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DESIGNING A FAST DIRECT SPARSE MATRIX SOLVER
FOR MULTI-CORE DISTRIBUTED SYSTEMS

SUMMARY

Many scientific and industrial problems are described by partial differential equations
(PDEs). Handling of numerical solution of PDEs has been producing sparse linear
equation systems AX = B. Generally, two methods are most common used to solve
linear equation systems in computational science. One of them is direct methods and
another is iterative methods. Along with easily practicability of iterative methods
which are sequence of improving approximate solutions, direct methods attempt to
solve the problems with exact solution in the the absence of the rounding error.
So direct methods are seen more appealing through developing capacity of high
performance computing (HPC) systems.

Direct solvers for sparse matrices have more different algorithmic mechanisms than
for dense matrices because of the sparse matrix data structure and handling higher
dimensional scientific problems. And parallel sparse direct solvers especially have
another important issues like load balancing and scalability.

In this thesis, we consider parallel scalable direct solvers. We examine the effectiveness
of the Distributed SuperLU for multi-core distributed memory parallel machines
among several variants of sparse direct solvers.

Giving of background with general sparse direct solver algorithms, some important
mechanisms have been mentioned separately in more detail.

Advantages and limitations of the sparse direct solvers for distributed memory systems
have been discussed.

In our tests, scalability, tuning factors and constructions which needs further
customization for various large sparse matrices have been separately examined.

Although it is not possible to use only one direct solver for all pattern of matrices, we
propose a new algorithm SuperLU_MCDT (Multi-core Distributed SuperLLU) which
can exceed some limitations with new hardware and software developments.

Proposed SuperLU_MCDT is expected to take the fully advantage of multi-core
distributed systems. Our studies show that the inter-node communication and
intra-node memory requirements are critical and this existing overhead is partly
removed with our new algorithm SuperLU_MCDT.
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COK CEKIRDEKLI DAGITIK SiSTEMLER iCiN
HIZLI DOGRUDAN SEYREK MATRIS COZUCU TASARLANMASI

OZET

Bilimsel ve endiistriye yonelik bircok problemin coziimiinde dogrusal denklem
sistemleri ortaya ¢ikmaktadir. Diferansiyel denklemlerin biiyiik bir yer edindigi bu
problemlerde, bir¢cok kismi diferansiyel denklemlerin baglasik (ing: coupled) ¢coziilme
ihtiyacindan dolay1 analitik ¢oziimlerden ¢ok sayisal yontemler tercih edilmektedir.

Sayisal yontemlerle diferansiyel denklemlerin ¢6ziimii sonlu farklar ve sonlu
elemanlar gibi bir¢ok ayristirma yontemi ile problemin siirekli uzaydan ayrik uzaya
taginmasini baz alir. Bu egleme belli kafes (ing: mesh) noktalarinda gergeklestirilir ve
sonucunda seyrek matrislerin katsayilar1 icerdigi dogrusal denklem sistemleri ortaya
cikmaktadir.

Sayisal yontemleri iki ana bagslhik i¢inden ifade edebiliriz. Bunlar belli bir adim
basamaginda kesin sonuca ulasan dogrudan (ing: direct) yontemler ve yaklastirim ile
hatay1 her adimda azaltmay1 hedefleyen yinelemeli (ing: iterative) yontemlerdir.

Yinelemeli yontemlerin daha kolay programlanabilirligi hesaplamalarin bilgisayar
ortaminda kullaniminda ilk tercih olmasina neden olsa da, giinlimiiz problemlerinin
daha karmagik bir yapida olmasi yinelemeli yontemlerin yaklastirimini zorlastirmak-
tadir. Bununla beraber, bir takim 6n kosullandirici (ing: preconditioner) olarak
adlandirdigimiz yinelemeli yontemlerde ele alinan problemden dogan katsiyalar
matrisinin kosul sayisimi (ing: condition number) diisiirerek yakinsaklifin1 saglayan
on uygulamalar ise her duruma cevap verememektedir. Bu nedenler dogrudan
yontemlerin programlanabilme kolayli§inin yinelemeli yontemler kadar olmamasina
ragmen artik tercih edilebilir bir yontem olarak goriilmesine neden olmustur. Giiniimiiz
yiiksek basarimli hesaplama teknolojilerindeki gelismeler de dogrudan yontemlerin
daha genis bir problem sahasina uygulanabilirligini arttirmistir.

Seyrek matrislerin dogrudan yontemlerde ki geleneksel faktorizasyon algoritmalari
ile ele alinmasi, bellekteki direk olmayan adreslemelerden dolayr ciddi performans
kayiplarina neden olmaktadir. Bu nedenle supernode yaklagimi gibi bazi yontemler bu
problemin giderilmesi i¢in ele alinmaktadir. Boylece bilgisayar islemcileri daha etkin
bir sekilde kullanilmig olur. Bunun diger bir performans metrigini etkileyen faktorii
ise tikiz (ing: dense) BLAS kiitiiphanelerinin kullanimidir ki matris matris ve matris
vektor carpimlari i¢in optimize edilmis rutinler icerirler.

Seyrek matrislerin dogrudan yontemler ile birlikte ele alinmasinda dikkat edilecek
noktalardan bir tanesi de faktorizasyon sirasindaki matristeki sifir olan elemanlarin
sifir olmamasidir. Ciinkii seyrek matrisler tikiz olanlar gibi iki boyutlu dizilerde
(n?) degil , bellegin etkili kullanimi igin daha az yer kaplayan ii¢ ayr dizide (=
3n) saklanmaktadir. Kontrolsiiz artig gosteren sifir olmayan matris elemanlarinin
cogalmasi ise algoritmalar1 olumsuz etkileyebilmekte ve hatta bellek yersizliginden
dolay1 basarisiz sonuglayabilmektedir.
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Kismi diferansiyel denklemlerin ayristiriminda kafes noktalarinin ¢oziim has-
sasiyetinin artirilmasi ihtiyacindan dolayr sik olmasi veya hesaplama gerektirecek
problem tanim alaninin biiyiikliigii nedeniyle cok biiyiik seyrek matrisler ortaya
cikmaktadir. Boyle denklem sistemlerinin tek bir hesaplama biriminde ele alinmasi
ise donanimsal limitlerden dolay1 imkansizdir. Ciinkii ¢ok biiyiik hesap yiikii giinlerce
ve belki aylarca sonu¢lanamayacak veyahut da bellek sinirlamasindan dolayr hic
calisamayacaktir. Bu nedenle boyle biiyiik problemlerin dagitik sistemler ile ele
alinmasi gerektir.

Bu tezde, yukarida bahsettigimiz hususlar sonucu paralel calisgan dagitik bellek
sistemlerini kullanan dogrudan coziiciiller dikkate alinmistir.  Bu coziiciilerden
Distributed SuperLU merkezde olarak testler gerceklestirilmis ve ¢ikan sonuclar
ayn1 zamanda paralel bir dogrudan c¢oziicii olan SuperLU_MCDT (Multi-core
Distributed SuperLU)’nin tasartmin da bazi donamimsal ve yazilimsal limitlerin
acilmasi noktalarinda katki saglamisgtir.

Tezin ilk kisminda orneklerle diferansiyel denklemlerin ayriklastirilmasi, bunun
sonucunda cikan seyrek matrislerin yinelemeli ve dogrudan yontemler ile ele alinmasi
kargilastirilmis. Yapilan ¢alismalar hakkinda bilgi verilmistir.

Ikinci kisimda ise seyrek matris algoritmalarinin  ¢ikist  ve  gelisimi;
giinlimiizdeki dogrudan yontemleri kullanan c¢oziiciiler, Distributed SuperLU ve
SuperLU_MCDT nin buradaki yeri ve ozellikleri anlatilmisgtir.

Dogrudan yontemler i¢in temel teskil eden Gauss eliminasyon yonteminin ve basamak
oldugu LU faktorizasyon yonteminin tikiz ve seyrek matrislerdeki matematiksel
altyapisi ise liclincii boliimde ele alinmugtir.

Distributed SuperLU ve dogrudan yoOntemleri kullanan c¢oziiciiler igin kritik
mekanizmalar dordiincii boliimde tek tek ele anlatilmigtir. Bu mekanizmalarin isleyisi
ve Oonemli noktalar1 paralel dagitik bellek sistemleri tasarimi icin gerekli yonleri
acisindan ele alinmagtir.

Besinci boliimde, testlerin hangi sistemlerde nasil parametrelerle ele alindigina ve test
sonuglarinin degerlendirilmesine yer verilmistir.

Son olarak ise bu calismadan elde ettigimiz sonuclar ve genel degerlendirilmesi yer
almaktadir.

Sonug olarak soyle diyebiliriz ki bircok bilimsel ve endiistriye ait problemlerin
sonucunda seyrek dogrusal denklem sistemleri AX = B ortaya ¢ikmaktadir. Bu
sistemlerin hizli, giirbiiz ve ol¢eklenebilir algoritmalar ile ¢oziilmesi ¢cok onemlidir.
Ayn1 zamanda bu algoritmalarinin giiniimiiz yiiksek performanslt sistemlerin getirdigi
kapasite Olceklerine gore uyarlanmasi bir¢ok algoritmik yapinin daha verimli
uygulanmasina olanak saglayacaktir.

Biitiin matris desenleri i¢in iyi performansi olan tek bir ¢oziiciiniin olmasi miimkiin
goziikmemekle beraber, yeni yazilimsal ve donanimsal gelismelere bagh olarak bazi
sinirlamalar1 asan yeni bir algoritma (Superlu_ MCDT) sunuyoruz. Bu algoritma
ile cok cekirdekli islemciye sahip dagitik sistemlerin avantajlarindan miimkiin
oldukca yiiksek yararlanmaya c¢alisttk.  Nodlar arasi haberlesme yiikii ve nod
ici bellek gereksimi 6nemli bir yere sahiptir ve bu yiikii yeni algoritmamiz olan
SuperLU_MCDT ile bir miktar kaldirmis olduk.
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SuperLU_MCDT’nin gelistirilmesi yaninda calismakta oldugumuz kisimlar: satir
permiitasyon matrisinin paralel bir algoritma ile elde edilmesi, otomatik olarak
ayar parametrelerinin belirlenmesi, MPI + OpenMP hibrit programinin gelistirilmesi
ve cok cekirdekli islemciler i¢in gelistirilen paralel dogrusal cebir kiitiiphanesinin
SuperLU_MCDT ye eklenmesidir. Bunun yaninda GPU (Grafik isleme Unitesi, ing:
Graphichs Processing Unit) ile heterojen dagitik sistemlerde SuperLU_MCDT nin
uygulanmasi da yapmay1 planladigimiz ¢alismalardandir.
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1. INTRODUCTION

Many important problems in science and engineering are described by partial
differential equations (PDEs). Some of these PDE problems can be handled
analytically, but problems arising form complex coupled systems force us to use
numerical methods since their more complicated analytic structure. Numerical
solution of PDEs are based on the transferring continuous equations into the discrete
space and there are a lot of possible methods like finite difference, finite element or
volume for mapping. Also these methods generates linear systems which include large

sparse matrices involving more zero entries than nonzero.

For example, we consider the problem of the steady-stead temperature distribution in
a long uniform road and it is given by the second order and two point boundary value

problem.

—u (x)+ou(x) = f(x), 0<x<l1, 6>0 (1.1
u(0)=u(1)=0 (1.2)
When finite difference methods are considered, the domain of the problem is

partitioned into n subintervals with mesh points where width of the subintervals is

equal.

x€0,1], x;=jh, h=1/n (1.3)

The original differential equation 1.1 is replaced with a second order central finite
difference approximation at each interior mesh point. In this replacement, we introduce

an approximation v; ~ u(x;) whose values satisfy n — 1 linear equations.

—Vj-1 +2vj—vj—|—1
hz

+ov;=f(x)), I<j<n—1,vo=v,=0 (1.4)



Thus, the problem may be represented in matrix form as linear equation system Ax = b

where A is coefficient matrix, b is right hand side vector and x is unknown vector.

24+ 0hr -1 V| fx1)
-1 240k -1

= ’ 1.5)

. —1 . .
—1 24 0h? Vp—1 f(xn=1)

The linear system 1.5 is symmetric, tridiagonal, and another important observation is
that coefficient matrix is also sparse. Sparse means that coefficient matrix includes zero
entries much more than nonzero entries. In other word, a matrix is sparse if there is an
advantage in exploiting its zero [3]. For instance, One of the advantages of storing only
non-zeros is that this strategy makes possible to solve the linear system. Otherwise,
memory will restrict us after a mesh size amount. if the mesh points are increased
and the coefficient matrix is stored as dense having all entries. But increasing of mesh

points is necessary for more accurate results and handling problems with big domain.

Generally, two methods are most common used to solve linear equation systems in
computational science. One of them is direct and another is iterative methods. Direct
methods attempt to solve the problems with exact solution in the the absence of the
rounding error, after n step. But iterative methods struggle to obtain enough accuracy
within many process steps which can not be estimated exactly. On the other hand,
iterative methods have less time complexity. For example, the complexity is O(n?)
for direct methods and it is O(n?) for Jacobi and Gauss-Seidel. Even, multigrid
method has O(n) complexity. So iterative methods have a big advantages on this
point. But, more complicated iterative algorithms having less complexity like algebraic
multigrid is difficult to implement on complex problems. And less complicated
iterative algorithms having more complexity need also preconditioner which is more
complicated. Moreover, another disadvantage of iterative methods is that it must
start over again from the beginning in order to solve Ax = b;, after solving Ax = b;.
In sum, direct methods is seen more appealing through developing capacity of high

performance computing (HPC) systems.

Direct solvers for sparse matrices need more different algorithmic mechanisms than for

dense matrices. For instance, One of them is fill-in which is the arising of new nonzero

2



values during the process of an algorithm in L and U factors. So extra memory usage

can negatively effect if it is not controlled.

In the handling of the solution problem of the linear system AX = B, where A is a
given large square sparse matrix, X is unknown vector or matrices and B is a given
vectors or matrices. Gaussian elimination has an important part as a direct method
in the numerical linear algebra for the solution of AX = B. The conventional LU
decomposition algorithms for sparse matrices is not efficient because of the indirect
memory addressing for sequential computers and also load balancing, scalability issue

for parallel distributed memory systems.

In this thesis, we consider parallel scalable direct solvers. =~ We examine the
effectiveness of the SuperLU_DIST (Distributed SuperLU) for distributed memory
parallel machines among several sparse direct solvers (see Li et al. [4], Amestoy et
al. [5], Schenk and Gartner [6], Duran and Saunders [7], Duran et al. [8] and references
contained therein). Several important points explained in the following chapters have
taken part in the design of SuperLU_MCDT (Many-core Distributed SuperLU) (see [9]

and [10]). These points taken out of tests can be mentioned as follows.

In our tests, a lot of results have been found about scalability [11] of Distributed
SuperLLU as far as 512 cores. Along with these successful results, Distributed
SuperLU may show performance decreases for matrices having same sparsity level.
On the other hand, achievement of the Distributed SuperLU about availability of the
supernodes which are consecutive structures of entries make clear that there are some
synchronization issues arising from the insufficient load balancing of the algorithm.
Because availability test of supernode structures for randomly populated matrices

shows that supernodal approach gives answer for wide-range domain of matrices.

Another result coming from the tests is about BLAS routines which supernodal
approach make its usage possible [12]. As it can be seen in the numerical results,
BLAS routines are optimized for CPU by vendors give performance increment which

is multiple times.

Parallelization of the column ordering algorithms are based on graph partitioning. The
test results of ParMETIS [13] assigned for column ordering and symbolic factorization

in Distributed SuperLU and many solvers light the way that the usage of multi-core



technology with hybrid programing is a necessary since the overhead of the inter-node

communication and inefficient usage of the intra-node.

Many matrices having apart difference patterns make tuning of the algorithm
parameters important. Tests about three supernode parameters in Distributed SuperLU
show that approximate % 14 performance gain is possible with tuning. So auto-tuning
issue is the important mechanism which have been taken part in the design of

SuperLU_MCDT, as well.

The remainder of this thesis is organized as follows. After the introduction and
literature review chapters of the thesis, mathematical background of LU decomposition
is presented in Chapter 3. Critical mechanisms of SuperLU for distributed systems are
introduced in Chapter 4. In Chapter 5, numerical results are discussed. Chapter 6

concludes the thesis.



2. LITERATURE REVIEW

Sparse direct solvers has been changing since 1970 first appeared. In this chapter,
development of the sparse direct solvers, their features and limitations, current
available parallel direct solvers and Distributed SuperLU which is in the center of

the our proposals will be mentioned.

2.1 Development of Sparse Direct Methods

In the 1950s, iterative methods generally were used for solving large systems. And
there were only references about sparse matrices in the part of the books like
combinatoric and graph theory. In the 1960s, linear programming problems and
solution of the implicit ODES from engineering problems increased the usage of the
sparse matrices. The first organization of Sparse Matrix Symposium was made at IBM

Yorktown Heights in 1968 by the Mathematical Sciences Department [14].

A conferences on “Large Sparse Sets of Linear Equations” at St. Catherine’s College,
Oxford followed the symposium. About this time, the first theses [see Table2.1] about

solution of sparse linear systems with direct methods were written [15].

Table 2.1: The first theses about solution of sparse linear systems with direct methods.

Author Year University Thesis Title
Donald Rose 1970 Harvard Symmetric elimination on
sparse  positive  definite
systems and the potential
flow network problem

Alan George 1971 Stanford Computer implementation of
the finite-element method
Iain Duff 1972 Oxford Analysis of sparse systems
Andrew Sherman 1975 Yale On the efficient solution of

sparse systems of linear and
non-linear equations

In the 1970s, the solver packages started to appear. Some of them are MA18, M28
from Harwell Subroutine Library (HSL); SPARSPAK by George and Liu at University



of Waterloo, and YSMP by Andrew Sherman. Following of these years, the topics of
sparse matrices and implementation of direct method on computational mathematics
increased rapidly and showed results as books [see Table 2.2], conferences and

meetings.

Table 2.2: Books about sparse linear systems and direct methods.

Year Author Book

1973 Tewarson Sparse Matrices

1976 Brameller, Allan and Hamam Sparsity

1981 George and Liu Computer Solution of Large
Sparse Positive Definite Sys-
tems

1983 Osterby and Zlatev Direct Methods for Sparse
Matrices

1984 Pissanetsky Sparse Matrix Technology

1986 Duff, Erisman and Reid Direct Methods for Sparse
Matrices

1991 Zlatev Computational Methods for
General Sparse Matrices

2006 Davis Direct Methods for Sparse

Linear Systems

Many future research challenges have followed the this rapidly development. Some
important issues of sparse direct methods appeared in its developing process like
elimination tree and pivot strategies, error handling, supernode, and new approach

on LU decomposition and triangular solution [16].

One of the important development for sparse direct methods is to find new approaches
about fill-reducing orderings because a good fill reducing algorithm is essential for
reducing time and memory needings. But they are an NP-hard problem [17]. So many
heuristics are used and one important algorithm is nested dissection. As it is seen in

the Figure 2.1, algorithm can gather the fill-in values to near of the non-zeros.

This algorithm applied on symmetric matrices has two successful implementors:

ParMETIS and PT-Scotch [18] [19].

Another important issue for sparse direct solvers is avoiding from indirect addressing
and use dense BLAS routines. Sparse matrices are generally stored in three arrays,
and finding value for a entry needs to seek for arrays. So vectorized operations which

is very important for efficiency is not used directly. Two important methods were
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Figure 2.1: Nested dissection ordering [1].

presented to overcome this deficiency. They are multi-frontal [5] and supernodal
[2] methods. The main idea of this approaches to put in order entries, such that
matrix-matrix, matrix-vector multiplications are performed like in dense matrices

without affecting negatively factorization.

A big deal for parallelization of the LU factorization is partial pivoting. In execution
time, searching of the suitable pivot element, and transferring of the data is affecting
negatively the organization of the data structures and memory usage. As a solution Li
and Demmel has presented static pivoting algorithm not using of the partial pivoting

and which is stable as partial pivoting algorithms [20].

In our days, scientific and industrial problems have been being more complicated.
Consequently, being handled of the problem is challenge no longer. In this thesis, we
considered direct solvers oriented to Distributed SuperLU and analyzed the limitations

and researched the solution with algorithmic and hardware aspects.

2.1.1 Current list of direct solvers for distributed memory systems

Many solvers were arised in parallel with sparse direct methods progresses as we
mentioned above. During these developments which have been keeping on, many types
of HPC (High-Performance Computing) environments have become available. Some
of them are massively parallel computers and PC clusters with distributed memory. As
a result, new direct methods on distributed memory and based on MPI programming
have come out. When it comes to HPC development, linear algebra libraries start to

implement new suitable strategies for algorithms.



Here, we list the softwares for high performance computers for solving sparse and
dense linear system problems with direct methods and give some informations about
their description, version, license and language written. In tables below, all direct
solvers are aimed for distributed systems via MPI. The Table 2.4 shows a list of dense

direct solvers [21]. The Table 2.5 shows a list of sparse direct solvers [21], [9].

2.2 Introduction on SuperLU

SuperLLU is a general purpose direct solver performing LU decomposition and, its
first version was developed in 1997. Supernodal approach which is one of the
important mechanism of SuperLU gives advantages of performing of dense vector
matrix operation [2]. Using unsymmetrical matrix implementation of supernode, it

also generalized this technic.

Table 2.3: Status of SuperLLU software.

Sequential SuperLU SuperLU_MT SuperLU_DIST
Platform Serial Shared memory Distributed memory
Language C C + Pthreads C + MPI
(or OpenMP)
Data Type Real/Complex Real/Complex Real/Complex
Single/Double Single/Double Double

SuperLU covers a set of libraries including three subroutines for solving sparse linear
systems. All three libraries oriented on LU decomposition of the equations AX = B
where A is square nonsingular matrices and X, B are dense vectors. Matrix A may
be non-symmetric and it is not need to be positive definite. SuperLU were especially

designed and developed for unsymmetrical matrices.

SuperLLU algorithm were implemented on three libraries for different platforms. They
are as follows: Sequential SuperLU, Multithreaded SuperLU (SuperLU_MT) for
shared memory systems and Distributed SuperLU (SuperLU_DIST) for distributed
memory systems. All three libraries use memory hierarchy organization as advantage
and have some different strategy and mechanism [22]. Here, we are related to

distributed version.
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2.2.1 Distributed SuperLU

Distributed SuperLLU was designed for distributed memory systems. This library uses
MPI [23] for parallel programming model and can handle double precision real and
complex matrices. For equation AX = B LU decomposition can performing both on
global A and B matrices input or with distributed row-wise partitioning. Distributed
sparse matrices are stored in CRS (compress row storage) format. If there is enough

memory, global input operations are faster than which in distributed input interface.

Data structures of L and U matrices in distributed SuperLU are located as blocks
on rectangular process grid. After supernode detection distribution of matrices is

implemented in two dimensional block-cyclic fashion.

We can say that important property apart from sequential and multi-threaded SuperLU
is not using of partial pivoting during Gaussian elimination. Static pivoting are
used instead and, stability is provided with permuting large elements to diagonal
and iterative refinement and, the results of GESP (Gaussian elimination with static
pivoting) which are as stable as partial pivoting implementation are even obtained for
large range matrices [4]. In this way, there has been obtained load balancing and

parallelization of algorithm [24].

Distributed SuperLU’s GESP (Gaussian elimination with static pivoting) algorithm can

be respectively sketched as below:

(1) Row-column equilibration and row permutation: A <— P.-D,-A - D,
(2) A column permutation to preserve sparsity: A < P.-A-P.T

(3) Symbolic analysis to determine the nonzero structures of L and U
(4) Factorization of A = LU.

(5) Triangular solutions using L and U.

(6) Iterative refinement.

In each step except for row permutation, algorithm is performed in parallel. In Chapter

4, we give comprehensive details.
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3. MATHEMATICAL BACKGROUND OF LU FACTORIZATION

In this chapter, algebraic properties of Gaussian elimination as direct method, LU

factorization and sparse matrix approach will be reviewed on
Ax=D>

where A is a nonsingular matrix, X is an unknown vector, b is a given vector and

matrix representation coming from linear equation system

arxy +aixy +aizxs +...aipx, = by
ar1x1 +arxs +axxz+...aiux, = by

An1X1 + ap2X2 + Ay3X3 + ...AppXy = by

3.1 Gaussian Elimination

Gaussian elimination is an transformation of linear system to triangular form [25]. It

will be illustrated with the system

ajl app a3 x| by
a1 ay a3 x | =1 b (3.1)
a3l az ass X3 b3

Multiplying the first equation by ay;/a;; and subtracting from the second equation

(assuming that a;; # 0), new equivalent system is obtained.

apy  an as X1 by
0 an® ay® x | = n? (3.2)
asy  as as;s X3 bs
where
an' = ayy — (az1 Jay)ap (3.3)

13



a23'?) = azs — (az1 /an)ars (3.4

by P = by — (az1 /a1 )by (3.5)

Correspondingly, Multiplying the first equation by a3;/aj; and subtracting from the

third equation, new equivalent system is obtained.

a4 as X1 by
0 an® ayp® x| =] n? (3.6)
0 an® ap® x3 b3
where
a3'® = azy — (a31/ay)ar (3.7)
a33'?) = azs — (az1 /an)ass (3.8)
b3® = b3 — (a3 /a) )by 3.9

Similarly multiplying the new second row by az® / a»? and subtracting from the

new third equation (assuming that axn? # 0), new system is produced.

ayy  ap a4 X1 by
0 an® ap? xw | = 5n® (3.10)
0 0 a33(3) X3 b3(3)

where the new terms are given by
a3®) = a3 — (a3 /an?)a;® (3.11)

and

b3(3) =bs 2 _ (a32(2)/a22(2))b2(2). (3.12)

Now, the linear system 3.1 has been transformed the upper triangular form 3.10 and

the components of the solution can easily be gotten by the following steps

x3 = b3 Jaz® (3.13)
x2 = (by — a3 Px3) Jan? (3.14)
x1 = (b1 —apx2 —azxz)/an (3.15)

In general, a upper triangular system Ux = ¢ which is like 3.10 can be solved by the
steps
Xp = Cn/bpn (3.16)
14



n
X = (cp— Z Uk X )/ Ukkcs k=n—1,n-2,..,1 (3.17)
j=k+1

on the condition that uy, # 0, k= 1,2,...,n. This process is called back substitution.

Similarly the lower triangular system Lc = b can be solved by the steps

1 = by /I (3.18)

k—1
ek = (b= Y ljcj) /i, k=2,3,..,n (3.19)
j=1

on the condition that [, # 0, k= 1,2,...,n. This process is also called forward

substitution.

Gauss elimination is a process generating zeros in the first column, second column and

so on. It can be generalized on Ax = b with formula

ali "V =al) —(a}) Ja))a?, ij >k (3.20)
b = b — (al) fag ), 1>k (3.21)

where a}j =a;j, i,j=1,2,...,n. The very important requirement is that

i #0, k=1,2,...,n.

These entries are known as pivot in Gaussian elimination.

In the situation of that a,’ik = 0, the rows are exchanged. For example:

BD)-() =G ()-(2)  on

This operation selecting pivot element as largest absolute value from the column is
called partial pivoting and the equation always can be reordered through interchanging

rows if A is nonsingular [25].

3.1.1 LU factorization

Gaussian elimination produce upper triangular matrix U, and also lower triangular part
L of the linear system A = LU can be obtained. Handling the processes with another
point of view is just enough. Let A € C™ be a square matrix. Gaussian elimination

is done by subtracting multiples from subsequent rows and maintaining this process

15



for all rows. This process is equivalent to multiplication of A by a sequence of lower
triangular matrices Ly.

L, 1. LhbLiA=U (3.23)
If we multiply 3.23 with inverses of L,,_1...L,L; on the left
A=r'Ltp v, L'LtL, =L (3.24)

we obtain LU factorization of A. In practical Gaussian elimination, the matrices L
and U are stored on the original matrix A and the entries of L are computed with

formula

li=al ja ik (3.25)

As an example of LU factorization [25], let A be a square matrix 4x4

2110
4 3 31

A= R 7 9 5 (3.26)
6 7 9 8

Firstly, we subtract first row from second, third and fourth rows relatively two,four and

three times.

1 000 2110 2110
2100 4 3 3 1 0111

LA=1 401 0 8 795 0355 (3.27)
300 1 6 79 8 0 46 8

Similarly, we subtract second row from third and fourth rows relatively three and four

times.
1 0 00 2110 2110
0O 1 00 01 11 0111
LLA=106 3170 ]lo3ss5]| o022 (3.28)
0 -4 01 0 4 6 8 002 4
Thirdly, we subtract third row from fourth row.
10 0 O 2110 2110
01 0 O 0111 0111
LLLA=| 4 o 1 o 0022 |"loo022]|7Y G
00 —1 1 002 4 000 2

Now, to complete of the factorization, we need to compute L = LI_ILZ_ 1L3_ !, Finally,
the multiplication of L]_ILZ_ 1L3_ !'is the unit lower triangular matrix with a minus times

the non-zeros subdiagonal entries Ly, L, and L3.

16



A=LU —

o) Je N AN )
~N W=
O O W —
0 L — O
W AN -
A W= O
—_ -0 O
—_ o O O

3.1.2 LU factorization for sparse matrices

(il )

OO = =

O N = =

(3.30)

NN = O

Sparse matrices have mostly nonzero and generally LU factorization based on

Gaussian elimination for sparse matrices has same process phases. But it needs extra

processes because of its data structures. For example, when we consider the matrix §

X X X X X X

= =

=R R R R R R =
=

(3.31)

there will be appeared many nonzero after LU factorization. If they are not controlled,

we can be faced with a big limitation for algorithmic aspect. But if we reorder matrix

S with row P, and column P, permutation matrices as below

PSP, =

X
X X X X X X X

R R R R xR R X

(3.32)

stable a matrix appear to handle. After that, LU factorization may start on permuted

matrix P.SP.. After factorization, solution can be reached by following steps.

x=85"1p

PSP, = LU —>
A=P 'LUP.™!
x=P'Lur N b
x=PU'L7'Pb

17



Gaussian elimination algorithm for sparse matrices has several algorithmic mecha-

nism. In the next chapter, ordering and other related issues will be considered.

18



4. CRITICAL MECHANISMS OF SUPERLU FOR DISTRIBUTED
SYSTEMS

In this chapter, we will handle Distributed version 3.X. Giving of background
with general and improved algorithms, we will separately mention some important

mechanisms in more details.

4.1 Background of Distributed SuperLU

4.1.1 LU factorization for sparse systems

Direct methods for solving linear systems of the form Ax = b are based on computing
A = LU, where L and U are lower and upper triangular, respectively. Computing
the triangular factors of the coefficient matrix is also known as LUdecomposition.
Following the factorization, the original system is trivially solved by solving the
triangular systems Ly = b and Ux = y. L is a unit lower triangular matrix (Lii = 1) and
U is an upper triangular matrix. The factorization can also be applied to non-square

matrices.

A common formulations of LU decomposition for dense matrices are shown as below

[26].

forJ=J+1 toN

AlJ, Il = A[J,1)/A[L1); /*division step, computes column i of L */
end for
for K=I+1 to N

forJ=I+1 to N

A1, J] =AJ,J| —A[J,1]-A[l,K]; /* update step */

end for

end for
end for

Here, simple column-based algorithm for LU decomposition of an NxN dense matrix.

19



The algorithm overwrites by L and U. The diagonal entries after factorization belong
to U; the unit diagonal of L is not stored. If we take the coefficient matrix as sparse, we
should differently handle problem from storage of data, data structures, load balancing

to graph partioning and many mechanisms. Let us consider of these phases.

4.2 Four Phases to Solve AX=B

Direct solvers for sparse matrices involve much more complicated algorithms than for
dense matrices. The main complication is due to the need for efficient handling fill-in
in the factors L and U. A typical sparse solver consists of four distinct steps as opposed

to two in the dense case:

1. An ordering step that reorders the rows and columns such that the factors suffer

little fill, or that the matrix has special structure such as block triangular form.

2. An analysis step or symbolic factorization that determines the nonzero structures of

the factors and create suitable data structures for the factors.
3. Numerical factorization that computes the L and U factors.

4. A solve step that performs forward and back substitution using the factors.

4.2.1 The preprocessing of matrix

First processing step for LU decomposition is tuning of the coefficient matrix A.
This preprocessing including three parts, equilibration, row and column ordering, are

practiced for numerical stability and fill reducing.

4.2.1.1 Numerical stability

Distributed SuperLU performs static pivoting instead of dynamic pivoting which are
used for maintaining numerical stability with interchanging of rows. Hence, there
has been avoided from inefficient access pattern of data and, gained ground for
synchronization of the algorithm. And static pivoting approach has been as stable

as partial pivoting for extensive test matrices with equilibration and row ordering [24].
Equilibration

Equilibration is implemented for rows and columns. Here D, and D, diagonal row and

column equilibration matrices respectively, are computed so that A <— D, - A - D, has

20



better condition than A. Each entries of rows and columns are divided by maximum

absolute value of related column or row. After scaling, A has unit norm.

Overwriting to original matrix, equilibration can be serially computed by MC64
developed by Duff and Koster [27] or in parallel. This step can be changed or stopped

by input options if wanted.
Row ordering

The second important step for numerical stability is to compute a row permutation
matrix P,. Distributed SuperL.U use the serial code of MC64 [27] for both equilibration
and row ordering. Firstly coefficient matrix A has maximum absolute entry 1 with
equilibration, then row ordering moves the absolute values 1 on diagonal. So pivoting

numbers are maximized: A < P,-D,-A- D,

P, is computed by maximizing the product of the diagonal entires. Bipartite graph
taken out from matrix A is used. Each vertices are weighted by entry values and
maximum matching algorithm on that graph finds the related values, using search tree

algorithms [28].

4.2.1.2 Fill reducing

When A is sparse, the triangular factors L and U typically have nonzero entries in
many more locations than A does. This phenomenon is known as fill-in, and results
in a superlinear growth in the memory. Column ordering algorithms are used for fill
reducing in this important part of the direct solution of a sparse linear system. As a

result of this permutation, load balance, communication reducing is also provided [29].
Column ordering

A sparse matrix can be represented with the adjacency matrix of a graph. Column
ordering algorithms typically use this graph. Because of the NP-hard problem,
heuristics are used. The column ordering are implemented on the symmetric structures
which has been obtained by A7 +A or AT - A. Computing of A” - A may be expensive

both for time and space, so A7 + A is generally used.

AMD (Approximate minimum degree), COLAMD (Column approximate minimum

degree), MMD (Multiple minimum degree) and nested dissection used in METIS and
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ParMETIS are some of the column permutation algorithms. Distributed SuperLU give

several option for column permutation:

No ordering.

Minimum degree ordering (on AT +A).

Minimum degree ordering (on AT - A).

e METIS ordering (on AT +A).

ParMETIS ordering (on AT +A).

e User input permutation matrix.

ParMETIS is the parallel choice [13] and PT-Scotch can also used instead [19]. Unlike
ParMETIS, PT-Scotch does not support the partitioning multiconstraint. So ParMETIS
seems better choice. In this step, column permutation matrix P, is implemented
symmetrically like that P.-A - P.” not to lost the entries of the main diagonal which

are same in the matrix P,.- D, -A - D..

4.2.2 Symbolic factorization

The golden rule of sparse matrix theory is to predict the structure of the numerical
results and allocate memory before the numerical computation. So performing
symbolic analysis is very important since it is used to determine the nonzero structures
of L and U when there is no need to pivot. Thus there has been avoided from indirect
addressing for very large data. It also allows us to organize numerical factorization

before we it is done [20].

The building of elimination tree for Cholesky factorization of symmetric positive
definite matrices is the base of symbolic factorization. This process is executed on

reduction graph of Cholesky L factor.

In the case of unsymmetric matrices, symbolic factorization replaced directed acyclic
graph of L and U apart from of symmetric matrices. Since tree structure can not be
used, the parallelization of symbolic factorization is more difficult than which are for

symmetric matrices.
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Distributed SuperLU can handle symbolic factorization as sequentially or in parallel.
Parallel symbolic factorization use ParMETIS and works only on power of two
processors. If the number of processors is not equal to 29, possible smaller number

processor is chosen and the data are redistributed.

4.2.3 Numerical factorization

In Gaussian elimination, there are several approaches for numerical factorization.
Often used algorithms are left-looking (fan-in) and right-looking (fan-out). Both of
them have same floating point operation but their memory access patterns are different

as it can be seen in Figure 4.1, 4.2.

P, P,
U
A
L
DONE W myeNOT
UCHED

® DONE @ WORKING

Figure 4.1: LU factorization as left looking algorithm [1].

Matrix
Process mesh
3= 4|5 3|4 [l5, 3 21 4|5
0 11182 01 21 1]
3453ﬂﬂ5dﬂﬂ
O 14209 2 0
3 (4] 3T 5 H?.H
0 J1121 o1 7 0
ACTIVE

Figure 4.2: LU factorization as right looking algorithm [1].
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The pseudo-code of block left and right looking Gaussian elimination algorithm are

respectively given below.

for block K =1 toN
Compute U(1 : K — 1,K)
Update A(K : N,K) < A(K: N,K)—L(1:N,1: K—1)-U(1: K —1,K)
Factorize A(K : N,K) — L(K : N,K)

end for

for block K =1 to N
Factorize A(K : N,K) — L(K : N,K)
Compute U(K,K+1:N)
Update A(K+1:N,K+1:N) «
AK+1:N,K+1:N)—L(K+1:N,K)-UKK,K+1:N)
end for

Distributed SuperLU choose right-looking algorithm for following reasons.

e The sparsity pattern can be determined before numerical factorization.
e Parallelization are easier since having independent update submatrices.

e there is only need a small amount of buffer space for transferring a block column

of L and a block row of U.

Distributed SuperLU use pipelined right-looking algorithm with mpi_isend and

mpi_irecv. Thus, loss of time were prevented arising from blocking operation [4].

4.2.4 Triangular solution

Distributed SuperLU use the data structures to perform the sparse triangular solution
using L and U. In parallel, routines solves the sparse linear system by forward and
back substitutions. Here right-hand side matrix B can handle as distributed such in

coefficient matrix A.
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After factorization of P.-P.-D,-A-D,-P.T, we can solve AX = B by evaluating
X=A""-B
P.-P.-D,-A-D.-PT =L U=
A=p,l.p~l.p . p.yu.pT . p,!
As aresult:

_ —1
x=o, A 'p'.L.Uu-RT "D B

X=D.-(PT-U - (L' (P.-P.-(D,-B)))))

Multiplication from the right to left solves the system. Here, Diagonal matrices D
scales and permutation matrices P permutes the rows. Multiplication by L~ and U~!

is to solve triangular system with L and U respectively.

4.3 Iterative Refinement

Iterative refinement is a phase used sometimes after the numerical factorization to
improve the accuracy of computed solution [30]. Given a computed solution x, iterative

refinement algorithm works for A - x = b like

Compute residual r =A-x—b
While residual too large
Solve A -d = r for correction d
Update solution x = x —d
Update residual r =A-x—b
End while

The computed triangular factors are again used for iterative refinement. The criterion
of not being “residual too large* in the iterative refinement algorithm above is that
BERR (componentwise relative backward error) [31] should not exceed the machine

roundoff level. And BERR is calculated
BERR = max;|ri|/s;
where the scale factor s; is

si = (JA]- [x| + [61)i = }_|Aij] - bxj] =+ [Bi]
j
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4.4 Supernode

Supernodes, considered to enhance the performance of solver, are the consecutive
columns with identical structures. These consecutive structures are stored as dense
blocks and used in block partitioning. The size of each supernode is matrix dependent.
For unsymmetric matrices, there are several supernode definition. Some possible of
them are in Figure 4.3. Here, stripes show patterns having same structure and black

box is dense storage of structure [2].

m T2 T3 T4

Figure 4.3: Supernodes for unsymmetric matrices [2].

When we consider the supernodes, 77 seems more suitable for Gaussian elimination.
But 75 and T3 have cache advantage in update process. Distributed SuperLU use 75
because of larger structure and upper triangular part of supernode can be empty. As a
result od supernode, nonzero entries in matrix A is addressed by two dimensional array.
So algorithm has been able to use BLAS routines [3]. The advantage of supernodal

approach for BLAS routines will mention in numerical results chapter.
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5. NUMERICAL RESULTS

In this chapter, we discuss numerical results, advantages and limitations of the
SuperLLU solvers. Although the existing versions of SuperLLU are scalable and tuned
for many matrices, they are sensitive to tuning and need further customization for
various large sparse matrices. Therefore, we designed and generated a collection of
large patterned and random sparse matrices which are larger than most of those real
matrices from the University of Florida sparse matrix collection [14]. For example, we
did sensitivity analysis to several parameters including total number of non-zeros and

degree of sparsity for randomly populated sparse matrices.

We modify the SuperLU solvers in order to improve their scalability via several ways.
We propose a new hybrid algorithm utilizing the MPI+OpenMP hybrid programming
approach.

5.1 Experimental Testbeds

Research test has done on two HPC system at National Center for High Performance
Computing (UHeM) [32] and Rechenzentrum Garching (RZG) of the Max Planck
Society whose sources were provided by DECI9 call that PRACE (Partnership for
Advanced Computing in Europe), the European research infrastructure for High
Performance Computing (HPC), makes it possible for researchers from across Europe

and the world. Brief information about systems is in Table 5.1

5.2 Experimental Setups

For all experiments in this thesis, we used the Distributed SuperLU SuperLLU with
MC64 for static pivoting and equilibration, ParMETIS for column ordering, and
parallel symbolic factorization for estimation fill-in. All programs were compiled by

Intel MPI and TAU 4.2.222 was used for analyses.
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Table 5.1: Description of used hardware metrics of CPU.

System name Karadeniz Hydra
Processor Intel Xeon 5500 Intel Sandy Bridge-EP
[Quad Core] (Nehalem) [8 core]
Frequency 2.67 GHz 2.6 GHz
L1 cache 4x32 KB 8x32 KB
L2 cache 4x256 KB 8x256 KB
L3 cache 8 MB 20 MB
Number of compute nodes 64 610
Number of compute cores 512 9760
Memory architecture Distributed Distributed
Per core memory amount 3GB 4 GB
Disk Space per node 292 GB 40 TB
High performance network InfiniBand 20 Gbps InfiniBand FDR 14
Operating system Linux Linux

5.3 Test Matrices

Many multi-scale modeling applications in science and engineering would like to
capture more details of the system without ignoring any important conservation laws as
much as possible, resulting in more general matrices. Therefore we consider a portfolio
of test matrices containing randomly populated sparse matrices in addition to patterned
matrices. We generate 30 different randomly populated matrices RAND_30K_3, ...,
RAND_30K_100 for each. Each experiment is done at least four times. We describe

the matrices in Table 5.2 and Table 5.3, respectively.

5.3.1 Description of matrices

Table 5.2: Description of randomly populated matrices.

Name Order NNZ NNZN Condition Number Origin
RAND_30K_9 30000 270000 9 2.51 x 106 UHeM
RAND_30K_11 30000 330000 11 8.82 x 105 UHeM
RAND_30K_30 30000 900000 30 1.13 x 106 UHeM
RAND_30K_50 30000 1500000 50 7.03 x 105 UHeM
RAND_30K_75 30000 2250000 75 1.16 x 106 UHeM
RAND_30K_100 30000 3000000 100 3.39 x 106 UHeM
RAND_10K_3 10000 30000 3 7.10 x 105 UHeM
RAND_20K_3 20000 60000 3 3.19 x 105 UHeM
RAND_30K_3 30000 90000 3 1.20 x 106 UHeM
RAND_40K_3 40000 120000 3 3.90 x 106 UHeM
RAND_50K_3 50000 150000 3 1.20 x 106 UHeM
RAND_60K_3 60000 180000 3 2.14 x 106 UHeM
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5.4 Scalability

The code of Distributed SuperLU has been tested in order to measure the performance
scalability of various randomly populated sparse matrices and patterned sparse
matrices up to 512 cores (depending on number of non-zeros and sparsity level) on
the Linux Nehalem Cluster [32] available at the National Center for High Performance

Computing (UHeM).

Matrix: RAND 40K 3

40 T T T T T T T T T
speedup —
35 1deal 1

Speedup normalized to 16 cores

0 'r""’l 1 1 1 | 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500 550

Number of cores

Figure 5.1: Speed up for matrix RAND_40K_3.

Table 5.4: Wall clock time and normalized speed-up for RAND_40K_3.

Number of Cores Meshes Wall Clock Time (s) Speed-up

16 (4x4) 849.69 1.00
64 (8x8) 218.49 3.89
128 (8x16) 117.55 7.23
256 (16x16) 63.21 13.44
512 (16x32) 28.58 29.73

The rich pattern spectrum of matrices and the NP-complete problem of best reordering
for minimum fill-in are important challenges. For example, the code has shown
scalable speed-up up to 512 cores for RAND_40K_3 in our tests as illustrated in Figure
5.1 and Table 5.4. While the speed-up for the symmetric matrix EMILIA_923 is close
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to ideal up to 256 cores, we observe divergence at 512 cores in Figure 5.2 and Table

5.5.

Matrix: Emilia 923

w
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5 [yspeedup ———
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s |
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D A

E. v 1 1 1 1 1 1 1 l 1
A 0
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Number of cores

Figure 5.2: Speed up for matrix EMILIA_923.

Table 5.5: Wall clock time and normalized speed-up for EMILIA_923.

Number of Cores Meshes Wall Clock Time (s) Speed-up

16 (4x4) 1472.02 1.00
64 (8x8) 743.29 1.98
128 (8x16) 394.78 3.73
256 (16x16) 217.85 6.76
512 (16x32) 149.63 9.84

For randomly populated large sparse matrices, we find a peak of numerical
factorization, symbolic factorization, and consequently wall clock time for a value of
seven non-zeros per row in Figure 5.3 and Table 5.6. This may be related to availability
of supernodes. After 7, they decrease gradually as sparsity decreases to 75 with a slow

rise at 100 non-zeros per row.

In Table 5.7, the numerical factorization time dominates in the distribution of total wall
clock time as expected for the randomly populated sparse matrices with 3 non-zeros
per row. We observe that the wall clock time and consequently total time increases as

matrix order and number of non-zeros increase, given fixed sparsity.
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Average Wall Clock Time for
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Figure 5.3: Average wall clock time as a function of various sparsity levels for
randomly populated sparse matrices.

Table 5.6: Wall clock time for randomly populated sparse matrices RAND_30K_3, ...,
RAND_30K_100 as the sparsity level decreases using 64 core (8x8).

NNZ per row 3 5 7 9 11
Wall clock time 61.87 352.10 721.95 583.15 527.20
NNZ per row 30 50 75 100

Wall clock time 500.66 465.00 450.08 553.23

Table 5.7: Distribution of wall clock time for randomly populated sparse matrices
RAND_10K_3, ..., RAND_60K_3 as the number of non-zeros increases

using 64 core (8x8).

Order 10000 20000 30000 40000 50000 60000
NNZ 30000 60000 90000 120000 150000 180000
Equil time 0.00 0.01 0.01 0.01 0.02 0.02
RowPerm time 0.01 0.02 0.04 0.06 0.12 0.11
ColPerm time 0.82 1.20 1.48 2.05 1.65 2.04
SymFact time 0.06 0.38 1.08 2.11 3.54 542
Distribute time 0.06 0.07 0.20 0.20 0.30 0.45
Factor time 0.98 14.65 74.95 212.43 334.01 857.66
Solve time 0.02 0.05 0.11 0.18 0.22 0.33
Refinement time 0.08 0.15 0.26 0.47 0.48 0.70
Total 2.03 16.53 78.13 217.51 340.34 866.73

We find that the memory overhead coming from ParMETIS [13] becomes one of the
dominating factors in the distribution of wall clock time on n-diagonal sparse matrices

for certain large numbers of cores. For example, we generated 7DIAG_1M_545 as
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a seven diagonal unsymmetric matrix with distances +50000, +100000, +400000,
- 200000, -300000 and -500000 from main diagonal having random 5450000 real
numbers between 0.5 and 1. The column permutation time takes 41% of the wall
clock time for 7DIAG_1M_545 when 64 cores are used. We find similar results for
this kind of n-diagonal unsymmetric/symmetric sparse matrices while using a number
of cores such as 64. This affects the scalability of SuperLU_DIST negatively. In Table
5.8, the total time increased from 9.96 s. (16 cores) to 17.38 s. (64 cores).

Table 5.8: Distribution of wall clock time for randomly populated sparse matrices
RAND_10K_3, ..., RAND_60K_3 as the number of non-zeros increases

using 64 core (8x8).
ParMETIS MeTiS

Number of cores 4 16 64 4 16 64
Mesh (2x2) (4x4) (8x8) (2x2) (4x4) (8x8)
Equil time 0.09 0.17 0.21 0.09 0.17 0.21
RowPerm time 0.83 0.85 0.88 0.80 0.85 0.88
ColPerm time 3.41 2.30 7.11 10.06 10.29 10.55
SymFact time 0.34 0.17 0.20 0.24 0.25 0.25
Distribute time 1.17 0.64 0.54 0.59 0.41 0.13
Factor time 2.00 2.62 6.07 0.53 0.43 0.55
Solve time 0.92 0.75 0.56 0.25 0.15 0.08
Refinement time 3.09 2.46 1.81 1.04 0.66 0.37
Total 11.85 9.96 17.38 13.60 13.21 13.02

5.5 Column Ordering

One of the important phase for sparse LU factorization is column ordering. This
operation that is not necessary for the decomposition on dense matrices is needed
to reduce fill-in and preserve sparsity when we carry out the decomposition. We

compared three important options from several column permutations for Distributed

SuperL.U.

e Minimum degree ordering on structure A7 +A.
e METIS (nested dissection ordering on structure AT +A).

e ParMETIS (nested dissection ordering on structure A7 +A).

Ordering on structure A7 x A was not chosen because of the cost of the matrix-matrix

multiplication.
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Figure 5.4: Major column ordering algorithm comparison for distributed systems.

As result seen in Figure 5.4, ParMETIS is the appealing selection even for sequential
cases. Certainly, ParMETIS which is parallel version of METIS is better for distributed
systems and manipulation of large matrices. Hence we will be solved the memory
requirement.However ParMETIS fails for some matrices with dimension more than
five millions. Indeed it is not expected that heuristic column ordering algorithms as a
NP-hard problem [18] is works for all cases, but it is the open work to optimize and
tune the algorithms for more cases. On the other hand, PARMETIS is the essential
choice as a parallel version of column ordering necessary for sparse direct because of

the intra-node memory limitations.

5.6 Linking with Different BLAS Libraries

Computation based on block submatrix updating is important part of the numerical
factorization for SuperLLU solvers, as well. Factorization algorithms in sequential
SuperLU and Distributed SuperLU are based on supernodes [12]. and most

time-consuming function in factorization is the following block update:
A(l,J)«+ A(I,J)—L(I,K)xU(K,J).

Since L has a regular dense structure and block U(K, J) contains dense vectors, Level

3 BLAS is used effectively. So optimizing of the calling of the dense matrix-matrix
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multiplication routine (Level 3 BLAS) on used system brings advantages about wall

clock time and accuracy.

Table 5.9: TAU time analysis of factorization routine (pdgstrf) of Distributed SuperLU

for matrix767440.
Number of Processes 1 4 16 64
Mesh 1x1 2x2 4x4 8x8&
MKL 9139.529 028.314 286.586 167.216
C BLAS3 15131.786 2829.78 687.423 284.662

In our test, we generally observe that Distributed SuperLU solves the sparse linear
about three times faster as seen in Table 5.9 when using GEMM routine of Intel MKL
tuned for the Nehalem cluster instead of standard C BLAS3 routines; and tests with
Intel MKL BLAS often appear more accurate because of its specific CPU vendor
optimization. So there are a lot of BLAS libraries like ATLAS [33], GenBLAS [34]
and GOTO BLAS [35] but, BLAS routines which are written for specific their own
CPU by vendor should be chosen.

5.7 Tuning Factor

Supernodal mechanism of Distributed SuperLU has important role in algorithm. So
tuning of the supernode parameters effect significantly the performance of the solver.

There are three important machine-dependent parameters.

e relax: the relaxation parameter; if the number of nodes (columns) in a subtree of
the elimination tree is less than relax, this subtree is considered as one supernode,

regardless of the their row structures.
e maxsuper: the maximum size for a supernode.

o fill: the estimated fills factor for the adjacency structures of L and U, compared with

A.

Firstly, we tested the maxsuper parameter without changing other two parameters.
After average of the test result that are in Tables 5.10, 5.11, 5.12; it has been clear

that maximum supernode size should be 110 as a different from default value 60.
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Secondly, we continued to test fill values with constant parameters relax = 110 and
without changing the default value of rest = 12. It can be seen in Table 5.13 that
Distributed SuperL U lost a little performance by reason of fill parameter which cause

the memory expansion when it is given not enough.

After the test of the maxsuper and fill parameters, we examined the relax parameter.
Relax parameter is very important for performance because it can cause the cache
missing. We take constant for the maxsuper and fill parameters with their optimal
performance values 110 and 100 respectively. As it can be seen in Tables 5.14 and

5.15, optimal value is obtained as 80.

The solving wall clock time of matrix SB1_45 is 176.42 seconds with default
parameters (maxsuper = 60,relax = 12, fill = 5) and it also is 162.22 seconds
with optimal tuning parameters (maxsuper = 110,relax = 80, fill = 100). we get
approximately % 10 extra performance when we compare the test result of matrix
SB1_45. Performance income may arise to %17 with different test matrices like

diagonal dominant matrices.

As a result, it can be concluded that machine-dependent tuning parameters are
important factor for Distributed solvers and auto tuning mechanism is an open problem

to get more performance and to avoid failed results.

5.8 Parallel Matrix Input

Distributed SuperLLU has a subroutine which reads compress column storage (CCS)
format matrix file. But it is not an efficient method while we are handling huge matrices
since memory limitation. Reading a huge matrix from a single data file is limited by
memory in nodes and also effects performance negatively. So we added a function in
SuperLU_MCDT for parallel matrix input. Hence we have possibility to process big

data.

For parallel input, we use separate matrix file parts which are written as compress
row storage (CRS) file format and have local indexes. As it seen in Figure 5.5, root

processes read the related parts of matrix file, divide and send matrix portion to leaves
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Figure 5.5: Parallel input (CRS format) for SuperLU_MCDT (Multi-core Distributed
SuperLU).
of process tree. It is not necessary that number of processes is product of number of

matrix file parts.

5.9 Memory Limitations

Although the existing versions of SuperLU work well for many matrices, they need
to be improved for certain types of sparse matrices, even for simple pattern matrices

produced by basic differential equations.

Memory requirement of direct method solvers grows in a superlinear with respect
to the size of the sparse linear system because of the fill-in phenomenon. Although
Distributed SuperLU uses optimized routines to take advantage of computer
architecture, in particular memory hierarchy (caches) and parallelism while performing
Gaussian elimination (LU factorization), there has been the situation that it uses the
swap memory even for very simple matrix patterns.Here we test the sparse symmetric
tridiagonal matrices with different diagonal distances on Nehalem Cluster by four
processors having about three or six GB memory for each. And we got average of
results after eight times repeating on four cores. In Table 5.16, we see that Distributed
SuperLLU can get the result three or five times slower while memory limit decreases
by half. Extra memory usage coming from parallelism force to use swap memory. If
we can avoid from intra-node communication and use the inter-node communications
via infiniband (IB) network, we obtain several advantages of parallelism without some
limitations. So Hybrid programming with MPI+OpenMP becomes indispensable for

bigger matrices and thousands cores.
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6. CONCLUSIONS

We believe that it is not possible to use only one direct solver for all pattern of matrices
because of wide range of matrix sets, the NP-hard problems of graph partitioning used

in ordering and unavoidable fill-in factor.

SuperLU_DIST has shown scalable speed-up between 256 and 512 cores for many
test matrices. Also the tests of randomly populated large sparse matrices seemed that
Distributed SuperLU is successful about finding supernodes. Moreover, we find that
the memory overhead is coming from usage of ParMETIS in symbolic factorization
for some matrices. We also showed that tuning of the algorithm related to dependency

of distributed system gains approximately % 14 performance advantage for overall.

After obtaining a robust version of scalable SuperLU, we proposed a new hybrid
algorithm for multi-core distributed server systems. Our studies reveal that inter-node
communication and intra-node memory requirements are critical and this existing
overhead is partly removed with our new algorithm SuperLU_MCDT (see [9] and
[10]).

Proposed multi-core algorithm SuperLU_MCDT is specially works fine for sparse
matrices resulting from coupled partial differential equations. Effectiveness of the
algorithm is presented for both random sparse matrices and Emilia_923 sparse matrix
(taken from Florida Matrix Collection [36]). This study is an initial works for SuperLU
algorithm to effectively run on multi-core distributed system and further improvements

on both algorithmic and programming perspectives are required.

Beside the point of development progress for SuperLU_MCDT, we work on
parallelization of row ordering, auto tuning, hybrid programming with MPI + OpenMP
and integration of PLASMA (The Parallel Linear Algebra for Scalable Multi-core
Architectures). Also we will implement SuperLU_MCDT for heterogeneous systems

with GPUs.
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