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FOREWORD 

Femtosecond laser micromaching has many advantages compared to other laser 
regimes. In order to benefit from these advantages simple but important rules must 
be followed when using this technology. In order to find these simple rules a wide 
range of parameters have been tested to achieve the perfect micromachined surfaces 
as desired. 
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FEMTOSECOND LASER MICROMACHINING OF SI-WAFER 

 
SUMMARY 

 
As technology advanced with the principle, the mystery is hidden in the details, it 
carried itself from macro to micro and nano dimensions. This situation has pushed us 
from using macro development equipment to much more accurate equipment to work 
in micro, nano or even smaller measures. 
Lasers are one of the few equipments that are able to work perfectly in these smaller 
dimensions. After using nanosecond  lasers to produce micro materials for so long 
the humans natural instinct to always better themselves has passed the technology 
grade to femtosecond lasers. 
Micromachining with femtosecond lasers has lately become more and more popular. 
The reason for this popularity is because the femtosecond lasers are able to send 
photon shots faster than the duration defined in the thermal diffusion law.  Thus the 
micro machining process was over before heat was able to spread and damage the 
material. This concession  of the femtosecond laser ensures a lot of advantage against 
it’s adversaries, especially on micro materials. But this advantage isn’t true for all 
situations. To benefit from this advantage the energy flow rating which derives from 
the photon shots of the laser must be between the melting and ablation thresholds of 
the chosen material. 
During experimentation the melting and ablation thresholds of the si-wafer and the 
parameters to micromachine the desired cavity depth with the best surface 
characteristics was studied. An characterisation table showing the required 
parameters such as energy, frequency, number of shots and their actions and 
reactions to micromachine si-wafers with femtosecond lasers was formed.  This 
characterisation table was used as a guide while micromachining si-wafers with the 
femtosecond laser. 
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FEMTOSANİYE LAZER İLE Sİ-PLAKA ÜZERİNE MİKRO ÖLÇEKTE 
BİÇİMLENDİRME 

 

ÖZET 

 

Teknoloji geliştikçe işin sırrı detaylarda saklıdır esasına dayanan bir ilke ile kendini 
makro boyuttan mikro ve nano boyuta taşıdı. Tabi bu durum bizi mikro teknoloji ile 
üretilen ürünlerin üretim yönteminde makro boyutlarda kullanılan aletlerden çok 
daha hassas yani mikro-nano hatta daha küçük mertebelerde kusursuz çalışan aletler 
arayışına itti. 
Lazerler bu küçük mertebelerde kusursuz iş görebilen sayılı alet ve uygulama 
yöntemlerinden biriydi. Uzun süreler nanosaniye lazer kullanılarak yapılan mikro 
malzeme üretim işlemleri insanoğlunun kendini devamlı geliştirme dürtüsü ile yerini 
femtosaniye lazere bıraktı. 
Femtosaniye lazer ile mikromalzeme işleme son dönemlerde gittikçe popüler hale 
geldi. 
Bunun sebebi ise lazerin foton darbelerinin arasında geçen süresi termal difüzyon 
yasasına göre ısının yayılımından çok daha kısa zamanda gerçekleşmekte olması idi. 
Böylece ısı daha yayılıp malzemeye zarar vermeye başlamadan mikro malzeme 
üzerine uygulanan mikro işleme süreci çoktan bitmiş oluyordu. Femtosaniye lazerin 
bu ayrıcalığı, özellikle mikro malzeme gibi çok küçük hacimli malzemeler işlerken, 
rakiplerine göre çok büyük avantaj sağlamakta. Tabi bu avantaj her koşulda geçerli 
değil. Femtosaniye lazer ile mikromalzeme işlerken yöntemin avantajından 
yararlanmak için lazerlerden çıkan foton darbeleri kaynaklı olan enerji akışı değeri 
işlenilen malzemenin melting eşiği ve ablasyon eşiği arasında tutulduğu sürece 
geçerli olmakta. 
Yapılan deneylerde Si-Plakanın Ablation ve Melting Threshold değerlerinin 
bulunmalarının yanı sıra en düzgün yüzey karakteristiğine sahip ve istenilen 
derinlikteki kanalların açılması için gerekli diğer parametrelerin bulunmasına 
çalışıldı. Femtosaniye lazer ile işlenilen si-plakasının gerekli parametreler, yani 
hangi enerji hangi frekans, hangi foton darbe sayısı kullanılarak nasıl tepki 
gösterdiğini anlatan bir etki tepki karakterizasyon tablosu çıkarıldı. Çıkarılan bu 
karakterizasyon tablosu femtosaniye ile si-plaka işleme sırasında bir rehber olarak 
kullanıldı. 
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1. INTRODUCTION 

Laser is a consistent monochromatic beam of electromagnetic radiation. Laser 

wavelengths range from infrared to ultraviolet[1]. Lasers are obtained by optical 

amplification of the stimulated emission of photons. The mentioned electromagnetic 

radiation is an energy form which shows wave like behavior while traveling through 

space. 

1.1 Purpose Of The Thesis 

The main objective of this thesis is to achieve the best micromachining parameters 

by changing and testing all of the laser parameters. These machined surfaces will in 

effect be used to create micro-fluidic channels. 

1.2 Electromagnetic Spectrum 

Ionizing and nonionizing radiation of varying frequencies and wavelengths form the 

electromagnetic spectrum as can be seen in Figure 1.1. It consists of all the possible 

frequencies of electromagnetic radiation. These waves are described by their 

frequency, wavelength or photon energy.  

It has not been possible to explain the wave nature of the electromagnetic radiation. 

For this reason the quantum theory of electromagnetic radiation has been proposed. 

In this theory, the electromagnetic radiation is considered to be a stream of particles, 

which are called photons. Each of these photons is associated with an amount of 

energy proportional to its frequency. This photon energy is expressed in the formula 

below[1]. 

𝐸 = ℎ𝑣 (1) 

In this equation h is the Planck constant (6.63x10-34 J/s), and v represents frequency. 

Thus, electromagnetic radiation exhibits wave and particle natures. These theories of 

electromagnetic radiation are deemed complementary [2]. 
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Figure 1.1 The electromagnetic spectrum (Picture Courtesy of Westinghouse 

Research Laboratories) reference 

1.3 Femtosecond Lasers 

The Femtosecond Laser earns it’s name thanks to it’s ability to deliver laser pulses 

with durations between a few femtoseconds and hundreds of femtoseconds. 1fs 

(Femtosecond) = 10-15s. Femtosecond lasers belong to the ultrashort (sometimes also 

refered to as ultrafast [3, 4, 5, 6, 7] pulse laser category. Femtosecond lasers pulse 

duration is tuneable within a specific range.Femtosecond lasers discharge optical 

pulses in femtoseconds. It belongs to the ultra-short pulse laser category. 

Femtosecond lasers are used mainly in micro-machining, femto-chemistry, laser eye 

surgeries [8, 9] or other areas such as nano-particles [10] and nano-bump arrays 

creation. They are also used in other interesting areas such as optical 

communications [11]. But all femtosecond uses are expensive and complex to setup 

in general [12]. 

1.4 Femtosecond Laser Advantages Over Nanosecond Laser In Thermal 
Diffusion And Material Choices 

The main attribute of femtosecond laser micromachining is the ultra short pulses 

used for the process. This results in minimal thermal and mechanical deformations 
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on the surface of the target material. Meanwhile nanosecond machining is bound by 

deformations caused to the surface of the material. 

Femtosecond regime is also more versatile when it comes to choice of materials and 

types of material processing. Large variety of materials have been processed and 

experimented on with femtosecond lasers. 

Furthermore it is known that nanosecond machining proceeds by deforming the 

surface of the material, resulting in unwanted surface deformations. 

At low energy levels Femtosecond Lasers can cause melting, at higher energy levels 

ablation occurs [13]. Femtosecond lasers also provide lower ablation thresholds 

compared to nanosecond lasers [14]. It has also been proposed that processing 

femtosecond laser micromachining in ambient [15] atmospheric conditions would be 

useful for commercial applications [16]. Furthermore they are also used in 

structuring photovoltaic silicon cells in vacuum [17] environments [18].  
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2. FEMTOSECOND LASER MICROMACHINING 

Laser machining is the process of removing materials from a substrate using focused 

laser pulses to create the desired features on it. The aim is to achieve these features 

with ultimately no deformations on the surface. Which in effect requires the 

perfection of the properties of the laser, the experimental setup and the substrate, in 

the right atmospheric conditions. These deformations are caused by the thermal 

diffusion of energy and Femtosecond Lasers are one step ahead at avoiding them 

with ultrashort pulse durations. 

The results of a single shot to a silicon surface can be seen in Figure 2.1, ripples are 

not included in this presentation since they only occur with multiple shots. 

 
Figure 2.1 Phases of modification during Femtosecond micromachining of silicon 

[24] 

Much importance has been attached to laser-based machining of materials with 

femtosecond pulses recently [3, 13, 19, 20, 21, 22]. Thermal diffusion into 

surrounding material is limited by reduction of temporal width of pulses from the 



 

 

6 

nanosecond to the femtosecond regime during ablation process. This process 

increases the quality of the machined surface.   

Through femtosecond laser-material interactions, only a small fraction of laser pulse 

energy is transmitted to the material surrounding the laser-irradiated area in the form 

of heat; in contrast to the material processing by using nanosecond or longer laser 

pulses where standard modes of thermal processes are domineering. As a result, non-

thermal structural changes are induced by femtosecond laser pulses, which are 

caused by electronic excitation and associated nonlinear processes, before 

equilibrium is reached by the material lattice by the excited carriers. This short cut of 

material modification process can cause significant reduction in the thermal stresses 

with very little collateral damage of the materials processing [23]. 

2.1 Laser Properties and Their Effects On Micromachining 

The complexity of Femtosecond laser micromachining derives from the fact that 

there are many parameters appertaining to laser operation. Effects of these 

parameters are dependent on various factors, including but not solely based on, 

atmospheric effects [7, 16, 25, 26],  material properties [27], types of appendages 

used for the laser. 

Some of the adjustable properties of laser micromachining processes and their effects 

on materials are as below: 

2.1.1 Scan speed 

Multiple holes were drilled on a 300 µm thick silicon wafer with a 800 nm, 30 fs 

femtosecond laser with a repetition rate of 1 kHz  to investigate the dependence of 

depth on laser power. The tests were run first with fixed scan speed and increasing 

laser power, then with fixed laser power and increasing scan speed [28].   

The results of increasing the laser power increases the depth of the micromilled 

cavity as can be observed on Figure 2.2(a). While increasing the scan speed in 

Figure 2.2(b) results in reduced depth of cavities [28]. 

In comparison while drilling channels instead of cavities, it is observed that lowering 

the scan speed can increase the length of the machined channel as can be observed 

on Figure 2.3 [7]. 
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(a) 

 
(b) 

Figure 2.2 (a) Comparison of increase in laser power to drilling depth. , (b) 
Comparison of increase in scan speed to drilling depth.[28] 

However extremely low scan speeds can result in severely damaged surfaces because 

of the very high amount of pulses gathered on the ablated surface spot [29]. This can 

result in undesired surface morphologies. 

Whereas at higher scan speeds, scattered irradiation and non irradiated areas can 

occur [3] This is due to the fact that as the scan speed rises the number of pulses 

hitting a given spot on the substrate is lowered, which in effect results in spots where 

pulses don’t accumulate enough to start a thermal reaction.[30] 

 

Figure 2.3 Effects of Scan Speed on the maximum channel length [7]. 

In general decrease in scan speed causes more pulses to deposit in a unit area, thus 

intensifying the amount of surface modifications [31].  While increase in scan speed 

causes less amount of pulses to deposit in a unit area, thus causing minimal amount 
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of surface modifications. Ergo scan speed is taken into account where length depth 

and surface morphologies of cavities and micro-channels are concerned. 

To set scan speed, the lowest value is where defects on surface morphology can be 

avoided and a smooth surface can be achieved. Whereas as Figure 2.4 illustrates, 

highest value of scan speed is dependent on cavity diameter and depth, as setting the 

scan speed too high would result in non-overlapping (i.e. non continuous channels) 

pulses [32]. This also effects ripple formation, as the percentage of overlapping areas 

is increased above half the focus diameter, ripple spacing rises in conjunction [33]. 

 
Figure 2.4 The relation between scan speed and cavity diameter, where higher scan 

speeds reduce the overlapping of holes [32]. 

2.1.2 Cycle and passovers 
Passover as the name suggests is a single pass over the cavity length, whereas cycle 

is a full round trip of laser over the desired cavity. It is then safe to state that Cycle 

and Passover relates to the same parameter of the micromachining property. 

It has been observed that multiple Passovers over a Si-Wafer result in linearly deeper 

cavities. However the linearity is broken as surface deformations occur and further 

increase as the depth is increased even more [8, 32]. 

2.1.3 Pulse duration 
It has been suggested that an increase in pulse duration causes an increase in cavity 

depth.  This is based on the fact that light absorption increases with increasing pulse 

duration. The effects of this increase in depth can be observed in Figure 2.5. 

Increasing the pulse duration also increases the ablation threshold[9]. 

The effects of pulse duration at below melting threshold fluences was tested for 

metals. It has been observed for Ni that there is a surge of temperature at a pulse 

duration close to the electro-phonon relaxation time.[35]  
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(a) 

 

(b) 

Figure 2.5 (a) Pulse duration vs Crater depth with 620 nm at 0.6 J/cm2[34]. (b) Pulse 
duration vs. Crater depth with 800 nm at 0.7J /cm2 [34]. 

2.1.4 Frequency (Repetition Rate) 

Frequency or repetition rate is the number of pulses emitted by the laser source per 

second. Effects of repetition rate vary depending on adjustments on other laser 

properties. One such effect is that as the repetition rate increases threshold fluence 

decreases [36]. 

As can be observed in Figure 2.6 femtosecond laser at 150fs pulses and 800 nm. 

wavelength with tripled frequency to obtain 266nm was used on silica glass in an 

argon environment to test the effects of repetition rate.  A fixed scan speed of 10µm/s 

is used, when repetition rate is increased, pulse overlapping increases resulting in 

deeper cavities [30]. 

2.1.5 Number of pulses 

After each consecutive pulse delivered to the material, fractions are removed. The 

depth of the cavity increases with the number of pulses delivered [37]. 

Working with sub-picosecond pulses has been understood to reduce the thermal 

damage. This in turn lowers the pulse energy required for ablation. As a result the 

features of the laser-machined areas are improved. 
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Figure 2.6 Comparison of cavity profiles with different repetition rates causing 

overlapping pulses [30]. 

The high number of photons in any single pulse ensures a spatial distribution of 

energy at the material surface [38]. 

Dependence of changes in surface morphology on on number of pulses was observed 

during ablation. The resulting graph of 10, 50, 80 and 100 laser pulses on silicon can 

be observed in Figure 2.7 [39].  

 

Figure 2.7 Numerical simulation showing the effect of number of pulses on a silicon 
target. 10,50,80 and 100 pulses from top to bottom. With velocity 
compositions on the right side [39].  
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2.1.6 Energy / power 

Increasing the energy of the laser, increases the depth and diameter of the generated 
cavity. 

Effects of laser power on depth and various other attributes has been tested, using a 

800nm, 30fs femtosecond laser with a repetition rate of 1kHz on a 300µm thick 

silicon wafer. The resulting effects of crater depth can be observed in Figure 2.8. 

 

Figure 2.8 Effects of laser power on depth, a 1.0 mW and c.25 mW d shows the top 
view of the drilled hole to show laser powers effect on the diameter of 
the drilled hole [28] 

From 1.0mW to 2.5mW with 0.5mW increments. It has been observed that the 

increase in laser power directly affects the depth of the machined area. During this 

test it has also been observed that increase in power does not influence the diameter 

of the drilled holes[28].  

A pyroelectric device is always used to measure the energy of a laser pulse (in joules, 

or usually microjoules) from either a single-shot or a high-repetition-rate system. In 

such a material a proportional electrical response is produced by an increase in the 

temperature [40].  
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Because of the energy deposited by the laser pulse in the material, this electrical 

response, generally a voltage, is directly proportional to the rise in temperature.  

Overall absorbing power of the material, with or without an adequate coating is the 

primary drive for this thermal effect [40]. 

2.1.7 Electric field polarization 

Effects of the polarization of laser beam on a silicon surface has been discussed. 350 

µm thick Si(100) wafers were structured using a 800 nm wavelength laser, with 120 

fs pulses at 1.0 J/cm2 fluence in gaseous environments. Three types of polarized 

laser-beams were used (p-polarized, s-polarized and circular). The results show 

directional differences at various polarization types as can be observed in Figure 2.9 

[25]. 

 

Figure 2.9 SEM images of the Silicon (100) surface showing directional differences 
at different polarization types (a and b inSF6 and c and d in N2 ambient 
gasses) [25]. 

Further to above experiments, tests were run on a 400 µm thick Si(100) wafer, with a 

Ti:sapphire amplifier, sending 800 nm wavelength, 30 fs pulses at a repetition rate of 

1 kHz to see the difference in micro-mesoporous-structures formed on the surface of 

the material based on the polarization angle[31]. 
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Figure 2.10 shows the micrographs of surface microstructures (1x1 mm2) induced by 

horizontal polarized laser pulses, vertical laser pulses and 45˚ polarized pulses in air. 

When laser pulse energy is slightly exceeded the ablation threshold, the formed 

microstructures such as ripples were observed to be perpendicular to the polarization 

orientation of the laser pulses. But when the pulse energy was much higher than the 

ablation threshold of the sample, the polarization dependent of the microstructures 

break down as mentioned above which will result in texturing of polarization 

independent surface microstructures [31]. 

   

Figure 2.10 Effects of horizontal polarized pulses on Si-Wafer[31].  

2.1.8 Fluence 

Increased laser intensity leads to a higher probability of nonlinear absorption. Thus it 

is safe to say shorter pulse duration is better for multiphoton excitation[41]. 

Also like melting thresholds, ablation thresholds for 800nm wavelength are always 

larger than the corresponding thresholds for 620 nm. This behavior can be explained 

by comparing the values of light absorption depth for the two wavelengths. 
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In case of liquid silicon, when the total energy transferred to the material becomes 

equal to the latent heat of evaporation, ablation is considered as complete. The 

subsequent heating is modeled by using the specific heat of the liquid phase. 

Experiments were run to observe the effects of fluence on crystallization on a 

reflective Si surface. Ti:Sapphire laser at a wavelength of 800 nm, with a repetition 

rate of 1 kHz and a pulse width of 100 fs (Gaussian) was used. a-Si  was sputtered on 

a less reflective c-Si by a 40mm objective lense in air.  The Si used was Si(100). 

Laser fluence was set between the range of 0.03 J/cm2 to 0.30 J/cm2 in the range of 1 

to 1000 pulses. As a result dark areas were observed on the surface expanding with 

ncreased energy. It was also observed that the thickness of a-Si increased with 

fluence, from 8nm to 30 nm in the center of the dark area[42]. It is stated that there is 

no plasma generation or surface morphology at a fluence of 0.2 J/cm2 [43] 

 
Figure 2.11 Increase in crystallization dependant on laser peak fluence.[42]  

2.1.8.1 Fluence thresholds 

The irradiated surface area, pulse duration and power determine the fluence [44]. To  

calculate   experimental   fluence   thresholds,   two   seperate   lasers with 

wavelengths of 620 nm and 800 nm were used with varying pulse durations between 

50 fs and 200 fs. It was noted that ablation thresholds for 800 nm wavelengths lasers 

are always higher than that of 620 nm wavelength lasers, the grounds for this was 

based on the light absorption depth difference of the two wavelengths. The increase 
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in fluence thresholds for different wavelengths and pulse durations were compiled on 

Table 1 [34]. 

Table 1 Fluence Threshold compilation for silicon ablation [34] 

Fluence Threshold Threshold Value (J/cm2) 𝝉𝒑(𝐟𝐬) 𝛌(𝐧𝐦) 
Fa1 0.30 80 620 
Fa1 0.30 100-120 620 
Fa1 0.32 130 620 
Fa1 0.45 150 775 
Fa2 0.458 83 800 
Fa2 0.52 130 800 

2.1.9 Melting threshold 
The thermal absorption of the surface is characterized by the optical absorption. 

According to literature the elapsed time to melt a select area on a surface takes the 

same time with both Femtosecond and Picosecond lasers [41]. 

According to Figure 2.12 when a (111) silicon is shot at, three times the melting 

threshold with 130 fs pulses, at 620 nm wavelength and 0.47 J/cm2 fluence; At the 

first picosecond a bright area occurs on the surface, then at 20 picoseconds a dark 

area forms in the middle of the bright area, which signifies the beginning of ablation. 

A ripple like formation can be observed clearly at 2 ns [41].  

 
Figure 2.12 Si(111) maretial timeline of exposure to 130fs, 620nm pulses [41, 45, 

46]. 
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2.2 Laser Ablation 

The word ablation derives from the Latin word ablatio, which means removal [47]. 

Laser Ablation is the process of removing fractions of a material via erosive 

processes. Laser ablation occurs when the energy from the laser is transferred into 

the material to execute this process. The energy input thermodynamically into the 

target material via laser pulses, results in the sublimation or evaporation of fractions 

of it. 

When the energy input administered is greater than the binding energy of the target 

material, decomposition or material removal occurs. During this process the applied 

energy is fully transferred to the internal energy of the material, consequently to the 

temperature of the target material coupled with it’s heat capacity and mass [48]. 

The aim of using short pulse lasers (such as Femtosecond Lasers) in this process is to 

avoid heat damage. In theory the pulses of such lasers are quick enough to remove 

the material that the surrounding area is unaffected of the heat. This is especially 

important while using heat sensitive materials such as Silicon. 

By utilizing varying time scales such as Femtosecond, Nanosecond or Picosecond in 

observing this energy input it is evident that at femtosecond the material shows 

electronic excitation and emits electrons. However, in picosecond the material 

dissipates energy and emits ions and in nanosecond surface relaxation and 

reorganization occurs, with the presence of plasma plumes 

Both experimental and theoretical studies have been carried out for the physics of 

laser ablation; with more accuracy in silicon, meaning: by using numerical models. 

Actually, the sequence of events ultimately leading to ablation bears radical 

complexity and as if causing more problems, takes place on an extensive scale of 

length and time. Therefore, the problem is resistant to analytical or 

phenomenological techniques (heat diffusion equations, two temperature model, etc); 

since they are prone to many limitations, and computer simulations stand out in 

handling complex thermo-mechanical pathway to the material follows, through the 

process of ablation. [34, 49] 

Ablation occurs on a picosecond time scale, thus the thermal diffusion it causes on 

the material is nearly negligible. The thermal relaxation is characterized by the 

thermal diffusion length D, which is related to the pulse with 𝜏! by 𝐷 = 𝜅𝜏!
! !, 
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where 𝜅 is the thermal diffusivity of the material [29]. Ablation precedes the thermal 

diffusion when D is shorter than the absorption length. This means the material does 

not have enough time to melt and re-solidify. Thus better spatial resolution is 

achieved. 

2.2.1 Ablation mechanisms  

During ablation electrons both bound and free on the surface layer become excited 

by absorbing multiple photons. As a result hot electrons are generated [50]. The 

material becomes ionized. A plasma forms at the surface of the material. Afterwards 

the energy is transferred to the lattice through bond breaking and material expansion 

[51]. 

2.2.2 Ablation threshold 
The ablation threshold marks the laser fluence where ablation starts. Ablation 

threshold differs between materials, due to the properties of a given material. 

There are multiple ablation thresholds for various materials such as graphite [28], 

stainless steel, copper, titanium, niobium [26] and silicon [8] as suggested in the 

literature [52]. A low threshold marks the material ejection and the second higher 

threshold marks the bond breaking of for example the ablated graphite material[16]. 

Both ablation thresholds can be defined by the logarithmic laws [52]: 

For lower laser fluence 𝐿 = 𝑑In !
!!!
!"#$  (2.1) 

For higher laser fluence  𝐿 = 𝑙In !
!!!
!!!"#$%  (2.2) 

Where 𝑑 is the total number of collisions leading to a reaction or not) per second, 

𝐿 is the number of collisions that result in a reaction per second (ablation depth) 

𝑙 is the thermal diffusion length and 

𝐹 defines the threshold laser fluence [53, 54] 

The lowest fluence range for silicon is 150 mJ/cm2, whereas 300 mJ/cm2 exceeds the 

ablation threshold for silicon [55]. 

Ablation thresholds for Silicon (100) has been tested with a Ti:Sapphire laser at 780 

nm wavelength with 150 fs at a focal distane of 400 mm as seen in Figure 2.13. 20 
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Holes were drilled, and the above formulae were confirmed [5]. It is also noted that 

no difference was observed between Si (111) and Si (100) [102]. It was also noted 

that using a Gaussian distribution of energy with a femtosecond laser the lateral 

precision of the ablated area is limited by the fluence distribution [57]. 

 
Figure 2.13 Ablation rate for 20 holes drilled with 700 nm, 150 fs pulse with a focal 

length of 400 mm [56]. 

2.3 Multiphoton Excitation (MPE) 

Multi-Photon Excitation is the simultaneous absorption of multiple long wavelength 

photons.  In solid material, the electrons are excited across the energy gap (band-

gap), to the conduction band. For a situation where ultra-fast laser pulses at photon 

energy of 1.55eV the excitation occurs via multi-photon absorption. Where n is the 

necessary number of photons. 

Electrons located near the target surface, at a depth less than their mean free path, 

can leave the target when the conduction band is close to the vacuum level as can be 

observed in Figure 2.14. 

𝑛 = 𝑚𝑜𝑑 𝐸!"# 1.55𝑒𝑉 + 1 (2.3) 

0 < 𝐸!"# ≤ 1.55𝑒𝑉 Defines the resulting kinetic energy. 
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Figure 2.14 Electron mean free path vs. electron kinetic energy. Shaded area is the 

typical kinetic energies in the presented situation [57] 

2.4 Ripple Formation 

Ripples as seen in Figure 2.15 are formed during laser ablation, especially near the 

ablation threshold. The formation of ripples are investigated based on the scanning 

speed[67] pulse width[58] surface undulations[59] number of pulses[60] and various 

other variables of laser ablation.	
  	
  

	
  
Figure 2.15 Ripple direction is affiliated with the polarization angle. At 0° 

polarization angle the ripples are perpendicular to the scanning direction, 
while at 90° polarization angle the ripples are parallel to the scanning 
direction [24]. 
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Various experiments on ripple formation show the formation and characteristics of 

ripples are based on parameters effecting ablation.  

Experiments carried out at a pulse duration of 130 fs wavelength of 800 nm. The 

laser was run at a fluence rating of 1 kHz. The spacing of the ripples were 

accumulated based on the below formula:[33] 

Λ = 𝜆/(1± 𝑠𝑖𝑛𝜃) (2.4) 

Where Λ is the spacing of the ripples 

 𝜆 is the wavelength 

 𝜃 is the polarization angle of the laser and, 

 ± is the direction of the wave either up or down 

Meanwhile the space between two sequence of pulses is based on this formula:[33] 

𝑑 = 𝑣/f (2.5) 

Where 𝑑 is the space between 2 sequence of pulses 

 𝑣 refers to the scan speed 

𝑓 is the frequency. [33] 

It has been noted that temporal evolution of ring structures on Si(111) at 0.43 J/cm2 

occurs as follows: First the irradiated area is surrounded with dark rings coinciding 

with the ablated area [61], there is a precise threshold of laser fluence for the 

formation of said rings. This formation is noted to occur on all materials [62]. It was 

also reported that ripple formation occurs strongest closer to the melting threshold 

[63]. Ripples can be observed even way outside the irradiated area [64]. 

2.5 Heat Affected Zones (HAZ) 

It has been widely discussed that during laser interaction, physical happenings are 

strongly dependent on the duration of pulse. There is a huge difference between the 

femtosecond to nanosecond regimes [65]. HAZ does exist for Femtosecond Laser 

although it’s two times smaller in magnitude [66]. 
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Characteristically, 10µm to 1mm wide heat affected zones are observed during 

nanosecond machining[81]. Since interaction of ultra-short femtosecond pulses with 

the material is short enough and thermal diffusion is avoided, no heat affected zones 

are part of this regime. 

2.6 Crater Depth Versus Laser Fluence 

Single shots at various laser fluences are irradiated on the Si wafer. These shots 

create micro-sized craters. Two types of ablation regimes are identified from the 

craters. Semiconductors and polymers. These regimes have linear dependency on a 

logarithmic scale between the ablated depth and the laser fluence. The distinguishing 

factor between these two regimes is the volume over which the laser pulse energy is 

distributed. These volumes are determined by the optical or heat penetration depth 

for the low or high fluence regime, respectively. They are described by: 

𝐿!"#$%&',!!"#| ≅    𝑙!"#$%&',!!!"#$%   ln
𝐹
𝐹!!
!, (2.6) 

F = applied fluence 

Fth = Treshold Fluence 

L = Ablation Depth for the two regimes 

At low fluence the number of hot electrons is very low. This accounts for the thermal 

equilibrium with the lattice that is achieved in mere picoseconds. This short time 

gives the charge carriers less time to move. Which means the optical penetration 

depth of the laser energy will exceed the thermal diffusion length of the charge 

carriers.  Therefore energy transfer occurs only within the volume characterized by 

the optical penetration depth loptical = 1/α. But for higher fluence, the charge carriers 

have more energy and it takes longer for them to reach the thermal equilibrium with 

the lattice. Therefore, electron diffusion length lthermal becomes significant causing an 

increase in the ablation rate.  

Abrupt increase of rim height can be seen in Figure 2.16.This increase is chosen as a 

separation point between the two regimes.  The results achieved with Low Fluence 

and High Fluence regimes can be seen in Table 2 below. 
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Figure 2.16 SEM Micrographs of single-shot ablation craters showing characteristic 
patterns F = 0.63 J/cm2, (b) F=3.3 J/cm2, (c) F=12.5 J/cm2, (d) F=25 
J/cm2, F=125 J/cm2, (f) F=250 J/cm2 [8]. 

Due to the nonlinear absorption characteristics of femtosecond laser irradiation the 

optical penetration depth was much lower than 10  µm. Which was derived from the 

absorption coefficient of Si at 780 nm [35]. The estimated ablation threshold fluence 

of 0.557 K/cm2 for low fluence regime can be considered as the minimum fluence 

for crater formation by a single pulse. Meanwhile, the laser fluence of 1.181 J/cm2 

may be interpreted as the level beyond which the electron temperature that attains a 

maximum at the target surface near the end of the pulse is sufficiently high to sustain 

carrier diffusion in the the bulk.  

Table 2 Comparison between the parameters estimated from the current and the 
literature values. 

Regime Type  Experimental REFERENCE [19] 
Low Fluence 
Regime 

𝒍𝒐𝒑𝒕𝒊𝒄𝒂𝒍 135nm 145nm 
𝑭𝒕𝒉
(𝟔)

 0.557 J/cm2 0.458 J/cm2 
High Fluence 
Regime 

𝒍𝒕𝒉𝒆𝒓𝒎𝒂𝒍 324nm 322nm 
𝑭𝒕𝒉𝒕  1.181 J/cm2 0.657 J/cm2 
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The craters with laser fluences ranging from 0.625 to 666 J/cm2 can be categorized 

into four characteristic crater patterns based on the morphological observations and 

topological analysis. 

2.7 Surface Microstructures on Silicon 

Being an important material in semiconductor industry, silicon is also very functional 

for MEMS devices and has received significant attention mainly because of its 

Potential of femtosecond laser ablation of silicon in micromachining application has 

created an attraction point for many studies [70].  

The physics of the transient states of the single pulse ablation process using 

techniques including optical pump-probe [29], time-of-flight mass spectroscopy [6, 

7, 8, 9] , and time-resolved microscopy [60] are mostly in focus in the studies in 

literature. Several theoretical models have been proposed which are based on 

molecular dynamics, for the purpose of modeling ultrafast heating and ablation 

processes [5, 6, 72].  

Recently, several researchers have reported the formation of microstructures (such as 

ripples and spikes) on Si samples in the case of multiple pulse irradiations on 

stationary samples [7, 73, 74]. For example, investigation of the ablation process 

efficiency during silicon micromachining with femtosecond laser pulses in ambient 

air was carried explaining that the decrease of the ablation efficiency in the high 

fluence region (> 10 J/cm2 ) is due to the strong interaction of the laser pulse 

together with the laser-induced plasma [68]. 

When substrates are irradiated at or above the melting threshold the surface 

deformations may form in the shape of spikes [4]. The height of these spikes are said 

to decrease when pulse duration is increased or fluence is decreased [73]. The shape 

of the spike formations is asymmetrical. This asymmetry is suggested to be caused 

by the dependence of polarization on Fresnel refraction [25]. They always point 

perpendicularly to the direction of polarization [25, 73] and don't show a directional 

difference for Si (100), (110) or (111) [72]. Furthermore the spike formations are 

suggested to be of interest for use in light absorbing surfaces [73] for solar cells [31]. 
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3. EXPERIMENTAL SETUP 

The experiments were run with Amplitude brand laser, located in the Mechatronic 

Building in ITU Maslak Campus. The Amplitude produces S-pulse Femtosecond 

Laser which are used for a wide variety of applications. In the following experiments 

the Amplitude S-Pulse Femtosecond laser was used for structuring microfluidic 

cavities [2]. 

3.1 S-Pulse 

Amplitude s-pulse delivers 1030 nm repetition rate pulses. It is a diode-pumped 

compact laser with a pulse duration of 500 fs. 

As a laser medium the s-pulse uses Ytterbiumas. The ytterbium doping allows for 

high thermal efficiency and pulses with high average power. 

The system includes a compact power supply, a synchronisation unit, an autonomous 

chiller and a laser head. There are no external water cooling units in this setup. The 

system consumes low electricity [2] 

3.2  Laser Operating Principles  

3.2.1 Chirped pulse amplification 
A high-energy laser constitutes of a laser oscillator, which emits femtosecond pulses 

at a low energy and high repetition rate, and a laser amplifier. 

Direct amplification of a pulse would cause optical damage in the amplifier before 

the desired energy level is reached, since the peak power of a pulse is inversely short. 

For safe and efficient use of amplified femtosecond pulses Chirped Pulse 

Amplification (CPA) is used. 

With this technique in order to decrease the peak power of oscillator pulses, they are 

temporally stretched. Thus low-peak pulses can safely be amplified. A pulse 

compressor is used to re-compress the high-energy pulses to their initial duration 
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after the amplification [2]. The difference in pulses after going through the oscillator, 

amplifier, stretcher and compressor are shown in Figure 3.1. 

 
Figure 3.1 Oscillator, stretcher, amplifier and compressor [2]. 

3.2.2 Laser oscillator 

Femtosecond pulses with around 10 nJ to 20 nJ at a high repetition rate of 50 MHz is 

emitted from the integrated laser oscillator. 

Ytterbium dopes crystal is used as laser material. It transmits in the 940 nm to 980 

nm infrared range, which makes it compatible with direct diode-pumping. The 

fluorescence bandwith can sustain ultra-short pulse durations. 

Solid-state non-linear mirror is used to achieve short pulse generation. The reflection 

coefficient of these pulses increase with the incident pulse energy. 

Furthermore the laser operates in the “Soliton” regime [2]. 

3.2.3 Pulse stretcher 

Pulse stretching benefits from the essence of femtosecond pulse to have a broad 

spectrum. The relation between the spectrum and pulse duration is as follows: 
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Δ𝑇𝑥∆𝑣 > k (3.1) 

k is a constant, that depends on the temporal pulse shape [2]. 

The process of the pulse stretcher is shown in Figure 3.2. 

 
Figure 3.2 Schematic drawing for pulse stretcher includes two diffraction gratings 
[2]. 

3.2.4 Laser amplifier 

The laser amplifier is essentially a resonator, employing temporally stretched pulse 

from the oscillator. The amplifier is regenerative which allows for a large 

amplification ratio. 

A switch module for pockels cells catches a single pulse from the oscillator 

amplifier. Which is amplified by several rounds in the amplifier. Once desired 

energy level is reached the pulse is sent out by the same switch. After which the 

pulse is sent to the pulse compressor via an optical routing device [2]. The principle 

of the laser amplifier is shown in  Figure 3.3. 

3.2.5 Pulse compressor 
After the pulse compressor receives the pulse, it is returned to its initial duration [2]. 
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Figure 3.3 Drawing of Laser Amplifier [2] 

3.2.6 Wave plate 
When photons leave the laser, they enter the wave-plate. The wave plate converts 

and routes the waves that enter, which allows us to manually set the photon power.  

While the wave plate guides and converts the waves entering in, it allows setting the 

photon power manually. Consequently allowing experimentation with different 

energy levels. The results can then be compared to achieve the necessary energy 

level parameters to make the smoothest canal, while also testing ablation thresholds 

[54]. 

3.2.6.1 Operating principle of wave plates 
Optical wave plates are constructed from birefringent material.  This material 

introduces a phase difference between the fast and slow principal axes of the wave 

plate. A difference in refractive index is made possible between the two axes, by the 

birefringent properties of the material. The reaction is a difference in the velocity 

between the two orthogonal components. The fast principal axis of the wave plate 

has a lower refractive index in which makes possible a faster wave velocity. The 

slower velocity is created by the slow axis which has a higher refractive index. The 

real phase shift produced is dependent on the properties of the material, the thickness 

of the wave plate and the wavelength of the signal, characterized as: 
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∆∅ =
2𝜋𝑑 𝑛! − 𝑛!

𝜆  
(3.2) 

Where  𝜆 is the wavelength of the pulse created by the laser. 

symbolized by n1 as the refractive index of the principal plane, n2 as the refractive 

index of the orthogonal plane, and d as the thickness of the wave plate [54]. 

3.2.6.2 Using a wave plate 
Wave plates are typically available as λ/4 or λ/2 meaning a phase shift of quarter of a 

wavee or half a wavelength (respectively) is created [54]. 

3.2.6.3 Half-wave 
As per the description above, a wave plate maintains two principal axes: fast and 

slow, where each axis has a different refractive index and, thus, a different wave 

velocity. When a linearly polarized beam is wave plate, and the polarization of this 

beam does not coincide with one of these axes, the output polarization will be linear 

and rotated with respect to the polarization of the input beam. When implementing a 

circularly polarized beam, a clockwise (counter-clockwise) circular polarization will 

convert into a counter-clockwise (clockwise) circular polarization. The behaviour at 

the photon entering the half wave plate is shown in Figures 3.4 and 3.5. 

 
Figure 3.4 Half Plate representation [54]. 

The output polarization will be linear and rotated with respect to the polarization of 

the input beam as can be seen in Figure 3.4. When applying a circularly polarized 

beam, a clockwise (counter-clockwise) circular polarization will transform into a 

counter-clockwise (clockwise) circular polarization. 

 Half-wave (λ/2) plates are typically used as polarization rotators. Mounted on a 

rotation mount, a λ/2 wave plate can be used as a continuously adjustable 
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polarization rotator, as shown below in Figure 3.5. Additionally, when used in 

conjunction with a Polarizing Beamsplitter a λ/2 wave plate can be used as a variable 

ratio beamsplitter.  

 
Figure 3.5 Wave Plate operating mechanisms [54]. 

The angle between the output polarization and the input polarization will be twice 

the angle between the input polarization and the wave plate’s axis as seen again in 

Figure 3.5. When the polarization of the input beam is directed along one of the axes 

of the wave plate, the polarization direction will remain unchanged [54]. 

3.2.6.4 Quarter-wave 
A quarter-wave plate is designed in a way that the phase shift created between the 

fast and slow axes represents a quarter wavelength (λ/4) or a multiple of λ/4. When 

implementing a linearly polarized beam with the polarization plane aligned at 45۫ to 

the wave plate’s principal plane, the output beam will be circularly polarized. 

Similarly, when applying a circularly polarized beam to a λ/4 wave plate the output 

beam will be linearly polarized. Quarter wave plates are used in Optical Isolators, 

Optical pumps, and EO modulators. The behaviour of the photon after entering the 

quarter wave plate is shown in Figure 3.6. 
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Figure 3.6 Quarter Wave representation [54]. 

 

We use a half-plate on our setup. 

After leaving the wave-plate, the photon enters the sonar polarizer. The purpose of 

the polarizer is to turn the photon manually in perpendicular or in parallel to the 

desired angle 

Polarizers with Calcite do not pass any photons different from the desired angle [54]. 

 
3.2.6.5 Principles of polarizers with calcite (polarization-dependent refraction – 

glan laser calcite polarizer) 
Between two orthogonally polarized waves traveling in the crystal, a differential 

delay is created due to the birefringent structure of calcite. This birefringent structure 

creates a polarization-dependent refraction which effectively steers the polarization 

planes in two angles. Whereas the ordinary plane will travel straight through the 

crystal, the extraordinary plane will exit the crystal at an angle proportional to the 

wavelength and the length of the crystal as well. 

As shown in Figure 3.7 a calcite polarizer can be designed either as a polarization 

splitter/combiner or as a polarizer element that serves to remove the angled, 

orthogonally polarized component of a beam.  

The beam output was adjusted through the waveplate, while changing the 

polarization angle with the polarizer. Either 1030 nm wavelength beam, or 515 nm 

wavelength beam was used, shifted from 1030 nm by crystals. 

for 1030 nm wavelength, Thorlabs E03 Mirror was used, and for 515 nm wavelength 

Thorlabs E02 was used. The broadband of these mirrors are shown in Table 3. 
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Figure 3.7 Drawing of polarizer [54]. 

These mirrors are made up of multiple layers of dielectric films deposited on a fused 

silica substrate, supplying excellent thermal stability. The thickness of the film is 

controlled in a way that the reflections from each surface interfere constructively 

over a certain wavelength range. Owing to the structure of the multilayer dielectric 

coating, the spectral range over which the mirror is highly reflective shifts toward 

longer wavelengths as the angle of incidence decreases toward zero [54]. 

 

Table 3 Thorlabs Broadband Dielectric Mirror Specifications [54]. 

Substrate Material Fused Silica 
Clear Aperture >90% of Diameter  
Front Surface Flatness λ/10 at 633 nm 
Front Surface Quality 10-5 Scratch-Dig 
Back Surface Fine Ground 
Diameter Tolerance +0/-0.1 mm 
Thickness Tolerance ±0.2 mm 
Wedge ≥3 arcmin 
Chamfers 0.50 mm x 45° Both sides 
Laser Damage Threshold 2 kW/cm2 CW, 100 mJ/cm: (10 ns Pulse) 
Ravg>99% for S and P Polarization for Angles of Incidence from 0° to 45° 
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3.3 λ for 515nm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8 Setup for Achieving 515 nm wavelength
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The process for creating a 515 nm photon is presented in Figure 3.8. The photons 

are sent into a Beta Barium Borat (BBO) crystal and in effect divided into two 

wavelengths. The ratio of the divided wavelengths is 75% 1030 nm and 25% 515 

nm. After which the light beam enters facing E02 mirrors, that are used to eliminate 

the 1030 nm wavelength. The main attribute of the E02 mirrors is their ability to 

absorb the 1030 nm wavelength reflecting only the 515 nm wavelength. The E02 

mirrors work like a bridge in a network system. Thus the 75% 1030 nm wavelength 

is eliminated, and the 25% 515 nm wavelength is directed towards the lens. As can 

be seen on Figures 3.8 and 3.9 the E02 mirrors operate between the wavelengths of 

400 nm to 750 nm at 0˚ and 45˚ polarization. 

 
 

Figure 3.9 0° E02 mirror coating, reflectivity vs. wavelength [54]. 

The process for creating a 1030 nm photon is presented in Figure 3.10. The 1030nm 

photon which has switched directions can be reflected off of the E03 mirrors after 

leaving the polarizers, to be transported to the desired location. E03 mirrors like the 

E02’s work like a bridge in a network system. As seen in Figure 3.11 the E03 mirror 

can directly reflect 700nm to 1200nm wavelength photons at a 99% rate. 

  
Figure 3.10 0° E03 mirror coating, reflectivity vs. wavelength [54]. 
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3.4 λ for 1030nm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11 The Process for creatıng a photon of 1030 nm
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The E03 mirrors operate between 750 nm to 1100 nm range at 0˚ and 45˚ 

polarization angles. The mirror specifications are given below on Table 4 and 

continued on Table 5. 

Table 4 Mirror specifications [54]. 

Specifications 
Material Fused Silica 
Flatness λ/10 
Surface Quality 10-5 Scratch-Dig 
Back Surface Fine Ground 
Clear Aperture >90% of diameter 
Parallelism ≤3 arc min 

Thickness 

Ø1/2” Optics 6 mm (0.236°) 
Ø1” Optics 6 mm (0.236°) 
Ø2” Optics 12 mm (0.472°) 
Ø3” Optics 19.05 mm (0.75°) 
Ø4” Optics 19.05 mm (0.75°) 

Thickness Tolerance ±0.2 mm 
Diameter Tolerance +0.00 mm / -0.10 mm 

Table 5 E02 and E03 mirror specifications [54]. 

Coating Designation Damage Threshold 
E02 0.25 J/cm2 (532 nm, 10 ns, 10 Hz, Ø0.803 mm) 
E03 1 J/cm2 (810 nm, 10 ns, 10 Hz, Ø0.133 mm) 

3.5 Optical Lenses 

After the photons are directed in the desired direction, lenses are used to focus them. 

The lenses are chosen based on the wavelength (1030nm or 515nm), focus radius (in 

other words the desired cavity radius), radius of the incoming laser and therefore the 

achieved focus distance. 

In short the lenses are determined by using the given photon parameters and 

considering the desired cavity radius. 

The distance between the material and the lens must be the same as the focus 

distance of the lens. The focus distance of a lens is the distance in which the light is 

concentrated in to a point [54]. 

3.6 Focal Length 

Focal Length is the measurement of an optical systems ability to focus or defocus 

light as seen in Figure 3.12. 
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Figure 3.12 Focal length of focusing and defocusing lenses. [54] 

There are various optical systems which can focus/defocus light. The focal length is 

used to quantify the length in which the light is focused [54]. 

3.7 Focal Length Of A Curved Mirror 

To focus or defocus light curved mirrors can be used. The radius of curved mirrors is 

usally between 10 mm and 5 mm. Concave mirror with curvature radius of the 

surface has a focal length of 𝑓 = 𝑅/2. Whereas a convex mirror uses the formula 

𝑓 = −𝑅/2. The formula assumes R is always positive. If the angle between the beam 

axis and the normal direction is not 0 (θ), then:   

𝒇𝒕𝒂𝒏 = 𝑹 𝟐 . 𝒄𝒐𝒔𝜽   (3.3) 

is used to calculate the focal length. This definition can’t be used for an optical 

system with multiple lenses (other optical elements) because where to measure the 

distance from is unclear. 

3.8 Achievable Beam Waist Radius 

The  formula 𝑊! = 𝜆/𝜋𝑊! is used to calculate the beam waist after it exits the lens. 

The beam waist in the formula must be much smaller than 𝑊!. This equation shows 

that 𝑓’s ratio to the radius of the open aperture of the lens is used to determine focal 

length. 

The experiments were run using a beam radius 𝑊! of 0.8 mm and a wavelength of 

1030 nm. 𝑊!is equal to the radius of a given cavity. 
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LB1471-B and LA1131-B lenses with a focal length of 50 mm was used to create 

cavities at 40.98 radius. LB1092-B lens with a focal length of 15 mm was used for 

cavities with 12.29 radius and for cavities with 20.85 radius LB1761-B lens with 

25.44 focal length was used. All the lenses used were between 650 nm and 1050 nm 

wavelength and different lenses need to be used for 515 nm wavelength experiments. 

3.9 Surface Characteristics 

To observe surface characteristics at almost nano dimension Zeiss EVO MA10 SEM  

was used. To observe mm and micron sizes BX-RPA Optical Microscope with a 

DP72 Camera was used. The SEM works via charging the surface electrons. Both 

devices reside in the Clean Room in ITU Maslak Campus. 

3.10 Substrate 

P-Type Si-Wafer (100) was used for all of the experiments. As observed from the 

literature Si-Wafer (100) and Si-Wafer (111) show differences in ablation process [2, 

13, 16, 48, 53, 54, 55, 56, 57, 84]. 

The P-Type Si-Wafer is a test grade wafer with a thickness of 525+ −25 µm, 

diameter of 100 mm and orient of <1-0-0>, has a 1 side polished surface. 

3.11 Experimental Parameters 

The substrate was placed on a stage capable of moving in 3 axis, connected to a 

computer where it was possible to input acceleration and scan length values. 

The laser power could be used directly at 1 kHz limitlessly, or a function generation 

was put in place to control frequency and pulse numbers. 

Parameters used in the following experiments were: 

Scan Speed [µm/s]: This could be set from the computer and dictates which 

direction and acceleration and with what speed the stage moves (thus the laser moves 

on the substrate). As the scan speed is lowered more pulses accumulate over the area 

hit by the laser beam. 

Scan Length: Equal to the length of the created cavity. 

Cycle: The amount of passes over the irradiated area. Every single pass over the 

cavity is equal to one cycle. 
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Passover: How many times the laser makes a round trip over the cavity. Passover 

equals two cycles. 

Pulse Duration: 500 femtoseconds for 1 khz 1030 nm laser beam (effected by 

fluence thresholds). 

Frequency: Amount of pulses per second, for the following experiments either 1 

kHz or 0.1 kHz was used. Fluence threshold increases when frequency does. 

Number of Pulses: Could be configured with the function generator, or the naked 

laser could be used for 1000 pulses per second. 

Desired Cavity Diameter: Can be filtered to configure the beam waist hitting the 

substrate. 

Energy, Power: Configured via  the wave plate. 

Polarizer Angle: Sets the angle of the photon using the polarizer. 

Fluence: Obtained  by the ratio of the incoming energy to the beam waist radiused 

circle 

Laser Time: How long the operation takes. 

Scan Time: Movement time of the stage. 

Actual Cavity Diameter: Diameter of the created cavity. 

Melting Threshold: The fluence level where Silisium begins to abrade (changes 

depending on pulse duration and wavelength [68]) 

Ablation Threshold: The fluence level where silisium begins to get damaged [2, 13, 

16, 48, 53, 54, 55, 56, 57, 84]. 
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4. EXPERIMENTS AND RESULT DISCUSSION 

4.1 Focus Calibration 

As a starting step focuses were calibrated. Lenses with a focal length of 25.4 mm 

were used. Therefore the distance between the Si-Wafer and the lens was set to 25.4 

mm’s as well. 

At first pulses with high energy and repetition rates were irradiated from the laser, 

achieving spot sized holes. But since the setup was handmade it wasn’t clear whether 

it was accurate on a micro scale. It was decided that to confirm the accuracy of the 

focal length, the fluence was to be set to the melting threshold. Because the melting 

threshold is the lowest intensity of energy required to create a visible change on the 

Si-Wafer so that surface modifications that may have occurred can be examined 

[48,85]. Because if the focal length was truly accurate, the target material would be 

abraded even with the lowest energy intensity level of melting threshold. 

No ablation occurred as the distance drew further away from the exact focal length, 

since the lowest energy level that can ablate the Si-Wafer was used.  The lowest 

energy / fluence levels mentioned are the limits required to start ablation as found in 

the literature [2, 13, 16, 48, 53, 54, 55, 56, 57, 84]. 

Using the minimum energy level that can ablate Si-Wafer’s, the only physical 

change in the wafer occurs when the lens with the focal length is set to the exact 

position. Even a few micrometers can break the equation. 

After several manual attempts for focus calibration, the focus calibration was set. 

This was ascertained as the lowest energy intensity levels for ablation as denoted in 

the literature was used, and ablation did in fact occur. 

4.2 First Laser Pulses 

First pulses were irradiated using a function generator to manually set the repetition 

rate to desired values, instead of sending fixed beams from the laser. The exact 

number of pulses hitting the substrate couldn’t be attained because the shutter was 
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switched on and off manually. To calculate the exact number of pulses a function 

generator was used. The function generator has also shown the exact amount of 

frequency and as a result the exact duration of the scan time according to the given 

calibration.   

4.2.1 Spot shots 

Material surface was irradiated with 1, 5, 10 shots respectively at different fluence 

levels. A low magnification optical camera was used to take the images. Even though 

the resulting images are indistinctive, the increase in Hole diameter based on energy 

levels and number of pulses is clear. The images in Table 6 indicate that as the 

energy transferred with light increases the diameters of the holes widen. 

Table 6 Optical camera images of Si-Wafer irradiated with differing fluence levels 
and number of pulses. 

1030 nm, 0° polarization, 500 fs pulse duration 

     
Fluence:0.294 
J/cm2 

Fluence:0.587 
J/cm2 

Fluence:0.881 
J/cm2 

Fluence: 1.47  
J/cm2 

Fluence:2.94 
J/cm2 

Irradiations of 1, 5 and 10 pulses, at an energy level of 2 µJ with afocal length of 
25.4 mm 

A 1030 nm wavelength laser with a pulse duration of 500 fs and a frequency of 1 

kHz at a polarization angle of 0˚, was used for the spot shot experiment. The 25.4 

mm focal length lens was used. Energy levels were sequentially set to 1 mW, 2 mW, 

3 mW, 5 mW and 10 mW. At every energy level respectively 1, 5 and 10 pulses are 

sent to create 3 different holes for each energy level as shown in Table 7. 

As a result there is no image for the ablation after a single pulse shot with the fluence 

of 0.294 J/cm2. This could have one of several different meanings as listed below: 

If the fluence of 0.294 J/cm2 was below the melting threshold. This was unlikely 

considering the literature [2, 13, 16, 48, 53, 54, 55, 56, 57, 84], where melting 

threshold was said to be 0.15 J/cm2. 
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Table 7 Experiment statistics for pulse shots with varying number of pulses power and fluence. 

Cavity No. Scan Speed Pulses Power Frequency Fluence  Energy Focal Length W0 Polarizer Angle 
  [µm/s]   [mW] [kHz] [J/cm2] [µJ] [mm] [mm]   

Hole 1 3000 1 1 1 0.294 1 25.4 0.8 0° 
Hole 2 3000 5 1 1 0.294 1 25.4 0.8 0° 
Hole 3 3000 10 1 1 0.294 1 25.4 0.8 0° 
Hole 4 3000 1 2 1 0.587 2 25.4 0.8 0° 
Hole 5 3000 5 2 1 0.587 2 25.4 0.8 0° 
Hole 6 3000 10 2 1 0.587 2 25.4 0.8 0° 
Hole 7 3000 1 3 1 0.881 3 25.4 0.8 0° 
Hole 8 3000 5 3 1 0.881 3 25.4 0.8 0° 
Hole 9 3000 10 3 1 0.881 3 25.4 0.8 0° 
Hole 10 3000 1 5 1 1.47 5 25.4 0.8 0° 
Hole 11 3000 5 5 1 1.47 5 25.4 0.8 0° 
Hole 12 3000 10 5 1 1.47 5 25.4 0.8 0° 
Hole 13 3000 1 10 1 2.94 10 25.4 0.8 0° 
Hole 14 3000 5 10 1 2.94 10 25.4 0.8 0° 
Hole 15 3000 10 10 1 2.94 10 25.4 0.8 0° 
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Because only a single laser beam is sent to ablate the bulk material. 

The image is indistinctive, so the ablated area cannot be differentiated from the rest 

of the substrate. 

4.3 Cavities 

In this setup the stage is moved while the laser shoots pulses to create cavities 

instead of holes. The repetition rate was manually set with the function generator. 

The aim is to achieve cavities of 10 µm in diameter and 120 µm in length. To 

achieve these results the lens must be substituted by a beam waist (a lens that will 

create 10 µm diameter cavities). 

The below formula was used to calculate which focal length lens was required to 

achieve the  Desired Cavity Diameter [85]: 

𝑊! =
𝜆𝑓
𝜋𝑊!

 (4.1) 

Where 𝑊! is,  

 𝜆 is 

According to the formula, when a cavity with a diameter of 10 µm is aimed; 

0.005  𝑚𝑚 =
1.030  𝑚𝑚  ×  𝑓𝑜𝑐𝑎𝑙  𝑙𝑒𝑛𝑔𝑡ℎ

𝜋  ×  0.8  𝑚𝑚  (4.2) 

Thus the focal length is  found to be approximately 15 mm. Therefore a lens with a 

focal length of 15mm is necessary. 

The repetition rate to create the 120 µm cavity is calculated as: 

To manufacture a cavity with 5 µm radius, with a laser pulse duration of 500 fs, 

moving a quarter radius after each pulse was preferred. Thus between every single 

pulse a distance of 1,25 µm is covered as seen in Figure 4.1. 

For a repetition rate of 1 kHz and length of 120 µm the interval between each pulse 

should be 𝑇 = 1
𝐹 = 10!!. F equals frequency. So to relocate the center of the 

beam a radius away, it was required to have 5 pulses, considering each after each 

shot a distance of 1,25 µm was covered as represented in Figure 4.2. 
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Figure 4.1 Distance between overlapping pulses 

5µm distance was covered in 4𝑥10!! s. Using the formula: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑉𝑒𝑙𝑜𝑡𝑖𝑐𝑦  ×  𝑇𝑖𝑚𝑒  𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙   →  𝑥 = 𝑣×𝑡   ⇒ 5  μm = v×4×10!!  s.  

Thus the scan speed would be 𝑣 = 1.25  mm/s (scan speed),  

to achieve a 120 µm cavity 𝑡 = 0.096  s is required. and 120 pulses are needed. 

As the number of pulses and scan speed needed to form a 120 µm long cavity with a 

radius of 5 µm was attained, the parameters were tested at a power level of 0.6 mW 

and a polarization angle of 0˚, with frequency set to 1 kHz as represented in Figure 

4.2. 

 
Figure 4.2 Distance and time interval for five consequtive Femtosecond shots 

Ripple like structures formed on the ablated areas as can be seen in Figure 4.3. It 

was discussed in literature [33, 58, 60, 62, 86, 87] that these ripple like structures 

were formed by the different variations of polarization angle, pulse, fluence and scan 

speed parameters.  

To study the different results of the parameter changes used in the experiment, it was 

determined to use 1 10 of the frequency amount used in the prior experiment. 

The same formula is to be used to calculate how many pulses are required to create a 

cavity of desired length at the desired scan speed and desired frequency. 

       

1,
25
µm

 

     

5	
  µm 

 

10-­‐3s 
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Table 8  Statistical results on the first experiment. 

Cavity 
No. 

Scan 
Speed Pulses Power Frequency 

 Desired 
Cavity 

Diameter Fluence  Energy 

Actual 
Cavity 

Diameter Passovers 

Pulses x 
Pass 
Over 

Focal 
Length W0 

Polarizer 
Angle 

Ripple 
Width 

Ripple 
Spacing 

  [µm/s]   [mW] [kHz] [µ] [J/cm2] [µJ] [µ]     [mm] [mm]   [µm] [µm] 
Cavity 1 1250 120 0.6 1 12.29 0.506 2 13.424 1 120 15 0.8 0° 0.6 0.35 
Cavity 2 1250 120 0.6 1 12.29 0.506 2 13.54 1 120 15 0.8 0° 0.52 0.31 
Cavity 3 1250 120 0.6 1 12.29 0.506 2 12.295 1 120 15 0.8 0° 0.7 0.49 
 
 

 

   
 a b c 

Figure 4.3 Cavity images showing the formation of ripple like structures. The values are: (a) Focal Length 15 mm, Fluence 0.506 J/cm2, 
Polarization Angle 0 °, Frequency 1 kHz, Scan Speed 1250 (b) Focal Length 15 mm, Fluence 1.506  J/cm2, Polarization Angle 0 °, 
Frequency 1 kHz, Scan Speed 1250 (c) Focal Length 15 mm, Fluence 0.506   J/cm2, Polarization Angle 0 °, Frequency 1 kHz, Scan 
Speed 1250 
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4.4 Analysis Of Change In Frequency 

The aim of this experiment was to achieve a cavity with 5 µm radius and 120 µm 

length at a laser pulse duration of 500 fs with 1/10 scan speed and a repetition rate of 

0.1 kHz at a polarization angle of 0°. Using the same formula from the above 

mentioned experiment, the parameters to create 120 µm long cavities were 

determined. With reduced scan speed and frequency, the total pulse number per 

cavity remains the same, however the pulse amount per second is different. 

Comparing the data presented on Table 8 and Table 9, although the total pulse 

number and pulse per area remains the same, the scan speed and frequency are both 

reduced to one tenth their original value (Table 8 to Table 9). This means that with 

ablation at higher frequencies both the cavities and ripples are wider. So even though 

the total pulse number stays the same, by reducing the scan speed and ablating a 

cavity of the same length but for ten times the duration, the cavity ablated with 

higher frequency is wider and deeper. Conclusively the frequency (pulse amount per 

second) is much more effective than scan speed, total pulse amount and pulse per 

area.  

The comparison of the Actual Cavity Diameter, Ripple Width and Spaces are shown 

in Figure 4.4. As seen in the graphs the ripple spacing and ripple width are directly 

proportional while the actual cavity diameter is inversely proportional to the others. 

Examination of the results of this experiment has shown that ripples as seen on 

Figure 4.5 are formed on the material surface.  As discussed in the literature [10, 16, 

64, 67, 87, 108] the ripples differ based on scan speed, fluence, polarization angle 

and total pulse amount. Considering the images the cavity diameter is wider at the 

starting and ending points. These wider parts are due to the excess number of pulses 

compared to the other parts of the cavity. This excess number of pulses occurs as the 

shutter is used manually. Thus the lasers start and end time might differ from the 

actual time (in microseconds) of the beginning to ending of the scan time. So even if 

the shutter is opened early by a few microseconds, an excess amount of pulses hits 

the starting point of the cavity since scanning time may start after the laser pulses 

start hitting the surface area. This had resulted in wider cavity diameters at the end 

points. 
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The same principle applies if the shutter is opened later than the beginning of the 

scan time, even by a few microseconds. This would result in an excess amount of 

pulses at the end of the cavity since the scanning movement would stop but the 

pulses continue to accumulate at the end point. 

 
Figure 4.4 Actual Cavity Diameter, Ripple Width and Spacing comparisons for 1250 

µm/s and 125 µm/s Scan Speeeds. 

Wider and perpendicular ripples were observed at the spots where more pulses than 

the desired amount accumulated. As discussed in the literature [10, 64, 67, 86, 87, 

108] it is reportedly known that these perpendicular ripples are affected by the 

polarization angle. 

Further testing would be required in order to see the differences in ripple formation 

at 90˚ and 0˚ polarization angles. Before continuing with this experiment the spacing 

between ripples was examined. 
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Table 9 Statistical results on the second experiment. 

Cavity 
No. 

Scan 
Speed Pulses Power Frequency 

 Desired 
Cavity 

Diameter 
Fluence  Energy 

Actual 
Cavity 

Diameter 
Passovers 

Pulses x 
Pass 
Over 

Focal 
Length W0 Polarizer 

Angle Ripple 
Width 

Ripple 
Spacing 

  [µm/s]   [mW] [kHz] [µ] [J/cm2] [µJ] [µ]     [mm] [mm]   [µm] [µm] 
Cavity 4 125 120 0.6 0.1 12.29 0.506 20 9.961 1 120 15 0.8 0° 0.58 0.25 
Cavity 5 125 120 0.6 0.1 12.29 0.506 20 10.933 1 120 15 0.8 0° 0.47 0.27 
Cavity 6 125 120 0.6 0.1 12.29 0.506 20 10.466 1 120 15 0.8 0° 0.62 0.29 
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(a)  

(b) 

 
(c) 

 

 
(d) 

 
(e) 

 
(f) 

Figure 4.5 SEM images of cavities 1 to 6 from experiments in 4.3 and 4.4 // (a) 
F.Length 15 mm, Fluence 1.69 J/cm2,  P.Angle 0°, Fre. 1 kHz, S.Spd 
1250, ripple w. 0.6 // (b) F.Length 15 mm, Fluence 1.69 J/cm2, P.Angle 
0°, Fre. 1 kHz, S.Spd 1250, ripple w. 0.52 // (c) F.Length 15 mm, Fluence 
1.69 J/cm2, P.Angle 0°, Fre. 1 kHz, S.Spd 1250, ripple w. 0.7 // (d) 
F.Length 15 mm, Fluence 16.9 J/cm2,  P.Angle 0°, Fre. 0.1 kHz, S.Spd 
125, ripple w. 0.58 // (e) F.Length 15 mm, Fluence 16.9 J/cm2,  P.Angle 
0°, Fre. 0.1 kHz, S.Spd 125, ripple w. 0.47 // (f) F.Length 15 mm, Fluence 
16.9 J/cm2,  P.Angle 0°, Fre. 0.1 kHz, S.Spd 125, ripple w. 0.62 
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4.5 Ripple Spacing 

As observed in the previous experiment, ripples were formed perpendicularly and 

horizontally successively. 

Observing Figure 4.5 there were white areas within the ripples referred to as ripple 

width, and black areas referred to as ripple spacing. The ripple width is always 

greater than the ripple spacing, comparatively around double the size. Table 10 

shows the results of ripple formation at the same fluence rating with different amount 

of frequencies (pulses per second). As seen on this table both the ripple width and 

ripple spacing is effected by the change in the amount of pulses per second. The 

ripple spacing and width increases with the amount of pulses per second. 

Referring to Figure 4.4, ripple spacing and width is also directly proportional to the 

Actual Cavity Diameter. This proves ripple formation is a key concept for the 

creation of a cavity. Further examination has shown that although the amount of 

pulses is fixed by reducing the scanning speed (ablation time) and the fluence is 

constant, as the number of pulses per second (frequency) increases both Actual 

Cavity Diameter and ripple widths increase. While this fact is solid, the change in 

frequency could not be the only factor in the formation of ripples and changes in 

their characteristics. As discussed in the literature the polarization angle plays a key 

part in the formation of ripples, their directions and development [33, 60, 61]. Thus 

the following experiment was focused on the effects of polarization.
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Table 10 Statistical results of ripple spacing. 

Cavity 
No. 

Scan 
Speed Pulses Power Frequency 

 Desired 
Cavity 

Diameter Fluence  Energy 

Actual 
Cavity 

Diameter Passovers 

Pulses x 
Pass 
Over 

Focal 
Length W0 

Polarizer 
Angle 

Ripple 
Width 

Ripple 
Spacing 

  [µm/s]   [mW] [kHz] [µ] [J/cm2] [µJ] [µ]     [mm] [mm]   [µm] [µm] 
Cavity 1 1250 120 0,6 1 12.29 0,506 2 13.424 1 120 15 0.8 0° 0.6 0.35 
Cavity 2 1250 120 0,6 1 12.29 0,506 2 13.54 1 120 15 0.8 0° 0.52 0.31 
Cavity 3 1250 120 0,6 1 12.29 0,506 2 12.295 1 120 15 0.8 0° 0.7 0.49 
Cavity 4 125 120 0,6 0.1 12.29 0,506 20 9.961 1 120 15 0.8 0° 0.58 0.25 
Cavity 5 125 120 0,6 0.1 12.29 0,506 20 10.933 1 120 15 0.8 0° 0.47 0.27 
Cavity 6 125 120 0,6 0.1 12.29 0,506 20 10.466 1 120 15 0.8 0° 0.62 0.29 

 
Table 11 Effects of polarizer angle on surface structures. 

Cavity 
No. 

Scan 
Speed Pulses Power Frequency 

 Desired 
Cavity 

Diameter 
Fluence  Energy 

Actual 
Cavity 

Diameter 
Passovers 

Pulses x 
Pass 
Over 

Focal 
Length W0 Polarizer 

Angle Ripple 
Width 

Ripple 
Spacing 

  [µm/s]   [mW] [kHz] [µ] [J/cm2] [µJ] [µ]     [mm] [mm]   [µm] [µm] 
Cavity 7 1000 100 2 1 12.29 1.69 5 16.731 1 100 15 0.8 0° 0.43 0.43 
Cavity 8 1000 100 2 1 12.29 1.69 5 23.222 1 100 15 0.8 90° 0.46 0.31 
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4.6 Effects Of Polarization 

As discussed in the literature ripples form proportional to the direction of 

polarization (the Electric Field Polarization) [33, 58, 60, 62, 86, 87]. Examining 

Figure 4.3, it was observed that ripples are formed bidirectional and they 

perpendicular to each other. Especially in the areas where too many pulses overlap or 

where higher levels of energy was used. 

Experiments have been run to test the effects of changing polarization angles 

between 90° and 0° to understand the directional differences in ripples. Laser was set 

at a pulse duration of 500 fs and a repetition rate of 1 kHz. 

SEM images were examined, and the observations have shown that the ripples 

formed on the irradiated area are parallel to each other. 

As seen in Figure 4.6 (a), at 0˚ polarization the ripples were formed perpendicular to 

the scanning direction (the x axis). In Figure 4.6 (b), at 90˚ polarization the ripples 

were parallel to the scanning direction (the x axis). This explains that the first set of 

ripples are formed perpendicular to the polarization angle. Furthermore as more 

pulses convene or higher fluence levels are used a second set of ripples are formed 

perpendicular to the first type of ripples, horizontal to the polarization angle. 

 
(a) (b) 

Figure 4.6 Effects of polarizer angle on surface formations. (a) Focal Length 15 mm, 
Fluence 4.21 J/cm2, Polarizer Angle 0°, Frequency 1 kHz, Scan Speed 
1000. SEM magnification at 5.0k (b) Focal Length 15 mm, Fluence 4.21 
J/cm2,  Polarizer Angle 90°, Frequency 1 kHz, Scan Speed 1000, SEM 
magnification at 2.5k 

As results of ablations with polarization angles of 0˚ and 90˚ are analyzed, it was 

seen that the increase in the number of pulses results in increased ablation in both x 
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and y directions, first perpendicular then parallel to the polarization angle. 

Furthermore this results with an increase of both cavity width and depth. 

Since deeper cavities are required for certain applications (i.e. microfluidics), it was 

decided to increase the laser pulse amount for unit µm2. The function generator can 

increase the number of pulses, but to increase the amount of pulses in unit µm2 the 

scanning speed must be reduced. Thus the following experiment was focused on the 

effects of scan speeds and changes in fluence. 

4.7 Effects Of Scan Speed 

Experiments were run to observe the effects of power, energy and fluence with 

different scan speeds with 500 fs laser pulse duration, and a repetition rate of 1 kHz.  

The experiments values are shown in Table 12. 

For these experiments the number of pulses was kept fixed at 100. At the first part of 

the experiment the energy levels of 5, 10, 15, 20 µJ was used respectively, at a fixed 

scan speed of 1000 µm/s. In the second part of the experiment the energy levels were 

again set to 5, 10, 15, 20 µJ, however this time the scan speed was set to a higher 

rating of 1500 µm/s. 

The Actual Cavity Diameter and ripple width are directly proportional with the 

amount of transferred energy as can be seen in Figure 4.7. As the fluence increases, 

so does the Actual Cavity Diameter and ripple width. 

Figure 4.8 (a) and (b) shows the effects of setting the scan speed at 1000 µm/s 

versus setting it to 1500 µm/s. It was observed that slowing down the scan speed 

results in wider cavities and ripples, which was expected, since the more number of 

pulses per area is a direct consequence of reducing the scan speed. 

Observing the resulting graphs on Figure 4.9 that the cavity and ripple widths 

change according to changes in energy and number of pulses per area, but the ripple 

spacing is not changed effected by these parameter changes. 
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Table 12 Scan Speed comparisons for differing energy fluence and power ranges. 

Cavity 
No. 

Scan 
Speed Pulses Power Frequency 

 Desired 
Cavity 

Diameter 
Fluence  Energy 

Actual 
Cavity 

Diameter 
Passovers 

Pulses x 
Pass 
Over 

Focal 
Length W0 Polarizer 

Angle Ripple 
Width 

Ripple 
Spacing 

  [µm/s]   [mW] [kHz] [µ] [J/cm2] [µJ] [µ]     [mm] [mm]   [µm] [µm] 
Cavity 9 1000 100 5 1 12.29 4.21 5 17.2 1 100 15 0.8 90° 0.54 0.313 
Cavity 10 1000 100 10 1 12.29 8.43 10 20.6 1 100 15 0.8 90° 0.62 0.315 
Cavity 11 1000 100 15 1 12.29 12.6 15 23.5 1 100 15 0.8 90° 0.63 0.316 
Cavity 12 1000 100 20 1 12.29 16.9 20 25.64 1 100 15 0.8 90° 0.67 0.319 
Cavity 13 1500 100 5 1 12.29 4.21 5 11.3 1 100 15 0.8 90° 0.36 0.150 
Cavity 14 1500 100 10 1 12.29 8.43 10 13.78 1 100 15 0.8 90° 0.41 0.153 
Cavity 15 1500 100 15 1 12.29 12.6 15 22.29 1 100 15 0.8 90° 0.46 0.156 
Cavity 16 1500 100 20 1 12.29 16.9 20 24.74 1 100 15 0.8 90° 0.54 0.159 
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Figure 4.7 Graph showing the effects of scan speed energy and fluence on cavity 
depth. 

(a) (b) 

 
Figure 4.8 Actual Cavity Diameter, Ripple Width and Spacing compared for 1000 

µm/s and 1500µm/s scan speeds. Focal Length: 15 mm. 
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(a) 
 

(b) 

(c) (d) 

Figure 4.9 Sem images of cavities 2 through 5 for cavity depth comparison at 1000 
scan speed. The values for ripple spacing on these images were 
approximated.  (a) Focal Length 15 mm, Fluence 4.21 J/cm2, 
magnification 2.5k  Polarizer Angle 90°, Frequency 1 kHz, Scan Speed 
1000,  (b) Focal Length 15 mm, Fluence 8.43 J/cm2, magnification 2.5k 
Polarizer Angle 90°, Frequency 1 kHz, Scan Speed 1000,  (c)  Focal 
Length 15 mm, Fluence 12.6 J/cm2, magnification 5.0k Polarizer Angle 
90°, Frequency 1 kHz, Scan Speed 1000, (d) Focal Length 15 mm, 
Fluence 16.9 J/cm2, magnification 5.0k Polarizer Angle 90°, Frequency 1 
kHz, Scan Speed 1000 
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(a) (b) 
 

(c) (d) 

Figure 4.10 SEM images of cavities 6 through 9 for cavity depth comparison at 1500 
scan speed. The values for ripple spacing on these images were 
approximated.  (a) Focal Length 15 mm, Fluence 4.21 J/cm2, Polarizer 
Angle 90°, Frequency 1kHz, Scan Speed 1500, (b) Focal Length 15 mm, 
Fluence 8.43 J/cm2, Polarizer Angle 90°, Frequency 1kHz, Scan Speed 
1500, (c) Focal Length 15 mm, Fluence 12.6 J/cm2, Polarizer Angle 90°, 
Frequency 1kHz, Scan Speed 1500, (d) Focal Length 15 mm, Fluence 
16.9 J/cm2, Polarizer Angle 90°, Frequency 1kHz, Scan Speed 1500. 

During these analysis, it was also discussed that the cavities so far were ragged. It 

would be hard for the fluids to flow smoothly in them. Thus it was decided that more 

precise holes should be drilled before moving on to cavities. This idea was based on 

the fact that once precise holes are micromilled, it was only necessary to move the 

stage to acquire precise cavities. Further experimentation was required to micromill 

more precise holes. 

4.8 Hole Drilling Adjustments 

In previous experiments, the surface characteristics of the cavities were rough and 

weren’t deep enough for the microfluidics to flow through. More micromilling 
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experiments would have to be conducted to achieve these parameters for holes. As 

holes with desired characteristics is achieved, the data accumulated would be used to 

create cavities with desired parameters. For this the same mentality in micromilling 

would be used, except the stage would be moved after desired amount of pulses, the 

resulting overlapping holes as can be seen in Figure 4.11 would theoretically result 

in the creation of cavities with desired characteristics. 

 
Figure 4.11 Schematics of overlapping holes to create cavities. 

As listed in Table 13 for this setup laser pulse duration was set to 500 fs with a 

repetition rate of 1 kHz, with a fixed fluence rate but variable amount of pulses at 0˚ 

and 90˚ polarization angles was used. The resulting data would show which 

polarization angle is more suitable to create precise holes. Ripples, hole diameters, 

and hole symmetry was to be examined after the experiments.  

As the results were examined in Figure 4.12 and comparing the cavity lengths in 

Table 13, it was decided that polarization angle of 90˚ is more suitable to create 

precise and symmetrical holes, as the holes micromilled with polarization angle of 

90˚ had less ripples and dimples. These results are also to be tested for cavities to 

observe if they show the same characteristics as the micromilled holes do when 

ablated with the polarization angle of 90˚. After this point it was necessary to test 

which parameters for pulse amount, energy levels and different parameters of focal 

length of lens would have to be used to create holes deep and precise enough.

       
1.
25
µm
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Table 13 Detailed statistics for holes drilled at experiment 7 

Cavity 
No. Pulses Power Frequency  Desired Cavity 

Diameter Fluence  Energy Actual Cavity 
Diameter 

Focal 
Length W0 Polarizer 

Angle 
Ripple 
Width 

Ripple 
Spacing 

    [mW] [kHz] [µ] [J/cm2] [µJ] [µ] [mm] [mm]   [µm] [µm] 
Hole 16 300 10 1 12.29 8.43 10 14.163 15 0.8 90° n/a n/a 
Hole 17 350 10 1 12.29 8.43 10 14.941 15 0.8 90° n/a n/a 
Hole 18 400 10 1 12.29 8.43 10 15.291 15 0.8 0° 0.5 0.43 
Hole 19 600 10 1 12.29 8.43 10 17.743 15 0.8 0° 0.43 0.35 
Hole 20  250 10 1 12.29 8.43 10 12.918 15 0.8 0° 0.47 0.31 
Hole 21 150 10 1 12.29 8.43 10 11.295 15 0.8 90° 0.35 0.23 
Hole 22 500 10 1 12.29 8.43 10 15.603 15 0.8 90° 0.47 0.31 
Hole 23 200 10 1 12.29 8.43 10 12.109 15 0.8 90˚ 0.47 0.31 
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(a) (b) 
 

(c) (d) 

(e) (f) 

Figure 4.12 Sem images of holes drilled with different polarization angles (a) Focal 
Length 15 mm, Fluence 8.43 J/cm2, Polarizer 90°, Frequency 1 kHz (b) 
Focal Length 15 mm, Fluence 8.43 J/cm2, Polarizer 90°, Frequency 1 kHz 
(c) Focal Length 15 mm, Fluence 8.43 J/cm2, Polarizer 0°, Frequency 1 
kHz  (d) Focal Length 15 mm, Fluence 8.43 J/cm2,Polarizer 0°, 
Frequency 1 kHz, (e) Focal Length 15 mm, Fluence 8.43 J/cm2, Polarizer 
0°, Frequency 1 kHz, (f) Focal Length 15 mm, Fluence 8.43 J/cm2, 
Polarizer 90°, Frequency 1 kHz 

 

4.9 Hole Micromilling With 90˚ Polarization Angle At 25.4 mm Focal Length 

As the results of previous experiments have shown that 90˚ polarization was much 

more effective in creating desired holes, the other influential parameters (pulse 
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amount and fluence) were tested. To create more precise holes using a lens with a 

focal length of 25.4 mm. 

To figure out the differences between various parameters of pulse amount and 

fluence, holes were micromilled with a fixed polarization angle of 90˚, pulse duration 

of 500 fs, 1 kHz frequency, with varying pulses between 5 and 500 and fluences 

between 0.4 J/cm2 and 6 J/cm2, as listed in Table 14. 

Considering the data in Figure 4.13, it was certain that the hole diameter was 

directly proportional to the pulse number and fluence. But the SEM images would 

have to be observed closely to figure out whether the increase in pulse amount or the 

increase in fluence would be more effective in creating more symmetrical, precise 

and smooth holes. Since the more effective parameter would be the prioritized 

parameter to be used in testing the previous results for cavities, using the overlapping 

technique previously discussed. 

As can be seen in Figure 4.14 both the increase in pulse amount and fluence resulted 

in wider holes. The holes created with increased number of pulses were much more 

symmetrical and smoother compared to those created with increased fluence levels. 

This examination has shown that keeping the pulse per area high and fluence low 

would result in precise microholes.  

Furthermore the resulting assymetrical holes may have been a result of using lenses 

with longer focal lengths since they scatter the laser beams to a wider area. So further 

experimentation would be required to test shorter focal length lenses. Using lenses 

with less focal length would result in thinner cavities. However the requirements for 

microfluidics to flow through cavities was wider than what was achieved. But since 

the primary goal was to create smoother and precise cavities, the wider cavities 

would have to be achieved by overlapping these thinner cavities side by side later on. 

To see whether this theory would apply to creating cavities, experiments with 

increased number of pulses (achieved by multiple passes over the ablated area) 

would be run at low fluence levels.  
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Table 14 Parameters and results for the twenty one holes drilled with differing energy and fluence ratings. 

Cavity 
No. Pulses Power Frequency 

 Desired Cavity 
Diameter Fluence  Energy 

Actual Cavity 
Diameter 

Focal 
Length W0 

Polarizer 
Angle 

    [mW] [kHz] [µ] [J/cm2] [µJ] [µ] [mm] [mm]   
Hole 7 50 10 1 20.82 2.94 10 19 25.4 0.8 90° 
Hole 8 50 2 1 20.82 0.587 2 13 25.4 0.8 90° 
Hole 9 50 2 1 20.82 0.587 2 14 25.4 0.8 90° 
Hole 10 25 8 1 20.82 2.35 8 20 25.4 0.8 90° 
Hole 11 25 8 1 20.82 2.35 8 13 25.4 0.8 90° 
Hole 12 50 1.5 1 20.82 0.441 1.5 12 25.4 0.8 90° 
Hole 13 25 3 1 20.82 0.881 3 12 25.4 0.8 90° 
Hole 14 25 4 1 20.82 1.17 4 13 25.4 0.8 90° 
Hole 15 25 8 1 20.82 2.35 8 21 25.4 0.8 90° 
Hole 16 400 20 1 20.82 5.87 20 38 25.4 0.8 90° 
Hole 17 200 15 1 20.82 4.41 15 30 25.4 0.8 90° 
Hole 18 300 18 1 20.82 5.29 18 35 25.4 0.8 90° 
Hole 19 5 2 1 20.82 0.587 2 28.5 25.4 0.8 90° 
Hole 20 5 2 1 20.82 0.587 2 28 25.4 0.8 90° 
Hole 21 50 4 1 20.82 1.17 4 13 25.4 0.8 90° 
Hole 22 25 3 1 20.82 0.881 3 11 25.4 0.8 90° 
Hole 23 500 1.5 1 20.82 0.441 1.5 11 25.4 0.8 90° 
Hole 24 500 1.5 1 20.82 0.441 1.5 9 25.4 0.8 90° 
Hole 25 500 1.5 1 20.82 0.441 1.5 10 25.4 0.8 90° 
Hole 26 500 1.5 1 20.82 0.441 1.5 10 25.4 0.8 90° 
Hole 27 500 1.5 1 20.82 0.441 1.5 9 25.4 0.8 90° 
Hole 28 300 2 1 20.82 0.587 2 11 25.4 0.8 90˚ 
Hole 29 500 1 1 20.82 0.294 1 13 25.4 0.8 90˚ 
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Figure 4.13 Comparison of Actual Cavity Diameter and Desired Cavity Diameter. 

The data gathered from previous experiments was used to resolve issues in cavity 

precision. Further cavities were to be drilled, this time taking into consideration that 

low focal length lenses that would have to be used, resulting in thinner cavities.  

The next goal in these series of experiments was to go back to creating cavities. To 

achieve thinner cavities low focal length lenses must be used. But since using lenses 

with shorter focal length would transform energy per area to higher fluence ratings at 

given energy levels; the energy levels had to be lowered as well. 

Even though some cavities had much better surface properties than others, they were 

not structured deep enough for certain microfluidics applications. Various cavities 

with different Passover and cycle numbers have been compared in literature [8, 32]. 

Differences in multiple Passovers were stated that more pulse per area resulted in 

wider and deeper cavities. Another factor effecting these differences is the 

polarization angle. It has been observed in previous experiments that micromilling 

holes with 90˚ polarization angle was much more effective compared to 0˚, the 

observation was only for holes, not for cavities. Thus the following experiments were 

aimed to study the effects of polarization angle and multiple Passovers on cavities 

using lenses with shorter focal length at polarization angles of 0˚ and 90˚. 
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(a)  (b), (c), (d) 

(e) (f)  

(g)  (h), (i), (j), (k), (l) 

Figure 4.14 Thumbnail images and statistics for the holes micromilled in this experiment. 
(a)Focal Length 25.4 mm, Fluence 2.94 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz (b) Focal Length 25.4 mm, Fluence 0.881 J/cm2, Polarization 
Angle 90 °, Frequency 1 kHz (c) Focal Length 25.4 mm, Fluence 1.17 J/cm2, 
Polarization Angle 90 °, Frequency 1 kHz (d) Focal Length 25.4 mm, Fluence 
2.35 J/cm2, Polarization Angle 90 °, Frequency 1 kHz (e) Focal Length 25.4 
mm, Fluence 5.87 J/cm2, Polarization Angle 90 °, Frequency 1 kHz (f) Focal 
Length 25.4 mm, Fluence 4.41 J/cm2, Polarization Angle 90 °, Frequency 1 kHz 
(g) Focal Length 25.4 mm, Fluence 5.29 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz (h) Focal Length 25.4 mm, Fluence 0.441 J/cm2, Polarization 
Angle 90 °, Frequency 1 kHz (i) Focal Length 25.4 mm, Fluence 0.441 J/cm2, 
Polarization Angle 90 °, Frequency 1 kHz (j) Focal Length 25.4 mm, Fluence 
0.441 J/cm2, Polarization Angle 90 °, Frequency 1 kHz (k) Focal Length 25.4 
mm, Fluence 0.587 J/cm2, Polarization Angle 90 °, Frequency 1 kHz (l) Focal 
Length 25.4 mm, Fluence 0.294 J/cm2, Polarization Angle 90 °, Frequency 1 
kHz. 
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4.10 Passover Studies With Differing Polarization Angles 

Effects of multiple Passovers with different polarization angles were tested, with a 

fixed laser pulse duration of 500 fs and a repetition rate of 1 kHz and a focal length 

of 15 mm with same amount of pulses for each cavity. Polarization angle differs 

from cavity to cavity from exactly 0° to 90°. Multiple Passovers would result in 

increasing the pulse per area. In the experiment the values listed in Table 15 are 

used. 

As can be seen in Figure 4.15, it is obvious that at a high fluence level of 8.43 J/cm2 

the increase in pulse amount and using 90˚ polarization angle instead of 0˚ is much 

more effective in creating wider cavities. It would still be necessary to observe the 

SEM images closely to examine whether these cavities are smooth enough for 

microfluidics 

Figure 4.15 Comparison of Actual Cavity Diameters on various pulses at 0° and 90° 
polarization. Focal Length: 15 mm. Scan speed is fixed to 3000 µm/s and fluence to 
8.43 J/cm2. 

.
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Table 15 Effects of Passover with differentiating polarizer angles 

Cavity No. Scan 
Speed Pulses Power Frequency 

 Desired 
Cavity 

Diameter 
Fluence  Energy 

Actual 
Cavity 

Diameter 
Passovers 

Pulses x 
Pass 
Over 

Focal 
Length W0 Polarizer 

Angle 

  [µm/s]   [mW] [kHz] [µ] [J/cm2] [µJ] [µ]     [mm] [mm]   
Cavity 17 3000 200 10 1 12.29 8.43 10 14.09 1 200 15 0.8 90° 
Cavity 18 3000 200 10 1 12.29 8.43 10 14.36 1 200 15 0.8 90° 
Cavity 19 3000 200 10 1 12.29 8.43 10 14.79 1 200 15 0.8 90° 
Cavity 20 3000 200 10 1 12.29 8.43 10 14.60 1 200 15 0.8 90° 
Cavity 21 3000 200 10 1 12.29 8.43 10 14.01 1 200 15 0.8 90° 
Cavity 22 3000 200 10 1 12.29 8.43 10   1 200 15 0.8 90° 
Cavity 23 3000 200 10 1 12.29 8.43 10 14.71 1 200 15 0.8 90° 
Cavity 24 3000 200 10 1 12.29 8.43 10 14.60 1 200 15 0.8 0° 
Cavity 25 3000 200 10 1 12.29 8.43 10 15.10 1 200 15 0.8 0° 
Cavity 26 3000 200 10 1 12.29 8.43 10 14.87 1 200 15 0.8 0° 
Cavity 27 3000 200 10 1 12.29 8.43 10 15.18 1 200 15 0.8 0° 
Cavity 28 3000 200 10 1 12.29 8.43 10 14.87 1 200 15 0.8 0° 
Cavity 29 3000 200 10 1 12.29 8.43 10 15.33 2 400 15 0.8 0° 
Cavity 30 3000 200 10 1 12.29 8.43 10 15.68 2 400 15 0.8 0° 
Cavity 31 3000 200 10 1 12.29 8.43 10   2 400 15 0.8 0° 
Cavity 32 3000 1000 10 1 12.29 8.43 10 15.30 2 2000 15 0.8 0° 
Cavity 33 3000 1000 10 1 12.29 8.43 10 15.33 2 2000 15 0.8 0° 
Cavity 34 3000 1000 10 1 12.29 8.43 10 15.49 2 2000 15 0.8 0° 
Cavity 35 2000 1000 10 1 12.29 8.43 10 15.86 1 1000 15 0.8 90° 
Cavity 36 3000 1000 10 1 12.29 8.43 10 15.64 2 2000 15 0.8 90° 
Cavity 37 3000 1000 10 1 12.29 8.43 10 15.56 2 2000 15 0.8 90° 
Cavity 38 3000 1000 10 1 12.29 8.43 10 16.03 2 2000 15 0.8 90° 
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  (g) (h) 

  
(i) (j) 

  
(k) (l) 

Figure 4.17 SEM images of the resulting cavities, with Actual Cavity Diameter 
values. (g) Focal Length 15 mm, Fluence 8.43 J/cm2, Polarization Angle 
0 °, Frequency 1 kHz, Scan Speed 3000, (h) Focal Length 15 mm, 
Fluence 8.43 J/cm2, Polarization Angle 0 °, Frequency 1 kHz, Scan Speed 
3000, (i) Focal Length 15 mm, Fluence 8.43 J/cm2, Polarization Angle 90 
°, Frequency 1 kHz, Scan Speed 2000, (j) Focal Length 15 mm, Fluence 
8.43 J/cm2, Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 3000, 
(k) Focal Length 15 mm, Fluence 8.43 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 3000, (l) Focal Length 15 mm, Fluence 
8.43 J/cm2, Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 3000 
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(i) (j) 

  
(k) (l) 

Figure 4.17 SEM images of the resulting cavities, with Actual Cavity Diameter 
values. (g) Focal Length 15 mm, Fluence 8.43 J/cm2, Polarization Angle 
0 °, Frequency 1 kHz, Scan Speed 3000, (h) Focal Length 15 mm, 
Fluence 8.43 J/cm2, Polarization Angle 0 °, Frequency 1 kHz, Scan Speed 
3000, (i) Focal Length 15 mm, Fluence 8.43 J/cm2, Polarization Angle 90 
°, Frequency 1 kHz, Scan Speed 2000, (j) Focal Length 15 mm, Fluence 
8.43 J/cm2, Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 3000, 
(k) Focal Length 15 mm, Fluence 8.43 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 3000, (l) Focal Length 15 mm, Fluence 
8.43 J/cm2, Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 3000 
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Comparing the thumbnails in Figure 4.16 and Figure 4.17 it was seen that the 

cavities were indeed wide but they were also too rough surfaced with increased 

amount of dimples, not ideal for microfluidics. This result was decided to be a result 

of fluence levels much higher than the ablation threshold levels stated in the 

literature [13, 16, 34, 48, 53, 54, 55, 56, 84, 88]. To figure out the ablation and 

melting thresholds for this experimental setup and under these circumstances, further 

experimentation was required.  

Experimenting with differentiating pulse and Passovers with different polarization 

angles has shown that when Passovers are increased so does the depth and width of 

the cavity. 90° polarization angle is found to be more effective. While proving the 

effectiveness of 90° polarization angle, the next phase of the experiments is to test 

which lens is ideal. 

To test the results of using different lenses rather than just the 15 mm lens, 

experiments would have to be run with differing pulse numbers and different scan 

speeds and energy levels of fluences. 

4.11 Scan Speed And Energy Level Tests With 25.4 mm Focal Length 

Experiments were run with a different lens with a focal length of 25.4 mm instead of 

the previous 15 mm lens. Laser pulse duration was set at 500 fs, with a repetition rate 

of 1 kHz, differing amount of pulses, with various energy levels at a polarization 

angle of 90°.  The values of the different fluences used in the experiment are listed in 

Table 16. 

Examining Figure 4.18 it was observed that cavity width had increased when the 

lens was switched with a 25.4 mm focal length lens as expected, while using the 

same parameters used in previous experiments. To see the effects of the new lens and 

various parameters of fluence the SEM images were inspected. 

While comparing the cavities shown in Figure 4.19, drastic differences in Actual 

Cavity Diameter and  Desired Cavity Diameter were observed when energy levels 

and lens focal length were changed. This has shown that Actual Cavity Diameter is 

below the  Desired Cavity Diameter at very low fluences, the direct contrary effect 

was observed with very high fluences (Actual Cavity Diameter was above the  

Desired Cavity Diameter rating). 
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Table 16 Statistics of the experiments run to test the effectiveness of 25.4mm Focal Length Lens 

  
Cavity 

No. 
Scan 
Speed Pulses Power Frequency 

 Desired 
Cavity 

Diameter Fluence  Energy 
Scan 

Length 

Actual 
Cavity 

Diameter Passovers 

Pulses x 
Pass 
Over 

Focal 
Length W0 

Polarizer 
Angle 

    [µm/s]   [mW] [kHz] [µ] [J/cm2] [µJ] [µ] [µ]     mm mm   

1st
 S

et
 Cavity 39 100 20000 2.5 1 20.82 0.734 10 2000 20 1 20000 25.4 0.8 90° 

Cavity 40 100 20000 2.5 1 20.82 0.734 10 2000 18.5 1 20000 25.4 0.8 90° 
Cavity 41 100 20000 2.5 1 20.82 0.734 10 2000 18 1 20000 25.4 0.8 90° 

2nd
 S

et
 Cavity 42 100 20000 1.5 1 20.82 0.441 2 2000 11.5 1 20000 25.4 0.8 90° 

Cavity 43 100 20000 1.5 1 20.82 0.441 2 2000 11 1 20000 25.4 0.8 90° 
Cavity 44 100 20000 1.5 1 20.82 0.441 2 2000 11.5 1 20000 25.4 0.8 90° 
Cavity 45 100 20000 1.5 1 20.82 0.441 2 2000 12 1 20000 25.4 0.8 90° 

3rd
 S

et
 Cavity 46 200 10000 2 1 20.82 0.587 8 2000 16 1 20000 25.4 0.8 90° 

Cavity 47 200 10000 2 1 20.82 0.587 8 2000 18.5 1 20000 25.4 0.8 90° 
Cavity 48 200 10000 2 1 20.82 0.587 8 2000 16 1 20000 25.4 0.8 90° 
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Figure 4.18  Fluence versus Actual Cavity Diameter Graph. Pulses are 10000 and 
20000. Focal Length: 25.4 mm. 

The reason behind ripples not occurring in these cavities (as can be seen in the 

images above) was probably due to the fluences used being above ablation threshold, 

even though the fluences were very low compared to the other experiments done 

before. There are indications of ablation and melting threshold values in various 

references in the literature. [34 , 41, 43, 55, 84] Coupled with these experiments, this 

shows that melting threshold and ablation threshold affect the dimensions of the 

cavities and not just their characteristics.  

Particularizing this data, experiments were to be run to attain the ablation and 

melting thresholds. These thresholds are affected by the experimental setup, laser 

wavelength, pulse duration and various other parameters. Taking into account this 

wide range of factors, new cavity experiments were run while trying to acquire the 

Ablation and Melting Thresholds. 
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(a) 

 
(b) 

  

 
(c) 

Figure 4.19 Collective SEM images of cavities micromachined with 25.4 mm Focal 
Length Lens. (a) Focal Length 25.4 mm, Fluence 8.43 J/cm2, Polarization 
Angle 90 °, Frequency 1 kHz, Scan Speed 100, (b) Focal Length 25.4 
mm, Fluence 1.69 J/cm2, Polarization Angle 90 °, Frequency 1 kHz, Scan 
Speed 100, (c) Focal Length 25.4 mm, Fluence 12.29 J/cm2, Polarization 
Angle 90 °, Frequency 1 kHz, Scan Speed 200. 

 

4.12 Melting And Ablation Threshold 

To find the melting and ablation thresholds very low levels of fluence was used. 

There wouldn’t be any ablation below the melting threshold, so the lowest fluence 

level that could ablate the surface area would be the melting threshold of the Si-

Wafer. As observed from the literature [13, 16, 34, 48, 53, 54, 55, 56, 84, 88], the 

ripples did not occur in the center of the ablated area and start to disappear after the 

ablation threshold is crossed. So the point at which the ripples stop occurring would 

be the ablation threshold of the Si-Wafer. 
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For this experiment the laser pulse duration was set at 500 fs, with a repetition rate of 

1 kHz, keeping the number of pulses and scan speed constant at a very low level of 

10 µm per second, while differentiating energy levels. The polarization angle was 

90° with a focal length of 15 mm. The reason of keeping the scan speed as low as it 

was to increase the pulse per area amount at very low levels of fluence. Since it 

would be difficult to ablate the bulk material with smaller amounts of pulse per area. 

The different parameters used in the experiment are listed in Table 17. 

The surface was irradiated below 0.19 mw energy and 0.16 J/cm2 fluence. 0.16 J/cm2 

is the melting threshold.  During this experiment it was noted that the surface could 

not be machined with the given parameters. As seen in the above images ripples did 

not occur at fluence level 0.421 J/cm2.  So the ablation threshold is confirmed to be 

between 0.337 and 0.421 J/cm2. Furthermore it is observed that when fluence is 

driven closer to the threshold, the  Desired Cavity Diameter is approached. 

Referring to the images and the results in Figure 4.21, the ablation started at the 

melting threshold level of 0.16 J/cm2. The ripples started forming after the threshold 

perpendicular to the polarization. Ripples parallel to the electric field polarization 

started forming as the pulse amount or fluence is increased. It was observed in the 

previous experiments that these secondary formation of parallel ripples is mostly the 

result of increased amount of pulses per area rather than the increase in fluence 

levels. Increasing the fluence does effect the formation but not as much as increasing 

the pulse per area amount. Since the pulse number of fluence levels are increased 

slowly, these ripples start to grow apart from each other and disappear completely 

when the fluence level reaches that of the ablation threshold. 

After the fluence level has reached the ablation threshold, the ripple like formations 

start to turn into a shape of columnar trapezoid like structures, as the energy levels 

and/or pulse per area amounts rise the trapezoidal structures first turn into oval 

structures, then bubble like structures as diagrammed in Figure 4.22. As the fluence 

levels rise, the morphology of the cavities become rough, un-symmetrical and 

unpredictable. 
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Table 17 Statistical data driven from the first cavities of 8 different sets of eperiments. 

  Cavity No. 
Scan 
Speed Pulses Power Frequency 

 Desired 
Cavity 

Diameter Fluence  Energy 

Actual 
Cavity 

Diameter Passovers 

Pulses x 
Pass 
Over 

Focal 
Length W0 

Polarizer 
Angle 

    [µm/s]   [mW] [kHz] [µ] [J/cm2] [µJ] [µ]     [mm] [mm]   
1st Set Cavity 49 10 100000 0.19 1 12.29 0.16 0.19 5 1 100000 15° 0.8 90° 
2nd Set Cavity 50 10 100000 0.25 1 12.29 0.211 0.25 6 1 100000 15 0.8 90° 
3rd Set Cavity 51 10 100000 0.4 1 12.29 0.337 0.4 9 1 100000 15 0.8 90° 
4th Set Cavity 52 10 100000 1 1 12.29 0.843 1 10 1 100000 15 0.8 90° 
5th Set Cavity 53 10 100000 2 1 12.29 1.69 2 10 1 100000 15 0.8 90° 
6th Set Cavity 54 10 100000 0.25 1 12.29 0.211 0.25 10 5 500000 15 0.8 90° 
7th Set Cavity 55 10 100000 1 1 12.29 0.843 1 10 1 500000 15 0.8 90° 
8th Set Cavity 56 10 100000 0.5 1 12.29 0.421 0.5 12 1 500000 15 0.8 90° 
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(a) 

 (b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.20 SEM images of resulting cavities (a), Focal Length 15 mm, Fluence 
0.16 J/cm2, Polarization Angle 90 °, Frequency 1kHz, Scan Speed 10 (b) 
Focal Length 15 mm, Fluence  0.211 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 10 (c) Focal Length 15 mm, Fluence 0.337 
J/cm2, Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 10 (d) 
Focal Length 15 mm, Fluence 0.843 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 10, (e) Focal Length 15 mm, Fluence 0.843 
J/cm2, Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 10 , 
(f)Focal Length 15 mm, Fluence 0.421 J/cm2, Polarization Angle 90 , 
Frequency 1 kHz, Scan Speed 10. 
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When the surface is irradiated between the melting and ablation thresholds, Actual 

Cavity Diameter is closer to the Desired Cavity Diameter. Aside from that the 

cavities were more predictable in diameter, the surface was more symmetrical and 

smoother compared to the cavities ablated at higher energy levels of fluence. But the 

cavities don’t reach the required depth. Considering the literature [8, 32] to achieve 

cavities with the  Desired Cavity Diameter all the while reaching the desired depth, 

number of laser beam radiating cycles on cavities were increased, while using a very 

low scan speed to increase the amount of pulses per area, to achieve smoother and 

symmetrical morphology of the cavities, the fluence is kept at low levels. 

 

Figure 4.21 Microstructures formed on SI-Wafer surface at threshold values. 

According to these thresholds surface morphology is said to occur in the following 

sequence: 
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1. Ripples are formed 
2. Spikes are formed 
3. Bubbles are formed 
4. Threshold is reached 
5. Threshold is breached and surface excavation begins 

4.13 The Effects Of Scan Speed / Cycle-Passover / Pulse Amount On Ripple 
Formation At Threshold Fluence Levels 

Experiments were run to find the effects of low scanspeed and very high amounts of 

cycle/Passover and pulse amount on surface morphologies using a fixed pulse 

duration of 500 fs, with a repetition rate of 1 kHz, at 90° polarization, using the 

15mm focal length lens at different low fluence levels between the melting and 

ablation thresholds as shown in Table 18.  

As seen in Figure 4.22, Actual Cavity Diameter, ripple spacing and width increase 

when the fluence is increased, as this also causes an increase in the number of pulses. 

Figure 4.22 Actual Cavity Diameter, Ripple Spacing and Width comparisons for 
different fluence, scan speed and numbers of pulses for the first 12 cavities. Focal 
Length: 15 mm. 
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Table 18 Detailed comparisons for scan speed, cycles, and amount of pulses. 

Cavity 
No. 

Scan 
Speed Pulses Power Frequency 

 Desired 
Cavity 

Diameter 
Fluence Energy 

Actual 
Cavity 

Diameter 
Passovers 

Pulses x 
Pass 
Over 

Focal 
Length W0 Polarizer 

Angle Ripple 
Width 

Ripple 
Spacing 

  [µm/s]   [mW] [kHz] [µ] [J/cm2] [µJ] [µ]     [mm] [mm]   [µm] [µm] 
Cavity 57 10 100,000 0.19 1 12.29 0.16 0.19 7.66 1 10000 15 0.8 90° 0.85 0.74 
Cavity 58 50 20,000 0.19 1 12.29 0.16 0.19 6.29 1 20000 15 0.8 90° 0.51 0.22 
Cavity 59 100 10,000 0.19 1 12.29 0.16 0.19 6.09 1 10000 15 0.8 90° 0.45 0.17 
Cavity 60 500 2,000 0.19 1 12.29 0.16 0.19 4.66 1 2000 15 0.8 90° 0.35 0.22 
Cavity 61 10 100,000 0.25 1 12.29 0.211 0.25 8.41 1 100000 15 0.8 90° 1.2 0.9 
Cavity 62 50 20,000 0.25 1 12.29 0.211 0.25 7.83 1 20000 15 0.8 90° 0.83 0.19 
Cavity 63 100 10,000 0.25 1 12.29 0.211 0.25 7.35 1 10000 15 0.8 90° 0.69 0.19 
Cavity 64 500 2,000 0.25 1 12.29 0.211 0.25 5.64 1 2000 15 0.8 90° 0.46 0.17 
Cavity 65 10 100,000 0.4 1 12.29 0.337 0.4 10.06 1 100000 15 0.8 90° 1.38 0.90 
Cavity 66 50 20,000 0.4 1 12.29 0.337 0.4 8.17 1 20000 15 0.8 90° 0.93 0.35 
Cavity 67 100 10,000 0.4 1 12.29 0.337 0.4 7.80 1 10000 15 0.8 90° 0.91 0.12 
Cavity 68 500 2,000 0.4 1 12.29 0.337 0.4 7.11 1 2000 15 0.8 90° 0.64 0.12 
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Strangely the reaction of the ripples differs as the scan speed is increased. They react 

like an “Asymptote” in mathematics. They get smaller after reaching a certain scan 

speed and stay at that size without disappearing, like an “asymptote” in mathematics. 

As it gets closer to the axis but never reaches zero and lasts until infinity. 

Using these parameters cavity width would be closer to  Desired Cavity Diameter but 

the cavities were not deep enough, thus as seen in the literature [3, 7, 8, 28, 30, 31, 

32, 33, 91] using low fluence ratings and low scan speeds to accumulate a high 

amount of pulses on the ablated area would result in cavities with desired diameters 

and depth, with less non-uniform surface characteristics which can be observed in 

Figure 4.23 and Figure 4.24. The aim in the next part of this experiment was to find 

the effects different scan speeds with multiple cycles-passovers and eventually 

multiplied pulse amount on cavity width and depth. Laser pulse duration was set to 

500 fs with a repetition rate of 1 kHz, with different amount of pulses and scan speed 

also with differing energy levels using a lens with a focal length of 15 mm as listed 

in Table 19. 

Since SEM images are taken from 90˚ on top of the image, it is hard to tell if the 

cavities are deep, or the multiple passover theory of creating deeper cavities worked. 

Despite what is said in the literature [8, 32] and what has been observed in previous 

experiments, the SEM images show that the cavities, which are ablated with multiple 

passovers at higher pulse amounts per area, look chaotic with all the non-uniform 

surface involved. This could be a result of the pulse per area amount being much 

higher than previous experiments, or a result of the cavities depth. Since the SEM 

images  in Figure 4.25 and Figure 4.26 are in two dimensions all the angles of the 

surface are projected onto a single axis. To make sure images were taken at a 45˚ 

angle to view the cavities in three dimensions, and observe the depth further. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.23 SEM images of first series of 6 cavities. (a), Focal Length 15 mm, Fluence 0.16 
J/cm2, Polarization Angle 90 °, Frequency 1kHz, Scan Speed 10 , (b) Focal 
Length 15 mm, Fluence 0.16 J/cm2, Polarization Angle 90 °, Frequency 1kHz , 
Scan Speed 50, (c) Focal Length 15 mm, Fluence 0.16 J/cm2, Polarization Angle 
90 °, Frequency 1 kHz, Scan Speed 100, (d) Focal Length 15 mm, Fluence 0.16 
J/cm2, Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 500, (e) Focal 
Length 15 mm, Fluence  0.211 J/cm2, Polarization Angle 90 °, Frequency 1 kHz, 
Scan Speed 10, (f) Focal Length 15 mm, Fluence 0.211 J/cm2, Polarization 
Angle 90 °, Frequency 1 kHz, Scan Speed 50 
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(a)
 

(b)
 

(c)
 

(d)
 

(e) (f) 

Figure 4.24 SEM images of second series of 6 cavities, with ripple formations. (a) 
Focal Length 15 mm, Fluence  0.211 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 100, (b) Focal Length 15 mm, Fluence 
0.211 J/cm2, Polarization Angle 90, Frequency 1 kHz, Scan Speed 500, 
(c) Focal Length 15 mm, Fluence 0.337 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 10, (d) Focal Length 15 mm, Fluence 
(J/cm2) 0.337, Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 50, 
(e) Focal Length 15 mm, Fluence 0.337 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 100, (f) Focal Length 15 mm, Fluence 
0.337 J/cm2, Polarization Angle 90 °,  Frequency 1 kHz, Scan Speed 500  
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Table 19 Statistics of cavities without ripples. 

 Cavity No. Scan 
Speed Pulses Power Frequency  Desired Cavity 

Diameter Fluence  Energy Actual Cavity 
Diameter Cycles Pulses x Pass 

Over 
Focal 

Length W0 Polarizer 
Angle 

   [µm/s]   [mW] [kHz] [µ] [J/cm2] [µJ] [µ]     [mm] [mm]   

4th
 S

et
 Cavity 69 10 100,000 1 1 12.29 0.843 1 10 1 100000 15 0.8 90° 

Cavity 70 50 20,000 1 1 12.29 0.843 1 7 1 20000 15 0.8 90° 
Cavity 71 100 10,000 1 1 12.29 0.843 1 7 1 10000 15 0.8 90° 
Cavity 72 500 2,000 1 1 12.29 0.843 1 7.5 1 2000 15 0.8 90° 

5th
 S

et
 Cavity 73 10 100,000 2 1 12.29 1.69 2 10 1 100000 15 0.8 90° 

Cavity 74 50 20,000 2 1 12.29 1.69 2 10 1 20000 15 0.8 90° 
Cavity 75 100 10,000 2 1 12.29 1.69 2 9 1 10000 15 0.8 90° 
Cavity 76 500 2,000 2 1 12.29 1.69 2 10 1 2000 15 0.8 90° 

   [µm/s]   [mW] [kHz] [µ] [J/cm2] [µJ] [µ]     [mm] [mm]   

1st
 S

et
 

Cavity 77 10 100,000 0.25 1 12.29 0.211 0.25 10 5 500000 15 0.8 90° 
Cavity 78 10 100,000 0.25 1 12.29 0.211 0.25 10 25 2500000 15 0.8 90° 
Cavity 79 50 20,000 0.25 1 12.29 0.211 0.25 11 5 100000 15 0.8 90° 
Cavity 80 50 20,000 0.25 1 12.29 0.211 0.25 8 25 500000 15 0.8 90° 
Cavity 81 50 20,000 0.25 1 12.29 0.211 0.25 8 50 1000000 15 0.8 90° 

2nd
 S

et
 Cavity 82 10 100,000 1 1 12.29 0.843 1 10 5 500000 15 0.8 90° 

Cavity 83 10 100,000 1 1 12.29 0.843 1 11 25 2500000 15 0.8 90° 
Cavity 84 50 20,000 1 1 12.29 0.843 1 11 5 100000 15 0.8 90° 
Cavity 85 50 20,000 1 1 12.29 0.843 1 11 25 500000 15 0.8 90° 
Cavity 86 50 20,000 1 1 12.29 0.843 1 10 50 1000000 15 0.8 90° 

3rd
 S

et
 Cavity 87 10 100,000 0.5 1 12.29 0.421 0.5 12 5 500000 15 0.8 90° 

Cavity 88 10 100,000 0.5 1 12.29 0.421 0.5 10 20 1000000 15 0.8 90° 
Cavity 89 50 20,000 0.5 1 12.29 0.421 0.5 10 5 100000 15 0.8 90° 
Cavity 90 50 20,000 0.5 1 12.29 0.421 0.5 11 25 500000 15 0.8 90° 
Cavity 91 50 20,000 0.5 1 12.29 0.421 0.5 9 50 1000000 15 0.8 90° 
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(a) (b) 

(c) (d) 

(e) 
 

(f) 

Figure 4.25 (a) Focal Length 15 mm, Fluence 0.843 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 10, (b) Focal Length 15 mm, Fluence 
0.843 J/cm2, Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 50, 
(c) Focal Length 15 mm, Fluence 0.843 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 100, (d) Focal Length 15 mm, Fluence 
0.843 J/cm2, Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 100, 
(e) Focal Length 15 mm, Fluence 0.843 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 100, (f) Focal Length 15 mm, Fluence 
0.843 J/cm2, Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 100 
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(a) (b) 
 

(c) 
(d) 

Figure 4.26 SEM images of cavities drilled for this experiment. (a) Focal Length 15 
mm, Fluence 0.211 J/cm2, Polarization (b) Frequency 1 kHz, Scan Speed 
50, (c) Focal Length 15 mm, Fluence 0.211 J/cm2, Polarization Angle 90 
°, Frequency 1 kHz, Scan peed 50, (d) Focal Length 15 mm, Fluence 
0.843 J/cm2, Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 10 

As seen in the below SEM images as seen in Figure 4.27 were taken at 45˚ angle, it 

was obvious that multiple cycles and high amounts of pulses per area resulted in 

much deeper cavities. The chaotic and non-uniform look in the images taken at 90˚ 

angle was a result of the two dimensional effect of such deep cavities, looking as if 

all the layers of the deep cavities was at the same axis. 

During this experiment it was observed that multiple cycles and slow scan speed 

results in deeper and wider cavities. But an exact measurement could not be achieved 

by the profileometer since the cavities were thinner in width than the needle of the 

profileometer, which is used to measure the depth. To get more precise depth 

measurements new cavities were to be micromachined at the edge of the wafers for 

evaluation. 
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(a) (b) 

 
(c)  

Figure 4.27 SEM images of some of the cavities from Figure 4.25 at a 45˚ angle. 
The 2nd and 3rd images are of the deeper cavities. (a) Focal Length 15mm, 
Fluence 0.16 J/cm2, Polarization Angle 90˚, Frequency 1 kHz, Scan 
Speed 10, 50 and 100  respectively, (b) Focal Length 15mm, Fluence 
0.421 J/cm2, Polarization Angle 90˚, Frequency 1 kHz, Scan Speed 50 
µm/s, (c) Focal Length 15mm, Fluence 0.843 J/cm2, Polarization Angle 
90˚, Frequency 1 kHz, Scan Speed 50 µm/s 

Thus the decision was made to create cavities wide enough for measurement. For this 

goal increasing the energy, cycle and number of pulses while reducing the scan speed 

wouldn’t be enough. It would require lenses with higher focal lengths to achieve 

these wider cavities, in other words expand the achievable beam radius or W0. 

According to the achievable beam waist formula (4.3) when using a focal length of 

f=100 mm lens the achievable beam waist would be 𝑊! = 81.96 . 

At first experiments were to be run using high scan speed with the f= 100 mm focal 

length lens only to examine the effects on the substrate when using such a high focal 

length lens. 
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It was known that a high speed of V=1 m/s wouldn’t create enough ablation to 

machine deep enough, but whether the ablation threshold at fluence levels would 

remain the same when the lens was changed in huge units, or a high focal length lens 

would ablate at all with all the photon scattering in a wider area was unknown For 

this reason fluence of 0.16 J/cm2  (melting threshold from previous experiments) and 

0.4 J/cm2 (approximate ablation threshold from previous experiments) would be used 

and later higher fluence levels would be tested, to observe the cavity width behavior 

compared to increase in fluence. 

4.14 Wider Cavity Micromachining 

The aim of this experiment was to achieve wider cavities while finding the effects of 

energy – fluence on wider cavity micromachining when using a lens with a much 

wider focal length. For this experiment the laser pulse duration was set to 500 fs at a 

repetition rate of 1 kHz, with varying energy and power levels at fixed scan speed 

and fixed amount of pulses.  As seen in Table 20, the polarization angle was set to 

90˚, and the new lens with a focal length of 100 mm was used. 

Referring to the images in Figure 4.28, achievable cavity width could not be 

estimated since the images were variant in huge intervals such as picture (b) and 

picture (e). This might have been a consequence of using lenses with wide focal 

lengths since they scatter the laser beam, making it lose its intensity and 

effectiveness, or it could be a result of using a very fast scan speed making the 

distribution of pulses non-uniform. 

Resulting in unclear results as to the acquirable desired cavity width. Only clearly 

visible aspect of these cavities were the effects of ripples. According to this data, 

deeper and wider cavities would be drilled at higher energy ratings with very low 

scan speeds and lenses with shorter focal lengths. So f=50 mm focal length lens was 

to be used for the first time. 
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Table 20 Parameters and resulting beam diameters for this experiment 

Cavity No. Scan 
Speed Pulses Power Frequency 

 Desired 
Cavity 

Diameter 
Fluence  Energy 

Actual 
Cavity 

Diameter 
Passovers 

Pulses x 
Pass 
Over 

Focal 
Length W0 Polarizer 

Angle 

  [µm/s]   [mW] [kHz] [µ] [J/cm2] [µJ] [µ]     mm mm   
Cavity 92 1000 20000 220 1 81.96 4.17 220 118 1 20000 100 0.8 90° 
Cavity 93 1000 20000 150 1 81.96 2.84 150 185 1 20000 100 0.8 90° 
Cavity 94 1000 20000 100 1 81.96 1.9 100 188 1 20000 100 0.8 90° 
Cavity 95 1000 20000 80 1 81.96 1.52 80 208 1 20000 100 0.8 90° 
Cavity 96 1000 20000 50 1 81.96 0.948 50 229 1 20000 100 0.8 90° 
Cavity 97 1000 20000 50 1 81.96 0.948 50 215 1 20000 100 0.8 90° 
Cavity 98 1000 20000 50 1 81.96 0.948 50 231 1 20000 100 0.8 90° 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 4.28 SEM images for cavities created using a 100 mm Focal Length lens. (a) 
Focal Length 100 mm, Fluence 4.17 J/cm2,  Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 1000,  (b) Focal Length 100 mm, Fluence 
4.17 J/cm2,  Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 1000,  
(c) Focal Length 100 mm, Fluence 1.9 J/cm2,  Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 1000,  (d) Focal Length 100 mm, Fluence 
1.52 J/cm2,  Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 1000,  
(e) Focal Length 100 mm, Fluence 0.948 J/cm2,  Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 1000 
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4.15 Effects Of Energy And Fluence On Wider Cavity Micromachining With 
50mm Focal Length Lens 

To achieve wider and deeper cavities and to figure the effects of energy and fluence 

on depth and width of cavities, tests were run at 500 fs, with a repetition rate of 1 

kHz, using varying amounts of pulses as a consequence of the different scan speed 

and multi-passovers. Polarization angle was set to 90°, using a 50 mm focal length 

lens. 

The scan speed was kept at very low values to benefit from the maximum pulse per 

area amounts to achieve deeper cavities. The cavities were ablated on the edge of the 

wafer to measure the exact depth. The data of the resulting cavities can be seen 

below in Table 21. 

Since the pulse amount is directly proportional to the Passover parameter, and 

inversely proportional to scan speed, the combination of the two variables is used in 

the graphs to see the effects altogether. 

The combination of the effects of Passover and scan speed together is named “Pulse 

Amount Coefficient”. It is found by dividing the absolute value of the Passover by 

the absolute value of the scan speed 

𝑃𝑢𝑙𝑠𝑒  𝐴𝑚𝑜𝑢𝑛𝑡  𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑃𝑎𝑠𝑠𝑜𝑣𝑒𝑟
𝑆𝑐𝑎𝑛  𝑆𝑝𝑒𝑒𝑑 (4.3) 

Referring to Figure 4.30, Cavity depth vs. pulse amount coefficient graphs shows 

linear characteristics rather than the cavity width vs. pulse amount coefficient graph. 

Results of the experiment were inspected and compared such as the cavity sets in 

Figure 4.30. 

Considering the results of cavity widths and depths in this experiment, methods to 

excavate even wider cavities, since these cavities would have to allow the focusing 

of micro-particles. The cavities could in turn be transformed into a micro-fluidic-

particle focusing mechanism. 
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Table 21 Effects of scan speed and fluence on cavity depth and width, using a 50mm lens. 

Cavity 
No. Cycles 

Scan 
Speed Power Frequency 

 Desired 
Cavity 

Diameter Fluence  Energy Passovers 
Polarizer 

Angle 
Focal 

Length W0 
Cavity 
Width 

Cavity 
Depth 

    [µm/s] [mW] [kHz] [µ] [J/cm2] [µJ]     [mm] [mm] [µm] [µm] 
Cavity 99 3 5 220 1 40.98 16.7 220 6 90° 50 0.8 40.0 308.6 
Cavity100  3 5 220 1 40.98 16.7 220 6 90° 50 0.8 40.0 321.4 
Cavity101  5 10 220 1 40.98 16.7 220 10 90° 50 0.8 37.1 308.6 
Cavity102  4 10 220 1 40.98 16.7 220 8 90° 50 0.8 41.1 295.9 
Cavity103  2 10 220 1 40.98 16.7 220 4 90° 50 0.8 34.4 224.8 
Cavity104  1 5 220 1 40.98 16.7 220 2 90° 50 0.8 46.0 258.0 
Cavity105  2 5 220 1 40.98 16.7 220 4 90° 50 0.8 32.9 309.0 
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Figure 4.29 Graph comparing the cavity width at differing Pulse Amount 

Coefficients, which equals Passovers/Scan Speed . Focal Length: 50 mm. 

Referring to the SEM images and the collected data, the depth of the cavities were 

adequate enough for the microfluidics which would separate microparticle in future 

experiments. Thus more experiments using lenses with longer focal lengths had to be 

done again, but this time with slower scan speeds allowing the pulse per area amount 

to increase. 

4.16 Effects Of Energy And Fluence On Wider Cavity Micromachining with 
100mm lens 

In this experiment, laser pulse duration was set to 500fs, with a repetition rate of 1 

kHz, using the same amount of pulses (because of the fixed scan speed) but with 

multiple Passovers. Polarization angle was set to 90˚, a lens with a focal length of 
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100 mm was used to obtain wider cavities. To avoid the scatter effect of using lenses 

with wider focal lengths, the scan speed is at the slowest rate to increase the pulse 

per area amount as seen in Table 22. 

It was observed during this experiment that using a higher focal length of 100 mm 

has caused a scatter effect. Referring to the graph in Figure 4.31 although the pulse 

amount coefficient was much higher than the previous experiment. The depths were 

close to the cavities ablated with f = 50 mm lens. The cavity widths were also just a 

little wider, which resulted in cavity widths ending up close to those that were 

ablated with f=50 mm lens. This is because the laser is more powerful as the focus 

area is reduced. When the area gets larger the effects of the laser is scattered over 

that larger area resulting in reduced power. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.30 Cross-Sectional SEM images showing changes in cavity width and 
depth at focal length 50 mm. (a) Focal Length 50 mm, Fluence 16.7 
J/cm2,  Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 5, (b) 
Focal Length 50 mm, Fluence 16.7 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 10, (c) Focal Length 50 mm, Fluence 16.7 
J/cm2, Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 10, (d) 
Focal Length 50 mm, Fluence 16.7 J/cm2, Polarization Angle 90 °, 
Frequency 1 kHz, Scan Speed 5 
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Table 22 f=100mm focal length lens is used to try and achieve wider cavity widths and depths 

Cavity No. Cycles 
Scan 
Speed Power Frequency 

 Desired 
Cavity 

Diameter Fluence  Energy 

Actual 
Cavity 

Diameter Passovers 
Polarizer 

Angle 
Focal 

Length W0 
Cavity 
Width 

Cavity 
Depth 

    [µm/s] [mW] [kHz] [µ] [J/cm2] [µJ] [µ]     [mm] [mm] [µm] [µm] 
Cavity 106 2 5 225 1 81.96 4.26 225 68.6 12 90° 100 0.8 68.5 327.4 
Cavity 107 3 5 225 1 81.96 4.26 225 82.3 18 90° 100 0.8 82.3 323.2 
Cavity 108 2 5 225 1 81.96 4.26 225 68.8 12 90° 100 0.8 68.8 329.9 
Cavity 109 0.5 5 225 1 81.96 4.26 225 44.8 3 90° 100 0.8 44.8 184.1 
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Figure 4.31 Comparison of cavity depth and Actual Cavity Diameter to cycles. Focal 

Length: 100 mm. 

4.17 Further Experimentation With 100mm Lens 

Further tests were run with 100 mm focal length lens to study it’s effects on cavity 

width. Again laser pulse duration was set to 500 fs, with a repetition rate of 1 kHz, 

with the same amount of pulses (because of fixed scan speed), versus different 

energy, fluence rates as listed in Table 23. 
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(a) 

 
(b) 

 
(c) 

Figure 4.32 SEM cross-sectional images of cavities drilled with 100 mm focal 
length lens. (a) Focal Length 100 mm, Fluence 4.26  J/cm2, Pol.n Angle 
90 °, Frequency 1 kHz, Scan Speed 5, (b) Focal Length 100 mm, Fluence 
4.26  J/cm2, Pol. Angle 90 °, Frequency 1 kHz, Scan Speed 5 (c) Focal 
Length 100 mm, Fluence 4.26  J/cm2, Pol.Angle 90 °, Frequency 1 kHz, 
Scan Speed 5 
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Table 23 100mm Focal Length Lens cavity width tests. 

Cavity No. Cycles 
Scan 
Speed Power Frequency 

 Desired 
Cavity 

Diameter Fluence  Energy 

Time to 
travel desired 

radius Passovers 
Polarizer 

Angle 
Focal 

Length 
Cavity 
Width 

Cavity 
Overlap 

    [µm/s] [mW] [kHz] [µ] [J/cm2] [µJ] [ms]     f [µm] [µm] 
Cavity 110 1 1 150 1 81.96 2.84 150 32800  90° 100 246.1 N/A 
Cavity 111 1 1 150 1 81.96 2.84 150 32800   90° 100 298.0 ? 
Cavity 112 1 1 150 1 81.96 2.84 150 32800   90° 100 248.7 N/A 

              Cavity 113 1 1 100 1 81.96 1.90 100 32800   90° 100 259.0 N/A 
Cavity 114 1 1 100 1 81.96 1.90 100 32800   90° 100 251.3 N/A 
Cavity 115 1 1 100 1 81.96 1.90 100 32800   90° 100 266.8 N/A 

              Cavity 116 1 1 220 1 81.96 4.17 220 32800   90° 100 100.7 N/A 
Cavity 117 1 1 220 1 81.96 4.17 220 32800   90° 100 151.6 23.0 
Cavity 118 1 1 220 1 81.96 1.47 220 32800   90° 100 78.8 51.3 
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Referring to the SEM images in Figure 4.34 the changes in width according to the 
fluence can be observed again. 
 

 
(a) 

 
(b) 

(c) 

Figure 4.33 Parameter details per cavity for  100 mm Focal Length Tests. (a) Focal 
Length 100 mm, Fluence 2.84 J/cm2, Polarization Angle 90 °, Frequency 
1 kHz, Scan Speed 1, (b) Focal Length 100 mm, Fluence 1.9 J/cm2, 
Polarization Angle 90 °, Frequency 1 kHz, Scan Speed 1, (c) Focal 
Length 100 mm, Fluence 4.17 J/cm2, Polarization Angle 90 °, Frequency 
1 kHz, Scan Speed 1 

4.18 Dumbbell Like Structures 

After experimenting on various different parameter setups, it was decided to proceed 

to dumbbell shaped structure shown in Figure 4.35 to present an example for 

microfluidic applications. 

The aim of this dumbbell like microfluidic cavity formation is line up the micro 

particles that enter from one side, and pass them through the other side in order. 
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Figure 4.34 Shape of the desired dumbbell like formation 

To understand the effects of fixed polarization while the wafer is irradiated in both x 

and y directions high speed (1 mm/s) experiments were actualized. 

4.19 Ablation In Both X And Y Directions With Fixed Polarization Angle And 
Creating Dumbbell Shaped Channels 

The aim of this experiment was to understand the differences between four different 

energy-fluence levels of laser ablation in both x and y scanning directions and test 

whether there is enough room for PDMS to fill in between the 2 cavities when 

they’re set to 100 µm wide in theory. 

These dumbbell like structures, are designed to, if wide, deep and smooth enough, be 

able to separate the micro particles using the laws of fluid mechanics. 

The actual measurements and the SEM images of the dumbbell like structures 

ablated with a power of 60 mW, 100 mW, 170 mW, 200 mW respectively are 

represented in Figure 4.35, Figure 4.36, Figure 4.37 and Figure 4.38 displayed 

below: 
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Figure 4.35 Dumbell shape statistics and resulting SEM image for 60 mW. 

 
 

 

 

Figure 4.36 Dumbbell shape statistics and resulting SEM image for 100 mW. 
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Figure 4.37 Dumbbell shape statistics and resulting SEM image for 170 mW. 

 

 

 

 

Figure 4.38 Dumbbell shape statistics and resulting SEM images for 200 mW. 
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As seen in the resulting images in Figure 4.35, Figure 4.36, Figure 4.37 and Figure 

4.38, although the high levels of energy is used, the cavities are not deep at all, since 

a very high rate of scan speed was chosen making the pulse per area amount very 

low. But this result was predictable. 

The odd thing in the images was that although the polarization angle, scan speed, 

fluence stayed the same throughout , when creating the dumble, the cavities ablated 

in the X and Y directions show much difference from each other. This could have 

been a sign to create the perfect cavities. Maybe calibrating the polarization angle 

according to the scanning direction would eliminate all the unpredictable and 

unwanted formations on the surfaces.  

Further tests have shown visible differences between the ablated areas when the 

stage was moving in the X axis, and the ablated areas were moving in the Y axis. 

This difference would be tested with further experimentation. 

Since cavity depth and width were not satisfactory, overlapping parallel cavities have 

been micromachined to form a much wider cavity when combined. The way this 

system works is, every linear cavity irradiation overlaps the previous one to form a 

uniform wide cavity. 

4.20 Polarization Vs. Scanning Direction X- Y- XY 

The aim of this experiment was to create rectangular cavities cavities 500 µm’s long 

and 1000 µm’s wide in the directions X, Y and X &Y together to see the effect of 

polarization angle in different scanning directions. To achieve this goal, cavities are 

overlapped a radius or less away from the previous cavity. Further to this aim surface 

characteristics were to be observed when ablating in three directions. 2 passover (1 

cycle) was run in the x directions and 2 in the y directions and 1 in both. Polarizer 

angle was fixed at 90°, with a power of 228 mw at a scan speed of 0.05mm/s with a 

fluence of 1y.3.1J/cm2 through an f=50mm focal length lens. 

The morphology of the creation of the wider cavities which are ablated in the 

directions, X, Y and XY by the overlapping method can be seen in Figure 4.39. 
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Figure 4.39 Methodology for creating overlapping cavities. 

Referring to the picture sets in Figure 4.40, it was noted that cavities in the x 

direction are uneven and incoherent, while cavities in the y direction were smooth 

and symmetrical. Cavities machined in x then y directions are smoother than cavities 

machined only in the x direction, but still smoother than the cavities ablated in only 

the Y direction. This shows that scanning direction is an important parameter when 

dealing with micro structures. Thus it is better to irradiate in the direction of the 

polarization angle. The reasoning behind this is, if the laser is moving in the direction 

of the polarization angle, then they are in the perpendicular direction. The first stage 

of ripples are formed, making it uniform. Otherwise, if the polarization angle and the 

scanning direction is perpendicular, the first stage of ripples would form in the 

scanning direction as the ripples form perpendicular to the polarization angle. 
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(a) 

   

(b) 

   
 (c) 

Figure 4.40 (a) Stage Direction y, Polarization: 90, Power: 228 mW, Fluence: 27.1 
J/cm2F: 50mm, V: 0.05 mm/s, (b) Stage Direction , Polarization: 90, 
Power: 228 mW, Fluence: 27.1 J/cm2, F: 50mm ,V: 0.05 mm/s,  (c) Stage 
Direction xy, Polarization: 90, Power: 228 mW,Fluence: 27.1 J/cm2, F: 
50mm,V: 0.05 mm/s 

In other words if the cavity is machined in the direction of the ripple formation the 

waves collide and accumulate disrupting surface symmetry. If the direction of 

machining is perpendicular to the ripple formation direction, the waves are cut in 

half, resulting in stronger deformations and uniformity. 

In short to achieve smoother and less deformed and more effective laser ablation, 

polarization angle scanning direction should be parallel to the scanning direction. To 
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test if the polarization angle being parallel to the scanning direction was good 

enough. Further experiments on scanning directions were to be run. 

4.21 Surface Characteristics In Both X And y Directions (Letter M) 

The aim of this experiment is to determine the surface characteristics when scanning 

in different directions. 

Polarizer angle was fixed at 90˚, with a power of 230 mW at a scan speed of 0.05 

mm/s with a fluence of 17.4 J/cm2 through an f=50mm focal length lens. 

At first the scanning direction goes in the radial coordinate of 90˚ direction for an 

absolute distance of 1 mm in the Y axis, the same as the polarization angle. Then the 

direction turns to the radial coordinate of 225˚ and moves in that direction until an 

absolute distance of 0.5 mm in the X axis and 0.5 mm in the Y axis is covered. After 

the second step is complete, the scanning direction goes in the radial coordinate of 

135˚ until covering an absolute distance of 0.5 mm in the X axis and 0.5 mm in the Y 

axis. At last the scanning direction goes in the radial coordinate of 270˚ until an 

absolute distance of 1 mm is covered in the Y axis. These steps create the M shape in 

the below schematics.  

The measurements and the morphology directions of the creation of the letter M is 

shown in Figure 4.41. The parameters used to machine the letter M are listed below 

in Table 24.  

Table 24 Parameters used to machine the above imaged surfaces. 

Cavity No. 
Actual Cavity 

Diameter 
 Desired Cavity 

Diameter 
Polarizer 

Angle 
Scanning 
Direction 

       f 
Cavity 119 40.49 40.8 90° 90˚ 
Cavity 120 29.49 40.8 90° 225˚ 
Cavity 121 39.9 40.8 90° 135˚ 
Cavity 122 31.9 40.8 90° 270˚ 
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Figure 4.41 Experiment guidance schematics. 

As seen in the table and graphics above in Figure 4.42, it is obvious that the closer 

the radial scanning direction gets to the polarization angle, the closer Actual Cavity 

Diameter gets to the  Desired Cavity Diameter. Referring to the results and images in 

Figure 4.43 below consequently keeping the polarization angle and the radial 

coordinate of the scanning direction equal to each other would give the most 

estimated results, avoiding the concerns that might occur when an unpredictable data 

is found by eliminating the unpredictable. 

The results of this experiment has shown that polarization angle changes cavity 

width and surface characterization, but even moving in y or –y effects surface 

formations. 
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Figure 4.42 Actual Cavity Diameter to Scanning Direction comparisons, 
polarization angle of 90˚ is used. 

New experiments were run to further test the creation of dumbbell like structures. 

This time the middle channels of the dumbbell like structure ablated much more 

wider by the overlapping process as shown in Figure 4.43, which is overlapping half 

of the radius of one cavity to a side and ablating another cavity, then another until the 

desired width is reached. 
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Figure 4.43 Power: 230 mW, ScanSpeed:0.005 mm/s, Fluence: 17.4 j/cm2, Focal 
Length: 50 mm, Desired Cavity Diameter: 40.8 mm 
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5. CONCLUSION 

We have utilized femtosecond laser between 0 mW and 220 mW power and between 

a wide range of velocities, repetition rates and between 0.1 khz and 1 khz frequency 

rates using focal lenses at 25.4 mm, 15 mm, 50 mm and 100 mm. After utilizing the 

laser with these parameters, following results were found.  

i. It is known that Femtosecond Laser is very advantageous in micro-machining due 

to the thermal diffusion law.However unless the micromachining method is run 

with the correct parameters, the advantages of the Femtosecond Laser 

Micromachining are useless. 

ii. One of the most important parameters to use correctly is; while micromachining 

the laser fluence must be kept between the melting threshold and the ablation 

threshold. It is easy to calculate the subject materials melting and ablation 

thresholds when examining it’s surface characteristics. While no ablation occurs 

beyond melting threshold, beyond this threshold so called ripple like structures 

form on the surface. 

iii. These ripple shapes are first formed perpendicular to the electric field thus to the 

polarization angle. When number of pulses or fluence is slowly increased ripple 

like structures parallel to the polarization angle are formed. 

iv. After fluence is slowly increased, and when ablation is reached and number of 

pulses is exponentially increased ripples are replaced by long rectangular 

structures. 

v. The fluence marking this change from ripples to rectangles also marks the 

ablation threshold. After this threshold when fluence or number of pulses is 

increased the surface structure is first rectangular, then it turns oval and bubble 

like structures are formed and the surface is deformed which are schematically 

represented in Figure 4.21. 

vi. Cavities closest to the desired cavity width are those micro-machined with close 

to ablation threshold level cavities. That is to say figuring the ablation threshold 

and machining on fluence levels is one of the primary requirements of laser 

micromachining. 
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vii. An important aspect is the increase of pulse numbers, while keeping the fluence 

between melting threshold and ablation threshold. The number of pulses can be 

controlled by manipulating the scan speed or by running multiple cycles on the 

cavity. Increase in the number of pulses means increase in the depth of the cavity. 

Thus desired depths can be reached by increasing the number of pulses. 

viii. Another important aspect is to keep the scanning direction and the 

polarization angle parallel to each other. This is important to achieve smooth 

surfaced cavities. To explain further when the scanning direction is moving in the 

x direction the polarizer angle must be 0° and when it’s moving in the y direction, 

the polarizer angle must be set to 90°. Further to that when the scanning direction 

is both x and y the polarization angle must follow. 

ix. Otherwise deformed cavities are obtained. 

x. Lastly optical lens shape is also important. When comparing the experiment 

results, using high focal length lenses increases the achievable beam waist (W0). 

But this lowers the quality of the light hitting the material. This is thought to be 

an uncontrollable light burst. 

xi. When micromachining with high focal length lenses is compared, whether in 

literature or our own experiments, it yields unworthy results. 

xii. If wide cavities are desired, instead of using high focal length lenses, cavities 

overlapping each other to achieve wider and smoother cavities which are 

schematically explained in Figure 4.39. 

xiii. Taking these parameters into consideration while micromachining will yield 

fruitful results. 

This body of work can be extended to produce microfluidic systems or direct glass 

bonded silicon based microfluidic systems. 

Our findings can lead to the production of an integrated smooth and optimized mask 

of cavities. Silicon can be ablated without plasma formation. Because of this, 

uncontrolled surface deformations can be avoided. 
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