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very many contributions to my life, both in the scientific sense and personally.
She has always guided me toward the directions where science becomes more
interesting and integrated into actual life. Working with her has been a great
luck and pleasure for me. I wish that she will be doing research and sharing her
beautiful ideas and knowledge with young people for many more years.

I would also like to thank to Asst. Prof. Dr. Muhittin MUNGAN and Asst.
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PROPERTIES OF CONTENT-BASED NETWORKS

SUMMARY

The research we present in this thesis has been devoted to the modelling and
understanding of transcriptional gene regulatory networks, on the basis of an in-
formation theoretical approach. Transcriptional gene regulation involves special
proteins, namely the transcription factors, which bind to the DNA by recognizing
specific subsequences, namely the transcription factor binding sites, embedded in
them. We have modelled the transcriptional regulation network of yeast within
this approach by associating random linear codes with the genes of the organism
represented by nodes in our content-based network, and establishing edges be-
tween the nodes if and only if they share a certain amount of information, which
has been realized via a sequence-matching rule. The distribution of the amount
of shared information, which has been represented by the bitwise Shannon infor-
mation of the random linear codes associated with the binding sequences and the
promoter regions, are the most important biological inputs to our content-based
model. We have made a very careful analysis of the transcriptional regulation
networks of yeast, and compared their topological features with those of the en-
semble of our content-based networks. We have observed that our content-based
model is able to reproduce all the global topological features of these networks,
which provides us with an understanding of their emergent nature. We conclude
that the complex networks of gene regulation can arise spontaneously even with
the random codes, so they do not need to be constructed from scratch by evo-
lutionary mechanisms. We have also introduced the hidden-variable version of
our content-based model involving only the pairwise connection probabilities as
a function of the string lengths and observed that this model is able capture
the main properties of our double-string model. So the analytical calculation
on the hidden-variable model can provide us with making some predictions on
the further properties of real networks. Very close topological similarities be-
tween the content-based models and genetic regulatory networks have led us to
consider a modified random Boolean dynamics on our content-based networks,
which we believe will help us with the understanding of the relationship between
the architecture of the underlying network and the function of these systems.
Our results point to further promising research problems in biological systems,
where interactions between different components require the fulfillment of a se-
ries of constraints, which means the exchange of a certain amount of information.
Examples are immune systems and protein interactions.

xii



İÇERİK-TEMELLİ AĞLARIN ÖZELLİKLERİ

ÖZET

Burada sunulan tez çalısmasının ana teması transkripsiyon gen regülasyonu
(düzenleme) çizgelerinin oluşumuna katkıda bulunan unsurların ve bu çizgelerin
yapısal (topolojik) özelliklerinin enformasyon teorisi yaklaşımı ile modellen-
mesidir. Transkripsiyonel gen kontrolünde, transkripsiyon faktörleri olarak
isimlendirilen proteinler DNA üzerinde özel alt dizilere bağlanarak, gen
ifadesinin düzenlenmesine katkıda bulunmaktadırlar. Böyle bir proteinin tanıyıp
bağlanabildiği DNA motiflerinin bilgi içeriğini başka bir alfabede ifade etmek
mümkün olabilir. Bu yaklaşımla mayanın transkripsiyonel gen düzenleme ağını,
içerik temelli ağın her bir düğümü bir gene karşılık gelmek üzere, her bir
düğümüne gelişigüzel ikilik sistemde içerikleri olan diziler atayarak ve düğümler
arasına, onlara atanan dizilerin birbirleri içerisinde tekrarlanma durumlarına göre,
belli koşulları sağlamaları sonunda kenarlar yerleştirerek modelledik. Paylaşılan
bilgi miktarının dağılımı modelimizin en önemli girdisi olup, ortaya çıkacak olan
çizgenin özelliklerini tamamen belirlemektedir. Mayanının etkileşim ağını ayrıntılı
biçimde inceleyerek, çizgenin yapısal özelliklerini içerik temelli modelimizin is-
tatistiksel topluluğunun üyeleriyle karşılaştırdık. Gördük ki, içerik temelli mode-
limiz maya çizgesinin bütün özelliklerini barındırmakta ve bu tür ağların yapısal
özelliklerinin anlaşılmasına imkan sağlamaktadır. Tamamen gelişigüzel diziler-
den oluşturduğumuz içerik temelli çizgenin mayanın kontrol ağına yakınlığı, bu
tür karmaşık ağ yapılarının evrim altında ereksel biçimde yoktan var edilmeleri
gerekmedikleri sonucuna varmamıza neden olmaktadır. İçerik temelli modelim-
izin kabalaştırılması sonunda elde ettiğimiz ve (sadece dizi uzunluklarına bağlı)
gizli-değişkenli olarak isimlendirilen modelin bizim içerik temelli modelimizi ve
gerçek maya çizgesini yakından izleyen yapısal özellikleri nedeniyle, bu kaba
model üzerinde yapılacak analitik hesapların düzenleme ağlarının yapılarıyla ilgili
öngörülerde bulunabileceğini göstermektedir. İçerik temelli çizgelerin gen kon-
trol ağlarına yakınlıkları, gelişigüzel Boolean dinamiğini içerik temelli ağlara
uyarlamamızı özendirmiştir. Bu yolla gen ifadesinin kontrol çizgelerinin topolo-
jilerinin gen ifadesi dinamiği üzerindeki etkilerini anlamak mükün olabilir.
Sonuçlarımız içerik temelli ağların bağışıklık sistemi yada protein etkileşimleri
gibi çok sayıda koşulun yerine gelmesi sayesinde oluşan etkileşim ağlarının mod-
ellenmesi için elverişli olanaklar sunduğunu göstermektedir.
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1 INTRODUCTION

Networks have become essential tools of researchers devoting themselves to the

understanding of complex systems. Ecosystems, the brain, metabolic pathways,

regulatory networks and immune systems, the internet and world wide web, eco-

nomic systems, epidemics and social networks are among the numerous examples

of complex systems. The features common to all these systems have found the

possibility of exploration with the rise of network science which has brought a

new global view into the study of complex systems.

Complex systems are organizations consisting of many heterogenous parts in-

teracting locally and exhibiting emergent global behavior without any central

organizing principle or control [1]. The emergence arises from the fact that the

components of the system interact. The whole is more than the sum of its parts.

The collective behavior arising from the interactions among the components, and

the mapping from individual actions (which are relatively easy to describe) to

the collective behavior is non-trivial [2]. Genetic regulatory networks might be

the best examples of complex systems, where the expression profile of a gene is

not determined by its genetic makeup but its interactions.

The main theme of the research presented in this thesis is that the topological

features of networks based on information sharing are determined by the statistics

of the shared information. The fact that certain biological networks, among them

gene regulatory networks, operate on this principle has led us to make a detailed

comparison of available data on the transcriptional regulatory network (TRN) of

yeast, and the network which results from our model, given the relevant biological

input consisting of the distribution of shared information. The strong similarity

between the ensemble of various realizations of our model network and the yeast

TRN confirms our hypothesis that complexity embodied in biological systems

may arise simply due to the physical, chemical, etc., properties shared by the
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constituent elements, and that complex interaction networks do not have to be

fashioned from scratch by evolution. This view is strongly shared by a number of

workers in the field. It has been forcefully and eloquently put forward by Richard

Dawkins in The Blind Watchmaker [3] and by Stuart Kauffman in the The Origins

of Order [4].

We have used the static structure of our content-based model to motivate a

somewhat modified Random Boolean Network (RBN), whose dynamics we have

investigated. We find that RBD on such networks possesses both the required

properties of robustness and versatility needed to model gene regulation as a

mechanism for phenotypic diversity at the cellular level.

In the next sections we supply some introductory material on the subjects we

have tackled in this thesis. We summarize some of random network models and

topological measures used to characterize complex networks in Section 1.1. The

mechanisms of gene expression have been briefly discussed in Section 1.2, followed

by a review of some earlier work on genetic regulatory networks in Section 1.3.

In Section 2, we introduce our content-based networks [5, 6] and summarize some

of their topological properties. The results on the single-string model was pub-

lished in [6], done in collaboration with Dr. Muhittin Mungan and Dr. Alkan

Kabakçıoğlu. The first example of the double-string models, where the analytical

calculation of degree distributions are carried out, was published [7] among the

student papers of the Complex Systems Summer School at the Santa Fe Insti-

tute, done in collaboration with Dr. Brett Calcott and Dr. Paul Hohenlohe. The

analytical calculations on the second example of the double-string models was

guided by the research [8] done in collaboration with Prof. Ayşe Hümeyra Bilge.

We present our content-based model of the transcriptional regulatory network of

yeast in Section 3, where we use the bitwise information content of binding motifs

and the power-law form of intergenic regions as biologic input. The research we

present in this section was done in collaboration with Dr. Muhittin Mungan and

Dr. Alkan Kabakçıoğlu, and has been submitted to PLoSONE [9] for publication.

In Section 4, we introduce the hidden-variable version of our content-based model

2



networks and calculate some of the topological features of the networks analyti-

cally and compare them with simulation results. The research has been submitted

to Chaos [10] for publication.

We provide an introduction to random Boolean dynamics, and present our

content-based random Boolean dynamics that we have proposed on our content-

based networks in Section 5. Some of the results presented here have been pub-

lished in [11, 12].

We end up with a discussion in Section 6.

1.1 Networks: An Overview

Networks are collections of items represented by nodes (vertices) connected among

themselves by edges (links) signifying interactions or physical contacts between

these items. Recently, network science has found an indispensable place in the

study of complex systems with the developments in mathematics, technology and

computer sciences which have enabled researchers to collect, store, analyze and

manipulate huge amount of data [2, 13, 14, 15, 16, 17]. However network theory

goes back to the 18th century, attributed to Euler’s solution of the Königsberg

bridge puzzle [13]. The formulation of another social puzzle (so called, the six-

degree separation) by Kochen and Pool in the 1950’s, where the classical random

graphs are defined, triggered two mathematicians Erdös and Rényi [18] to identify

the properties of classical random graphs which are known by the names of these

two mathematicians.

Topological properties of discrete objects such as graphs refer to the compactness

and connectivity of a graph deducible from its adjacency matrix. For example, the

number of connected components and the number of loops of a graph are topolog-

ical invariants which are not affected by stretching or shrinking the links. In the

context of network theory, topological properties have come to mean the degree

distributions, the degree-degree correlation of nearest neighbors, the clustering

coefficient, the rich-club coefficient, the k-core structure, etc. [14, 15, 16, 17] In

this section we aim to summarize some quantifiers of network structures which

3



we will be using throughout this thesis.

1.1.1 Degree distributions

The degree d of a node is defined as the number of nodes having an interaction

with this node, i.e., the number of edges attached to it. The degree distribution

P (d) is the probability of encountering a node with degree d if we pick a node

at random. If the network is directed, then one distinguishes the out-degree do

and in-degree di of a node (corresponding to the number of its out-going and in-

coming edges) with their corresponding distributions. In this case, we may define

the (total) degree of a node as the number of edges connecting this node with

distinct nodes, i.e., d = do+di−db where db is the number of (bidirectional) edges

pointing in both directions. In such networks the joint probability P (do, di), that a

randomly chosen node has out-degree do and in-degree di, completely determines

the topological properties of the network in the absence of correlations [15].

The degree distributions have received a lot of interest after the discovery that

many real-world networks representing a diverse class of systems deviate from

classical random graphs in their degree distributions [16]. In classical random

graphs, the nodes are connected to each other randomly and independently with

a constant probability, thus they have binomial, or Poisson, degree distributions

in the limit of large network sizes. We may characterize such networks with the

average degree 〈d〉 of nodes, which is almost the degree of all the nodes in the

network.

1.1.2 Deviations in degree distributions from classical random graphs

Very nice examples of this deviation from a Poisson distribution mentioned above

are those networks whose degree distributions follow power-laws, P (d) ∝ d−γ.

Such networks have been called scale-free networks [14], although in most cases it

is only their degree distributions which are scale-free [16]. Other common forms

of degree distributions are exponentials and power-laws with exponential cut-

offs [16]. Another class of networks as we have posed recently, the content-based

networks [5, 6, 9, 19], have also very distinct degree distributions with their broad
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tails, although we have demonstrated that they can be thought of superpositions

of Erdös-Rényi random graphs. In the case of scale-free networks, the data oc-

curring in the tails of the distributions is very noisy. A common technique used

here is plotting cumulative degree distribution Q(d) =
∑

d′≥d P (d′), where one

obtains another power-law, Q(d) ∝ d−(γ−1).

1.1.3 Degree correlations

Assortative mixing [16] is the tendency of nodes with similar properties to be

connected to each other. A special case of this tendency may be probed for the

degrees if one thinks of them as the properties of nodes. If the nodes with similar

degrees are connected to each other, then the networks are called assortative, and

disassortative if not. Degree correlations [20] of nearest neighbors (connected pairs

of nodes) may be measured by the conditional probability p(d′|d) that randomly

selected nearest neighbors of nodes with degree d have degree d′ in an undirected

network. Another measure [21] of the same property is the average degree dnn(d) of

nearest neighbors of nodes with degree d, dnn(d) =
∑

d′ d
′p(d′|d). Since the latter

quantity is much easier to compute via simulations and to display, it has found

more use in the literature. One may easily generalize this concept for directed

networks [15], where one may ask the variations of the question whether nodes

with large out-degrees are preferentially connected to nodes with high in-degrees,

etc.

1.1.4 Clustering coefficient

The average local density of edges between nearest neighbors of a node is called

the clustering coefficient [22] of a network. The clustering coefficient ci of a node

i can be calculated as ci = 2∆i/di(di − 1) where di is the degree of the node

and ∆i is the number of those triangles containing this node and its nearest

neighbors. If the degree of a node is less than two, then its clustering coefficient

is equivalently zero. Then the average clustering coefficient 〈c〉 of the network

is given by 〈c〉 =
∑

i ci/N , where N is the total number nodes. We could also

define the clustering coefficient [16] of a network by 〈c〉 = 3∆/N∆ where ∆ is the

number of triangles and N∆ is the number of connected triples of nodes (those

5



nodes which are separated from each other by two edges) in the network. The

difference between two definitions is that the first one is the average of ratios

whereas the second one is the ratio of averages, so the former definition may

give rise to a larger clustering coefficient. The latter quantity is easier to evaluate

analytically whereas the first one is easier to calculate via simulations. We may

as well determine the spectrum of the average clustering coefficient c(d) as a

function of degree [23, 24], c(d) =
∑

i ciδdi, d/N(d) where N(d) is the number of

nodes with degree d. Again we may generalize these definitions for the directed

networks [5], where one can calculate the fraction of triangles with respect to the

out-going and in-coming edges of nodes.

1.1.5 Deviations in correlations from generalized random graphs

It has been the custom to compare the topological properties of the network

under consideration with those of the random graphs whose nodes follow the

same degree distribution as the “target network”. The randomness of the “control

graphs” comes from the fact that the edges between pairs of nodes are established

randomly and independently without respecting any properties of the nodes.

In random graphs, the probability p(d′|d) of finding a node with degree d′ among

the nearest neighbors of nodes with degree d is independent from d, just depending

on d′ and the average degree 〈d〉 of the nodes, viz., p(d′|d) = d′P (d′)/〈d〉. Thus, the

average degree [25] of such nodes is dnn(d) = 〈d2〉/〈d〉. A similar observation [25] is

valid for the clustering coefficient c(d), which, in the case of random graphs, has no

dependence on the degree of the nodes, and is given by c(d) = (〈d2〉−〈d〉)2/N〈d〉3.
By contrast, those of most real networks [14, 15, 16] display different dependencies

on d.

1.1.6 Small-world effect

Imagine an undirected network, where we may define the geodesic distance �ij

between a pair of nodes i and j, as the smallest number of edges to be crossed to

reach from one node to the other. Then the average shortest path length 〈�〉 of

the network is calculated over all pairs of nodes, as 〈�〉 = 2
∑

i, j>i �ij/N(N − 1)
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where N is the size of the network and we have assumed that the network contains

a single cluster. If the network contains more than one cluster, then one may

calculate the inverse of the shortest path length, 〈�−1〉 = 2
∑

i, j>i �
−1
ij /N(N − 1).

If the average shortest path length scales with the logarithm of network size or

slower, then it is said that the network exhibits the small-world effect [15, 16]. If

the network is directed, then �ij �= �ji, in general.

1.1.7 Robustness of networks with respect to damage

A network may contain disconnected parts, called the clusters or connected com-

ponents of the network. If the relative size of the largest cluster stays finite as the

network size increases, then it is said that the network is above the percolation

threshold and this largest cluster is called the “giant connected component” of

the network. If the network is directed then one distinguishes strongly and weakly

connected components [15]; the latter are obtained by ignoring the directionality

of edges. The resilience of networks against random removal of their nodes has

gained a lot of interest, especially since this is important for the dynamical pro-

cesses taking place on them. Although the removal of nodes has been extensively

used as the main strategy here, other types of attacks have been also studied [16],

such as removal of edges.

1.1.8 Rich-club ordering

The nodes with high degrees (i.e, a large number of edges) may be referred to as

“rich,” and the subgraph composed of such nodes with their interconnecting edges

as the “rich-club”. The rich-club coefficient [26, 27] is intended as a measure of well

connectedness of “rich guys” among themselves. Denoting the number of nodes

with degrees greater than d by N>d, and the number of edges between such nodes

by E>d, the rich-club coefficient [26] is given by r(d) = 2E>d/N>d(N>d− 1). The

rich-club coefficient goes beyond the mixing property in a network; for example,

a network displaying disassortative mixing can exhibit the rich-club property as

well. For uncorrelated random graphs it has been shown [27] in the limit of infinite

network size where the maximum degree tends to infinity, that r(d) ∼ d2/〈d〉N
in the limit d→∞, where 〈d〉 denotes the average degree of nodes. The increase
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observed for the rich-club coefficient even for random graphs made it necessary to

compare the coefficient of the network at hand with that rrand(d) of the random

version of the network. If r(d) > rrand(d) then the network is said to be exhibiting

the rich-club property.

1.1.9 k-core structure

Nodes of a network may be classified with respect to some local or global prop-

erties. A global classification can be done via the k-core decomposition [28]. One

can obtain the k-core by successively removing the nodes with degrees less than

k, until the remaining nodes have degrees at least k. Let us note here that the

k′-core with k′ > k is a subgraph of the k-core. The nodes belonging to the k-core

but not to the (k + 1)-core constitutes the k-shell. Thus, shells are distinct (con-

taining different nodes). The last definition we want to give here is the k-crust,

which is the subgraph containing all the shells with k′ ≤ k. Thus, the k-crust

is the complement of the (k + 1)-core. Recently, k-core decomposition has been

used as an algorithm for the visualization of large scale networks [29] by Ignacio

Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat and Alessandro Vespignani. Their

visualization can be used to distinguish between networks having very different

organizational principles although the visualization by itself is not sufficient for

the complete description of the network. The quantitative analysis [30, 31] of the

k-core structure has been studied extensively and seems to be a promising way

to understand the hierarchical organization of complex networks.

1.2 Transcriptional Gene Regulation in Eukaryotes

Regulation of gene expression in eukaryotes involves a diverse set of mechanisms

including initiation of transcription, alternative splicing of RNA, mRNA stability,

several forms of post-transcriptional modification, translational control, and pro-

tein degradation [32]. Among all, transcriptional initiation is the primary mech-

anism of gene expression, since it is the first check point of protein synthesis in a

cell.

There are three main components of transcriptional regulation, i) DNA segments,
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namely the promoter regions, usually occurring upstream of coding regions and

acting as controlling elements in the expression of genes, ii) proteins, namely

the transcription factors (gene regulatory proteins), which recognize and bind to

specific sequences on the DNA and regulate the initiation of transcription, and

finally, iii) the binding sites which are short DNA sequences where the regulatory

proteins bind preferentially. [32, 33]

In eukaryotes, operons (sets of coding regions –loci– controlled by the same pro-

moters) are not usual [33], thus we may assume that genes are regulated indepen-

dently, in the sense that they are controlled by different promoter regions. Pro-

moter regions can be thought as the computers of genes, collecting and analyzing

the data about the status of the cell and altering the initiation of transcription.

This data reaches promoter regions through transcription factors. The nucleotide

sequences of transcription factor binding sites determine the transcription factors

to be associated with the promoter region including these binding motifs. There-

fore, the expression profile of a gene is determined by its promoter region as well

as the expression of those genes which code the transcription factors recognized

by the binding sites embedded in its promoter region.

Although the number of binding sites in a promoter region is not known exactly,

there are between 10-50 binding sites according to well-studied eukaryotic pro-

moters [33]. Most transcription factors may bind to several distinct sequences

with different affinities. Differences in binding affinities may be more important

if a binding motif (site) is recognized by more than one transcription factor, or if

two binding sites are located nearby or overlap. Most binding motifs influence the

expression of a single gene. However there can be cases where the same binding

site regulates the expression of paralogous loci located on the opposite strands of

DNA [33].

Transcription factors have several distinct domains including DNA-binding, pro-

tein interaction and ligand binding domains. DNA-binding domains are typically

short sequences (roughly up to 20 base pairs) and are highly conserved evolution-

arily [33]. There may be several DNA-binding domains in a transcription factor.

As well as the transcription factors, the cofactors which are proteins interacting
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with transcription factors, are also important in the regulation of gene expression.

Ligands can also bind to transcription factors and alter their activity. It is also

common in eukaryotes that regulatory proteins can bind to DNA at very distant

locations from the promoter regions of genes and regulate their expression by

looping out the intervening DNA [32].

1.3 Genetic Regulatory Networks

Genetic regulatory networks are directed graphs, where each node represents a

gene and the directed link from Gene A to Gene B signifies that regulatory

interaction in which the expression of Gene A controls the expression of Gene

B. The development of efficient experimental techniques [34] has made a large

amount of data on gene interactions [32, 33] available [35, 36, 37, 38], which reveals

a complex and highly specific network. The organizational principles underlying

these genetic regulatory networks are of great experimental [35, 39, 40, 41] and

theoretical [42, 43, 44, 45, 46, 47] interest.

The degree distributions [39, 40] in genetic regulatory networks have been the

main object of both empirical and network theoretical approaches. Barabasi and

co-workers [48] have claimed that the global properties of genetic regulatory

networks of Saccharomyces cerevisiae and Escherichia coli, as well as protein-

protein interaction and metabolic networks, can be understood in terms of the

growth mechanism [44] of these networks and can be modelled by the preferen-

tial attachment [43] rule, thus they are scale free, with the degree distribution

having a scaling exponent γ ∼ 2, which they claim to find from experimental

results [48]. Smaller exponents, in the vicinity of 1.5 have been reported in the

literature [35, 40]. It has been suggested that the degree distribution might in fact

have a universal scale-free behavior independent of any particular organism [49].

Guelzim et al. [39] have made a careful analysis of the transcriptional regulatory

network of yeast, revealing that the in- and out-degree distributions are rather

different, with the former having an exponential-like decay and being confined to

a much narrower range.

It should be also mentioned that the idea of using linear codes to model a broad
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set of requirements for the binding of proteins to other molecules, as embodied in

our sequence matching rule, has a quite long standing history. Complementarity of

binary sequences of fixed uniform length representing anticores and the antigens

which “recognize” them have been employed in modelling immune networks in the

early 1990’s [50], although the emphasis at this stage was more on the dynamics of

small networks constructed in this way, rather than on their topological features.

There have also been several earlier studies of models of gene regulatory networks

on rather elaborate “Artificial Genomes” (AG) [51] based on various alphabets

and matching rules [52, 53, 54, 55], some of them coupled with the duplication

and divergence model introduced by Wagner [56, 57, 58]. The results are not

uniform and depend on the detailed assumptions made in the models.
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2 A BRIEF HISTORY OF CONTENT-BASED NETWORKS

The term “content-based” refers to the fact that the nodes of the model networks

contain information represented by linear codes and the interactions between

them are established conditional to the sharing of a certain amount of information.

In this section we summarize the single-string models and then introduce a model

where two different strings, with specialized functions, are associated with each

node. We introduce and summarize global topological properties of content-based

networks [5, 6, 9, 19] proposed as null models of regulatory interactions. This is

followed by a discussion on the validity of effective-medium type of analytical

calculations of the connection probabilities and topological properties. We also

provide a section on our information theoretical approach to interaction networks,

and end up with our calculations on the bitwise information contents of linear

codes represented in an arbitrary alphabet.

2.1 Single-String Models

In our original content-based model [5, 6] first proposed as a toy model of RNA

interference [59, 60, 61, 62], an artificial chromosome of fixed length L is con-

structed randomly whose characters are chosen from an alphabet of r + 1 letters

according to the distribution

P (x) = (1− q) δx, r +
q

r

r−1∑
a=0

δx, a , (2.1.1)

where the character “r” represents the delimiters and 1 − q the probability of

finding a delimiter along this linear code. The sequences between successive oc-

currence of the delimiter are associated with genes corresponding to the nodes

of our content-based network. Thus in fact, the linear codes associated with the

genes are chosen from an alphabet of size r whose letters have an equal chance

1/r to occur in a random sequence. The directed interactions between pairs of

nodes/genes are established with respect to the sequence-matching rule. If the se-
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quence Gi associated with the ith node occurs as an uninterrupted subsequence

in the linear code Gj associated with the jth node, then a directed link from the

ith node to the jth node is drawn. Setting wii = 0, we may write the element wij

of adjacency matrix as

wij =

{
1 if Gi ⊂ Gj

0 otherwise
, (2.1.2)

where one should note that the length li of the first sequence has to be smaller

than or equal to the length lj of the second sequence. Thus, if li > lj then wij = 0

identically. We should also note that wij �= wji, in general. If wij = 1 then one

may easily predict that wji = 0 unless the sequences are identical; in this case,

wij = wji = 1. Another property following from the definition in Eq. 2.1.2 is the

transitivity property that if Gi is embedded in Gi′ and if Gi′ is embedded in Gj,

then we know for sure that Gi is also embedded in Gj. So in terms of the elements

of the interaction matrix, if wii′wi′j = 1, then wij = 1 identically.

With the definition in Eq. 2.1.1 the length distribution p(l) of sequences associated

with nodes along the artificial chromosome is of exponential form p(l) ∝ ql. It

is possible to obtain an ensemble of sequences following a predetermined length

distribution [19] by realizing a chromosome with successive assignments of lengths

of the sequences from the desired length distribution and choosing the characters

of the sequences from an alphabet of size r with identically distributed letters,

then placing a delimiter just next to the position of the last letter of the previously

generated sequence on the chromosome. One may easily observe that although the

number of nodes (the sequences of nonzero length) fluctuates from one realization

of the chromosome to the other, the construction of an artificial chromosome

affords more possibilities to employ evolutionary procedures, such as transposition

as well as duplication and divergence [19]. We may also construct our content-

based network by considering a fixed number N of nodes where we associate

a linear code with each node whose content and length are chosen from the

desired distributions. The interactions between the nodes of the network is again

established with respect to the sequence-matching rule (see Eq. 2.1.2).

The ensemble of networks constructed as defined above, even with null assump-

tions for the length distributions, exhibits very distinct topological properties
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common to some real complex networks such as being of small-world type, hav-

ing long tailed out-degree distributions, and displaying high resilience to random

removal of nodes [5]. Moreover the networks are tractable analytically [6, 19] un-

der some assumptions leading to the calculation [6] of the connection probability

p(l, k),

p(l, k) = 1−
(

1− 1

rl

)k−l+1

, (2.1.3)

that an exact match occurs between randomly chosen pairs of sequences of lengths

l and k ≥ l. This result should be considered as a zeroth order approximation

because it has been obtained by assuming that all the sequences of same length

are equivalent in their sequence-matching probabilities (effective-medium approx-

imation) and ignoring the correlations between subsequences in the linear code

forming the search space (which we can think of as a mean-field approach). Under

these simplifying assumptions one may write

p(l, k) =
k−l+1∑
n=1

(
k − l + 1

n

)(
1

rl

)n(
1− 1

rl

)k−l+1−n

, (2.1.4)

where each of n trials of the sequence-matching condition is assumed to have

the same chance 1/rl to be satisfied without taking into account the overlapping

subsequences of length l in the sequence of length k. The result is Eq. 2.1.3.

The out- and in-degree distributions are superpositions of binomial distributions

which may be approximated [6] by Gaussian distributions in the limit of very

large number of nodes,

Pout(d) =
∑

l

p(l)P out
l (d) , (2.1.5)

Pin(d) =
∑

l

p(l)P in
l (d) , (2.1.6)

where P out
l (d) and P in

l (d) are the out- and in-degree distributions of nodes with

sequences of length l. They can be approximated by Gaussians with the means

do, l and di, l,

do, l = N
∑
k≥l

p(k)p(l, k) , (2.1.7)

di, l = N
∑
k≤l

p(k)p(k, l) , (2.1.8)
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and the variances σ2
o, l and σ2

i, l,

σ2
o, l = N

∑
k≥l

p(k)p(l, k)[1− p(k)p(l, k)] , (2.1.9)

σ2
i, l = N

∑
k≤l

p(k)p(k, l)[1− p(k)p(k, l)] . (2.1.10)

One should note here the differences in the probabilities and the sets of sequences

over which the summations are performed. In the calculation of the average out-

degree do, l and its variance σ2
o, l we sum over all the nodes with length k ≥ l,

whereas in the calculation of the average in-degree di, l and its variance σ2
i, l we

consider all the nodes with length k ≤ l.

We display in Fig. 2.1, the out- and in-degree distributions obtained via the

simulations of an artificial chromosome and the distributions given in Eqs. (2.1.5,

2.1.6) [6] to give an insight into the global topological properties of the ensemble of

content-based networks. We observe that although the theoretical curves capture

the main characteristics of the distributions, the analytical solutions deviate from

the simulation results in the large degree region of the out-degree distribution (see

Fig. 2.1a, and Fig. 2.2 for better comparison) and in the small degree region of the

in-degree distribution (see Fig. 2.1b). The differences come from the “mean-field”

approximations used in the calculation of the sequence-matching probability (see

Eq. 2.1.3), which leads also to the assumption that all the nodes of equal length

follow the same out- and in-degree distributions (see Eqs. (2.1.5, 2.1.6)). It turns

out that the fine structure [7, 8, 63, 64] due to the contents of the sequences should

be taken into account for better approximations. We postpone this discussion to

Section 2.3 where the fine splitting in degree distributions is demonstrated via

naive examples. We should note here that since both types of interactions of a

node are determined by the same linear code in this model, the out- and in-

degrees of nodes are anti-correlated. If the number of out-going edges of a node

is very large then one may easily predict that the number of its in-coming edges

is small.
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Figure 2.1: The directed degree distributions as obtained by our analytical solutions
and simulations (red circles). The data points coming from our simulations have been
obtained for the ensemble of content-based networks by averaging over 2× 104 realiza-
tions of an artificial chromosome of length 4 × 104. The sequences between delimiters
are random binary linear codes (thus, r = 2) following an exponential length distribu-
tion p(l) ∝ ql with q = 0.95, within the interval 1 ≤ l ≤ 351. The analytical results
come from superpositions of Gaussian distributions centered around average degrees
of sequences of different lengths (see Eqs. (2.1.7, 2.1.8)). (a) The out-degree distri-
bution displays a continuous regime followed by well separated peaks corresponding
to sequences of small lengths. (b) The in-degree distribution is much more localized
comparing to the out-degree distribution.

Figure 2.2: The large degree region of the out-degree distribution displayed in Fig. 2.1a
has been re-plotted in the log-linear scale to allow better comparison of the results of
simulations and analytical calculations. The deviations observed here are due to the
fine structures of the sequences ignored in the calculation of the connection probability
in Eq. 2.1.3.
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2.2 Double-String Models

In the double-string model [7, 9], we associate two random sequences Gkey
i and

Glock
i with each node i of the content-based network of size N . The lengths of

these sequences are chosen from different length distributions pkey(l) and plock(k),

in general, whereas their contents are constructed randomly and independently

from a common alphabet with identically distributed r letters. The directed edges

between pairs of nodes are established according to the sequence-matching rule.

If the sequence Gkey
i associated with the node i exactly matches a subsequence in

Glock
j associated with the node j then a directed edge from the first node to the

second is drawn. Then the element wij of adjacency matrix is given by

wij =

{
1 if Gkey

i ⊂ Glock
j

0 otherwise
. (2.2.11)

Note here that self-interactions (wii = 1) are also possible, as distinct from the

single-string model. Another important difference coming with the double-string

association is that the transitivity property exhibited in the single-string model

has been lost, wii′wi′j = 1 does not imply wij = 1 any more.

The tags “key” and “lock” have been used to distinguish the two specialized se-

quences associated with each node. This signifies that the content-based model

discussed here is intended to model networks of regulatory interactions where

each node “recognizes” nodes via its key-sequence and is “recognized” by other

nodes through its lock-sequence. In the case of transcriptional regulatory net-

works, the key-sequences correspond to the binding motifs of the transcription

factors and the lock-sequences to the promoter regions. The length distributions of

these sequences totally determine the topological properties of the content-based

network.

2.2.1 Simulation results for generic length distributions

We demonstrate some topological features of the ensemble of content-based net-

works assuming generic length distributions used for the random Boolean dynam-

ics we have employed on these networks presented in Section 5. The binary key-

and lock-sequences have been assumed to follow the same length distribution p(l)
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confined within the interval 1 ≤ l ≤ 25, either an exponential p(l) ∝ ql with

q = 0.9 or Gaussian p(l) ∝ exp[−(l − 〈l〉)2/2σ2] with 〈l〉 = 13 and σ2 = 50.

In Fig. 2.3, we display the probability of finding a single connected cluster in a

random realization of the network, as a function of system size. The networks

almost certainly consist of a single cluster for N ≥ 180 for the exponential length

distribution and for N ≥ 1400 for the Gaussian case. According to our observa-

tions we can say that the model networks are very resilient to random removal

of nodes. Although the total degree distributions (see Fig. 2.6) of the model net-

works do not follow power-law forms, they have no percolation threshold, as in

the case of scale-free networks [14] with exponent γ ≤ 3.

Figure 2.3: The probability Pc(1) of finding a single connected cluster in a random
realization of the model either with an exponential or a Gaussian length distribution,
as the system size is increased. The data points have been obtained by generating 104

realizations of the sequences.

In Figs. (2.4-2.6) we display the out-, in- and total degree distributions. Although

the out-degree distributions exhibit very similar characteristics in both cases,

having a continuous regime, followed by well separated peaks corresponding to

key-sequences of small lengths, we observe very fine differences in the large degree

regions (see Fig. 2.4). The differences due to the forms of the length distributions

become more visible in the in- (and consequently the total) degree distributions.

The in-degrees are distributed in much narrower intervals compared to the out-
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degrees (see Fig. 2.5). In Fig. 2.6 we show the total degree distribution which, in

general, is not the superposition of in- and out-degree distributions.

Figure 2.4: The out-degree distributions of the ensemble of content-based networks of
sizes N = 103 averaged over 104 realizations, with the associated strings obeying either
exponential (above) or Gaussian (below) length distributions. The insets exhibit the
large degree regions plotted in semi-logarithmic scale.

The average clustering coefficients of the model networks are very close to each

other, 〈c〉 = 0.781 and 〈c〉 = 0.777, larger than those of the random versions of the

networks with the same total degree distributions, 〈crand〉 ≈ 〈d〉/N = 0.417 and

〈crand〉 ≈ 〈d〉/N = 0.145 for the exponential and Gaussian length distributions,

respectively. Their average shortest path lengths are also very small and close to

each other, being 〈�〉 = 1.586 and 〈�〉 = 1.855. Thus, we may say that the model

networks are of the smallest-world type [5] where “smallest-world” refers to the

fact that the average shortest path length is independent of the network size above

a certain threshold which here corresponds to the size above which the network

consists of one connected cluster. Actually we can interpret this result for any

given length distribution of key-sequences which is confined within an interval

where the minimum sequence length is unity. Requiring that there are at least

two key-sequences of unit length (i.e, 1 and 0), we can show that � ≤ 4. Consider
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Figure 2.5: The in-degree distributions of the ensemble of content-based networks of
sizes N = 103 averaged over 104 realizations of sequences following either exponential
(above) or Gaussian (below) forms.

Figure 2.6: The total degree distributions of the ensemble of content-based networks of
sizes N = 103 averaged over 104 realizations of sequences following either exponential
(above) or Gaussian (below) form. We have also re-plotted the large degree region of
the distribution for the Gaussian case, in semi-logarithmic for better visibility.
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the “extreme case” where one is searching for a path between a node whose key-

and lock-sequence are of all ones (i.e, . . . 1111 . . .) and a node whose key- and lock-

sequence are of all zeros (i.e, . . . 0000 . . .). The shortest path between these nodes

needs to pass through key-sequences of unit length and a hybrid lock-sequence

containing both ones and zeros (i.e, . . . 1 . . . 0 . . .). Thus the minimal path between

these two extreme nodes (. . . 1111 . . . ← 1 → . . . 1 . . . 0 . . . ← 0 → . . . 0000 . . .)

gives the N -independent upper bound max(�) = 4.

2.3 Fine Structure due to Contents

We have shown in Fig. 2.1 that although our analytical calculations in the

effective-medium or mean-field approximation for the out- and in-degree distri-

butions can capture their behavior qualitatively, we have also observed that the

theoretical curves deviate from the simulation results in large out-degree and

small in-degree regions. We should state here that the degree of agreement be-

tween the analytical approximations and simulations is totally determined by the

length distributions of sequences. We want to start with a simple but instructive

example [7] where our approximation totally misses the in-degree distribution,

and we will find the solution only by considering the different contents of the

lock-sequences.

Imagine that we have an ensemble of networks of size N where the lengths of

the key-sequences are fixed at l = 1 and those of the lock-sequences at k. In

this case, the matching probability in Eq. 2.1.3 is exact, p(1, k) = 1− (1− 1/r)k

without recourse to any mean-field approximation. In the limit of very large

number of nodes (such that, all the sequences of length k are realized), the degree

distributions are binomials. The out-degree distribution is given by

Pout(d) =

(
N

d

)
[p(1, k)]d [1− p(1, k)]N−d . (2.3.12)

The in-degree distribution would, in the naive effective-medium approach, be

given by Eq. 2.1.6. However, a more careful analysis shows that it is in fact a

superposition of binomial distributions each for a different number I of letters

occurring in the lock-sequences with a mean and variance depending upon I. Let

us denote the total number of different configurations of sequences of length k by
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ω = rk and the number of those sequences containing 1 ≤ I ≤ min(k, r) different

letters by ω(I), ω =
∑

I ω(I). For the lock-sequences with I different letters, the

distribution of in-coming edges is given by

P in
I (d) =

(
N

d

) (
I

r

)d (
1− I

r

)N−d

, (2.3.13)

where I/r is the probability that a randomly selected key-sequence consisting of

only one letter is one of the I different letters contained in the lock-sequence.

Then the in-degree distribution may be written as

Pin(d) =

min(k, r)∑
I=1

ω(I)

ω
P in

I (d) , (2.3.14)

where ω(I)/ω is the probability of encountering a randomly selected lock-sequence

with I different letters. Now we will calculate the number of configurations of

lock-sequences constituted by I different letters. Let us denote the multiplicity

of letter “ai” in a sequence of length k by nai
. Given the I and k we have two

constrains,

k =
I∑

i=1

nai
, 1 ≤ nai

≤ k − I + 1 . (2.3.15)

Fixing the set of I different letters and their multiplicities {nai
}, the number of

configurations ω(I|{nai
}) of such sequences is a multinomial coefficient,

ω(I|{nai
}) =

(
k

na1

)(
k − na1

na2

)
. . .

(
k −∑I−2

j=1 naj

naI−1

)
. (2.3.16)

Using the constraints in Eq. 2.3.15 we write the number of sequences containing

I different letters as

ω(I) =

(
r

I

) ∑
{nai}

ω(I|{nai
})

=

(
r

I

) k−I+1∑
na1=1

k−na1−I+2∑
na2=1

. . .

k−(na1+...+naI−2
)−1∑

naI−1
=1

ω(I|{nai
}) ,(2.3.17)

where
(

r
I

)
is the total number of ways I different letters can be chosen from an

alphabet of r letters. If we successively sum over the multiplicities nai
appearing

in Eq. 2.3.17, starting with the last one, we get

ω(I) =

(
r

I

) I−1∑
n=0

(
I

n

)
(I − n)k (−1)n . (2.3.18)
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In Fig. 2.7, we compare our analytical results with those of the simulations ob-

tained by generating 106 realizations of the model networks of size 103 with se-

quences constructed from an alphabet of r = 10 letters where the lengths of

lock-sequences are fixed at k = 3. We see that the theoretical curves, where we

have plotted the exact binomial forms (see Eqs. (2.3.12, 2.3.14)) as well as their

Gaussian and Poisson approximations, are in excellent agreement with simula-

tions. We should note here that, had we not taken into account the contents of

the lock-sequences (thus, the fine structure of each sequence), we would have ob-

tained the same result for the in-degree distribution as the one we got for the

out-degree distribution. Because the out-degree distribution Pout(d) = P out
1 (d)

is the binomial with the mean do, 1 = Np(1, 3) (Eqs. (2.1.5, 2.1.7)) and the in-

degree distribution Pin(d) = P in
3 (d) is the binomial with the mean di, 3 = Np(1, 3)

(Eqs. (2.1.6, 2.1.8)), Pout(d) = Pin(d) for this model in the naive effective-medium

approach. In contrast to the previous content-based networks, the in-degree dis-

tribution has wider support than the out-degree distribution.

Figure 2.7: The directed degree distributions as obtained by our analytical solutions
and simulations (red circles). (a) The out-degree distribution is a binomial with the
average out-degree do = 271 and the variance σ2

o = 197.559 (see Eq. 2.3.12). (b) The in-
degree distribution is a superposition of binomials with the average in-degree depending
upon I, the number of different characters contained in the lock-sequence associated
with the node, viz., di, 1 = 100, di, 2 = 200 and di, 3 = 300, and the variances σ2

i, 1 = 90,
σ2

i, 2 = 160 and σ2
i, 3 = 210 (see Eq. 2.3.14). In both cases, we have also plotted the

Gaussian and Poisson approximations to the degree distributions to allow a better
comparison.

The lock-sequences of length k, as has been illustrated above, can be grouped with

respect to the number Il of different subsequences of length l embedded in them.
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For arbitrary values of l > 1 and k > l, it is very hard to calculate the number

ωk(Il) of sequences of length k containing 1 ≤ Il ≤ min(k − l + 1, rl) different

subsequences of length l. In this case (i.e., l > 1 and k > l), the connection

probability in Eq. 2.1.3 is not valid for the key-sequences either. But now the

key-sequences of length l can be grouped into equivalence classes with respect

to their shift-match numbers [8] or binary vectors [63, 64] which measure the

auto-correlations within sequences. Following the notation of [8], the shift-match

number s(a) of a sequence a of length l (say, a = a1a2a3 . . . al) is defined as the

binary sequence of the same length l, whose ith digit si is si =
∏l

j=i δa1−i+j , aj
.

For example, if a = 110 then s(a) = 100. We will demonstrate here the situation,

via a simple example, where the out-degree distribution of the key-sequences of

the same length l splits with respect to their shift-match numbers.

Let us consider an ensemble of model networks of size N where the lengths of the

key-sequences are fixed at an arbitrary value l and those of the lock-sequences

at k = l + 1. The out- and in-degree distributions are binomials in the limit of

very large network size. So we assume that all the configurations of the key- and

lock-sequences are realized. In the case we consider here, we can easily write the

number ωl+1(Il) of configurations of sequences of length k = l + 1 containing

1 ≤ Il ≤ min(2, rl) different subsequences of length l. The number of the lock-

sequences containing only the identical subsequences (thus, Il = 1) of length l is

ωl+1(1) = r, and the rest of the configurations of the lock-sequences contain two

different subsequences (i.e., Il = 2) of length l, thus ωl+1(2) = rl+1 − r. The in-

degree distribution is a superposition of binomials in the limit of very large system

size. Generalizing the expression for the in-degree distribution in Eq. 2.3.14,

Pin(d) =

min(k−l+1, rl)∑
Il=1

ωk(Il)

ωk

P in
Il

(d) , (2.3.19)

and using the results of Eq. 2.3.13, we get

Pin(d) =
1

rk−1

(
N

d

)[(
1

rl

)d(
1− 1

rl

)N−d

+ (rk−1 − 1)

(
2

rl

)d(
1− 2

rl

)N−d
]

.

(2.3.20)

The out-degree distribution is also a superposition of binomials each centered

around the mean values according to the shift-match numbers of the key-
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sequences,

Pout(d) =
∑

s

ω̃l(s)

ωl

P out
s (d) , (2.3.21)

where ω̃l(s) is the number of configurations of the key-sequences of length l

with shift-match number s, and P out
s (d) is the out-degree distribution of such

sequences. (Note here that s depends on l.) Let us consider the key-sequences of

length l and all the lock-sequences of length l + 1 we can generate from these

key-sequences. In this way, we will calculate the number n(s, k) of configurations

of those lock-sequences of length k = l + 1 containing a given key-sequence with

shift-match number s. (i) The key-sequences with the highest shift-match num-

ber s∗ are the ones containing l identical letters. The number of configurations

of such sequences is obviously ω̃l(s
∗) = r. Consider a given sequence of this kind

and add a letter out of r− 1 letters to the right or left most side of this sequence.

By this process, for each different letter added one obtains a different sequence

of length l+1 for the given key-sequence of length l. Thus the number n(s∗, k) of

configurations of the lock-sequences of length k = l+1 containing such a sequence

is n(s∗, k) = 2(r−1)+1, where (+1) comes from the addition of a letter which is

identical to the already existing ones. (ii) Now consider the key-sequences with

shift-match numbers s �= s∗. For a given sequence of this kind, again we can

add a letter, now out of r letters, to the right or left most side of this sequence

which yields a different sequence of length l + 1 for each different letter we add.

Thus, the number n(s �= s∗, k) of configurations of the lock-sequences containing

this key-sequence is n(s �= s∗, k) = 2r. Note here that we have reached this re-

sult without knowing the specific value of the shift-match number s, all we know

is that it is different from s∗ . Now we can write down the expressions for the

out-degree distributions of nodes with respect to their shift-match numbers as

P out
s∗ (d) =

(
N

d

)(
2r − 1

rl+1

)d(
1− 2r − 1

rl+1

)N−d

, (2.3.22)

and

P out
s �=s∗(d) =

(
N

d

)(
2r

rl+1

)d(
1− 2r

rl+1

)N−d

. (2.3.23)
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By substituting these results into Eq. 2.3.21 we obtain

Pout(d) =
ω̃l(s

∗)
ωl

P out
s∗ (d) +

∑
s �=s∗

ω̃l(s)

ωl

P out
s (d) ,

=
ω̃l(s

∗)
ωl

P out
s∗ (d) +

ωl − ω̃l(s
∗)

ωl

P out
s �=s∗(d) . (2.3.24)

In Fig. 2.8 we compare our analytical calculations, including the exact binomial

distributions (see Eqs. (2.3.20, 2.3.24)) as well as their Gaussian and Poisson

approximations, with simulation results which have been obtained by averaging

over 105 realizations of the model networks of size 1280. The key- and lock-

sequences are random binary strings whose lengths have been fixed at l = 2

and k = 3, respectively. We see that the theoretical curves agree very well with

the simulation results, where the out- and in-degree distributions split into two

distributions. As one may recognize, the number of peaks in the degree distri-

bution is totally determined by the lengths of the sequences (compare Fig. 2.8

with Fig. 2.7). The number of peaks in the in-degree distribution is determined

by max(Il) = min(k − l + 1, rl). On the other hand the observation of split-

ting in the out-degree distribution is determined by the shift-match numbers

of the key-sequences as well as the difference between the lengths of the lock-

and key-sequences. Thus, some of the shift-match numbers are degenerate in the

sequence-matching probabilities depending on k − l as have been shown in [8],

where it has been rediscovered that the sequence-matching probabilities of the

key-sequences depend on their shift-match numbers and k− l. The work has not

been published, as it has turned out that the same problem had been studied

much earlier [63, 64] and the role played by the auto-correlations in the string-

matching problem elucidated.

2.4 Information Theoretic Approach to Interaction Networks

The information-theoretic approach we would like to present here is quite generic

and promises to be widely applicable to systems which can be described in terms

of networks of interacting nodes. In this approach, an interaction, represented

as an edge connecting a pair of nodes, is established if and only if a number of

more or less stringent constraints are fulfilled. The number and strictness of the

constraints may be quantified as a certain amount of information, or code, that
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Figure 2.8: The directed degree distributions as obtained by our analytical solutions
and simulations (red circles). (a) The out-degree distribution is a superposition of bino-
mials with the respective average out-degrees depending upon the shift-match numbers
of the key-sequences, viz., do, s∗ = 480 and do, s �=s∗ = 640, and the variances σ2

o, s∗ = 800
and σ2

o, s �=s∗ = 640 (see Eq. 2.3.24). (b) The in-degree distribution is a superposition
of binomials with the average in-degrees according to the number of different subse-
quences of length l contained, di, 1 = 320 and di, 2 = 640, and the variances σ2

i, 1 = 960
and σ2

i, 2 = 640 (see Eq. 2.3.20).

has to be shared between the two nodes. The topology of the interaction network

is then determined by the distribution function of the required amount of shared

information between the interacting nodes.

The way in which we model the shared information, corresponding to a set of

constraints, is via a string-matching condition we have introduced earlier [5, 6]

and discussed in detail in the previous sections. In this content-based model, the

condition for establishing a connection is that a code, represented by a string as-

sociated with one node, match, letter for letter, a substring of the code associated

with another node. In this model, matching each successive letter will correspond

to satisfying an additional constraint. The number of constraints can thus be

mapped to the length of a string to be matched. The chance satisfaction of the

constraints is smaller, the longer the alphabet.

To use a “lock and key” analogy to illustrate the idea of simultaneously satisfying

a number of constraints, the first string may be regarded as the “key” combination

that opens the “lock,” which in this case may be opened by more than one

key. The probability of a chance hit on one of the right combinations decreases

exponentially with the length l of the sequence, as exp(−l ln r) (see Eq. 2.1.3).
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Note that −l ln r is in fact the so called “Shannon information” [65] of a random

“key,” selected from an alphabet of r letters.

This approach seems to be particulary well-suited to the description of genetic

regulatory networks, which operate on a cognate/cognate responsive element ba-

sis. Transcription factors (TF) are the cognates which bind the cognate responsive

elements, i.e., the binding sites (regulatory sequences) within the promoter re-

gions (PR) of different genes. The “key” to the promoter region, so to speak, is

the binding motif. We have modelled the transcriptional regulation network of

yeast presented in Section 3, by using the bitwise information contents of the

binding motifs that we have extracted from the data reported by Harbison et

al. [41] as described below.

2.5 Bitwise Information Content

If we assume that the letters in a string are not correlated, although their relative

frequencies of occurrence may depend on their position, then the information

content of a sequence can be computed as the sum of the information content of

each letter in the sequence. Let us also assume that positions within the sequence

have equal significance, i.e., the maximum amount of information which can be

contained in any position within the sequence is uniform.

In a given sequence of length L, with letters chosen from an alphabet of length

r, the information content, which is the negative of the Shannon entropy [65], is

given by I =
∑L

j=1 Ij with

Ij =
r∑

i=1

fij ln fij , (2.5.25)

where fij with i = 1, . . . , r are the relative frequencies of the different letters

at each position j in the sequence. Note that Ij = 0 if we know for sure that

a certain (e.g., ith) letter and no other, will appear (in which case the relative

frequency fij = 1, and fi′j = 0 for i′ �= i). Thus, Shannon entropy is the amount of

information which we receive from a signal over and above what we already knew

about the system. Let us define a relative Shannon information, R =
∑

j Rj ≡∑
j Ij + L ln r, which is the difference between I and the Shannon information
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communicated by a signal composed from an alphabet with equi-probable letters.

This relative quantity is the definition of information content which we will use.

The bitwise information content of a sequence is the number of binary digits

{0,1}, needed to code the same amount of information. The bitwise information

content of the jth member of the sequence, namely the length increment which

it will contribute, is,

δlj =
Rj

ln 2
, (2.5.26)

since the number of bits, i.e., binary digits, needed to specify a character from an

alphabet of length r is (at most) n = ln r/ ln 2. However, δlj is not, in general, an

integer. Therefore a coarse graining, which entails a certain amount of arbitrari-

ness, is called for. This coarse graining may be guided by the real system where

the values of δlj fall, of themselves, into a number of distinct clusters.
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3 MODELLING THE TOPOLOGICAL PROPERTIES OF
TRANSCRIPTIONAL REGULATORY NETWORKS: A
COMPARISON WITH YEAST

We hereby would like to present a content-based model [9] which is able to capture

all the considered global topological properties of the transcriptional regulatory

network of yeast when the distribution of the amount of shared information is used

as the biological input. We believe that this approach provides an understand-

ing of how interactions based on shared information might arise spontaneously

between subsequences of any sufficiently long linear code, even when this code is

completely random, and how a complex network emerges as a result.

We construct a null model of a transcriptional regulatory network (TRN) by

adapting the sequence-matching rule we have introduced earlier [5, 6]. The bi-

ological input to the model consists of the effective length distribution of the

binding sequences recognized by the transcription factors of yeast [35, 41] and

the form of the length distribution of the intergenic regions [66], in the absence

of more specific information regarding the lengths of the promoter regions. By

“effective length” we mean the bitwise information content (site specificity) of a

binding motif with variations and uncertainties, such as rTCAytnnnnAcg. The

model is null in the sense that it does not take into account all the complications

and processes taking place at the level of transcriptional initiation discussed in

Section 1.2.

We make a very detailed analysis of the topological features of the TRN of yeast

Saccharomyces cerevisiae, using the available data [35, 36, 37, 38], in order to

test the predictions of this model (see Table 3.1 for the databases used). We are

able to demonstrate that our model is able to capture with convincing precision

all the global topological features discussed in the literature, such as in-, out-

and total degree distribution [14, 15, 16], the degree-degree correlation [20, 21],

the clustering coefficient [22, 23, 24] the rich-club coefficient [26, 27] and the
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k-core structure [28, 30, 31], i.e., the hierarchical organization of the links. This

thorough topological characterization allows us to discriminate between different,

more restricted null-null models which capture some but not all of the features

of the yeast network. We thus show that our model is in a sense a minimal null

model.

3.1 Sequence Matching Model for the Transcriptional Regulatory
Networks

The genes of the organism under consideration are represented by the nodes in our

content-based model network, only a small percentage of which code transcription

factors (TFs). We associate a sequence with each node representing the promoter

region (PR) of the corresponding gene through which the gene may be regulated.

With those genes coding TFs we also associate a second sequence, uncorrelated

with the first, representing the binding motifs recognized by the TF through

which the corresponding gene may regulate the expression of other genes or the

gene itself. For simplicity we assume that there is only one transcription factor

that is coded by each regulatory gene. (See Fig. 3.1)

In our model the binding motifs and the PRs are represented as random binary

sequences (thus, the size of the common alphabet is 2), whose lengths obey differ-

ent probability distributions. The TF binding motifs are typically short sequences

with a narrow length distribution [35, 41], since a TF selectively binds 5-10 bases

and not much more. A single TF can bind a number of similar sequences, and

we have used the information content of the binding motif representing these

sequences in order to obtain a distribution of effective lengths for the randomly

generated binary sequences representing our TF binding motifs. The details of

this calculation are discussed in Section 2.5.

We assume that the lengths of the PRs are distributed in the same way as the

lengths of the intergenic regions, obeying long tailed power-law distribution [66]

whose exponent is the only free parameter in the model, and will be determined

from a comparison of the topological features of the model and the experimental

regulatory networks, as described in the next section.
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As has been already shown in the previous sections, the length distributions of

the sequences associated with the nodes of a content-based network determines

its topological properties. The amount of information coded in these randomly

generated binding motifs and promoter regions thus constitutes the essential bio-

logical ingredient of our model and dictates the overall topology of the resultant

networks.

The mechanism for establishing connections between nodes of the genetic reg-

ulatory network is given by the string matching condition [5, 6, 9] between the

binding motifs of the TFs and all possible uninterrupted subsequences of the PRs.

The directed network of regulatory gene interactions is obtained by drawing a di-

rected link from each TF-producing node A to all those nodes B, B′, B′′, . . . ,

whose PRs contain the binding motif associated with the TF coded by node A

(see Fig. 3.1).

Figure 3.1: Our content-based model of transcriptional regulation networks. A pair of
genes with their associated regions and the mechanism of interaction between them,
is displayed. Each gene has a promoter region (red boxes, PR1 and PR2) through
which the corresponding gene is regulated. One of the genes (green ellipse, G1) codes
a transcription factor (yellow triangle, TF1) with the regulatory sequence it recognizes
(orange box, RS1), whereas the other gene (blue ellipse, G2) codes a structural protein
(“P” shape in brown). Since the RS1 occurs as a subsequence in the PR2, a directed
link from G1 to G2 is established signifying a regulatory interaction between them that
the expression (production of TF1) of G1 may regulate the expression (production of
the structural protein coded by) of G2.
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Table 3.1: The summary of databases for the TRN of yeast. The number of interacting
genes, regulated genes, regulatory genes (coding TFs), and interacting pairs that appear
in the yeast regulatory network as obtained from different sources [35, 36, 37, 38], and
the average values, obtained from one hundred realizations of our model (± the standard
deviations) with µ = 0.1.

Source Genes Regulated Regulatory Interacting Pairs

Yeastract† [37] 4252 4229 146 12530
Lee et al.‡ [35] 2884 2850 102 6441

Luscombe et al.§ [36] 3459 3420 142 7071

Kınıkoğlu et al.� [38] 3763 3709 180 9135
Model 4167± 177 4103± 181 202± 14 14365± 2067

†http://www.yeastract.com
‡http://fraenkel.mit.edu/Harbison/release v24/bound by factor/

§http://sandy.topnet.gersteinlab.org/index2.html
�private communication

3.2 Modelling the Transcriptional Regulatory Network of Yeast

We choose the total number of genes and the proportion of those genes coding

transcription factors in conformity with the largest data set, Yeastract [37], to

make a quantitative comparison with the transcriptional regulatory network of

yeast possible. (See Table 3.1.)

The length distribution of the binding motifs in the model genome was derived

from the yeast data provided by Harbison et al. [41], where the motifs were

reported as letter sequences with upper case letters {A,T,G,C} (high preference),

lowercase letters (a weaker preference) and “ambiguity codes” S = C or G, W =

A or T, R = A or G, Y = C or T, K = G or T, M = A or C, the letters {H,B,V,D}
each correspond to preferences for different triplets out of the four letters, and N

indicates “no preference.” The bitwise information content of a sequence is the

number of binary digits {0,1}, needed to code the same amount of information.

The bitwise information content δlj of the jth member of the sequence is the

length increment which it will contribute. Plotting δlj against the largest of the

relative frequencies encountered for that site, one finds that these labels fall into

distinct clusters that are determined by δlj alone. The following choice leading

to an integer-valued ∆lj,

∆lj =


2 for δlj > 1.04

1 for 0.3 < δlj ≤ 1.04

0 for δlj ≤ 0.3

, (3.2.1)
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with the bitwise length of a sequence being finally given by
∑

j ∆lj, then effec-

tively corresponds to the coarse graining where the upper case letters {A,T,G,C}
contribute two bits, the letters {S,W,R,Y,K,M} and their lower case versions con-

tribute one bit, and the letters {H,B,V,D,N} or their lower case versions zero bits

to the length of the bit-strings representing the binding sequences in our model.

The length of the binary sequence obtained in this way roughly corresponds to the

amount of shared information, measured by the Shannon entropy [65], required

for the binding of the TF. Performing this calculation (see Section 2.5) for each

TF [41], we obtain the length distribution shown in Fig. 3.2.

Figure 3.2: Distribution of the amount of bitwise information coded by each regulatory
sequence recognized and bound by the 102 TFs in the yeast genome, compiled from
the recently published data by Harbison et al. [41]. This distribution is adopted as the
length distribution of the random regulatory sequences (binding motifs) in our model.

We assume that the lengths of the PRs follow a power law distribution similar to

that of the intergenic regions [66], with

pPR(l) ∝ l−1−µ , (3.2.2)

where 0 ≤ µ ≤ 2. For µ > 2 the distribution would not really be fat tailed

anymore. In our case, where the range of the PR lengths is finite, it is immaterial

whether µ < 0, i.e., the length distribution would still be normalizable; one only

needs µ > −1, for the distribution to be decaying power law. It is interesting

that we find a borderline value for µ, namely µ = 0.1. We also stipulate that
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l is restricted to the interval lmin ≤ l ≤ lmax, where lmin coincides with the

peak of the length distribution of the binding motifs shown in Fig. 3.2, while

lmax− lmin +1 = 250. In this choice we are guided by the finding [41] that most of

the probability for encountering a TF binding site is contained within a window of

250 base pairs (bps) located approximately 100 bps upstream of a gene. In moving

from 4-letter alphabet to the binary one the 250 bps window does not double,

because the number of edges in the network is required to remain invariant under

this transformation. This may be understood by using the approximate result

for the sequence-matching probability p(l, k) in Eq. 2.1.3, which determines the

average number of edges in the content-based networks. If the sequences to be

matched, with large number rl of configurations of such sequences, are much

shorter than the sequences configuring the search space, the matching probability

p(l, k) becomes k/rl. Now if one wants to move from an alphabet of r letters to

another with r′ letters while keeping the number of edges invariant, then it needs

to satisfy the condition p(l′, k′) = k′/(r′)l′ = p(l, k) where l′ and k′ are the

lengths of the sequences in this new representation. In our case (i.e., r = 4 and

r′ = 2 = r1/2), the lengths l of regulatory sequences would double, l′ = 2l, when

we represent them as binary sequences. Thus the matching probability becomes

p(l′, k′) = k′/rl, and k′ has to be fixed at k to obtain the same number of edges.

Once the shape of the length distribution of the binding sequences and the func-

tional form, as well as the width, of the PR length distribution have been fixed

through the available biological data, the only remaining adjustable parameter in

our model is the exponent µ of the power law distribution of PR lengths, pPR(l).

Clearly, the length distribution for the PRs must be tested against null assump-

tions, and this we do in Section 3.3. We find that, once the form of the distribution

has been chosen as in Eq. 3.2.2, any value of µ within the interval [0,2] performs

reasonably well, while, say, fixing all the PR lengths to be identical gives markedly

different results.

In order to optimize the value of µ, we could compare all the available topological

characterizations of randomly generated model networks obeying the constraints

on the number of nodes and the length distribution of the binding sequences,
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for different values of 0 ≤ µ ≤ 2, with those of the yeast TRN. It is obviously

desirable, however, to find one number to compare with experiment, rather than,

say, the whole degree distribution or the degree-degree correlation function dnn(d).

In fact, once pPR(l) is chosen to be of the power-law form given in Eq. 3.2.2, then

choosing µ to make the maximum number kmax, of k-cores of the model and the

network obtained from the Yeastract [37] data source coincide is sufficient for the

rest of the topological features of the respective networks to fall right on top of

each other, as shown in Figs. (3.3, 3.4) and Figs. (3.6–3.11). Note that we have

chosen the Yeastract [37] data to tune the parameter µ and to compare with

our results, because it is the largest available data set (see Table 3.1). But we

also make comparison with the networks obtained from other data sets as well in

Section 3.5.

We should point out that the ensemble of our model networks contains 4167 nodes

with nonzero interaction (out of 6000 in total) with a few clusters of size 2 (6% of

clusters containing interacting nodes). Thus, almost all the nodes with nonzero

degree belongs to the giant component. The analysis for the degree distributions,

the rich-club coefficient and the k-core structure have been done for all the inter-

acting nodes whereas the clustering coefficient and the degree-degree correlation

of nearest neighbors have been evaluated on the giant component.

In Figs. (3.3, 3.4), we show the k-core visualizations [29] of one realization of

the model network and the Yeastract [37] data. Here µ has been fixed to 0.1,

making the mean and the mode of kmax for the model ensemble to coincide with

the value we compute from the Yeastract [37] database, at kmax = 9. Both the

model and the experimental network exhibit a highly hierarchical structure with

a nested sequence of k-shells and an almost exclusively radial arrangement of the

edges. The distinct hierarchical organization of the edges is not very sensitive to

the precise value of µ, while the total number of shells decreases as µ increases.

(See Section 3.3 for details.). Fig. 3.5 showing the k-core visualization [29] of the

preferential attachment model of Barabasi-Albert (BA) [14], which has also been

claimed to provide a good description of the gene regulatory network of yeast,

should be compared with Fig. 3.4. Note the absence of a well-defined hierarchical

structure.
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Figure 3.3: The k-core visualization of a single realization of our model network ob-
tained by the visualization tool LaNet-vi (http://xavier.informatics.indiana.edu/lanet-
vi/). The length distribution exponent of the PRs has been adjusted to µ = 0.1 to
match the number of k-cores to that obtained from Yeastract [37] data. Dots repre-
sent the nodes of the network, while edges between nodes depict connections. Nodes
belonging to different k-shells are indicated by different colors (on the right hand side)
and are arranged around concentric circles, whose average radius decreases with k. In
particular, a node of a given shell is placed just inside (outside) the corresponding cir-
cle, if it is preferentially connected to lower (higher) k-shells. The sizes of dots indicate
the degrees of the respective nodes (see legend on the left hand side of the figure for
representative sizes).
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Figure 3.4: The k-core visualization of the network extracted from
Yeastract [37] data obtained by the visualization tool LaNet-vi
(http://xavier.informatics.indiana.edu/lanet-vi/).
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Figure 3.5: The k-core visualization of the Barabasi-Albert (BA) model [14] obtained
by the visualization tool LaNet-vi (http://xavier.informatics.indiana.edu/lanet-vi/).
The network has 5000 nodes, and is built by starting from a fully connected four-
cluster and adding nodes with two edges at a time. The number of edges is 9998. Only
% 5 of the edges are shown for better visibility. Quantitative analysis of the k-core
structure has shown that there are only three shells, with 99.9 % of the nodes in the
second shell, and the third shell being just the four completely connected set of nodes
from which the network is grown.

In Figs. (3.6–3.11), we report our results for the in-, out- and total degree dis-

tribution [14, 15, 16], the degree-degree correlation [20, 21], the clustering coeffi-

cient [22, 23, 24] and the rich-club coefficient [26, 27], with the choice of µ = 0.1.

Results for the yeast TRN, which we have extracted from the Yeastract [37] data

have been superposed on the scatter plots of one hundred independent realizations

of randomly generated model networks with identical parameters.

The total degree distribution is obtained by ignoring the directionality of the

interactions and is generally different from the superposition of in- and out-degree

distributions. In Fig. 3.6, Yeastract [37] data for the degree distribution is shown

on top of a scatter plot obtained by superposing the results of the ensemble of

model networks. The total degree distribution displays a crossover behavior at

around d = 2dav, before and after which it has an exponential decay and a rather

large scatter of points, respectively.

In Fig. 3.7, we exhibit the in-degree distribution obtained from the Yeastract [37]

data, and the corresponding scatter plot. The in-degrees are distributed in a very
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Figure 3.6: Total degree distribution extracted from the Yeastract [37] data (red cir-
cles), superposed on the corresponding degree distributions of one hundred realizations
of the model network (black dots). The total degree distribution with an inset showing
a log-linear plot for d/dav ≤ 4, where one may observe that both the model and the
data points almost fall on a straight line. The axes are scaled by the appropriate aver-
age total degree in order to factor out fluctuations in the network size (the number of
nodes with nonzero interactions).

narrow interval with an exponential decay.

The out-degree distribution of the yeast and those of model networks have rather

large scatter of points due to the relatively small number of TFs. Comparing with

the scatter plot obtained from one hundred realizations, we find again that the

actual yeast data falls within the boundaries set by the model ensemble (Fig. 3.8).

In Figs. (3.9–3.11), we report the three topological coefficients, the degree-degree

correlation, the clustering coefficient and the rich-club coefficient, that go beyond

degree distributions in characterizing the network. The agreement is extremely

good, in particular, the shoulder observed in the rich-club coefficient in Fig. 3.11,

a feature common to both gene regulation and protein-protein interaction net-

works [27], is captured accurately in our model. Note that the topological features

displayed in Figs. (3.6–3.11) are obtained without any further adjustment of µ.

In the degree-degree correlation function (see Fig. 3.9), two regions are distin-

guished as in the total degree distribution. The small degree region is dominated
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Figure 3.7: In-degree distribution extracted from the Yeastract [37] data (red circles),
superposed on the corresponding degree distributions of one hundred realizations of the
model network (black dots). The in-degree distribution plotted on a semi-logarithmic
scale.

Figure 3.8: Out-degree distribution extracted from the Yeastract [37] data (red circles),
superposed on the corresponding degree distributions of one hundred realizations of the
model network (black dots). The out-degree distribution plotted on a log-log scale.
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Figure 3.9: Comparison of the degree-degree correlations between neighboring nodes
dnn(d) for one hundred realizations of the model (black dots) and the Yeastract [37]
data (red circles).

by genes coding structural proteins (thus, the total degree of such a node is equal

to its in-degree). The nodes of this type are connected to TF-coding genes, which

have relatively large degrees (coming from their out-going links). On the other

hand, the large degree region is determined by the TF-coding genes. Most of

their nearest neighbors are those nodes coding structural proteins, which have

small degrees (coming from their in-coming links). The networks have disassorta-

tive characteristics; nodes with large degrees are connected to nodes with small

degrees on average, i.e., dnn(d) decreases as d increases.

The behavior of the clustering coefficient c(d), follows from the same principle

as above (compare Figs. (3.9, 3.10)). Note here that one needs at least two TF-

coding genes to obtain a three-clique [67]. The nearest neighbors of nodes in

the first region are TF-coding genes, which are also interconnected with each

other, whereas the nearest neighbors of nodes in the second region are mostly

those nodes coding structural proteins, which do not interact with each other.

Contribution to the clustering coefficient of a node in this region comes from the

interactions of the relatively small number of TF-coding nearest neighbors of this

node.
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Figure 3.10: Comparison of the clustering coefficient c(d) for one hundred realizations
of the model (black dots) and the Yeastract [37] data (red circles).

Figure 3.11: Comparison of the rich-club coefficient r(d) for one hundred realizations
of the model (black dots) and the Yeastract [37] data (red circles).
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3.3 Qualitative and Quantitative Aspects of the k-core Structure:
Choosing the Length Distribution of the Promoter Regions

In this section we would like to discuss certain qualitative and quantitative aspects

of the k-core structure, how these are related to the other global topological

features of the network and how we have used them in deciding upon a length

distribution for the PR sequences. We would also like to warn here against an

undue emphasis on the visual appearance of the k-core structure, which may

obscure more subtle differences between networks with respect to such properties

as the distribution of nodes over different k-shells.

The k-core pictures provide a necessary but not sufficient input in modelling a

real network. The k-core visualization may aid in a quick elimination of certain

candidate models, and may amplify certain subtle differences, but in the case of

our content-based model, the choice of the appropriate length distribution for the

target strings cannot be made on the basis of the k-core visualization alone.

This section is organized as follows. First we present the detailed considerations

leading to our choice of the exponent µ in the power law distribution for the PR

lengths, the quantitative analysis of the k-core structure of the resulting network,

and comparison to that of the TRN of yeast. For comparison, we discuss the effect

of varying µ over its whole range, and we show the results for the global topological

features of the model networks, again superposed with those of Yeastract [37],

for µ = 2. Then, we pose the question whether a different length distribution

altogether, such as fixing the PR lengths at some relatively large value, could

not have yielded similar agreement with yeast data. As a worst-case example we

present a k-core visualization which agrees very closely with that of yeast, but

which sharply diverges in its quantitative k-core structure and other topological

features.

3.3.1 Determining the value of µ

We find that employing a power law form, pPR(l) ∝ l−1−µ for the length distribu-

tion [66] of the promoter regions in the present model, leads to the hierarchical

organization that can be seen in Fig. 3.3, with the connectivities essentially being
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between the innermost core and the outer k-shells. This feature is not sensitive

to the precise value of µ.

To choose the value of µ to be used in our simulations, we proceed as follows: For

different values of µ, we generate an ensemble of one hundred realizations of our

model network, with N = 6000 genes in total, as in the yeast genome. The value

of µ = 0.1 yields the greatest proportion of model networks (36 out of 100) with

kmax = 9, coinciding with that of yeast. Moreover, for µ = 0.1, the distribution of

kmax for different realizations of the model network is symmetric about the mode.

Without any further adjustment of the value of µ, we find that the size of the

connected network relative to the size of the whole genome (in number of nodes)

is in the right ballpark. On the average, 4167 genes out of the total contribute

to the µ = 0.1 model regulatory network, to be compared with 4252 for yeast

(see Table 3.1). Out of these 4167 genes, we choose 4.8 %, namely 202 genes, to

be TF-coding genes. They end up taking part in a total of 14365 interactions,

again on the average. The corresponding values for the yeast regulatory networks

reported in the available databases are given in Table 3.1.

Quantitative analysis of the k-core structure provides a highly detailed topological

characterization of the network, with the total number of shells, the distribution

of the nodes over the shells and inter- and intra-shell connectivity [31]. There is

detailed quantitative agreement between the k-core organizations of the Yeastract

network and our model, for µ = 0.1, as can be seen from Figs. (3.12–3.14) where

we show the population of each shell and the distribution of the links among

different shells. Both for the yeast data and the model, the great majority of the

links connect the innermost shell with the others and the growth of the connection

probability between shells k and shells with k′ > k, is like exp[ak′] with a ≈ 3, as

can be seen from Figs. (3.13, 3.14).

The results reported in Figs. (3.12–3.14) may be compared with those of Carmi

et al. [31] for the internet. The shell population dependence on k, namely ∼ k−1 is

much weaker than that found for the internet Autonomous Systems. The general

trend of the proportion of links out to the crust, into the core and in the same
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Figure 3.12: Sizes n(k), of k-shells of the networks extracted from the Yeastract [37]
data (red circles) and the model realizations (black dots). We have taken only the 36
realizations (out of 100) with kmax = 9, for ease of comparison. Note that in both the
model and the experimental yeast network, the innermost core is over-represented with
respect to the common trend, which is approximately proportional to k−1.

Figure 3.13: Average number e(k)/n(k), of links per node that are radially outward
(connecting to nodes in shells with k′ < k), inward (k′ > k), and within the shell
(k′ = k), as a function of the shell-number k. The labels “outward” and “inward” refer
only to the circular arrangement of nodes placed at a greater or smaller distance from
the center of the figures in the k-core visualizations employed in Figs. (3.3, 3.4), where
the directionality of the edges is ignored. The red symbols pertain to Yeastract [37]
data whereas the black symbols represent 36 model realizations with kmax = 9. Note
that the different sets of model values and data points have been shifted with respect
to each other for greater clarity, the “inward” connections upwards by one decade, and
the same-shell connections, downwards by two decades.
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shell, are similar. However the identical exponential growth in the number of links

connecting any given shell to shells deeper and deeper in the core-structure, is

a strongly distinguishing feature of yeast and the model network which we are

considering here.

Figure 3.14: Distribution of the number e(k, k′), of links connecting nodes in various
k-shells (different symbols) with nodes in k′ ≥ k shells. The red symbols pertain to
Yeastract [37] data whereas the black symbols represent 36 model realizations with
kmax = 9. The different k-series have been offset with respect to each other for greater
visibility, and the experimental points of each series connected as a guide to the eye.

3.3.2 Comparison with other values of µ

We have varied µ within the range −0.5 ≤ µ ≤ 2.5, to see how far this affects the

topological features of the model network qualitatively and quantitatively (see

Table 3.2 for a summary of ensemble averages of our model). For µ > 2 the dis-

tribution is not fat tailed (Almirantis and Provata [66] suggest 0 ≤ µ ≤ 2) and for

smaller values the fluctuations would totaly dominate. (Note that the distribu-

tion stays normalizable since the range of l is finite.) We find that the relatively

larger µ values result in fewer k-shells, with the average value of kmax ranging

from 10.61 to 3.27 for −0.5 ≤ µ ≤ 2.5 (see Fig. 3.15). The plots corresponding

to Fig. 3.14 are successively truncated from the left as µ is increased, so that the

hierarchical structure of the k-cores is, nevertheless, preserved throughout this

range of µ values.
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Table 3.2: The summary of our model ensemble with the power law distribution of PR
lengths. The average number of interacting genes, regulated genes, regulatory genes
(coding TFs), and interacting pairs obtained from one hundred realizations of our
model (± the standard deviations) with µ in the range −0.5 ≤ µ ≤ 2.5.

µ Genes Regulated Regulatory Interacting Pairs

-0.5 4962± 130 4927± 135 203± 14 21727± 2798
0.0 4290± 163 4231± 168 201± 14 15356± 1996
0.5 3554± 210 3472± 212 193± 15 10085± 1407
1.0 2864± 198 2769± 199 179± 13 6310± 862
1.5 2365± 220 2261± 222 168± 13 4218± 625
2.0 1985± 212 1877± 215 156± 12 2974± 452
2.5 1714± 206 1619± 206 130± 11 2285± 398

Figure 3.15: Average number of k-shells as a function of 1 + µ, the exponent of the
PR length distribution, pPR(l) ∝ l−1−µ.
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In Fig. 3.16 we show the topological features of the model network, computed for

the relatively large value of µ = 2. The figures here are qualitatively somewhat

similar to Figs. (3.6–3.11), although the quantitative agreement achieved for µ =

0.1 is lost. For the lower value of µ = 0, the behavior is very similar to that

for µ = 0.1, so we have not displayed it here. It should be remarked that the

degree distribution is much less sensitive to the change in µ as compared to the

clustering coefficient, the degree-degree correlations and the rich-club coefficient.

Figure 3.16: The topological features of the model network computed for µ = 2,
compared with those of the Yeastract [37] data. For larger values, the length distribution
would cease to be fat tailed as suggested by Almirantis and Provata [66].

3.3.3 A null-hypothesis for the length distribution of the target se-
quences

There is a degree of arbitrariness in the way we have assumed that the lengths of

the promoter regions should follow a power law distribution as do the intergenic

regions [66]. Therefore we decided to test the null-hypothesis that they are all of

the same length, L.

Trying out different L values shows that e.g., for L = 50, the degree distributions
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are qualitatively similar to those shown in Figs.(3.6–3.8), with a slightly faster

decay of the in-degree distribution. The k-core structure has the same hierarchical

appearance as in Fig. 3.3, but with 〈kmax〉 = 4.35. Nevertheless, the distribution

of the nodes over the different k-shells, follows approximately the same k−1 decay

as found before (see Fig. 3.12).

For larger L, we find that a peak forms in the in-degree distribution and moves

to the right as L ≥ 100, while for L = 200 one may indeed observe two humps.

The average number of k-shells at this point is 〈kmax〉 = 13.5. The hierarchical

organization of the connectivity is preserved, although the distribution of the

nodes over the different k-shells becomes non-monotone for L ≥ 100.

Plotting the number of k-cores against L, it is easy to find that for L = 127,

the k-core plot shown in Fig. 3.17 almost coincides exactly with Figs. (3.3, 3.4),

with kmax = 9. However, the detailed qualitative and quantitative agreement with

the topological features of the yeast network is lost, as shown in Fig. 3.18 and

Fig. 3.19. The distribution of the number of nodes over different k-shells may be

compared with that of the internet in [31]. We may note here that although the

average number of nodes taking part in the connected networks is 5897 (out of

6000) with 25046 interactions, again on average, it is interesting to see that the

average number of k-shells just goes up to 9.

3.4 Randomization Procedures and Null-Null Models

In this section we briefly discuss comparing the topological features of our model

with randomized versions thereof, and with “null-null” models which incorporate

only a few elements of our model, selected to mimic certain phenomenological

properties of the target network.

3.4.1 Randomizing the edges of the model network and the yeast
network

To check the significance of our results, we compared the k-core structures, the

clustering coefficients, the degree-degree correlations, and the rich-club coeffi-

cients of the Yeastract data with those obtained after randomly reconnecting the
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Figure 3.17: The k-core visualization of one realization of the model network with the
lengths of the PR sequences fixed at L = 127. The value of L was chosen to make
〈kmax〉 = 9, to coincide with the corresponding value for the Yeastract [37] data.
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Figure 3.18: Superposition of Yeastract [37] results and the scatter plots obtained
from one hundred realizations of the model networks, with the lengths of the PRs
fixed at L = 127. The value of L was chosen to make 〈kmax〉 = 9. Although the
plots look superficially like the ones reported in Figs. (3.6–3.11), note, in particular,
that the exponential decay of the in-degree distribution and the resulting total degree
distribution have been modified. The curve has acquired a maximum at around d/dav =
0.5 and a faster than exponential decay. The rich-club coefficient has lost the distinctive
shoulder.
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Figure 3.19: The distribution of nodes over different k-shells, for the null hypothesis
for the lengths of the promoter regions, namely a fixed PR length of L = 127. Only the
49 realizations with kmax = 9 (out of 100) of the respective model have been shown. At
this value of the PR length, one finds a superficial similarity of the k-core visualization
of this reduced model network with that of yeast. This figure should be contrasted with
the distribution for the null-model shown in Fig. 3.14.

edges of the real and the model networks while i) keeping the in- and out-degree

of each node fixed separately and ii) only keeping the degree of each node fixed,

irrespective of the directionality.

In Fig. 3.20a we display the randomized k-core plots for yeast and the same

realization of the model network whose k-core plot was displayed in Fig. 3.3. We

randomly choose pairs of edges and exchange their ends, either the in with in,

or the out with out, by avoiding the occurrence of a particular interaction twice.

We repeat this procedure 2 × E times, where E is the total number of edges.

This preserves the directionality of the edges, as well as the in- and out-degree

of each node separately. In Fig. 3.20b we show parallel results obtained when we

ignore the directionality of the edges under the random rewiring procedure, but

conserve the total degree of each node.

We see that the randomization procedure which preserves directionality essen-

tially leaves the k-core structure invariant, while randomizing without respecting

directionality of the edges produces a strikingly different picture, both for the

yeast and the model network; kmax becomes 29±1 rather than 9. While in the
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Figure 3.20: The k-core visualizations of the randomized versions of one realization
of the model (left panel) and Yeastract (right panel) networks, preserving separately
the in- and out-degrees (a) or the total degree (b) of each node. The first set of k-
core plots (a) are essentially indistinguishable from Figs. (3.3, 3.4). In contrast, those
obtained by the randomization procedure ignoring the directionality of the edges are
strikingly different. The number of shells have gone up to 29 from 9, and the much
higher intra-shell rather than inter-shell connectivity (as can be seen by following the
edges) indicates that the hierarchical nature of the yeast network, which is faithfully
reproduced by the model, is destroyed by the nondirectional randomization process.
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yeast and model networks, the largest fraction of connections is to the innermost

shell, the kmax-core (see Figs. (3.3, 3.4) and Fig. 3.14), in the randomized networks

without direction conservation, there is a high degree of intra-shell connectivity.

The topological coefficients are also completely altered in this case, as displayed

in Fig. 3.21.

Figure 3.21: The effect of the same randomization procedure in as in Fig. 3.20 on the
degree-degree correlations between neighboring nodes (a,b), the clustering coefficient
(c,d), and the rich-club coefficient (e,f) of the Yeastract data (red circles) and one
hundred realizations of the model network. In the top row, we show the results of
keeping in- and out-degrees of each node fixed, while the bottom row only preserves
the total degree of each node. The black dots correspond to one randomization of each
of one hundred realizations of the model network and the red dots to an ensemble of
one hundred independent randomizations of the Yeast network.

It should be noted that, in our model the lengths (and the contents) of the se-

quences representing the binding motifs and the PR associated with the same

node are assigned independently of each other. Thus there is no correlation be-

tween the in- and out-degree of a given node. Our model is, therefore, a null model

in this respect. Invariance of the topological features under a random rewiring

which conserves the in- and out- degree distributions, suggests that the in- and

out-degree distributions together are able to determine all of the global topolog-
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ical features of the network in question. The achievement of our model is that it

does not have to import these degree distributions from empirical data; it is able

to capture them by means of the string-matching rule and the length distributions

of the regulatory and PR sequences appropriate to the organism under study.

3.4.2 The configuration model

An ensemble of networks generated from one model realization by randomizing

the edges while keeping the directionality fixed, as is done above, is in fact equiva-

lent to a configuration model [68]. To double check our randomization procedure,

we have simulated an ensemble of configuration model networks by taking the

in- and out-degree sequence of each realization of the content-based network, re-

moving the edges, exchanging the in- and the out-degree assignments between

randomly chosen pairs of nodes to remove any possible residual correlations be-

tween these quantities, attaching corresponding numbers of arrows to the nodes,

and then randomly connecting pairs of in and out arrows.

The in- and out-degree distributions of resulting networks are identical to the

content-based model, and the rest of the topological features are indistinguishable

from each other, to the extent that they are determined by the in- and out-degree

distributions. The results agree very closely with the topological properties of the

networks as computed from Yeastract data (see Figs. (3.9–3.11) and the top

row of Fig. 3.21). The crucial fact to keep in mind is that the in- and out-degree

distributions of our model are not imported from any data set, but independently

generated by the information sharing mechanism embodied in the string-matching

condition underlying our model, given the effective length distributions for the

binding motifs and the PRs extracted from the yeast data.

3.4.3 A modified Erdös-Rényi model

To see whether we could reproduce certain features of the yeast TRN using only

the fact that there are two types of nodes in this network, those coding for TFs,

and others that do not, we constructed an Erdös-Rényi type of null-null model

by picking a subset (of size NTF) of all the nodes (N), and allowing only these
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(i.e., TF-coding) nodes to have out-going edges to randomly picked nodes in the

whole network, with a probability p. This probability is to be fixed by the density

of edges on the real yeast TRN, i.e., p = E/Emax, where E is the number of

edges, and Emax = NNTF the total number of possible edges in this network. The

resulting network (see Fig. 3.22) has a bi-modal degree distribution consisting of

the superposition of two well-separated Poissonian peaks, centered over the mean

in- and out-degree contributions, E/N and E/NTF.

Figure 3.22: The topological features of the Erdös-Rényi random network version of
the TRN, with the connection probability determined only from the density of edges of
the empirical network (Yeastract [37] data). The figures have been obtained from one
hundred independent realizations of the adapted Erdös-Rényi random model.

The topological features are qualitatively different from our null-model and the

yeast TRN in all respects. In particular, the bi-modal degree distribution gets

reflected in disconnected plots of the degree-degree correlation and the clustering

coefficient, with essentially degree-independent small-degree region (coming from

the relatively small in-degrees) and a disconnected large degree part coming from

the out-degrees of the TF-coding nodes. The k-core decomposition, on the other

hand, indicates a highly hierarchical structure and looks indistinguishable from

Figs. (3.3, 3.4), with kmax = 7. A closer inspection reveals, however, that the
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distribution of the number of nodes over the different shells is in fact qualitatively

different, resembling that found when the lengths of all the PR sequences are set

to a large number well separated from the lengths of regulatory sequences (see

Section 3.3 and Fig. 3.19).

3.4.4 Comparison with a hidden-variable model

A coarse-grained, or mean-field, version of our model is obtained if, instead of

the fluctuations coming from the chance coincidence of individual strings, one

takes the ensemble averaged probability for a matching to occur between strings

of given lengths, as in Eq. 2.1.3. This can be thought of as a hidden-variable

model [69], where, instead of just the two types of nodes considered above, one has

a superposition of a whole spectrum of Erdös-Rényi networks, with the connection

probabilities p(l, k).

A mean-field version of our model can be constructed by assigning to each node

i, two random variables (li, ki), distributed in the same way as the lengths of the

regulatory and the PR strings associated with the organism under consideration.

(To account for the fact that only a fraction η = 4.8% of the nodes code TFs,

in practice, 1 − η of the nodes are assigned binding motif lengths exceeding the

maximum PR lengths.) These hidden-variables take the place of the regulatory

and PR strings associated with the nodes. To simulate this effective model, we use

the ensemble averaged probabilities p(li, kj) and p(lj, ki) derived from the string

matching condition [6], for inserting directed edges between the nodes (i, j) (see

Eq. 2.1.3).

We show in Fig. 3.23 the simulation results for the topological features of the

hidden-variable model, averaged over one hundred realizations and superposed

on the ensemble averages of our content-based model. The ensemble averaged

results of the hidden-variable model and the content-based model are very close

to each other, except that the content-based model has an in-degree distribution

with a longer tail (in the range 15 ≤ d ≤ 32) than the hidden-variable model,

albeit with very small probabilities. This gives rise to small differences in the

other topological features in this degree range. The subtle difference in the rare
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event range of the in-degree distribution may arise from an underestimation of

the connection probabilities p(l, k) by the mean field approximation [6].

Figure 3.23: The topological features of the hidden-variable model, with N = 6000
nodes, ensemble averaged over one hundred realizations, superposed on the ensemble
averaged results for our null-model whose scatter plots have been displayed in Figs.
(3.6–3.11).

The fidelity of the mean-field version to the yeast TRN is indistinguishable from

that of the full content-based model. This gives us confidence that analytical

calculations of ensemble averaged properties are quite meaningful. It should be

remembered that i) the length distributions of the PR or regulatory strings have

been extracted from empirical data using our information-theoretical approach

to the binding specificities of the binding motifs, and ii) that the connection

probabilities p(l, k) were derived from the string-matching condition.

3.5 Comparison with Other Databases

The agreement observed with the Yeastract [37] data is not source-specific, as can

be seen from a comparison of the topological properties of our model networks,

with those obtained from the different sources listed in Table 3.1. We emphasize
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that the agreement of all four data sets with the model ensemble is achieved while

the parameter µ has only been optimized with respect to the Yeastract data set.

We display in Fig. 3.24, the topological coefficients as computed from different

data sources for the yeast TRN, superposed on the scatter plots for the ensemble

of model networks. We see that although there are partial differences between

the data sets, all are compatible with the model results. Since the different data

sets encompass slightly different sets of genes, this goes further to show that the

model captures the essential building principles of the networks.

Figure 3.24: The network statistics extracted from the sources listed in Table 3.1
superposed on the simulation results corresponding to one hundred realizations of the
model network (black dots). The agreement is extremely good with all of these sets
of data, which almost completely cover, but do not exceed the phase space of our
model. (Red, green, blue, and magenta correspond to the Yeastract [37], Lee [35],
Luscombe [36], and Kınıkoğlu [38] data respectively.)

3.6 Discussion

Our results support our hypothesis that the topology of the TRN is predomi-

nantly determined by the sequence matching rule, which schematizes the shared

information involved in the interaction between the genes. The close structural
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similarity between the model and the real yeast transcriptional regulatory net-

work, with respect to a diverse set of criteria shows that they are part of the same

statistical ensemble of networks [70].

The sequence matching rule should be viewed as an information-theoretical con-

straint, where the interaction between two genes requires the fulfillment of a set

of conditions which we symbolically represent as the matching of two random

sequences. The more stringent the prerequisites of the interaction, the longer is

the random binding motif that is to be matched. The length of the PR establishes

the size of the phase space in which the motif is to be sought. The properties of

the network are then determined by the distributions obeyed by the lengths of

the binding motifs as well as the promoter regions.

Interpreted within an information-theoretical framework, our model has sufficient

generality to accommodate other interactions based on constraint satisfaction

mechanisms, such as protein-protein interaction networks, where the interactions

are dictated by certain steric and chemical conditions.

The topological features of the networks investigated here and shown to be shared

by the yeast transcriptional regulatory network strongly point to the possibility

that these networks did not have to be assembled from scratch, but rather emerged

spontaneously, given any sufficiently long, complex linear code, and a mechanism

for the transcription of some of its subsequences into molecules (proteins) that in

their turn have an affinity for parts of this code and bind it. This proposition by no

means minimizes the role of evolutionary pressures on such networks; instead, it

suggests that a network with essentially the current topology could have provided

a starting point for further fine-tuning.
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4 ANALYTICAL CALCULATIONS ON THE HIDDEN-VARIABLE
MODEL

Here we present the hidden-variable or mean-field version of the content-based

approach [9] proposed as a null model of the transcriptional regulation network

of yeast (see Section 3). We carry out the analytical calculations for the degree

distributions [14, 15, 16], the degree-degree correlation [20, 21] of nearest neigh-

bors, the clustering coefficient [22, 23, 24], and the rich-club coefficient [26, 27] on

the ensemble of hidden-variable networks. We drive the analytical calculations as

far as we can and evaluate the expressions numerically to display the results. We

also provide the comparison of our analytical results with those of the simulations

of the mean-field version of our content-based model. The simulation results we

display here for the ensemble averages of the quantities under consideration have

been computed over one hundred realizations of the hidden-variable model.

The hidden-variable or mean-field version of our content-based model may be

constructed by taking N nodes and assigning two random variables, l and k, to

each of them, then establishing the directed edge originating from node i and

terminating at node j with respect to their random variables, li and kj. The

directed edges of the content-based network are drawn between the regulatory

sequences and the promoter regions of pairs of nodes if the amount of information

contained in the regulatory sequence of the first node is shared by the promoter

region of the second. This is made concrete by requiring that the regulatory

sequence of the first node occurs as a subsequence in the promoter region of the

second node. In the mean-field version, the first and second variable, l and k,

assigned to each node represent the lengths of the regulatory sequence and the

promoter region, respectively. If li ≤ kj the directed link from node i to node j

is drawn with the probability p(li, kj),

p(li, kj) = 1−
(

1− 1

rli

)kj−li+1

, (4.0.1)
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which may be seen as a zeroth order approximation to the probability of occur-

rence of a randomly selected sequence of length li in a randomly selected sequence

of length kj if the sequences are chosen from a common alphabet of r letters where

each of them has equal chance, 1/r, to occur in a random sequence [6]. Thus, the

element of the adjacency matrix, wij may be written as

wij =

{
1 with probability p(li, kj) if li ≤ kj

0 otherwise
, (4.0.2)

and implies that the nodes having an RS of length exceeding the lengths of PRs

will not contribute to the number of out-going edges, and the ones with a PR of

length less than the lengths of RSs will not contribute to the in-coming edges.

The distribution p̃RS(l), of the first random variable l,

p̃RS(l) = ηRSpRS(l) + (1− ηRS)qRS(l) , (4.0.3)

where pRS(l) is defined in the interval ΛRS = [lmin, lmax], is the biological input to

the model and may change according to the organism under consideration. On

the other hand, the distribution p̃PR(k), of the second variable k,

p̃PR(k) = ηPRpPR(k) + (1− ηPR)qPR(k) , (4.0.4)

where pPR(k) is defined in the interval ΛPR = [kmin, kmax], is more flexible, and

we have also introduced the parameter ηPR to drive more general results. (This

parameter does not exist in the content-based model presented in Section 3, where

ηPR = 1.) These two distributions, pRS(l) and pPR(k), will totally determine the

topological properties of the ensemble of networks in question. The distributions

qRS(l) and qPR(k) are defined in the regions l > kmax and k < lmin, respectively.

Note that the variables (RS and PR lengths) attached to those nodes having

potential to contribute to the interactions in the network obey the distributions

pRS(l) and pPR(k), not the p̃RS(l) and p̃PR(k). Defining the distributions of random

variables by p̃RS(l) and p̃PR(k) is just a way of saying that only the ηRS of nodes

may have an RS and the ηPR of nodes may have a PR. Note again that all the

distributions are normalized in the given intervals.

Below we calculate the distributions of number of nodes which may contribute to

the interactions in the network and the degree distributions (out-, in-, and total),

63



to be used for the calculations of the two and three point correlations, namely

the degree-degree correlation of nearest neighbors and the clustering coefficient,

and the rich-club coefficient.

4.1 Fluctuations in Node and Edge Properties

Because of the probabilistic nature of the model the number of nodes with a given

variable as well as the number of edges between the nodes with given variables

fluctuates from one realization to another. Here we will define and calculate the

corresponding distributions with their means and variances, to be used for the

calculations of degree distributions.

Denoting the total number of nodes by N , the number nRS(l) of nodes with RSs

of length l ∈ ΛRS, and the number nPR(k) of nodes with PRs of length k ∈ ΛPR

are binomially distributed,

P (nX(x)) =

(
N

nX(x)

)
[ηXpX(x)]nX(x) [1− ηXpX(x)]N−nX(x) , (4.1.5)

with the mean 〈nX(x)〉 = NηXpX(x) and variance σ2
nX(x) =

NηXpX(x) [1− ηXpX(x)], where X stands either for RS or PR; pX(x) is the

probability of finding a string X of length x in a random realization of the model.

The total number of directed edges is given by the sum of the elements of the

adjacency matrix, e =
∑

i,j wij where it should be recalled that wij is a ran-

dom variable taking the value of 0 or 1. Note that the interaction matrix is

not symmetric, wij �= wji in general. We may rewrite the number of edges

as e =
∑

l

∑
i∈GRS(l)

[∑
k≥l

∑
j∈GPR(k)wij

]
=
∑

k

∑
j∈GPR(k)

[∑
l≤k

∑
i∈GRS(l)wij

]
where the nodes have been grouped into sets labelled with their hidden vari-

ables [6], GRS(l) and GPR(k). Now let us define e
(i)
lk ,

e
(i)
lk =

∑
j∈GPR(k)

wij , (4.1.6)

as the number of edges originating from a randomly selected node i with an RS

of length l and terminating at nodes with PRs of length k. The distribution of
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the number of such edges is binomial,

P (e
(i)
lk = dlk|nPR(k)) =

(
nPR(k)

dlk

)
[p(l, k)]dlk [1− p(l, k)]nPR(k)−dlk ,

P (e
(i)
lk = dlk) =

N∑
nPR(k)=dlk

P (nPR(k)) P (e
(i)
lk = dlk|nPR(k)) ,

P (e
(i)
lk = dlk) =

(
N

dlk

)
[ηPRpPR(k)p(l, k)]dlk [1− ηPRpPR(k)p(l, k)]N−dlk ,(4.1.7)

with the mean

〈e(i)
lk 〉 = NηPRpPR(k)p(l, k) , (4.1.8)

and variance

σ2

e
(i)
lk

= NηPRpPR(k)p(l, k) [1− ηPRpPR(k)p(l, k)] , (4.1.9)

where we have used Eq. 4.1.5 for P (nPR(k)). We may similarly define ẽ
(j)
lk as the

number of edges originating from nodes with RSs of length l and terminating at

a randomly selected node j with a PR of length k,

ẽ
(j)
lk =

∑
i∈GRS(l)

wij . (4.1.10)

The distribution of the number of such edges is again binomial,

P (ẽ
(j)
lk = d̃lk) =

(
N

d̃lk

)
[ηRSpRS(l)p(l, k)]

d̃lk [1− ηRSpRS(l)p(l, k)]
N−d̃lk , (4.1.11)

with the mean

〈ẽ(j)
lk 〉 = NηRSpRS(l)p(l, k) , (4.1.12)

and variance

σ2

ẽ
(j)
lk

= NηRSpRS(l)p(l, k) [1− ηRSpRS(l)p(l, k)] . (4.1.13)

4.2 Degree Distributions

Here we calculate the probabilities of finding a node with given out-, in-, or total

degree if we randomly pick a node.

Let us start with the out-degree distribution. The total number of edges e
(i)
l ,

originating from a randomly chosen node i with an RS of length l, is nothing but

the sum of random variables,

e
(i)
l =

∑
k≥l

∑
j∈GPR(k)

wij =
∑
k≥l

e
(i)
lk . (4.2.14)
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In the limit of very large network size, the distribution P out
l (e

(i)
l = d) of the sum

in Eq. 4.2.14, which is the probability of finding a node with out-degree d if we

randomly choose a node among the nodes with RSs of length l, is binomial with

the mean do, l,

do, l =
∑
k≥l

〈e(i)
lk 〉 =

kmax∑
k=max(l, kmin)

NηPRpPR(k)p(l, k) , (4.2.15)

and variance σ2
o, l,

σ2
o, l =

∑
k≥l

σ2

e
(i)
lk

=
kmax∑

k=max(l, kmin)

NηPRpPR(k)p(l, k) [1− ηPRpPR(k)p(l, k)] .

(4.2.16)

We display in Fig. 4.1a, the relationship between the average out-degree and RS-

length, where we have used the parameters as used during the simulations of the

hidden-variable model (see Fig. 4.4 for the length distributions used). We find that

the average out-degree decreases exponentially with RS-length. We also exhibit

in Fig. 4.1b for comparison, the differences between the means and variances of

individual out-degree distributions and see that the variances are very close to

the mean values for the parameters used.

Figure 4.1: The means (a) and variances (b) of out-degree distributions. The length
distribution of PRs have been assumed to be of power-law form, pPR(k) ∝ k−(1+µ)

with µ = 0.1, confined to the interval ΛPR = [13, 262]. The size of the network is
N = 6000 and ηPR = 1. The average out-degree do, l of nodes with RSs of length l
decrease exponentially with l. The means and the variances are almost equal to each
other for the parameters used. (See Section 3 for the details of the parameter choices.)

Remembering that if a node has an RS of length exceeding the lengths of PRs

then its out-degree is zero, it is very easy to write the expression for the out-degree
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distribution Pout(d),

Pout(d) =
∑

l

p̃RS(l)Pout(d|l) = ηRS

∑
l∈ΛRS

pRS(l)P
out
l (d)+ (1− ηRS)δ(d) . (4.2.17)

Recall that the sum in Eq. 4.2.14 follows a binomial distribution with the mean

and variance given by Eqs. (4.2.15, 4.2.16). In the limit of large number of nodes

and small probabilities (thus, we can neglect the higher order terms of the proba-

bilities ηPRpPR(k)p(l, k)) we may approximate the out-degree distribution of the

nodes with RSs of length l by a Poisson distribution with the mean do, l (see

Eq. 4.2.15),

P out
l (d) = exp[−do, l]

(do, l)
d

d!
, (4.2.18)

which proves to be more convenient to treat analytically, or for that matter,

numerically.

Not all of the nodes contributes to the interactions in the network with out-

going edges even if they have RSs of lengths in the appropriate range, ΛRS. The

probability of finding a node with nonzero out-degree among nodes with RSs of

length l is 1 − P out
l (0). Now we may calculate the probability of finding a node

with an RS of length l and having nonzero out-degree among the nodes with

RSs of lengths in the range ΛRS, as pRS(l)[1−P out
l (0)]. Thus, the effective length

distribution of RSs, peff
RS(l) is given by

peff
RS(l) =

pRS(l)[1− P out
l (0)]

1−∑l pRS(l)P out
l (0)

, (4.2.19)

the probability of finding a node with an RS of length l among the nodes having

nonzero out-degree (see Fig. 4.4). However, the renormalization of this distribu-

tion always cancels in the properly normalized quantities, and therefore is not of

great use. This is also true for the renormalized length distribution of the PRs.

In Fig. 4.2 we compare our analytical result for the out-degree distribution (see

Eq. 4.2.17) with that of the simulations. We find that the out-degree distribution

has a continues regime in the small degree region (d ≤ 10) followed by well

separated peaks corresponding to relatively small RS-lengths (see also [6]), with

a broad support. The agreement between the simulation and analytical results are

extremely good except the fine differences in the amplitudes in relatively large
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out-degree region. The observed discrepancies might be caused by the Poisson

approximation we have made to the full binomial distributions.

Figure 4.2: The comparison of out-degree distributions obtained by numeric evalua-
tions of the analytical expressions and simulation results (red circles) which have been
obtained by averaging over 100 realizations of the hidden-variable model. The discrete
part of the spectrum arises from individual Poisson peaks contributed by nodes with
small RS-lengths l. As one progresses to smaller degrees (longer l), the variances shrink
less fast than the spacings between the peaks, and there is a crossover to a continuous
regime [5, 6, 9, 19].

By following a similar approach to that used above we may easily calculate the

in-degree distribution Pin(d), the probability of finding a node with d in-coming

edges if we randomly choose a node. The total number of edges ẽ
(j)
k , terminating

at a randomly selected node j with a PR of length k, is the sum of the random

variables,

ẽ
(j)
k =

∑
l≤k

ẽ
(j)
lk , (4.2.20)

and binomially distributed with the mean di, k,

di, k =
∑
l≤k

〈ẽ(j)
lk 〉 =

min(k, lmax)∑
l=lmin

NηRSpRS(l)p(l, k) , (4.2.21)
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and variance σ2
i, k,

σ2
i, k =

∑
l≤k

σ2

ẽ
(j)
lk

=

min(k, lmax)∑
l=lmin

NηRSpRS(l)p(l, k) [1− ηRSpRS(l)p(l, k)] . (4.2.22)

In Fig. 4.3a, the relationship between the average in-degree and PR-length is

displayed, where we have used the parameters as used during the simulations of

the hidden-variable model (see Fig. 4.4 for the length distributions used). We

find that the average in-degree increases almost linearly with PR-length. We

also exhibit in Fig. 4.3b for comparison, the differences between the means and

variances of individual in-degree distributions and see that the variances are very

close to the mean values for the parameters used.

Figure 4.3: The means (a) and variances (b) of in-degree distributions. The length
distribution of RSs, pRS(l), is confined to the interval ΛRS = [9, 38], and comes from
the bitwise information content of binding motifs of 102 transcription factors of yeast
(see Fig. 4.4a for the shape of the length distribution). The fraction ηRS of nodes having
RS strings is ηRS = 4.8%. The average in-degree di, k of nodes with PRs of length k
increases almost linearly with k. The means and the variances are almost equal to each
other for the parameters used. (See Section 3 for the details of the parameter choices.)

In the limit of large number of nodes and small probabilities, as which is the

case here, the probability P in
k (d) of finding a node with in-degree d among all the

nodes with PRs of length k may be approximated by a Poisson distribution with

the mean di, k (see Eq. 4.2.21),

P in
k (d) = exp[−di, k]

(di, k)
d

d!
. (4.2.23)

Remembering that the nodes with PRs of length less than the lengths of the

RSs will have zero in-degree, we can easily write the expression for the in-degree
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distribution Pin(d),

Pin(d) =
∑

k

p̃PR(k)Pin(d|k) = ηPR

∑
k∈ΛPR

pPR(k)P in
k (d)+ (1− ηPR)δ(d) . (4.2.24)

The nodes with PRs of length k bigger than the lengths of RSs may have zero

in-degree with probability P in
k (0). The probability of finding a node with a PR of

length k and also having nonzero in-degree among the nodes with PRs of lengths

in the range ΛPR is given by pPR(k)[1−P in
k (0)]. Then, it follows that the effective

length distribution of PRs, peff
PR(k) can be written as

peff
PR(k) =

pPR(k)[1− P in
k (0)]

1−∑k pPR(k)P in
k (0)

, (4.2.25)

which is the probability of finding a node with a PR of length k among the nodes

having nonzero in-degree. We show in Fig. 4.4, the effective length distributions

of PRs and RSs for the parameters used during the simulations of the hidden-

variable model. One may easily observe that the relatively small RS-lengths are

amplified whereas the relatively large RS-lengths are suppressed (see Fig. 4.4a).

The situation is reverse for the PR-lengths, the large PR-lengths are amplified

and the small PR-lengths are suppressed (see Fig. 4.4b). Again note that the

renormalization of these distributions always cancel in the properly normalized

quantities, and therefore are not of great use.

Figure 4.4: The comparison of the input length distributions (red circles) with the
effective length distributions of RSs (a) and PRs (b) obtained by numeric evaluations
of the expressions in Eqs. (4.2.19, 4.2.25).

In Fig. 4.5 we compare our analytical result for the in-degree distribution (see

Eq. 4.2.24) with that of the simulations. The in-degree distribution has a very
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narrow support by comparison with the out-degree distribution (Fig. 4.2). The

agreement between the simulation and analytical results are extremely good ex-

cept the fine differences in the amplitudes in relatively large in-degree regions.

The observed discrepancies might be again caused by the Poisson approximation

we have made to the full binomial distributions.

Figure 4.5: The comparison of in-degree distributions obtained by numeric evaluations
of the analytical expressions and simulation results (red circles online). The in-degree
is approximately exponential as can be seen from this log-linear plot.

Now we are ready to calculate the total degree distribution P (d), the probability

of finding a node interacting with d nodes. Here we will assume that the total

degree of a node is the sum of its out- and in-degree (ignoring the bidirectional

edges between pairs of nodes), d = do + di,

P (d) =
∑
do,di

P (do, di)δ(d− do − di) =
d∑

do=0

Pout(do)Pin(d− do) , (4.2.26)

where we have used the fact that the out- and in-degree of a node are independent

from each other in this double-string model, so the joint probability is separable.

By substituting the expressions in Eqs. (4.2.17, 4.2.24) into the above equation
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we get

P (d) =

{
ηRSηPR

∑
l, k

pRS(l)pPR(k)Pl, k(d)

+ ηRS(1− ηPR)
∑

l

pRS(l)P
out
l (d) + (1− ηRS)ηPR

∑
k

pPR(k)P in
k (d)

+ (1− ηRS)(1− ηPR)δ(d)

}
, (4.2.27)

where Pl, k(d) is defined as the degree distribution of nodes with RSs of length l

and PRs of length k,

Pl, k(d) =
d∑

do=0

P out
l (do)P

in
k (d− do) . (4.2.28)

As you have already recognized in Eq. 4.2.27, different terms come from different

types of nodes with respect to the random variables attached to them, for exam-

ple, the second term is the contribution of the nodes having RSs of lengths in

the range ΛRS but with PRs of lengths less than the values of RSs (k < lmin). In

Eq. 4.2.28, it is easy to perform the summation over do in the case of Poisson out-

and in-degree distributions (see Eqs. 4.2.18, 4.2.23) and this gives rise to another

Poisson distribution with the mean do, l + di, k for each pair of variables l and k,

Pl, k(d) = exp[−(do, l + di, k)] (do, l + di, k)
d/d!.

We exhibit in Fig. 4.6, the total degree distributions obtained analytically and

via simulations. For the theoretical curve we have evaluated Eq. 4.2.27. The total

degree distribution in the small degree region is essentially determined by the

in-degree distribution of the nodes having only PRs, who are in a majority. The

large degree region is dominated by nodes with RSs.

4.3 Degree-Degree Correlation of Nearest Neighbors

This section has been devoted to the calculation of degree-degree correlation [20,

21] of nearest neighbors (connected pairs of nodes). We will be calculating the

probability of finding a node with degree d′ among the nearest neighbors of nodes

of degree d.

For the purposes of this section, it is useful to note that the ensemble of networks

in question consist of four types of nodes:
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Figure 4.6: The total degree distribution with an inset showing a log-linear plot for
d ≤ 20. Theoretical curve has been obtained by numerical evaluations of the expressions
in Eq. 4.2.27.

• Type I(l, k): Consists of the nodes each having an RS of length l ∈ ΛRS

and a PR of length k ∈ ΛPR. The probability ηI of finding a node of this

type is ηI = ηRSηPR. The nodes of Type I may have out-going and in-coming

edges. We will refer to a node of Type I with an RS of length l and a PR

of length k by I(l, k).

• Type II(k): Contains the nodes having only PRs, meaning that k ∈ ΛPR

and their RSs have the value l > kmax. The probability ηII of finding a node

of this type is ηII = (1− ηRS)ηPR. Type II nodes may only have in-coming

links. We will refer to a node of Type II with a PR of length k by II(k).

• Type III(l): Collection of those nodes having only RSs, meaning l ∈ ΛRS,

with PRs that are too short, i.e., k < lmin. The probability ηIII of finding

a node of this type is ηIII = ηRS(1 − ηPR). Type III nodes may only have

out-going links. We will refer to a node of Type III with an RS of length l

by III(l).

• Type IV: The nodes having neither an RS nor a PR in the appropriate

ranges ΛRS and ΛPR, l > kmax and k < lmin. The probability ηIV of finding
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a node of this type is ηIV = (1− ηRS)(1− ηPR). The nodes of this type have

neither an out-going nor an in-coming edge, so they do not contribute to

the interactions in the network.

In Fig. 4.7 we display all the possible configurations of directed pairwise connec-

tion. Let us note that we will be using the averages of the quantities rather

than their distributions. The average number Elk, of edges originating from

nodes with RSs of length l and terminating at nodes with PRs of length k,

is Elk = NRS(l)NPR(k)p(l, k) = N2ηRSηPRpRS(l)pPR(k)p(l, k), where NRS(l) and

NPR(k) are defined as the average number of nodes with RSs of length l and PRs

of length k, respectively, given in Eq. 4.1.5. We may group the edges into the sets

with respect to the types of nodes at their initial and terminal ends,

ET−T′
lk =

ηTηT′

ηRSηPR

Elk , (4.3.29)

where ET−T′
lk corresponds to the average number of edges originating from nodes

of Type T with RSs of length l and terminating at nodes of Type T′ with PRs of

length k. Defining E as the average of the total number of edges, we may write

the probability P(l, k), that a randomly chosen edge is originating from an RS of

length l and terminating at a PR of length k, as

P(l, k) =
Elk

E
=

NRS(l)NPR(k)p(l, k)∑
l′, k′≥l′ NRS(l′)NPR(k′)p(l′, k′)

. (4.3.30)

Then the probability PT−T′(l, k), of finding an edge from a node of Type T with

an RS of length l to a node of Type T′ with a PR of length k if we randomly pick

an edge, is given by

PT−T′(l, k) =
ET−T′

lk

E
=

ηTηT′

ηRSηPR

P(l, k) . (4.3.31)

Now we are ready to write down the expression for p(d, d′), the probability of

finding a pair of nodes of (total) degrees d and d′ at the two ends of a randomly

selected edge. This probability can be written in terms of contributions coming

from different types of pairs of nodes,

p(d, d′) =
∑
T, T′

pT−T′(d, d′) , (4.3.32)
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Figure 4.7: Possible configurations of directed pairwise connection. Nodes of Type I
with hidden variables (l, k) may have connections with nodes of Type I, II, and III.
Nodes of Type II with hidden variable (k) may only have connections with nodes of
Type I(l′, k′) and III(l′) with l′ ≤ k. Nodes of Type III with hidden variable (l) may
only have connections with nodes of Type I(l′, k′) and II(k′) with k′ ≥ l.

where pT−T′(d, d′) is the probability of finding a pair of nodes of Type T and

Type T′ either of them with degree d or d′ at the ends of a randomly selected

edge. To give a better understanding we will calculate the contributions to this

probability term by term, coming from different types of pairs of nodes.

Let us start with the easiest term, the contribution coming from the nodes of

Type II and Type III, pIII−II(d, d
′). This probability is given by

pIII−II(d, d
′) =

1

2

∑
l, k≥l

PIII−II(l, k)

[
dP out

l (d)

do, l

d′P in
k (d′)
di, k

+
d′P out

l (d′)
do, l

dP in
k (d)

di, k

]
,

= (1− ηRS)(1− ηPR)
1

2E

∑
l, k≥l

Elk

[
dP out

l (d)

do, l

d′P in
k (d′)
di, k

+
d′P out

l (d′)
do, l

dP in
k (d)

di, k

]
, (4.3.33)

where d′′P out
l (d′′)/do, l is the probability of finding a node with out-degree d′′ at the

initial end of a randomly chosen edge among all the edges originating from nodes

with RSs of length l, and d′′P in
k (d′′)/di, k is the probability of finding a node with

in-degree d′′ at the terminal end of a randomly chosen edge among all the edges

terminating at nodes with PRs of length k. Note here that the normalization

do, l =
∑

d′′ d
′′P out

l (d′′) as given in Eq. 4.2.15, is the average out-degree of the

nodes with RSs of length l, and the normalization di, k =
∑

d′′ d
′′P in

k (d′′) as given

in Eq. 4.2.21, is the average in-degree of the nodes with PRs of length k. Again

note that the nodes of Type III have zero in-degree, so the total degree of such

a node is equal to its out-degree, and the nodes of Type II have zero out-degree,
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so the total degree of such a node is equal to its in-degree. The summation in the

[. . .] with a factor of 1/2 out front comes because it is not specified which of the

nodes has degree d or d′.

The second contribution comes from pairs of nodes of Type I and Type III,

pIII−I(d, d
′). The probability of finding a node of Type I and a node of Type III,

either of them with degree d or d′, at the two ends of an edge which is chosen at

random is given by

pIII−I(d, d
′) =

1

2

∑
l, k≥l

PIII−I(l, k)
∑

l′
pRS(l

′)
[
dP out

l (d)

do, l

d′Pl′, k(d
′)

do, l′ + di, k

+
d′P out

l (d′)
do, l

dPl′, k(d)

do, l′ + di, k

]
,

= ηRS(1− ηPR)
1

2E

∑
l, k≥l

Elk

∑
l′
pRS(l

′)
[
dP out

l (d)

do, l

d′Pl′, k(d
′)

do, l′ + di, k

+
d′P out

l (d′)
do, l

dPl′, k(d)

do, l′ + di, k

]
, (4.3.34)

where
∑

l′ pRS(l
′)d′′Pl′, k(d

′′)/(do, l′ + di, k) is the probability of finding a node with

total degree d′′, if we follow a randomly chosen edge among all the edges termi-

nating at the nodes of Type I with PRs of length k. Note here that the normaliza-

tion do, l′ + di, k =
∑

d′′ d
′′Pl′, k(d

′′), is the average total degree of nodes with RSs

of length l′ and PRs of length k (see Eqs. (4.2.15, 4.2.21, 4.2.27)).

The third part comes from the pairs of nodes of Type I and Type II, pI−II(d, d
′).

This probability is given by

pI−II(d, d
′) =

1

2

∑
l, k≥l

PI−II(l, k)
∑
k′
pPR(k′)

[
dPl, k′(d)

do, l + di, k′

d′P in
k (d′)
di, k

+
d′Pl, k′(d′)
do, l + di, k′

dP in
k (d)

di, k

]
,

= (1− ηRS)ηPR
1

2E

∑
l, k≥l

Elk

∑
k′
pPR(k′)

[
dPl, k′(d)

do, l + di, k′

d′P in
k (d′)
di, k

+
d′Pl, k′(d′)
do, l + di, k′

dP in
k (d)

di, k

]
, (4.3.35)

where
∑

k′ pPR(k′)d′′Pl, k′(d′′)/(do, l + di, k′) is the probability of finding a node

with total degree d′′ if we follow a randomly chosen edge among all the edges

originating from the nodes of Type I with RSs of length l.
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Finally the last term we have to consider here is the contribution of the pairs of

nodes, both of which are of Type I, pI−I(d, d
′). The probability of finding a pair

of nodes which are both of Type I, either of them with degree d or d′, at the two

ends of a randomly chosen edge is given by

pI−I(d, d
′) =

1

2

∑
l, k≥l

PI−I(l, k)
∑
l′, k′

pRS(l
′)pPR(k′)

[
dPl, k′(d)

do, l + di, k′

d′Pl′, k(d
′)

do, l′ + di, k

+
d′Pl, k′(d′)
do, l + di, k′

dPl′, k(d)

do, l′ + di, k

]
,

= ηRSηPR
1

2E

∑
l, k≥l

Elk

∑
l′, k′

pRS(l
′)pPR(k′)

[
dPl, k′(d)

do, l + di, k′

d′Pl′, k(d
′)

do, l′ + di, k

+
d′Pl, k′(d′)
do, l + di, k′

dPl′, k(d)

do, l′ + di, k

]
.

(4.3.36)

Note that the average number of edges is E =
∑

l, k≥l Elk =
∑

k, l≤k Elk, equiva-

lently,

E = ηRSN
∑

l

pRS(l)do, ,l = ηPRN
∑

k

pPR(k)di, ,k . (4.3.37)

This is simply the statement that the total number of out-going edges is equal

to the total number of in-coming edges. If we sum over d and d′ in Eqs.

(4.3.33, 4.3.34, 4.3.35, 4.3.36) we get∑
d, d′

pT−T′(d, d′) =
ηTηT′

ηRSηPR

, (4.3.38)

thus, the probability p(d, d′) is normalized,
∑

d,d′ p(d, d
′) = 1.

The degree-degree correlation of nearest neighbors is measured by the probability

of finding a node with degree d′ among the nearest neighbors of nodes with

degree d, p(d′|d). This conditional probability is given in terms of p(d, d′) and the

probability of finding a node of degree d at the end of a randomly selected edge,

p(d) = dNP (d)/2E,

p(d′|d) =
p(d, d′)
p(d)

. (4.3.39)

Note here that the probability p(d), of ending up at a node of degree d if we

follow a randomly picked edge, is proportional to dP (d), and not just to the
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degree distribution itself. Thus, p(d′|d) is written as

p(d′|d) =
ηRSηPRN

P (d)

{
(1− ηRS)(1− ηPR)

∑
l, k≥l

pRS(l)pPR(k)p(l, k)

·
[
P out

l (d)

do, l

d′P in
k (d′)
di, k

d′P out
l (d′)
do, l

P in
k (d)

di, k

]
+ ηRS(1− ηPR)

∑
l′, l, k≥l

pRS(l
′)pRS(l)pPR(k)p(l, k)

·
[
P out

l (d)

do, l

d′Pl′, k(d
′)

do, l′ + di, k

+
d′P out

l (d′)
do, l

Pl′, k(d)

do, l′ + di, k

]
+ (1− ηRS)ηPR

∑
k′, l, k≥l

pPR(k′)pRS(l)pPR(k)p(l, k)

·
[

Pl, k′(d)

do, l + di, k′

d′P in
k (d′)
di, k

+
d′Pl, k′(d′)
do, l + di, k′

P in
k (d)

di, k

]
+ ηRSηPR

∑
l′, k′, l, k≥l

pRS(l
′)pPR(k′)pRS(l)pPR(k)p(l, k)

·
[

Pl, k′(d)

do, l + di, k′

d′Pl′, k(d
′)

do, l′ + di, k

+
d′Pl, k′(d′)
do, l + di, k′

Pl′, k(d)

do, l′ + di, k

]}
. (4.3.40)

Again note that p(d′|d) is normalized,
∑

d′ p(d
′|d) = 1. Since one needs a three

dimensional graph to display the conditional probability, instead, mostly the av-

erage degree of nodes connected to nodes with degree d, dnn(d) =
∑

d′ p(d
′|d)d′ is

displayed. The latter quantity has a much simpler expression. We get

dnn(d) =
ηRSηPRN

P (d)

{
(1− ηRS)(1− ηPR)

∑
l, k≥l

pRS(l)pPR(k)p(l, k)

·
[
(1 + di, k)

P out
l (d)

do, l

+ (1 + do, l)
P in

k (d)

di, k

]
+ ηRS(1− ηPR)

∑
l′, l, k≥l

pRS(l
′)pRS(l)pPR(k)p(l, k)

·
[
(1 + do, l′ + di, k)

P out
l (d)

do, l

+ (1 + do, l)
Pl′, k(d)

do, l′ + di, k

]
+ (1− ηRS)ηPR

∑
k′, l, k≥l

pPR(k′)pRS(l)pPR(k)p(l, k)

·
[
(1 + di, k)

Pl, k′(d)

do, l + di, k′
+ (1 + do, l + di, k′)

P in
k (d)

di, k

]
+ ηRSηPR

∑
l′, k′, l, k≥l

pRS(l
′)pPR(k′)pRS(l)pPR(k)p(l, k)

·
[
(1 + do, l′ + di, k)

Pl, k′(d)

do, l + di, k′
+ (1 + do, l + di, k′)

Pl′, k(d)

do, l′ + di, k

]}
, (4.3.41)

where we have used the equality of the means and the variances of Poisson dis-
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tributed quantities, for example, if d′′ follows a Poisson distribution with the mean

〈d′′〉, then 〈d′′2〉 = 〈d′′〉+ 〈d′′〉2. We can easily carry out the summations over the

independent variables in the above equation,∑
l′
pRS(l

′)(1 + do, l′ + di, k) = 1 + 〈do〉+ di, k , (4.3.42)∑
k′
pPR(k′)(1 + do, l + di, k′) = 1 + 〈di〉+ do, l , (4.3.43)

where we have made the definitions 〈do〉 =
∑

l′ pRS(l
′)do, l′ , the average out-degree

of nodes with RS-lengths ∈ ΛRS, and 〈di〉 =
∑

k′ pPR(k′)di, k′ , the average in-degree

of nodes with PR-lengths ∈ ΛPR. If we substitute these equalities into dnn(d) and

make the necessary simplifications we get

dnn(d) =
ηRSηPRN

P (d)

×
{

(1− ηPR)
∑
l, k≥l

pRS(l)pPR(k)p(l, k)(1 + ηRS〈do〉+ di, k)
P out

l (d)

do, l

+ (1− ηRS)
∑
l, k≥l

pRS(l)pPR(k)p(l, k)(1 + ηPR〈di〉+ do, l)
P in

k (d)

di, k

+ ηRS

∑
l′, l, k≥l

pRS(l
′)pRS(l)pPR(k)p(l, k)(1 + ηPR〈di〉+ do, l)

Pl′, k(d)

do, l′ + di, k

+ ηPR

∑
k′, l, k≥l

pPR(k′)pRS(l)pPR(k)p(l, k)(1 + ηRS〈do〉+ di, k)
Pl, k′(d)

do, l + di, k′

}
.

(4.3.44)

The degree-degree correlation of nearest neighbors measures the tendency of

nodes with similar degrees to be connected to each other. The disassortative

behavior observed in Fig. 4.8 for the simulation results and captured accurately

by our analytical calculations which have been obtained by evaluating the sum-

mations in Eq. 4.3.44 numerically, is very easy to explain. The nodes in the small

degree region of the function have only PRs and connections with those nodes

having RSs. The lower the degree of such a node is, the smaller the PR-length

associated with this node. This indicates that if a node with an RS happens to be

connected with such a node its RS must be very small, thus its out-degree is very

high. The behavior in the large degree region is also quite easy to understand. The

nodes dominating this region have RSs and are mostly connected to those nodes
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having only PRs, and therefore, whose degree is relatively small. Oscillations are

observed in the same degree range as they appear in the degree distribution. The

peaks coincide with the dips in P (d) which normalizes dnn(d) (Eq. 4.3.44).

Figure 4.8: Average degree of nearest neighbors of nodes with degree d for the ana-
lytical solutions obtained by evaluating the expressions in Eq. 4.3.44 numerically, and
simulations (red circles).

4.4 Clustering Coefficient

Another important and well studied quantity giving information about the organi-

zation of a network is the three point correlations of nodes, namely the clustering

coefficient c(d) [22, 23, 24]. The clustering coefficient is the probability that a pair

of nodes chosen at random among the nearest neighbors of a randomly chosen

node with degree d, are connected. Pick a node with degree d and consider the

subgraph G containing all the nearest neighbors of this node which we will call

the “root” of G. The probability that any given pair of nodes in G are connected,

depends on the type to which the root belongs, and on its hidden variables.

Our strategy for calculating c(d) will be to compute these probabilities, namely
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∆I(l, k), ∆II(k) and ∆III(l), from which we obtain,

c(d) =
∑
l, k

PI(l, k|d) ∆I(l, k)+
∑

k

PII(k|d) ∆II(k)+
∑

l

PIII(l|d) ∆III(l) , (4.4.45)

where PT(.|d) are the probabilities of encountering nodes of Type T with hidden

variables (.) and degree d. The probability PI(l, k|d), that a randomly chosen node

among nodes of degree d is of Type I(l, k), may be written as

PI(l, k|d) = ηRSηPRpRS(l)pPR(k)
Pl, k(d)

P (d)
, (4.4.46)

where P (d) is the total degree distribution and Pl, k(d) is the degree distribution

of nodes of Type I(l,k) (see Eq. 4.2.27). The probability PII(k|d), of finding a

node of Type II(k), is given by

PII(k|d) = (1− ηRS)ηPRpPR(k)
P in

k (d)

P (d)
, (4.4.47)

where P in
k (d) is the degree distribution of nodes of Type II(k) (see Eq. 4.2.24).

The probability of encountering a node of Type III(l) among nodes of given degree

d, PIII(l|d) is given in a similar way,

PIII(l|d) = ηRS(1− ηPR)pRS(l)
P out

l (d)

P (d)
, (4.4.48)

where P out
l (d) is the degree distribution of nodes of Type III(l) (see Eqs. 4.2.17).

The probabilities ∆T(.) can be further decomposed into probabilities of connec-

tion between different pairs of types of nodes within G as shown in Fig. 4.9. The

connection probabilities between different nodes in G of given types, are in fact

the probabilities of occurrence of the triangles shown in Fig. 4.9, where the apex

should be identified with the root. Let us start by giving some definitions, to be

used for the calculations of these probabilities. The average number of edges El,

originating from nodes with RSs of length l, is given by

El =
∑
k′≥l

Elk′ = NRS(l)
∑
k′≥l

NPR(k′)p(l, k′) = NRS(l) do, l ,

= ϕl + ηPRNRS(l) do, l , (4.4.49)

where ϕl is defined as the average number of nearest neighbors of nodes of Type

III(l),

ϕl = (1− ηPR)NRS(l) do, l = ηRS(1− ηPR)NpRS(l) do, l . (4.4.50)
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Figure 4.9: Possible configurations of triangles. (a) Triangles with a root of Type III(l)
are constituted by nodes of Type II(k′) and I(l′′, k′′), or of Type I(l′, k′) and I(l′′, k′′). (b)
Triangles with a root of Type II(k) may consist of nodes of Type III(l′) and I(l′′, k′′), or
of Type I(l′, k′) and I(l′′, k′′). (c) Triangles with a root of Type I(l, k) may contain nodes
of Type III(l′) Type II(k′), of Type III(l′) and I(l′′, k′′), of Type II(k′) and I(l′′, k′′), or
of Type I(l′, k′) and I(l′′, k′′).
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The latter term in Eq. 4.4.49 comes from nodes of Type I with RSs of length l.

In the same way, we may write down the expression for the average of the total

number of edges Ẽk, terminating at nodes with PRs of length k,

Ẽk =
∑
l′≤k

El′k = NPR(k)
∑
l′≤k

NRS(l
′)p(l′, k) = NPR(k) di, k ,

= ψk + ηRSNPR(k) di, k , (4.4.51)

where ψk is defined as the average number of nearest neighbors of nodes of Type

II(k),

ψk = (1− ηRS)NPR(k) di, k = (1− ηRS)ηPRNpPR(k) di, k . (4.4.52)

Again, the latter term in Eq. 4.4.51 comes from nodes of Type I with PRs of

length k. One may easily see that λl, k, the average number of edges incident on

nodes of Type I(l, k), is

λl, k = ηPRpPR(k)El+ηRSpRS(l)Ẽk = ηRSηPRNpRS(l)pPR(k)(do, l+di, k) . (4.4.53)

This is also the average number of nearest neighbors of nodes of Type I(l, k).

Note here that if we sum all these contributions, ϕl, ψk and λl, k, over all possible

values of l and k, we will obtain the total number of nearest neighbors of all the

nodes, which is equal to twice the total number of edges,
∑

d dN(d) =
∑

l ϕl +∑
k ψk +

∑
l, k λl, k = 2E.

Nodes of Type III may have connections with nodes of Type I or II (see Fig. 4.7).

The probability ϕI
l(l
′, k′), of finding a node of Type I(l′, k′) among all the nearest

neighbors of nodes of Type III(l), is given by

ϕI
l(l
′, k′) =

(1− ηPR)NRS(l)ηRSpRS(l
′)NPR(k′)p(l, k′)

ϕl

,

=
ηRSηPRN

do, l

pRS(l
′)pPR(k′)p(l, k′) . (4.4.54)

The probability ϕII
l (k′), of finding a node of Type II(k′) among all the nearest

neighbors of nodes of Type III(l), is given by

ϕII
l (k′) =

(1− ηPR)NRS(l)(1− ηRS)NPR(k′)p(l, k′)
ϕl

,

=
(1− ηRS)ηPRN

do, l

pPR(k′)p(l, k′) . (4.4.55)
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Nodes of Type II may have connections with nodes of Type I or III (see Fig. 4.7).

The probability ψI
k(l
′, k′), of finding a node of Type I(l′, k′) among all the nearest

neighbors of nodes of Type II(k), is given by

ψI
k(l
′, k′) =

(1− ηRS)NPR(k)ηPRpPR(k′)NRS(l
′)p(l′, k)

ψk

,

=
ηRSηPRN

di, k

pRS(l
′)pPR(k′)p(l′, k) . (4.4.56)

The probability ψIII
k (l′), of finding a node of Type III(l′) among all the nearest

neighbors of nodes of Type II(k), is given by

ψIII
k (l′) =

(1− ηRS)NPR(k)(1− ηPR)NRS(l
′)p(l′, k)

ψk

,

=
ηRS(1− ηPR)N

di, k

pRS(l
′)p(l′, k) . (4.4.57)

Finally we may write down the probabilities for the nearest neighbors of nodes of

Type I(l, k), to be of Type I, II, or III (see Fig. 4.7). The probability λI
l, k(l

′, k′),

of encountering a node of Type I(l′, k′) among all the nearest neighbors of nodes

of Type I(l, k) is given by

λI
l, k(l

′, k′) =
ηRSηPRNpRS(l)pPR(k)ηRSηPRNpRS(l

′)pPR(k′)[p(l, k′) + p(l′, k)]
λl, k

,

= λ
I(i)
l, k(l

′, k′) + λ
I(o)
l, k (l′, k′) , (4.4.58)

where λ
I(i)
l, k(l

′, k′) is defined as the probability that a randomly chosen node among

the nearest neighbors of nodes of Type I(l, k) is of Type I(l′, k′), and connected

to the root by an in-coming edge,

λ
I(i)
l, k(l

′, k′) =
ηRSηPRN

do, l + di, k

pRS(l
′)pPR(k′)p(l, k′) . (4.4.59)

In the similar way, λ
I(o)
l, k (l′, k′) is defined as the probability that a randomly chosen

node among the nearest neighbors of nodes of Type I(l, k) is of Type I(l′, k′) and

connected to the root by an out-going edge,

λ
I(o)
l, k (l′, k′) =

ηRSηPRN

do, l + di, k

pRS(l
′)pPR(k′)p(l′, k) . (4.4.60)

The probability λII
l, k(k

′), of finding a node of Type II(k′) among all the nearest

neighbors of nodes of Type I(l, k) is given by

λII
l, k(k

′) =
ηRSηPRNpRS(l)pPR(k)(1− ηRS)NPR(k′)p(l, k′)

λl, k

,

=
(1− ηRS)ηPRN

do, l + di, k

pPR(k′)p(l, k′) . (4.4.61)
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The probability λIII
l, k(l

′), of finding a node of Type III(l′) among all the nearest

neighbors of nodes of Type I(l, k) is given by

λIII
l, k(l

′) =
ηRSηPRNpRS(l)pPR(k)(1− ηPR)NRS(l

′)p(l′, k)
λl, k

,

=
ηRS(1− ηPR)N

do, l + di, k

pRS(l
′)p(l′, k) . (4.4.62)

In Fig. 4.9 we display all the possible configurations of triangles, grouped with

respect to the types of their roots. These configurations are also all the possible

ways of obtaining three completely connected nodes, i.e., a 3-clique [67]. We will

calculate the connection probabilities starting with the easiest ones. We may write

∆III(l), the probability for an edge to exist between the nearest neighbors of a

randomly selected root of Type III(l), as a sum

∆III(l) = ∆I−I
III (l) + ∆I−II

III (l) , (4.4.63)

where ∆I−I
III (l) comes from the triangles with nodes which are both of Type I

and ∆I−II
III (l) from the triangles with nodes of Type I and Type II, with their

apex which is a root of Type III(l) (see Fig. 4.9a for better visualization). Thus,

∆I−I
III (l) is the probability for an edge to exist between two randomly selected

Type I neighbors of a randomly selected root of Type III(l), etc. These quantities

are calculated to be

∆I−I
III (l) = 2

∑
l′

∑
k′≥l

∑
l′′≤k′

∑
k′′≥l

ϕI
l(l
′, k′) ϕI

l(l
′′, k′′) p(l′′, k′) , (4.4.64)

= 2
η2

RSη
2
PRN

2

d2
o, l

∑
k′≥l

∑
l′′≤k′

∑
k′′≥l

pPR(k′)pRS(l
′′)pPR(k′′)p(l, k′)p(l, k′′)p(l′′, k′) ,

and

∆I−II
III (l) = 2

∑
k′≥l

∑
l′′≤k′

∑
k′′≥l

ϕII
l (k′) ϕI

l(l
′′, k′′) p(l′′, k′) , (4.4.65)

= 2
(1− ηRS)ηRSη

2
PRN

2

d2
o, l

∑
k′≥l

∑
l′′≤k′

∑
k′′≥l

[pPR(k′)pRS(l
′′)pPR(k′′)

·p(l, k′)p(l, k′′)p(l′′, k′)] ,

where 2ϕT
l (.) ϕT′

l (.) is the probability of encountering a pair of nodes of Type T(.)

and Type T′(.) among the nearest neighbors of nodes of Type III(l). Since the

interaction terms in ∆I−I
III (l) are independent from the variable l′ we have carried
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out the summation over it,
∑

l′ pRS(l
′) = 1. Now if we perform the summations

over the variables each of which occurs once in the interaction terms, namely l′′

and k′′, we get

∆III(l) = 2
ηPR

do, l

∑
k′≥l

pPR(k′) di, k′ p(l, k′) . (4.4.66)

In a similar way we may easily calculate ∆II(k), the probability for an edge to

exist between the nearest neighbors of a randomly chosen node of Type II(k),

∆II(k) = ∆I−I
II (k) + ∆III−I

II (k) , (4.4.67)

where ∆I−I
II (k) comes from the triangles with nodes which are both of Type I and

∆III−I
II (k) from the triangles with nodes of types I and III, rooted at a randomly

selected node of Type II(k) (see Fig. 4.9b). These quantities are given by

∆I−I
II (k) = 2

∑
l′≤k

∑
k′

∑
l′′≤k

∑
k′′≥l′

ψI
k(l
′, k′) ψI

k(l
′′, k′′) p(l′, k′′) , (4.4.68)

= 2
η2

RSη
2
PRN

2

d2
i, k

∑
l′≤k

∑
l′′≤k

∑
k′′≥l′

pRS(l
′)pRS(l

′′)pPR(k′′)p(l′, k)p(l′′, k)p(l′, k′′) ,

and

∆III−I
II (k) = 2

∑
l′≤k

∑
l′′≤k

∑
k′′≥l′

ψIII
k (l′) ψI

k(l
′′, k′′) p(l′, k′′) , (4.4.69)

= 2
η2

RSηPR(1− ηPR)N2

d2
i, k

∑
l′≤k

∑
l′′≤k

∑
k′′≥l′

[pRS(l
′)pRS(l

′′)pPR(k′′)

·p(l′, k)p(l′′, k)p(l′, k′′)] ,

where 2ψT
k (.) ψT′

k (.) is the probability of encountering a pair of nodes of Type T(.)

and Type T′(.) among the nearest neighbors of nodes of Type II(k). Since the

interaction terms in ∆I−I
II (k) are independent from the variable k′ we have carried

out the summation over it,
∑

k′ pPR(k′) = 1. If we perform the summations over

the variables each of which occurs once in the interaction terms, namely l′′ and

k′′, we get

∆II(k) = 2
ηRS

di, k

∑
l′≤k

pRS(l
′) do, l′ p(l

′, k) . (4.4.70)

Now we will calculate ∆I(l, k), the probability for an edge to exist between the

nearest neighbors of a randomly selected node of Type I(l, k), term by term

coming from the different types of nearest neighbors of such nodes (see Fig. 4.9c).
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The first possible configuration contributing to the number of triangles comes

from nodes of Type III and Type II, ∆III−II
I (l, k),

∆III−II
I (l, k) = 2

∑
l′≤k

∑
k′≥max(l, l′)

λIII
l, k(l

′) λII
l, k(k

′) p(l′, k′) , (4.4.71)

= 2
ηRS(1− ηRS)ηPR(1− ηPR)N2

(do, l + di, k)2

∑
l′≤k

∑
k′≥max(l, l′)

[pRS(l
′)pPR(k′)

· p(l′, k)p(l, k′)p(l′, k′)] .

The second configuration comes from nodes of Type III and Type I, ∆III−I
I (l, k)

which can be written as a sum

∆III−I
I (l, k) = ∆

III−I(i)
I (l, k) + ∆

III−I(o)
I (l, k) , (4.4.72)

where ∆
III−I(i)
I (l, k) comes from the triangles with nodes of Type III and Type I

which is connected to the root by an in-coming edge and ∆
III−I(o)
I (l, k) from the

triangles with nodes of Type III and Type I which is connected to the root by an

out-going edge. These quantities are calculated to be

∆
III−I(i)
I (l, k) = 2

∑
l′≤k

∑
l′′

∑
k′′≥max(l, l′)

λIII
l, k(l

′) λI(i)
l, k(l

′′, k′′) p(l′, k′′) , (4.4.73)

= 2
η2

RSηPR(1− ηPR)N2

(do, l + di, k)2

∑
l′≤k

∑
k′′≥max(l, l′)

pRS(l
′)pPR(k′′)p(l′, k)p(l, k′′)p(l′, k′′) ,

and

∆
III−I(o)
I (l, k) = 2

∑
l′≤k

∑
l′′≤k

∑
k′′≥l′

λIII
l, k(l

′) λI(o)
l, k (l′′, k′′) p(l′, k′′) ,(4.4.74)

= 2
ηRS(1− ηPR) di, k

(do, l + di, k)2

∑
l′≤k

pRS(l
′) do, l′ p(l

′, k) .

The third contribution ∆II−I
I (l, k), comes from the nodes of Type II and Type I

and can be written as a sum

∆II−I
I (l, k) = ∆

II−I(i)
I (l, k) + ∆

II−I(o)
I (l, k) , (4.4.75)

where ∆
II−I(i)
I (l, k) comes from the triangles with nodes of Type II and Type I

which is connected to the root by an in-coming edge and ∆
II−I(o)
I (l, k) from the

triangles with nodes of Type II and Type I which is connected to the root by an
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out-going edge. These quantities are calculated to be

∆
II−I(i)
I (l, k) = 2

∑
k′≥l

∑
l′′≤k′

∑
k′′≥l

λII
l, k(k

′) λI(i)
l, k(l

′′, k′′) p(l′′, k′) , (4.4.76)

= 2
(1− ηRS)ηPR do, l

(do, l + di, k)2

∑
k′≥l

pPR(k′) di, k′ p(l, k′) ,

and

∆
II−I(o)
I (l, k) = 2

∑
k′≥l

∑
l′′≤min(k, k′)

∑
k′′

λII
l, k(k

′) λI(o)
l, k (l′′, k′′) p(l′′, k′) , (4.4.77)

= 2
ηRS(1− ηRS)η

2
PRN

2

(do, l + di, k)2

∑
l′′≤k

∑
k′≥max(l, l′′)

pRS(l
′′)pPR(k′)p(l′′, k)p(l, k′)p(l′′, k′) ,

note here that
∑

k′≥l

∑
l′′≤min(k, k′) =

∑
l′′≤k

∑
k′≥max(l, l′′). The fourth contribu-

tion ∆
I(i)−I(i)
I (l, k), comes from nodes which are both of Type I, here the root is

connected to them by out-going edges,

∆
I(i)−I(i)
I (l, k) = 2

∑
l′

∑
k′≥l

∑
l′′≤k′

∑
k′′≥l

λ
I(i)
l, k(l

′, k′) λI(i)
l, k(l

′′, k′′) p(l′′, k′) , (4.4.78)

= 2
ηRSηPR do, l

(do, l + di, k)2

∑
k′≥l

pPR(k′) di, k′ p(l, k′) .

The fifth contribution ∆
I(o)−I(o)
I (l, k), comes from the pairs of nodes each of which

is of Type I where the root is connected to them by in-coming edges,

∆
I(o)−I(o)
I (l, k) = 2

∑
l′≤k

∑
k′

∑
l′′≤k

∑
k′′≥l′

λ
I(o)
l, k (l′, k′) λI(o)

l, k (l′′, k′′) p(l′, k′′) , (4.4.79)

= 2
ηRSηPR di, k

(do, l + di, k)2

∑
l′≤k

pRS(l
′) do, l′ p(l

′, k) .

The sixth contribution ∆
I(i)→I(o)
I (l, k), comes from the pairs of nodes which are

both of Type I where the root is connected to the first node by an out-going and

to the second one by an in-coming edge, and the first one is connected to the

second one by an out-going edge,

∆
I(i)→I(o)
I (l, k) = 2

∑
l′

∑
k′≥l

∑
l′′≤k

∑
k′′≥l′

λ
I(i)
l, k(l

′, k′) λI(o)
l, k (l′′, k′′) p(l′, k′′) , (4.4.80)

= 2
ηRS do, l di, k

N(do, l + di, k)2

∑
l′
pRS(l

′) do, l′ ,

note here that ηRS

∑
l′ pRS(l

′) do, l′ = ηPR

∑
k′ pPR(k′) di, k′ (see Eq. 4.3.37). The

last and the seventh contribution ∆
I(i)←I(o)
I (l, k), comes from the connection con-

figuration of the nodes which are both of Type I where the root is connected to
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the first node by an out-going and to the second one by an in-coming edge, and

in this case the first one is connected to the second one by an in-coming edge,

∆
I(i)←I(o)
I (l, k) = 2

∑
l′

∑
k′≥l

∑
l′′≤min(k, k′)

∑
k′′

λ
I(i)
l, k(l

′, k′) λI(o)
l, k (l′′, k′′) p(l′′, k′) ,

(4.4.81)

= 2
η2

RSη
2
PRN

2

(do, l + di, k)2

∑
l′′≤k

∑
k′≥max(l, l′′)

pRS(l
′′)pPR(k′)p(l′′, k)p(l, k′)p(l′′, k′) .

Now if we sum all the contributions by making necessary simplifications we get

∆I(l, k), the probability for an edge to exist between the nearest neighbors of a

randomly selected node of Type I(l, k), as

∆I(l, k) =
2

(do, l + di, k)2

ηRS
do, l di, k

N

∑
l′
pRS(l

′) do, l′

+ ηRS di, k

∑
l′≤k

pRS(l
′) do, l′ p(l

′, k) + ηPR do, l

∑
k′≥l

pPR(k′) di, k′ p(l, k′)

+ ηRSηPRN
2
∑
l′′≤k

∑
k′≥max(l, l′′)

pRS(l
′′)p(l′′, k)pPR(k′)p(l, k′)p(l′′, k′)

 .(4.4.82)

If we substitute all the terms into Eq. 4.4.45 we obtain c(d), the probability that

a randomly chosen pair of nodes rooted at a randomly selected node of degree d

is connected, as

c(d) = 2
ηRSηPR

P (d)

(1− ηPR)
∑

l

pRS(l)
P out

l (d)

do, l

∑
k′≥l

pPR(k′) di, k′ p(l, k′)

+ (1− ηRS)
∑

k

pPR(k)
P in

k (d)

di, k

∑
l′≤k

pRS(l
′) do, l′ p(l

′, k)

+
∑
l, k

pRS(l)pPR(k)
Pl, k(d)

(do, l + di, k)2

ηRS
do, l di, k

N

∑
l′
pRS(l

′) do, l′

+ ηRS di, k

∑
l′≤k

pRS(l
′) do, l′ p(l

′, k) + ηPR do, l

∑
k′≥l

pPR(k′) di, k′ p(l, k′)

+ ηRSηPRN
2
∑
l′′≤k

∑
k′≥max(l, l′′)

pRS(l
′′)pPR(k′)p(l′′, k)p(l, k′)p(l′′, k′)


 .

(4.4.83)

The comparison of simulation results for the average clustering coefficient spec-

trum with our analytical results is displayed in Fig. 4.10. One may easily note the
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close similarity between Figs. (4.8, 4.10). The nearest neighbors of those nodes

dominating the small degree region, are nodes having RSs and which are relatively

well connected to each other. On the other hand, most of the nearest neighbors

of those nodes in the large degree region, are nodes having only PRs, who are

unable to make connections with each other. The nonzero clustering coefficient

in the large degree region is due to the interactions of the relatively few nodes

that also have RSs.

Figure 4.10: The probability of finding an edge between a randomly selected pair of
nearest neighbors of nodes with degree d for the analytical solution (see Eq. 4.4.83) and
simulations (red circles).

4.5 Rich-club Coefficient

We may group the nodes in our network with respect to their total degrees, for

example, the subgraph containing the nodes with degrees greater than a given

value d, and the edges connecting these nodes may give us an idea on how the “rich

guys” in the network are connected among themselves. The quantity measuring

the well-connectedness of nodes with degrees greater than d, namely the rich-

club coefficient r(d), is the probability that a randomly selected pair of nodes

with degrees greater than d are connected [26, 27]. In practice, one may calculate
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this probability by counting the number of edges among the nodes with degrees

greater than d, E>d, and then dividing this number by its possible maximum

value, N>d(N>d−1)/2 where N>d is the number of such nodes. In this section we

will calculate the rich-club coefficient for the ensemble of networks in question.

We may define Q(d) as the probability that a randomly chosen node has degree

greater than d. This probability is obviously given by

Q(d) =
∑
d′>d

P (d′) = 1−
d∑

d′=0

P (d′) , (4.5.84)

where P (d′) is the total degree distribution. If we use the expression for the degree

distribution in Eq. 4.2.27 and make the necessary simplification we get,

Q(d) =

{
ηRS(1− ηPR)

∑
l

pRS(l)Q
out
l (d) + (1− ηRS)ηPR

∑
k

pPR(k)Qin
k (d)

+ ηRSηPR

∑
l,k

pRS(l)pPR(k)Ql, k(d)

}
. (4.5.85)

One may easily observe that Qout
l (d) = 1 −∑d

d′=0 P
out
l (d′) is the probability of

finding a node with out-degree greater than d among all the nodes with RSs of

length l, and Qin
k (d) = 1−∑d

d′=0 P
in
k (d′) is the probability of finding a node with

in-degree greater than d among all the nodes with PRs of length k. The last term

in the above equation Ql, k(d) = 1 −∑d
d′=0 Pl, k(d

′), gives the the probability of

finding a node with total degree greater than d among all the nodes with RSs of

length l and PRs of length k. Now, in a similar way to what we have done in the

previous section, we may write down the probabilities of finding nodes of given

types and hidden-variables in the set of nodes with degrees greater than d. The

probability of finding a node of Type I(l, k) among all the nodes with degrees

greater than d, QI(l, k|d), is given by

QI(l, k|d) = ηRSηPRpRS(l)pPR(k)
Ql, k(d)

Q(d)
. (4.5.86)

The probability, QII(k|d) that a randomly selected node among all the nodes with

degrees greater than d is of Type II(k) is

QII(k|d) = (1− ηRS)ηPRpPR(k)
Qin

k (d)

Q(d)
. (4.5.87)
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The probability of finding a node of Type III(l) among all the nodes with degrees

greater than d, QIII(l|d), is given by

QIII(l|d) = ηRS(1− ηPR)pRS(l)
Qout

l (d)

Q(d)
. (4.5.88)

We may write the rich-club coefficient r(d), as a sum of the connection probabil-

ities between different types of nodes rT−T′(d). Let us randomly chose a pair of

nodes from the set of all the nodes with degrees greater than d. The probability

that this pair contains one node of Type T and a second of Type T′ and that

these two nodes are connected is defined as rT−T′(d). Then, r(d) is given by

r(d) =
∑
T, T′

rT−T′(d) . (4.5.89)

We find rI−I(d) as

rI−I(d) = 2
∑
l, k

∑
l′, k′≥l

QI(l, k|d) QI(l
′, k′|d) p(l, k′) , (4.5.90)

= 2

(
ηRSηPR

Q(d)

)2∑
l, k

∑
l′, k′≥l

pRS(l)pPR(k)pRS(l
′)pPR(k′)p(l, k′)Ql, k(d)Ql′, k′(d) ,

where 2QT(.|d)QT′(.|d) is the probability that a pair of nodes chosen at random

among the nodes with degrees greater than d are of Type T(.) and Type T′(.).

One may observe in the above equation that the terms are coupled, so it is very

hard to lead the analytical calculations further. But one may also recognize that

Ql, k(d)Ql′, k′(d) =

(
1−

∑
d′≤d

Pl, k(d
′)

)(
1−

∑
d′′≤d

Pl′, k′(d′′)

)
,

= 1−
∑
d′≤d

Pl, k(d
′)−

∑
d′′≤d

Pl′, k′(d′′) +
∑
d′≤d

∑
d′′≤d

Pl, k(d
′)Pl′, k′(d′′) .(4.5.91)

If we substitute this equality into rI−I(d) we obtain,

rI−I(d) = 2
η2

RSη
2
PR

Q(d)2

{
E

ηRSηPRN2

− 1

ηPRN

∑
d′≤d

∑
l, k

pRS(l)pPR(k) do, l Pl, k(d
′)

− 1

ηRSN

∑
d′′≤d

∑
l′, k′

pRS(l
′)pPR(k′) di, k′ Pl′, k′(d′′)

+
∑
d′≤d

∑
d′′≤d

∑
l, k

∑
l′, k′≥l

pRS(l)pPR(k)pRS(l
′)pPR(k′)p(l, k′)Pl, k(d

′)Pl′, k′(d′′)

}
,

(4.5.92)

92



where we have performed the summations over the variables which do not appear

in the degree distributions (see Eqs. 4.2.15, 4.2.21, and 4.3.37 for the expressions

of the average out-degree do, l, the average in-degree di, k′ , and the average of the

total number of edges E, respectively). Although the last summation is still not

possible to do in closed form, this expression is easier to evaluate numerically than

Eq. 4.5.90, at least for small d. The probability rI−II(d), that two randomly chosen

nodes with degrees greater than d are of Type I and Type II and connected, may

be given in a similar way. This is,

rI−II(d) = 2
∑
l, k

∑
k′≥l

QI(l, k|d) QII(k
′|d) p(l, k′) , (4.5.93)

= 2
ηRS(1− ηRS)η

2
PR

Q(d)2

{
E

ηRSηPRN2

− 1

ηPRN

∑
d′≤d

∑
l, k

pRS(l)pPR(k) do, l Pl, k(d
′)

− 1

ηRSN

∑
d′′≤d

∑
k′
pPR(k′) di, k′ P in

k′ (d′′)

+
∑
d′≤d

∑
d′′≤d

∑
l, k

∑
k′≥l

pRS(l)pPR(k)pPR(k′)p(l, k′)Pl, k(d
′)P in

k′ (d′′)

}
.

The probability rI−III(d), that two randomly chosen nodes with degree greater

than d are of Type I and Type III and connected, is also given by

rI−III(d) = 2
∑
l, k

∑
l′≤k

QI(l, k|d) QIII(l
′|d) p(l′, k) , (4.5.94)

= 2
η2

RSηPR(1− ηPR)

Q(d)2

{
E

ηRSηPRN2

− 1

ηRSN

∑
d′≤d

∑
l, k

pRS(l)pPR(k) di, k Pl, k(d
′)

− 1

ηPRN

∑
d′′≤d

∑
l′
pRS(l

′) do, l′ P
out
l′ (d′′)

+
∑
d′≤d

∑
d′′≤d

∑
l, k

∑
l′≤k

pRS(l)pPR(k)pRS(l
′)p(l′, k)Pl, k(d

′)P out
l′ (d′′)

}
.

The last term in r(d) is the probability rII−III(d), that two randomly chosen nodes

with degree greater than d are of Type II and Type III and connected, is given
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by

rII−III(d) = 2
∑

l

∑
k≥l

QII(k
′|d) QIII(l|d) p(l, k) , (4.5.95)

= 2
ηRS(1− ηRS)ηPR(1− ηPR)

Q(d)2

{
E

ηRSηPRN2

− 1

ηPRN

∑
d′≤d

∑
l

pRS(l) do, l P
out
l (d′)

− 1

ηRSN

∑
d′′≤d

∑
k

pPR(k) di, k P
in
k (d′′)

+
∑
d′≤d

∑
d′′≤d

∑
l

∑
k≥l

pRS(l)pPR(k)p(l, k)P out
l (d′)P in

k (d′′)

}
.

Now we can write down the expression for the rich-club coefficient by grouping the

similar terms together and remembering the definition of ηT, that the probability

of finding a node of Type T,

r(d) =
2

N2Q(d)2

{
E

− ηIIIN
∑
d′≤d

∑
l

pRS(l) do, l P
out
l (d′)

− ηIIN
∑
d′≤d

∑
k

pPR(k) di, k P
in
k (d′)

− ηIN
∑
d′≤d

∑
l, k

pRS(l)pPR(k) (do, l + di, k) Pl, k(d
′)

+ ηIIηIIIN
2
∑
d′≤d

∑
d′′≤d

∑
l

∑
k≥l

pRS(l)pPR(k)p(l, k)P out
l (d′)P in

k (d′′)

+ ηIηIIIN
2
∑
d′≤d

∑
d′′≤d

∑
l, k

∑
l′≤k

pRS(l)pPR(k)pRS(l
′)p(l′, k)Pl, k(d

′)P out
l′ (d′′)

+ ηIηIIN
2
∑
d′≤d

∑
d′′≤d

∑
l, k

∑
k′≥l

pRS(l)pPR(k)pPR(k′)p(l, k′)Pl, k(d
′)P in

k′ (d′′)

+ η2
IN

2
∑
d′≤d

∑
d′′≤d

∑
l, k

∑
l′, k′≥l

[pRS(l)pPR(k)pRS(l
′)pPR(k′)p(l, k′)

·Pl, k(d
′)Pl′, k′(d′′)]

}
. (4.5.96)

Let us note here that the expression obtained above is equivalent to the expres-
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sion,

r(d) =
2

Q(d)2

{
ηIIηIII

∑
d′>d

∑
d′′>d

∑
l

∑
k≥l

pRS(l)pPR(k)p(l, k)P out
l (d′)P in

k (d′′)

+ ηIηIII

∑
d′>d

∑
d′′>d

∑
l, k

∑
l′≤k

pRS(l)pPR(k)pRS(l
′)p(l′, k)Pl, k(d

′)P out
l′ (d′′)

+ ηIηII

∑
d′>d

∑
d′′>d

∑
l, k

∑
k′≥l

pRS(l)pPR(k)pPR(k′)p(l, k′)Pl, k(d
′)P in

k′ (d′′)

+ η2
I

∑
d′>d

∑
d′′>d

∑
l, k

∑
l′, k′≥l

pRS(l)pPR(k)pRS(l
′)pPR(k′)p(l, k′)Pl, k(d

′)Pl′, k′(d′′)

}
.

(4.5.97)

We display in Fig. 4.11, the rich-club coefficient, as obtained by our analytical

treatment and via the simulations. Although our theoretical curve is also able

demonstrate a non-monotonic behavior, it remains below the simulation results

up to the crossover region. The plateaus of the curve correspond to the local

minima in the total degree distribution (see Fig. 4.6), where the probabilities of

finding nodes with these degrees are very small. Thus, if we successively increase

the degree d to search for the nodes with degrees d′ > d we do not obtain a new

set of nodes till we cross these barriers.

Note that the crossover behavior in all three topological coefficients shown in

Figs. (4.8, 4.10, 4.11) essentially arises from the fact that in this network there

are two kinds of nodes, namely those that have RSs and those that do not.

The discrepancy between the analytic and simulation results in Figs. (4.8, 4.10,

4.11) all fall within the interval where we slightly under estimate the in-degree

distribution (see Fig. 4.5) for relatively large degrees. We have argued above that

this is due to the approximation of the binomial distributions with Poissonians

for greater ease in computation.

4.6 Remarks on the Hidden-Variable Approximation

The aim of the section was approaching the content-based networks problem

analytically. The discrepancies between the content-based and hidden-variable

models arise from two sources. One source is the approximations that go into

the derivation of the pairwise connection probability in Eq. 4.0.1. The second is
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Figure 4.11: The probability of finding an edge between a randomly selected pair of
nodes with degree d′ > d for the analytical solution (see Eq. 4.5.96) and simulations
(red circles).

the fact that we have only used pairwise connection probabilities in computing

the topological quantities discussed above, which amounts to neglecting higher

correlations.

The approximate connection probability [6] in Eq. 4.0.1 assumes that all the

sequences of same length are equivalent in their string-matchings, i.e., they have

an equal chance to be reproduced in longer strings of given length and to contain

shorter strings of same length (see Section 2 for examples). This is a coarse-

grained, or effective-medium approach where one ignores the precise content of

the sequences, and assumes that they are maximally randomized. Then, besides

the length of the alphabet from which the letters are chosen, the only relevant

quantity characterizing a string is its length. Another simplification which goes

into Eq. 4.0.1 can be thought of as a mean-field approximation, where all the

consecutive overlapping subsequences of a given length have been treated as if

they were all independent, which is obviously not true.

We have already pointed out that the joint probabilities of edges converging
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upon, or going out from a given node do not factorize. Nevertheless, we have ne-

glected the correlations between sequences reproduced in the same string, as well

as between those sequences containing the same string, and used only pairwise

connection probabilities in the foregoing discussion. For a better approximation

to the clustering coefficient and the rich-club coefficient, one should also consider

multi-point connection probabilities. This mean-field type of approximation is in

fact similar to treating all successive subsequences of a given string as indepen-

dent from each other, and is only valid if the key-sequences are much shorter than

the lock-sequences. Therefore the quality of the agreement between the hidden-

variable models (using Eq. 4.0.1) and content-based models are totally determined

by the length distributions of the lock- and key-sequences (see Section 2 and Sec-

tion 3 for examples).
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5 THE RANDOM BOOLEAN DYNAMICS ON CONTENT-BASED
NETWORKS

We have studied the properties of the random Boolean dynamics on small content-

based networks obtained via generic string length distributions, whose topological

features in the large system size limit have been discussed in Section 2.2.1. The

aim of the research was establishing a starting point on modelling the dynamical

properties of gene regulation within our information-theoretical approach.

We modify random Boolean dynamics within our content-based approach and

outline our results. We have focused on the number and length distributions

of attractors, the size distribution of the basins of attraction, the distribution of

precursor numbers and transient times, as well as the propagation of information.

The aim was classifying our networks with respect to their dynamical properties.

We start with an introduction on the random Boolean dynamics and summa-

rize some earlier results. Then we introduce the content-based random Boolean

dynamics we have proposed on the content-based networks and demonstrate the

properties of the dynamical phase space via some examples. In this content-based

version of random Boolean dynamics, beside the topological properties of the un-

derlying network, the assignment of random Boolean functions are also different.

5.1 Random Boolean Networks: NK Models of Gene Regulation

Random Boolean networks, so called the N -K models, were introduced by Stuart

Kauffman [42] in the context of regulation of gene activations and fitness land-

scapes in 1969. The model has gained sufficient interest and found application in

different fields ranging from biology, mostly in the context of gene expression and

cell differentiation [71, 72, 73, 74], to physics in the study of chaos as well as the

glassy and disordered materials [75, 76, 77], and social sciences. A huge literature

is available on the topic as reviewed in Refs. [4, 78, 79, 80]. We here summarize
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essential ingredients of the model and its variations with some earlier results.

In random Boolean networks consisting of N nodes, each of the nodes corresponds

to a random variable σi which takes its value from the set {0, 1} according to

the values of other nodes (variables). The node i is coupled with ki controlling

elements (thus, its in-degree is ki) according to a predetermined ensemble of

wiring diagrams (adjacency matrices). These variables (σn1(i), σn2(i), . . . , σnki
(i))

constitutes the inputs of the random Boolean function Fi assigned to the variable

σi. Again the choices of the random Boolean functions are made from an ensemble

of a predetermined subset of Boolean functions. The value of each variable at time

t+ 1 is determined by the values of its controlling elements at time t,

σi(t+ 1) = Fi(σn1(i)(t), σn2(i)(t), . . . , σnki
(i)(t)) , i = 1, 2, . . . , N . (5.1.1)

One realization of the wiring diagram (for each node i, the number ki and

then the set of the controlling elements which can be denoted by their indices

n1(i), n2(i), . . . , nki(i)) and the assignments of the Boolean functions (for each node

i, the random Boolean function Fi) is called one realization of the model. Given

a realization of the model, the dynamics of the systems is totally determined by

Eq. 5.1.1. We may represent the state (configuration) Σ(t) of the system at time

t by a list of its variables,

Σ(t) = (σ1(t), σ2(t), . . . , σN(t)) , (5.1.2)

as well as by an integer number in base 10,

Σ(t) =
N∑

i=1

2N−iσi(t) , (5.1.3)

which provides a sufficient ease in numerical calculations (simulations) at least

for small values of system size N . In the context of gene regulation, the nodes

of random Boolean network correspond to genes and random variables to the

activation states (1 if gene is “on”, and 0 if it is “off”) of genes. The directed edge

from node i to node j represents the regulatory interaction where the expression

of ith gene controls the expression of the jth gene.

In his original model, Kauffman assigned the same number K of controlling ele-

ments (inputs) to each variable, where the inputs were chosen randomly with uni-

form probability, 1/N . Thus, the in-degree distribution is given by δk,K , whereas
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the out-degree distribution is a Poisson with the same mean K. Since then, other

ensembles of network architectures have been introduced, such as the scale-free

networks where the in-degree [81] or out-degree [82] distributions follow power-law

form.

The argument of the Boolean function Fi(σn1(i), σn2(i), . . . , σnki
(i)) can take 2ki

values because each of its inputs is a binary variable. Thus, the total number

of Boolean functions is 22ki . An extensively used ensemble of Boolean functions

assumes that all the functions have equal chance to appear. Alternatively, Boolean

functions can be weighted by introducing a bias p, where the function Fi takes the

value 1 with the probability p or 0 with the probability 1−p for each configuration

of its inputs. So the first one is a special case of the latter scheme where p = 1/2.

Another ensemble can be obtained by only considering canalizing functions in

which the value of the function is determined when just one of its inputs is given

a specific value. For example, the Boolean function AND is a canalizing function,

where if one of its inputs is 0 then we now for sure that the value of the function

is 0.

Once the network has been established and the Boolean functions have been as-

signed, one may update the states of all the nodes in the same time step according

to Eq. 5.1.1. This is called the synchronous update. One may as well choose a set

of variables randomly to update in each time step, which is called asynchronous

update.

If the wiring diagram and the Boolean functions are fixed during one realization of

the system, then it is said that the system is quenched. One could assume an an-

nealed approach, where both the wiring diagram and the assignments of Boolean

functions are changed in each time step. Or one could follow an intermediate

approach to achieve predetermined task [7].

If the system is quenched, all one needs to do is iterating the state vector Σ(0)

of the system according to Eq. 5.1.1 to obtain one of its trajectories in the phase

(state) space, which will eventually end up at a fixed point or in a cyclic orbit.

Since the dynamics is totally deterministic, starting from all the initial config-
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urations {Σ(0)} of the variables one can fully explore the state space. Let us

give some definitions used in the characterization of the phase space in the next

sections.

5.1.1 Transfer of information in Kauffman networks

The N -K model assumes a quenched system, where all the nodes have the same

number K of controlling elements; the random Boolean functions are weighted

with the probability p; and the variables are updated synchronously. These net-

works have become prototypes of the dynamical systems exhibiting “ordered”

and “chaotic” phases with a separator regime (so called, the “critical” phase)

determined by the two parameters K and p. These regimes have been defined

with respect to the propagation of the differences in the information coded in the

initial states. If the system remembers small changes in its initial configurations

in long time limit and propagate them to a finite fraction of variables in the large

networks size limit, then the system is said to be in the chaotical phase. If small

differences in the initial configurations die out over time, then the system is said

to be in the ordered (frozen) phase.

Let us consider a pair of randomly chosen initial configurations, Σ(0) =

(σ1(0), . . . , σN(0)) and Σ̃(0) = (σ̃1(0), . . . , σ̃N(0)), and follow their trajectories

(time evolution of these configurations) under the same dynamics (Eq. 5.1.1) to

determine the Hamming distance H(t) between them at time t,

H(t) =
N∑

i=1

(σi(t)− σ̃i(t))
2 . (5.1.4)

If the system is in the frozen regime the small differences H(0) in the initial states

will not grow in time, whereas they will propagate over the entire system in the

case of chaotic phase. Another quantity proposed to probe the same property is

the normalized overlap x(t) between configurations,

x(t) = 1− H(t)

N
, (5.1.5)

which is the fraction of nodes having the same state in the configurations Σ(t) and

Σ̃(t). Here one looks for the conditions (parameters) for which x goes to unity

in the long time limit. In the chaotic regime the Hamming distance increases
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exponentially and then saturates over time, whereas in the ordered regime it

decreases and again achieves an asymptotic value. On the other hand if the system

is in the critical regime, the Hamming distance first decreases and then starts to

increase to saturate eventually [78].

Now we will reproduce the result of Derrida and Pomeau [76] to give an idea how

the phase diagram of such systems are obtained. We want to drive x(t + 1) as a

function of x(t). In the limit of large system size, x(t) corresponds to the proba-

bility that a randomly chosen variable has the same value in the configurations

Σ(t) and Σ̃(t). The node will have the same value at time t+1, if the values of its

inputs in Σ(t) are equal to those in Σ̃(t) at time t, whose probability is [x(t)]K . If

at least one of its controlling elements is in a different state in these configurations

(the probability of this event is 1 − [x(t)]K), then the node will be in the same

state if and only if the Boolean function assigned to this node takes the same

values for these different arguments, where the probability is p2 + (1− p)2. Then

x(t + 1) the probability of finding a randomly chosen node with the same value

in the configurations Σ(t+ 1) and Σ̃(t+ 1) may be written as

x(t+ 1) = [x(t)]K + (1− [x(t)]K) (p2 + (1− p)2) ,

= 1− 2p(1− p)(1− [x(t)]K) = F(x(t)) , (5.1.6)

where F(x(t)) = x(t+1) has been obtained as a monotone increasing function of

x(t). If the slope of the curve is smaller than 1 as we approach unity from below,

then the system is said to be in the ordered regime, if larger, then in the chaotic

regime where the fixed point at unity becomes unstable and another fixed point

x∗ �= 1, such that x∗ = F (x∗), appears. The condition where the corresponding

slope is 1 gives the critical regime. Then one gets,

K > 1/2p(1− p) chaotic phase ,

K = 1/2p(1− p) critical phase , (5.1.7)

K < 1/2p(1− p) ordered phase .

For N -K models the system has very narrow intervals of its parameters to exhibit

an ordered or critical regime. For large values K of connectivity the bias of the

system has to be adjusted to a very high or low value (p ≈ 1 or p ≈ 0, thus
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almost constant Boolean functions) as can be followed from Eq. 5.1.7. Recognize

that the phase diagram is symmetric around p = 1/2. It has been shown [81]

by generalizing the same mean-field approach that the scale-free networks, with

power-law in-degree distributions of exponent γ, display ordered behavior for

γ > 2.5 and exhibit chaotic phase for γ < 2 without respecting the precise value

of p.

This approximate calculation based on a mean-field approach can only be mean-

ingful if the system size is very large such that the whole ensemble of the wiring

diagrams and, more importantly, all the Boolean functions are realized [78]. For

finite systems, even in the ordered regime, small Hamming distances will always

persist. This is what we will be discussing in Section 5.3.2.

5.2 Content-Based Random Boolean Dynamics: CB Models of Gene
Regulation

The random Boolean dynamics we employ here is totally deterministic once the

Boolean functions are assigned, and the systems is quenched, neither the wiring

diagram (the adjacency matrix) nor the Boolean functions are changed during

one realization. The updating of the activation states of the nodes is synchronous,

the states of the nodes at time t + 1 are updated all together according to their

Boolean functions and the states of the nodes at time t. It is also worth noting

that the dynamics is discrete, the states of the nodes as well as the time steps we

operate the dynamical process are discrete.

In our content-based network, as discussed in detail in the previous sections (see

Section 2.2 and Section 3), the nodes represent genes with two regions specifying

their promoter and coding regions. Each promoter region is associated with a

random linear code through which the expression level of the corresponding gene is

regulated. If a gene codes a transcription factor we also associate a second random

sequence representing the binding motifs (regulatory sequences) recognized by the

TF, through which the corresponding gene regulates the expression level of other

nodes. (See Fig. 5.1.)

Uninterrupted subsequences of length k′ in a promoter region of length k consti-
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Figure 5.1: Demonstration of our content-based random Boolean dynamics on a sample
network. In the upper panel, we display a network of 3 genes (G1, G2, G3) with their
associated PR and TF strings. The random sequences associated with the nodes have
been chosen from the alphabet {X,Y}. Two of the nodes (G1 and G3) share the same
promoter region (PR1 and PR3 are identical), and the TFs coded by two nodes (G1
and G2) recognize the same recognition site (RS1 and RS2 are identical). In the lower
panel, we display the Boolean functions associated with the PRs whose truth tables are
constructed with respect to the binding states of their recognition sites. In the tables,
not the binding states of all the recognition sites are displayed because there are no
TFs recognizing them (their binding states are identically zero). The phase space may
be considered as a directed graph where each node represents a configuration and edge
the evolution of a configuration under a dynamical step. Given an initial configuration
Σ =

∑N
i=1 2N−iσGi , representation as a number in base 10, we determine the state Σ

of the system under a successive step of the dynamics according to the truth tables.
The sample system has 1 fixed point at configuration Σ = 5, where G1 and G3 are on
(TF1 and TF3 are produced), whereas G2 is off.
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tutes its possible “recognition sites” for the regulatory sequences of this length

l = k′. Let us denote the position of the first letter of a subsequence of length k′

in a promoter region of length k by ν(k′, k). The number of “relevant” recognition

sites in a promoter region depends on the length distribution of TF binding mo-

tifs pRS(l) as well as that of promoter regions pPR(k), defined within the intervals

ΛRS = [lmin, lmax] and ΛPR = [kmin, kmax]. Because, for example, the recognition

sites of lengths k′ < lmin are not recognized by the TFs and do not have any

effect by themselves on the regulation of the corresponding gene according to

our sequence-matching rule. Thus we may specify the set of relevant recognition

sites by 1 ≤ ν(k′, k) ≤ k − k′ + 1 for the possible values of k′ where only the

lmin ≤ k′ ≤ min(lmax, k) are relevant. If a regulatory sequence is identical to the

subsequence (recognition site) specified by ν = ν(k′, k), then we assume that the

promoter region is recognized (and bound) by the corresponding TF at this site

ν.

Let us reformulate the elements of the adjacency matrix by defining wν
ij as the

characteristic function of the event that an exact match occurs between the regu-

latory sequence of length li associated with the ith node and the promoter region

of length kj associated with the jth node at the recognition site ν = ν(li, kj). Then

the element of the adjacency matrix wij is given by wij = 1 −∏kj−li+1
ν=1 (1 − wν

ij)

which takes the value 1 if and only if there exists at least one recognition site

ν ′ in the promoter region of the jth node identical to the regulatory sequence

recognized by the TF coded by the ith node (wν′
ij = 1), 0 otherwise.

We define the random Boolean dynamics on our content-based network by as-

signing a value σi(0), from the set {1, 0} at time zero to each node i, indicating

the activation state (on or off, respectively) of the corresponding gene at that

time, then following the trajectory of the states evolving under random Boolean

functions at successive time steps. The random Boolean functions (RBFs) are

assigned to the promoter regions of the genes with the inputs being the “binding

states” of their recognition sites. As we have already stated above, we assume that

if a recognition site is identical to a regulatory sequence, then the corresponding

transcription factor recognizes and binds the corresponding promoter region at

this site. Obviously this event is realized only if the TF is available at that time
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(the gene coding the TF has to be active; we assume that the TFs do not survive

from one time step to another). Thus, we may define the binding state bνj (t) of

the recognition site specified by ν = ν(k′, kj) in the promoter region associated

with the jth node, by bνj (t) = 1 −∏i(1 − wν
ijσi(t)). Then, it follows that bνj (t)

takes the value 1 if and only if there exists at least one active gene coding the

TF whose regulatory sequence is identical to the recognition site (wν
i′j = 1 and

σi′(t) = 1), 0 otherwise. The random Boolean function Fj({bνj (t)}), associated

with the promoter region of the jth node determines the activation state of the

corresponding gene at the next time, t + 1, via σj(t + 1) = Fj({bνj (t)}) where

{bνj (t)} denotes the list of binding states of the relevant recognition sites in the

promoter region. (See Fig. 5.1.)

The truth tables for the Boolean functions associated with the promoter regions

are constructed randomly. For each different realization of the list {bν(t)}, F is

assigned the value 1 with probability p and 0 with probability 1 − p. Once the

Boolean functions are assigned then they are fixed once and for all.

One should note here that since the random Boolean functions are associated

with the promoter regions and take values with respect to the binding states of

their recognition sites, if some of the genes have identical promoter regions they

are operated by the same Boolean function, i.e., their expression profiles are also

identical (they are expressed or depressed together). Another difference from the

N -K models coming with our modification is that if some of the transcription

factors coded by different genes recognize the same binding motif (so the regu-

latory sequences associated with these nodes are identical), then the number of

inputs of the Boolean functions associated with the promoter regions containing

the recognition sites recognized by these TFs reduces. Because the promoter re-

gions do not care about the identities of the nodes but the proteins coded by

them. Thus, the activation states of those genes whose TFs recognizing the same

binding motif are degenerate in the sense that the binding state of such a recog-

nition site is 0 if non of these nodes are active and 1 if at least one of them is

active. (See Fig. 5.1.)

For systems having a finite number N of such nodes with finite number of possible
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states (in this case, two), the volume Ω of the phase space constituted by all

the possible initial states {Σ(0) = (σ1(0), σ2(0), . . . , σN(0))} of the nodes is also

finite, Ω = 2N . If the system starts from an initial configuration Σ(0), it will

eventually fall into a fixed point or a cyclic orbit (will start revisiting some already

visited states). The flow diagram (time evolutions of configurations) of the phase

space can be thought as a directed network, where the vertices correspond to the

initial configurations of the node (gene) activations and each link to one time step

in which we employ the dynamics. Thus, in this network, a directed link from

vertex Σ(0) to vertex Σ̃(0) appears if Σ(1) = Σ̃(0). It is sufficient to analyze the

“adjacency matrix” of the phase space to study the properties of the configuration

space. For example, in this network the out-degree of each vertex is one, and the

in-degree is called the precursor number of the vertex. Each cluster in the network

correspond to a basin of attraction, and the number of vertices in the cluster to

the basin size. Each loop in the network is called an attractor, and the number

of vertices in the loop as the length of attractor. Each path between any pair of

vertices is unique. The path length (number of directed links) starting from a

vertex (initial configuration) and ending in the attractor is called the transient

time of the initial configuration. In Fig. 5.2 we display an example for a system

of size 8 (thus, the size of the phase space is 256), where the phase space is

partitioned into 10 basins of attraction with attractors of lengths 1 and 2.

The properties of the phase space are determined by the Boolean functions as

well as the topology of the underlying network (do not confuse with the flow

diagrams of the phase space). It is of great interest to determine the effect of the

topological properties on the asymptotic behavior of the dynamics. This is what

we try to demonstrate in the subsequent sections.

5.3 Simulations on Small Content-Based Networks

We have simulated the random Boolean dynamics defined above on small content-

based networks which have been constructed with identical toy length distribu-

tions for the PRs and RSs, of either truncated exponential or Gaussian form.

The choice of an exponential length distribution was motivated by the fact that

it lends itself to analytical treatment [6]. We have adjusted the parameters of the
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Figure 5.2: The flow diagram of phase space for one realization of random Boolean
functions has been represented by a directed network of size Ω = 28 for one realiza-
tion of a content-based network of size N = 8. The vertices corresponding to initial
configurations of activation states of the nodes have been denoted by numbers in base
10. For example, Σ(0) = 128 denotes the configuration where only the first node is on,
etc. The directed link from Σ to Σ̃ represents the dynamical evolution of Σ in one time
step. The sample system consists of 10 basins of attraction, four of which of size 4, two
of which of size 24, two of which of size 32 and two of which of size 64. There are 8
point attractors and 2 periodic attractors of length 2. (Network has been drawn by the
Graphviz visualization tool freely available at http://www.graphviz.org.)
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Gaussian distribution so as to give networks that are not very sparse. Moreover,

we have assumed that all the genes code TFs. The reason was again, that we did

not want to obtain very sparse graphs. We should note here that it makes sense

to operate the dynamics just for the subset of the nodes which are TF-coding

genes, because the others coding structural proteins do not have any effect on the

regulation of the genes, so on the asymptotic behavior of dynamics. Because of

the forms and the intervals of the length distributions used here we do not have

any claim on the modelling of real regulatory networks. But by themselves they

are very interesting to work on because the topological properties of the ensemble

of networks obtained in this way share similar characteristics with those of real

complex networks as shown in Section 2.2.1.

We have generated an ensemble of content-based networks of size N , 5 ≤ N ≤ 16

with given length distributions. For each realization, 104 in total, of the model

network we have realized the assignments of the random Boolean functions once

with p = 0.5 (no bias). The lengths l of the random binary sequences associated

with nodes have been confined to the interval 1 ≤ l ≤ 25 both for the exponential

(p(l) ∝ q−l with q = 0.9) and Gaussian (p(l) ∝ exp[(l − 〈l〉)2/2σ2] with 〈l〉 = 13

and σ2 = 50) distributions. We have explored the phase space fully, which is only

possible in practice for systems of small sizes (roughly up to N = 20), by starting

from all the initial configurations of the gene activities.

5.3.1 Properties of phase space

We have considered here the scaling relations of the average number and length of

attractors as well as the average transient time of configurations and basin size of

attraction with system size (Fig. 5.3). Moreover we have determined the number

and length distribution of attractors, the basin size distribution of attraction, the

distribution of precursor numbers and transient times, as shown in Figs. (5.4–

5.9). We display our results for the largest system size N = 16 considered here if

not stated otherwise.

The mean values of na and la, the number and length of the attractors, signifies

the stability and versatility of the system. We find (see Figs. (5.3a, 5.3b, 5.3d))
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that 〈na〉, 〈la〉 as well as the average transient time 〈τ〉 increase linearly with

system size N , for both the Gaussian and exponential string length distributions.

However in all cases, the exponential has higher growth rates with N for the above

quantities, whereas the Gaussian length distribution gives more stable results. On

the other hand, the average basin size 〈s〉 increases exponentially with system size

(see Fig. 5.3c), in each case. But now, the growth rate obtained for the Gaussian

length distribution of sequences is higher than that found for the exponential one,

as one would expect from the observation for the average number of attractors

(recognize here that 〈s〉 = Ω/na for a given realization). It was believed for

long time that the average number of attractors of the Kauffman networks grew

as N1/2 [78]. But recent numerical studies [83] have shown that 〈na〉 increases

linearly with system size. On random scale-free networks (of sizes up to 20),

Aldana [81] has shown numerically that 〈na〉, 〈la〉 and 〈τ〉 grows linearly in the

ordered and critical regimes, whereas in the chaotic regime of the dynamics 〈la〉
and 〈τ〉 increases exponentially with system size.

Figure 5.3: Average values of the numbers (a), lengths (b), basin sizes (c) and transient
times (d) with respect to system size N (5 ≤ N ≤ 16) for the exponential (•) and
Gaussian (◦) string length distributions.
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In Figs. (5.4, 5.5) we display the probability of finding na attractors in a realization

of the system, and the probability of finding an attractor of length la. Although

the number of attractors is very small compared to the size of the phase space,

the exponential length distribution gives rise to a fatter tailed distribution than

the Gaussian. The distributions of attractor lengths behaves in a similar way as

before, but with much broader intervals.

Figure 5.4: Distributions of number of attractors have been plotted in semi-logarithmic
scales for better visibility of data points for the exponential (above) and Gaussian
(below) length distributions. The distribution has a broader tail (goes up to 11) for the
exponential length distribution comparing with the Gaussian case which goes up to 9.
Although the difference in the maximum numbers is very small, one should note the
difference in the frequencies.

In Figs. 5.6 we exhibit the probability of finding an attractor of basin size s.

We find that the configuration space is more frequently partitioned into basins

of attraction of sizes s = Ω/2n, where n ≥ 0 is an integer number as found [81]

for the scale-free networks. These numbers are harmonics of the size of the phase

space Ω. It is also very interesting to note that the nonzero frequencies show up at

even basin sizes. The finer structures starting to occur between these harmonics

correspond to the increasing complexity of the phase space (basins of attraction

in any scale).
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Figure 5.5: Distributions of attractor lengths plotted in semi-logarithmic scales have
been calculated for ensembles of the model either with the exponential (above) or the
Gaussian (below) distribution of string-lengths. The distribution is fat tailed for the
exponential length distribution, going up to 42, comparing with the Gaussian case (up
to 22). Again note the difference in the frequencies.
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Figure 5.6: Size distributions of basins of attraction have been plotted in the log 2-log 10
scales for better visibility, for the exponential (above) and Gaussian (below) length
distribution. The distributions have expressed picks at basin sizes s = Ω/2n = 2N−n

(n = 0, 1, 2, . . .). It is interesting to note that the nonzero frequencies occur at even
basin sizes. The fine structures much more dominated in the upper panel signify the
increasing complexity of the phase space, that there are many attractors with basin
sizes of any value.
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We display in Fig. 5.7, the probability of finding a configuration with np precur-

sors. The probabilities of finding configurations with zero precursors have been

suppressed for clarity, which we exhibit in Fig. 5.8 for different system sizes. Again

one should note here that the relatively high frequencies are realized at the har-

monics of the size of the phase space, and the nonzero probabilities appear at even

precursor numbers. The increasing probabilities in the small precursor number re-

gion of the distribution observed for the model ensemble with exponential length

distribution may be related with the increasing complexity of the dynamics [81],

accordingly the transient times increases.

Figure 5.7: Distributions of number of configurations with np precursors have been
plotted in the log 2-log 10 scales for better visibility, for the exponential (above) and
Gaussian (below) length distributions. The data points at np = 0 have been suppressed
for clarity in both panels. The relatively high frequencies again show up at np = 2N−n

with integer values of n, and the nonzero data points only have been observed at
even precursor numbers. Again the points starting to occur toward the left side of the
spectrum in the upper panel may show that the phase space of the system is getting
“chaotic”.

In Fig. 5.9, we display the probability of finding a configuration with transient

time τ . The exponential length distribution gives rise to broader distribution

comparing with the Gaussian case.
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Figure 5.8: Probabilities of finding configurations with zero precursors for different
system sizes, 5 ≤ N ≤ 16 with the length distributions of exponential or Gaussian
form. Such configurations may be thought as constituting the boundary of the phase
space.

Figure 5.9: Distributions of number of configurations with transient time τ are plotted
in semi-logarithmic scales. The distribution has much longer tail (up to 69) obtained
by the exponential length distribution (above) than the one (up to 27) obtained by the
Gaussian length distribution (below).
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5.3.2 Stability and description of attractors

The stability of random Boolean networks as discussed briefly in Section 5.1.1,

is defined with respect to the propagation of small differences in initial config-

urations over time. With the aim of determining the dynamical regimes of the

systems under consideration, we have determined the evolution of the overlap

x(t) in one time step, for each possible values of x(t), to obtain the curve of

x(t+1) = F(x(t)). The number ΓH(t) of those pairs, Σ(t), Σ̃(t), of configurations,

such that Σ(t) differs from Σ̃(t) at its H(t) variables at time t, is given by

ΓH(t) = Ω×
(

N

H(t)

)
, 1 ≤ H(t) ≤ N . (5.3.8)

Thus, one has to consider all such pairs of configurations to calculate the average

overlap x(t + 1) at the next time t + 1 for a given value of x(t) = 1 − N−1H(t)

at time t,

x(t+ 1) = 1− 1

NΓH(t)

∑
(Σ(t), Σ̃(t))∈ ΓH(t)

N∑
i=1

(σi(t+ 1)− σ̃i(t+ 1))2 . (5.3.9)

In Fig. 5.10 we display x(t + 1) = F(x(t)) for different system sizes 5 ≤ N ≤
13. We find that for the Gaussian length distribution the curves stay above the

diagonal for all the system sizes considered here, whereas the curve obtained for

the ensemble with the exponential length distribution starts crossing the diagonal

as N ≥ 10. So in this latter case, the fixed point at x∗ = 1 becomes unstable and

another stable fixed point starts to appear at x∗ < 1. According to the definition

of the stability in the Kauffman networks this would correspond to a chaotic

phase.

To see to what extent this claim is true we have calculated the average overlap

x(t+ T ) in successive time steps,

x(t+ T ) = 1− 1

NΓH(t)

∑
(Σ(t), Σ̃(t))∈ ΓH(t)

N∑
i=1

(σi(t+ T )− σ̃i(t+ T ))2 , (5.3.10)

where again, Σ(t) differs from Σ̃(t) at its H(t) variables at time t. The average

is performed over 104 realizations of the network, and all such pairs of config-

urations. Following the trajectory of this quantity under successive steps of the

dynamics, we find, for each value of N considered, that it converges to a set of
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Figure 5.10: The evolution of the overlap function in one time step for different net-
work sizes 5 ≤ N ≤ 13 (from back to navy, respectively), for the exponential (above)
and Gaussian (below) length distribution. Averages have been taken over 104 network
realizations and all pairs of configurations having initial overlap x(t). The solid lines
in both panels indicates the diagonal. The overlap function in the above panel stats to
cross the diagonal as N ≥ 10, that the fixed point at x = 1 becomes unstable and the
system is called as in the “chaotic” regime.
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points in a rather small but finite interval lying below unity, as shown in Fig. 5.11,

which becomes shifted to smaller values for larger N in the case of exponential

string length distribution, as both 〈na〉 and 〈la〉 grow. Even for small N , na > 1

with small but finite probability, and the phase points to which trajectories orig-

inating in different basins of attraction converge are separated by finite distances

which are at least 1. In the presence of periodic orbits of lengths (la)i > 1, one

obtains a set of
(

L
2

)
such pairs of phase points, where L =

∑na

i=1(la)i. Thus, the

persistence of distances between randomly chosen points in phase space does not

automatically signal “chaotic” behavior, but the existence of multiple and/or

periodic attractors.

Figure 5.11: The long-time trajectories (superposition of points with T � τ , where the
trajectories have already got fixed) of the overlap function for different network sizes
5 ≤ N ≤ 13, for the exponential (above) and Gaussian (below) length distribution.
Averages have been taken over 104 network realizations and all pairs of configurations
having initial overlap x(t) = 1− 1/N .
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6 CONCLUSION

We have shown that the content-based models even with generic distributions

of the lengths of random sequences associated with the nodes of the content-

based networks result in network architectures which exhibit topological proper-

ties similar to real-world networks. Among these features we may list the degree

distributions, the out-degrees being distributed in a very broad interval almost

covering the size of the network, whereas the in-degrees being confined within

a much narrower range, as observed for genetic regulatory networks. They also

exhibit the small-word effect, even being of the smallest-world type, which might

be important for these systems, particularly in reacting to stimuli and for the

dynamical processes taking place. Another important property is the robustness

of the network structure against random removal of nodes, needed and exhibited

by most of the complex systems. We have also shown that the most important

inputs to model networks are the length distributions of sequences which deter-

mine the overall topology, but this also provides us with a direct control on the

degree of complexity of the system.

We have modelled the TRN of yeast within our content-based approach, with

the distribution of the amount of shared information coded in the binding sites,

recognized by the TFs of the organism under consideration, being the most im-

portant biological input to our model. We have made a very detailed comparison

of the topological properties of the TRNs of yeast with those of the content-based

model networks. The content-based model is able to reproduce all the topological

features of the yeast TRN. The close structural similarity between the model and

real networks may guide us to claim that they are members of the same statistical

ensemble of networks. We may also claim that since the content-based networks,

whose nodes are in association with random codes having appropriate length dis-

tributions, capture the properties of these regulatory networks, they could have

arisen spontaneously and did not have to be engineered for the specific regulatory
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functions they perform.

The model provides us with an understanding of the origin of the topological

properties, such as the disassortative nature, i.e., the nodes with high degrees are

preferentially connected with the nodes with low degrees. By adapting null-null

models, we have also determined essential ingredients needed to model such net-

works. For example, we have observed that the existence of two node-types (those

coding TFs, and others which do not) is important, and even with a modified

Erdös-Rényi model one may capture some properties of topological coefficients.

We have also shown that when the lengths of the promoter regions are fixed at

the same relatively large length rather than being distributed with a broad tail,

then the resulting model networks start to differ from the yeast TRN and are

not able to capture all of its properties, if they do some of them. Via several

randomization procedures, we have tried to identify the topological constraints of

both the model and the real network. In both cases, we have seen that the total

degree distribution is not a determinant of the overall network structure, whereas

we have shown that when the out- and in-degree distributions are conserved, the

topological features stay essentially invariant.

We have also introduced, as a null-null model, the hidden-variable version of our

content-based networks where only pairwise connectivities are considered and

further correlations are neglected. Comparison of the topological properties of

the hidden-variable networks with those of the content-based model and yeast

networks has revealed that these networks share very close structures. This result

motivates that the analytical calculations based on this model can be meaningful

and may provide us with further predictions on the features of TRNs. We have

calculated the degree distributions and topological coefficients analytically and

have shown that our theoretical results are in very good agreement with the

simulations of the hidden-variable model.

Because of the highly distinct and seemingly advantageous architectures that

the content-based networks have, we have adapted random Boolean dynamics to

our content-based approach. Our results on small model networks with generic

length distributions are promising but need much further investigation. Studies
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on large networks, such as the content-based model of the TRN of yeast, may help

us establish the connection between the underlying network structure of genetic

regulation and its effects on the functioning of the system.
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[25] Catanzaro, M., Boguñá, M. and Pastor-Satorras, R., 2005. Gener-
ation of uncorrelated random scale-free networks, Phys. Rev. E,
71, 027103(4).

[26] Zhou, S. and Mondragon, R.J., 2004. The rich-club phenomenon in the
Internet topology, IEEE Comm. Lett., 8, 180-182.

[27] Colizza, V., Flammini, A., Serrano, M.A. and Vespignani, A., 2006.
Detecting rich-club ordering in complex networks, Nature Physics,
2, 110-115.
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