respectively. The mean AUC value for SW75 is 0.88 and the
mean AUC value for SW100 is 0.84 which is the worst performance. For all

classifiers, class 14 is an outlier with an AUC of nearly 1.00.
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Table 5.2: Mean AUC values for HEL, HE, HL, H, E and L classifiers using tNN

Classifiers
C;f‘(fs GO ID |HEL HE HL H E L
1 | 9405 |0.82%0.02]0.7620.03 [0.79+0.02 | 0.7420.02 | 0.65+0.02 | 0.72+0.03
2 | 9055 |0.84+0.01|0.78+0.02 0.81%0.01 | 0.68+0.02 |0.72+0.01 | 0.72+0.01
3 | 6810 |0.78+0.04|0.68+0.04 |0.73+0.04 | 0.66+0.03 | 0.61+0.03 | 0.62+0.05
4 | 16787 |0.84+0.02[0.7420.01 |0.78+0.02 [ 0.6120.01 | 0.70+0.03 | 0.72+0.02
5 | 5506 |0.85+0.020.8120.02 |0.82+0.03 | 0.72+0.02 | 0.74+0.02 | 0.70+0.03
6 166 |0.79%0.03 | 0.70£0.03 |0.74+0.03 | 0.6120.03 | 0.64+0.03 | 0.58+0.02
7 | 3676 |0.77+0.03 [0.68+0.03 [0.73%0.03 | 0.65+0.03 | 0.60+0.04 | 0.62+0.03
8 | 3700 |0.88+0.020.810.02 [0.8620.02 |0.75+0.02 |0.72+0.02 | 0.75+0.02
9 | 6508 |0.74+0.02|0.6120.02 | 0.68+0.03 | 0.58+0.02 | 0.54+0.02 | 0.54+0.03
10 | 6412 |0.8420.02 [0.7220.01 |0.78%0.02 | 0.65+0.01 | 0.67+0.02 | 0.65+0.02
11 | 3723 |0.82%0.02]0.76+0.02 [0.78+0.02 | 0.69+0.02 | 0.68+0.02 | 0.68+0.02
12 | 8270 |0.81%0.03]0.74+0.03 |0.79+0.03 | 0.67+0.02 | 0.69+0.02 | 0.72+0.03
13 | 5975 |0.75+0.02 [0.60+0.02 [0.66=0.03 | 0.53+0.02 |0.56+0.01 | 0.52+0.02
14 | 5179 |1.00£0.00 [0.99+0.00 [0.99+0.00 | 0.99+0.01 |0.97+0.00 | 0.99+0.01
15 | 16020 |0.74%0.03]0.69+0.03 |0.70+0.03 | 0.70+0.02 | 0.62+0.02 | 0.60+0.03
16 | 5515 |0.80+0.02[0.72%0.02 [0.78+0.02 | 0.68+0.02 | 0.67+0.02 | 0.67+0.02
17 | 5634 |0.79+0.02 [0.7620.02 [0.77%0.02 [ 0.7120.02 | 0.69+0.02 | 0.69+0.02
18 | 6355 |0.87+0.01|0.8120.01 |0.84=0.01 | 0.7420.02 |0.72+0.02 | 0.75+0.01
19 | 5737 |0.67%0.02]0.56£0.03 |0.63+0.02 | 0.48+0.02 | 0.54+0.02 | 0.54+0.02
20 | 5622 |0.83+0.01|0.77+0.01 | 0.79+0.01 | 0.68+0.01 | 0.7120.02 [ 0.6620.01
21 | 5524 |0.77+0.02]0.64+0.02 | 0.72+0.02 | 0.54+0.01 | 0.5620.02 [ 0.57%0.02
22 | 6118 |0.8120.01]0.7120.01 |0.75+0.01 | 0.60+0.01 | 0.63%0.01 | 0.63%0.01
23 | 16491 |0.88+0.02]0.78+0.02 | 0.82+0.02 | 0.610.02 | 0.6620.02 | 0.68+0.02
24 | 3677 |0.77+0.02]0.69+0.02 | 0.73+0.02 | 0.62+0.02 | 0.6420.02 | 0.6420.02
25 | 5576 |0.93+0.01|0.90+0.01 |0.92%0.01 | 0.88+0.01 | 0.85+0.01 | 0.88+0.01
26 | 8152 |0.84+0.01|0.73+0.01 | 0.79+0.02 | 0.610.01 | 0.72%0.02 [ 0.69+0.02
27 | 3824 |0.74+0.01 |0.60+0.01 | 0.68=0.01 | 0.48+0.01 | 0.51+0.01 | 0.55%0.01
mean 0.81 0.73 0.77 0.66 0.67 0.67
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Table 5.3: Mean AUC values for SW0, SW25, SW50, SW75 and SW100 classifiers

using 1NN
Classifiers
Class
No GOID | SW0 SW25 SWs50 SW75 SW100
1 9405 0.86+0.02 | 0.89+0.01 | 0.88+0.02 | 0.82+0.02 | 0.7620.03
2 9055 0.89+0.02 | 0.90+0.02 | 0.91+0.02 | 0.88+0.02 | 0.86%0.03
3 6810 0.9020.02 | 0.90£0.02 | 0.90+0.02 | 0.85+0.03 | 0.84+0.03
4 16787 0.9440.02 | 0.95+0.01 | 0.96+0.01 | 0.96+0.01 | 0.94+0.01
5 5506 0.9340.01 | 0.94+0.01 | 0.94+0.01 | 0.91+0.01 | 0.88+0.01
6 166 0.9240.01 | 0.94+0.01 | 0.94+0.01 | 0.92+0.01 | 0.90%0.01
7 3676 0.86+0.01 | 0.91+0.01 | 0.90+0.01 | 0.84+0.01 | 0.78+0.01
8 3700 0.88+0.02 | 0.89+0.01 | 0.88+0.01 | 0.83+0.02 | 0.77+0.02
9 6508 0.9340.02 | 0.94+0.01 | 0.93+0.01 | 0.90+0.01 | 0.86%0.01
10 6412 0.88+0.01 | 0.90+0.02 | 0.88+0.02 | 0.81+0.02 | 0.72+0.03
11 3723 0.85+0.01 | 0.87+0.01 | 0.88+0.01 | 0.82+0.01 | 0.80+0.01
12 8270 0.91+0.01 | 0.93+0.01 | 0.91+0.01 | 0.85+0.02 | 0.79+0.02
13 5975 0.944+0.01 | 0.95+0.01 | 0.95+0.01 | 0.94+0.01 | 0.92+0.01
14 5179 1.00£0.00 | 1.002£0.00 | 0.99+0.00 | 0.994+0.01 | 0.97+0.01
15 16020 0.85+0.02 | 0.87+0.01 | 0.86+0.02 | 0.82+0.02 | 0.77+0.02
16 5515 0.87+0.01 | 0.89+0.01 | 0.88+0.02 | 0.82+0.01 | 0.77%0.02
17 5634 0.84+0.01 | 0.86+0.01 | 0.86+0.01 | 0.81+0.01 | 0.77%0.02
18 6355 0.88+0.01 | 0.89+0.01 | 0.90+0.01 | 0.85+0.01 | 0.80%0.01
19 5737 0.85+0.01 | 0.88+0.01 | 0.88+0.01 | 0.87+0.01 | 0.86%0.01
20 5622 0.87+0.01 | 0.89+0.01 | 0.88+0.01 | 0.82+0.01 | 0.76%0.01
21 5524 0.91+0.01 | 0.93+0.01 | 0.92+0.01 | 0.90+0.01 | 0.88+0.01
22 6118 0.9340.01 | 0.94+0.01 | 0.94+0.01 | 0.90+0.01 | 0.86%0.01
23 16491 0.9620.00 | 0.97+0.01 | 0.98+0.01 | 0.96+0.01 | 0.94+0.01
24 3677 0.88+0.01 | 0.90+0.01 | 0.89+0.01 | 0.83+0.01 | 0.78+0.01
25 5576 0.9340.01 | 0.95+0.01 | 0.93+0.01 | 0.90+0.01 | 0.87+0.02
26 8152 0.95+0.01 | 0.96+0.01 | 0.97+0.01 | 0.97+0.00 | 0.96%0.00
27 3824 0.9440.00 | 0.95+0.01 | 0.96+0.00 | 0.94+0.01 | 0.92+0.01
mean 0.90 0.92 0.91 0.88 0.84
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Figure 5.1: AUC values for SW0, SW25,
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5.2. Compression-Based Classification

5.2.1 Classification using amino acid sequence and secondary structure on

different levels

This section shows the experimental results obtained by using the NCDg scores which

is defined with Equation (3.9) in Section 3.2.1.1. The classification is made using the

one-nearest-neighbor (1NN) classifier explained in Section 4.1.1. To include the

secondary structure in different levels, £ is set to 0, 0.25, 0.5, 0.75 and 1.0 and the
classifiers obtained are called NCDO, NCD25, NCD50, NCD75 and NCDI100

classifiers respectively. The classification results are shown in Table 5.4 and Figure

5.2.

Table 5.4: Mean AUC values for NCDO, NCD25, NCD50, NCD75 and NCD100
classifiers using INN

Class

No GOID |NCDO NCD25 NCDs0 NCD75 NCD100
1 9405 0.76+0.03 | 0.74+0.02 | 0.71+0.03 | 0.70+0.04 | 0.69+0.04
2 9055 0.64+0.02 | 0.65+0.03 | 0.69+0.03 | 0.68+0.02 | 0.67+0.01
3 6810 0.63+0.02 | 0.65+0.02 | 0.67+0.03 | 0.62+0.03 | 0.62+0.02
4 16787 | 0.68+0.02 | 0.74+0.02 | 0.80+0.01 | 0.76+0.02 | 0.76+0.02
5 5506 0.67+0.02 | 0.73+0.13 | 0.70+0.03 | 0.72+0.03 | 0.73+0.02
6 166 0.63+0.03 | 0.68+0.02 | 0.74+0.02 | 0.74+0.01 | 0.73+0.01
7 3676 0.61+0.03 | 0.61+0.02 | 0.65+0.02 | 0.65+0.01 | 0.65+0.02
8 3700 0.63+0.02 | 0.67+0.03 | 0.74+0.01 | 0.65+0.02 | 0.65+0.02
9 6508 0.66+0.02 | 0.71+0.02 | 0.72+0.03 | 0.71+0.03 | 0.68+0.03
10 6412 0.65+0.03 | 0.65+0.03 | 0.69+0.03 | 0.70+0.03 | 0.67+0.03
11 3723 0.57+0.02 | 0.57+0.02 | 0.58+0.02 | 0.58+0.02 | 0.57+0.02
12 8270 0.62+0.02 | 0.66+0.02 | 0.68+0.02 | 0.66+0.02 | 0.66+0.03
13 5975 0.73+0.02 | 0.89+0.01 | 0.78+0.02 | 0.77+0.02 | 0.77+0.01
14 5179 0.99+0.00 | 0.994+0.00 | 0.99+0.00 | 0.99+0.00 | 0.99+0.00
15 16020 | 0.56+0.02 | 0.62+0.02 | 0.66+0.02 | 0.64+0.02 | 0.61+0.01
16 5515 0.58+0.02 | 0.60+0.02 | 0.62+0.02 | 0.63+0.02 | 0.61+0.02
17 5634 0.57+0.02 | 0.64+0.02 | 0.63+0.03 | 0.66+0.02 | 0.65+0.02
18 6355 0.62+0.02 | 0.66+0.01 | 0.65+0.02 | 0.66+0.02 | 0.66+0.01
19 5737 0.62+0.02 | 0.68+0.02 | 0.69+0.02 | 0.71+0.02 | 0.68+0.02
20 5622 0.56+0.02 | 0.60+0.01 | 0.61+0.01 | 0.62+0.01 | 0.60+0.02
21 5524 0.66+0.01 | 0.69+0.01 | 0.73+0.01 | 0.72+0.01 | 0.7240.01
22 6118 0.61+0.00 | 0.66+0.01 | 0.69+0.01 | 0.69+0.01 | 0.68+0.01
23 16491 0.68+0.01 | 0.75+0.01 | 0.80+0.01 | 0.79+0.01 | 0.77+0.01
24 3677 0.57+0.01 | 0.61+0.02 | 0.61+0.02 | 0.60+0.02 | 0.59+0.01
25 5576 0.85+0.02 | 0.82+0.02 | 0.81+0.02 | 0.80+0.02 | 0.82+0.02
26 8152 0.70+0.01 | 0.77+0.01 | 0.82+0.01 | 0.82+0.01 | 0.82+0.01
27 3824 0.71+0.01 | 0.75+0.00 | 0.78+0.01 | 0.78+0.01 | 0.78+0.01

mean 0.66 0.69 0.71 0.71 0.70
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Figure 5.2: Mean AUC values for NCDO0,
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The best mean AUC value, which is 0.71, is obtained for NCD50 and NCD75 where
B=0.5 and B=0.75 respectively. This followed by NCD100 with a mean AUC of 0.70
and by NCD25 with a mean AUC of 0.69. The worst performance (mean AUC: 0.66)
is obtained for NCDOO, the classifier using NCD scores obtained only from amino

acid sequence. Class 14 is again an outlier with almost AUC = 1.00.

5.2.2 Classification using the joint representation
This section shows the experimental results obtained by using the NCDgp scores which

is explained in Section 3.2.1.1 and the 1NN classifier explained in Section 4.1.1. The

classification results are shown in Table 5.5. The mean AUC obtained by using the

NCDgg scores is 0.69. Class 14 is again an outlier with almost AUC = 0.99.

Table 5.5: Mean AUC values using the NCDgg scores and the 1NN algorithm

Class GOID | NCD60
No
1 0405 | 0.72+0.04
2 9055 1 0.66 £0.03
3 6310 1 0.66 £0.03
4 16787 | 0.71£0.02
5 5506 0.73 £0.03
6 166 071002
7 3676 1 0.59 £0.03
8 3700 0.70 £0.02
9 6508 | 0.67 £0.02
10 6412 0.60£0.02
1 3723 1059 £0.02
12 8270 | 0.61+0.04
13 5075 1 0.78 £0.02
14 5179 10,99 £0.00
15 16020 ] 0.61 =0.01
16 5515 | 0.61 £0.02
17 5634 1 0.65£0.02
18 6355 1 0.68 £0.02
19 5737 1 0.67£0.02
20 5622 | 0.58 001
21 5524 0.69 £0.02
2 6118 | 0.67+0.02
23 16491 ] 0.75=0.01
24 3677 1 0.61 001
25 5576 1 0.83 £0.01
26 8152 10752001
27 3824 073001
mean 0.69
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5.3. Classification Using the Combined Similarity Metric

5.3.1 Classification using amino acid sequence and secondary structure on

different levels

This section shows the experimental results obtained by using the F,4 scores which is
defined with Equation (3.13) in Section 3.3. The classification is made using the one-
nearest-neighbor (1NN) classifier explained in Section 4.1.1. The results obtained in
Section 5.1.2 show that alignment-based classification had the best performance
mostly at a = 0.25, and for some classes at oo = 0 and a = 0.5 (see Figure 5.1). Section
5.2.1 shows that compression-based classification performed best at f = 0.5 and B =
0.75 and for some particular classes at B = 0 and = 0.75 (see Figure 5.2). Therefore,
Fypis tested for 0. =0, 0.25, 0.5, 0.75 and B = 0, 0.25, 0.5, 0.75 and 1.0. The classifiers

obtained are called as in Table 5.6. The classification results are shown in Table 5.7.

Table 5.6: Classifier names for varying o and 3 values

B
a 0 0.25 0.5 0.75 1.0
0 FO_0 FO_25 FO_50 FO_75 FO_100
0.25 F25_0 F25_25 F25_50 F25_75 F25_100
0.5 F50_0 F50_25 F50_50 F50_75 F50_100
0.75 F75_0 F75_25 F75_50 F75_75 F75_100

At any value of o, worst performance is obtained at B = 0 and the mean AUC values
obtained at any B>0 are very close to each other. Ignoring the results at B = 0, the
mean AUC value at a = 0 and a = 0.25 1s 0.71 and the mean AUC value at a = 0.5 is

0.72. Class 14 is again an outlier with the mean AUC very close to 1.00.

Classification made using the Fs scores defined in Equation (3.15) in Section 3.3. The
classification is made using the one-nearest-neighbor (INN) classifier explained in
Section 4.1.1. The parameter & which controls the contribution of secondary structure

is changed within the interval [0.0, 4.00] and o and P are set to 0.25 and 0.5,
respectively, based on the results in Sections 5.1.2 and 5.2.1. The classification results

are shown in Table 5.8.
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Table 5.7: Mean AUC values using the Fyg scores and the 1NN algorithm

Class

No FO_0 F0_25 FO_50 F0_75 FO_100
1 | 071 +0.02 |0.72 = 0.02 |0.71 + 0.03 | 0.71 + 0.03 | 0.72 = 0.04
2 071 = 0.03 |0.74 + 0.03 |0.75 = 0.02 | 0.72 + 0.02 | 0.72 + 0.02
3 1069+003 |071+002 |067+002 |0.66+003 |0.68+0.03
4 1069+002 |0.72+002 |076+0.02 |0.77+0.02 |0.78+0.02
5 1072+0.03 |0.74+003 |073+0.04 |072+003 |0.72+0.03
6 1072+002 |0.74+002 |075+0.02 |076+0.02 |0.75+0.02
7 10.60+002 |059+002 |059+002 |060+002 |0.6I+0.02
8 |0.65+002 |069+003 |070+0.03 |068+0.03 |0.68+0.03
9 1070+£0.01 |0.72+002 |073+0.02 |0.74+002 |0.74+0.02
10 | 064+003 |061+003 |059+003 |0.58+004 |0.57+0.04
11 | 058+0.03 |058+002 |060+002 |059+002 |0.57+0.02
12 | 066+003 |066+003 |068+003 |0.69+003 |0.680.03
13 | 077002 |078+001 |079+0.01 |0.79+002 |0.79 =0.02
14 | 098+0.01 |099+001 |099+000 |0.99+000 |0.990.00
15 | 059+001 |062=001 |062+002 |0.62+002 |0.61=0.01
16 | 062+002 |059+002 |056+002 |0.58+002 |0.590.02
17 | 062+002 |065+002 |066+002 |0.67+002 |0.660.02
18 | 068+002 |069+001 |068+001 |0.65+001 |0.64+0.01
19 |063+002 |065+002 |069+002 |0.70+0.02 |0.69+0.02
20 | 061+0.02 |0.62+001 |063+0.02 |061+002 |0.60%0.02
21 | 071+0.02 |0.72+002 |075+001 |0.74+001 |0.74+0.01
22 | 0.66+001 |068+001 |070+0.02 |067+001 |0.67+00I
23 | 0.76+0.01 |080+001 |081+001 |080+0.01 |0.80=00I
24 | 0.63+001 |063+001 |061=002 |060+002 |0.6I+00I
25 |087+001 |088+001 |084+001 |082+002 |0.81+0.02
26 | 0.76+001 |080+001 |083+001 |084+001 |082+00I
27 |078+0.01 |081+001 |082+001 |082+001 |0.83+00I

mean | 0.69 0.71 0.71 0.71 0.71

C;f‘(fs F25 0 F25 25 F25_50 F25 75 F25_100
1 | 071+002 |071+0.02 |070+003 |0.71+0.03 |0.72 %0.04
2 071003 |0.74+003 |075+002 |072+0.02 |0.72+0.02
3 068002 |069+002 |066+002 |066+0.03 |0.68+0.03
4 1070+0.02 |0.73+002 |077+002 |0.78+0.02 |0.79+0.02
5 1072+0.03 |0.74+003 |073+0.04 |072+0.03 |0.72+0.03
6 1072+002 |0.74+002 |076+0.02 |077+0.02 |0.76+0.02
7 10.61+002 |060+0.02 |060+002 |061+002 |0.6I+002
8 |0.67+001 |070+003 |0.70+0.03 |069+0.03 |0.68+0.03
9 1070+£0.03 |0.73+002 |074+002 |074+002 |0.74+0.02

10 | 063+0.02 |060+004 |058+004 |057+004 |0.57+0.04
11 | 058+003 |058+001 |060+002 |058+002 |0.57+0.02
12 | 065+0.02 |065+003 |068+003 |0.68+003 |0.680.03
13 | 0.78+001 |0.78+0.01 |079+0.01 |0.79+001 |0.79+0.01
14 | 098+0.01 |099+001 |099+000 |0.99+0.00 |0.990.00
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15 ]060+002 ]063+002 ]063+002 |0.63+002 |0.62+0.02
16 | 060+0.02 |058+002 |056+002 |0.58+002 |0.58+0.02
17 | 062+002 |064+002 |064+002 |0.66+002 |0.660.02
18 | 067+002 |067+001 |067+001 |0.65+001 |O0.64=0.01
19 | 064+001 |066+002 |070+002 |0.71+002 |0.70 =0.02
20 | 059+0.02 |0.60+001 |062=002 |0.61+002 |0.60%0.02
21 | 072+0.02 |0.73+002 |075+001 |0.75+0.01 |0.75+0.0I
22 | 066+001 |0.67+001 |070+0.02 |0.67+0.02 |0.67+0.02
23 | 0.76+001 |080+001 |082+001 |080+0.01 |0.80=0.0I
24 | 0.62+001 |062+001 |060+002 |060+0.02 |0.6I+002
25 | 086+001 |086+002 |083+001 |082+002 |0.81+002
26 |077+001 |081+001 |084+001 |084+001 |0.83+00I
27 | 0.79+001 |081+001 |083+001 |083+001 |0.83+00I

mean | 0.69 0.71 0.71 0.71 0.71

C;f‘(fs F50_0 F50_25 F50_50 F50_75 F50_100
1 | 071+£002 |070%0.02 |070+0.02 |0.71+0.03 |0.72 «0.04
2 071003 |0.74+003 |076+003 |073+002 |0.73+0.02
3 | 0.68+002 |068+003 |066+002 |067+003 |0.69+0.03
4 1073002 |0.76+002 |078=0.02 |0.79+0.02 |0.79+0.02
5 |0.73+003 |075+003 |074+003 |072+003 |0.72+0.03
6 1075002 |0.76+002 |077+0.02 |0.78+0.02 |0.77 +0.02
7 | 0.64+002 |063+003 |062+002 |063+002 |0.63+002
8 1070£0.02 |0.71+002 |072+002 |070+0.02 |0.69+0.03
9 1072+0.02 |0.74+002 |075+0.02 |0.75+0.02 |0.75+0.02
10 | 060+0.04 |061=004 |060+004 |058+004 |0.58z0.04
11 | 056+0.02 |058+001 |060+001 |0.60+001 |0.59+0.02
12 | 066+003 |066+003 |069+003 |0.69+003 |0.690.03
13 | 079+002 |079+0.02 |080+0.01 |0.79+001 |0.79+0.01
14 | 099+0.01 |099+000 |099+000 |0.99+0.00 |0.990.00
15 | 060+002 |062+002 |062+002 |0.63+002 |0.63+0.02
16 | 061+002 |060+002 |057+002 |059+002 |0.59+0.03
17 | 064+002 |066+002 |065+002 |0.66+002 |0.660.02
18 | 0.69+001 |068+001 |068+001 |0.66+001 |0.65+0.01
19 | 067+002 |068+002 |071+£002 |0.72+002 |0.70 =0.02
20 | 058+0.02 |0.60+001 |062=002 |061+002 |0.60%0.02
21 | 073+0.02 |0.74+002 |0.76+001 |0.76+0.01 |0.76+0.01
22 | 0.68+0.02 |069+002 |071+002 |068+002 |0.68=00I
23 | 079+0.01 |081+001 |083+001 |082+001 |0.81+00I
24 | 0.64+001 |063+001 |061+002 |062+002 |0.63+002
25 | 085+001 |086+002 |084+001 |082+002 |0.82+002
26 | 080001 |083+001 |08 =001 |086+0.01 |0.84+00I
27 |081+001 |082+001 |084+001 |084+001 |0.84+00I

mean | 0.71 0.72 0.72 0.72 0.72
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The mean AUC values obtained with 8 regulation start with 0.76 at 6 = 0.25 and

increase up to 0.78 at & = 2, then it starts decreasing for 6 > 2. Class 14 is again an

outlier for all values of 6 with the mean AUC very close to 1.00.

Table 5.8: Mean AUC values using the F;scores and the 1NN algorithm

Class| GO 5
No ID
0.25 0.50 0.75 2.00 3.00 4.00
1 9405 [0.80 £0.02]0.80 +0.02]0.80 +£0.02| 0.82+0.02|0.80 +0.02|0.80 +0.02
2 9055 |0.77 £0.02 {0.77 £0.02[0.77 £0.02| 0.76 £0.03|{0.76 £0.02]0.76 + 0.02
3 6810 |0.73 £0.04 {0.73 £0.03[0.73 £0.03| 0.75+0.03{0.74 £0.02]0.73 £ 0.02
4 |16787|0.82+0.02(0.83+0.02|0.83+0.02| 0.83 £0.01[0.83 £0.01{0.83 +0.01
5 5506 [0.75 £0.02]0.76 £0.02]0.77 £0.02| 0.80+0.03|0.78 +£0.02|0.78 +0.02
6 166 |0.81 +£0.01{0.81 £0.01[0.81 £0.02| 0.80+0.02{0.81 £0.01|0.81 +0.01
7 3676 [0.67 £0.02]0.67 £0.02]0.69 +£0.02| 0.70 £0.02|0.69 +0.02|0.69 + 0.02
8 3700 |0.72 £0.02({0.71 £0.02[0.72 £0.02| 0.76 £0.02{0.72 £0.02]0.72 £ 0.02
9 6508 |0.77 £0.02 (0.77 £0.01 [0.78 £0.02| 0.79 £0.02{0.78 £0.02]0.78 £ 0.02
10 | 6412 [0.69 £0.04]0.76 £0.04|0.77 £0.04| 0.76 £0.02[0.77 £0.03{0.77 £ 0.03
11 | 3723 [0.63 £0.02|0.66 +0.02|0.67 £0.02| 0.67 £0.01|0.67 +£0.02|0.66 +0.02
12 | 8270 [0.75+0.03|0.77 £0.03|0.78 £0.03| 0.77 £0.02[0.77 £0.03{0.77 £ 0.03
13 | 5975 [0.83 £0.02|0.85+0.02|0.85+0.02| 0.85+0.01|0.84 +£0.02|0.84 +0.02
14 | 5179 [0.99 £0.00|0.99 +0.00|1.00 = 0.00|0.99 +0.001 | 1.00 = 0.00| 1.00 = 0.00
15 |16020[0.69 £0.02|0.70 £0.01|0.72 +0.01| 0.73+0.03[0.74 £0.02]0.74 £ 0.02
16 | 5515 [0.65 +£0.02|0.66 +0.02|0.67 £0.03| 0.69 +0.02|0.68 +0.02|0.68 +0.02
17 | 5634 [0.69 £0.02|0.68 +0.02|0.68 +0.03| 0.69 +0.01|0.67 +£0.03|0.67 +0.03
18 | 6355 |0.72+0.01|0.72+0.01|0.71 £0.01| 0.75+0.02[0.72 +0.02{0.72 £0.02
19 | 5737 |0.75+0.02|0.75+0.01|0.76 £0.02| 0.75+0.01[0.75+0.02{0.75 +£0.02
20 | 5622 |0.68 £0.02({0.70 +£0.02{0.70 £0.02| 0.68 £0.01|0.70 +£0.02]0.70 +0.02
21 | 5524 10.79+£0.01{0.79+0.01[0.80+0.01| 0.79 +£0.01{0.79 £0.01|0.79 +0.01
22 | 6118 |0.76 £0.01[0.78 £0.01[0.78 £0.01| 0.80 +£0.01|0.79 £0.02|0.79 £ 0.02
23 [16491|0.86 +0.01 {0.87 £0.01[0.87 £0.01| 0.85+0.01{0.86+0.01|0.86 +0.01
24 | 3677 10.66 £0.02/0.67 £0.02|0.68 £0.01| 0.70 £0.01|0.68 £0.02|0.68 +0.02
25 | 5576 10.86 £0.01/0.86 +£0.02|0.86+0.02| 0.88 +0.01|0.87 £0.02|0.86 +0.02
26 | 8152 |0.87+0.01{0.87 +£0.01[0.87 +0.01| 0.87 +£0.01{0.87 £0.01|0.87 +0.01
27 | 3824 |10.84 £0.01(0.84 £0.01 0.84 £0.01| 0.83 £0.01|0.83 £0.01{0.83 £0.01
mean 0.76 0.77 0.77 0.78 0.77 0.77

5.3.2 Classification using the joint representation

This section shows the experimental results obtained by using the Fgp scores which is

defined with Equation (3.16) in Section 3.3. The classification is made using the one-

nearest-neighbor (1NN) classifier explained in Section 4.1.1. The mean AUC value

obtained is 0.71 (see Table 5.9) which is 0.20 higher than the mean AUC values

obtained with classifying done with NCDg scores, joint representation not including
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the Smith-Waterman alignment scores (see Table 5.5). Class 14 is again an outlier

with the mean AUC very close to 1.00.

Table 5.9: Mean AUC values using the Fso scores and the 1NN algorithm

C;f‘(fs GO ID Feo
1 9405 | 0.72 +0.02
2 9055 | 0.70 = 0.03
3 6810 | 0.66 + 0.02
4 16787 | 0.73 £0.03
5 5506 | 0.74 +0.03
6 166 0.75 +0.03
7 3676 | 0.64 +0.03
8 3700 | 0.71 +0.02
9 6508 | 0.74 +0.02
10 6412 | 0.58 +0.03
11 3723 | 0.58 +0.01
12 8270 | 0.68 = 0.04
13 5975 | 0.79 +0.02
14 5179 | 0.99  0.00
15 16020 | 0.60 = 0.02
16 5515 | 0.56 +0.02
17 5634 | 0.64 +0.03
18 6355 | 0.67 +0.01
19 5737 | 0.68 +0.02
20 5622 | 0.58 +0.02
21 5524 | 0.77 £ 0.01
22 6118 | 0.67 +0.02
23 16491 | 0.80 +0.01
24 3677 | 0.64 +0.01
25 5576 | 0.86 +0.02
26 8152 | 0.81 +0.01
27 3824 | 0.80 % 0.00
mean 0.71

5.3.3 Classification using all features

This section shows the experimental results obtained by the Fj4y; classifiers described
with Figure 3.7 in Section 3.4. The classification is made using the one-nearest-
neighbor (1NN) classifier explained in Section 4.1.1. The mean AUC value obtained is
0.65 (see Table 5.10). Class 14 is again an outlier for all values of 6 with the mean

AUC very close to 1.00.
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Table 5.10: Mean AUC values using the F4;; feature vector and the INN algorithm

C;f‘(fs GO ID FaLL
1 9405 | 0.70 £0.03
2 9055 | 0.71 £0.02
3 6810 | 0.61 +0.02
4 16787 | 0.65 + 0.02
5 5506 | 0.60 +0.03
6 166 0.64 +0.03
7 3676 | 0.67 £0.01
8 3700 | 0.53 +0.02
9 6508 | 0.60 +0.02
10 6412 | 0.59 +0.03
11 3723 | 0.56 +0.02
12 8270 | 0.71 £0.02
13 5975 | 0.72+0.02
14 5179 1 0.96 +0.01
15 16020 | 0.63  0.03
16 5515 | 0.62+0.03
17 5634 | 0.57 001
18 6355 | 0.58 +0.02
19 5737 | 0.64 001
20 5622 | 0.57 £0.02
21 5524 | 0.68+0.01
22 6118 | 0.72+0.01
23 16491 | 0.80 = 0.01
24 3677 | 0.55+0.01
25 5576 | 0.82+0.02
26 8152 | 0.68 +0.02
27 3824 | 0.57 £0.01
mean 0.65
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6. CONCLUSIONS AND FUTURE WORK

In this studys, it is found out that using the whole amino acid sequences, as opposed to
portions belonging to different secondary structure elements, results in the best
function prediction performance. Using HL regions together results in almost as good
performance as the whole sequence. On the other hand, E regions are the least
significant in function prediction. When learning only from positive examples (tNN),
HE follows the performance of HL and the distribution of H, E and L does not play a
significant role. However, using kNN algorithm which takes into account both positive

and negative examples produces better prediction results.

Figure 6.1 compares the AUC values for the classification SWaa and NCDap using
the INN classification algorithm. As expected, the alignment-based classification has
a better performance than the compression-based classification when using amino acid

sequence only.

0,9

0,6

AUC 0,5

O SW(AA)
0.4 m NCD(AA)

0,3
0,2

0,1

1 3 5 7 9 11 13 15 17 19 21 23 25 27
classes

Figure 6.1: Comparison of AUC values of SWaa and NCDap using 1NN
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Including the secondary structure to both Smith-Waterman and NCD scores leads to a
better classification performance. The best performance for alignment-based
classification is obtained at o = 0.25 and for compression-based classification at § =
0.50 (see Figure 6.2).

SW:alpha=0.25, NCD:beta=0.5 gives best performance
1 T T T T T T T T

O SWBestIndx
x NCDBestIndx
0.75+ X X xx x ]
©
g
; 05— O x ® x X XX Q) x x ® X ® —
<
o
©
0.25- O xOO OO @ GO O © O ® A
0 [ ] [ [ [ [ [ [
0 50 100 150 200 250 300 350 400 450

sequence length

Figure 6.2: o and [ values at which best classification performance is obtained

Whereas Smith-Waterman-only classification performs best at o = 0.25, the combined
metric has the best performance with the mean AUC 0.72 at a = 0.50. For the
combined metric, the results obtained at f = 0.25, 0.5 and 0.75 are very close and all
three of them are higher than the results obtained at B = 0 (see Table 5.7). So, it can be
concluded that classifiers using the combined metric that incorporates the secondary

structure in the Smith-Waterman scores at 50% and in NCD scores at 25-75%.

When the contribution of the NCD scores is increased using the & parameter, the mean

AUC values increase up to 0.78 while d < 2 and decrease for 0 > 2. Therefore it can be
concluded that using a similarity score combined of Smith-Waterman and NCD
scores, both including the amino acid sequence and the secondary structure, can be
obtained with 0 = 2.
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Including the Smith-Waterman scores into the NCD scores computed using the joint
representation improves the classification performance, however these scores, as well
using Smith-Waterman and NCD scores together, are outperformed by the previously

reported combined similarity metric.

Additional interesting methods to combine the alignment scores with the normalized
compression distance scores are also possible. Amino acids and secondary structure
elements having low substitution costs according to the substitution matrix used in the
alignment algorithm can be represented with the same symbol by implementing a
penalty proportional to the substitution cost and a more robust joint representation can
be produced. Besides, the substitution matrix itself can be involved in the compression
algorithm, especially in building up the compression dictionary. These approaches are

not tested in this study and considered as future work.
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