<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

ETKİLEŞİMLİ ORTAMDA İKİ BOYUTLU PANEL YÖNTEMLERİ

YÜKSEK LİSANS TEZİ Uçak Müh. Atilla COŞKUN (511961003)

Tezin Enstitüye Verildiği Tarih : 17 Eylül 2002 Tezin Savunulduğu Tarih : 19 Eylül 2002

Tez Danışmanı :	Prof. Dr. M. Adil YÜKSELEN
Diğer Jüri Üyeleri	Prof. Dr. Süleyman TOLUN
	Yrd. Doç. Dr. Okşen ÇETİNER

EYLÜL 2002

ÖNSÖZ

Günümüzde profillerin dizayn ve analizi için yapılan deneysel çalışmaların oldukça uzun zaman, masraf ve emek gerektirmesi sebebiyle, birçok bilim adamı fazla masraf ve emek gerektirmeyen teorik dizayn ve analiz metotları geliştirmişlerdir.

Kanat profilleri etrafındaki potansiyel akım alanlarının hesaplanması problemi, kanat profillerinin karakteristiklerinin analizi ve performanslarının saptanması amacıyla pratikte sıksık kullanılan potansiyel akım-sınır tabaka yaklaşımının bir parçası olarak önem kazandığı gibi, dizayn probleminin önemli bir parçası olarak da dikkati çekmektedir. Sıkıştırılamaz potansiyel akım alanlarının hesabı için genel olarak iki grup yöntemden söz etmek mümkündür: konform dönüşüm esaslı yöntemler ve panel yöntemleri.

Bu çalışmada, iki boyutlu panel yöntemlerinden Kompleks Panel Yöntemi, Kennedy Marsden Yöntemi, Soinne Laine Yöntemi, Maskew Woodward Yöntemi ve Vorpan Panel Yöntemleri ele alınmıştır. Tekillik olarak yönteme göre farklılık gösteren kaynak yada girdap dağılımları kullanılmış olup, kontrol noktalarının panel üzerindeki konumlarının seçimleri de yöntemlere göre farklılık göstermektedir. Hazırlanan bilgisayar programı yardımı ile farklı panel yöntemleri ile hesaplama yapılarak, yöntemler arasında karşılaştırma yapma imkanı sağlanmıştır. Program, hesaplama yapılacak profil, hesaplama için kullanılan yöntem, panel yöntemine esas nokta sayısı, hücum açısı gibi değerlerin ekrandan girilmesine ve elde edilen sonuçların sayısal ve grafik olarak gözlenmesine, istenirse diğer panel yöntemleri ile karşılaştırma yapabilmek için sayısal değer ve grafiklerin muhafaza edilmesine olanak sağlamaktadır. Bu program, analitik kökenli kanat profilleri üzerinde çok sayıda uygulama yapılarak geniş bir şekilde test edilmiştir.

Çalışmalarım sırasında daima yapıcı yönde ve olumlu desteğini esirgemeyen değerli hocam Prof. Dr. M. Adil YÜKSELEN 'e teşekkür ediyorum. Ortaya birşeyler çıkabildiyse bunda kendisinin payı gerçekten büyüktür.

EYLÜL 2002

Atilla COŞKUN

İÇİNDEKİLER

TABLO LİSTESİ ŞEKİL LİSTESİ SEMBOL LİSTESİ ÖZET SUMMARY	
1. GİRİŞ	1
2. PANEL YÖNTEMLERİ	3
2.1. Potansiyel Akım Yaklaşımı	3
2.1.1. Süreklilik Denklemi	3
2.1.2. İntegral Yaklaşımı ve Panel Yöntemi	6
2.2. Potansiyel Akım Yaklaşımının Kompleks Düzlemde İncelenmesi	8
2.2.1. Kompleks Potansiyel Fonksiyonu	8
2.2.2. Kompleks Düzlemde Integral Denklemi	8
2.3. Panel Yöntemleri	11
2.3.1. Kompleks Panel Yöntemi	11
2.3.2. Kennedy Marsden Yöntemi	17
2.3.3. Soinne Laine Yöntemi	21
2.3.4. Maskew Woodward Yöntemi	25
2.3.5. Vorpan Panel Yöntemi	29
2.4. Panel Yöntemi Sonuçlarının İncelenmesi	31
3. KARMAN-TREFFTZ VE JOUKOWSKY PROFILLERININ	
KARAKTERİSTİKLERİ	35
3.1. Karman-Trefftz Dönüşümü	35
3.2. Profil üzerindeki Hız Dağılımı Hesabı	38
3.3. Taşıma Kuvveti ve Yunuslama Momenti	40
4. YAZILIM	46
4.1. Kontrol Butonları	47
4.2. Input Parametreleri	49
4.3. Veri Sayfaları	53
5. UYGULAMALAR	61
6. SONUÇ VE ÖNERİLER	75
KAYNAKLAR	77
ÖZGEÇMİŞ	79

TABLO LÍSTESÍ

<u>Sayfa No</u>

Tablo 4.1. : Panel yöntemlerine ait sınır şartları, tekillik türleri ve kontrol	
noktaları	50
Tablo 5.1. : Karman-Trefftz profilleri için analitik ve sayısal sonuçlar	62
Tablo 5.2. : Joukowsky profilleri için analitik ve sayısal sonuçlar	65

ŞEKİL LİSTESİ

<u>Sayfa No</u>

Şekil 2.1	: Potansiyel Fonksiyon İçin Matematik Model	5
Şekil 2.2	: Akım Fonksiyonu İçin Matematik Model	5
Şekil 2.3	: Kompleks Düzlemde Kapalı Eğri	9
Şekil 2.4	: Teğet Normal Eksen Takımında Hız Bileşenleri	10
Şekil 2.5	: Kompleks Düzlemde Akım Alanı	12
Şekil 2.6	: Yüzey Panelleri	12
Şekil 2.7	: Sabit Girdap Dağılımının İndüklemesi	20
Şekil 2.8	: Bir Eğri Üzerindeki Girdap Dağılımı	21
Şekil 2.9	: Profil Üzerindeki Lineer Girdap Dağılımı	22
Şekil 2.10	: Doğrusal Panel Boyunca Lineer Girdap Dağılımı	22
Şekil 2.11	: Kompleks Düzlemde Akım Alanı	26
Şekil 2.12	: Yüzey Panelleri	26
Şekil 2.13	: Sabit ve Lineer Tekillik Dağılımları	27
Şekil 2.14	: Simetrik Kaynak ve Girdap Dağılımı	28
Şekil 2.15	: Lineer Girdap Dağılımı	30
Şekil 2.16	: Kanat Profili Etrafında Basıncın İntegrasyonu	32
Şekil 2.17	: Profile Etkiyen Taşıma ve Sürükleme	34
Şekil 3.1	: Karman-Trefftz Dönüşümü	36
Şekil 3.2	: Daire Etrafındaki Akım	39
Şekil 3.3	: Kanat Profiline Etkiyen Kuvvet ve Momentler	40
Şekil 3.4	: Daire Etrafındaki Potansiyel Akım	42
Şekil 3.5	: Kanat Profiline Etkiyen Kuvvet ve Momentler	44
Şekil 4.1	: Program Ana Penceresi	46
Şekil 4.2	: Veri Kaydında Kullanılan Logic	47
Şekil 4.3	: Karşılaştırma Penceresi	48
Şekil 4.4	: Panel Yöntemleri Pulldown Seçimi	49
Şekil 4.5	: Profil Bilgi Dosyaları Penceresi	51
Şekil 4.6	: "Karman-Trefftz" veya "Joukowsky" Profili Seçimi	51
Şekil 4.7	: "Karman-Trefftz" veya "Joukowsky" Profil Dizayn Penceresi	52
Şekil 4.8	: Dosyadan Profil Şeçme Penceresi	52
Şekil 4.9	: Parametreler Veri Sayfası	54
Şekil 4.10	: Cl,Cm, Cu Dağılımı	54
Şekil 4.11	: Panel Ozellikleri ve Kaynak/Girdap Şiddetleri Veri Sayfası	55
Şekil 4.12	: Cu Çizimi Sayfası	56
Şekil 4.13	: Profil Çizimi	56
Şekil 4.14	: Profilin Karmann Trefftz Dönüşümünden Sonraki Hali	57
Şekil 4.15	: Protil Uzerindeki Basınç Dağılımı	58
Şekil 4.16	: Akım Çızgıleri	58
Şekil 4.17	: Analıtık Çözüm Sonuçları.	59
Şekil 4.18	: Analıtık Cu Dağılımı Grafiği	60

Şekil 5.1	: Karşılaştırma "Parametreler" Sayfası	67
Şekil 5.2	: Karşılaştırma "Cl,Cm, Cu Dağılımı" Sayfası	68
Şekil 5.3	: Karşılaştırma "Basınç Dağılımı Çizim" Sayfası	69
Şekil 5.4	: Karşılaştırma "Pnl.Öz. Kay-Gir Şid." Sayfası	69
Şekil 5.5	: Karşılaştırma "Akım Çizgileri" Sayfası	70
Şekil 5.6	: Karşılaştırma "Soinne-Laine/KTJ Analitik Çözüm" Sayfaları	70
Şekil 5.7	: Karşılaştırma "Soinne-Laine/KTJ Analitik Çözüm Cu Dağılımı"	,
	Sayfaları	71
Şekil 5.8	: "KTJ Profil Seçimi" Sayfası	72
Şekil 5.9	: "KTJ Dizayn" Sayfası	72
Şekil 5.10	: "Parametreler" Sayfası	73
Şekil 5.11	: Karşılaştırma Çözüm Sonuçları	73
Şekil 5.12	: Karşılaştırma Çözüm Sonuçları	74
Şekil 5.13	: Akım Çizgileri	74

SEMBOL LÍSTESÍ

c	: Profil veter boyu
С	: Kompleks düzlemdeki kapalı bir eğri
CD	: Sürükleme Katsayısı
CL	: Taşıma Katsayısı
CM	: Moment Katsayısı
CP	: Basınç Katsayısı
CU	: Hız Katsayısı
f(z)	: Kompleks potansiyel
\mathbf{M}	: Kanat profilinin eleman sayısı
$\mathbf{n}_{\mathbf{p}}$: Bir paneldeki alt panel sayısı
Ν	: Panel sayısı
NI	: Profil üzerindeki ilk panelin indisi
NF	: Profil üzerindeki son panelin indisi
р	: Akım alanında bir nokta
q	: Profil yüzeyindeki bir nokta
r, θ	: Cisim yüzeyine teğet ve normal olarak tanımlanmış bir eksen
	takımına nazaran p noktasının polar koordinatları
t [*] (z)	: z noktasında profil yüzeyinin eğimi
u	: x doğrultusundaki hız bileşeni
Um	: Serbest akım hızı
v	: y doğrultusundaki hız bileseni
$\vec{\mathbf{v}}$	• Huz vektörü
v.	• Teğetsel hız hileseni
V	• Normal hız bileseni
	i nanelin kontrol noktasındaki teğetsel hız
	i panelin kontrol noktasındaki normal hız
$\mathbf{w}^*(\mathbf{z})$	• 7 noktasinda kompleks eslenik hiz
w (<i>L</i>)	
ρ	: Hava yogunlugu
μ	: Kontrol noktasi
α	: Hucum açısı
ν_{j}	: Tekıllık şıddetleri
φ	: Potansiyel fonksiyon
¢(p)	: Yüzey tekilliklerinin p noktasında indükledikleri bozuntu potansiyeli
Ψ	: Akım fonksiyonu
σ	: Kaynak şiddeti
γ	: Girdap şiddeti
-	- /

ETKİLEŞİMLİ ORTAMDA İKİ BOYUTLU PANEL YÖNTEMLERİ

ÖZET

Kanat profilleri etrafindaki potansiyel akım alanının hesaplanması problemi, profil karakteristiklerinin analizi ve performanslarının elde edilmesi amacıyla pratikte sık sık kullanılan potansiyel akım - sınır tabaka yaklaşımının bir parçası olarak önem kazandığı gibi, dizayn probleminin bir parçası olarak da önem kazanmaktadır. Bu çalışmada, profil etrafındaki iki boyutlu sıkıştırılamaz potansiyel akım alanının hesaplanması için, panel yöntemlerinden Kompleks Panel Yöntemi, Kennedy Marsden Yöntemi, Soinne Laine Yöntemi, Maskew Woodward Yöntemi ve Vorpan Panel Yöntemleri sunulmaktadır. Tekillik olarak yönteme göre farklılık gösteren kaynak yada girdap dağılımları kullanılmış olup, kontrol noktalarının panel üzerindeki konumlarının seçimleri de yöntemlere göre farklılık göstermektedir. Bu calışmada, ayrı ayrı incelenmiş panel yöntemlerini biraraya getirecek bir program hazırlanması amaçlanmıştır. Bu amaçla yöntemlerin hesaplama kısmı için Fortran dili, interaktif ortamda birarada incelenmesi, kullanımının kolay ve anlaşılır olması için ise Delphi dili kullanılmıştır. "Panel Yöntemleri" ismi verilen bu program windows tabanlı olduğundan çalışması için herhangi bir bilgisayar derleyicisine gereksinim duymamaktadır. Bu nedenle windows işletim sistemi olan her bilgisayarda kolayca kullanılabilmektedir. Hazırlanan bilgisayar programı yardımı ile farklı panel yöntemleri ile hesaplama yapılarak, yöntemler arasında karşılaştırma yapma imkanı sağlanmıştır. Program, hesaplama yapılacak profil, hesaplama için kullanılan yöntem, panel yöntemine esas nokta sayısı, hücum açısı gibi değerlerin ekrandan girilmesine ve elde edilen sonuçların sayısal ve grafik olarak gözlenmesine, istenirse diğer panel yöntemleri ile karşılaştırma yapabilmek için sayısal değer ve grafiklerin muhafaza edilmesine olanak sağlamaktadır. Bu program ile analitik kökenli kanat profilleri üzerinde çok sayıda uygulama yapılarak geniş bir şekilde test edilmiştir. "Panel Yöntemleri" isimli bilgisayar programının lisans öğrencilerinin uygulama yapmalarında ve panel yöntemlerini kavramalarında faydalı olacağı tahmin edilmektedir.

TWO DIMENSIONAL PANEL METHODS IN INTERACTIVE ENVIRONMENT

SUMMARY

The problem of calculating potential flow fields around airfoils becomes important in analysing the airfoil characteristics and obtaining their performance as a part of potential flow-boundary layer approach which is often used in practical applications. This is also important as a part of the design problem. In this paper, Complex, Kennedy Marsden, Soinne Laine, Maskew Woodward and Vorpan Panel methods using a vorticity or source distributions along the airfoil surfaces as the singularities and some different panel points as the control points, are presented for the calculation of incompressible potential flow fields around the airfoils. The aim of the project is developing a computer program to collect some different panel methods which are already presented separately. Because of this, Fortran language is used for computation. Also Delphi language is used for making application in an interactive environment, for understanding and for using easily. Because of the computer program called "Panel Yöntemleri" is based on windows, it does not need any computer language compiler. So it can be easily used in any computer which has any windows system. Calculation of the problem using some different panel methods and comparison between panel methods becomes possible by a computer program that has been developed. The computer program can make it possible to enter input of the parameters which are profile, method, number of the panel points, angle of attack etc. from the screen. Calculation results can be seen numerically and graphically and saved in order to make the comparison. The program has been tested widely by many applications on analytical based airfoils. It is assumed that "Panel Yöntemleri" program will be useful for students while making application and understanding of the panel methods.

1. GİRİŞ

Özel profil şekline sahip yüzeylerin akışkan içerisinde hareket ettirilmeleri halinde taşıma kuvveti elde edilebileceği fikrini ilk ileri süren kişi 19. yüzyılın başında Sir George Cayley olmuştur. Kanat profilleri ile ilgili teorik çalışmaların temelini ise, Lanchester, Kutta ve Joukowsky gibi aerodinamikçilerin ortaya koydukları kanat etrafında sirkülasyonla taşıma arasındaki ilişki oluşturmuştur. Bu kişiler kendi adlarıyla anılan profil aileleri türeterek bu alandaki ilerlemelere önemli katkılar sağlamışlardır. Günümüze gelinceye kadar profil analiz ve dizaynı alanında sayılamayacak kadar çok çalışma yapılmış olup birçok profil deneyimlere dayanılarak üretilirken önemli bir kısmında da teorik yöntemlerden yararlanılmıştır.

Kanat profillerinin dizaynına yönelik çalışmalardaki hedef genellikle minimum sürüklemeyle maksimum taşıma sağlayacak eniyi profil şeklini elde edebilmektir. İstenilen niteliklere sahip ve kullanılacağı Reynolds sayısında deneysel incelemeye tabi tutularak her türlü nitelikleri tespit edilmiş, istenilen flap düzenine sahip bir profili, literatürde yer alan profil kataloglarından bulmak her zaman mümkün olmayabilir. İşte bu nedenle uygulamada, istenilen profil şeklinin elde edilebileceği teorik yöntemlere sıksık ihtiyaç duyulmaktadır.

Bir kanat profilinin performansı açısından önemli olan esas unsur yüzeyi boyunca oluşan basınç dağılımıdır. Zira, basınç dağılımının yüzey boyunca integrasyonu profilin taşıma kuvvetini ve yunuslama momentini verir. Buna göre taşıma ve yunuslama için ortaya konulan beklentilere cevap verebilecek bir basınç dağılımının oluşturulabilmesi hususu dizayn probleminin esasını teşkil eder.

Ancak, profil yüzeyi boyunca gelişen sınır tabaka olaylarının bu performans üzerinde istenmeyen bazı etkilere yol açabileceğini unutmamak gereklidir. Bununla birlikte sınır tabaka olaylarının da esasen basınç dağılımına önemli ölçüde bağımlı olduğu hatırlanırsa dizayn probleminin girdisinin her halukarda profil yüzeyi boyunca tespit edilecek bir basınç dağılımı olduğu sonucuna tekrar ulaşılır.

Profil yüzeyi boyunca basınç dağılımının tespiti probleminin önemli bir kısmını profil etrafındaki potansiyel akımın çözümü teşkil eder. Sıkıştırılamaz potansiyel akım alanının hesabı için genel olarak iki grup yöntemden sözetmek mümkündür: konform dönüşüm esaslı yöntemler ve panel yöntemleri. Konform dönüşüm esaslı yöntemler kanat profilini ve etrafındaki akım alanını bir daire ve etrafındaki akım alanına dönüştürerek incelerler. Özellikle çok elemanlı profiller için çok sayıda ve hayli karmaşık dönüşümler yapmak gerekir. Panel yöntemleri ise problemi doğrudan fiziksel düzlemde incelemeleri nedeniyle ilgi çekicidir.

Günümüzde potansiyel akımın hesabı için en çok tercih edilen yöntemler bilindiği gibi literatüre "yüzey tekillikleri yöntemi" veya "panel yöntemi" adıyla giren integral yöntemleridir. Bu yöntemlerin hemen hemen hepsi de potansiyel akım problemini modelleyen Laplace denkleminin, Green teoremi yardımıyla profil yüzeyi boyunca yazılmış bir integral denkleme dönüştürülmesi esasına dayanır. Yöntemler, yüzey üzerindeki sınır şartının uygulanış tarzına ve seçilen tekillik cinsine göre bir diğerine göre farklılık gösterirler.

Bu çalışmada Panel yöntemlerinden; Kompleks Panel Yöntemi, Kennedy Marsden Yöntemi, Soinne Laine Yöntemi, Maskew Woodward Yöntemi ve Vorpan Panel Yöntemleri ele alınmıştır.

Bu panel yöntemleri ile uygulama ve karşılaştırma yapabilmek için bir bilgisayar programı hazırlanmış olup, kullanıcının yukarıda verilen yöntemler ile hesaplama yapabilmesi ve sonuçları karşılaştırabilmesi sağlanmıştır.

Böylece belirli profil şekli için hız dağılımı, sınır tabaka gelişimi, taşıma ve moment katsayıları da hızlı bir şekilde hesaplanabilmektedir. Yöntemler, sıkıştırılabilir akım hallerini gözönüne almamaktadır. Ancak, bilinen düzeltme teknikleri kullanılarak sıkıştırılabilir subsonik akışlara genişletilebilir.

Çalışmanın ikinci bölümünde, sözü edilen panel yöntemlerinin teorik esasları ana hatlarıyla özetlenmiştir. Üçüncü bölümde, panel yöntemlerinin test edilmesinde esas alınan analitik kökenli Karman-Trefftz yöntemine ayrıntılı olarak yer verilmiştir. Son bölümde ise, geliştirilmiş bulunan bu bilgisayar programının tanıtımına ve kullanımına ağırlık verilecek ve bu program ile analitik kökenli kanat profilleri üzerinde yapılan çok sayıda uygulamaya yer verilecektir.

2. PANEL YÖNTEMLERİ

Bu bölümde önce potansiyel akım probleminin matematiksel formülasyonu kısaca özetlenecek, daha sonra bazı panel yöntemleri izah edilecektir.

2.1. Potansiyel Akım Yaklaşımı

2.1.1. Süreklilik Denklemi

Bir akışkanın hareketinde süreklilik denklemi en genel halde

$$\frac{\partial \rho}{\partial t} + div(\rho V) = 0 \tag{2.1}$$

şeklinde ifade edilebilir. Akım daimi ve sıkıştırılamaz kabul edildiği takdirde bu denklem

$$\nabla V = 0 \tag{2.2}$$

şeklini alır. Birçok akım alanında viskozite etkileri ihmal edilerek problem potansiyel akım yaklaşımı ile çözülebilir. Potansiyel akım yaklaşımında hız vektörü φ ile gösterilen bir potansiyel fonksiyonu cinsinden

$$\vec{V} = \vec{\nabla}\varphi \tag{2.3}$$

şeklinde ifade edilir. Bu son ifade (2.2) denkleminde kullanılırsa

$$\nabla^2 \varphi = 0 \tag{2.4}$$

şeklinde potansiyel fonksiyonu için Laplace Denklemi elde edilir. İki boyutlu akımlar için kartezyen koordinatlarda bu denklem

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0$$
 (2.5)

şeklinde açılabilir.

Daimi, iki-boyutlu potansiyel akım problemini akım fonksiyonu cinsinden de ifade etmek mümkündür. Şöyle ki; akım fonksiyonu bilindiği gibi akım çizgileri boyunca sabit değerler alan bir fonksiyon olup, Cauchy-Riemann şartları ile

$$u = \frac{\partial \varphi}{\partial x} = \frac{\partial \psi}{\partial y}$$
(2.6a)

$$v = \frac{\partial \varphi}{\partial y} = \frac{\partial \psi}{\partial x}$$
(2.6b)

şeklinde potansiyel fonksiyonuna bağlanabilir. Öte yandan akımın potansiyel olması irrotasyonel olması anlamına gelir ki, irrotasyonellik şartı genel halde hız vektörünün rotasyonelinin sıfır olması şeklinde ifade edilirken

$$\nabla \times \overset{\mathcal{P}}{V} = 0 \tag{2.7}$$

iki-boyutlu halde bu şart, kartezyen koordinat sisteminde

$$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0 \tag{2.8}$$

şekline gelir. Hız bileşenleri için verilen (2.6a) ve (2.6b) bağıntılarından türevler alınarak bu son eşitlikte yerleştirilirse ψ akım fonksiyonu için de

$$\nabla^2 \psi = 0 \tag{2.9}$$

şeklinde bir Laplace denklemi elde edilir.

Daimi sıkıştırılamaz, potansiyel akım probleminin çözümü yukarıda belirtilen (2.4) veya (2.9) denklemlerinden herhangi birinin çözümünden ibarettir. Potansiyel veya akım fonksiyonu için elde edilen çözümler (2.6) bağıntılarında kullanılarak hız alanı elde edilebilir. Daha sonra, Bernoulli denklemi yardımıyla bulunan

$$C_{p_i} = I - \left(\frac{V_{T_i}}{U_{\infty}}\right)^2 \tag{2.10}$$

bağıntısı kullanılarak basınç alanı hesaplanır ve böylece profile etkiyen aerodinamik kuvvetler bulunabilir.

Kanat profilleri için daimi, sıkıştırılamaz, potansiyel akım problemi gerek potansiyel fonksiyonu ve gerekse akım fonksiyonu için sınır şartlarıyla birlikte Şekil 2.1 ve Şekil 2.2 'de gösterilmiştir.

Şekil 2.1 Potansiyel Fonksiyon İçin Matematik Model

Şekil 2.2 Akım Fonksiyonu İçin Matematik Model

Sınır şartları genel olarak

- cismin çok uzaklarından cismin hiçbir etkisinin bulunmayacağı
- cismin yüzeyi üzerinde akımın yüzeye teğet olacağı

şeklinde ifade edilebilir. Ancak uygulamada sınır şartlarını değişik şekillerde yorumlamak mümkündür.

Örneğin potansiyel fonksiyonu ile ifade edilen problem için çoğu zaman yüzey üzerindeki sınır şartı "akımın yüzeye dik hız bileşeni bulunmayacağı" şeklinde yorumlanır. Bunun matematiksel ifadesi ise Şekil 2.1 de gösterildiği gibi potansiyel fonksiyonunun yüzeye dik doğrultudaki türevinin sıfıra eşit olması biçimindedir. Bu tipten sınır şartına Neumann sınır şartı adı verilir.

Problemin akım fonksiyonu için tanımlanması halinde ise cisim yüzeyinin bir akım çizgisi olacağı düşünülerek yüzey sınır şartı "yüzey boyunca akım fonksiyonunun sabit olması" şeklinde yorumlanabilir.

Kanat profilleri için potansiyel akım problemini modelleyen Laplace denkleminin bazı özel haller dışında analitik çözümü mevcut değildir. Bu bakımdan sayısal çözüm yöntemleri tercih edilmektedir. Sonlu farklar ve sonlu elemanlar gibi alan yöntemleri ile çözüm mümkündür. Ancak bu yöntemlerde sınır şartlarının iyi şekilde uygulanabilmesi için çok geniş akım bölgesinin incelenmesi gerektiğinden, büyük bilgisayar kapasitesi ve zamanı kullanımını gerektirir. Pratikte en çok tercih edilen yöntemler ise problemi sadece yüzey eğrisi boyunca çözümleyen "konform dönüşüm yöntemleri" ve "yüzey tekillikleri (panel) yöntemleri" dir. İzleyen bölümde bazı panel yöntemleri ele alınarak temel formülasyonları açıklanacaktır.

2.1.2. İntegral Yaklaşımı ve Panel Yöntemi

Kanat profilleri etrafındaki potansiyel akım problemi için Laplace denkleminin çözümüne yönelik yöntemlerden yüzey tekillikleri veya panel yöntemleri olarak adlandırılan önemli bir grubu, bu denklemi doğrudan çözmek yerine bir integral formunu çözmeyi öngörürler. Green teoremi üçüncü-idantite adı verilen bir sonucu Laplace denkleminin bir integral denklemine dönüştürülmesini sağlar [1,2]. Bu teoreme dayanarak, potansiyel akım alanının herhangi bir noktasındaki potansiyel fonksiyonunun değeri profil yüzeyi boyunca bir takım tekilliklerin integrali cinsinden,

$$\mathscr{P}(P) = \frac{1}{2\pi} \int_{S} \left[\sigma(Q) \ln r(P,Q) - \gamma(Q) \theta(P,Q) \right] ds$$
(2.11)

Laplace denkleminin lineer olması nedeniyle sıkıştırılamaz potansiyel akım alanlarında süperpozisyon mümkündür. Bu bakımdan potansiyel fonksiyonunun akım alanının herhangi bir noktasındaki değeri kanat profilinin uzağındaki bir serbest akımın φ_{∞} potansiyel fonksiyonu ile kanat profilinin yarattığı bozuntu alanından kaynaklanan bir bozuntu potansiyel fonksiyonunun toplamıyla

$$\varphi(p) = \varphi_{\infty} + \varphi(p) \tag{2.12}$$

şeklinde ifade edilebilir. Yüzey üzerindeki sınır şartı, yüzeye dik hız bileşeninin sıfır olması şeklinde uygulandığı taktirde (2.11) bağıntısı

$$\frac{1}{2\pi} \frac{\partial}{\partial n_p} \left\{ \int_{\mathcal{S}} \left[\sigma(q) \ln r(p,q) - \gamma(q) \theta(p,q) \right] ds \right\} = - U_{\infty}^{\rho} h_p \qquad (2.13)$$

şeklinde bir denklem verir. Akım fonksiyonu için de benzeri bir denklem elde etmek mümkündür.

Problem (2.13) denkleminin profil yüzeyi boyunca kaynak ve girdap şiddetlerinin dağılımları elde edilecek tarzda çözümden ibarettir. Ancak bir tek noktada yazılan bu denklemden iki bilinmeyene ait dağılımın elde edilmesi mümkün değildir. Bununla birlikte denklemin profil yüzeyi boyunca her noktada geçerli olduğu düşünülürse tek sorunun bir nokta için denklemin iki bilinmeyen içermesi olduğu görülür. Bu bakımdan denklemin yüzey boyunca dağılımların yeterli hassaslıkla elde edilebileceği kadar noktada yazılması ve ayrıca her nokta için tanımlanan iki bilinmeyen sayısının uygun bir tarzda bir bilinmeyene indirilmesi veya denklem sistemini kapatacak ilave bağıntılar verilmesi gerekir.

Panel yöntemleri (2.13) denklemi veya benzeri integral denklemleri, bilinmeyen kaynak ve girdap şiddetleri için uygun bir nümerik teknikle çözümlemeyi amaçlarlar. Bu amaçla, kanat profili yüzeyi panel adı verilen küçük elemanlara bölünerek çözümleme yapılır. Literatürde yer alan panel yöntemlerinde tercih edilen yaklaşımlar, panel eğrisinin doğrusal, dairesel veya parabolik kabul edilmesi, panel boyunca tekillik dağılımının sabit, lineer veya parabolik kabul edilmesi şeklinde belirtilebilir.

2.2. Potansiyel Akım Yaklaşımının Kompleks Düzlemde İncelenmesi

2.2.1. Kompleks Potansiyel Fonksiyonu

İki boyutlu bir potansiyel akım alanı kompleks düzlemde

$$f(z) = \varphi + i\psi \tag{2.14}$$

şeklinde kompleks potansiyel adı verilen tek bir analitik fonksiyonla ifade edilebilir[3]. Bu fonksiyonun z'ye göre türevi ise kompleks eşlenik hızı verir:

$$w^{*}(z) = \frac{df(z)}{dz} = u - iv$$
(2.15)

Burada φ ve ψ sırasıyla potansiyel ve akım fonksiyonlarını, *u* ve *v* ise hız vektörünün reel ve imajiner eksenler doğrultusundaki bileşenlerini belirtmektedir.

2.2.2. Kompleks Düzlemde İntegral Denklemi

Kompleks düzlemde kapalı bir *C* eğrisinin üzerinde ve içindeki bölgede analitik olan bir f(z) fonksiyonunun herhangi bir *z* noktasındaki değeri, fonksiyonun *C* eğrisi üzerindeki değerleri cinsinden

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(z_0)}{z_0 - z} dz_0$$
(2.16)

şeklinde Cauchy integraliyle ifade edilebilir [4]. Buradaki integralin yönü, bölge izleyiciye göre daima solda kalacak şekilde pozitif seçilmektedir. Şayet bu *C* eğrisinin dışında kalan bir noktada fonksiyonun değeri hesaplanmak istenirse, önce bu dış bölge *R* yarıçaplı bir daire ile sınırlanır. Bu şekilde oluşan bölge basit bağlı olmadığından Cauchy teoreminin uygulanabilmesi için *C* eğrisi ile dışardaki daire arasında bir kesim alınarak bölgenin basit bağlı hale getirilmesi gerekir. C_R dairesi içinde birden fazla kapalı eğri olması halinde yine eğrilerle daire arasında kesimler alınarak basit bağlı bir bölge oluşturulabilir (Şekil 2.3). Dairenin yarıçapının sonsuza götürülmesi halinde, şayet *f* fonksiyonu sonsuzda f_{∞} gibi sabit üniform bir değere sahipse, kesimler üzerinde alınacak integrallerin birbirlerini götüreceği de dikkate alınarak, kapalı eğri dışındaki bölgede herhangi bir noktada fonksiyonunun değeri için

$$f(z) = f_{\infty} + \frac{1}{2\pi i} \oint_{C} \frac{f(z_0)}{z_0 - z} dz_0$$
(2.17)

elde edilir [5].

Şekil 2.3 Kompleks Düzlemde Kapalı Eğri

Üniform-paralel akım içerisinde bir kanat profili etrafındaki potansiyel akım problemi söz konusu olduğunda, f(z) analitik fonksiyonu yerine akım alanına ait kompleks eşlenik hızlar alınarak son ifade

$$w^{*}(z) = w_{\infty}^{*} + \frac{1}{2\pi i} \oint_{C} \frac{w^{*}(z_{0})}{z_{0} - z} dz_{0}$$
(2.18)

şeklinde yazılabilir. Yüzey eğimleri $t(z_0) = e^{i\delta(z_0)}$ kompleks değişkeniyle ifade edilerek yüzey üzerindeki kompleks eşlenik hızlar için

$$w^{*}(z_{0}) = -i v^{*}(z_{0})t^{*}(z_{0})$$
(2.19)

yazıldığı taktirde z noktasındaki kompleks eşlenik hız için,

$$w^{*}(z) = w_{\infty}^{*} + \frac{1}{2\pi} \oint_{C} \frac{v^{*}(z_{0})t^{*}(z_{0})}{z - z_{0}} dz_{0}$$
(2.20)

elde edilir. Kanat profilinin yüzeyi üzerindeki herhangi bir μ noktasında hız elde edilmek istenirse yukarıdaki bağıntıda z yerine μ konulması yeterli olur. Bu noktada kompleks hızın eşleniği yüzeyin teğetiyle normaline bağlı yeni bir eksen takımında da

$$w_{tn}^{*} = V_{t} - iV_{n} = w^{*}(\mu)t(\mu) = w_{\infty}^{*}t(\mu) + t(\mu)\frac{1}{2\pi} \oint_{C} \frac{v^{*}(z_{0})t^{*}(z_{0})}{\mu - z_{0}} dz_{0}$$
(2.21)

şeklinde ifade edilebilir (Şekil 2.4). Burada V_t ve V_n sırasıyla teğetsel ve normal hız bileşenlerini göstermektedir.

Şekil 2.4 Teğet Normal Eksen Takımında Hız Bileşenleri

Yüzey üzerindeki sınır şartı yüzeye dik hız bileşeninin sıfır olacağı şeklinde uygulanarak

$$V_n = -Im \left\{ w^*(\mu) t(\mu) \right\} = 0$$
(2.22)

veya

$$Im\left\{t(\mu)\frac{1}{2\pi}\oint_{C}\frac{\nu^{*}(z_{0})t^{*}(z_{0})}{\mu-z_{0}}dz_{0}\right\} = -Im\left\{w_{\infty}^{*}t(\mu)\right\}$$
(2.23)

denklemi elde edilir. İntegralde yer alan kompleks fonksiyon reel ve imajiner kısımlarıyla

$$\nu(z_0) = \sigma(z_0) + i \gamma(z_0)$$
(2.24)

olarak tanımlandığı taktirde bu son denklem

$$Im\left\{t(\mu)\frac{1}{2\pi}\oint_{C}\left[\frac{\sigma(z_{0})}{\mu-z_{0}}-i\frac{\gamma(z_{0})}{\mu-z_{0}}\right]dz_{0}\right\}=-Im\left\{w_{\infty}^{*}t(\mu)\right\}$$
(2.25)

şekline gelir ki, integral içindeki ilk terim yüzey boyunca bir kaynak dağılımını, ikinci terimi ise bir girdap dağılımını temsil etmektedir. Bu integral denklem reel düzlemde Green teoreminden hareketle elde edilen (2.13) denklemiyle eşdeğer olup çözümünde reel düzlemdekine benzer teknikler uygulanır.

2.3. Panel Yöntemleri

Gerek kullanılan fonksiyon (potansiyel veya akım fonksiyonu) veya sınır şartının yorumlanış biçimi, gerekse seçilen tekillik (kaynak, girdap veya duble), yada tekilliklerin ve yüzey panellerinin dağılımı (sabit, lineer, parabolik vb) açısından birbirinden farklılık gösteren bir çok panel yöntemi mevcuttur. Bu bölümde panel yöntemlerinden, Kompleks Panel Yöntemi, Kennedy-Marsden Yöntemi, Soinne-Laine Yöntemi, Maskew-Woodward Yöntemi ve Vorpan Panel Yöntemi ele alınacaktır. Yöntemler kısaca özetlenerek uygulama için gerekli olan formülasyon ortaya konulacaktır.

2.3.1. Kompleks Panel Yöntemi

Kompleks z düzleminde bir kanat profili etrafındaki sıkıştırılamaz potansiyel akımın

$$w_{\infty}^* = U_{\infty} e^{-i\alpha} \tag{2.26}$$

şeklinde tanımlanan üniform paralel akım ile, kanat profili cidarı boyunca denklem (2.24) de verilen kaynak-girdap dağılımı ile temsil edilmesi halinde (Şekil 2.5), akım alanının herhangi bir *z* noktasındaki kompleks hızın eşleniği

$$w^{*}(z) = w_{\infty}^{*} + \frac{1}{2\pi} \oint_{C} \frac{\nu(z_{0}) \cdot t^{*}(z_{0})}{z - z_{0}} dz_{0}$$
(2.27)

şeklindeki bir bağıntı ile belirtilebilir. Burada *C* eğrisi profil yüzeyini, z_0 da bu yüzey üzerindeki noktaları temsil etmektedir. $t^*(z_0)$ profil yüzeyinin z_0 noktasındaki eğimini belirten δ açısına

$$t(z_0) = e^{i\delta(z_0)}$$
(2.28)

şeklinde bağlanan kompleks bir fonksiyonun eşleniğidir.

Şekil 2.5 Kompleks düzlemde akım alanı

(2.27) bağıntısı yardımıyla z noktasındaki hızın hesaplanabilmesi için bağıntıda yer alan integralin hesaplanması gerekir. Ancak bir kanat profili için analiz problemi söz konusu olduğunda, başlangıçta yüzey boyunca $v(z_0)$ fonksiyonunun nasıl dağıldığı bilinmez. Ayrıca $t(z_0)$ fonksiyonu da genel olarak analitik bir biçimde ifade edilemez. Bu bakımdan panel yöntemlerinde, söz konusu integralin hesabı için önce profil cidarı panel adı verilen küçük yüzey elemanlarına ayrılır (Şekil 2.6). Böylece (2.27) bağıntısı

$$w^{*}(z) = w_{\infty}^{*} + \sum_{j=1}^{N} \left\{ \frac{1}{2\pi} \int_{z_{j}}^{z_{j+1}} \frac{v(z_{0}) \cdot t^{*}(z_{0}) dz_{0}}{z - z_{0}} \right\}$$
(2.29)

şekline gelir. Burada N büyüklüğü panel sayısını belirtmektedir.

Şekil 2.6 Yüzey Panelleri

(2.29) bağıntısındaki integralin hesabı, yukarıda belirtilen nedenlerle halen mümkün değildir. İntegrali hesaplayabilmek için, panellerin yeterince küçük boyda olduğu farzedilerek, $v(z_0)$ ve $t(z_0)$ dağılımları için çeşitli yaklaşımlar yapılır. Burada, basit

olması bakımından paneller doğrusal ve paneller boyunca tekillik dağılımları da sabit kabul edilecektir.

Panellerin doğrusal kabul edilmesi halinde herhangi bir j 'inci panel boyunca eğimler aynı olacağından

$$t^{*}(z_{0}) = t_{i}^{*} \tag{2.30}$$

ve ayrıca bu panel boyunca tekilliğin sabit şiddette dağıldığı kabul edilirse

$$\nu(z_0) = \nu_i \tag{2.31}$$

yazılabilir. Böylece (2.29) bağıntısı

$$w^{*}(z) = w_{\infty}^{*} + \sum_{j=1}^{N} \left\{ \frac{1}{2\pi} t_{j}^{*} \int_{z_{j}}^{z_{j+1}} \frac{dz_{0}}{z - z_{0}} \right\} \cdot v_{j}$$
(2.32)

şekline gelir. Bu bağıntıyı

$$C_{j}(z) = \frac{1}{2\pi} \cdot t_{j}^{*} \cdot \int_{z_{j}}^{z_{j+1}} \frac{dz_{0}}{z - z_{0}} = \frac{1}{2\pi} \cdot t_{j}^{*} \cdot \ln \frac{z - z_{j}}{z - z_{j+1}}$$
(2.33)

olmak üzere

$$w^{*}(z) = w_{\infty}^{*} + \sum_{j=1}^{N} \left\{ C_{j}(z) \cdot v_{j} \right\}$$
(2.34)

şeklinde de yazmak mümkündür.

(2.34) bağıntısı yardımıyla herhangi bir z noktasındaki hızı hesaplamak için profil geometrisi ve serbest akım şartları yanında, paneller üzerindeki v_j tekillik şiddetlerinin bilinmesi gerektiği unutulmamalıdır. Tekillik şiddetleri kanat profilinin yüzeyi boyunca sınır şartı ve ilave olarak Kutta şartı kullanılmak suretiyle elde edilecektir. Bu bakımdan profil yüzeyi üzerindeki herhangi bir μ noktasındaki hız için (2.34) bağıntısı tekrar yazılırsa

$$w^{*}(\mu) = w_{\infty}^{*} + \sum_{j=1}^{N} \left\{ C_{j}(\mu) \cdot v_{j} \right\}$$
(2.35)

elde edilir. Bu bağıntıdan bulunacak olan kompleks eşlenik hız büyüklüğünün reel kısmı x ekseni doğrultusundaki hız bileşenini, imajiner kısmı ise y ekseni doğrultusundaki hız bileşenini verecektir. Oysa, yüzey üzerinde akımın yüzeye teğet olacağı hatırlanırsa yüzey üzerindeki kompleks hızın yüzey teğetine bağlı bir eksen takımında ifade edilmesinin daha uygun olacağı görülür. Nitekim (2.35) bağıntısının her iki yanı seçilen μ noktasındaki t eğimi ile çarpılarak

$$w_{TN}^{*}(\mu) = w_{\infty}^{*} \cdot t(\mu) = w_{\infty}^{*} + \sum_{j=l}^{N} \left\{ t(\mu) \cdot C_{j}(\mu) \cdot v_{j} \right\}$$
(2.36)

elde edilir. Panel yöntemlerinde genel olarak herbir *i* 'inci panel üzerinde bir μ_i kontrol noktası seçilerek hız sadece bu noktada hesaplanır. Bu kontrol noktası genellikle panel orta noktasıdır. Bu durumda (2.36) bağıntısı

$$C_{ij} = \frac{1}{2\pi} t_i t_j^* \int_{z_j}^{z_{j+1}} \frac{dz_0}{\mu_i - z_0} = \begin{cases} \frac{1}{2\pi} t_i t_j^* \cdot Ln \frac{\mu_i - z_j}{\mu_i - z_{j+1}} & i \neq j \\ -i/2 & i = j \end{cases}$$
(2.37)

olmak üzere

$$w_{TN_{i}}^{*} = w_{\infty}^{*} t_{i} + \sum_{j=l}^{N} \left\{ C_{ij} \cdot v_{j} \right\}$$
(2.38)

şeklinde yazılır. Burada *i* 'inci panelin kontrol noktasındaki teğetsel hız V_{T_i} ve normal hız da V_{N_i} olmak üzere

$$w_{TN_i}^* = V_{T_i} - i \, V_{N_i} \tag{2.39}$$

yazılabilir. Ayrıca

$$C_{ij} = a_{ij} + i \, b_{ij} \tag{2.40}$$

denilir ve bunun yanında

$$v_i = \sigma_i + i\gamma_i \tag{2.41}$$

olduğu hatırlanırsa teğetsel ve normal hızlar için sırasıyla

$$V_{T_i} = Re\left\{w_{\infty}^*t_i\right\} + \sum_{j=1}^N a_{ij} \cdot \sigma_j - \sum_{j=1}^N b_{ij} \cdot \gamma_j$$
(2.42)

$$-V_{N_i} = Im\left\{w_{\infty}^*t_i\right\} + \sum_{j=l}^N b_{ij} \cdot \sigma_j + \sum_{j=l}^N a_{ij} \cdot \gamma_j$$
(2.43)

elde edilir.

Akımın profil yüzeyine teğet olacağı şeklinde belirtilen sınır şartını, akımın yüzeye dik hız bileşeni olmayacağı şeklinde yorumlamak mümkündür. Bu durumda herbir panel üzerindeki kontrol noktasında normal hızlar sıfıra eşitlenerek

$$\sum_{j=1}^{N} b_{ij} \cdot \sigma_{j} + \sum_{j=1}^{N} a_{ij} \cdot \gamma_{j} = -Im \left\{ w_{\infty}^{*} t_{i} \right\} \qquad (i = 1, 2, ..., N)$$
(2.44)

şeklindeki bir lineer denklem takımı elde edilir. Ancak bu denklem takımında *N* adet denkleme karşılık 2*N* adet bilinmeyen ($\sigma_1, \sigma_2, ..., \sigma_N$; $\gamma_1; \gamma_2, ..., \gamma_N$) olduğuna dikkat edilmelidir.

(2.44) denklem sisteminin çözümü için bilinmeyen sayısının azaltılması gerekir. Ayrıca Kutta şartının da ilave bir denklem vereceği unutulmamalıdır. Literatürde yer alan klasikleşmiş bir yaklaşım, kaynak dağılımının esas alınması ve girdap dağılımı için bir takım kabuller yapılması şeklindedir. Girdap dağılımının esas alınması halinde ise bir takım sorunlar yaşanmaktadır [6].

Kaynak dağılımının esas alınması halinde profil etrafındaki girdap dağılımı

$$\gamma_j = d_j \cdot \gamma_c \qquad (j = 1, 2, \dots, N) \qquad (2.45)$$

şeklinde bir tek bilinmeyene bağlanır. Böylece (2.44) denklem sistemi

$$\sum_{j=l}^{N+l} A_{ij} \cdot X_j = D_i \qquad (i = 1, 2, ..., N)$$
(2.46)

ve teğetsel hızlar için yazılan (2.42) bağıntısı da

$$V_{T_i} = E_i + \sum_{j=l}^{N+l} B_{ij} \cdot X_j \qquad (i = 1, 2, ..., N)$$
(2.47)

şekline gelir. Burada

$$\begin{array}{l} A_{ij} = b_{ij} \quad (j = 1, 2, ...N), \quad A_{iN+I} = \sum_{j=1}^{N} d_{j} \cdot a_{ij}, \quad D_{i} = -Im \left\{ w_{\infty}^{*} t_{i} \right\} \\ B_{ij} = a_{ij} \quad (j = 1, 2, ...N), \quad B_{iN+I} = -\sum_{j=1}^{N} d_{j} \cdot b_{ij}, \quad E_{i} = Re \left\{ w_{\infty}^{*} t_{i} \right\} \\ X_{j} = \sigma_{j} \quad (j = 1, 2, ...N), \quad X_{N+I} = \gamma_{c} \end{array}$$

$$(2.48)$$

Bu son bağıntılardaki d_j katsayılarını çeşitli şekillerde seçmek mümkündür. En basit bir yaklaşımla

$$d_j = 1$$
 ($j = 1, 2, ..., N$) (2.49a)

alarak bütün profil çevresi boyunca girdap şiddetinin sabit olduğu kabul edilebilir. Ancak bu yaklaşımın kullanılması halinde firar kenarı civarında bir sorun olduğu bilinmektedir. Bu bakımdan girdap dağılımı için profil yüzeyi boyunca parabolik bir dağılım daha uygun düşmektedir. Bu tezdeki uygulamalarda dağılım her bir panelde sabit ancak profil yüzeyi boyunca parabolik olarak alınmıştır. Parabolik dağılım halinde yukarıdaki katsayılar panel kontrol noktalarının profil firar kenarından saat ibreleri yönünde uzaklıklarına (s)

$$d_{j} = 0.5 \left[\bar{s}_{j} (\bar{s}_{j} - 1) + \bar{s}_{j+1} (\bar{s}_{j+1} - 1) \right], \qquad \bar{s}_{j} = s_{j} / s_{T} \quad (j = 1, 2, ..., N)$$
(2.49b)

şeklinde bağlanabilir.

(2.46) denklem sisteminde bilinmeyen sayısı halen denklem sayısından bir fazla olup ilave bir denklemi de Kutta şartından elde etmek mümkündür.

Kutta şartı akımın profili firar kenarından düzgün şekilde terk edeceğini belirtir. Bunu çeşitli şekillerde uygulamak mümkündür. Basit bir uygulama tekniği profilin alt ve üst yüzeylerinde firar kenarına komşu olan iki panel üzerindeki teğetsel hızların eşitlenmesi şeklindedir.

$$V_{T_{I}} = -V_{T_{N}} \tag{2.50}$$

Buradaki eksi işareti kompleks düzlemdeki integrallerin yönüyle ilgilidir. (2.28) bağıntısı (2.50) içerisinde kullanılarak

$$\sum_{j=l}^{N+I} (B_{lj} + B_{Nj}) \cdot X_j = -(E_l + E_N)$$
(2.51)

elde edilir. Bu son denklemi (2.46) denklem sistemine (N+1) inci denklem olarak

$$\sum_{j=1}^{N+1} A_{N+1\,j} \cdot X_{j} = D_{N+1} \tag{2.52}$$

şeklinde ilave etmek mümkündür. Burada

$$A_{N+1j} = B_{1j} + B_{Nj}$$
 ($j = 1, 2, ..., N+1$), $D_{N+1} = -(E_1 + E_N)$ (2.53)

dir. (2.46) denklem sistemi (2.52) denklemi ile birlikte çözüldükten sonra teğetsel hızlar (2.47) bağıntısıyla hesaplanır.

2.3.2. Kennedy Marsden Yöntemi

Bu yöntem akım fonksiyonu cinsinden yazılmış Laplace denkleminin çözümü esasına dayanmakta olup, doğrusal paneller üzerinde sabit girdap dağılımı kullanmaktadır. Bu şekilde her panelin orta noktasında yüzey sınır şartı yardımıyla birer denklem yazılarak elde edilen denklem sisteminin çözümü ile profil üzerindeki hız ve basınç dağılımları ve bunlar kullanılarak da aerodinamik katsayılar bulunmaktadır. Bu yöntemin çok parçalı profillere de uygulanması mümkündür.

Panel yöntemlerinin tarihsel gelişimine kısaca bir göz atarsak 20. yüzyılın ikinci yarısının ortalarında en yaygın olarak kullanılan yöntem kaynak-girdap dağılımı esaslı Hess-Smith [14] yöntemidir. Martensen [15] tarafından geliştirilen bir başka yöntemde ise profil üzerinde sadece girdap dağılımın kullanmıştır. Sadece girdap dağılımı kullanmanın bir avantajı yüzey üzerindeki teğetsel hızların doğrudan girdap şiddetlerine eşit olmasıdır.

Hess ve Smith yöntemlerinde integral denklemi katı yüzey üzerindeki normal hızlar sıfır kabul edilmek suretiyle elde edilirken, Martensen yönteminde sınır şartı profil yüzeyinin iç tarafında teğetsel hızın sıfır olması şeklinde uygulanarak ikinci türden bir Fredholm integral denklemine ulaşılmıştır.

Goldstein – Jerison [16] ve Oellers [17] tarafından kaskat profillerin analizi için geliştirilen bir başka yöntemde ise sınır şartı kanat profili yüzeyinin bir akım çizgisi

olduğu ve bu çizgi boyunca akım fonksiyonunun değerinin sabit kaldığı şeklinde yorumlanmıştır.

Chen [18] bütün bu yöntemleri karşılaştırmış; Hess - Smith yönteminin profil koordinatlarına karşı fazla duyarlı olduğunu, Martensen yönteminin ise ince profillerde sirkülasyonu doğru tespit edemediği sonucuna varmıştır. Oellers yöntemine dayanarak geliştirdiği yöntemde yüzey boyunca girdap dağılımı ve sabit akım fonksiyonu kullanmıştır.

Mavriplis [19] de Chen'e benzer olarak sabit girdap dağılımı ve sabit akım fonksiyonu şeklinde sınır şartı kullanan bir yöntem geliştirerek taşıma katsayısını gerçeğine daha yakın olarak hesaplamayı başarmıştır. Teorik olarak Chen 'inkine benzeyen yöntemin ayrım noktası çözüm yöntemi olmuştur.

Kennedy [7], Chen yöntemini ilerleterek kullanmış ve firar kenarında Kutta Şartının sağlanmasını ön gören bir çözüm şekli ortaya sürmüştür. Bu çalışmada temel alınan yöntem de Kennedy yönteminin biraz daha ilerletilmiş hali olan Kennedy – Marsden [7] Panel Yöntemidir.

Özet olarak kullanılan yöntem profil yüzeyini bir akım çizgisi gibi ele almaktadır ve bu akım çizgisi boyunca akım fonksiyonunun değerinin sabit kaldığı kabul edilmektedir. Ayrıca yüzey doğrusal panellere ayrılmakta ve panel boyunca sabit girdap dağılımının olduğu düşünülmektedir. Bunlara ilave olarak firar kenarında alt ve üst yüzeylerden gelen akımın profili düzgün bir şekilde terk ettiğini kabul eden Kutta şartı da gerçeklenmektedir [7].

Üniform-paralel akım içerisinde yer alan bir kanat profili etrafındaki potansiyel akım problemi halinde akım alanının herhangi bir P noktasında akım fonksiyonunun değeri uniform paralel akıma ait akım fonksiyonunun o noktadaki değeri ile cisim yüzeyindeki girdapların bu noktada indüklediği akım fonksiyonu değerinin

$$\psi_p = U_{\infty}(y\cos\alpha - x\sin\alpha) - \frac{1}{2\pi} \int_{s} \gamma(s) \ln r \, ds \qquad (2.54)$$

şeklindeki toplamı ile ifade edilebilir. Yüzey panellere ayrılarak bu denklem

$$\psi_p + \sum_{j=1}^N \frac{1}{2\pi} \int_{s_j} \gamma(s_j) \ln r_j \, ds_j = U_\infty(y \cos \alpha - x \sin \alpha)$$
(2.55)

şeklinde de yazılabilir. Burada N panel sayısını, r ise panel üzerindeki bir noktanın P 'ye olan uzaklığını belirtmektedir. Girdap şiddetinin panel boyunca değişmediği hatırlanırsa

$$\psi_p + \sum_{j=l}^N \frac{\gamma_j}{2\pi} \int_{s_j} \ln r_j \, ds_j = U_{\infty}(y \cos \alpha - x \sin \alpha)$$
(2.56)

elde edilir. *P* noktası özel olarak kanat profilinin yüzeyi üzerinde alınırsa akım fonksiyonun değerinin bütün yüzey boyunca aynı kalacağı şeklinde sınır şartı uygulanarak her bir panelin orta noktasında

$$\psi + \sum_{j=l}^{N} \gamma_j K_{ij} = U_{\infty} (y_i \cos \alpha - x_i \sin \alpha) \qquad (i = 1....N)$$
(2.57)

yazılabilir. Burada

$$K_{ij} = \frac{1}{2\pi} \int_{s_j} \ln r_{ij} \, ds_j \tag{2.58}$$

dir. Bu denklem sisteminde N adet denkleme karşılık N adet girdap şiddeti ve bir tane akım fonksiyonu olmak üzere N+1 tane bilinmeyen vardır. Bu nedenle ilave bir denkleme daha ihtiyaç vardır ki, bu denklem de Kutta şartından elde edilir.

Kutta şartı için değişik bazı uygulamalar yapmak mümkündür. Kennedy ve Marsden tarafından önerilen bir uygulama firar kenarından çıkan akım çizgisinin açıortay boyunca ilerleyeceği düşüncesinden hareketle açıortay üzerinde firar kenarından çok kısa bir mesafede özel bir Kutta şartı noktası seçilmesi ve yüzey sınır şartının bu noktada da uygulanması şeklindedir. Bu durumda Panel kontrol noktalarında yazılanlara benzer bir denklemi özel Kutta şartı noktasında da yazmak mümkün olur:

$$\psi + \sum \gamma_j K_{kj} = y_k \cos \alpha - x_k \sin \alpha \tag{2.59}$$

(2.57) denklem sisteminin (2.59) denklemiyle birlikte çözülebilmesi için (2.58) ile verilen ve sadece yüzey geometrisine bağlı olan katsayıların hesaplanması gereklidir. Bu amaçla kanat profilinin herhangi bir j inci paneli üzerindeki sabit girdap

dağılımının bir *i* inci kontrol noktasındaki indüklemesini Şekil 2.7 yardımıyla inceleyelim.

Şekil 2.7 Sabit Girdap Dağılımının İndüklemesi

Panel orta noktasına bağlı yeni bir (x_e, y_e) eksen takımına geçilerek şekil geometrisinden

$$r_{l}^{2} = (b+d)^{2} + a^{2}$$

$$r_{2}^{2} = (b-d)^{2} + a^{2}$$

$$r^{2} = (b-s_{i})^{2} + a^{2}$$
(2.60)

tanımlamaları yapılır ve (2.58) denkleminde yerine konulursa

$$K_{ij} = \frac{1}{2\pi} \int_{s_j} ln \left[(b - s_j)^2 + a^2 \right]^{\frac{1}{2}} ds_j$$
(2.61)

bulunur. Bu ifadenin de integrali alınarak

$$K_{ij} = \frac{1}{4\pi} \left[(b+d) \ln r_1^2 - (b-d) \ln r_2^2 + 2a \tan^{-1} \left(\frac{2ad}{a^2 + b^2 - d^2} \right) - 4d \right]$$
(2.62)

elde edilir. Bu ifadedeki tanjant teriminde

$$a^2 + b^2 - d^2 = 0 \tag{2.63}$$

olması durumunda belirsizlik doğacağından bu durumda

$$\tan^{-1}\frac{2ad}{a^2+b^2-d^2} = \tan^{-1}\frac{b+d}{a} + \tan^{-1}\frac{b-d}{a}$$
(2.64)

kullanılması yararlı olur.

(2.57) denklem sisteminin (2.59) denklemiyle birlikte çözümü ile her panele ait girdap şiddetleri ve profil yüzeyindeki akım fonksiyonunun değeri bulunmuş olacaktır. Sistemin çözümü için Gauss eliminasyon metodu tercih edilmiştir.

Hız ve basınç dağılımlarının hesaplanması için, üzerinde girdap dağılımı bulunan bir eğri incelenirse (Şekil 2.8), eğrinin her iki yanındaki teğetsel hızların farkının girdap şiddetine eşit olduğu gösterilebilir.

Şekil 2.8 Bir Eğri Üzerindeki Girdap Dağılımı

$$-\gamma = U_1 - U_2 \tag{2.65}$$

Kanat profili problemi için bu eğri kanat profilinin cidarı olarak ve eğrinin altındaki bölüm de katı bir cisim olarak ele alınırsa $U_2 = 0$ olur. Bu durumda eğrinin dış tarafındaki teğetsel hız

$$V_T = -\gamma \tag{2.66}$$

şeklinde doğrudan girdap şiddetine eşit olur.

2.3.3. Soinne Laine Yöntemi

Soinne Laine [8] yöntemi temel olarak Kennedy Marsden yöntemine benzemektedir. Yani akım fonksiyonu esaslı bir yöntem olup, kanat profili yüzeyi boyunca akım fonksiyonunun değerinin sabit olacağı şeklindeki sınır şartının uygun kontrol noktalarında yazılması suretiyle elde edilen bir denklem takımının sayısal çözümüne dayanmaktadır. Kennedy Marsden yönteminde incelenirken doğrusal paneller boyunca sabit girdap dağılımı alınmış ve kontrol noktası olarak panel orta noktaları seçilmiş iken, Soinne Laine yönteminde farklı olarak, doğrusal paneller boyunca lineer girdap dağılımı alınmakta ve kontrol noktası olarak panel uç noktaları seçilmektedir.

Şekil 2.9 Profil Üzerindeki Lineer Girdap Dağılımı

Şekil 2.10 Doğrusal Panel Boyunca Lineer Girdap Dağılımı

Kanat profil yüzeyinin N-1 adet doğrusal panele bölünmüş olduğunu farzedelim (Şekil 2.9). P_j ve P_{j+1} noktaları arasında kalan panel boyunca lineer girdap dağılımı (Şekil 2.10), uç noktalarındaki girdap şiddetleri cinsinden

$$\gamma(s) = \frac{\gamma_{j+1} - \gamma_j}{2d_j} \cdot s + \frac{\gamma_{j+1} + \gamma_j}{2}$$
(2.67)

şeklinde tanımlanabilir.

Bu girdap dağılımının herhangi bir $P_i(a,b)$ kontrol noktasında indüklediği akım fonksiyonu değeri

$$\psi_{ij} = \frac{1}{2\pi} \int_{P_j}^{P_{j+1}} \gamma(s) \ln r \, ds \tag{2.68}$$

integrali ile hesaplanır. $\gamma(s)$ yeniden düzenlenirse

$$\gamma(s) = \frac{1}{2d_{j}} \left[(d_{j} - s) \gamma_{j} + (d_{j} + s) \gamma_{j+1} \right]$$
(2.69)

ve

$$r = \sqrt{(a-s)^2 + b^2}$$
(2.70)

olduğu hesaba katılırsa (2.68) integrali

$$\psi_{ij} = \frac{1}{2\pi d_j} \left[\gamma_j \cdot \int_{-d_j}^{+d_j} (d_j - s) \ln \sqrt{(a - s)^2 + b^2} \, ds + \gamma_{j+1} \cdot \int_{-d_j}^{+d_j} (d_j + s) \ln \sqrt{(a - s)^2 + b^2} \, ds \right]$$
(2.71)

halini alır. Bu denklem

$$a_{1} = \int_{-d_{j}}^{+d_{j}} ln \sqrt{(a-s)^{2} + b^{2}} ds$$

$$a_{2} = \int_{-d_{j}}^{+d_{j}} s \cdot ln \sqrt{(a-s)^{2} + b^{2}} ds$$
(2.72)

ve

$$a_{ij}^{(1)} = \frac{1}{4\pi} \left(a_1 - \frac{1}{d_j} a_2 \right)$$

$$a_{ij}^{(2)} = \frac{1}{4\pi} \left(a_1 + \frac{1}{d_j} a_2 \right)$$
(2.73)

olmak üzere

$$\psi_{ij} = a_{ij}^{(1)} \cdot \gamma_j + a_{ij}^{(2)} \cdot \gamma_{j+1}$$
(2.74)

şeklinde yazılabilir.

Kanat profili boyunca yer alan (N-1) adet doğrusal yüzey elemanları üzerindeki lineer girdap dağılımlarının bir P_i kontrol noktasında indükledikleri toplam akım fonksiyonu

$$\overline{\psi_{i}} = \sum_{j=l}^{N-l} \psi_{ij} = \sum_{j=l}^{N-l} \left(a_{ij}^{(1)} \cdot \gamma_{j} + a_{ij}^{(2)} \cdot \gamma_{j+l} \right) = \sum_{j=l}^{N} \overline{a}_{ij} \gamma_{j}$$

$$\overline{a}_{il} = a_{il}^{(1)}, \quad \overline{a}_{1N} = a_{iN-l}^{(2)}, \quad \overline{a}_{ij} = a_{ij+l}^{(2)} + a_{ij}^{(1)}$$
(2.75)

olarak elde edilir.

Üniform paralel akıma maruz bir profil için aynı problem göz önüne alındığında, x ekseni ile α hücum açısı yapan üniform paralel akım için akım fonksiyonu

$$\psi_{\infty} = U_{\infty} \left(y \cos \alpha - x \sin \alpha \right) \tag{2.76}$$

şeklinde yazılabilir. Bu akıma maruz bir profil etrafında herhangi bir $P_i(x_i, y_i)$ noktasındaki akım fonksiyonun değeri süperpozisyonla

$$\psi(x_i, y_i) = U_{\infty}(y_i \cos\alpha - x_i \sin\alpha) + \sum_{j=1}^{N} \bar{a}_{ij} \gamma_j$$
(2.77)

şeklinde elde edilir.

Akım fonksiyonu profil boyunca aynı sabit değere sahiptir. Buna göre (2.77) ifadesi yeniden düzenlenerek

$$\psi(x_i, y_i) - \sum_{j=1}^{N} \bar{a}_{ij} \gamma_j = U_{\infty} \left(y_i \cos \alpha - x_i \sin \alpha \right)$$
(2.78)

ifadesi elde edilir. $P_i(x_i, y_i)$ profil cidarı üzerindeki noktalar olmak üzere bu ifadenin sağ tarafındaki terimlerle *a* katsayılarının profil şekli ve akım şartlarına bağlı olarak bilindiği, Ψ ve γ_j (*j*=1, 2, ..., N) 'lerin ise bilinmeyenler olduğu görülür.

 $P_i(x_i, y_i)$ kontrol noktaları, eleman uç noktaları ile çakışık olarak seçildiği taktirde, kanat profilinin firar kenarında yer alan birinci ve sonuncu nokta genellikle çakışık olduklarından (2.78) denklemi ancak *N-1* adet nokta için yazılabilir. Buna göre *N+1* bilinmeyene karşı sadece *N-1* adet denklem mevcuttur. İlave bir denklem Kutta şartı ile elde edilir.

Bu denklemin pratikte uygulaması bakımından ve herhangi bir hataya sebebiyet vermemek için boyutsuz olarak incelenmesinde fayda vardır. (2.78) denklemi

$$\overline{\psi} = \frac{\psi}{Uc}, \quad \overline{\gamma} = \frac{\gamma}{Uc}, \quad \overline{x} = \frac{x}{c}, \quad \overline{y} = \frac{y}{c}$$
 (2.79)

ve

$$A_{i1} = 1, \quad A_{ij} = -\overline{a}_{ij}, \quad x_1 = \overline{\psi}, \quad x_j = \overline{\gamma}_j \qquad j = 2, 3, \dots N - 1$$

$$D_i = y_i \cos \alpha - x_i \sin \alpha \qquad (2.80)$$

olmak üzere yeniden düzenlenirse

$$\overline{\psi} - \sum_{j=2}^{N-l} A_{ij} \,\overline{\gamma}_j = y_i \, \cos \alpha - x_i \, \sin \alpha \tag{2.81}$$

veya

$$\sum_{j=1}^{N} A_{ij} x_j = D_i \qquad (i = 1, 2, 3, \dots, N-1)$$
(2.82)

elde edilir. Kutta şartı ise firar kenarındaki hızların eşit olacağı şeklinde yorumlanarak

$$\gamma_1 = \gamma_N \tag{2.83}$$

şekilde ifade edilir.

2.3.4. Maskew Woodward Yöntemi

Maskew-Woodward [9] yöntemi kanat profilinin alt ve üst yüzeyinde simetrik kaynak ve girdap dağılımları ile Neuman tipi sınır şartı kullanan bir yöntemdir. Yöntemin orijinali reel düzlemde formüle edilmiş olmakla birlikte kompleks düzlemde uygulanması çok daha kolaydır. Bu bakımdan burada kompleks düzlemde formülasyon açıklanacak ve uygulanacaktır.

Kompleks z düzleminde üniform paralel akıma maruz bir kanat profilinin yüzeyi üzerindeki herhangi bir μ noktasında kompleks eşlenik hız, Şekil 2.11 de gösterildiği gibi yüzeyin teğet ve normal doğrultularına bağlı bir eksen takımında daha önce kompleks panel yönteminde çıkartılan (2.21) denklemi yardımı ile

$$w_{tn}^{*} = V_{t} - iV_{n} = w^{*}(\mu) t(\mu) = w_{\infty}^{*} t(\mu) + t(\mu) \frac{1}{2\pi} \oint_{C} \frac{v^{*}(z_{0}) t^{*}(z_{0})}{\mu - z_{0}} dz_{0}$$
(2.84)

şeklinde hesaplanabilir. Burada w_{∞} serbest akım hızını, *C* profil yüzeyini, z_0 bu yüzey üzerindeki noktaları, $t(z_0) = z_0$ noktasındaki yüzey eğimini, $v(z_0)$ ise kompleks bir tekilliği belirtmekte olup sırasıyla şu şekilde tanımlanmaktadırlar:

$$w_{\infty} = V_{\infty} e^{i\alpha} = V_{\infty} \cos \alpha + iV_{\infty} \sin \alpha$$

$$t(z_{0}) = e^{i\delta(z_{0})}$$

$$v(z_{0}) = \sigma(z_{0}) + i\gamma(z_{0})$$
(2.85)

х

Burada da V_{∞} ve α serbest akımın hızını ve reel eksene göre doğrultusunu, δ yüzeyin reel eksenle yaptığı açıyı, σ ve γ birer kaynak ve girdap şiddetini, (*) üst indisi ise kompleks değişkenin eşleniğini belirtmektedir.

Şekil 2.11 Kompleks Düzlemde Akım Alanı

Şekil 2.12 Yüzey Panelleri

(2.21) Bağıntısı, profil yüzeyleri Şekil 2.12' de görüldüğü gibi panellere ayrılarak.

$$w_{TN}^{*}(\mu) = w_{\infty}^{*} t(\mu) + \sum_{j=1}^{N} \frac{t(\mu)}{2\pi} \int_{z_{j}}^{z_{j+1}} \frac{v(z_{0}) t^{*}(z_{0})}{\mu - z_{0}} dz_{0}$$
(2.86)

şeklinde yazılabilir. Buradaki integrallerin hesaplanabilir hale getirilmesi için basit, ama etkin bir yaklaşım doğrusal paneller boyunca sabit veya lineer tekillik dağılımları alınmasıdır (Şekil 2.13). Lineer dağılım

$$v(z_0) = v_j + \frac{v_{j+1} - v_j}{z_{j+1} - z_j} \cdot (z_0 - z_j)$$
(2.87)

şeklinde ifade edildiği taktirde (2.86) bağıntısı

$$w_{TN_{i}}^{*} = w_{\infty}^{*} t_{i} + \sum_{j=l}^{N} \left[C_{ij}^{(0)} v_{j} + C_{ij}^{(1)} (v_{j+l} - v_{j}) \right]$$
(2.88)

şekline getirilebilir. Burada μ_i doğrusal panel üzerinde hızın hesaplandığı kontrol noktasını, t_i bu panelin, t_j ise j'inci panelin eğimini belirtmektedir, ayrıca

$$C_{ij}^{(0)} = \frac{t_i t_j^*}{2\pi} \int_{z_j}^{z_{j+l}} \frac{dz_0}{\mu_i - z_0} = \begin{cases} \frac{t_i t_j^*}{2\pi} \ln \frac{\mu_i - z_j}{\mu_i - z_{j+l}}, & i = j \\ -i/2, & i \neq j \end{cases}$$

$$C_{ij}^{(1)} = C_{ij}^{(0)} \frac{\mu_i - z_j}{z_{j+l} - z_j} - \frac{1}{2\pi} t_i t_j^*$$
(2.89)

dir. Lineer tekillik dağılımı halindeki ifadeler sabit tekillik dağılımı halini de içermektedir.

Şekil 2.13 Sabit ve Lineer Tekillik Dağılımları

Potansiyel akımda yüzey üzerindeki sınır şartı akımın yüzeye teğet olması şeklindedir. Sınır şartının uygulanması için, zaten yüzey teğet ve normaline bağlı bir eksen takımında yazılmış olan (2.88) ifadesinin imajiner kısmının sıfıra eşitlenmesi yeterli olur. Bu uygulama herbir panel üzerinde seçilen kontrol noktasında bir defa gerçekleştirildiği taktirde

$$\sum_{j=1}^{N} Im \left\{ C_{ij}^{(0)} v_{j} + C_{ij}^{(1)} (v_{j+1} - v_{j}) \right\} = -Im \left\{ w_{\infty}^{*} t_{i} \right\}, \quad (i = 1, ..N)$$
(2.90)
şeklinde bir denklem sistemine erişilir. *N* adet denkleme karşılık 2*N*+1 bilinmeyen içeren (2.90) denklem sisteminin çözümlenebilmesi için ilave kabullere ve denklemlere gerek vardır. Literatürde yer alan alternatifler arasından ilginç birisi Maskew ve Woodward [9] tarafından önerilmiştir. Buna göre, profillerin alt ve üst yüzeyleri eşit sayıda panellere ayrılarak iki yüzde birbiriyle aynı hizada yer alan paneller üzerinde eşit şiddette sabit kaynak ve lineer girdap dağılımları alınmaktadır (Şekil 2.14).

Şekil 2.14 Simetrik Kaynak ve Girdap Dağılımı

Sabit kaynak ve lineer girdap dağılımı alınması halinde (2.90) denklem sistemi

$$\sum_{j=NI}^{NF} Im \left\{ C_{ij}^{(0)} \right\} \sigma_j + \sum_{j=NI}^{NF+I} Im \left\{ i C_{ij}^{(2)} \right\} \gamma_j = -Im \left\{ w_{\infty}^* t_i \right\}, \quad (i = 1, ..N)$$
(2.91)

şekline gelir. Burada

$$C_{ij}^{(2)} = \begin{cases} C_{i1}^{(0)} - C_{i1}^{(1)} & j = 1\\ C_{ij-1}^{(1)} + C_{ij}^{(0)} - C_{ij}^{(1)} & j = 2, \dots N\\ C_{iN}^{(1)} & j = N + 1 \end{cases}$$
(2.92)

Ayrıca, Maskew ve Woodward tarafından önerildiği gibi profillerin üst ve alt yüzlerinde aynı hizadaki tekillik şiddetleri eşit alındığı taktirde denklem sistemi

$$\sum_{j=I}^{NLE-I} Im \left\{ C_{ij}^{(0)} + C_{iNF+I-j}^{(0)} \right\} \sigma_j + \sum_{j=NLE}^{N+I} Im \left\{ i \left(C_{ij}^{(2)} + C_{iNF+2-j}^{(2)} \right) \right\} \gamma_j = -Im \left\{ w_{\infty}^* t_i \right\}$$

$$(i = NI \dots NF)$$

$$(2.93)$$

şeklini alır. Denklem sisteminde halen bir fazla bilinmeyen bulunmakta olup, bu ilave denklem Kutta şartından elde edilir. Bunun için profil firar kenarında girdap şiddetinin sıfır alınması yeterli olur:

$$\gamma_{N+I} = 0 \tag{2.94}$$

Profil üzerindeki teğetsel hızlar da (2.88) ifadesinden

$$V_{T_i} = -Re\left\{w_{\infty}^*t_i\right\} + \sum_{j=NI}^{NLE-I}Re\left\{C_{ij}^{(0)} + C_{iNF+I-j}^{(0)}\right\}\sigma_j + \sum_{j=NLE}^{NF+I}Re\left\{i\left(C_{ij}^{(2)} + C_{iNF+2-j}^{(2)}\right)\right\}\gamma_j$$
(2.95)

şeklinde hesaplanabilir.

2.3.5. Vorpan Panel Yöntemi

Yüzey boyunca girdap dağılımı ve Neuman tipi sınır şartı kullanan bu yöntem hayli yaygın şekilde kullanılan bir yöntem olup literatürde genellikle reel düzlemde uygulanmıştır. Burada ise kompleks düzlemdeki bir uygulamasına yer verilecektir.

Kompleks düzlemde üniform paralel akım içerisinde yer alan kanat profili yüzeyi boyunca bir kaynak ve girdap dağılımı alındığı taktirde yüzey sınır şartı yüzeye dik hızın sıfır olması şeklinde uygulanarak

$$Im\left\{t(\mu)\frac{1}{2\pi}\oint_{C}\left[\frac{\sigma(z_{0})}{\mu-z_{0}}-i\frac{\gamma(z_{0})}{\mu-z_{0}}\right]dz_{0}\right\}=-Im\left\{w_{\infty}^{*}t(\mu)\right\}$$
(2.96)

denkleminin elde edileceği daha önce gösterilmiş ve bu denklemin çözümündeki önemli zorluklardan birinin, yüzeyin her bir noktasında yazılan bir denkleme karşılık $\sigma(z_0)$ ve $\gamma(z_0)$ gibi iki bilinmeyenin mevcudiyeti olduğu belirtilmişti. Bilinmeyen sayısını azaltma yollarından literatürde en çok tercih edilen birisi kaynak şiddetlerinin doğrudan sıfıra eşit alınmasıdır. Bu durumda, çözüm sonucunda elde edilen girdap şiddetlerinin profil yüzeyi üzerindeki teğetsel hızlara eşit olacağını göstermek mümkündür [10,11]. Bu husus girdap dağılımı esaslı panel yöntemlerinin en önemli avantajını teşkil etmektedir.

Buna göre kaynak şiddetleri sıfır alınarak ve diğer yöntemlerde olduğu gibi kanat profili yüzeyi panellere ayrılıp, her bir panel üzerinde seçilen bir kontrol noktasında sınır şartı bir defa uygulanarak

$$\sum_{j=11}^{N} Im \left\{ \frac{t(\mu_{i})}{2\pi} \int_{z_{j}}^{z_{j+1}} \frac{i \,\gamma(z_{0}) \,t^{*}(z_{0})}{\mu_{i} - z_{0}} dz_{0} \right\} = Im \left\{ w_{\infty}^{*} \,t(\mu_{i}) \right\} \qquad (i = 1, ..., N)$$
(2.97)

denklem sistemi elde edilir.

(2.97) denkleminin bu haliyle çözümü de, integraller hesaplanamadığından henüz mümkün değildir. Bu nedenle panel geometrileri ve paneller boyunca tekillik dağılımı için bir takım yaklaşımlar yapılması gerekmektedir. Çoğu uygulamada panellerin birer doğru parçasından ibaret alınması yeterli bulunur. Bu durumda $t^*(z_0)$ büyüklüğü her bir j'inci panel için sabit bir t_j^* değeri alarak integralin dışına çıkar. $t(\mu_i)$ büyüklüğü de yine sabit bir t_i değeri alır. $\gamma(z_0)$ tekilliğine gelince, çoğu halde panel boyunca sabit veya lineer bir dağılımın yeterli olduğu görülür. Buna göre z_j ve z_{j+l} uç noktaları arasında yer alan bir panel boyunca lineer tekillik dağılımı (Şekil 2.15)

$$\gamma(z_0) = \gamma_j + \frac{\gamma_{j+1} - \gamma_j}{z_{j+1} - z_j} (z_0 - z_j)$$
(2.98)

olarak tanımlandığı taktirde (2.97) denklem sistemi

Şekil 2.15 Lineer Girdap Dağılımı

şekline gelir. Burada

$$C_{j}^{0} = i \frac{t_{i} t_{j}^{*}}{2\pi} \int_{z_{j}}^{z_{j+1}} \frac{dz_{0}}{\mu_{i} - z_{0}} = \begin{cases} -i \frac{t_{i} t_{j}^{*}}{2\pi} ln \frac{\mu_{i} - z_{j+1}}{\mu_{i} - z_{j}} &, \quad i = j \\ -i/2 &, \quad i \neq j \end{cases}$$
(2.100)

$$C_{j}^{I} = C_{j}^{0} \frac{\mu_{i} - z_{j+I}}{\mu_{i} - z_{j}} - i \frac{t_{i} t_{j}^{*}}{2\pi}$$
(2.101)

dir. (2.99) denklem sisteminden, γ_i 'lere göre yeni bir düzenleme ile

$$\sum_{j=1}^{N+1} Im \left\{ C_{ij} \gamma_{j} \right\} = Im \left\{ w_{\infty}^{*} t(\mu_{i}) \right\} \qquad (i = 1, ..., N)$$
(2.102)

elde edilir. Burada da

$$C_{ij} = \begin{cases} C_{1}^{0} - C_{1}^{1} & j = 1\\ C_{j-1}^{1} + C_{j}^{0} - C_{j+1}^{1} & j = 2, \dots N\\ C_{N+1}^{1} & j = N+1 \end{cases}$$
(2.103)

dir. C_{ij} kompleks değişkeninin reel ve imajiner kısımları sırasıyla A_{ij} ve B_{ij} olmak üzere (2.102) denklem sistemi

$$\sum_{j=1}^{N+1} B_{ij} \gamma_j = Im \left\{ w_{\infty}^* t(\mu_i) \right\} \qquad (i = 1, ..., N)$$
(2.104)

şekline getirilebilir. Görüldüğü gibi bu denklem sisteminde bilinmeyen sayısı denklem sayısından bir daha fazladır. Kutta şartı yardımıyla bir denklem daha elde ederek (2.104) denklem sistemini çözülebilir hale getirmek mümkündür. Nitekim, akımın profil firar kenarından ve düzgün bir şekilde terk edeceğini belirten Kutta şartı kanat elemanının firar kenarında üst ve alt yüzeylerden gelen akım hızlarının eşit olacağı şeklinde yorumlanarak

$$\gamma_1 = -\gamma_{N+1} \tag{2.105}$$

denklemi elde edilir. (2.104) ve (2.105) denklemlerinin birlikte çözümü doğrudan teğetsel hızları verir.

2.4. Panel Yöntemi Sonuçlarının Değerlendirilmesi

Yukarıda görüldüğü gibi, izah edilen bütün panel yöntemlerinde sonuç olarak panel kontrol noktalarında (yönteme göre panel orta noktası veya panel uç noktası) teğetsel hızlar elde edilmektedir.

Bir kanat profili için aerodinamik problemin çözümünden beklenenler, çoğu zaman kanat profilinin yüzeyi boyunca basınç katsayısının dağılımı ve kanat profiline etkiyen taşıma, sürükleme ve yunuslama katsayılarıdır. Bazı hallerde ilave olarak akım alanı içindeki noktalarda da hesap yapılması istenebilir.

Kanat profili üzerinde kontrol noktalarındaki basınç katsayıları Bernoulli denkleminin sonucu olan

$$C_{p_i} = I - \left(V_{t_i} / V_{\infty} \right)^2 \tag{2.106}$$

bağıntısı yardımıyla hesaplanabilir.

Potansiyel akım hesabının sürükleme katsayısını veremeyeceği bilinir. Bununla birlikte, elde edilen basınç dağılımı kullanılarak bir sınır tabaka hesabı yapılabilir ve böylece sürükleme katsayısını elde etmek mümkün olabilir. Taşıma ve yunuslama katsayılarının hesabına gelince, Şekil 2.16 da görüldüğü gibi bir kanat profilinin yüzeyi boyunca *p* basıncının dağılımı bilindiğinde vetere paralel ve dikey yöndeki aerodinamik kuvvet bileşenlerinin ve başlangıç noktası etrafındaki yunuslama momentinin sırasıyla

Şekil 2.16 Kanat Profili Etrafında Basıncın İntegrasyonu

 $F_x = \oint p \, dy \tag{2.107a}$

$$F_{y} = -\oint p \, dx \tag{2.107b}$$

$$M_o = \oint p\left(x \, dx + y \, dy\right) \tag{2.108}$$

şeklinde hesaplanabileceği bilinir. Kuvvet bileşenlerini

$$F = X + iY = \oint p(dy - idx) = -i \oint p(dx + idy) = -i \oint p dz$$
(2.109)

şeklinde kompleks bir vektör içerisinde birleştirmek, momenti ise kompleks büyüklüklerle

$$M_o = \oint p \operatorname{Re}\left\{z \, dz^*\right\} \tag{2.110}$$

şeklinde ifade etmek mümkündür. Her iki kompleks ifade boyutsuzlaştırarak

$$C_F = -i\frac{l}{c}\oint C_p dz \tag{2.111}$$

$$C_{M_o} = \frac{1}{c^2} \oint C_p \operatorname{Re}\left\{z \ dz^*\right\}$$
(2.112)

veya

$$C_u = I - C_p \tag{2.113}$$

olmak üzere

$$C_F = i \frac{l}{c} \oint C_u dz \tag{2.114}$$

$$C_{M_o} = -\frac{1}{c^2} \oint C_u \operatorname{Re}\left\{z \ dz^*\right\}$$
(2.115)

şekline getirilebilir. Yukarıda izah edilen panel yöntemlerinin hepsinde de doğrusal paneller kullanılmış olup, paneller üzerindeki basınç yüklerinin sabit kaldığı varsayılarak bu integraller

$$C_F = i \frac{1}{c} \sum_{j=1}^{N} C_{u_j} t_j d_j$$
(2.116)

$$C_{M_o} = -\frac{1}{c^2} \sum_{j=1}^{N} C_{u_j} Re\left\{z t_j^*\right\} d_j$$
(2.117)

şeklinde hesaplanabilir.

Diğer taraftan aerodinamik kuvvetin genel olarak hıza bağlı bir eksen takımında bileşenlere ayrılarak hız vektörüne dik bileşene taşıma, paralel bileşen ise sürükleme adı verildiği bilinir. Bu bakımdan yukarıda vetere bağlı bir düzlemde tanımlanan kompleks kuvvet ifadesinin hıza bağlı bir eksen takımına döndürülmesi gerekir.

Şekil 2.17 : Profile Etkiyen Taşıma ve Sürükleme

Şekil 2.17 yardımıyla

$$D + iL = (X + iY) \cdot e^{-i\alpha}$$
(2.118)

ve böylece

$$C_D = Re\left\{C_F \cdot e^{-i\alpha}\right\}$$
(2.119)

$$C_L = Im \left\{ C_F \cdot e^{-i\alpha} \right\}$$
(2.120)

olacağı gösterilebilir.

3. KARMAN-TREFFTZ VE JOUKOWSKY PROFİLLERİNİN KARAKTERİSTİKLERİ

Konform dönüşüm yoluyla elde edilen analitik profiller, koordinatlarının ve hız dağılımlarının tam (exact) olarak bilinmeleri nedeniyle, özellikle nümerik çalışma sonuçlarının test edilmesi bakımından son derece önemlidir. Bu bakımdan, bu tez çalışmasında etkileşimli biçimde programlanan panel yöntemlerinin kullanıcı tarafından test edilerek değerlendirilebilmesine imkan vermek için Karman-Trefftz profilleri ve bunun özel bir hali olan Joukowsky profilleri ele alınmıştır. Dönüşüm parametreleri verildiğinde profillerin koordinatlarını, hız dağılımlarını ve aerodinamik katsayılarını veren formülasyon sunulmuş ve etkileşimli programa bir alt program olarak ilave edilmiştir. Ayrıca kanat profilinin kalınlık oranı, kamburluk oranı vb. bütünsel parametreleri verildiğinde dönüşüm parametrelerini hesaplayan bir dizayn alt programı da etkileşimli Panel Yöntemleri programına adapte edilmiştir.

3.1. Karman-Trefftz Dönüşümü

Kompleks z düzleminde, Şekil 3.1.a'da görüldüğü gibi üniform paralel akım içerisinde yer alan a yarıçaplı daireye

$$\frac{\varsigma + m.b}{\varsigma - m.b} = \left[\frac{z+b}{z-b}\right]^m \tag{3.1}$$

konform dönüşümü uygulandığında ζ düzleminde, Şekil 3.1.b'de görüldüğü gibi Karman-Trefftz tipi bir kanat profili şekli elde edilir. m=2 özel halinde dönüşüm Joukowsky dönüşümü olarak bilinir ve bu halde ζ düzleminde bir Joukowsky profili elde edilir. Aynı dönüşüm fonksiyonu daire etrafındaki potansiyel akım alanını da kanat profili etrafındaki potansiyel akım alanına dönüştürür.

Şekil 3.1 Karman-Trefftz Dönüşümü

Karman-Trefftz dönüşümü daha uygun bir tarzda,

$$\varsigma = m \cdot b \cdot \frac{(z+b)^m + (z-b)^m}{(z+b)^m - (z-b)^m}$$
(3.2)

şeklinde yazılarak bu son ifadenin reel ve imajiner kısımları

$$z + b = z_1 = R_1 \cdot e^{i\phi_1}$$

$$z - b = z_2 = R_2 \cdot e^{i\phi_2}$$
(3.3)

dönüşümlerinin yardımıyla ayrılarak kanat profilinin koordinatları

$$\xi = m \cdot b \cdot \frac{1 - t^{2m}}{1 + t^{2m} - 2 t^m \cos m(\phi_2 - \phi_1)}$$

$$\eta = m \cdot b \cdot \frac{2t^m \sin m(\phi_2 - \phi_1)}{1 + t^{2m} - 2 t^m \cos m(\phi_2 - \phi_1)}$$
(3.4)

şeklinde elde edilebilir. Burada

$$t = R_2/R_1$$

$$R_1/b = \sqrt{1 + (r/b)^2 + 2(r/b)\cos\theta}$$

$$R_2/b = \sqrt{1 + (r/b)^2 - 2(r/b)\cos\theta}$$

$$r/b = G\sin\theta - F\cos\theta + \sqrt{1 + 2F + (G\sin\theta - F\cos\theta)^2}$$

$$\phi_2 - \phi_1 = \arctan\left[\frac{2\sin\theta}{(r/b) - (b/r)}\right]$$

$$F = f/b$$

$$G = g/b$$
(3.5)

olup r ve θ daire üzerinde seçilen noktanın polar koordinatlarını belirtmektedir. Kanat profili koordinatlarının (3.4) ve (3.5) bağıntıları yardımıyla elde edilebilmesi için öncelikle F, G, m ve b parametrelerinin belirlenmesi gerektiği açıktır.

Öte yandan, Karman-Trefftz profillerinin kalınlık oranı, kamburluk oranı, maksimum kalınlık noktası konumu ve veter uzunluğu gibi temel büyüklüklerinin F, G, m ve b dönüşüm parametrelerine bağlı olduğunu göstermek mümkündür. [20, 21, 22]. Yani profilin temel geometrik özelliklerinden hareketle F, G, m ve b parametrelerini belirlemek mümkündür.

Karman-Trefftz profilinin veter uzunluğu

$$c = \left|\xi\right|_{\theta=0^0} + \left|\xi\right|_{\theta=\pi} \longrightarrow c = 2 \cdot m \cdot b \cdot \frac{\left(l+F\right)^m}{\left(l+F\right)^m - F^m}$$
(3.6)

şeklinde hesaplanabilir. Kalınlık oranı, kamburluk oranı ve maksimum kalınlık noktası konumu ise sırasıyla

$$\delta = \frac{t_{max}}{c}, \qquad \gamma = \frac{e_{max}}{c}, \qquad \xi_d = \frac{\xi_{1max}}{c}$$
(3.7)

şekilde tanımlanabilir. Burada

$$t_{max} = max \left\{ [\eta(\theta) - \eta(-\theta)]^2 + [\xi(\theta) - \xi(-\theta)]^2 \right\}^{l/2}$$

$$e_{max} = max \left\{ \frac{l}{2} [\eta(\theta) - \eta(-\theta)] \right\}$$
(3.8)

dir.

Dönüşüm fonksiyonundaki m parametresi öncelikle Karman-Trefftz profilinin maksimum kalınlık noktasının konumunu (ve aynı zamanda firar kenarı iç açısını) etkilerken, F parametresi daha ziyade kalınlık oranını, G parametresi ise kamburluk oranını etkiler. Ayrıca b parametresi de profilin veter uzunluğunu belirleyen ana parametredir. Bununla birlikte m parametresi kalınlık ve kamburluk oranını da etkiler. Benzeri şekilde F ve G parametreleri maksimum kalınlık noktasının yerini etkilerken, F parametresi kamburluk oranını ve G parametresi de kalınlık oranını etkiler. Ayrıca veter boyunun F parametresinden etkilendiği de (3.6) bağıntısından görülmektedir. Ancak bu son etkilerin hepsi de ikinci mertebeden etkilerdir.

Belirtilen özellikler göz önüne alınarak δ , γ , ve x_{δ} verildiğinde F, G, m ve b parametrelerini hesaplayacak iteratif bir yöntem geliştirilmiştir [12]. İterasyon işleminin ayrıntılarına burada girilmeyecektir. Ancak özetlemek gerekirse, öncelikle, m için uygun bir başlangıç değeri seçilmekte, daha sonra F ve G parametreleri istenilen kalınlık ve kamburluk oranları elde edilinceye kadar iterasyonla değiştirilmektedir. Uygun F ve G parametreleri elde edildiğinde maksimum kalınlık noktasının konumu kontrol edilirek, şayet istenilen yerde değilse ve m için başka bir değer seçilmektedir. İterasyon istenilen maksimum kalınlık noktası konumu elde edilinceye kadar böylece devam ettirilmektedir.

Potansiyel akım probleminin profil büyüklüğünden bağımsız olduğu göz önüne alınırsa iterasyon işlemleri sırasında veter boyu için c=1 almak uygun olur. b parametresinin gerekli değeri (3.6) bağıntısından hesaplanabilir.

3.2. Profil Üzerindeki Hız Dağılımının Hesabı

Kanat profil üzerindeki U_{ζ} hızı

$$U\varsigma = \frac{U_z}{\left| d\varsigma/dz \right|} \tag{3.9}$$

şeklinde daire üzerindeki U_z hızına bağlanabilir. Daire üzerindeki hız, Şekil 3.2 de görüldüğü gibi serbest akım hızı U_∞ olmak üzere

$$U_{z} = 2 U_{\infty} [\sin \theta_{1} - \sin(\alpha + \beta)]$$
(3.10)

Şekil 3.2 Daire Etrafındaki Akım

şeklinde yazılabilir. Buradaki β parametresi daire merkezinin düşey konumuyla (ve dolayısıyla profilin kamburluğuyla) ilgili bir açı olup Şekil 3.2 'den

$$\beta = \arctan\left[\frac{G}{1+F}\right] \tag{3.11}$$

şeklinde hesaplanabilir. θ_I ise daire üzerinde seçilen noktanın, daire merkezine bağlı ve serbest akım doğrultusuna göre yönlendirilmiş $z_I(x_I, iy_I)$ eksen takımındaki açısal konumunu belirtmekte olup değeri Şekil 3.2'nin geometrisinden

$$\phi_{l} = \theta - \alpha + \arcsin\left[\sqrt{\frac{\left(F^{2} + G^{2}\right)}{\left(I + F\right)^{2} + G^{2}}} \cdot \sin\left(\theta + \arctan\frac{G}{F}\right)\right]$$
(3.12)

olarak elde edilebilir. Dönüşüm fonksiyonunun türevinin mutlak değeri ise

$$\left|\frac{d\varsigma}{dz}\right| = \left(\frac{2m}{R_1/b}\right) \cdot \frac{t^{m-1}}{1 + t^{2m} - 2t^m \cos m(\phi_2 - \phi_1)}$$
(3.13)

ile hesaplanabilir.

Özel olarak Joukowsky profili (m=2) için, (3.9) ifadesi firar kenarında bir belirsizlik gösterir. Bir limit işlemiyle bu belirsizliği gidererek Joukowsky profilinin firar kenarındaki hızın sıfırdan farklı ve değerinin

$$U_{FK} = U_{\infty} \cdot \frac{b}{a} \cdot \cos(\alpha + \beta)$$
(3.14)

şeklinde olacağını göstermek mümkündür [21]. Burada

$$a/b = \left[\left(1 + F \right)^2 + G^2 \right]^{1/2}$$
(3.15)

dir.

3.3. Taşıma Kuvveti ve Yunuslama Momenti

 ζ düzleminde potansiyel akım içerisinde yer alan kapalı bir cisme etkiyen kuvvet ve moment, akım alanını temsil eden kompleks potansiyel fonksiyona, Blasius formülleri yardımıyla

$$F^* = -\frac{1}{2} \rho i \oint \left[\frac{df}{d\varsigma} \right]^2 d\varsigma$$

$$M_0 = -\frac{1}{2} \rho Re \left\{ \oint \left[\frac{df}{d\varsigma} \right]^2 \varsigma d\varsigma \right\}$$
(3.16)

şeklinde bağlanabilir [20, 21, 22]. Burada F^* büyüklüğü kompleks düzlemin reel ve imajiner eksenleri doğrultusundaki F_{ξ} ve F_{η} kuvvetlerinin (Şekil 3.3)

$$F = F_{\xi} + iF_{\eta} \tag{3.17}$$

şeklindeki bir kompleks ifadesinin eşleniği, M_o ise başlangıç noktasına göre momenttir. Moment, saat ibreleri yönünde pozitif seçilmiştir. İntegraller cisim yüzeyi boyunca saat ibreleri yönünde hesaplanılmaktadır.

Şekil 3.3 Kanat Profiline Etkiyen Kuvvet ve Momentler

Kuvvet ve momentler için verilen bu integralleri bir kanat profili yüzeyi boyunca doğrudan hesaplamak mümkün olmaz. Ancak, Karman-Trefftz dönüşümü profil etrafındaki potansiyel akım alanını da bir daire etrafındaki akım alanına bağlamakta olup, sözü edilen integralleri bu ilişki yardımıyla daire etrafında kolaylıkla hesaplamak mümkün olur. Bu amaçla (3.16) bağıntıları daire düzlemindeki z değişkeni cinsinden yazılırsa,

$$F^* = -\frac{1}{2} \rho i \oint \left[\frac{df}{d\varsigma} \right]^2 \frac{d\varsigma}{dz} dz$$

$$M_0 = -\frac{1}{2} \rho Re \left\{ \oint \left[\frac{df}{d\varsigma} \right]^2 \varsigma \frac{d\varsigma}{dz} dz \right\}$$
(3.18)

iki düzlem arasındaki dönüşüm fonksiyonu ve kompleks potansiyel fonksiyonun türevi z cinsinden

$$\varsigma = z + \frac{a_1}{z} + \frac{a_2}{z^2} + \Lambda \tag{3.19}$$

$$\left[\frac{df}{d\zeta}\right]^2 = A_0 + \frac{A_1}{z} + \frac{A_2}{z^2} + \Lambda$$
(3.20)

şeklinde seriye açıldığı takdirde yukarıdaki integral ifadeleri

$$F^{*} = -\frac{1}{2} \rho i \oint \left[A_{0} + \frac{A_{1}}{z} + \frac{A_{2} - A_{0} a_{1}}{z^{2}} + \Lambda \right] dz$$

$$M_{0} = -\frac{1}{2} \rho Re \left\{ \oint \left[A_{0} z + A_{1} + \frac{A_{2}}{z} - \frac{A_{0} a_{2}}{z^{2}} + \Lambda \right] dz \right\}$$
(3.21)

şekline getirilebilir. Burada a_j ve A_j 'ler kompleks veya reel sabitlerdir.

Diğer yandan kapalı bir eğri boyunca

$$I = \oint \left[D_{-1} \ z + D_0 + \frac{D_1}{z} + \frac{D_2}{z^2} + \Lambda \right] dz$$
(3.22)

türündeki integrallerde 1/z 'li terim dışındaki bütün terimlerin integrallerinin sıfıra eşit olduğunu ve bu integralin sonucunun

$$I = -2\pi i D_1 \tag{3.23}$$

olacağını göstermek mümkündür [23]. Buna göre (3.18) ifadelerindeki integraller hesaplandığı takdirde kanat profiline etkiyen kuvvet ve moment için sırasıyla

$$F^* = -\rho \pi A_1$$

$$M_0 = -\rho \pi \operatorname{Im}\{A_2\}$$
(3.24)

bulunur. Bu durumda profil etrafındaki potansiyel akım alanını temsil eden kompleks potansiyel fonksiyonunu seriye açarak katsayılar elde edildiği takdirde Karman-Trefftz profiline etkiyen kuvvet ve momenti hesaplamak mümkün olacaktır.

Profil düzlemindeki kompleks potansiyel fonksiyonu daire düzlemindeki değişkenler cinsinden

$$\frac{df}{d\varsigma} = \frac{df}{dz} \frac{dz}{d\varsigma}$$
(3.25)

şeklinde yazılabilir. Bu ifadedeki dönüşüm fonksiyonunun türevi

$$\frac{dz}{d\varsigma} = \left(1 - \frac{a_1}{z^2} - \frac{a_2}{z^3} - \Lambda\right)^{-1}$$

$$= 1 + \frac{a_1}{z^2} + \Lambda$$
(3.26)

şeklinde düzenlenebilir. z düzleminde reel eksenle α hücum açısı yapan U_{∞} hızındaki üniform paralel akım alanında, merkezi $z_c = -f + ig$ noktasında olmak üzere yer alan *a* yarıçaplı dönüşüm dairesi etrafındaki sirkülasyonlu akım alanını temsil eden kompleks potansiyel fonksiyon ise

$$f(z) = U_{\infty} \exp\left(-i\alpha\right)z + \frac{U_{\infty} a^{2} \exp\left(i\alpha\right)}{\left(z - z_{c}\right)} + \frac{i\Gamma}{2\pi} \cdot \ln\frac{z - z_{c}}{a}$$
(3.27)

Şeklinde yazılabilir (Şekil 3.4). Γ 'nın değeri Kutta şartından

Şekil 3.4 Daire Etrafındaki Potansiyel Akım

$$\Gamma = 4 \pi a U_{\infty} \sin(\alpha + \beta) \tag{3.28}$$

olarak elde edilir [20, 21, 22]. Kompleks potansiyel fonksiyonun türevi

$$\frac{df}{dz} = U_{\infty} \exp\left(-i\alpha\right) - \frac{U_{\infty} a^2 \exp\left(i\alpha\right)}{\left(z - z_c\right)^2} + \frac{i\Gamma}{2\pi(z - z_c)}$$
(3.29)

olup z için seriye açılmak suretiyle

$$\frac{df}{dz} = U_{\infty} \exp\left(-i\alpha\right) + \frac{i\Gamma}{2\pi z} - \left(U_{\infty} a^{2} \exp\left(i\alpha\right) - \frac{i\Gamma z_{c}}{2\pi}\right) \frac{1}{z^{2}} + \Lambda$$
(3.30)

şeklinde düzenlenebilir. (3.26) ve (3.27) bağıntıları kullanılarak (3.20) ifadesindeki seri açılımı

$$\left[\frac{df}{d\varsigma}\right]^{2} = U_{\infty}^{2} \exp\left(-2i\alpha\right) + \frac{i\Gamma U_{\infty} \exp\left(-i\alpha\right)}{\pi} \frac{1}{z} + \left(2U_{\infty}^{2} a_{1} \exp\left(-2i\alpha\right) - 2U_{\infty}^{2}a^{2} + \frac{i\Gamma U_{\infty} \exp\left(-i\alpha\right)z_{c}}{\pi} - \frac{\Gamma^{2}}{4\pi^{2}}\right) \frac{1}{z^{2}}$$

$$(3.31)$$

şeklinde bulunur.

Diğer yandan, (3.2) ifadesi ile verilen Karman-Trefftz dönüşümü de

$$\varsigma = z + \frac{m^2 - 1}{3} \cdot \frac{b^2}{z} + \Lambda \tag{3.32}$$

şeklinde seriye açılarak (3.19) ifadesiyle verilen seri açılımındaki a_1 katsayısı

$$a_1 = \frac{m^2 - 1}{3} \tag{3.33}$$

olarak elde edilir. a_1 'in bu değeri (3.31) bağıntısında kullanılarak (3.20) ifadesiyle verilen seri açılımının katsayıları

$$A_{0} = U_{\infty}^{2} \exp\left(-2i\alpha\right)$$

$$A_{1} = \frac{i\Gamma U_{\infty} \exp\left(-i\alpha\right)}{\pi}$$

$$A_{2} = 2 \cdot \frac{m^{2} - 1}{3} b^{2} U_{\infty}^{2} \exp\left(i\alpha\right) - 2U_{\infty}^{2} a^{2} + \frac{i\Gamma U_{\infty} \exp\left(-i\alpha\right) z_{c}}{\pi} - \frac{\Gamma^{2}}{4\pi^{2}}$$

$$(3.34)$$

olarak bulunur. Bu durumda Karman-Trefftz profilini etkileyen kuvvet ve moment için bulunan (3.24) bağıntıları sırasıyla

$$F^{*} = i \rho \Gamma U_{\infty} \exp(i\alpha)$$

$$M_{0} = 2 \cdot \frac{m^{2} - 1}{3} \pi b^{2} \rho U_{\infty}^{2} \sin 2\alpha + \rho U_{\infty} \Gamma(f \cos \alpha - g \sin \alpha)$$
(3.35)

şekline gelir. Ancak, bir kanat profiline etkiyen kuvvetler daha ziyade serbest akım doğrultusunda sürükleme ve buna dik doğrultuda taşıma olmak üzere iki bileşene ayrılır (Şekil 3.5). Buna göre,

$$D + iL = F \exp(i\alpha) \tag{3.36}$$

olup, reel ve imajiner kısımlar eşitlenerek

Şekil 3.5 Kanat Profiline Etkiyen Kuvvet ve Momentler

$$D = 0$$

$$L = \rho U_{\infty} \Gamma$$
(3.37)

bulunur. Görüldüğü gibi, potansiyel akımda beklenildiği üzere sürükleme kuvvetinin değeri sıfır olup, taşıma kuvveti daire düzlemindeki sirkülasyonun şiddetine bağlıdır.

Kuvvet ve moment için bulunan bu ifadeler boyutsuzlaştırılarak ve ayrıca sirkülasyon şiddeti için daha önce (3.28) ifadesiyle verilen değer kullanılarak aerodinamik katsayılar

$$C_{D} = 0$$

$$C_{L} = 8\pi \cdot \frac{a}{c} \cdot \sin(\alpha + \beta)$$

$$C_{M0} = 4\pi \cdot \frac{m^{2} - 1}{3} \cdot \frac{b^{2}}{c^{2}} \cdot \sin 2\alpha + 8\pi \cdot \frac{a}{c^{2}} \cdot \sin(\alpha + \beta) (f \cos \alpha - g \sin \alpha)$$
(3.38)

olarak elde edilir.

Başlangıç noktasına göre yunuslama momenti kanat profil aerodinamiğinde genellikle pek kullanılmayan bir büyüklüktür. Bu nedenle daha ziyade

$$C_{MHK} = C_{M0} - C_{F\eta} \left| \frac{\xi_{HK}}{c} \right|$$

$$C_{Mc/4} = C_{M0} - C_{F\eta} \left| \frac{\xi_{HK}}{c} - \frac{1}{4} \right|$$
(3.39)

bağıntılarıyla tanımlanan, hücum kenarına ve çeyrek veter noktasına göre yunuslama momentleri tercih edilir. Bu ifadelerde,

$$C_{F\eta} = C_L \cos\alpha$$

$$\left|\xi_{HK}\right| = c - mb$$
(3.40)

olduğunu göstermek mümkündür.

Karman-Trefftz ve Joukowsky tipi kanat profillerinin koordinatlarının, hız (veya basınç) dağılımlarının ve bu profillere etkiyen kuvvet ve momentlerin hesabı için bu bölümde sunulan yöntem ve ilgili bağıntılar bilgisayar programına adapte edilerek, Panel yöntemleri programında kullanılmak üzere, farklı Karman-Trefftz ve Joukowsky tipi profillerin elde edilmesi ve panel yöntemleri ile incelenmesi, ayrıca analitik olarak elde edilen veriler ile panel yöntemleri ile elde edilen verilerin karşılaştırılmasının yapılabilmesi sağlanmıştır.

4. YAZILIM

Önceki bölümlerde izah edilen farklı panel yöntemler için bu tez kapsamında etkileşimli bir bilgisayar programı Fortran ve Delphi dilleri kullanılarak geliştirilmiştir. Hazırlanan program grafik arayüzlü olup menü ve pencereler yardımıyla kontrolu sağlanmaktadır. Bu bölümde, geliştirilen programın ayrıntılarına yer verilmektedir.

Programın ana bölümü niteliğindeki, veri girişleri ve hesaplamaların yapıldığı, sayısal verilerin ve grafiklerin elde edildiği programın ana penceresi Şekil 4.1' de görülmektedir.

🗊 🛛 AC - Panel Yöntemleri								
Yükle Kaydet Sil Yazdır	🗐 💿 Hesapla CU Ç	iz Akım Çiz Karşıla	ştır <mark>?</mark> Yardım Hakl	<mark>£.</mark> kında				
Panel Yöntemleri Daha önceden kaydettiğiniz değerleri görmek için ilgili kayıdı seçin ve "Yükle" butonuna basınız.								
Profil	KT-Cu Çizimi	Akım Çize	jileri ∫ KTJ.	Analitik Çözüm				
IPR 🗾	Parametreler	Cl,Cm, Cu Dağılımı 🛛	Pnl.Oz., Kay-Gir Şid.	Cu Çizimi				
IPB IPB Nokta Sayısı IPR NP 49 Hücum Kenan Konumu IQS XHK 0 YHK 0 Veter Doğultusu IPR ETA 0 Gerecel IVK Karmann - Treffiz Dönüşümü INKT INKT ISTR Uygulamak için 1 seçilmelidir ISTR								

Şekil 4.1 Program Ana Penceresi

Sayısal değerlerin görüntülendiği ve çizim yapılan pencereler, programa özgü bir yapıda ayrı ayrı dosyalar olarak kaydedilebilmekte, istenildiği taktirde verilen parametrelere göre yapılmış olan hesaplama daha sonra farklı yöntemlerle elde edilmiş sonuçlarla karşılaştırılabilmektedir.

4.1. Kontrol Butonları

Şekil 4.1'de üst tarafta verilen kontrol butonlarının, kullanımları ve fonksiyonları aşağıda açıklanmaktadır:

YÜKLE; daha önceden yapılmış ve kaydedilmiş hesaplamalara ait verilerin ve sonuçların ekrana tekrar yüklenmesine ve incelenmesine olanak tanır. Bu işlemi yapabilmek için, Şekil 4.1'de sağ üst köşede, butonların altında verilen alanda özel bir kodlamayla gösterilen kayıtların üzerine tıklamak ve yükle butonuna basmak yeterlidir. Veriler otomatik olarak ilgili sayfalara yüklenecektir. Kayıtlara ait özel kodlamanın anlaşılabilmesi için bir örneğe ait açıklama Şekil 4.2 'de gösterilmektedir: Örn, 3 1 49 1 0,0 0 1 0 0 23 0.

-		
3	IPR	: 1-KTJ, 2-Dosyadan, 3-NACA0012, 4-Daire)
1	IQS	: Detaylı çıkış için IQS=1 alınız
4	9 NP	: Nokta sayısı (tek sayı olmalı)
1	Chord	: Veter uzunluğu
0	,0 XHK,YI	HK : Hücum kenarı konumu
0	ETA	: Veter doğrultusu(derece)
1	U0	: Serbest akım hızı
0	ALFA0	: Serbest akım doğrultusu(derece)
0	INKT	: KT dönüşümü uygulamak için INKT=1 alınız
2	3 MTD	: Panel yöntemi seçimi
0	ISTR	: Akım çizgisi çizmek (default =0)
Ν	NOT: MTD =	10 - CPM0 20 - KENN 30 - MASKEW 40 - VORPAN
		11 - CPMD 21 - KENNC
		23 - SOINNE

Şekil 4.2 Veri Kaydında Kullanılan Logic

KAYDET; input parametrelerinin seçimi sonucunda yapılan hesaplamalar ve çizdirilmişse grafikler daha sonra kullanılmak üzere Şekil 4.2 'de gösterilen logic'e göre otomatik olarak kaydedilir. Kayıt butonuna basmak yeterlidir.

SİL; daha önceden yapılmış ve kaydedilmiş hesaplamalardan birinin listeden silinmesi için kullanılır. İlgili kayıt üzerine tıklamak ve sil butonuna basmak yeterlidir.

YAZDIR; ana pencerede sağ tarafta yer alan ve hesaplama sonucunda elde edilen verilerin ve/veya grafiklerin gösterildiği sayfalardan aktif olanının printer çıkışını almak için kullanılır.

HESAPLA; ana pencerede sol tarafta gösterilen hesaplama için gerekli parametrelerin seçiminden sonra verilen yönteme göre hesaplamanın yapılması için kullanılır. Bu butona basıldığında hesaplama yapılır ve başlangıç için verilen input parametreleri "Parametre" sayfasında, elde edilen sayısal hesaplama sonuçları "Cl,Cm, Cu Dağılımı" ve "Pnl.Öz., Kay.-Gir.Şiddeti" sayfalarında gösterilir. Hesaplama yapılan profilin Karman-Trefftz yada Joukowsky profili olması durumunda bu profillere ait Analitik Çözüm Sonuçları ve Analitik Cu Dağılımı Grafiği, "KTJ Analitik Çözüm" sayfasında görüntülenir.

CU ÇİZ; Hesaplama sonucunda elde edilen verilere göre seçilen profil üzerindeki basınç dağılmının görüntülenmesinde kullanılır. Elde edilen grafik Karman Treffitz dönüşümünün uygulanıp uygulanmamasına göre "Cu Çizimi" yada "KT-Cu Çizimi" sayfalarında görüntülenir.

AKIM ÇİZ; Hesaplama sonucunda elde edilen verilere göre seçilen profil üzerindeki akım çizgilerini görüntülemek için kullanılır.

KARŞILAŞTIR; Daha önce kayda alınmış olan verilerden ikisinin sayısal ve/veya grafik olarak karşılaştırılması için kullanılır. Bu butona basıldığında Şekil 4.3'de gösterilen karşılaştırma sayfası açılır. Her iki bölüm için ayrı ayrı kayıtlar seçilip yükle butonlarına basılarak verilerin yüklenmesi sağlanır ve istenilen veriler ilgili sayfalara tıklanarak karşılaştırılır.

Şekil 4.3 Karşılaştırma Penceresi

YARDIM; programın kullanımı için gerekli bilgilere ulaşmak için kullanılır.

HAKKINDA; programı hazırlayan, hazırlama tarihi ve versiyon ile ilgili bilgilere ulaşmak için kullanılır.

4.2. Input Parametreleri

Ana pencerede sol tarafta verilen ve ekrandan giriş yapmaya olanak sağlayan bölüm, hesaplamada kullanılacak input parametrelerinin belirlenmesine yöneliktir:

PANEL YÖNTEMLERİ; input parametrelerinden biri olan panel yöntemleri pull down menüsü ile, Şekil 4.4 'de gösterildiği gibi hesaplamada kullanılacak panel yöntemi seçimi yapılmaktadır.

🚀 AC - Panel Yöntemleri						
Pikle Kaydet Sil Yazdır	🗐 🗐 Hesapla CU Çiz	😵 且 Akım Çiz Karşılaştır Y	?			
Panel Yöntemleri Daha önceden kaydettiğiniz değerleri görmek için ilgili kayıdı seçin ve "Yükle" butonuna basınız. Kompleks Panel Yöntemi 1 Kompleks Panel Yöntemi 2						
Kennedy - Marsden Yöntemi KT-Cu Çizimi Akım Çizgileri KTJ Analitik Çözüm Soinne - Laine Yöntemi Marsden Yöntemi Parametreler CI,Cm, Cu Dağılımı Pnl.Öz., Kay-Gir Şid. Cu Çizimi Waskew - Woodward Yöntemi Vorpan Panel Yöntemi CI,Cm, Cu Dağılımı Pnl.Öz., Kay-Gir Şid. Cu Çizimi						
NP 49 Hücum Kenari Konumu	NP 49 IPR 1 IPR 1: L-KTJ, 2-Dosyadan, 3-NACA0012, 4-Daire IQS IQS IQS Detaylı çıkış için IQS=1 Hücum Kenan Konumu NP NP NP : Nokta sayısı YHK D Chord 1 Chord : Veter uzunluğu					
Veter Doğrultusu ETA 0 (derece)	XHK, YHK XHK, YHK Hücum kenarı konumu ETA 0 ETA : Veter doğrultusu (derece) U0 1 U0 : Serbest akım doğrultusu (derece) ALFA0 ALFAO : Serbest akım doğrultusu (derece)					
Hızı 1 Doğrultusu 0 Karmann - Treffiz Dönüşümü	MTD 10 ISTR 0	MTD : Panel Yöntemi () ISTR ; Akım çizgisi çiz	Bkz.NOT) zmek için ISTR=1			
Uygulamak için 1 seçilmelidir	NO MTI	T : D = 10 - CPM0 20 - KENN 30 11 - CPMD 21 - KENNC 23 - SOINNE) - MASKEW 40 - VORPAN			

Şekil 4.4 Panel Yöntemleri Pulldown Seçimi

"Panel Yöntemleri" menüsünde yer alan ve daha önceki bölümlerde teorik açıklamaları yapılan yöntemlere ait; sınır şartları, tekillik türleri ve kontrol noktaları karşılaştırmalı olarak Tablo 4.1 de verilmektedir.

Panel Yöntemi	Sınır Şartı	Tekillik Türü	Kontrol Noktaları
Kompleks Panel Yöntemi 1	NEUMANN tipi (Hızlar için)	SABİT KAYNAK- SABİT(PARABOLİK) GİRDAP dağılımı	Panel orta noktaları
Kompleks Panel Yöntemi 2	NEUMANN tipi (Hızlar için)	LINEER KAYNAK PARABOLİK TRAPEZOIDAL GİRDAP dağılımı	Panel orta noktaları
Kennedy Marsden Yöntemi	DIRICHLET tipi (Akım fonksiyonu için)	SABİT GİRDAP dağılımı	Panel orta noktaları
Kennedy Marsden Yöntemi (Kompleks)	DIRICHLET tipi (Akım fonksiyonu için)	SABİT GİRDAP dağılımı	Panel orta noktaları
Soinne Laine Yöntemi	DIRICHLET tipi (Akım fonksiyonu için)	LİNEER GİRDAP dağılımı	Panel uç noktaları ve firar kenarına komşu panel orta noktaları
Maskew Woodward Yöntemi	DIRICHLET tipi (Akım fonksiyonu için)	SABİT KAYNAK - LİNEER GİRDAP dağılımı (Profilin alt ve üst yüzeyinde eşit şiddette)	Panel orta noktaları
Vorpan Panel Yöntemi	NEUMANN tipi (Hızlar için)	LİNEER GİRDAP dağılımı	Panel orta noktaları

Tablo 4.1 Panel yöntemlerine ait sınır şartları, tekillik türleri ve kontrol noktaları

🗊 🛛 AC - Panel Yöntemleri			_ D ×				
Pickle Pickle Yükle Kaydet Sil Yazdır	🗐 🛞 Hesapla CU Çiz	😵 🛄 Akım Çiz Karşılaştır	? K Yardim Hakkinda				
Panel Yöntemleri							
IPpur Parametreler Profil IPR KTJ Nokta © Dosyadan NP ACA0012 Daire Hücum Kenarı Konumu XHK Veter Doğrultusu ETA Veter Doğrultusu ETA Nerce (derece) Serbest Akım Hızı 1 Doğrultusu Karmann - Treffiz Dörüşümü INKT Uygulamak için 1 seçilmelidir	KT-Cu Çizimi Parametreler C IPR 1 IQS 1 NP 49 Chord 1 XHK, YHK 00 ETA 0 U0 1 ALFA0 0 INKT 0 MTD 10 ISTR 0	Akım Çizgileri LCm, Cu Dağilımı Pril.Ö.z. IPR : I-KTJ, 2-Dosya IQS : Detaylı çıkış iç: NP : Nokta sayısı Chord : Veter uzunlu XHK,YHK : Hiecum k ETA : Veter doğrultu UO : Serbest akun hız ALFAO : Serbest akun INKT : KT döntiştimü MTD : Panel Yöntemi ISTR ; Akım çizgisi (T : D = 10 - CPMO 20 - KENN 11 - CPMD 21 - KENNC 23 - SOINNE	KTJ Analitik Çözüm , Kay-Gir Şid Cu Çizimi dan, 3-NACA0012, 4-Daire in IQS=1 iğu enarı konumu su (derece) tı m dörultusu (derece) tı w gulamak için INKT=1 i (Bkz.NOT) çizmek için ISTR=1 30 - MASKEW 40 - VORPAN				

Şekil 4.5 Profil Bilgi Dosyaları Penceresi

PROFİL; hesaplamada kullanılacak profil seçimi için kullanılan pulldown menüsündür (Şekil 4.5). Bu menüde yer alan seçeneklere ait açıklamalar aşağıda verilmektedir:

					Kalınlık	Kamburlu	k Max.Kalınlıl
F	:	G	М		DELTA	GAMMA	XDLTC
.017	03,	0.00000	, 1.95941	'KARMAN-TREFFTZ Profil	i q= 0.00	d= 0.05	xd= 0.40'
.034	62	0.00000	, 1.91808	'KARMAN-TREFFTZ Profil	i g= 0.00	d= 0.10	xd= 0.40'
.052	79	0.00000	, 1.87614	'KARMAN-TREFFTZ Profil	i q= 0.00	d= 0.15	xd= 0.40'
.071	60,	0.00000	, 1.83365	'KARMAN-TREFFTZ Profil	i g= 0.00	d= 0.20	xd= 0.40'
.016	88 .	0.10359	1.95968	'KARMAN-TREEETZ Profil	i a= 0.05	d= 0.05	xd= 0.40'
034	28	0.10700	1.91861	'KARMAN-TREFETZ Profil	i a= 0.05	d= 0.10	xd= 0.40'
.052	22	0.11025	1.87685	'KARMAN-TREFFTZ Profil	i a= 0.05	d= 0.15	xd= 0.40'
074		0 44337	4 03535	WADMAN TOFFETTO		1 0 00	. 1 0 101

Şekil 4.6 "Karman-Trefftz" veya "Joukowsky" Profili Seçimi

KTJ, panel yöntemleri programı için, "Karman-Trefftz" veya "Joukowsky" profillerinden farklı kalınlık ve kamburlu oranlarına sahip profillerden bir tanesinin seçimine olanak tanır. Profil pulldown mesüsünden KTJ seçildiğinde, profil seçimine olanak tanıyan ve Şekil 4.6 'da gösterilen pencere açılır. Hesaplama için istenilen

profil listeden seçilir yada Karman-Trefftz yada Joukowsky profillerinden listede olmayan istenilen kalınlık ve kamburluk oranına sahip bir tanesi "KTJ Dizayn" tuşuna basılarak çıkacak pencerede dizayn edilir. "KTJ Dizayn" penceresi Şekil 4.7'de gösterilmiştir. Burada dizayn verileri girilerek elde edilen hesaplama sonucunda bulunan profile ait bilgiler, çıkış tuşuna basıldığında Panel Yöntemleri programında kullanılmak üzere otomatik olarak kaydedilir.

🐙 FormKTJdizayn			_ 🗆 🛛
ISTENILEN KALINLIK VE KAMBURLUK	SONUÇ	Profil Şekli	
ORANINA SAHIP KARMAN-TREFFTZ PROFILININ FIRAR KENARI AÇISINA veya MAKSIMUM KALINLIK NOKTASI KONUMUNA GÖRE ITERASYONLA DIZAYNI	KTJ Analitik Profil Nokta: 51		
Dizayn Verileri			
DELTA : Kalinlik oranı (%veter) 0.07			
GAMMA : Kamburluk oranı (%veter) 0.2			
TAU : Firar kenarı açısı (derece) 0.			
XDLTC : Max.kalinlik noktasi konumu (%veter) 0.			
NOT: TAU XDLTC JOUKOWSKY profili için : 0. 0. KARMAN-TREFFTZ pr.için : x 0. veya 0. 0.xx yazınız 0.xx yazınız			
Profil Hesapla 🗶 ÇIKIŞ			

Şekil 4.7 "Karman-Trefftz" veya "Joukowsky" Profil Dizayn Penceresi

DOSYADAN, açılan pencerede kayıtlı olan profillerden bir tanesini seçme imkanı tanır. Bu şekilde profil pulldown menüsü içinde yer almayan birçok profil incelenebilir (Şekil 4.8).

🍿 FormDosya		
'naca23012_UIUC.inp' 'wiktott.imp'		
niitot.inp		
	1	
	ŞEÇ	

Şekil 4.8 Dosyadan Profil Şeçme Penceresi

NACA0012, seçeneği NACA 0012 profilini incelemek için kullanılır.

DAİRE, özel durumda profil olarak daire alma imkanı sağlar.

NOKTA SAYISI; seçilmiş olan profil üzerinde kaç adet panel kullanılarak hesaplama yapılacağını belirler. Dikkat edilmesi gereken tek şey seçilecek olan sayının tek sayı olması gerekliliğidir. Default değer "49" olarak verilmiştir.

HÜCUM KENARI KONUMU; x ve y koordinatlarında profile ait hücum kenarı konumunun değiştirilmesinde kullanılır. Default değer olarak "x=0" ve "y=0" verilmiştir.

VETER DOĞRULTUSU; derece olarak veter açısının değiştirilmesinde kullanılır. Default değer olarak "0" derece verilmiştir.

SERBEST AKIM HIZI VE DOĞRULTUSU; serbest akım hızı ve derece olarak doğrultusunun değiştirilmesini sağlar. Default değer olarak serbest akım hızı için "1", doğrultusu için "0" verilmiştir.

Karman-Trefftz DÖNÜŞÜMÜ; bu dönüşüm işlemini uygulamak için pulldown menüde seçenek olarak 1 seçilmelidir. Default değer olarak "0" verilmiştir.

4.3. Veri Sayfaları

Program ana penceresinde sağ tarafta hesaplama sonucunda elde edilen verilere ait bazı sayfalar verilmektedir. Bu sayfalar içindeki verilere ulaşabilmek için seperatörlerin üzerine tıklamak yeterli olacaktır. Bu alanda yer alan sayfalar ve içerikleri hakkındaki bilgiler şu şekildedir:

PARAMETRELER; hesaplama yapmadan önce seçilen input parametrelerini göstermek için kullanılır. Burada yer alan ifadelerin ne anlama geldiği Şekil 4.3 de verilmiştir. Bu sayfaya ulaşmak için "Parametreler" yazısının üzerine tıklamak yeterlidir (Şekil 4.9).

AC - Panel Yöntemle	
P 😭 🏄 🖉 P Yükle Kaydet Sil Yazdı	Hesapla CU Çiz Akım Çiz Karşılaştır Yardım Hakkında
Panel Yöntemleri Kompleks Panel Yöntemi 2	Daha önceden kaydettiğiniz değerleri görmek için ilgili kayıdı seçin ve "Yükle" butonuna basınız.
Input Parametreleri Profil IPR KTJ	KT-Cu Çizimi Akım Çizgileri KTJ Analitik Çözüm Parametreler CI,Cm, Cu Dağılımı Pnl.Öz., Kay-Gir Şid. Cu Çizimi
Nokta Sayısı NP 49 Hücum Kenarı Konumu XHK 0 YHK 0 Veter Doğrultusu ETA 0 (derece) Serbest Akım Hızı 1 Doğrultusu (derece) Karmann - Treffiz Dönüşümü INKT Vygulamak için 1 seçilmelidir	IPR 1 IPR :1-KTJ, 2-Dosyadan, 3-NACA0012, 4-Daire IQS 1 IQS :Detaylı çıkış için IQS=1 NP

Şekil 4.9 Parametreler Veri Sayfası

∭ i	AC -	Panel Yönt	emler							
Pükle	🎥 Kaydet	🌌 Sil	Azdır	Hesapl	S CU Çiz	😨 Akım Çiz	Tarşılaştır	? Yardım	i Hakkind	da
Panel Yör	temleri • - Marsden	Yöntemi		Daha önced	en kaydettiğin	iz değerleri görm	nek için ilgili kay	ıldı seçin ve ''	Yükle" buton	una basınız.
☐ Input Para ☐ Profil —	metreleri			K1	-Cu Çizimi		Akım Çizgileri		KTJ Ana	alitik Çözüm
IPR	ктј		•	Parame	treler	Cl,Cm, Cu Dağ	ılımı P	nl.Öz., Kay-G	ir Şid. 📋	Cu Çizimi
Nokta S NP Hiicum H XHK Veter Do ETA	ayısı 49 Kenarı Konumu Öğrultusu 0	и ҮНК [0 derece)	KARMAN KENNED ALFA = Sürükleme Taşıma kat Yunuslama 1-Cp DAČ I X	-TREFFTZ Pr Y-MARSDEN 0 katsayısı = .6 katsayısı = . ILIMI: Y U*U	ofili g= 0.05 d= 0006 556 .3253	0.05 ×d= 0.40			<u>_</u>
Serbest. Hızı Karmanr INKT	Akım D 1 Treffiz Dönü Uygulamak	Doğrultusu derece) işümü için 1 seçilme	o	1 1.00 2 .99 3 .98 4 .95 5 .92 6 .89 7 .84 8 .79 9 .74 10 .66 11 .66 11 .56 12 .56	000 .00000 522 .00064 153 .00239 945 .00505 957 .00834 250 .01200 978 .01571 978 .02220 776 .02220 693 .02453 045 .02638 015 .02533	.77790 .78558 .79504 .78788 .77625 .76411 .75313 .74415 .73317 .73377 .73279 .73475 .73968				T

Şekil 4.10 Cl,Cm, Cu Dağılımı

Cl,Cm, Cu DAĞILIMI; hesaplama sonucunda elde edilen, taşıma katsayısı "Cl", hücum kenarına göre hesaplanmış yunuslama moment katsayısı "Cm", hata oranını görebilmek için yer verilmiş sürükleme katsayısı "Cd" 'ye ait sayısal veriler ile profil üzerindeki basınç dağılımına "Cu" ait sayısal veriler bu sayfada yer almaktadır (Şekil 4.10).

PNL.ÖZ., KAY-GİR.ŞİD.; profil üzerinde seçilen panellere ait özellikler ile seçilen yönteme göre kaynak ve/veya girdap şiddetlerine ait sayısal veriler bu sayfada yer almaktadır (Şekil 4.11).

🗊 Yöntemleri		AC - Panel						_ 🗆 ×
Pükle K	aydet Sil	Pazdır	Hesapla	Çiz 🕺	LE Karşılaştır	? Yardım	<mark>夭</mark> Hakkında	
Panel Yöntemle	i nel Yöntemi 2	•	Daha önceden kaydett	ğiniz değerleri görr	nek için ilgili kayıdı	ı seçin ve "Yük	le'' butonuna	a basınız.
- Profil	len		KT-Cu Çizimi	Ĭ	Akım Çizgileri	[KTJ Analitik	. Çözüm
IPR KTJ		-	Parametreler	CI,Cm, Cu Dağ	jılımı Pnl.	.Öz., Kay-Gir Şi	d. C	Cu Çizimi
Nokta Sayısı NP 49 Hücum Kenar XHK 0 Veter Doğrultı ETA 0 Serbest Akım Hızı 1 Karmann - Tre INKT Uy	Konumu YHK su Doğrultusu (derece) ffiz Dönüşümü gulamak için 1 seçiln	(derece)	PANEL ÖZELLİKLE I X Y D 1 1.00000 .0000 2 .99522 .0006 3 .98153 .0023 4 .95945 .0050 5 .92957 .0083 6 .89250 .0120 7 .84898 .0157 8 .79978 .0192 9 .74576 .0222 10 .68783 .0245 11 .62693 .0255 12 .56405 .0256 13 .50016 .0256 14 .43528 .0244 15 .37341 .0218 16 .31253 .0187 17 .25462 .0151 18 .20061 .0112 19 .15141 .0073 20 .10787 .0038 21 .07077 .0005	KM YM 0 .00119 .99761 4 .00576 .98838 3 .01443 .97049 5 .02687 .94451 4 .06016 .87074 4 .04232 .91104 0 .06016 .87074 1 .07967 .82438 1<.01012	DS TCOS .00032 .00482 .00152 .01381 .00372 .02223 .00670 .03007 .01017 .03724 .01385 .04369 .01746 .04332 .0270 .05410 .02335 .05798 .02611 .06396 .02306 .06390 .02308 .06293 .02031 .06096 .01633 .05803 .01317 .05415 .00931 .04355 .00563 .04365 .00263 .04365 .00563 .04565 .00563 .04565 .00563 .04565 .00563 .04565 .00563 .04565 .00563 .04565 .00563 .04565 .00563 .04565 .00563 .04565 .00563 .04565 .00563 .04565 .00563 .04565 .00563 .04565 .0056	TSIN 2 -99119 133 -99188 127 -99285 119 -99378 109 -99518 098 -99518 098 -99548 055 -99249 070 -99249 070 -99346 055 -99321 039 -99395 000 -99995 000 -99995 000 -99995 000 -99995 000 -99995 000 -99995 000 -99995 000 -99995 000 -99995 000 -99995 000 -99995 000 -99995 000 -99995 000 -99995 000 -99995 000 -9996 007 -99966 07 -9966 07 -9966 07 -99676 08 -9966 07 -99676 008 -9966 07 -99676 008 -9966 07 -99676 008 -9966 07 -99676 008 -9966 07 -99676 008 -9966 07 -99676 008 -9966 07 -99676 008 -9966 07 -99676 008 -9966 07 -9967 00 -9967 00 -9967 00 -9967 00 -9967 00 -9967 00 -9967 00 -997 00 -997 00 -9960 00 -997 00 -9960 00 -997 00	245 177 140 106 101 174 152 165 165 173 373 373 337 137 262 262 166 166 788 245 788 245 788	

Şekil 4.11 Panel Özellikleri ve Kaynak/Girdap Şiddetleri Veri Sayfası

CU ÇİZİMİ; seçilen profil üzerinde Karmann Trefftz dönüşümü uygulanmadan hesap yapılmışsa, "Akım Çiz" butonuna basıldığında, profil üzerindeki basınç dağılımı bu alanda görüntülenir (Şekil 4.12).

Şekil 4.12 Cu Çizimi Sayfası

Şekil 4.13 Profil Çizimi

KT-CU ÇİZİMİ; seçilen profil üzerinde Karmann Trefftz dönüşümü uygulanarak hesap yapılmışsa, "Cu Çiz" butonuna basıldığında, profil üzerindeki basınç dağılımı bu alanda görüntülenir. "KT-CU Çizimi" sayfasının içinde üç ayrı alt sayfa yer almaktadır: "Profil" alt sayfasında, seçilen profil görüntülenir (Şekil 4.13).

"KT Dönüşüm" sayfasında, bu profile Karmann Trefftz dönüşümü uygulandıktan sonraki hali için daire grafiği ve buna ait basınç dağılımı yer almaktadır (Şekil 4.14).

Şekil 4.14 Profilin Karmann Trefftz Dönüşümünden Sonraki Hali

"Profil Cu Çizimi" sayfası ise, profil üzerindeki basınç dağılımını vermektedir (Şekil 4.15).

AKIM ÇİZGİLERİ; hesaplama yapılıp, "Akım Çiz" butonuna basıldıktan sonra, profile ait akım çizgileri bu sayfada görüntülenir (Şekil 4.16)

Şekil 4.15 Profil Üzerindeki Basınç Dağılımı

🗊 🛛 AC - Panel Yöntemleri				
Pikle Kaydet Sil Yazdır	Hesapla CU Çiz	🛞 🔝 Akım Çiz Karşılaştır	? <mark>≸</mark> Yardım Hakkında	
Panel Yöntemleri	Daha önceden kaydettiğini	z değerleri görmek için ilgili kayıdı	seçin ve "Yükle" butonun	a basınız.
Kompleks Panel Yöntemi 2				
Input Parametreleri	Parametrolor	CLCm Cu Doğilmi 🗍	Pol Ön Kou Gir Sid	L Cu Cinimi L
	KT-Cu Cizimi	Akım Cizailer	ri KT	J Analitik Cözüm
Nokta Sayısı NP 49 Hücum Kenarı Konumu XHK O YHK O Veter Doğrultusu ETA O (derece) Serbest Akım Hızı 1 Doğrultusu (derece) Karmann - Treffiz Dönüşümü INKT O Y				

Şekil 4.16 Akım Çizgileri

KTJ ANALİTİK ÇÖZÜM; seçilen profil Karmann-Trefftz yada Joukowsky ise panel yöntemi ile yapılacak hesaplama ile karşılaştırılabilmesi için bu profile ait analitik çözüm sonuçları ve analitik basıç dağılımı grafiği "Hesapla" butonuna basıldığında, bu alanda görüntülenir. "KTJ Analitik Çözüm" sayfasının içinde iki ayrı alt sayfa yer almaktadır: "Analitik Çözüm Sonuçları" alt sayfasında, analitik çözüm sonuçları görüntülenir (Şekil 4.17). "Analitik Cu Dağılımı Grafiği" alt sayfasında, analitik basınç dağılımı görüntülenir (Şekil 4.18).

🐙 C - Pane	l Yöntemler	i	Α									
Pükle	Raydet	🧟 Sil	Pazdır 🕒	Hesapla	😵 CU Çiz	😨 Akım Çiz	ini Karşılaştır	? Yardim	<u>夭</u> Hakkında			
- Panel Yör	Panel Viciteraleri Daha önceden kaydettiğiniz değerleri görmek için ilgili kayıdı seçin ve "Yükle" butonuna basınız.											
Kenned	y - Marsden	Yöntemi	•									
- Input Para	ametreleri					5		5	ς	۶.		1
Profil				Parametreler	CI,Cm, Cu Da	iğilimi Pnl.Ö:	z., Kay-Gir Şid	. Cu Çizimi	KT-Cu Çizimi	Akım Çizgileri	KTJ Analitik Çözüm	
IPR	ктј			KARMAN	TREFFTZ Pro	fili g= 0.05 c	= 0.05 xd= 0.4	40				
Nokta S	ayısı			F = .0168	80							
NP	49			G = .1035 M = 1.959	i90 680							
Hücum	Kenari Konum	u .		GAMMA =	.3320							
XHK	0	YHK	0	CL = .6 CMO =	641 0029							
Veter D	oğrultusu			CMHK =	3293							
ETA	0	(derece)	CMC/4 =	1633							
Serbest	Akım			Cu = 1·Cp	DAGILIMI							
Hızı	1	Doğrultusu derece)	0	I X Y	.0°							
Karman	n - Treffiz Dön	üşümü		1 1.0000 .	0000 .0000							
INKT			•	3 .9815 .0	0024 .7930							
	Uygulamak	ciçin 1 seçilme	elidir	5 .9296 .0	0083 .7749							
				6 .8925 .0	0120 .7632 0157 .7527							
				8 .7998 .(9 7458 (0192 .7440							
				10 .6878 .	0245 .7340							
				11 .6269 . 12 .5640 .	0259 .7332 0264 .7352							
				13 .5002 . 14 .4363 .	0258 .7402							
				15 .3734 .	0219 .7589							
				16 .3125 .	0187 .7726							
				18 .2006 .	0112 .8079							
				20 .1079 .	0039 .8513							
				22 .0408 -	0011 .8951							
				23 .0187 24 .0049	.0020 .9086 .0017 .8841							
				25 .0000 .	0000 .0000							•
				Analitik Çözü	m Sonuçları	Analitik Cu Da	ağılım Grafiği					

Şekil 4.17 Analitik Çözüm Sonuçları

Şekil 4.18 Analitik Cu Dağılımı Grafiği

5. UYGULAMALAR

Bu bölümde programın çalışmasına ilişkin bazı uygulamalar ve bunların değerlendirmesi yer almaktadır.

Bu testlerden ilki çeşitli kamburluk ve kalınlık oranlarına sahip Joukowsky profilleriyle, aynı kalınlık (GAMMA) ve kamburluk (DELTA) oranlarına sahip, maksimum kalınlık noktaları veterin %40 'ında olan Karman-Trefftz profilleri [12] üzerinde 49 panel alınarak gerçekleştirilmiştir. Farklı panel yöntemleriyle elde edilen taşıma ve yunuslama katsayıları analitik sonuçlarla [13] karşılaştırmalı olarak Tablo 5.1 ve Tablo 5.2'de sunulmuştur. Panel sayısını artırmakla bu tablolarda verilen analitik değerlere daha yakın sonuçlar elde etmek mümkündür.

Tablolar incelendiğinde, Maskew yönteminde ele alınan, profillerin alt ve üst yüzeyleri eşit sayıda panellere ayırarak iki yüzde birbiriyle aynı hizada yer alan paneller üzerinde eşit şiddette sabit kaynak ve lineer girdap dağılımları almak, genel potansiyel akış problemlerine farklı bir yaklaşım getirmektedir. Bu yaklaşımla elde edilen bazı avantajlar şu şekilde özetlenebilir:

Kutta noktasının seçiminde problem yaşanmamaktadır. Bunun nedeni, firar kenarına doğru yük dağılımının sıfıra gitmesi nedeniyle Kutta şartının otomatik olarak sağlanmasıdır. Ana çizgi boyunca olan internal akış simetrik bölgeler için elimine edilmiştir. Aynı şey eğri bölgeler için de söylenebilir. Bu şekilde kontrol noktaları arasındaki akım bozuntuları, bilinmeyen sayısını ve hesaplamayı artırmadan, minimize edilmiştir. Özel işlemlere başvurmadan tekillik şiddet değeri otomatik olarak azaltılmıştır. Çünkü, alt ve üst yüzeylerdeki şiddetli karşıt tekillik şiddetleri elimine edilmiştir. Sonuçlar da analitik değerler yakındır.

KARI	MAN-T	REFFTZ PROFILI	α=	=0°	α=10°		
GAMMA		DELTA	CL	CM (HK)	CL	CM (HK)	
	0.05	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	1.13226 1.3227 1.1112 1.1503 1.0937 1.1319 1.0868	-0.2882 3449 2898 2912 2893 2903 2882	
	0.10	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	1.17531 1.2741 1.1807 1.1842 1.1637 1.1685 1.1553	-0.3091 3415 3105 3118 3104 3106 3096	
0.00	0.15	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	1.22003 1.2830 1.2205 1.2214 1.2154 1.2072 1.2080	-0.3316 3549 3326 3340 3329 3322 3320	
	0.20	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	1.26632 1.3109 1.2629 1.2637 1.2637 1.2493 1.2573	-0.3556 3742 3564 3577 3569 3554 3560	
	0.05	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.66405 .6479 .6462 .6556 .6649 .6560 .6611	-0.3293 3145 3217 3253 3296 3254 3275	1.78590 1.9743 1.7522 1.7961 1.7565 1.7889 1.7563	-0.6156 6579 6100 6146 6176 6137 6160	
	0.10	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.69980 .6826 .6835 .6913 .7000 .6911 .6970	-0.3442 3319 3368 3400 3444 3399 3427	1.86380 1.9489 1.8520 1.8620 1.8535 1.8529 1.8475	-0.6516 6721 6460 6503 6535 6487 6519	
0.05	0.15	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.73554 0.7183 .7198 .7269 .7356 .7260 .7326	-0.3589 3479 3516 3547 3591 3543 3575	1.94337 1.9914 1.9277 1.9352 1.9385 1.9238 1.9310	-0.6890 7018 6832 6874 6908 6849 6888	
	0.20	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.77084 .7536 .7552 .7620 .7708 .7604 .7677	-0.3732 3631 3658 3689 3734 3683 3718	2.02414 2.0531 2.0052 2.0124 2.0211 1.9985 2.0133	-0.7275 7363 7214 7255 7292 7222 7271	

Tablo 5.1 Karman-Trefftz	profilleri icii	n analitik ve savısa	l sonuclar

KARI	MAN-T	REFFTZ PROFILI devam)	α=	=0°	α=10°		
GAMMA		DELTA	CL	CM (HK)	CL	CM (HK)	
	0.05	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	1.32694 1.2993 1.2908 1.3094 1.3305 1.3093 1.3217	-0.6581 6318 6426 6497 6597 6495 6549	2.43781 2.6209 2.3903 2.4389 2.4214 2.4410 2.4027	-0.9482 9775 9351 9426 9524 9412 9309	
	0.10	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	1.39721 1.3652 1.3643 1.3798 1.3987 1.3781 1.3918	-0.6873 6644 6725 6789 6882 6780 6845	2.54881 2.6184 2.5200 2.5356 2.5420 2.5310 2.5372	-0.9989 -1.0083 9862 9932 -1.0020 9904 9990	
0.10	0.15	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	1.46768 1.4345 1.4360 1.4501 1.4684 1.4468 1.4618	-0.7164 6954 7017 7078 7171 7063 7136	2.66151 2.6929 2.6302 2.6433 2.6578 2.6324 2.6498	-1.0513 -1.0538 -1.0385 -1.0452 -1.0540 -1.0411 -1.0507	
	0.20	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	1.53677 1.5034 1.5053 1.5189 1.5371 1.5140 1.5304	-0.7442 7245 7294 7354 7448 7333 7413	2.77462 2.7865 2.7408 2.7534 2.7722 2.7376 2.7628	-1.1036 -1.1027 -1.0905 -1.0971 -1.1060 -1.0917 -1.1025	
	0.05	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	1.98736 1.9594 1.9318 1.9595 1.9968 1.9573 1.9814	-0.9856 9550 9617 9723 9903 9709 9820	3.08687 3.2643 3.0262 3.0773 3.0882 3.0855 2.9855	-1.2851 -1.3060 -1.2639 -1.2739 -1.2937 -1.2937 -1.2714 -1.1950	
	0.10	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	2.09002 2.0481 2.0399 2.0631 2.0944 2.0575 2.0823	-1.0283 9982 -1.0057 -1.0153 -1.0309 -1.0125 -1.0244	3.22828 3.2830 3.1820 3.2027 3.2275 3.1997 3.2202	-1.3500 -1.3506 -1.3297 -1.3395 -1.3555 -1.3342 -1.3481	
0.15	0.15	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	2.19246 2.1468 2.1443 2.1655 2.1950 2.1571 2.1836	-1.0703 -1.0415 -1.0480 -1.0572 -1.0722 -1.0532 -1.0662	3.37099 3.3856 3.3239 3.3418 3.3703 3.3283 3.3605	-1.4159 -1.4095 -1.3961 -1.4051 -1.4202 -1.3978 -1.4148	
	0.20	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	2.29474 2.2469 2.2471 2.2673 2.2963 2.2563 2.2851	-1.1121 -1.0842 -1.0897 -1.0988 -1.1136 -1.0937 -1.1078	3.51497 3.5096 3.4662 3.4835 3.5143 3.4626 3.5025	-1.4834 -1.4734 -1.4632 -1.4721 -1.4870 -1.4629 -1.4815	
Kompleks-1 yönteminin profilleri için analitik denkleme yakın değerler verdiği, ancak kalınlık oranları küçük profillerde hata oranının biraz yükseldiği görülmektedir. Kompleks-2 yöntemi ise diğerine göre daha hassas değerler vermek olup, hata oranı daha düşüktür. Kennedy-Marsden ve Kennedy-Marsden Kompleks yöntemleri aynı sonuçları vermekte olup, hata mertebesi %1 - %3 'ler mertebesindedir. Soinne-Laine yöntemi analitik değerlere çok yakın sonuçlar vermektedir.

Vorpan girdap panel yönteminin Karman-Trefftz profili için verdiği sonuçlar genel olarak analitik sonuçlara oldukça iyi bir şekilde yakın çıkmaktadır. Sadece kalınlık oranının 0.05 gibi hayli küçük değerlerinde hata mertebesi büyümektedir. Ancak Joukowsky profilleriyle elde edilen sonuçlar için aynı şeyleri söylemek mümkün değildir. Hata mertebesi Karman-Trefftz profillerindekine kıyasla çok daha fazla olduğu gibi, ayrıca özellikle kalınlık oranının küçük ve kamburluk oranının büyük olduğu hallerde son derece anormal sonuçlar elde edilmektedir. Ancak bu sonuçların sürpriz olmadığını belirtmekte yarar vardır. Zira girdap-panel yöntemlerinin Joukowsky profilleri ve firar kenarı açısı çok küçük olan diğer profiller için firar kenarı civarında bir sorunu olduğu literatürden de bilinmektedir. Nitekim Joukowsky profilleri için elde edilen basınç dağılımları incelendiğinde firar kenarı civarında girdap şiddetlerinin ve dolayısıyla akım hızlarının son derece büyük değerler aldığı görülmektedir. Bu zaafı nedeniyle, girdap-panel yöntemi kullanıcılarının ince firar kenarı profiller üzerinde uygulama yaparken dikkatli olmaları gerekmektedir.

JC	UKOW	/SKY PROFILI	α=	=0°	α=10°		
GAMMA		DELTA	CL	CM (HK)	CL	CM (HK)	
	0.05	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	1.13308 1.2457 1.1453 1.1460 8597 1.1293 1.1099	-0.2798 3238 2817 2831 3661 2824 2805	
	0.10	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	1.17518 1.2351 1.1783 1.1771 6834 1.1622 1.1179	-0.2926 3212 2944 2958 2404 2948 2929	
0.00	0.15	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	1.21747 1.2558 1.2154 1.2148 5437 1.1991 1.1486	-0.3073 3288 3091 3103 2655 3089 3073	
	0.20	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	0.00000 .0000 .0000 .0000 .0000 .0000 .0000	1.26005 1.2855 1.2552 1.2546 1.2566 1.2371 1.1888	-0.3240 3411 3256 3266 3239 3247 3238	
	0.05	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.65255 .7006 .6360 .6446 .6527 .6455 .6191	-0.3203 3401 3131 3166 3204 3169 2846	1.77556 1.9347 1.7712 1.7783 1.7673 1.7702 6065	-0.5983 6602 5935 5980 6003 5975 .2769	
	0.10	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE 2 MASKEW-WOODWARD VORPAN	0.67658 .7020 .6609 .6687 .6743 .6696 .6368	-0.3263 3369 3194 3227 3252 3232 2832	1.84117 1.9257 1.8292 1.8352 1.8371 1.8240 1.8075	-0.6176 6557 6129 6172 6181 6165 6090	
0.05	0.15	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.70079 .7168 .6856 .6926 .6975 .6936 .6631	-0.3325 3391 3259 3289 3310 3295 2910	1.90714 1.9612 1.8908 1.8968 1.9032 1.8833 1.8916	-0.6389 6663 6344 6383 6389 6372 6364	
	0.20	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	0.72524 .7361 .7104 .7167 .7211 .7177 .6894	-0.3390 3434 3326 3352 3372 3360 2988	1.97363 2.0096 1.9549 1.9600 1.9693 1.9443 1.9358	-0.6623 6834 6579 6613 6620 6598 6513	

T 11		T 1	1 1	C*11 *	• •	1.1.1	1	1
Tablo	5 7	011	ZOWCZW	nrotillari	1011	analitik v	0 001/100	connolar
гарю	.) 2	JUL		DIOTINCI	юш	ananns v	0 54 91541	SOHUCIAL
	· · -		10	p			• • • • • • • •	0011071001

JOUK	OWSKY	Y PROFILI (devam)	α=	=0°	α=10°		
GAMMA		DELTA	CL	CM (HK)	CL	CM (HK)	
	0.05	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	1.30427 1.4035 1.2708 1.2876 1.3053 1.2885 .5221	-0.6402 6821 6258 6325 6409 6327 .1631	2.41692 2.6171 2.3960 2.4078 2.4134 2.4069 -7.4599	-0.9223 -1.0012 9107 9175 9259 9167 4.4134	
	0.10	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	1.35208 1.4042 1.3204 1.3358 1.3497 1.3364 1.1253	-0.6523 6744 6384 6448 6514 6453 4122	2.50549 2.6107 2.4786 2.4906 2.5023 2.4814 2.2188	-0.9483 9951 9371 9439 9497 9427 7998	
0.10	0.15	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	1.39995 1.4329 1.3693 1.3833 1.4001 1.3837 1.2726	-0.6646 6783 6512 6571 6651 6577 5261	2.59428 2.6609 2.5640 2.5757 2.5943 2.5623 2.5748	-0.9763 -1.0088 9654 9718 9788 9701 9711	
	0.20	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	1.44819 1.4705 1.4183 1.4309 1.4481 1.4313 1.3491	-0.6773 6864 6643 6697 6778 6705 5675	2.68372 2.7278 2.6512 2.6616 2.6839 2.6455 2.6692	-1.0066 -1.0309 9960 -1.0017 -1.0090 9996 -1.0030	
0.15	0.05	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	1.95518 2.1120 1.9039 1.9283 1.9632 1.9274 -3.9232	-0.9600 -1.0282 9380 9474 9646 9467 5.0083	3.05721 3.2961 3.0190 3.0340 3.0656 3.0380 -16.9313	-1.2518 -1.3486 -1.2331 -1.2416 -1.2609 -1.2395 11.5616	
	0.10	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	2.02566 2.1073 1.9771 2.0003 2.0298 1.9981 .9791	-0.9779 -1.0132 9565 9660 9807 9652 .1088	3.16738 3.2907 3.1252 3.1423 3.1719 3.1323 2.4977	-1.2845 -1.3398 -1.2665 -1.2754 -1.2904 -1.2724 8663	
	0.15	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	2.09627 2.1478 2.0495 2.0706 2.0986 2.0679 1.7145	-0.9960 -1.0177 9754 9843 9979 9836 5880	3.27783 3.3546 3.2333 3.2498 3.2809 3.2340 3.1913	-1.3192 -1.3566 -1.3017 -1.3102 -1.3237 -1.3066 -1.2724	
	0.20	Analitik KOMPLEKS 1 KOMPLEKS 2 KENNEDY-MARSDEN SOINNE-LAINE MASKEW-WOODWARD VORPAN	2.16717 2.2023 2.1215 2.1406 2.1686 2.1377 1.9311	-1.0146 -1.0289 9947 -1.0028 -1.0162 -1.0022 7564	3.38881 3.4392 3.3425 3.3575 3.3912 3.3380 3.3775	-1.3564 -1.3835 -1.3393 -1.3470 -1.3602 -1.3428 -1.3553	

Bir uygulama olarak, Joukowsky profilleri ve firar kenarı açısı çok küçük olan diğer profiller için firar kenarı civarında bir sorunu olduğu literatürden de bilinen Vorpan yöntemi ile Soinne Laine yönteminin karşılaştırılması yapılacaktır:

Bu amaçla Tablo 5.2 de hesaplama sonuçları verilen "JOUKOWSKY Profili g=0.15 d=0.05" profili, serbest akım doğrultusunun 10 derece olduğu durum için incelenmiştir.

Bu uygulama için öncelikle "Panel Yöntemleri" programı yardımıyla her iki yöntem için ayrı ayrı hesaplama yapılmış, grafikler çizdirilmiş, karşılaştırma yapılabilmesi için kaydedilmiştir. Daha sonra "Karşılaştırma" butonuna basılarak karşılaştırma penceresi açılmış ve ilgili kayıtlar yüklenmiştir. Bu işlem sonrasında input parametrelerinin görüntülendiği sayfa Şekil 5.1 'de verilmiştir. Bu profil için Şekil 5.2 'de verilen "Cl,Cm, Cu Dağılımı" sayfasında verilen taşıma, yunuslama momenti katsayıları karşılaştırıldığında Soinne-Laine yönteminin Tablo 5.2'de ve Şekil 5.6'da verilen analitik değere daha yakın olduğu, Vorpan yönteminin ise anlamsız sonuçlar verdiği görülebilir.

🗊 AC - Panel Yöntemleri Karşılaştırma	
Daha önceden kaydettiğiniz değerleri görmek için ilgili kayıdı seçin ve "Yükle" butonuna basınız.	Daha önceden kaydettiğiniz değerleri görmek için ilgili kayıdı seçin ve "Yükle" butonuna basınız.
1 1 49 1 00 0 1 10 0 23 0	1 1 49 1 0.0 0 1 10 0 23 0
1_1_49_1_0,0_0_1_10_0_40_0	
	, <u></u>
Yükle	Yükle
KT-Cu Çizimi Akım Çizgileri KTJ Analitik Çözüm	KT-Cu Çizimi Akım Çizgileri KTJ Analitik Çözüm
Parametreler CI,Cm, Cu Dağılımı Pnl.Öz., Kay-Gir Şid. Cu Çizim	Parametreler CI,Cm, Cu Dağılımı Pnl.Öz., Kay-Gir Şid. Cu Çizim
IPB 1	IPB 1
IOS1	IOS1
NP	NP
Chord 1	Chord 1
ХНК, ҮНК0,0	ХНК, ҮНК0,0
ETA0	ETA0
U01	U01
ALFAUIU	ALFAUIU
MTD 22	MTD 40
ISTR 0	ISTR 0
10111	1011111110

Şekil 5.1 Karşılaştırma "Parametreler" Sayfası

JF AC - Panel Yöntemleri Karşılaştırma											
Daha önceden kaydettiğiniz de	ğerleri görmek için ilgili kayıc	na basınız.	_[Daha önceden kaydettij	ğiniz değe	erleri görmek için ilgili	kayıdı seçin	ve "Yükle" butonı	ına basınız.		
	_U				1		0 40 0)			
Yükle						Yükle					
KT Cu Chini	Alian Circulturi		KT LA.			KT Cu Cirini		Alian Circi	1	KTLA	na even l
Parametroler	CI Cm. Cu Dağılımı	Pol Öz Kai	N 10 Ana u Gir Sid	luk çozum Cu Cizim		Parametreler	C	r Cu Dağılımı Cm Cu Dağılımı	PelÖ-	Kau-GirSid	L Cu Cizino
	E 4-0.0E	1111.02., Koj	y cali gita.	Că Çizim	ΞÌ		a- 0.15		1 1160	., Kay dir yid.	Cu çızını
SOINNE-LAINE-2	5 G= U.U5			-	-	VORPAN	g= 0.15	d= 0.05			-
ALFA = 10.0					Ш	ALFA = 10.0					
					Ш						
Sürükleme katsayısı =009	1				Ш	Sürükleme katsayısı =	39,4295	1			
Yunuslama katsayısı = -1.26	09				Ш	Yunuslama katsayisi =	11.5616	;			
1-Co DAĞILIMI:					Ш	1-Co DAĞILIMI:					
					Ш						
IX YU*U					Ш	I X Y UM	U				
1 1.00000 .00000 .9	9715				Ш	1 1.00000 .000	00*****				
3 .98439 .00986 .4	7240				Ш	3 .98439 .0098	33,56 36 1.778	323			
4 .96486 .02135 .4	0186				Ш	4 .96486 .0213	35 .782	76			
6 .90280 .03610 .3	+//1 0402				Ш	6 .90280 .0361	.0 .516)0 .400	83 92			
7 .86078 .07078 .2	5901				Ш	7 .86078 .0707	78 .333	22			
9 .75744 .10382 .2	1902				Ш	9 .75744 .1036	.4 .200 32 .255	82			
10 .69779 .11670 .2	0174				Ш	10 .69779 .116	70 .232	204			
12 .56810 .13056 .1	0042 7837				Ш	12 .56810 .130	os .214 56 .201	+30 140			
13 .50069 .13055 .1	7093				Ш	13 .50069 .130	55 .192 70 195	214			
14 .43345 .12579 .1	6136				Ш	14 .43345 .125	79 .185 61 .181	143			
16 .30486 .10365 .1	5759				Ш	16 .30486 .103	65 .178	316			
18 .19199 .07029 .1	4503			_		18 .19199 .070	03 .174 29 .168	100 338			
19 .14378 .05228 .1	3092					19 .14378 .052	28 .156	522			
21 .06689 .02005 .0	6408					21 .06689 .020	05 .090	02			
22 .03897 .00823 .0	1063					22 .03897 .008	23 .026	569			
24 .0053600229 1.	49944					24 .00536002	29 1.56	.051			
25 .00000 .00000 26.	12535					25 .00000 .000	00 15.40 41 7 94)820 430			
27 .01291 .01956 5.	57030					27 .01291 .019	56 5.05	834			
28 .03139 .03576 4.4	55791 18750					28 .03139 .035	76 4.23 na 3.03	972 515			
30 .09232 .07618 4.	04713					30 .09232 .076	18 3.83	518			
31 .13432 .09786 4.	00763			•	-	31 .13432 .097	86 3.81	986			-

Şekil 5.2 Karşılaştırma "Cl,Cm, Cu Dağılımı" Sayfası

Profil üzerindeki basınç dağılımlarının her bir panel için sayısal değerleri bu sayfadan karşılaştırılabileceği gibi, Şekil 5.3'deki grafikler de incelenebilir. Vorpan yöntemi için firar kenarında problem olduğu açıkça görülmektedir. Daha önce de belirtildiği gibi, Joukowsky profilleri için elde edilen basınç dağılımları incelendiğinde firar kenarı civarında girdap şiddetlerinin ve dolayısıyla akım hızlarının son derece büyük değerler aldığı görülmektedir (Şekil 5.4). Her iki yönteme ait akım çizgilerinin karşılaştırması ise Şekil 5.5'de verilmiştir.

Bu zaafı nedeniyle, Vorpan girdap-panel yöntemi kullanıcılarının ince firar kenarlı profiller üzerinde uygulama yaparken dikkatli olmaları gerektiği bir kere daha doğrulanmıştır.

Kontrol noktası olarak panel uç noktalarının seçimi yüzey sınır şartlarının hassas bir şekilde uygulanmasını sağlaması bakımından panel yönteminin hassasiyetini arttırmaktadır. Dirichlet tipi sınır şartı kullanan panel yöntemleri ise daha hassas sonuç vermeleri yanında, dizayn problemlerine rahatlıkla adapte edilebilmeleri bakımından da önemlidir.

Şekil 5.3 Karşılaştırma "Basınç Dağılımı Çizim" Sayfası

Şekil 5.4 Karşılaştırma "Pnl.Öz. Kay-Gir Şid." Sayfası

Şekil 5.5 Karşılaştırma "Akım Çizgileri" Sayfası

🕂 AC - Panel Yöntemleri Karşılaştırma 📃 🗗 🔀									
Daha önceden kaydettiğiniz değerleri, görmek için ilgili kayıdı seçin ve "Yükle" butonuna basınız.	Daha önceden kaydettiğiniz değerleri görmek için ilgili kayıdı seçin ve "Yükle" butonuna basınız.								
1 1 49 1 00 0 1 10 0 40 0	1 1 49 1 0.0 0 1 10 0 40 0								
1_1_49_1_0_0_1_10_0_23_0									
Yükle	Yükle								
KT. Cu Cinimi Akun Cinnikui KT. Anabik Cinim	Parameteder CiCon Cu Dužitera Ci Pediča Kau Gir Sid Ci Cu Cinica I								
Parametreler CI.Cm. Cu Dağılımı Pol Öz Kau-Gir Sid Cu Cizim	KT-Cu Cizimi Akım Ciznileri KTJ Analitik Cözüm								
Parametreler CLCm. Cu Değilmi Pnl Öz., Kay-Gir Şid. Cu Çizim JOUKGWSKY Profil g= 0.15 d= 0.05 SUNNE-LAINE-2 ALFA = 10.0 -	KT-Cu Çizimi Akım Çizgileri KTJ Analitik Çözüm JOUKOWSKY Profili g= 0.15 d= 0.05 F = 038720 G G = 311610 M = 2.000000 GAMMA = 1.5286 G CL = 3.0572 GMMK = 1.5286 G G CM = 2.2557 GMHK = 1.2518 GMC/4 = 4.4391 G Cu = 1-Cp DAŠILIMI I X Y 10.0° 1 1 1.0000 .6787 .3.9844 .0099 .4765 4 .9649 .0213 .4034								
30 .09232 .07618 4.04713 31 .13432 .09786 4.00763	Analitik Çüzüm Sonuçları Analitik Cu Dağılım Grafiği								

Şekil 5.6 Karşılaştırma "Soinne-Laine/KTJ Analitik Çözüm" Sayfaları

Şekil 5.7 Karşılaştırma "Soinne-Laine/KTJ Analitik Çözüm Cu Dağılımı" Sayfaları

Soinne Laine yöntemi ile analitik çözüm sonuçlarının karşılaştırması sayısal olarak Şekil 5.6'da, grafik olarak ise Şekil 5.7'de gösterilmiştir.

Son uygulama olarak istediğimiz kalınlık ve kamburluk oranına sahip ve listede yer almayan Karman Trefftz profili dizayn ederek herhangi bire yöntemle hesaplama yapılacak ve analitik çözüm sonuçları ile karşılaştırılacaktır. Bu amaçla, 0.08 kalınlık oranına, 0.13 kamburluk oranına sahip, sıfır derece firar kenarı açısı olan ve maksimum kamburluğu veterin %30'unda yer alan bir Karman-Trefftz profili dizayn edilip, 18 derece hücum açısı olan serbest akımda, Maskew Woodward yöntemi ile analiz edilecektir.

Şekil 5.8'de yer alan listede hazır olarak bulunmayan bu profili dizayn etmek için KTJ dizayn tuşuna basılmalıdır. Şekil 5.9'da gösterilen dizayn sayfasında istenilen profil bilgileri girilip hesapla butonuna basıldığında profille ilgili bilgiler panel yöntemleri programında kullanılmak üzere otomatik olarak kaydedilir. "Çıkış" butonu ile ana programa geri dönülür.

				Kaliniik Kamburiuk Max.Kaliniik
	F	G	М	DELTA GAMMA XDLTC
.0	1703	, 0.00000	, 1.95941	'KARMAN-TREFFTZ Profili g= 0.00 d= 0.05 xd= 0.40'
.0	3462	, 0.00000	, 1.91808	'KARMAN-TREFFTZ Profili g= 0.00 d= 0.10 xd= 0.40'
.0	5279	, 0.00000	, 1.87614	'KARMAN-TREFFTZ Profili g= 0.00 d= 0.15 xd= 0.40'
.0	7160	, 0.00000	, 1.83365	'KARMAN-TREFFTZ Profili g= 0.00 d= 0.20 xd= 0.40'
.0	1688	, 0.10359	, 1.95968	'KARMAN-TREFFTZ Profili g= 0.05 d= 0.05 xd= 0.40'
0	3428	, 0.10700	, 1.91861	'KARMAN-TREFFTZ Profili g= 0.05 d= 0.10 xd= 0.40'
.0	5222	, 0.11025	, 1.87685	'KARMAN-TREFFTZ Profili g= 0.05 d= 0.15 xd= 0.40'
.0	7141	, 0.11337	, 1.83535	'KARMAN-TREFFTZ Profili g= 0.05 d= 0.20 xd= 0.40'

🐙 FormKTJdizayn			
ISTENILEN KALINLIK VE KAMBURLUK	SONUÇ	Profil Şekli	
ORANINA SAHIP KARMAN-TREFFTZ PROFILININ FIRAR KENARI AÇISINA veya MAKSIMUM KALINLIK NOKTASI KONIMINA GÖPLITEPA SYONIA	.03457 .27502 .03457 .27500 .03457 .27509	.08000 .12996 .36811 .08000 .12996 .36735 .08000 .13000 .36765	
DIZAYNI	M=1.97760 F G	DELTA GAMMA XDLTC	
Dizayn Verileri DELTA : Kalinlik oranı (%veter) 0.08	.06154 .26000 .06769 .28600 .05256 .27990 .05173 .26989 .05186 .27620 .05182 .27620 .05180 .27619	.09105 .12130 .28721 .09862 .13267 .28367 .08096 .13166 .29275 .07382 .12705 .29354 .08008 .13005 .29388 .08003 .13000 .29344 .08000 .13000 .29359	
GAMMA : Kamburluk oranı (%veter) 0.13	M=1.97521 F G	DELTA GAMMA XDLTC	
TAU : Firar kenarı açısı (derece) [0. XDLTC : Max.kalinlik noktası konumu (%veter) [0.30	.06154 .26000 .06769 .28000 .05127 .28020 .05034 .2551 .05052 .27627 .05046 .27614 .05041 .27613 SONUC	.09263 .12117 .29115 .10020 .13253 .28718 .08108 .13182 .29841 .07973 .12502 .29980 .08014 .13006 .29940 .08006 .13001 .29867 .08000 .13001 .29940	
NOT: TAU XDLTC JOUKOWSKY profili için : 0. 0. KARMAN-TREFFTZ pr.için : x 0. veya	DELTA = .08 F GAMMA = .13 0 XDLTC = .30 M	= .05041 G = .27613 I = 1.97521	
0. 0.xx yazınız	KARMAN-TREFFTZ F	PROFILI	
📱 Profil Hesapla 🗶 ÇIKIŞ			-

Şekil 5.9 "KTJ Dizayn" Sayfası

Ana pencerede Input Paremetreleri belirlenerek (Şekil 5.10) yapılan hesaplama sonuçlarının analitik çözümle karşılaştırması Şekil 5.11 ve Şekil 5.12'de, akım çizgileri ise Şekil 5.13'de verilmektedir. Elde edilen değerler ile analitik çözüm sonuçlarının yakın değerler verdiği görülmektedir.

🎢 temleri		AC - Pane	el Yön]	
Pükle	Raydet	کی Sil	A Yazdır	E Hesapla	😰 CU Çiz	😰 Akım Çiz	III Karşılaştır	? Yardım	<mark>≮</mark> Hakkında			
Panel Yör Maskew Input Para Profil IPR Nokta S NP Hücum I XHK Veter Do ETA ETA Karmanr INKT	temleri - Woodwar metreleri - KTJ ayısı 49 Kenarı Konum 0	d Yöntemi u YHK [1 Qoğrultusu derece) işümü	derece)	Daha önceden I 1_1_49_1_0.0 1_1_49_1_0.0 1_1_49_1_0.0 I_1_49_1_0.0 KT- Parametr IPR IPR IPR IQS NP Chord XHK, YHK. ETA UO ALFA0 INKT MTD ISTR	aydettiğinic c 0.1.10.0.4 0.1.10.0.2 0.1.18.0.3 Cu Çizimi eler1 1 49 1 18 0 0 0 MO MTT	T : D = 10 - CP 11 - CP	Akım (Akım (Dağılımı : Detaylı çılı : Nokta sayız d : Veter tuz ; Yeter doğ Serbest akı XO : Serbest Serbest akı XO : Serbest : FT dönü: : Panel Yö: : ; Akım çiz MO 20 - KEI MD 21 - KEI 23 - SO	 ri PnlÖz. dan, 3-N/ in IQS=1 iğu cenarı kon isu (derec zı m doğruhi i uygulam i (Bkz.NC çizmek iç 30 - MAS	kle" butonuna Kay-Gir Şid. ACA0012, 4- ACA0012, 4- ACA0012, 4- NUMU e) tusu (derece) ak için INK)T) in ISTR=1 SKEW 40 -	KTJ Anal Daire	itik Çözüm Cu Çizimi	

🕼 AC - Panel Yöntemleri Karşılaştırma 📃 🖉									
Daha önceden kaydettiğiniz değerleri görmek için ilgili kayıdı seçin ve "Yükle" butonuna basınız.	Daha önceden kaydettiğiniz değerleri görmek için ilgili kayıdı seçin ve "Yükle" butonuna basınız.								
1 1 49 1 0.0 0 1 10 0 23 0	1 1 49 1 0.0 0 1 10 0 23 0								
Yukle	<u> Yukie </u>								
KT-Cu Çizimi 🛛 🛛 Akım Çizgileri 🗍 KTJ Analitik Çözüm	Parametreler CI,Cm, Cu Dağılımı PnI.Öz., Kay-Gir Şid. Cu Çizim								
Parametreler Cl,Cm, Cu Dağılımı Pnl.Öz., Kay-Gir Şid. Cu Çizim	KT-Cu Çizimi Akım Çizgileri KTJ Analitik Çözüm								
KARMAN-TRE DELTA=.08 GAMMA=.13 X8=.30 MASKEW ALFA = 18.0 Sürükleme katsayısı = .0956 Taşıma katsayısı = 3.6980 Yuruslama katsayısı = 1.3471 1-Cp DAĞILIMI: I X Y U*U 1 1.00000 0.0000 .51515 2 .99564 398289 .0022 398289 .0022 398279 .00322 41296 .99337 6 .99337 7 .25440 7 .85450 0.05559 .23042 8 .20344 7 .25640 0.05539 .23011 8 .00533 10 .69260 .06363 .09406 11 .60053 12 .55646 .09401 .10274 13 .50124 14 .43615 15 .37233 16 .31	KARMAN-TRE DELTA=.08 GAMMA=.13 Xe=.30 F = .050410 G = .276130 M = 1.975210 GAMMA = .13 Xe=.30 GAMMA = 1.8633 CL = 3.7266 CM = .4203 CMWA = .1.3562 CMC/4 =4701 Cu = 1-Cp DAŠILIMI I X Y 18.0° 11.0000 .0000 2.9956 .0022 .4009 4.9620 .0175 .3464 5 .9334 .0291 .3001 6.8973 .0422 .2516 7 .8545 .0563 .2035 9 .7512 .0795 .1817 10 .6962 .0683 .1632 11.4330 .1632 11 .5306 .0941 .1474 12.5655 .0964 .1333 13 .5012 .0952 .1202 14 .361 .0904 .1071 15 .3723 .0824 .0932 16321 14 .361 .0904 .1071 15 .3723 .0824 .0932 15 .317 .0139 0.1075 .117 17 .0459 .0575 17 .7575 17 .7578 .0775 .0775 .0775 .0775 .0775 .0775 .0775 .0775 .0775 .0775 .0775 .0775 .0775 .0775 .0775 .0775 .0775 .0189 .0080 .0711 .0711 .0714 .0714 .0715 .0139 .0030 .0717 .0139 .0030 .0717 .0139 .0030 .0717 .0715 .0039 .0030 .0717 .0715 .0715 .0039 .0030 .0717 .0715 .0039 .0030 .0717 .0715 .0139 .0030 .0717 .0715 .0139 .0030 .0717 .0715 .								
20 100000 21.02703 20 100241 100900 21.02709 27 .01310 .02230 11.60458 28 .03220 .03916 8.10904 29 .05907 .05857 6.68103 30 .09400 .07937 5.93496 31 .13644 .10028 5.48063	22 . 0420 . 0001 . 2971 23 . 0200 - 0042 1. 6567 24 . 00590044 10.7519 25 . 0020 . 0000 42.2692 26 . 0022 4 . 0050 19 .2706 Analitik Cözüm Sonucları Analitik Cu Dağılım Grafiğ								

Şekil 5.11 Karşılaştırma Çözüm Sonuçları

Şekil 5.12 Karşılaştırma Çözüm Sonuçları

Şekil 5.13 Akım Çizgileri

6. SONUÇ VE ÖNERİLER

Bu çalışmada, iki boyutlu panel yöntemlerinden Kompleks Panel Yöntemi, Kennedy Marsden Yöntemi, Soinne Laine Yöntemi, Maskew Woodward Yöntemi ve Vorpan Panel Yöntemleri ele alınmıştır. Tekillik olarak yönteme göre farklılık gösteren kaynak yada girdap dağılımları kullanılmış olup, kontrol noktalarının panel üzerindeki konumlarının seçimleri de yöntemlere göre farklılık göstermektedir (Tablo 4.1). Hazırlanan bilgisayar programı yardımı ile farklı panel yöntemleri ile hesaplama yapılarak, yöntemler arasında karşılaştırma yapma imkanı sağlanmıştır.

Panel yöntemlerinin çözüm tekniğini kullanan etkileşimli bir bilgisayar programı "Fortran" ve "Delphi" dilleri kullanılarak geliştirilmiştir. Program grafik arayüzlü ve "windows" tabanlı olduğundan kullanımı sonderece kolay ve anlaşılır bir hal almıştır.

Aynı zamanda, programın farklı panel yöntemleri ve profiller kullanılarak hesaplama yapılabilen bu program sayesinde sayısal değerlerin çok kısa bir sürede ekrana grafik olarak yansıtması, ardarda uygulama yaparak değişimin ne şekilde olduğunu kolaylıkla görme imkânını getirmiştir. Bu durum özellikle öğrenciler için yararlı olacaktır.

Uygulama için, çeşitli kamburluk ve kalınlık oranlarına sahip Joukowsky profilleriyle, aynı kalınlık ve kamburluk oranlarına sahip, maksimum kalınlık noktaları veterin %40 'ında olan Karman-Trefftz profilleri [12] üzerinde 49 panel alınarak gerçekleştirilmiştir. Farklı panel yöntemleriyle elde edilen taşıma ve yunuslama katsayıları analitik sonuçlarla [13] karşılaştırmalı olarak sunulmuştur. Bu uygulamlarda yer alan ve dikkati çeken bazı profillere ait tekil uygulamalara da yer verilmiştir.

Geliştirme açısından, analitik profil dizayn eden program eklenerek istenilen kalınlık ve kamburlukta profil dizayn edilerek bu programda kullanılabilir. Ayrıca, programa profil dizaynı için farklı yöntemler daha eklenebilir. Bu, iki yöntem arasındaki etkileşim, istenilen basınç dağılımına sahip profiller dizayn edilmesine yönelik olarak faydalı olabilir.

KAYNAKLAR

- [1]. Kellog, O.D., 1953. Foundations of Potential Theory, Dover Pub. Inc..
- [2]. Lamb, Sir H., 1945. Hydrodynamics, Dover Pub..
- [3]. Katz, J. and Plotkin, A., 1991. Low speed aerodynamics from wing theory to panel methods, McGraw-Hill, Inc.
- [4]. Churchil, R.V., 1948. Introduction to complex variables and applications, McGraw-Hill Inc.
- [5]. Yükselen, M.A., 1987. Tandem halde bir kanat profilinin taşıma ve yunuslama karakteristikleri, *İTÜ Fen Bilimleri Enstitüsü Doktora Tezi*.
- [6]. Yükselen, M.A., 2001. İki boyutlu potansiyel akımın hesabı için kompleks panel yöntemi, Ders Notları.
- [7]. Kennedy, J.L. and Marsden, D.J., 1978. A potantial flow design method for multicomponent airfoil sections, *Journal of Aircraft*, Vol 15, No 1.
- [8]. Soinne, E. and Laine, S., 1985. An inverse boundary element method for single component airfoil design, Engineerings notes, *Journal Aircraft*, Vol 22, No 6, 541-543.
- [9]. Maskew, B. and Woodward, F.A., 1976. Symmetrical Singularity Model for Lifting Potential Flow Analysis, Engineering notes, *Journal Aircraft*, Vol 3, No 9.
- [10]. Bousquet, J., 1986. Methodes des singularites, Editions ENSAE.
- [11]. Bristow, D.R., 1979. Improvements in surface singularity analysis and design methods", *NASA* CP-2045.
- [12]. Yükselen, M.A. and Erim, Z., 1984. A general iterative method to design Karman-Trefftz and Joukowsky airfoils, *International Journal for Numerical Methods in Engineering*, Vol.20, No.5, 1349-1368.
- [13]. Yükselen, M.A., 1989. Karman-Trefftz ve Joukowsky profillerinin karakteristikleri, *İTÜ Dergisi*, Cilt.47, Sayı.4, 67-78.
- [14]. Hess, J.L. and Smith, A.M.O., 1966. Calculation of Potential Flow About Arbitrary Bodies, Progress in Aeronautical Sciences, Vol.8, Pergamon Press.

- [15]. **Martensen, E.**, 1959. Berechnung derDruckverteilung An Gitterprofilen in Ebenen Potential Stromung mit einer Fredholmschen Integralgleichung, *Arch.Rat.Mech.Anal.*, Vol.3, 235-270.
- [16]. Goldstein, A.W. and Jerison, M., 1967. Isolated and Cascade Airfoils with Prescribed Velocity Distribution, *NACA Tech.Report* No 869.
- [17]. **Oellers, H.J.**, 1962. Die Inkompressible Potential Stromung in der Ebenen Gitterstruffe, WGLR Jahrbuch, 349-353.
- [18]. Chen, A.W., 1972. The Determination of the Geometries for Multiple Element Airfoils Optimised for Maximum Lift Coefficient, *Thesis University* of Illinois.
- [19]. Mavriplis, F., 1974. Aerodynamics Prediction and Design Methods of Aircraft High Lift Systems, N.R.C.of Canada, *Proceedings of the Aerodynamics Seminar of May 15, 1974.*
- [20]. Pope, A., 1951. Basic Wing and Airfoil Theory, Mc GRAW-HILL Book Co. Inc.
- [21]. Rauscher, M., 1953. Introduction to Aeronautical Aerodynamice, John Wiley.
- [22]. Erim, M.Z., 1978. Ses Altı Profiller, İTÜ Ders Notu.
- [23]. Churchill, R.V., 1951. Complex Variables and Applications, McGRAW-HILL Book Co. Inc.

ÖZGEÇMİŞ

28 Mart 1973 tarihinde Ankara'da doğdu. Ortaokulu Ankara İncirli Ortaokulu'nda (1984-1987), liseyi Ankara İncirli Lisesi'nde (1987-1990) okudu. 1991 yılında kazandığı İstanbul Teknik Üniversitesi, Uçak ve Uzay Bilimleri Fakültesi, Uçak Mühendisliği Bölümü'nü 1996 yılında birincilikle bitirdi.

1997 yılından beri Türk Hava Yolları A.O.'nda Uçak Mühendisi olarak çalışmaktadır. Askeri görevini, 2000-2001 yılları arasında, Ankara Hava Lojistik Komutanlığı, Teknik Yönetim Başkanlığı'nda, Uçak Mühendisi Hv. Tğm. olarak yaptı.

İyi derecede İngilizce ve bilgisayar (Basic, Pascal, Fortran, Delphi, Visual C++, Microsoft Office) bilgisine sahiptir.