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OZET

PERIODIK SINYALLER UZERINE EKLi STOKASTIK SURECLERDE
MODELLEME VE PARAMETRE TAHMINI

Bu calismada, 1958-1998 yillan arasinda Avrupa’daki 20 ionosond istasyonundan alinan
jonosferin F2 tabakasmn kritik frekansi olan foF2’nin saatlik degerleri ile bu verilerin
aylik medianlarindan sapmalan (AfoF2) incelenmistir. lonosferik kritik frekans verisi
foF2 hem stokastik hem de deterministik degiskenlere baghilik gostermektedir. Spektral
analiz kullanilarak orijinal verinin ve aylik medyanlann ana deterministik bilesenlerinin
11 ayhk giines periyodunun harmonikleri, 1 yi1l ve harmonikleri, 27 giinliik giines
periyodu ve ay periyodunun 2. harmonigi (12s 50.49d) oldugu gosterilmistir. Aylik
medyanlann verinin deterministik kismi igin yeterli bir yaklasim oldugu varsayilarak,
aradaki fark, yani AfoF2, yaklasik stokastik bir siire¢ olarak incelenmigtir. Aylik
medyanlardan sapmalarin kuvvet spektrumunun yaklagik beyaz giiriiltii niteliginde oldugu
g6zlenmistir. Bu gozlem, aylik medyanlarin verinin deterministik kismini temsil

edebilecegi varsayimini da desteklemektedir.

Ayrica AfoF2’nin dagilim fonksiyonunun Gaussian dagilima ne 0&lglide uydugu
arastinlmigtir. Bu amagla, ¢esitli istasyon ve saatler igin ayhik medyanlardan sapmalarin
histogramlan olusturulmus ve aylik medyanlardan sapmalarin beklenen degerinin sifira
yakin (u<0.5) ve %10 ile %20 aras: hata ile Gaussian oldugu g6zlenmistir. Standart
sapmalar giindiiz saatlerinde daha biiyiik olup 5-7 arasinda degerler almaktadir. AfoF2’nin
pozitif (Af") ve negatif (Af) degerlerinin mevsimsel bagimhilig1 spektral analiz ile
incelenmis olup, algak enlemlerde negatif sapmalarin mevsimsel bagimlilignin pozitiflere
gore daha belirgin oldugu, buna karsin yiiksek enlemlerde her iki sapmaninda mevsimsel
bagimhligi oldugu go6zlenmistir. Aynca pozitif sapmalarda ekinoks siiresince

modiilasyonlarin kayboldugu gorilmiistiir. Bu goézlemler sonucu, pozitif ve negatif
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sapmalar ayn ayn incelenmistir. Daha saglikli modeller elde etmek i¢in model
parametrelerinin gesitli fiziksel etmenlere bagimliligi arastinlmis ve AfoF2’nin pozitif
(Af") ve negatif (Af) degerleri R,, yerel saat ve mevsim bagimliliklart agilarindan ayn
ayn incelenmigtir. Algak enlemlerde pozitif sapmalar R;y’den bagimsiz iken yiiksek

enlemlerde her iki sapmanin da R, bagimlihig1 gézlenmistir.

Modelleme asamasinda ise, yapilacak olan model Rj;’ye bagh lineer bir model
olacagindan sadece negatif sapmalar ile galisilmistir. Her istasyon ve her saat igin negatif

sapmalarin %90 giiven aralig1 ile R;’ye bagh lineer bir model olusturulmustur.
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SUMMARY

MODELLING AND PARAMETER ESTIMATION FOR STOCHASTIC
PROCESSES SUPERIMPOSED ON PERIODIC SIGNALS

In this work, the hourly ionospheric critical frequency denoted by foF2 and the deviations
of hourly ionospheric critical frequency from monthly medians denoted by AfoF2, for 20
stations in Europe during the periode 1958-1998 are studied. The ionospheric critical
frequency foF2 data has deterministic and stochastic components. Spectral analysis is
used to show that the deterministic components (for each hour) are the harmonics of 11
year (solar cycle), 365 days and harmonics, 27 days and the second harmonic of lunar
rotation period L; (12h 50.49m), for full data and for the deviations from monthly
medians. Assuming that the monthly medians are the representation of the deterministic
components of the original data, the difference between the original data and the monthly
medians (AfoF2) is studied as an approximate stochastic process. The assumption is
supported by the power spectrum of the deviations from monthly medians being almost
white noise at the high end of the frequency spectrum, but with deterministic low

frequency components.

It is of interest to know to what extend the deviations from monthly medians are
Gaussian. For this purpose the histograms of the deviations from monthly medians for
various stations and hours are obtained. It is shown that the deviations from monthly
medians is nearly zero mean (mean<0.5) and approximately Gaussian with an error
ranging between %10 to % 20. The standard deviations are larger for daylight hours and
lie in the range 5-7. Distinctive behaviours of the positive deviations Af" and negative
deviations Af are studied. Then qualitative observations are reported. The spectral
analysis of negative and positive deviations studied separetely is used to show the

seasonal dependency of negative deviations is much more visible then the seasonal

XV



dependency of positive deviations, specially at low latitudes. At high latitudes, both
positive and negative deviations have seasonal dependency. Modulations at equinox time

disapear at positive deviations.

These observations lead to study negative deviations and positive deviations separetely.
Thus the upperdeciles (ninth deciles) for each hour, station and year are computed. It is
observed that positive deviations are almost independent from the solar index R, at low
latitudes. But at high latitudes it depends linearly on R;,. The negative deviations have a
Rz dependency at all latitudes. Based on this results a linear model is develped only for
negative deviations consisting of linear fits to Af versus R, for each station and hour, for

the %90 confidence interval.
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CHAPTER 1. INTRODUCTION

The aim of the present study is to apply deterministic and statistical tools to the problem of
modeling and parameter estimation of a process with deterministic and stochastic
components at various timescales. The critical frequency of the ionospheric F2 layer,
denoted by foF2 is such a process for which reliable data is available over a timespan of

about 40 years and for a large number of ionosonde stations over Europe.

The difficulty in modeling foF2 variations is that data has deterministic components at the
timescales of years, months and hours. Unpredictable variations influenced by ionospheric
conditions are superimposed on these periodic components. However these unpredictable
variations are not completely random, because the type and the magnitude of the
disturbance depends on the periodic variations above, and on other physical parameters

such as the geographic location of the station.

Our strategy in developing a model is to consider the data as determinitistic at the first
approximation, at the scale of years and months, determine the periodicities in the data by
Fourier analysis, as presented in Chapter 3.2, and use a previously developed model
Baykal (1998) to conclude that the monthly median values of foF2 for each hour represent

the determinisitic variations within 3-4% relative error in the I; norm.

Then, the difference of foF2 and the monthly medians for each hour denoted by AfoF2, is
the process that we consider stochastic and study in detail. The AfoF2 process considered
as a time series sampled each hour, still has deterministic components again at the
timescales of years, months and hours. Thus we have the option to consider it as a
stochastic process whose statistical properties change in time, but the change in these

properties are tied to deterministic effects. This would lead to work with nonstationary



processes and previous work Bilge and Tulunay(2000) has shown that models based on
data from time intervals over which the process is nearly stationary are more succesful.
Thus we split the data to years, and consider data from each station, each year and each
hour as stochastic process sampled daily. The statistical properties of these samples are
analyzed, and the dependency of the statistical parameters on physical conditions are

studied.

The aim of the work related to foF2 process is to develop working models to be used for
forecasting foF2 within one hour. In this respect, the extreme magnitudes of the deviations
are crucial and with this aim, we develop a quantitative model for the upper deciles of the

negative values of AfoF2.

The plan of our work is as follows. In Chapter 2, we give basic definitions and properties of
random variables and stochastic proceeses. In Chapter 3, we concentrate on the
deterministic aspects of the data: We give a detailed description of the data, we use Fourier
analysis to obtain its main periodic components, and we review a model using polynomial
fits and trigonometric expansions. In Chapters 4 to 6, we concentrate on the deviations
from monthly medians of foF2, i.e. AfoF2, which represent the stochastic components. In
Chapter 4, we consider yearly data from each station for each hour, consisting of 365 daily
values. We first consider each time series as a realization of some stochastic process, study
its power spectrum and conclude that these samples are nearly white noise with some low
frequency power. However because of deterministic effects, it is not possible to represent
them as realizations of the same stochastic process. In order to categorize them, we
consider each set of 365 daily values as samples of a random variable, and determine to
what extend these random variables are Gaussian and how their variances depend on
physical parameters. In Chapter 5, we study qualitative aspects of the dependence of the
statistical properties on physical parameters, and determine the key factors by which
samples can be considered as realizations of the "same" stochastic process. We conclude
that, for prediction purposes, the dependency of the negative deviations from monthly
medians on the sunspot numbers is the most crucial effect, and in Chapter 6, we obtain a
quantitative model for the upper deciles of negative deviations from monthly medians in

terms of the sunspot numbers.
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CHAPTER 2. STOCHASTIC PROCESSES

In this chapter we shall give basic mathematical concepts related to stochastic processes. In
Chapter 2.1 we define the probability density and distribution functions of a random

variable and in Chapter 2.2 we describe stochastic processes.
2.1. Basic defininitions, random variables

The sample space

All possible outcomes of an experiment constitute a set that we call the "sample space" and
denote by S. The elements of S, i.e. the outcomes are denoted by . Any subset of the
sample space S is known as an event and it is denoted by E. If in a certain trial the outcome
€ of the experiment is contained in the set E, then we say that the event E has occurred.
Two events El and E2 are mutually exclusive if the intersection of the sets E1 and E2 is
empty. A typical example we can consider the experiment consisting of tossing 2 distinct
dies, red and green. The sample space consists of the set {(1,1), (1,2),...,(6,6)} with 36
elements, where (i,j) denotes the outcome £ where the red die shows the number i and the
green die shows the numbérj. We may describe the event E as those outcomes for which
the sum of the dies is bigger than 10. Then E consists of the subset: {(5,6), (6,5), (6,6)} of
the sample space S, and if we toss (5,6) we say that E has occurred. The events of tossing

an even number and an odd number are mutually exclusive.Probability of an event

The probability of an event is defined axiomatically. But we start by giving a relative
frequency interpretation as follows. Suppose that an experiment with sample space S is
repeated under exactly the same conditions n times. For an event E, we define n(E) to be

the number of times the event E occurs.

LI



Then P(E), the probability of the event E, can be defined as the limiting frequency of E

P(E) =lim n(E)
e n @2.1)

To give the axiomatic definition, we shall assume that for each event E we can assign a real

number P(E), known as the probability of E, satisfying the following three axioms.

i) 0<P(E)<I 2.2)
iy P®=1 2.3)
iii)  For any sequence of mutually exclusive events E,, E,,...(that is, events for which

E; ﬁEj= @ when i#j),

P(ﬁE,): S P(E,)

i=i i (2.4)

Random variable

Let us consider an experiment with sample space S and outcomes . To every £ we can
assign a real number x(£) according to some rule. This defines a function x, called "random
variable" whose domain is the space S and whose range is R. This function can be
continuous or discrete. In the example above, if the dies are fair, the random variable x

assigns the value 1/36 to each outcome £. Here our random variable is discrete.
The random variables are chosen as to satisfy the following properties.

i. The set {x < x}is an event for any real number x.

ii. The probability of the events {x = +w0} and {x = -0} equals zero:

P{x=+oo}=P{x =-0}=0 (2.5)



Probability distribution function

Given a real number X, the set {x < x }, consisting of all outcomes { such that x(€) < x, is
an event, by (i) above. The probability of this event P{x < x} is a number depending on x .

The function defined by
F(x)=P{x<x} (2.6)

is called the probability distribution function, or just the distribution function of the
random variable. Here the distribution function will be denoted by F(x) instead of F,(x).

The distribution function have the following properties.
a) F(-0)=0 and F(+ew)=1 2.7
b) It is a no decreasing function of x: F(x|) < F(x2) for x;<x;

c) It is continuous from the right: F(x") = F(x)

The joint distribution function

Given two random variables x and y defined on the same sample space, with distribution
functions Fy(x) and Fy(y), the sets {x < x}and {y < y} are events with respective
probabilities P{x < x}=F(x) and P{y < y}=Fy(y). The cartesian product of the sets {x <
x}{y <y}= {x < x,y < y}, representing all outcomes { such that x(£)< x and y(£) <Ly, is
also an event. The probability of this event is a function of x and y, known as the joint

distribution function of the random variables x and y denoted by F,(x,y), i.e.

Fo(y) =P{x<xy <y} 2.8)

We shall use joint distribution functions only to define autocorrelation functions and power
spectral densities. We shall give certain properties of the joint distribution functions below

for completeness.

Although the joint distribution function F,y(x,y) is related to the distribution functions F,(x)

and F,(y) of the random variables x and y respectevly, it cannot be determined solely from



these functions. However knowing that {x < o} and {y < «} are the certain events, we can

conclude that :

{x<x,y<ow}={x2x}, {x<o,y<y}={y<y} 2.9)
Finally, as {x < o0, y < o0}is also the certain event,

Fyy(a0, 0) =1 (2.10)

On the other hand the events,{x = - o0,y <y} and {x < x, y = - co}having zero probability,

it is clear that

Fyy(-o0,y) =0 and Fy(x,-0)=0 (2.11)
Let suppose that x;< X,, it is seen that;

{(Xx<x2, YLy} ={x<x,y <y} +{xi<x<x,y<y} (2.12)
Therefore, P{Xx < x3,y £y} =P{x<x,,y <y} +P{xi<x<x;,y <y} (2.13)
From the latter inequality we conclude that:

P{xi<x<X3, ¥ <y} =F(x3y) - F(x1,y) 20 (2.14)

Probability density function
The derivative, if it exists,

dF (x)

T0==5 (2.15)

of the distribution function F(x) is called the probability density function of the random

variable x. The density function is also known as frequency function.



The joint density function of two random variables x and y, assuming that the joint
distribution function F(x,y) has partial derivatives of order up to two, is the second
derivative of F(x,y) denoted by:

O*F(x,y)
fy)=—=—"=
Ox0y (2.16)

Histograms

In many cases a graphic presentation of a frequency table gives concise and clear
information about a frequency distribution. There are three types of graphic presentation:
the histogram, the frequency polygone and the frequency curve. The sample space can be a
discrete or a continuous set. If the sample space is a continuum, it can be divided into cells
or intervals, and the number of occurences in each interval is called the frequency in this
interval. The histogram plot is represented by bars. When the midpoints of the bars of a
histogram are linked, we obtain a frequency polygon. The frequency curve is a smoothed
frequency polygon. A normal probability density function is a symmetric distribution about
the mean , with a frequency curve that is bell-shaped. (Yamane, 1967).

In practice, the division of the sample space into appropriate intervals is improtant for

obtaining “smoother” histograms.

Median values of a random variable

The median of a random variable, if it exists, is the middle value of a frequency
distribution such that the probabilities of the variable taking a value below or above it are
equal. In a discrete distribution the median is the middle term if the number of terms is odd,
or if the number of terms is even, the average of two middle terms, when the terms are
classified in an ascending order Borowski and Borwein (1991). For example; the median
of the set A=(3 79 11 19) is 9 and the median of the set B=(6 7 8 10 12 17) is (10+8)/2=9.
Notice that the set A has 5 terms (odd) and the set B has 6 terms (even).



Expected Value of a random variable

The expected value or the mean of a random variable x, denoted by E(x) or 7, is the

integral, if it exists,

E@x)= [xf(x)ax
= (2.17)

where f{x) is the density of x. If x is of discrete type, taking the values x, with probability
P then
Efx}=3 x,Plx=x,}=) x.p,
" n (2.18)
Let us assume that in an n-time repetition of an experiment, the outcomes &,,&;,...,L, have
been observed. For each outcome, the random variable x takes a numerical value such as

x(&1), x(£2).---X(Cn). If n is sufficiently large, then the average of these numbers is

approximately equal to the expected value of x:

E(r)y ZE)+XG) + -+ X(6,)
(2.19)

Remark: Notice that if the distribution function of a random variable is symmetric its

median equals its expected value or its mean.

Two random variables x; and x; are said to be :

i) Independent if, f{x;,x;) = f(x;) f(x2) .20)
i) Uncorrelated if, E{x,,X;}= E{x;} E{xz} 2.21)
iif) . Orthogonal if, E{x;,x;} =0 2.22)

Remark: The independence of two events E1 and E2 is defined as P(EINE2)=P(E1)P(E2).
Then i) follows from the definitions of the distribution and density functions (Papoulis,
1965).



Variance

The mean 1 of a random variable determines the place of the center of gravity of f(x).

Another important parameter is its variance or dispersion c%, defined by

o? = Efx-n) }= (x n) f(x)ds
(2.23)

this quantity is equal the moment of inertia of the probability masses and gives some idea
about their concentration near 7. Its positive square root o is called standard deviation. If x

is of discrete type, then

o’ =Y (x,~n)*Plx=x,}

(2.24)
We note that
o = Efx’ —2xn+n*}= Eix? }-2nE{x}+ n* = Ee )1 (2.25)
Which gives the important relationship
o? = E{x"}~ (E{x})’ (2.26)

Higher order moments of a random variable

A more complete specification of the statistics of x is possible if one knows its moments m,

defined by

= Bt }= u]xk f(x)dx
= @27)

Clearly, mop=1 and m;=n=E{x}



The central moments of a random variable are

= B )= [e-n)* F)d

(2.28)
Note that pe=1 =0 pr=c>
We can write the moments in terms of the central moments
k
m, = et} Bl ol b= 53 Ge-n) |
r=0 (2.29)
k
= Z (f )’7r#k—r
r=0 (2.30)
The joint moments my, of two random variables x and y are defined by
mi = E{x"y"} which gives the following equality:
= [ |5y /G y)dxdy
= A 2.31)

Here the sum k + r = n is called order of the moments. The first order moments m;q = 1,
and mg, = n, are the expected values of x and y respectively. The pomt with coordinates
Tix Ty is the center of gravity of the probability masses. The joint central moments Ly, are

defined by the following formula,

sy = Efe=n.) G=n, Y= [ Joe-n.) (=1, ) £y
= = 2.32)

which gives the variances of x and y py= 0, and pg= csyz respectively.
The second central moment p;; = E{(x-nx)(y-ny)} is called covariance of x and y.

-0 < < oo and its dimension is greater than I.



The ratio

Ex=nfy-n)  _ m

N e (e 2.33)

is called correlation coefficient of x and y. —1 <r< 1 and it has no dimension.

Upper Decile

Any one of the nine values of a random variable that divide its distribution into ten equal
parts, so that the probability of a variable having a value between one decile and the next is
1/10, is called decile. The cumulative relative frequency of the n'" decile is %10n. The
ninth decile is the value below which %90 of the population lie Borowski and Borwein,
(1991). In Chapter 6.2 we will use upper deciles for linear modeling which coincides with

the ninth decile defined above.
L norm

The norm is the length of a vector v in a finite dimensional vector space expressed as the
square root of the sum of the squares of its components with an orthogonal basis, when
these are discretes. In this work 1; norm of the error is used in Chapter 4.3 to compute the

error of Gaussian approximation.

2.2 Stochastic processes
Basic definitions

We consider an experiment specified by its outcomes £ forming the sample space S, by
events E which are certain subsets of the sample space S, and by the probabilities of these
events. Assigning a time function to every outcome £ by means of a certain rule, we obtain
a family of functions for each £. This family is called a stochastic process. Thus a
stochastic process is a function of two variables t and  whose domain is the set of real

numbers and the sample space S, respectively. For a given t, x(t) is a random variable. The

11



distribution function of x(t) denoted by F(x;t) satisfiying the following equality is called

first order distribution of the process x(t):
F(x,t) = P{x(t) <x} (2.34)
The corresponding density function is:

OF (x,1)
fx,)=—]"——=
ox . (2.35)

Given two time instances t; and t,, the joint distribution function of x(t;) and x(t;) denoted

by F(x; Xa;t1 ) called also second order distribution of the process x(t) is:
F(x,,%y308,) = Pix(t,) < x,x(t,) £ x,} (2.36)
The density function of two random variables x(t;) and x(t;) is given by

62F(x,,x2;1,,12)
a-‘la“'z

S (x,x558,0)=

(2.37)
The n’th order joint distribution function Fy(.,.) is defined as:
F{(xl“‘xnvtl"'tn) = P(l(tl) < X ----I(tz) < xz) (2.38)
and the n’th order joint density function f{.,.) is defined as:
O"F (X, 5oy X3ty 5ok
Selxy sty d,) = :{ é 5 I )
BT (2.39)
The mean n(t) of a process x(t) is the expected value of the random variable x(t).
()= Efx0}= [ (n)dx
= (2.40)



The autocorrelation Ry(t1,t;) of a process x(t) is the joint moment of the random variables

x(t,) and x(t,):

Rx_x(tl3t2) = E{x(tl )x(z, )}= o]xlef(xl X3kt )dx dx,
- 241

The autocorrelation function is a nonnegative definite function and this is a defining

property. For real process the autocorrelation function is symmetric.

The autocovariance of x(t) is the covariance of the random variables x(t;) and x(t,)
€.ty = Efe(0) -0 ) -7 .

From which we conclude that : C,(t;,t2) = Ry (ti,t2) - n(tin(t). (2.43)

A real stochastic process x(t) is statistically determined if its nth order distribution

functions are known.

Two processes x(t) and y(t) are said to be uncorrelated if, for any t; and t;, we have
Ry(tit2) = Mu(ty) ny(ty) thatis, if Cyy(t),tz) = 0, they are called orhtogonal if Ryy(t),t2) =
0. We say that the processes x(t) and y(t) are independent if the group x(t)),.....X(tn) is
independent of the group ¥(t; ),-..y(tm ) for any tl,...,tn,tll,...tm'.

Kolmogorov theorem states that the family of finite dimensional distribution functions

satisfying the conditions of :
i)symmetry

F (x5 X3ty ) = F (x50 yedy) (2.44)
ii)and consistency

Fo (%) y00e X,y 00903 ey yeed ) = Fo (X5 Xy 3 5ees B ) (2.45)



represents a stochastic process, and to each stochastic process we can associate a family of

finite dimensional distribution functions.

A stationary process is a process whose joint distribution or density function is invariant in
time. We say that a stochastic process x(t) is stationary in the strict sense if its statistics are
not affected by a shift in the time origin. This means that the two processes x(t) and x(t+€)

have the same statistics for any €.

A stochastic process is called strictly stationary of order n if for any t and h:

Fo (X5 X3 by geens ) = F o (X ey X, 58 + Py 8, + )

(2.46)

and if the above equality holds for any n.
It is said that a process x(t) is stationary of order k if its nth-order density function
satisfies the following equality:

f(X15eeeXnst e tn) = f(X oo Xnsty + €, ot €) (2.47)
not for any n, but only for n <k.
A stochastic process is called wide sense stationary if:
i) E{[x(t)’}< e forVt (2.48)
ii) E{x(t)} = constant (2.49)
iii) Rux(ti,t2) = Ru(ti-t2) (2.50)
Strict sense stationarity of order two implies wide sense stationarity.
Two processes x(t) and y(t) are said to be jointly stationary in the wide sense if:

Ru(ti,t2) = E{x(t1)¥(t2)} = Riy(t1-t2) @2.51)
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For wide sense stationary processes, the autocorrelation function R(t,t2) is a function of
(t;-t;) and the power spectral density can be defined as the Fourrier transform of the

autocorrelation, and is denoted as S(®). For real x(t), Rx(t) is an even function.

A stochastic process is called respectively independent, uncorrelated and orthogonal if the
pair (x;,X;) of random variables with x; = x(t;) and x; = x(t;) are respectively independent,

uncorrelated and orthogonal for arbitrary i and j.

Convergence

It is known that a sequence of numbers X, tends to a limit x if, given € > 0, we can find an
integer n, such that [x,x| < € for every n > n,. But the convergence of a sequence
X1,---Xns-.. Of random variables is not defined as well. Here for each experimental outcome
¢ we have a sequence of numbers Xi(£), x2(),.-»Xa(E)---» SO Xi,...;Xn,... TEprEsent a family
of sequences. If every sequence converge to its corresponding outcome &, we can say that
the family of sequences Xi,...,Xn.... cOnverges everywhere. But this is almost impossible. So

we look for weaker convergence properties.

It is said that the sequence x,converges to x with probability 1 if the set of outcomes & such

that: lim x,(§) = x(£) for n— o, has probability equal to 1. This is written as:
P{x,—x}=1 forn—> (2.52)
The sequence X, tends to x in the mean square sense if :
E{|x,x[’} > 0 forn —> (2.53)

The integral of a stochastic process x(t), denoted by s(C) if it exists in the Riemann sense

for every function x(t, ) of the process is:

s= I x(t)dt
a (2.54)
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When this integral does not exist for every £ we can define s(€) in another way such as, if

i=1

,};iToE{[s - ix(t,.)At,} } =0

then s is defined as a mean square limit of a sum.

The stochastic process’ integral

s= []‘x(t)dt

being a limit of a sum, it can be written as E{a;x; + ...+ aXy}.

Using expected value properties we can conclude that :

E{a;x; + ...+ aX,}=aE{x;} + ...+ a;E{x,} and
E{s}= _[E{x(t)}dt = jq(z)dz

The square of s can be written as a double integral:

st = ]x(t,)dt, I:[x(tz)dtz = ,]'hfx(t, Yx(t, )dt,dt,

(2.55)

(2.56)

2.57)

(2.58)

(2.59)

The expected value E{s?} and the variance o” of the stochastic integral s* can be written

respectively as:
b b b b
E{s’} = [ [Ex(t)x(,)}dndr, = [ [RG,1)dnat

b b

b b
o? = [ [[Rt1.1) - nten(e)nar, = [ [Cle,,t, )andr,

aa
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If we apply the above equalities to a stationary process w(t) we obtain:

1 T
=— )dt
s ZT_iwo

(2.62)
Here the expected value or ensemble average of s being E{s}= n its variance is:
] TT
ol = e _[ [ct, ~1,)dnar,
-r-1 (2.63)

However a stochastic process is time dependent, certain expected values can not be
calculated as usual. Therefore we introduce the relationship of time and ensemble average.
If the expected value of a stochastic process is time independent we will say that the
process is at least mean value stationary. When a process is mean value stationary, then a
time average x of the process may be defined as

T

x= i O Ix(t)dt
-T

T>w 2T (2.64)

if the limit average x of a mean value stationary process is equal to the constant ensemble

average denoted by 1.

White noise

Many random processes occuring in nature are approximately gaussian and approximately
stationary and have a power spectrum which is approximately flat up to frequencies far
higher than the maximum frequency at which a system is capable of significant response
Sage ahd Melsa (1971). This concept will use in Section 4.3.
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CHAPTER 3. DETERMINISTIC ASPECTS OF THE DATA

In this chapter we consider the ionospheric critical frequency foF2 process sampled at
each station as a deterministic time function and determine the periodicities in the data.
We repeat this procedure for each station hence we obtain the variation of various

properties with geographic location.

In Section 3.1, we give a detailed description of the foF2 data. Then in Section 3.2 we
investigate the deterministic components of the data using spectral analysis and finally
in Section 3.3 we review a model based on parabolic fits and trigonometric expansions

using least squares approximation to the data.

3.1 Description of the data

What is the ionosphere?

The ionosphere is the nearest part of the earth's atmosphere, to the earth. As it contains
a large amount of ions and electrons, it effects the propagation of the radio waves. The
ionospheric layer lie approximately from 75 km to 1-2 thousands km above the Earth.
It is divided into 4 regions called D, E, F1, and F2 respectively from the lowest one to
the highest. The D-Region is the region between about 75 and 95 km above the Earth
in which the (relatively weak) ionization is mainly responsible for absorption of high-
frequency radio waves. The E-Region is the one between about 95 and 150 km above
the Earth that marks the height of the regular daytime E-layer. The ionization which is
much more effective in the F2 layer (which lies above 400 km) disturbs the HF radio

waves propagation.
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What is the importance of the estimation of the ionospheric critical frequency?

The propagation of the electromagnetic waves used in radio, radar and navigation
systems depends on the ionization rate of ionospheric layers. Radio waves below a
certain frequency called "critical frequency" are reflected by the ionosphere and can be
used for long-range communication. If the critical frequency is high, the available
frequency band is larger. Thus the determination of the critical frequencies is important
for the planning of radio communication and navigation systems. Hourly values of
foF2 are recorded by vertical ionosondes, and distributed over the world. As the
critical frequency has a strong dependency on the hour of the day, it is customary to
work with the hourly values. Predictions of the monthly median values of foF2 for
each hour are the popular and the determination of the reliability ranges below and

above these predicted monthly medians have both theoretical and practical importance.

How data is processed?

In the framework of European Union Action COST 251, the critical frequency of the
ionospheric layer F2 data, taken from different ionosonde stations in Europe in
different years, are gathered in a CD-Rom. The available data consist of foF2 values
taken from 48 stations between 1958-2000, which covers a period of 43 years.
Eliminating those stations with less regular data coverage, the study is based on 20
stations between 1958-1998 (41 years). The geographical locations of these stations

are shown in Figure 3.1.1 below.
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Figure 3.1.1. Representation of the geographic coordinates of 20 stations.
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Since the original data foF2 has a latitude dependency, the 20 stations are arranged in 3
groups according to their Jatitude (from East to West). The first group, representing
high latitudes, includes the stations Lycksele,Kiruna, Sodankyla, Arkhangelsk,
Uppsala and Leningrad which lie nearly above 60N line. The second, mid latitude
group includes the stations in the 45N-57N band, ie. Slough, Juliusruh, Kaliningrad,
Moscow, Sverdlovsk, Lannion, Poitiers, Dourbes, Pruhonice, Kiev, Novokazalinsk.
The stations Tortosa, Rome and Sofia in the 40N-45N band, are arranged in a third low

latitude group. Table 3.1.1 given below is the representation of the coordinates and

data coverage for these stations.

Table 3.1.1. List of stations. X means reliable data is available for that year. P stands for data
from Paris-Scaley station with geographic coordinates 481N0023E, which stopped operating after

1970.
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The data from each station consist of hourly values presented in the form of 365x24 or
366x24 matrices and monthly medians of each hour, in the form of 12x24 matrices.
One of the critical problems in data processing is filling missing values. This problem
is partially solved by eliminating those stations and years for which data were not
available or too irregularly available. As a first step the monthly median data for each
year is collected and the ones for which the total number of missing values amounted
to more than a month, is disregarded. Then the missing values, which were not too
often, have been filled by a weighted average of the nearest neighbors. To simplify the
data processing, the last day of the leap years has been disregarded. For computation

20



purpose, cubic spline interpolation is used on 12x24 matrices of monthly medians to
generate 365x24 matrices of interpolated monthly median values. This enables to
replace the missing hourly values for a given day, by the corresponding value of the
interpolated monthly medians. The ultimate goal of the work being the estimation of
the ionospheric critical frequency foF2, the deviations of foF2 from monthly medians

for each hour, denoted by
AfoF2 = foF2 — (foF2)median 3.1

can be considered as a first approximation to the original data foF2 and tabulated
values for these medians provide a good guideline for frequency planning. Here, the
spectral analysis of both the original data foF2 and the deviations from monthly
medians AfoF2 is studied. The investigation of the statistical properties is done only

for the deviations from monthly medians AfoF2.

To which physical facts is it related?

Ionosonde records of foF2 have been obtained since nearly 1938 at various stations
over Europe. Hourly values are recorded and distributed by data banks. In very coarse
terms, the variations of foF2 follow the solar sunspot activities with a period of 11
years very closely. The solar activity is quantified commonly by the "Solar Index", Ry,
which is derived from the daily sunspot numbers. The sunspot numbers provide a well
established index of solar activity, the 11-year cycles of which are accompanied by
variations of the critical frequencies of the ionospheric layers. The R;; index is a
twelve-month smoothed relative sunspot number. In Figure 3.1.2 we see the monthly
median values of foF2 for the Slough ionosonde station between 1968-1988, together
with the variation of the 12-month smoothed sunspot number R;, (Baykal, 1998). A
plot of foF2 versus R;; given in Figure 3.1.3 shows that the dependency is nearly
linear (Baykal, 1998). The determination of this dependency is a crucial step in

modeling.
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Figure 3.1.2. foF2 original data of station Slough(515N3594E) for 20 years (1970-1989), together
with variations of R12 (Baykal, 1998).
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Figure 3.1.3. A plot of foF2 versus R, (Baykal, 1998).
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At the scale of a year, the median values of foF2 have a seasonal variation, which can

be seen in Figure 3.1.2. Hourly values of foF2 for a year are shown in Figures 3.1.4a,b

for Uppsala station, for low and high solar activity.
Hourly variations of foF2;UPPSALA 1980
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Figure 3.1.4a. foF2 original data of station UPPSALA(598N0176E) for 1980.

Hourly variations of foF2;UPPSALA 1986
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Figure 3.1.4b. foF2 original data of station UPPSALA(598N0176E) for 1986.
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In addition to these regular variations, foF2 is also affected by magnetic storms. A

typical storm time data is shown in Figure 3.1.5 Davis, et al, (1996).
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Figure 3.1.5. A typical storm-time behaviour of F2 layer critical frequency foF2 observed at

Slough. The crosses are the hourly values observed on 6-12 November 1991. The open circles

show the diurnal variation of the monthly median values (Davis et al., 1996)

To summarize, a simple study of the graphs shows that the critical frequency foF2 has
a R, dependency, seasonal dependency besides a dependence on longitude and
latitude. Longitudinal dependency is eliminated by using L.T. (Local Time) instead of
U.T. (Universal Time). On the other hand it is known that the magnetic storms, which
occurs randomly, disturb the critical frequency foF2 propagation. All these

observations and facts led to consider the critical frequency foF2 as a deterministic and

stochastic process.



3.2. Spectral analysis

Theory

The Fourier transform of a function is a useful tool for determining the periodicities in
the data. Also as it will be discussed in Section 4.1, the Fourier transform of a
stationary stochastic process is a good approximation for the power spectral density of
the process. We will describe below the Fourier transform of a function ft) and

practical problems associated with numerical computations.

Let f(t) be a function of time. The Fourier transform of f{t) is defined as the integral

F)= [f@e™d.
= (32)

] - »
) =— [F(w)e™do
2”-«[ (3.3)

In the expression above f(t) is a continuous function defined for all t. In practice we
work with a finite and sampled portion of the data. Thus we are lead to work with
discrete signals of finite duration. When dealing with discrete signals we use the

Discrete Fourier Transform (DFT) defined by

2z
-i’F

N-1 T ke
Fk)=Y. f(me *
n=0 (34
When working with data sampled at say At intervals, the highest frequency that can be
observed in the DFT spectrum corresponds to a period of 2At. For example, if the data
is sampled at 1 hour intervals, then we can only observe variations with periods 2 hour

or higher.

The Fast Fourier Transform (FFT) is an effective software routine for the computation
of the Discrete Fourier Transform. The computation of the Fourier transform of time
series is nowadays available in most numerical computation packages. We shall

discuss below practical problems associated with the use of standard FFT routines.
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Let {fi} be an N point sequence representing equispaced samples of a function f(t).
The FFT of this series is a complex N point sequence. For the purposes of the
determining periodicities in the data, we work with the absolute values of these
numbers, denoted as a sequence of real numbers {Fy}. The sequence {F} is
symmetrical about its midvalue, hence only the first (N/2+1) terms of the sequence
{Fi} caries information. The first term of the sequence represents the mean value of
the sequence {fi}, and in practice one eliminates the mean value prior to computing
FFT. In the plots of the absolute value of the FFT, the units on the horizontal axis are
customarily called "bins", and the vertical axis is dimensionless. The conversion of

bins to periods is done as follows.

Let N be the total number of data points sampled at At intervals. A peak in the absolute
value of FFT at the k'th bin corresponds to a variation with period T given by

T=N/(k-1) (3.5)

in units of At. For example, if 1 year of data are sampled daily, At=1 day, N=365, and
a peak occurring at the k=13 corresponds to a periodicity of 365/12= 30.41 days.
Conversely, if we search for a periodicity of 27 days, we should look at the nearest
integers to 365/27+1=14.51. We also note that harmonics of a given periodicity
appear at equidistant intervals. For example, if one year data are sampled hourly,
N=365x24=8760, At=1 hour, and the main harmonic of the daily variation i.e. 24 hour
appears at k;= 8760/24+1=366, while the second harmonic of period 12 hours appear
at k,=8760/12+1=731, the third harmonic of period 8 hours at k;=8760/8+1=1096, i.e.

with 3635 bin intervals.

In practice, the FFT spectra may have a number of unwanted peaks due to windowing
effects arising from finite observation times and other numerical processing errors.
Various averaging techniques have to be used in order to distinguish between weak
deterministic periodicities embedded in noise and spurious peaks. In addition, it has
been observed that variations with periods T such that N/T is an integer, the peaks in
the FFT are quite sharp. Thus running the FFT with variable data lengths allows better

resolution at certain frequencies.



Results

As an initial step in determining periodicities in the data we have computed the power
spectra of foF2 and AfoF2 for various combinations of stations, years and hours. In all
cases it is found that the dominant periodicities are the harmonics of 1 year and the
first and second harmonics of 27 days. In the spectra of foF2 the harmonics of the
annual variation give rise to sharp peaks while the 27 days variation shows as a diffuse
peak. The same periodicities are seen in the spectra of AfoF2, however the amplitude

of the 27 days variation is now comparable with the amplitude of annual harmonics.

In Figure 3.2.1 the frequency spectra for foF2 and AfoF2 for Slough station is shown,
to display the amplitudes of the periodicities of the order of months in foF2 and in

AfoF2. 6 x10°*

py

year Slough,harmonics of 1 year

6 months 3mo

1 \/\) AA.WAVAN VMMMAVAV. PRI A ALY .A :MA[\MM.M
UW [l W,MMN S

0 1
0 50 100 150 200 250

Figure 3.2.1. Lower portion of the spectrum of Slough station for all years.

Notice that in Figure 6, the upper graph displaying the spectrum of AfoF2 is scaled by
a factor of 10. In the spectrum of foF2 the peak corresponding to 1 year is dominant,
the periodicities of 6 months and 4 months are visible. On the other hand, for AfoF2
the 1 year and 6 months periodicities are of the same order, 4 months periodicity is
visible, in addition, there is a distinct peak corresponding to the periodicity of 3

months, which is absent in the foF2 spectrum. The power spectra for different hours
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are more or less similar: the main observation is that the 27 days periodicity is seen
only at day light hours. As an example, the spectra for Lycksele for 12h and 24h are

compared in  Figure3.2.2.
<10° LYCKSELE COMPARE HOUR 12.00 TO 24.00
2 T T

Figure 3.2.2.The power spectrum of Lyckseles’ original data for all years.

Here the spectra are obtained using 41-year data, and the 27 days periodicity appears
as most dominant peak. In Figure 3.2.3a the positive and negative deviations for
Slough for all hours are arranged as a consecutive time series, in order to display the

periodicity of 24 hours and harmonics.

0 x10° Power Spectrum of Positive and Negative Deviations; SLOUGH
T T Y Y y

24h i ; t

122h i

8h
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Figure 3.2.3a. A portion of the power spectrum of positive and negative deviations of Slough

station for all years showing the periodicity of 24 hours and harmonics.
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The periodicity seen just before the 12-hour periodicity is the second harmonic of the
lunar rotation period, L,. The spectrum of positive deviations is shown with positive
amplitude and the spectrum of negative deviations is shown with negative amplitude.

The zoomed graph, Figure 3.2.3b allows us to see the 1 year and 27 days periodicities.
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Figure 3.2.3b. Portion of the power spectrum of positive and negative deviations of Slough station.

Notice that the periodicity of 6 months has higher power for negative deviations. In
Figure 3.2.3¢, in the spectra for Slough, the 4 months periodicity can also be seen at
both graphs, but the 3 months periodicity is clearly visible in negative deviations while
it is absent in positive deviations. The appearance of the 3 months periodicity in
negative deviations occurs for certain other stations at various latitudes, but not as
sharply as in Slough. Thus further investigation is needed in order to decide on the
existence of 3 months periodicity in negative deviations. This observation for Slough
could not be generalized. The different character of the seasonal dependencies in
positive and negative deviations can also be seen in the time domain graphs given in

Figure 3.2.4a for Slough.
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Figure 3.2.3c. Portion of the power spectrum of positive and negative deviations of Slough station

for all years showing the seasonal variations.
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Figure 3.2.4. Time domain plots of positive and negative deviations for Slough.
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3.3 Modeling monthly median foF2

Models for foF2

The long-term trend in ionosonde data of mid-latitude was investigated (Bremer,
1992). The linear regression analysis of monthly medians of foF2 from Juliusruh
station using more than 30 years of observations has been made. Solar sunspot number
R and geomagnetic activity index A, has been used as parameter. Also another
explanation of foF2 monthly medians has been made by using R, solar index, which
is a smoothed (averaged) sunspot number. The parabolic regression between foF2
monthly median values from Lannion station and R, has been considered for each
month of the year and for each hour of a day. This method finds applications of a
ionospheric model for a long-term and short-term ionospheric prediction. In some

models spherical harmonics has been used to explain foF2 monthly medians.

Most researchers now accept a parabolic dependency of foF2 on Rj;. The
dependencies on other solar indices may give more successful results, but the
availability of an index is an important parameter in deciding to use it in a practical
model. Thus, we prefer to work with models depending on R;; only. In modeling
monthly medians, a trigonometric expansion in terms of the harmonics of one year (up
to Sth harmonic) is also adopted Bilge and Tulunay (1998). The coefficients of these
periodicities do depend however on Rj;. Thus one works with a trigonometric
expansion linearly modulated by Rj;. Such a model is developed in Baykal (1998)
and Bilge and Tulunay (2000). The determination of the best fitting trigonometric
expansion is based on the so-called least squares approximation that will be discussed
below.

(8]
p—t



Least Square Approximation in terms of arbitrary functions

When we use Least square approximation, we omit all stochastic assumptions and treat

the estimation problem solely as a deterministic optimization problem.

The line that minimizes the sum of the squares of the derivations is chosen, to fit a line
to no collinear points. The first assumption is that a linear equation will fit the data
points. But furthermore it is noticed that the use of matrix notation satisfies every

function (trigonometric, quadratic etc.). The final assumption is:
Y =AX (3.6)

Here Y is a vector of which components are the data points. A is a matrix where the
components are the chosen functions, and X is also a vector of which components are
unknown. If all these equations are used correctly, errors may tend to average out.

Since no one x can satisfy all the simultaneous equations, it is inappropriate to write

the equality
Y =AX 3.7
Rather, an error vector e is introduced, such as: e=Y - AX (3.8

The least square approach yields the one x which minimizes the sum of the squares of

the e; components. That is, x is chosen to minimize.

e’ =e"e=(¥ - 4X) (¥ - 4X)

le|* =YY —(4X)'Y -Y' AX +(AX) 4X (3.9)
b =3v2-2 8 va,x,+ 3 (4.5, (4,x,)

Let’s define
I =& (3.10)



(3.11)
(3.12)
(3.14)

Let’s define
We know that

(3.15)

o

(A!IXJ )T 4

nm
)3
i=l,j=1

(Ai,o )T AikX P

< R

(3.16)

So we have



Therefore we obtain

:>(a -oa

L, n,

=(4,) AX=Y"4,=(4,)Y

= X =(4,4)" 47
Since Y =AX
We finally obtain

Y™ =A(Ai A AT Y

Results

oo " X

(3.17)

Y ) : (3.18)

(3.19)

(3.20)

(3.21)

(3.22)

The model developed in Bilge and Tulunay (2000) is used for preliminary

investigations. It has been observed that the monthly medians for each hour can be

predicted within of a 3-4% in the L, norm. These figures are quite satisfactory for

prediction purposes. In the following chapters, we shall work with the deviations from

monthly medians.



CHAPTER 4. STOCHASTIC ASPECTS OF THE DATA

4.1 Correlation and power spectrum
Correlation and Power spectrum of stationary processes

[t is known that the second order moment of a stationary process x(t) is its

autocorrelation denoted by R(t) which satisfies:

R(7) = E{x(t + 1)x(t)} = Ry() = Rux(7) (4.1)
The above equality implies that R(0) = E{[x(t)]*}> 0 4.2)
[f x(t) is real, then R(7) is real and even. Hence R(-t) = R(7) (4.3)

Here our study is based on real x(t). The joint second moment

Ro(1) = E{x(t + D)y(1)} = Rx(-7) (4.4)

of two jointly stationary processes is their cross-correlation. From the above

definitions we can define the autocorrelation of the sum z(t) = x(t) + y(t) as
Rz(T) = Rux(T) + Ryy(T) + Riy(T) + Ryx(7) 4.5)

The autocorrelation of the product x(t)y(t) cannot be expressed in terms of second
order moments of the given process with the exception that x(t) and y(t) are
independent. In this case the random variables x(t + 7) and x(t) are independent of y(t .
+ 1) and y(t). Hence

E{x(t + 9y(t + Dx()y(t)} = E{x(t + )xOIE{y(t + )y} (4.6)



Therefore

Ruw(T) = R(DRyy(1) where w(t) = x(t)y(t) 4.7
Having a real x(t) and knowing that R(0) > 0 we conclude that:

E{[x(t + ) £ x(t)]*} = 2[R(0) = R(7)] (4.8)
The left-hand side of the above equality being nonnegative; we obtain

R(0) £ R(t) > 0 which implies —R(0) £ R(t) £ R(0). Thus we can say that R(t) is

maximum at the origin: |[R(t)| < R(0).
If we have two real processes x(t) and y(t) with a real constant a, we have :
E{[x(t + 1) + ay(t)]’} = Ru(0) + 2aRy/(7) + a’Ryy(0) (4.9)
This one being nonnegative for any a, its discriminant is nonpositive. Therefore
Ry (%) < Red 0)Ry(0) (4.10)

Since the geometric mean of two numbers does not exceed their arithmetic mean, we

also have: 2|R,y(t)] < R(0) + Ryy(0) (4.11)
Power spectrum

The power spectrum S(w) or Sy(w) or Sk(®w) of a process x(t) is the Fourrier

transform of its autocorrelation:

S()= e Rzl

(4.12)

where i is the imaginary i unit. R(t) being an even function we conclude that S(@) isa
real function. The Fourier inversion formula allows us to compute R(t) in terms of

S(w):
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R(7) = ;]; J'S(w)e " dw

(4.13)
With t =0, the above yields

1 [S(@)do = R(0) = E{x)’}20

7 L (4.14)

Thus, the total area of S(w)/2n is nonnegative and equals the “average power” of the
process x(t). If the process x(t) is real, then R(7) is real and even. Therefore S(w) is

also even: S(-w) = S(). In this case we have:

S(w) = a].R(r) coswrdr
~o (4.15)

R()= ZL th(a)) coswrdw
T (4.16)

The power spectrum S(w) of a process x(t) can be expressed in terms of its second-
order density f{x;,x;;t). Therefore, introducing the Fourrier transform of f{(x,x;;1)

with respect to ©

G(x,,%,3@) = [f(x,, %370 dr

4.17)
and knowing that:
R@)= [ [xx,f(xxy0)dndx,
= (4.18)
we obtain
S(w) = J.lexz If(xl,xz;r)e'jmdtdxldxz = IIXIXZG(x,,xz;w)dx,cbcz
e o (4.19)
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4.2 Gaussian process
Gaussian distributions
[t is known that Papoulis (1965) given any function G(x) such that:
G(-0) =0, G(+w) =1 and (4.20)

G =1 (4.21)
G(x;) < G(xp) if x;<x; and G(x") = G(x), we can find an experiment E and a random
variable x defined on E such that its distribution function F(x) equals the given
function G(x). Furthermore, we can also determine a random variable having as
density a given function g(x), provided g(x) =0

Tetod=1 6= [s0)dy

and (4.22)

Among the distribution functions the most well known and widely used one is the
Gaussian or “normal” distribution. We say that a random variable is normally

distributed if its density function is a Gaussian curve such as
f(x)=Ae="",a>0 (4.23)

Since

u]e'“z dx = J_’E
~ a (4.24)

The probability density function of the Gaussian distribution is:

1 _xt /202
e

f(x)=o_\/§ —0<xX<®, >0 (4.25)
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Two random variables x and y are said to be jointly normal if their density is:

1 [(x-m V_2r(e=mXy-m) (y-m )

1 _Z(I—rz) o‘Iz 0T, 0'21

fx.y) =

2ro0,N1=r" (4.26)

)

Thus the joint density function of two jointly normal random variables x and y with

zero mean E{x} =nx=E{y} = n,=0 is:

1 _._'__[ fi_25Y+-zf)
2 2 2
f(x,y) = e 2(1-r* W\ of o0, o3

2

2no,0,V1l—1 (4.27)

Where, E{x*} = 6> and E{y*} = o> and the parameter r is the correlation
coefficient. It is known that Papoulis (1965) two jointly random variables x and y
being uncorrelated, their covariance and correlation coefficient are zero. And if the

correlation coefficient of two jointly random variables is zero, they are independent.
Properties of Gaussian processes

i) From the latter statement we have one of the properties of the Gaussian processes
which is; if two jointly normal random variables x and y are uncorrelated, then they

are independent.

We call a stationary process x(t) in the strict sense, a process that its statistics are not

affected by a shift in the time origin.

This means that the two processes x(t) and x(t + €) have the same statistics for any €.
And we call a stationary process x(t) in the wide sense, a process that its expected

value is a constant and its autocorrelation depends only on t; —t;:
E{x(t)} =n = constant E{x(t + T)x(t)} = R(t), (explained in details in section 2.2)

Clearly, if x(t) is stationary of order two, then it is stationary in the wide sense. Wide

sense stationarity involves only first and second order moments.
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11) Therefore it a process x(t) is normal and stationary in the wide sense. then it is
stationary also in the strict sense. This follows from another property of the normal

distribution mentioned below.

iii) The statistics of a normal process are uniquely determined in terms of its mean

and autocorrelation.

iv) Let z= ax +by and w = cx + dy be the linear transformations of two jointly normal
random variables x and y, then z and w are also jointly normal. The converse is true

for if x and y are independent.
Chebychev’s inequality

Let 1 and o” be the expected value and the variance of the random variable x, and € a

positive number Cerit C., (2000). We maintain that

o’ o’
Plx-g2e)sZ oo PlX-7<e)21-= (4.28)
' £
The Law of Large Numbers

Let € be an experiment and let A be an event associated with €. Consider n
independent repetitions of €, let n(A) be the number of times A occurs among the n
repetitions in a binomial distribution function, let f (A)= n(A)/n be the relative
frequency and let P(A) = p be the occurrence probability of A. Knowing that the
expected value of a binomially distributed random variable E(n(A)) = np and its

variance V(n(A)) = np(1-p), for every positive number €, we have:

b-r=els =55 oo (4.29)

or, equivalently,

_ _p(-p)
Plf(a)-pl <s]21 — 30
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Then for sufticiently large n we obtain:

lim P f(4)- p| < ]=1 lim P|f(4)- p| 2 ]=0
e s (4.31)

Thus f(A) tends to p in probability.
Characteristic functions

The characteristic function of a random variable x is the Fourier transform of its

density function f(x) (with a reversal in sign).
#(w)=Efe™} (4.32)

This is the expected value of the complex function e =coswx +isinax of x,

and it is given by the integral, if x is continuous,
dlw)= [e™ f(x)dx (4.33)

and if x is of discrete type, taking the values xi,
o)=Y e P{x=x,} . (4.34)
k

The central-limit theorem

Consider a sequence Xi,...,Xa,... Of independent random variables with the same

distribution function. Let 1} and o” be the mean and variance of the random variable x

and o # 0. The random variable

§ = S,—nn _ (4.35)
n O'-\/;l_

has a normal distribution function Cerit, C.,(2000).
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Proof: Here our aim is to show that for large n the characteristic function @. of S,

1

tends to the characteristic function of a standard normal random variable, e % .

b (=4, (azzjexp( ;’3}?) (436)
A

8,.(1)= exp{n Ing, (;tﬁj —i m{ﬁ;ﬂ (4.38)

Hence we have to prove that :

e

i) for t = 0 both size of the equality vanishes and the equality holds.

e P
i 5 o-\/}; O'\/; =_£ (4.40)

ii) fort# 0, —-lim
) ot e ( ¢ )2 2
on
So we have llrn¢ (t)— "2’2 —w<x<®© (4.41)

n—xo

Where e"z'2 is the characteristic function of the standard normal distribution

function. Therefore the distribution function of the random variable

5 =S nm (4.42)

" on

1s a standard normal distribution.
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The properties of Gaussian processes and the central-limit theorem. which proves that
many of the distribution functions can be expressed in terms of the normal
distribution function, allow us to investigate, in our study, the resemblance to the

normal distribution function.

4.3 Statistical aspects of the data
Applications to foF2 testing statistical properties gaussian test

The first step in studying variability is to see to what extend these variations are
"random". It is mentioned in the Preliminaries, that given a large number of
observations, the histogram plot gives a good estimate of the probability density
function. Most estimation techniques are designed to be applied to Gaussian white
noise. Thus it is of interest to determine to what extend the deviations from monthly
medians are Gaussian. For this purpose the histograms of the deviations from
monthly medians for various stations and hours are obtained. In all cases the
deviations were almost zero mean (all means were less than 1MHz), thus the means
and medians do not differ much. We used least squares fit to find the standard
deviation of the best Gaussian approximation and the I, norm of the error. The results

are listed in Table4.3.1.
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Table 4.3.1. Comparison between the histogram of the deviations from monthly medians and

gaussian function with zcro mean and appropriate sigma.

STATIONS YEAR TSIGMA ERROR
GIBILMANA 1979 0.737 0.2053
LISBONNE 1990 0.188 0.1249
TORTOSA 1965 0.407 0.3120
ROME 1570 0.661 0.1130
EL ARENOSILLO 1976 0.435 0.1282
ROME 1981 0.742 0.1660
GARCEY 1970 0.550 0.1523
POITIER 1968 0.563 0.1523
POITIER 1976 0.454 0.0960
POITIER 1983 0.660 0.1287
LANNION 1973 0.539 0.1633
FREIBURG 1958 0.750 0.1449
FREIBURG 1969 0.675 0.2210
DOURBES 1960 0.8950 0.1148
DOURBES 1986 0.400 0.203
SLOUGH 1972 0.622 0.1505
SLOUGH 1992 0.680 0.1741
SOFIA 1983 0.688 0.1200
SIMFEROPOL 1958 0.667 0.2658
GORKY 1970 0.628 0.1500
UPPSALA 1963 0.339 0.2320
MOSCOW 1996 0.415 0.3250
KALININGRAG 1951 0.970 0.1390
KIEV 1968 0.562 0.1420
SVERDLOVSK 1976 0.413 0.2100

It is noted that however there is a systematic bias between the actual histograms and

the approximating Gaussians, as seen in Figure 4.3.1a-d.

x10' OF MEDWNS
23
: LYCKSELE  (RED)
MO
SICMAY. 7518
RX15
GAUSSIN
i ELE d
ost J
00 o 2 60 w0 20 )

Y MEDIANS

UPPSALA (RED)

M=0
SKIMA=T.4018

Figure 4.3.1a-b. Comparison between the histogram of the deviations from monthly medians and

gaussian function with zero mean and appropriate sigma for stations a) Lycksele (over 60N), b)

Uppsala (55N-60N) as high latitude stations.
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Figured.3.1c-d.Comparison between the histogram of the deviations from monthly medians and
gaussian function with zcro mcan and appropriate sigma for stations c) Slough(51N-55N) as mid

latitude d)Rome(40N-45N) as low latitude.

Namely for certain hours, positive deviations were more probable than the
approximating Gaussian while for certain hours negative deviations were more
probable (not shown). Thus the hypothesis of considering the deviations form
monthly medians as a single random variable is abandoned and these deviations are
studied more closely in the time domain. Névertheless as the overall errors range in
%10-%15 interval, the Gaussian approximation is still a reasonable working
hypothesis and the list of standard deviations given in Table 4.3.1 is expected to be
useful in other applications (for example filtering applications). To illustrate the
techniques used in the process it is recommended to present in details the properties
of the data in details. Certain qualitative features of the data are as follows. Recall
that a simple observation of the graph of AfoF2 shows that, extreme variations are
rare, and there is a modulation by Ry2. Thus the data is clipped to [-100,100].

A closer study using histograms shows that the variations AfoF2 range in [-50 to 50]
with a probability of 0.9993, in [-10,10] with a probability of 0.8285, and in [-1,1]
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with a probability of 0.1273. The absolute value ot the mean for various hours and
various years is always less than 1. The shape of these variations can be compared to

a normal distribution with the given mean and appropriate standard deviation.

The standard deviation leading to minimal mean square error is obtained by a one-
dimensional optimization. Although there is not shown here in figures, it is observed
that (i) for high Ry,, the probability density for positive deviation Af" lie above the
normal distribution, (ii) for low R,, the probability density for negative deviation Af”
- lie below the normal distribution. The shape of the probability distribution function
for each hour is also different. The peaks are narrower at nighttime, and wider at the
afternoon and evening hours. The modulation by R;; in the time domain graphs

shows itself in the Fourier spectrum, as dominant low frequency components.
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CHAPTER 5. PARAMETER ESTIMATION BY MEANS OF ITS PHYSICAL
DEPENDENCY

5.1. QUALITATIVE CBSERVATIONS

As a first step in the study of the time variations of the deviations from monthly medians, the

deviations from monthly medians for 06h, 12h, 18h and 24h UT, for 6 stations in the
geographic longitude band 10E-20E is shown in Figure 5.1.1a-f. A simple observation of
these graphs shows that for all stations the deviations have larger amplitude at 12UT, the

positive and negative deviations have different character and there is a clear modulation by
Rl2~

LYCKSELE Devaton from Megans KIRUNA:Dewviation fram Medians
T T Y T T T
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e

Figure 5.1.1a-b. Deviations from monthly medians for 06h, 12h, 18h, 24h U.T. for stations a) Kiruna
b) Lycksele as high Iatitude (over 60N) in geographic longitude band 10E-20E in time domain.
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JULIUSRUH Dewabon fram Medians

350

250}

2001

) 380r — T T T -

L L
1960 1965 1970

L s
1975 1980

"
1988

1990

s
1993

: L 1 L L 2
2000 '510955 1960 1969 1970 1975 1980 1933 1590 1995 2000

Figure 5.1.1¢-d. Deviations from monthly medians for 06h, 12h, 18h, 24h U.T. for stations a)Uppsala
b)Juliusruh on the latitude band (SON-60N) in gecographic longitude band 10E-20E in time domain.
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Figure 5.1.1e-f. Deviations from monthly medians for 06h, 12h, 18h, 24h U.T. for stations a) Pruhonice,
b) Rome as low latitude (48N-50N) in geographic longitude band 10E-20E in time domain.
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5.2 Physical dependency of the parameter

Ry; dependency:

A closer look to the negative deviations of all stations for all years indicates that they are
modulated by Ri» At high latitude, for Lycksele and Kiruna, both positive and negative
deviations at all hours have modulation by R|». For Uppsala only at daylight hours positive
deviations have modulation by R,. At mid latitude, for Juliusruh, there is a slight modulation
of positive deviations by R, at 06UT. At low latitude, for Pruhonice and Rome, positive
deviations have practically no modulation by R,,. From these observations it is concluded
that negative deviations are modulated by R, at all latitudes, but positive deviations have a

Rz dependency only at high latitudes.
Day and night difference:

In the histograms of Af for each hour it is seen that, for daylight hours, there is an
asymmetry between positive and negative deviations, negative deviations being more
probable, while the histogram for 24UT is almost symmetric. This fact can be seen in
Figure5.2.1 on the histograms of Af for Rome, for 24UT and 9UT. It is also noticed that, the
histograms are wider for daylight hours and this is consistent with the observation that 27

days variation disappears at night time (see Figure 3.2.2).

1200
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1000|-
soar 1
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00k
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Figure 52.1, Histogram plots of the deviations from monthly medians for Rome station.
Comparison of 24UT(-) and 9UT(*).
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Latitude and longiiude dependency:

The time domain plots given in Figure 5.2.2a-b for the daily deviations from monthly
medians show that, at night hours, the negative deviations are below the positive deviations,
while at day time the roles are reversed. The local time dependency can also be seen as a
shift of the crossing points as moving longitudinally. Similar graphs are obtained for each
latitude group in Table 1, where the similarities of the shapes of'the curves inside each group

justify the subdivisions with respect to latitude.

SLOUGH.JULIUSRUH, KALININGRAD, MOSCOW,DAILY MEANS(POS.NEG.OEV.)
T T T

-

LYCKSELE, KIRUNA, SODANKYLA ARKHANGELSK

—

Figure 52.2a-b.The difference between the positive and negative deviations for stations a)Lycksele,
Kiruna, Sodankyla and Arkhangelsk as high latitude. b)Slough, Juliusruh, Kaliningrad, Moscow as mid
latitude.

Seasonal dependency:

Working with 1year samples, only qualitative remarks can be made for seasonal dependency.
The time domain plots of AfoF2 given in Figure 5.2.3.a-b shows that at high latitudes, for
example Uppsala, both positive and negative deviations have seasonal dependency while at
lower latitudes, for example at Rome, only negative deviations have seasonal dependency.
The amplitudes are higher during equinoxes. This is consistent with the spectral analysis
results given in Figure 3.2.3c, where it can be seen that the periodicity of 6 months has

higher power for negative deviations.
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Figure 52.3a-b. Time domain plots of positive and negative deviations for stations a)Rome as low
latitude, b) Uppsala as high latitude.



CHAPTER 6. MODELING POSITIVE AND NEGATIVE VARIATIONS
SEPARATELY

The aim of the work is to give a convenient variability band to the variations of AfoF2, (we
shall use Af* instead of AfoF2). For this purpose we use upper deciles, whose definition is

given in Chapter 2, to find the upper and lower bounds of this variability band.

We recall that we work with 365 days data samples of Af* for each available stations, year
and hour. For each sample we compute the %90 confidence interval, i.e. the value (AF)c
such that (Af%) is less than (Af). with a probability of 0.9, for the given station, hour and

year. Thus we otain (Af*)c values as a function
(AfY)(universal time, station, year) 6.1)

Recall that the longitude dependency can be taken into account by using local time, hence
(AF‘)c is as well parameterized by the local time and latitude instead of universal time and
station. Further we can replace parameters by year with a parameterized by R,. Hence we

have
(AF)= (AF). (local time, latitude, R,3) (62)

At the first step, we aim to model the R;, dependency. We have observed that these
upper deciles for positive deviations are virtually independent of Ry, and we decided to
investigate only the negative deviations. As an example, in Figure 6.1, it is shown (Af).

for Sverdlovsk, for each hour as a function of R;,.
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Figure 6.1. Upper deciles of negative deviations for Sverdlovsk station, with respect to R,; for all

hours.

The data is quite scattered but there is a linear trend. Then after finding the slope and the
intercept of the best line fit for each station and each hour, the required linear model

shown below is obtained. Here the station or latitude dependency is parameterized as 8.
(Af )(local time, 8)=A(local time, 8 )R;;+B(local time, 8) 6.3)

At the second stage we aim to model the latitude dependency. For this, we compute( the

value (Af"),, by putting in the formula (6.3) R;2= (R}2)median- Hence we obtain values
(Af )= (Af )y (Local time, latitude) (6.4)

Therefore we obtain models depending on 2 constants A and B for 18 stations and each
hour. We compute 18*24%2 constants as shown in Table Al in Appendix. The
comparison of the analogues of Figure 6.2.1 for different stations suggestes that the
values of the upper deciles tend to increase with the latitude, but there is a decrease after
60°N which is in agreement with previous work (Kouris et al., 1999) (Xouris et al,
2000).
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[n order to quantify these results. the computation is done after the conversion from

Universal Time to Local Time and by inserting the median value of R; in the formula

below.

(AT )m(station,local time)=A(station,local time)}(R2)median™ B(station,local time) (6.5)

Thus, a representative value of (Af ) for a given station and local time is obtained. In

Figure 6.2a-d, the plot of (Af ), versus local time, for different stations grouped with

respect to their latitudes are shown.
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Figure 6.2a-b. Representative values of the upper deciles computed with the median value of R,; and

plotted with respect to local time for the stations on latitude band a) 60N-70N b) SON-57N.
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Figure 6.2.c-d. Representative values of the upper deciles computed with the median value of R;; and
plotted with respect to local time for the stations on the latitude band c) 4SN-51N d) 40N-43N.

It can be seen that the graphs for stations between 60°N-70°N are less coherent, the
maxima is located at 12-14LT, and the amplitudes are less thatn 14 MHz. For the stations
in the 50°N-57°N band, the variations are extremely coherent, there is a distinct peak at
12LT, and the amplitudes reach 18 MHz. Down to 45°N-51°N band, all graphs have a
peak again around noon, but their amplitudes seem to have a shift, their respective
maxima ranging from 10 to 16 MHz. In the lowest latitude band, 40°N-43°N, the peaks
are located around 10-11LT, the maxima range from 7 to 14 MHz, but actually the lowest
value of 7MHz, for Tortosa is questionable, because the data for Tortosa has large gaps.



CHAPTER 7. RESULTS AND DISCUSSION

In this study we applied statistical tools to model and estimate parameters of a process
with deterministic and stochastic components. The process that we worked with was the

ionospheric critical frequency foF2.

As a first step, for modeling, we considered the data as deterministic, at the scale of
years and months and determined its periodicities using Fourier Analysis. Then, we
studied the difference of foF2 and the monthly medians for each hour (AfoF2) as a
stochastic process. We observed that the AfoF2 process considered as a time series
sampled each hour still has deterministic components again at the timescales of years,
months and hours. Thus we considered it as a stochastic process whose statistical
properties change in time, but the change in these properties are tied to deterministic
effects. Even that this observations lead to consider the process as a nonstationary
process, we preferred to consider it as stationary because in previous works it is shown
that models based on data from time intervals over which the process is nearly stationary
are more successful. Thus we split the data to years and considered the data from each
station, each year and each hour as stochastic process sampled daily and studied its
power spectrum. We concluded that they are nearly white noise with some low

frequency power.

As a second step we considered each set of 365 daily values as samples of random
variables, and determined to what extend these random variables are Gaussian. We
studied the histogram plots of the deviations from monthly medians for each station and
each year. We concluded that they could be considered as Gaussian with a range of
%10-%20 error. On the other hand we observed an asymmetry on the histogram plots.

Based on this observation we studied the positive and negative deviations separately for
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each station and each year. This application on a large scale of data is a novelty in the

literature.

We have shown that longitude dependency can be incorporated in Local Time and
concluded that our main parameters are latitude, R|, and local time. We have studied
local time dependency qualitatively and shown that the highest amplitude is at 12 am and

graphed the 27 days periodicity.

As a third step we studied qualitatively the dependency of the statistical properties on
physical parameters and concluded that the dependency of the negative deviations from
monthly medians on the sunspot numbers R); is the most crucial effects. We made a
qualitative observation for the positive deviations and obtained a quantitative model for
the upper deciles of the negative deviations from monthly medians in terms of the
sunspot numbers. And we concluded that the upper deciles tend to increase with the

latitude, but there is a decrease after 60°N.

It is known that geomagnetic storms result in a depression of foF2 and affect negative
deviations. So the sensitivity of the negative deviations to R;2 is not unexpected. Our
observation that Af* are different lead us to consider quiet and disturb days separately.
This is also important for estimation, because after the onset of the storm, better

estimation can be obtained if this information is also incorporated into the techniques.

In future works we aim to make better estimations of foF2 applying these results to

different estimation techniques.
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APPENDIX A

Table A.1. Constants for polynomial fit to R, of negative deviations from monthly
medians of 18 stations, all years and each hour. U.T. (Universal time), L.T. (Local
time).

Af=A* R12 + B ; POLYFIT CONSTANTS

STATIONS U.T. L.T. A B
Hour. Minute | Hour. Minute | CONSTANTS | CONSTANTS

LYCKSELE 01.00 02.15 0.0371 7.7031
“ 02.00 03.15 0.0381 7.3581
“ 03.00 04.15 0.0381 7.1377
s 04.00 05.15 0.0355 7.5026
“ 05.00 06.15 0.0347 7.1183
4 06.00 07.15 0.0305 7.0833
« 07.00 08.15 0.0382 6.6429
s 08.00 09.15 0.0463 6.7613
« 09.00 10.15 0.0589 7.3960
“ 10.00 11.15 0.0618 8.7956
« 11.00 12.15 0.0718 8.7693
“ 12.00 13.15 0.0715 9.2299
“ 13.00 14.15 0.0696 9.0044
« 14.00 15.15 0.0766 8.1286
“ 15.00 16.15 0.0792 8.0848
« 16.00 17.15 0.0979 8.1106
e 17.00 18.15 0.0901 8.8267
¢ 18.00 19.15 0.0586 10.3731
“ 19.00 20.15 0.0525 10.6018
« 20.00 21.15 0.0416 10.5939
“ 21.00 22.15 0.0257 10.4638
“ 22.00 23.15 0.0314 8.9468
¢ 23.00 00.15 0.0344 8.3886
« 24.00 01.15 0.0394 7.7495
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STATIONS U.T. L.T. A B
Hour. Minute | Hour. Minute | CONSTANTS CONSTANTS

~ KIRUNA (-) 01.00 02.22 0.0453 5.1260
“ 02.00 03.22 0.0473 5.2252
“ 03.00 04.22 0.0479 4.7382
“ 04.00 05.22 0.0497 4.4836
« 05.00 06.22 0.0462 4.6674
“ 06.00 07.22 0.0307 5.6581
“ 07.00 08.22 0.0391 5.4594
“ 08.00 09.22 0.0453 5.3929
“ 09.00 10.22 0.0558 5.5489
e 10.00 11.22 0.0725 5.6999
“ 11.00 12.22 0.0801 5.9461
“ 12.00 13.22 0.0844 6.2655
« 13.00 14.22 0.0951 5.7739
“ 14.00 15.22 0.1267 4.5856
“ 15.00 16.22 0.1340 4.4395
«“ 16.00 17.22 0.1057 5.6804
£ 17.00 18.22 0.0845 6.1331
« 18.00 19.22 0.0576 6.7356
s 19.00 20.22 0.0464 6.5837
e 20.00 21.22 0.0434 6.3131
« 21.00 22.22 0.0377 6.4895
« 22.00 23.22 0.0416 5.5173
“ 23.00 00.22 0.0493 5.4460
& 24.00 01.22 0.0480 5.2435
SODANKYLA 01.00 02.46 0.0301 9.5086
“ 02.00 03.46 0.0728 3.8231
“ 03.00 04.46 0.0673 3.7370
“ 04.00 05.46 0.0681 3.1658
“ 05.00 06.46 0.0609 3.3963
“ 06.00 07.46 0.0539 4.3726
« 07.00 08.46 0.0599 3.8871
« 08.00 09.46 0.0705 3.9920
« 09.00 10.46 0.0895 3.6702
«“ 10.00 11.46 0.0991 4.3384
« 11.00 12.46 0.1101 4.1686
“ 12.00 13.46 0.1023 4.9528
“ 13.00 14.46 0.1132 4.2065
« 14.00 15.46 0.1151 3.6517
«“ 15.00 16.46 0.1224 4.2144
¢ 16.00 17.46 0.1228 3.8744
¢ 17.00 18.46 0.0995 4.4297

61




STATIONS U.T. L.T. A B
Hour. Minute | Hour. Minute | CONSTANTS | CONSTANTS
SODANKYLA 18.00 19.46 0.0847 4.6340
s 19.00 20.46 0.0668 5.4040
w“ 20.00 21.46 0.0656 4.4688
“ 21.00 22.46 0.0710 3.6372
« - 22.00 23.46 0.0638 3.9911
“ 23.00 00.46 0.0661 4.0406
« 24.00 01.46 0.0662 4.4016
ARKHANGELSK 01.00 03.42 0.0556 2.7646
« 02.00 04.42 0.0597 2.6332
« 03.00 05.42 0.0557 2.6843
« 04.00 06.42 0.0552 2.5691
w“ 05.00 07.42 0.0511 2.8742
« 06.00 08.42 0.0549 2.9331
s 07.00 09.42 0.0659 3.1340
w 08.00 10.42 0.0778 3.8726
& 09.00 11.42 0.0894 4.2188
« 10.00 12.42 0.1001 3.9733
“ 11.00 13.42 0.0917 4.1427
s 12.00 14.42 0.0888 3.7267
« 13.00 15.42 0.0952 3.0337
“ 14.00 16.42 0.1022 2.5744
« 15.00 17.42 0.1100 2.5158
& 16.00 18.42 0.1176 2.3959
c 17.00 19.42 0.0998 3.1665
« 18.00 20.42 0.0752 4.5255
« 19.00 21.42 0.0707 4.3878
« 20.00 22.42 0.0633 4.2231
e 21.00 23.42 0.0572 3.9404
“ 22.00 00.42 0.0562 3.5715
e 23.00 01.42 0.0538 3.3066
“ 24.00 02.42 0.0559 2.9862
UPPSALA 01.00 02.10 0.0386 6.6393
“ 02.00 03.10 0.0419 5.7393
e 03.00 04.10 0.0376 5.4949
“ 04.00 05.10 0.0267 5.4831
«“ 05.00 06.10 0.0214 5.9711
“ 06.00 07.10 0.0228 6.0180
«“ 07.00 08.10 0.0357 5.9720
«“ 08.00 09.10 0.0427 6.9264
« 09.00 10.10 0.0546 8.0788
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STATIONS U.T. L.T. A B
Hour. Minute | Hour. Minute | CONSTANTS | CONSTANTS

UPPSALA 10.00 11.10 0.0641 8.8259
“ 11.00 .12.10 0.0692 8.7187
e 12.00 13.10 0.0662 8.8422
« 13.00 14.10 0.0613 8.5908
« 14.00 15.10 0.0629 8.1581
“ 15.00 16.10 0.0614 7.4840
¢ 16.00 17.10 0.0604 7.1709
« 17.00 18.10 0.0546 8.2038
“ 18.00 19.10 0.0655 7.8940
«“ 19.00 20.10 0.0526 8.8355
“ 20.00 21.10 0.0426 9.4706
« 21.00 22.10 0.0353 9.7112
“ 22.00 23.10 0.0337 9.2407
“ 23.00 00.10 0.0386 8.1279
s 24.00 01.10 0.0386 7.1044

SLOUGH 01.00 00.58 0.0820 5.4863
“ 02.00 01.58 0.0881 5.0896
« 03.00 02.58 0.0899 5.0808
¢ 04.00 03.58 0.0907 4.8503
« 05.00 04.58 0.0864 4.3177
«“ 06.00 05.58 0.0758 3.9191
« 07.00 06.58 0.0803 3.8605
- 08.00 07.58 0.0991 3.8485
« 09.00 08.58 0.1235 4.7197
« 10.00 09.58 0.1513 4.6887
“ 11.00 10.58 0.1683 49078
¢ 12.00 11.58 0.1739 4.8162
¢ 13.00 12.58 0.1638 4.5306
« 14.00 13.58 0.1526 4.4196
« 15.00 14.58 0.1345 4.8949
¢ 16.00 15.58 0.1242 4.8152
¢ 17.00 16.58 0.1228 4.8941
«“ 18.00 17.58 0.1264 4.5616
«“ 19.00 18.58 0.1155 5.1592
« 20.00 19.58 0.1058 5.6982
«“ 21.00 20.58 0.0910 6.3909
“ 22.00 21.58 0.0770 6.6339
« 23.00 22.58 0.0742 6.3566
« 24.00 23.58 0.0790 5.7554
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STATIONS U.T. L.T. A B
Hour. Minute | Hour. Minute | CONSTANTS | CONSTANTS

JULIUSRUH 01.00 01.54 0.0648 7.3363
“ 02.00 02.54 0.0618 7.0863
«“ 03.00 03.54 0.0637 6.7523
“ 04.00 04.54 0.0612 5.9409
“ 05.00 05.54 0.0622 5.0615
« 06.00 06.54 0.0735 4.6009
“ 07.00 07.54 0.0856 5.2487
“ 08.00 08.54 0.1096 5.8129
“ 09.00 09.54 0.1328 6.6515
“ 10.00 10.54 0.1546 6.5712
“ 11.00 11.54 0.1488 7.0399
«“ 12.00 12.54 0.1587 5.9762
“ 13.00 13.54 0.1445 6.0622
“ 14.00 14.54 0.1291 5.9704
“ 15.00 15.54 0.1206 5.6155
“ 16.00 16.54 0.1074 5.7508
“ 17.00 17.54 0.1093 5.7577
« 18.00 18.54 0.1051 6.1387
+ 19.00 19.54 : 0.0898 6.7942
“ 20.00 20.54 0.0748 7.7739
“ 21.00 21.54 0.0620 8.2954
¢ 22.00 22.54 0.0533 8.0802
¢ 23.00 23.54 0.0564 7.6829
y 24.00 00.54 0.0651 7.0641
KALININGRAD 01.00 02.22 0.0465 4.6000
“ 02.00 03.22 0.0462 4.4751
“ 03.00 04.22 0.0424 4.0447
“ 04.00 05.22 0.0419 3.5907
“ 05.00 06.22 0.0382 3.7175
“ 06.00 07.22 0.0489 3.8885
“ 07.00 08.22 0.0573 4.5677
“ 08.00 09.22 0.0731 5.3088
«“ 09.00 10.22 0.0849 5.9632
“ 10.00 11.22 0.0943 5.8131
« 11.00 12.22 0.0878 5.9402
« 12.00 13.22 0.0849 5.3742




STATIONS U.T. L.T. A B
Hour. Minute | Hour. Minute | CONSTANTS CONSTANTS

KALININGRAD 13.00 14.22 0.0819 5.0366
« 14.00 . 15.22 0.0751 4.7998
« 15.00 16.22 0.0725 4.6016
“ 16.00 17.22 0.0684 4.5826
« 17.00 18.22 0.0610 4.9032
« 18.00 19.22 0.0618 5.0870
« 19.00 20.22 0.0506 5.5683
« 20.00 21.22 0.0432 5.9363
“ 21.00 22.22 0.0385 5.7949
“ 22.00 23.22 0.0386 5.5948
“ 23.00 00.22 0.0416 5.2288
“ 24.00 01.22 0.0509 4.4960
MOSCOW 01.00 03.29 0.0469 7.6914
« 02.00 04.29 0.0421 7.2626
“ 03.00 05.29 0.0459 6.3029
« 04.00 06.29 0.0523 5.6885
s 05.00 07.29 0.0639 5.7432
« 06.00 08.29 0.0890 6.0287
« 07.00 09.29 0.1073 7.6152
“ 08.00 10.29 0.1306 8.0827
“ 09.00 11.29 0.1419 8.3495
“ 10.00 12.29 0.1423 7.7880
« 11.00 13.29 0.1248 7.8236
« 12.00 14.29 0.1189 6.9829
“ 13.00 15.29 0.1031 6.9978
“ 14.00 16.29 0.0999 6.6225
“ 15.00 17.29 0.0953 6.3243
“ 16.00 18.29 0.1001 5.5840
“ 17.00 16.29 0.0933 5.7883
“ 18.00 20.29 0.0755 ' 6.9404
e 19.00 21.29 0.0622 7.9404
“ 20.00 22.29 0.0413 8.5174
«“ 21.00 23.29 0.0341 9.0937
« 22.00 00.29 0.0412 8.4967
“ 23.00 01.29 0.0461 7.9902
« 24.00 02.29 0.0473 7.8097
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STATIONS U.T. L.T. A B
Hour. Minute | Hour. Minute | CONSTANTS | CONSTANTS

SVERDLOVSK 01.00 05.10 0.0556 4.9830
s 02.00 06.10 0.0586 4.6191
w“ 03.00 07.10 0.0715 4.5531
“ 04.00 08.10 0.0932 4.7907
« 05.00 09.10 0.1202 5.1584
“ 06.00 10.10 0.1563 5.8101
« 07.00 11.10 0.1737 6.1008
“ 08.00 12.10 0.1695 6.1395
¢ 09.00 13.10 0.1667 5.6130
e 10.00 14.10 0.1526 5.2307
“ 11.00 15.10 0.1333 5.2705
« 12.00 16.10 0.1221 4.9500
s 13.00 17.10 0.1231 4.4351
« 14.00 18.10 0.1293 3.8624
e 15.00 19.10 0.1246 3.5419
s 16.00 20.10 0.1149 3.5722
e 17.00 21.10 0.0944 4.8042
“ 18.00 22.10 0.0806 5.6434
« 19.00 23.10 0.0640 6.0758
« 20.00 00.10 0.0551 6.6060
s 21.00 01.10 0.0630 6.0726
« 22.00 02.10 0.0616 5.9587
« 23.00 03.10 0.0606 5.8829
« 24.00 04.10 0.0577 5.5578
LANNION 01.00 00.47 0.0557 3.6827
e 02.00 01.47 0.0528 3.9414
«“ 03.00 02.47 0.0547 3.6582
e 04.00 03.47 0.0561 3.7227
« 05.00 04.47 0.0539 3.9115
« 06.00 05.47 0.0533 3.2691
« 07.00 06.47 0.0576 2.9091
«“ 08.00 07.47 0.0710 3.1026
¢ 09.00 08.47 0.0868 3.5291
« 10.00 09.47 0.1080 3.3919
¢ 11.00 10.47 0.1163 3.7644
« 12.00 11.47 0.1169 4.0836
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STATIONS U.T. L.T. A B
Hour. Minute | Hour. Minute | CONSTANTS CONSTANTS

LANNION 13.00 12.47 0.1050 4.1223
“ 14.00 13.47 0.0992 3.7218
« 15.00 14.47 0.0866 3.7599
s 16.00 15.47 0.0798 4.1123
« 17.00 16.47 0.0751 4.2659
« 18.00 17.47 0.0752 4.4733
“ 19.00 18.47 0.0640 5.1707
« 20.00 19.47 0.0610 5.1229
“ 21.00 20.47 0.0572 5.2282
« 22.00 21.47 0.0451 5.3353
“ 23.00 22.47 0.0420 5.1194
“ 24.00 23.47 0.0450 4.5634

POITIERS 01.00 01.01 0.0503 6.4881
¢ 02.00 02.01 0.0560 5.9246
. 03.00 03.01 0.0596 5.6876
« 04.00 04.01 0.0588 5.6744
“ 05.00 05.01 0.0566 6.3957
“ 06.00 06.01 0.0524 6.3411
“ 07.00 07.01 0.0615 5.5729
“ 08.00 08.01 0.0775 6.6697
“ 09.00 09.01 0.1019 7.1104
“ 10.00 10.01 0.1373 6.5200
“ 11.00 11.01 0.1318 7.4344
« 12.00 12.01 0.1256 7.3982
« 13.00 13.01 0.1161 7.1671
s 14.00 14.01 0.1100 6.7375
¢ 15.00 15.01 0.1048 6.3588
« 16.00 16.01 0.0975 6.5747
w 17.00 17.01 0.0865 6.5298
« 18.00 18.01 0.0710 7.1705
“ 19.00 19.01 0.0585 8.2608
« 20.00 20.01 0.0487 8.7818
«“ 21.00 21.01 0.0408 9.2613
« 22.00 22.01 0.0382 8.5950
e 23.00 23.01 0.0398 7.9202
¢ 24.00 00.01 0.0458 6.9449
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STATIONS U.T. L.T. A CONSTANTS B
Hour. Minute | Hour. Minute CONSTANTS
DOURBES 01.00 01.18 0.0285 9.1562
“ 02.00 02.18 0.0324 9.0197
“ 03.00 03.18 0.0312 8.9612
“ 04.00 04.18 0.0311 9.0440
« 05.00 05.18 0.0283 8.4666
“ 06.00 06.18 0.0316 7.3736
“ 07.00 07.18 0.0428 7.1402
“ 08.00 08.18 0.0529 8.1273
«“ 09.00 09.18 0.0743 9.3229
“ 10.00 10.18 0.0892 9.7680
“ 11.00 11.18 0.0952 10.3018
“ 12.00 12.18 0.0850 10.1017
« 13.00 13.18 0.0832 9.4719
“ 14.00 14.18 0.0819 8.5690
& 15.00 15.18 0.0696 8.6427
“ 16.00 16.18 0.0645 8.8885
- 17.00 17.18 0.0618 8.7259
“ 18.00 18.18 0.0540 9.5403
“ 19.00 19.18 0.0470 9.7576
“ 20.00 20.18 0.0333 10.7334
“ 21.00 21.18 0.0267 10.8532
¢ 22.00 22.18 0.0171 10.4595
« 23.00 23.18 0.0208 9.8655
« 24.00 00.18 0.0283 9.2242
KIEV 01.00 03.02 0.0166 5.6867
“ 02.00 04.02 0.0174 5.5287
“ 03.00 05.02 0.0166 5.6628
« 04.00 06.02 0.0211 5.3819
“ 05.00 07.02 0.0276 4.9074
s 06.00 08.02 0.0379 5.6202
« 07.00 09.02 0.0506 6.3997
¢ 08.00 10.02 0.0636 6.9091
“ 09.00 11.02 0.0615 7.4999
« 10.00 12.02 0.0599 7.1804
« 11.00 13.02 0.0542 6.7885
« 12.00 14.02 0.0480 6.4676
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STATIONS U.T. L.T. A B
Hour. Minute | Hour. Minute | CONSTANTS | CONSTANTS

KIEV 13.00 15.02 0.0470 5.7552
“ 14.00 16.02 0.0468 5.5556
“ 15.00 17.02 0.0461 5.4596
“ 16.00 18.02 0.0400 5.5102
“ 17.00 19.02 0.0363 5.6384
“ 18.00 20.02 0.0293 6.0997
“ 19.00 21.02 0.0240 6.1971
“ 20.00 22.02 0.0137 6.5355
« 21.00 23.02 0.0115 6.3546
“ 22.00 00.02 0.0140 6.0972
“ 23.00 01.02 0.0178 5.7246
“ 24.00 02.02 0.0172 5.5719
NOVOKAZALINSK 01.00 05.08 0.0041 5.6005
“ 02.00 06.08 0.0066 5.8825
“ 03.00 07.08 0.0149 6.2754
“ 04.00 08.08 0.0298 6.1826
“ 05.00 09.08 0.0370 7.3192
“ 06.00 10.08 0.0365 7.8636
= 07.00 11.08 0.0296 7.9111
s 08.00 12.08 0.0246 7.9292
“ 09.00 13.08 0.0198 7.3833
« 10.00 14.08 0.0166 6.9333
“ 11.00 15.08 0.0096 7.1287
« 12.00 16.08 0.0107 6.7533
“ 13.00 17.08 0.0151 6.0157
w 14.00 18.08 0.0182 6.0846
e 15.00 19.08 0.0150 6.2716
« 16.00 20.08 0.0104 6.3606
w 17.00 21.08 0.0090 6.0715
« 18.00 22.08 0.0044 5.7014
“ 19.00 23.08 0.0001 5.6975
e 20.00 00.08 -0.0019 5.6023
¢ 21.00 01.08 -0.0028 5.6925
“ 22.00 02.08 -0.0008 5.5922
«“ 23.00 03.08 -0.0018 5.7183
“ 24.00 04.08 0.0002 5.7390
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STATIONS U.T. L.T. A B
Hour. Minute | Hour. Minute | CONSTANTS CONSTANTS

TORTOSA 01.00 01.02 0.0116 3.6609
“ 02.00 02.02 0.0143 3.3181
. 03.00 03.02 0.0141 3.3334
“ 04.00 04.02 0.0162 3.1091
“ 05.00 05.02 0.0139 3.3508
s 06.00 06.02 0.0126 3.7615
¢ 07.00 07.02 0.0126 3.8317
“ 08.00 08.02 0.0193 47321
« 09.00 09.02 0.0283 4.6829
« 10.00 10.02 0.0259 5.3274
«“ 11.00 11.02 0.0276 4.9847
“ 12.00 12.02 0.0240 5.4859
“ 13.00 13.02 0.0204 5.6038
“ 14.00 14.02 0.0275 44751
« 15.00 15.02 0.0238 4.7197
. 16.00 16.02 0.0106 5.5925
« 17.00 17.02 0.0096 6.0034
« 18.00 18.02 0.0109 5.5671
5 19.00 19.02 0.0045 5.8896
s 20.00 20.02 -0.0014 6.3238
« 21.00 21.02 0.0015 5.6678
« 22.00 22.02 -0.0011 5.5217
« 23.00 23.02 0.0017 4.7545
“ 24.00 00.02 0.0032 4.4988
ROME 01.00 01.50 0.0611 5.2173
“ 02.00 02.50 0.0671 4.6989
“ 03.00 03.50 0.0656 4.5687
“ 04.00 04.50 0.0645 4.9370
“ 05.00 05.50 0.0627 5.4655
“ 06.00 06.50 0.0875 47199
“ 07.00 07.50 0.1127 49536
“ 08.00 08.50 0.1340 5.2192
« 09.00 09.50 0.1506 5.0105
“ 10.00 10.50 0.1372 5.5955
“ 11.00 11.50 0.1285 6.1386
“ 12.00 12.50 0.1199 6.3271
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STATIONS U.T. L.T. A B
Hour. Minute | Hour. Minute | CONSTANTS | CONSTANTS
ROME 13.00 13.50 0.1135 6.0379
« 14.00 14.50 0.1146 5.6695
« 15.00 15.50 0.1002 5.9173
“ 16.00 16.50 0.0969 6.2988
E 17.00 17.50 0.0867 6.7081
« 18.00 18.50 0.0793 7.7127
« 19.00 19.50 0.0686 8.6371
« 20.00 20.50 0.0617 8.2642
« 21.00 21.50 0.0574 7.8983
“ 22.00 22.50 0.0584 6.9252
« 23.00 23.50 0.0616 6.2754
E 24.00 00.50 0.0617 5.4904
SOFIA 01.00 02.34 0.0122 5.8639
ks 02.00 03.34 0.0130 5.7047
% 03.00 04.34 0.0094 6.0225
% 04.00 05.34 0.0102 6.4239
« 05.00 06.34 0.0198 6.5971
“ 06.00 07.34 0.0277 7.4347
« 07.00 08.34 0.0444 8.2672
« 08.00 09.34 0.0570 8.6340
« 09.00 10.34 0.0515 9.1873
« 10.00 11.34 0.0408 9.5536
E 11.00 12.34 0.0359 9.7370
« 12.00 13.34 0.0355 9.0130
« 13.00 14.34 0.0417 8.3186
E 14.00 15.34 0.0397 7.9485
« 15.00 16.34 0.0494 7.6090
« 16.00 17.34 0.0552 7.3277
« 17.00 18.34 0.0415 8.0159
« 18.00 19.34 0.0261 8.1170
« 19.00 20.34 0.0160 8.4184
« 20.00 21.34 0.0101 7.7523
« 21.00 2234 0.0060 7.3444
« 22.00 23.34 0.0077 6.7272
g 23.00 00.34 0.0089 6.5189
« 24.00 01.34 0.0135 5.7956
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