

ISTANBUL TECHNICAL UNIVERSITY F INFORMATICS INSTITUTE

DESIGNING A FAST DIRECT SPARSE MATRIX SOLVER
FOR MULTI-CORE DISTRIBUTED SYSTEMS

M.Sc. THESIS

Mehmet TUNÇEL

Computational Science and Engineering

Computational Science and Engineering Program

MAY 2013

ISTANBUL TECHNICAL UNIVERSITY F INFORMATICS INSTITUTE

DESIGNING A FAST DIRECT SPARSE MATRIX SOLVER
FOR MULTI-CORE DISTRIBUTED SYSTEMS

M.Sc. THESIS

Mehmet TUNÇEL
(702101006)

Computational Science and Engineering

Computational Science and Engineering Program

Thesis Advisor: Prof. Dr. M. Serdar ÇELEBİ

MAY 2013

İSTANBUL TEKNİK ÜNİVERSİTESİ F BİLİŞİM ENSTİTÜSÜ

ÇOK ÇEKİRDEKLİ DAĞITIK SİSTEMLER İÇİN
HIZLI DOĞRUDAN SEYREK MATRİS ÇÖZÜCÜ TASARLANMASI

YÜKSEK LİSANS TEZİ

Mehmet TUNÇEL
(702101006)

Hesaplamalı Bilim ve Mühendislik

Hesaplamalı Bilim ve Mühendislik Programı

Tez Danışmanı: Prof. Dr. M. Serdar ÇELEBİ

MAYIS 2013

Mehmet TUNÇEL, a M.Sc. student of ITU Informatics Institute 702101006 success-
fully defended the thesis entitled “DESIGNING A FAST DIRECT SPARSE MA-
TRIX SOLVER FOR MULTI-CORE DISTRIBUTED SYSTEMS”, which he/she
prepared after fulfilling the requirements specified in the associated legislations, before
the jury whose signatures are below.

Thesis Advisor : Prof. Dr. M. Serdar ÇELEBİ
Istanbul Technical University

Jury Members : Assoc. Prof. Dr. Ahmet DURAN
Istanbul Technical University

Assoc. Prof. Dr. F. Aylin SUNGUR
Istanbul Technical University

..............................

Date of Submission : 03 May 2013
Date of Defense : 20 May 2013

v

vi

To my family,

vii

viii

FOREWORD

I would like to thank my advisor Prof. Dr. M. Serdar Çelebi, and Assoc. Prof. Dr.
Ahmet DURAN for his guidance and advice during this thesis. I also would like to
thank my family for supporting all of my endeavours throughout the years.

May 2013 Mehmet TUNÇEL

ix

x

TABLE OF CONTENTS

Page

FOREWORD... ix
TABLE OF CONTENTS.. xi
ABBREVIATIONS ... xiii
LIST OF TABLES .. xv
LIST OF FIGURES ..xvii
SUMMARY ... xix
ÖZET ... xxi
1. INTRODUCTION .. 1
2. LITERATURE REVIEW... 5

2.1 Development of Sparse Direct Methods... 5
2.1.1 Current list of direct solvers for distributed memory systems................ 7

2.2 Introduction on SuperLU.. 8
2.2.1 Distributed SuperLU... 11

3. MATHEMATICAL BACKGROUND OF LU FACTORIZATION 13
3.1 Gaussian Elimination.. 13

3.1.1 LU factorization.. 15
3.1.2 LU factorization for sparse matrices .. 17

4. CRITICAL MECHANISMS OF SUPERLU FOR DISTRIBUTED
SYSTEMS.. 19

4.1 Background of Distributed SuperLU.. 19
4.1.1 LU factorization for sparse systems ... 19

4.2 Four Phases to Solve AX=B... 20
4.2.1 The preprocessing of matrix... 20

4.2.1.1 Numerical stability... 20
4.2.1.2 Fill reducing... 21

4.2.2 Symbolic factorization.. 22
4.2.3 Numerical factorization ... 23
4.2.4 Triangular solution ... 24

4.3 Iterative Refinement ... 25
4.4 Supernode ... 26

5. NUMERICAL RESULTS .. 27
5.1 Experimental Testbeds.. 27
5.2 Experimental Setups... 27
5.3 Test Matrices .. 28

5.3.1 Description of matrices... 28
5.4 Scalability ... 30
5.5 Column Ordering.. 33

xi

5.6 Linking with Different BLAS Libraries ... 34
5.7 Tuning Factor.. 35
5.8 Parallel Matrix Input... 36
5.9 Memory Limitations... 37

6. CONCLUSIONS... 45
7. ACKNOWLEDGMENTS .. 47
REFERENCES.. 49
CURRICULUM VITAE... 53

xii

ABBREVIATIONS

UHeM : Ulusal Yüksek Başarımlı Hesaplama Merkezi
(Eng: National Center for High Performance Computing)

UFMM : University of Florida Matrix Market
NNZ : Number of nonzero of matrices
N : Square matrix dimesions
CRS : Compressed row storage
CCS : Compressed column storage
PD : Public Domain
LPGL : GNU Library or "Lesser" General Public License

xiii

xiv

LIST OF TABLES

Page

Table 2.1 : The first theses about solution of sparse linear systems with direct
methods. .. 5

Table 2.2 : Books about sparse linear systems and direct methods....................... 6
Table 2.3 : Status of SuperLU software. ... 8
Table 2.4 : The list of dense direct solvers. ... 9
Table 2.5 : The list of sparse direct solvers. .. 10
Table 5.1 : Description of used hardware metrics of CPU.................................... 28
Table 5.2 : Description of randomly populated matrices. 28
Table 5.3 : Description of patterned matrices. .. 29
Table 5.4 : Wall clock time and normalized speed-up for RAND_40K_3............ 30
Table 5.5 : Wall clock time and normalized speed-up for EMILIA_923.............. 31
Table 5.6 : Wall clock time for randomly populated sparse matrices

RAND_30K_3, ..., RAND_30K_100 as the sparsity level
decreases using 64 core (8x8). .. 32

Table 5.7 : Distribution of wall clock time for randomly populated sparse
matrices RAND_10K_3, ..., RAND_60K_3 as the number of
non-zeros increases using 64 core (8x8). .. 32

Table 5.8 : Distribution of wall clock time for randomly populated sparse
matrices RAND_10K_3, ..., RAND_60K_3 as the number of
non-zeros increases using 64 core (8x8). .. 33

Table 5.9 : TAU time analysis of factorization routine (pdgstrf) of Distributed
SuperLU for matrix767440... 35

Table 5.10 : Analysis of tuning factor of maxsuper for matrix SB1_45 with 64
processes. .. 38

Table 5.11 : Analysis of tuning factor of maxsuper for matrix SB1_45 with 64
processes. .. 39

Table 5.12 : Analysis of tuning factor of maxsuper for matrix SB1_45 with 64
processes. .. 40

Table 5.13 : Analysis of tuning factor of fill for matrix SB1_45 with 64 processes. 41
Table 5.14 : Analysis of tuning factor of relax for matrix SB1_45 with 64

processes. .. 42
Table 5.15 : Analysis of tuning factor of relax for matrix SB1_45 with 64

processes. .. 43

xv

Table 5.16 : Wall clock time for sparse three diagonal matrices with different
memory sizes per process on four cores. .. 44

xvi

LIST OF FIGURES

Page

Figure 2.1 : Nested dissection ordering [1]. .. 7
Figure 4.1 : LU factorization as left looking algorithm [1]................................... 23
Figure 4.2 : LU factorization as right looking algorithm [1]. 23
Figure 4.3 : Supernodes for unsymmetric matrices [2]... 26
Figure 5.1 : Speed up for matrix RAND_40K_3. ... 30
Figure 5.2 : Speed up for matrix EMILIA_923. ... 31
Figure 5.3 : Average wall clock time as a function of various sparsity levels

for randomly populated sparse matrices. .. 32
Figure 5.4 : Major column ordering algorithm comparison for distributed

systems.. 34
Figure 5.5 : Parallel input (CRS format) for SuperLU_MCDT (Multi-core

Distributed SuperLU).. 37

xvii

xviii

DESIGNING A FAST DIRECT SPARSE MATRIX SOLVER
FOR MULTI-CORE DISTRIBUTED SYSTEMS

SUMMARY

Many scientific and industrial problems are described by partial differential equations
(PDEs). Handling of numerical solution of PDEs has been producing sparse linear
equation systems AX = B. Generally, two methods are most common used to solve
linear equation systems in computational science. One of them is direct methods and
another is iterative methods. Along with easily practicability of iterative methods
which are sequence of improving approximate solutions, direct methods attempt to
solve the problems with exact solution in the the absence of the rounding error.
So direct methods are seen more appealing through developing capacity of high
performance computing (HPC) systems.

Direct solvers for sparse matrices have more different algorithmic mechanisms than
for dense matrices because of the sparse matrix data structure and handling higher
dimensional scientific problems. And parallel sparse direct solvers especially have
another important issues like load balancing and scalability.

In this thesis, we consider parallel scalable direct solvers. We examine the effectiveness
of the Distributed SuperLU for multi-core distributed memory parallel machines
among several variants of sparse direct solvers.

Giving of background with general sparse direct solver algorithms, some important
mechanisms have been mentioned separately in more detail.

Advantages and limitations of the sparse direct solvers for distributed memory systems
have been discussed.

In our tests, scalability, tuning factors and constructions which needs further
customization for various large sparse matrices have been separately examined.

Although it is not possible to use only one direct solver for all pattern of matrices, we
propose a new algorithm SuperLU_MCDT (Multi-core Distributed SuperLU) which
can exceed some limitations with new hardware and software developments.

Proposed SuperLU_MCDT is expected to take the fully advantage of multi-core
distributed systems. Our studies show that the inter-node communication and
intra-node memory requirements are critical and this existing overhead is partly
removed with our new algorithm SuperLU_MCDT.

xix

xx

ÇOK ÇEKİRDEKLİ DAĞITIK SİSTEMLER İÇİN
HIZLI DOĞRUDAN SEYREK MATRİS ÇÖZÜCÜ TASARLANMASI

ÖZET

Bilimsel ve endüstriye yönelik birçok problemin çözümünde doğrusal denklem
sistemleri ortaya çıkmaktadır. Diferansiyel denklemlerin büyük bir yer edindiği bu
problemlerde, birçok kısmi diferansiyel denklemlerin bağlaşık (ing: coupled) çözülme
ihtiyacından dolayı analitik çözümlerden çok sayısal yöntemler tercih edilmektedir.

Sayısal yöntemlerle diferansiyel denklemlerin çözümü sonlu farklar ve sonlu
elemanlar gibi birçok ayrıştırma yöntemi ile problemin sürekli uzaydan ayrık uzaya
taşınmasını baz alır. Bu eşleme belli kafes (ing: mesh) noktalarında gerçekleştirilir ve
sonucunda seyrek matrislerin katsayıları içerdiği doğrusal denklem sistemleri ortaya
çıkmaktadır.

Sayısal yöntemleri iki ana başlık içinden ifade edebiliriz. Bunlar belli bir adım
basamağında kesin sonuca ulaşan doğrudan (ing: direct) yöntemler ve yaklaştırım ile
hatayı her adımda azaltmayı hedefleyen yinelemeli (ing: iterative) yöntemlerdir.

Yinelemeli yöntemlerin daha kolay programlanabilirliği hesaplamaların bilgisayar
ortamında kullanımında ilk tercih olmasına neden olsa da, günümüz problemlerinin
daha karmaşık bir yapıda olması yinelemeli yöntemlerin yaklaştırımını zorlaştırmak-
tadır. Bununla beraber, bir takım ön koşullandırıcı (ing: preconditioner) olarak
adlandırdığımız yinelemeli yöntemlerde ele alınan problemden doğan katsıyalar
matrisinin koşul sayısını (ing: condition number) düşürerek yakınsaklığını sağlayan
ön uygulamalar ise her duruma cevap verememektedir. Bu nedenler doğrudan
yöntemlerin programlanabilme kolaylığının yinelemeli yöntemler kadar olmamasına
rağmen artık tercih edilebilir bir yöntem olarak görülmesine neden olmuştur. Günümüz
yüksek başarımlı hesaplama teknolojilerindeki gelişmeler de doğrudan yöntemlerin
daha geniş bir problem sahasına uygulanabilirliğini arttırmıştır.

Seyrek matrislerin doğrudan yöntemlerde ki geleneksel faktorizasyon algoritmaları
ile ele alınması, bellekteki direk olmayan adreslemelerden dolayı ciddi performans
kayıplarına neden olmaktadır. Bu nedenle supernode yaklaşımı gibi bazı yöntemler bu
problemin giderilmesi için ele alınmaktadır. Böylece bilgisayar işlemcileri daha etkin
bir şekilde kullanılmış olur. Bunun diğer bir performans metriğini etkileyen faktörü
ise tıkız (ing: dense) BLAS kütüphanelerinin kullanımıdır ki matris matris ve matris
vektör çarpımları için optimize edilmiş rutinler içerirler.

Seyrek matrislerin doğrudan yöntemler ile birlikte ele alınmasında dikkat edilecek
noktalardan bir tanesi de faktorizasyon sırasındaki matristeki sıfır olan elemanların
sıfır olmamasıdır. Çünkü seyrek matrisler tıkız olanlar gibi iki boyutlu dizilerde
(n2) değil , belleğin etkili kullanımı için daha az yer kaplayan üç ayrı dizide (≈
3n) saklanmaktadır. Kontrolsüz artış gösteren sıfır olmayan matris elemanlarının
çoğalması ise algoritmaları olumsuz etkileyebilmekte ve hatta bellek yersizliğinden
dolayı başarısız sonuçlayabilmektedir.

xxi

Kısmi diferansiyel denklemlerin ayrıştırımında kafes noktalarının çözüm has-
sasiyetinin artırılması ihtiyacından dolayı sık olması veya hesaplama gerektirecek
problem tanım alanının büyüklüğü nedeniyle çok büyük seyrek matrisler ortaya
çıkmaktadır. Böyle denklem sistemlerinin tek bir hesaplama biriminde ele alınması
ise donanımsal limitlerden dolayı imkansızdır. Çünkü çok büyük hesap yükü günlerce
ve belki aylarca sonuçlanamayacak veyahut da bellek sınırlamasından dolayı hiç
çalışamayacaktır. Bu nedenle böyle büyük problemlerin dağıtık sistemler ile ele
alınması gerektir.

Bu tezde, yukarıda bahsettiğimiz hususlar sonucu paralel çalışan dağıtık bellek
sistemlerini kullanan doğrudan çözücüler dikkate alınmıştır. Bu çözücülerden
Distributed SuperLU merkezde olarak testler gerçekleştirilmiş ve çıkan sonuçlar
aynı zamanda paralel bir doğrudan çözücü olan SuperLU_MCDT (Multi-core
Distributed SuperLU)’nin tasarımın da bazı donanımsal ve yazılımsal limitlerin
açılması noktalarında katkı sağlamıştır.

Tezin ilk kısmında örneklerle diferansiyel denklemlerin ayrıklaştırılması, bunun
sonucunda çıkan seyrek matrislerin yinelemeli ve doğrudan yöntemler ile ele alınması
karşılaştırılmış. Yapılan çalışmalar hakkında bilgi verilmiştir.

İkinci kısımda ise seyrek matris algoritmalarının çıkışı ve gelişimi;
günümüzdeki doğrudan yöntemleri kullanan çözücüler, Distributed SuperLU ve
SuperLU_MCDT’nin buradaki yeri ve özellikleri anlatılmıştır.

Doğrudan yöntemler için temel teşkil eden Gauss eliminasyon yönteminin ve basamak
olduğu LU faktorizasyon yönteminin tıkız ve seyrek matrislerdeki matematiksel
altyapısı ise üçüncü bölümde ele alınmıştır.

Distributed SuperLU ve doğrudan yöntemleri kullanan çözücüler için kritik
mekanizmalar dördüncü bölümde tek tek ele anlatılmıştır. Bu mekanizmaların işleyişi
ve önemli noktaları paralel dağıtık bellek sistemleri tasarımı için gerekli yönleri
açısından ele alınmıştır.

Beşinci bölümde, testlerin hangi sistemlerde nasıl parametrelerle ele alındığına ve test
sonuçlarının değerlendirilmesine yer verilmiştir.

Son olarak ise bu çalışmadan elde ettiğimiz sonuçlar ve genel değerlendirilmesi yer
almaktadır.

Sonuç olarak şöyle diyebiliriz ki birçok bilimsel ve endüstriye ait problemlerin
sonucunda seyrek doğrusal denklem sistemleri AX = B ortaya çıkmaktadır. Bu
sistemlerin hızlı, gürbüz ve ölçeklenebilir algoritmalar ile çözülmesi çok önemlidir.
Aynı zamanda bu algoritmalarının günümüz yüksek performanslı sistemlerin getirdiği
kapasite ölçeklerine göre uyarlanması birçok algoritmik yapının daha verimli
uygulanmasına olanak sağlayacaktır.

Bütün matris desenleri için iyi performansı olan tek bir çözücünün olması mümkün
gözükmemekle beraber, yeni yazılımsal ve donanımsal gelişmelere bağlı olarak bazı
sınırlamaları aşan yeni bir algoritma (Superlu_MCDT) sunuyoruz. Bu algoritma
ile çok çekirdekli işlemciye sahip dağıtık sistemlerin avantajlarından mümkün
oldukça yüksek yararlanmaya çalıştık. Nodlar arası haberleşme yükü ve nod
içi bellek gereksimi önemli bir yere sahiptir ve bu yükü yeni algoritmamız olan
SuperLU_MCDT ile bir miktar kaldırmış olduk.

xxii

SuperLU_MCDT’nin geliştirilmesi yanında çalışmakta olduğumuz kısımlar: satır
permütasyon matrisinin paralel bir algoritma ile elde edilmesi, otomatik olarak
ayar parametrelerinin belirlenmesi, MPI + OpenMP hibrit programının geliştirilmesi
ve çok çekirdekli işlemciler için geliştirilen paralel doğrusal cebir kütüphanesinin
SuperLU_MCDT ye eklenmesidir. Bunun yanında GPU (Grafik İşleme Ünitesi, ing:
Graphichs Processing Unit) ile heterojen dağıtık sistemlerde SuperLU_MCDT’nin
uygulanması da yapmayı planladığımız çalışmalardandır.

xxiii

xxiv

1. INTRODUCTION

Many important problems in science and engineering are described by partial

differential equations (PDEs). Some of these PDE problems can be handled

analytically, but problems arising form complex coupled systems force us to use

numerical methods since their more complicated analytic structure. Numerical

solution of PDEs are based on the transferring continuous equations into the discrete

space and there are a lot of possible methods like finite difference, finite element or

volume for mapping. Also these methods generates linear systems which include large

sparse matrices involving more zero entries than nonzero.

For example, we consider the problem of the steady-stead temperature distribution in

a long uniform road and it is given by the second order and two point boundary value

problem.

−u
′′
(x)+σu(x) = f (x), 0 < x < 1, σ ≥ 0 (1.1)

u(0) = u(1) = 0 (1.2)

When finite difference methods are considered, the domain of the problem is

partitioned into n subintervals with mesh points where width of the subintervals is

equal.

x ∈ [0,1], x j = jh, h = 1/n (1.3)

The original differential equation 1.1 is replaced with a second order central finite

difference approximation at each interior mesh point. In this replacement, we introduce

an approximation v j ≈ u(x j) whose values satisfy n−1 linear equations.

−v j−1 +2v j− v j +1
h2 +σv j = f (x j), 1≤ j ≤ n−1, v0 = vn = 0 (1.4)

1

Thus, the problem may be represented in matrix form as linear equation system Ax = b

where A is coefficient matrix, b is right hand side vector and x is unknown vector.

2+σh2 −1
−1 2+σh2 −1

. . .
. . .

. . −1
−1 2+σh2

v1
.
.
.
.

vn−1

=

f (x1)
.
.
.
.

f (xn−1)

 (1.5)

The linear system 1.5 is symmetric, tridiagonal, and another important observation is

that coefficient matrix is also sparse. Sparse means that coefficient matrix includes zero

entries much more than nonzero entries. In other word, a matrix is sparse if there is an

advantage in exploiting its zero [3]. For instance, One of the advantages of storing only

non-zeros is that this strategy makes possible to solve the linear system. Otherwise,

memory will restrict us after a mesh size amount. if the mesh points are increased

and the coefficient matrix is stored as dense having all entries. But increasing of mesh

points is necessary for more accurate results and handling problems with big domain.

Generally, two methods are most common used to solve linear equation systems in

computational science. One of them is direct and another is iterative methods. Direct

methods attempt to solve the problems with exact solution in the the absence of the

rounding error, after n step. But iterative methods struggle to obtain enough accuracy

within many process steps which can not be estimated exactly. On the other hand,

iterative methods have less time complexity. For example, the complexity is O(n3)

for direct methods and it is O(n2) for Jacobi and Gauss-Seidel. Even, multigrid

method has O(n) complexity. So iterative methods have a big advantages on this

point. But, more complicated iterative algorithms having less complexity like algebraic

multigrid is difficult to implement on complex problems. And less complicated

iterative algorithms having more complexity need also preconditioner which is more

complicated. Moreover, another disadvantage of iterative methods is that it must

start over again from the beginning in order to solve Ax = b2, after solving Ax = b1.

In sum, direct methods is seen more appealing through developing capacity of high

performance computing (HPC) systems.

Direct solvers for sparse matrices need more different algorithmic mechanisms than for

dense matrices. For instance, One of them is fill-in which is the arising of new nonzero

2

values during the process of an algorithm in L and U factors. So extra memory usage

can negatively effect if it is not controlled.

In the handling of the solution problem of the linear system AX = B, where A is a

given large square sparse matrix, X is unknown vector or matrices and B is a given

vectors or matrices. Gaussian elimination has an important part as a direct method

in the numerical linear algebra for the solution of AX = B. The conventional LU

decomposition algorithms for sparse matrices is not efficient because of the indirect

memory addressing for sequential computers and also load balancing, scalability issue

for parallel distributed memory systems.

In this thesis, we consider parallel scalable direct solvers. We examine the

effectiveness of the SuperLU_DIST (Distributed SuperLU) for distributed memory

parallel machines among several sparse direct solvers (see Li et al. [4], Amestoy et

al. [5], Schenk and Gartner [6], Duran and Saunders [7], Duran et al. [8] and references

contained therein). Several important points explained in the following chapters have

taken part in the design of SuperLU_MCDT (Many-core Distributed SuperLU) (see [9]

and [10]). These points taken out of tests can be mentioned as follows.

In our tests, a lot of results have been found about scalability [11] of Distributed

SuperLU as far as 512 cores. Along with these successful results, Distributed

SuperLU may show performance decreases for matrices having same sparsity level.

On the other hand, achievement of the Distributed SuperLU about availability of the

supernodes which are consecutive structures of entries make clear that there are some

synchronization issues arising from the insufficient load balancing of the algorithm.

Because availability test of supernode structures for randomly populated matrices

shows that supernodal approach gives answer for wide-range domain of matrices.

Another result coming from the tests is about BLAS routines which supernodal

approach make its usage possible [12]. As it can be seen in the numerical results,

BLAS routines are optimized for CPU by vendors give performance increment which

is multiple times.

Parallelization of the column ordering algorithms are based on graph partitioning. The

test results of ParMETIS [13] assigned for column ordering and symbolic factorization

in Distributed SuperLU and many solvers light the way that the usage of multi-core

3

technology with hybrid programing is a necessary since the overhead of the inter-node

communication and inefficient usage of the intra-node.

Many matrices having apart difference patterns make tuning of the algorithm

parameters important. Tests about three supernode parameters in Distributed SuperLU

show that approximate % 14 performance gain is possible with tuning. So auto-tuning

issue is the important mechanism which have been taken part in the design of

SuperLU_MCDT, as well.

The remainder of this thesis is organized as follows. After the introduction and

literature review chapters of the thesis, mathematical background of LU decomposition

is presented in Chapter 3. Critical mechanisms of SuperLU for distributed systems are

introduced in Chapter 4. In Chapter 5, numerical results are discussed. Chapter 6

concludes the thesis.

4

2. LITERATURE REVIEW

Sparse direct solvers has been changing since 1970 first appeared. In this chapter,

development of the sparse direct solvers, their features and limitations, current

available parallel direct solvers and Distributed SuperLU which is in the center of

the our proposals will be mentioned.

2.1 Development of Sparse Direct Methods

In the 1950s, iterative methods generally were used for solving large systems. And

there were only references about sparse matrices in the part of the books like

combinatoric and graph theory. In the 1960s, linear programming problems and

solution of the implicit ODES from engineering problems increased the usage of the

sparse matrices. The first organization of Sparse Matrix Symposium was made at IBM

Yorktown Heights in 1968 by the Mathematical Sciences Department [14].

A conferences on “Large Sparse Sets of Linear Equations” at St. Catherine’s College,

Oxford followed the symposium. About this time, the first theses [see Table2.1] about

solution of sparse linear systems with direct methods were written [15].

Table 2.1: The first theses about solution of sparse linear systems with direct methods.

Author Year University Thesis Title
Donald Rose 1970 Harvard Symmetric elimination on

sparse positive definite
systems and the potential
flow network problem

Alan George 1971 Stanford Computer implementation of
the finite-element method

Iain Duff 1972 Oxford Analysis of sparse systems
Andrew Sherman 1975 Yale On the efficient solution of

sparse systems of linear and
non-linear equations

In the 1970s, the solver packages started to appear. Some of them are MA18, M28

from Harwell Subroutine Library (HSL); SPARSPAK by George and Liu at University

5

of Waterloo, and YSMP by Andrew Sherman. Following of these years, the topics of

sparse matrices and implementation of direct method on computational mathematics

increased rapidly and showed results as books [see Table 2.2], conferences and

meetings.

Table 2.2: Books about sparse linear systems and direct methods.

Year Author Book
1973 Tewarson Sparse Matrices
1976 Brameller, Allan and Hamam Sparsity
1981 George and Liu Computer Solution of Large

Sparse Positive Definite Sys-
tems

1983 Osterby and Zlatev Direct Methods for Sparse
Matrices

1984 Pissanetsky Sparse Matrix Technology
1986 Duff, Erisman and Reid Direct Methods for Sparse

Matrices
1991 Zlatev Computational Methods for

General Sparse Matrices
2006 Davis Direct Methods for Sparse

Linear Systems

Many future research challenges have followed the this rapidly development. Some

important issues of sparse direct methods appeared in its developing process like

elimination tree and pivot strategies, error handling, supernode, and new approach

on LU decomposition and triangular solution [16].

One of the important development for sparse direct methods is to find new approaches

about fill-reducing orderings because a good fill reducing algorithm is essential for

reducing time and memory needings. But they are an NP-hard problem [17]. So many

heuristics are used and one important algorithm is nested dissection. As it is seen in

the Figure 2.1, algorithm can gather the fill-in values to near of the non-zeros.

This algorithm applied on symmetric matrices has two successful implementors:

ParMETIS and PT-Scotch [18] [19].

Another important issue for sparse direct solvers is avoiding from indirect addressing

and use dense BLAS routines. Sparse matrices are generally stored in three arrays,

and finding value for a entry needs to seek for arrays. So vectorized operations which

is very important for efficiency is not used directly. Two important methods were

6

Figure 2.1: Nested dissection ordering [1].

presented to overcome this deficiency. They are multi-frontal [5] and supernodal

[2] methods. The main idea of this approaches to put in order entries, such that

matrix-matrix, matrix-vector multiplications are performed like in dense matrices

without affecting negatively factorization.

A big deal for parallelization of the LU factorization is partial pivoting. In execution

time, searching of the suitable pivot element, and transferring of the data is affecting

negatively the organization of the data structures and memory usage. As a solution Li

and Demmel has presented static pivoting algorithm not using of the partial pivoting

and which is stable as partial pivoting algorithms [20].

In our days, scientific and industrial problems have been being more complicated.

Consequently, being handled of the problem is challenge no longer. In this thesis, we

considered direct solvers oriented to Distributed SuperLU and analyzed the limitations

and researched the solution with algorithmic and hardware aspects.

2.1.1 Current list of direct solvers for distributed memory systems

Many solvers were arised in parallel with sparse direct methods progresses as we

mentioned above. During these developments which have been keeping on, many types

of HPC (High-Performance Computing) environments have become available. Some

of them are massively parallel computers and PC clusters with distributed memory. As

a result, new direct methods on distributed memory and based on MPI programming

have come out. When it comes to HPC development, linear algebra libraries start to

implement new suitable strategies for algorithms.

7

Here, we list the softwares for high performance computers for solving sparse and

dense linear system problems with direct methods and give some informations about

their description, version, license and language written. In tables below, all direct

solvers are aimed for distributed systems via MPI. The Table 2.4 shows a list of dense

direct solvers [21]. The Table 2.5 shows a list of sparse direct solvers [21], [9].

2.2 Introduction on SuperLU

SuperLU is a general purpose direct solver performing LU decomposition and, its

first version was developed in 1997. Supernodal approach which is one of the

important mechanism of SuperLU gives advantages of performing of dense vector

matrix operation [2]. Using unsymmetrical matrix implementation of supernode, it

also generalized this technic.

Table 2.3: Status of SuperLU software.

Sequential SuperLU SuperLU_MT SuperLU_DIST
Platform Serial Shared memory Distributed memory
Language C C + Pthreads C + MPI

(or OpenMP)
Data Type Real/Complex Real/Complex Real/Complex

Single/Double Single/Double Double

SuperLU covers a set of libraries including three subroutines for solving sparse linear

systems. All three libraries oriented on LU decomposition of the equations AX = B

where A is square nonsingular matrices and X , B are dense vectors. Matrix A may

be non-symmetric and it is not need to be positive definite. SuperLU were especially

designed and developed for unsymmetrical matrices.

SuperLU algorithm were implemented on three libraries for different platforms. They

are as follows: Sequential SuperLU, Multithreaded SuperLU (SuperLU_MT) for

shared memory systems and Distributed SuperLU (SuperLU_DIST) for distributed

memory systems. All three libraries use memory hierarchy organization as advantage

and have some different strategy and mechanism [22]. Here, we are related to

distributed version.

8

Ta
bl

e
2.

4:
T

he
lis

to
fd

en
se

di
re

ct
so

lv
er

s.

N
am

e
D

es
cr

ip
tio

n
L

ic
en

se
V

er
si

on
L

an
gu

ag
e

E
le

m
en

ta
l

A
fr

am
ew

or
k

fo
r

di
st

ri
bu

te
d-

m
em

or
y

de
ns

e
lin

ea
ra

lg
eb

ra
.

B
SD

0.
77

C
++

PL
A

PA
C

K
Pa

ra
lle

l
lin

ea
r

al
ge

br
a

pa
ck

-
ag

e,
an

in
fr

as
tr

uc
tu

re
fo

rc
od

-
in

g
lin

ea
r

al
ge

br
a

al
go

ri
th

m
s

at
a

hi
gh

le
ve

lo
fa

bs
tr

ac
tio

n.

?
3.

2
F7

7/
C

PR
IS

M
Pa

ra
lle

l
re

se
ar

ch
on

in
va

ri
an

t
su

bs
pa

ce
m

et
ho

ds
to

de
ve

lo
p

in
fr

as
tr

uc
tu

re
an

d
al

go
ri

th
m

s
fo

r
th

e
pa

ra
lle

l
so

lu
tio

n
of

ei
ge

nv
al

ue
pr

ob
le

m
s.

?
1.

0
F7

7

Sc
aL

A
PA

C
K

A
lib

ra
ry

of
hi

gh
-p

er
fo

rm
an

ce
lin

ea
r

al
ge

br
a

ro
ut

in
es

fo
r

pa
ra

lle
l

di
st

ri
bu

te
d

m
em

or
y

m
ac

hi
ne

s.
Sc

aL
A

PA
C

K
so

lv
es

de
ns

e
an

d
ba

nd
ed

lin
ea

r
sy

st
em

s,
le

as
t

sq
ua

re
s

pr
ob

le
m

s,
ei

ge
nv

al
ue

pr
ob

le
m

s,
an

d
si

ng
ul

ar
va

lu
e

pr
ob

le
m

s.

B
SD

2.
0.

2
F7

7/
C

Tr
ili

no
s/

Pl
ir

is
A

de
ns

e
so

lv
er

pa
ck

ag
e.

B
SD

11
.0

C

9

Ta
bl

e
2.

5:
T

he
lis

to
fs

pa
rs

e
di

re
ct

so
lv

er
s.

N
am

e
D

es
cr

ip
tio

n
L

ic
en

se
V

er
si

on
L

an
gu

ag
e

D
SC

PA
C

K
D

om
ai

n
se

pa
ra

to
r

co
de

s
fo

r
so

lv
in

g
sp

ar
se

lin
ea

rs
ys

te
m

s.
?

1.
0

C

H
SL

C
ol

le
ct

io
n

of
pa

ck
ag

es
fo

r
la

rg
e

sc
al

e
sc

ie
nt

ifi
c

co
m

pu
-

ta
tio

n.

O
w

n
H

SL
20

13
re

le
as

ed
.

F7
7/

C

Pa
St

iX
Pa

ra
lle

l
sp

ar
se

m
at

ri
x

pa
ck

-
ag

e.
C

eC
IL

L
-C

5.
2.

1
F7

7/
C

M
U

M
PS

M
ul

tif
ro

nt
al

m
as

si
ve

ly
pa

ra
l-

le
ls

pa
rs

e
di

re
ct

so
lv

er
.

PD
4.

10
.0

F7
7/

C

PS
PA

SE
S

Fo
r

sy
m

m
et

ri
c

po
si

tiv
e

de
fi-

ni
te

m
at

ri
ce

s.
O

w
n

1.
0.

3
F7

7/
C

SP
O

O
L

E
S

Sp
ar

se
ob

je
ct

or
ie

nt
ed

lin
ea

r
eq

ua
tio

ns
so

lv
er

.
PD

2.
2

C

Su
pe

rL
U

_D
IS

T
Fo

r
la

rg
e

no
n-

sy
m

m
et

ri
c

sy
s-

te
m

s
of

lin
ea

r
eq

ua
tio

ns
.

It
pe

rf
or

m
s

an
L

U
fa

ct
or

iz
at

io
n

w
ith

pa
rt

ia
lp

iv
ot

in
g.

B
SD

-l
ik

e
3.

2
F7

7/
C

Su
pe

rL
U

_M
C

D
T

(M
an

y
C

or
e

D
is

tr
ib

ut
ed

)
A

hy
br

id
al

go
ri

th
m

ut
ili

z-
in

g
th

e
M

PI
+O

pe
nM

P
hy

br
id

pr
og

ra
m

m
in

g
ap

pr
oa

ch
to

ob
-

ta
in

a
sc

al
ab

le
an

d
im

pr
ov

ed
Su

pe
rL

U
.

B
SD

-l
ik

e
B

et
a

F7
7/

C

Tr
ili

no
s/

A
m

es
os

In
te

rf
ac

e
to

th
ir

d-
pa

rt
y

di
re

ct
so

lv
er

s.
L

G
PL

11
.0

C

Tr
ili

no
s/

A
m

es
os

2
In

te
rf

ac
e

to
th

ir
d-

pa
rt

y
di

re
ct

so
lv

er
s.

B
SD

11
.0

C
++

10

2.2.1 Distributed SuperLU

Distributed SuperLU was designed for distributed memory systems. This library uses

MPI [23] for parallel programming model and can handle double precision real and

complex matrices. For equation AX = B LU decomposition can performing both on

global A and B matrices input or with distributed row-wise partitioning. Distributed

sparse matrices are stored in CRS (compress row storage) format. If there is enough

memory, global input operations are faster than which in distributed input interface.

Data structures of L and U matrices in distributed SuperLU are located as blocks

on rectangular process grid. After supernode detection distribution of matrices is

implemented in two dimensional block-cyclic fashion.

We can say that important property apart from sequential and multi-threaded SuperLU

is not using of partial pivoting during Gaussian elimination. Static pivoting are

used instead and, stability is provided with permuting large elements to diagonal

and iterative refinement and, the results of GESP (Gaussian elimination with static

pivoting) which are as stable as partial pivoting implementation are even obtained for

large range matrices [4]. In this way, there has been obtained load balancing and

parallelization of algorithm [24].

Distributed SuperLU’s GESP (Gaussian elimination with static pivoting) algorithm can

be respectively sketched as below:

(1) Row-column equilibration and row permutation: A← Pr ·Dr ·A ·Dc

(2) A column permutation to preserve sparsity: A← Pc ·A ·Pc
T

(3) Symbolic analysis to determine the nonzero structures of L and U

(4) Factorization of A = LU .

(5) Triangular solutions using L and U .

(6) Iterative refinement.

In each step except for row permutation, algorithm is performed in parallel. In Chapter

4, we give comprehensive details.

11

12

3. MATHEMATICAL BACKGROUND OF LU FACTORIZATION

In this chapter, algebraic properties of Gaussian elimination as direct method, LU

factorization and sparse matrix approach will be reviewed on

Ax = b

where A is a nonsingular matrix, x is an unknown vector, b is a given vector and

matrix representation coming from linear equation system

a11x1 +a12x2 +a13x3 + ...a1nxn = b1

a21x1 +a22x2 +a23x3 + ...a1nxn = b2

...

...

an1x1 +an2x2 +an3x3 + ...annxn = bn

3.1 Gaussian Elimination

Gaussian elimination is an transformation of linear system to triangular form [25]. It

will be illustrated with the system

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 x1
x2
x3

=

 b1
b2
b3

 (3.1)

Multiplying the first equation by a21/a11 and subtracting from the second equation

(assuming that a11 6= 0), new equivalent system is obtained.

 a11 a12 a13

0 a22
(2) a23

(2)

a31 a32 a33

 x1
x2
x3

=

 b1

b2
(2)

b3

 (3.2)

where

a22
(2) = a22− (a21/a11)a12 (3.3)

13

a23
(2) = a23− (a21/a11)a13 (3.4)

b2
(2) = b2− (a21/a11)b1. (3.5)

Correspondingly, Multiplying the first equation by a31/a11 and subtracting from the

third equation, new equivalent system is obtained.

 a11 a12 a13

0 a22
(2) a23

(2)

0 a32
(2) a33

(2)

 x1
x2
x3

=

 b1

b2
(2)

b3
(2)

 (3.6)

where

a32
(2) = a32− (a31/a11)a12 (3.7)

a33
(2) = a33− (a31/a11)a13 (3.8)

b3
(2) = b3− (a31/a11)b1. (3.9)

Similarly multiplying the new second row by a32
(2)/a22

(2) and subtracting from the

new third equation (assuming that a22
(2) 6= 0), new system is produced.

 a11 a12 a13

0 a22
(2) a23

(2)

0 0 a33
(3)

 x1
x2
x3

=

 b1

b2
(2)

b3
(3)

 (3.10)

where the new terms are given by

a33
(3) = a33

(2)− (a32
(2)/a22

(2))a23
(2) (3.11)

and

b3
(3) = b3

(2)− (a32
(2)/a22

(2))b2
(2). (3.12)

Now, the linear system 3.1 has been transformed the upper triangular form 3.10 and

the components of the solution can easily be gotten by the following steps

x3 = b3
(3)/a33

(3) (3.13)

x2 = (b2−a23
(2)x3)/a22

(2) (3.14)

x1 = (b1−a12x2−a13x3)/a11 (3.15)

In general, a upper triangular system Ux = c which is like 3.10 can be solved by the

steps

xn = cn/bnn (3.16)

14

xk = (ck−
n

∑
j=k+1

uk jx j)/ukk, k = n−1,n−2, ...,1 (3.17)

on the condition that ukk 6= 0, k = 1,2, ...,n. This process is called back substitution.

Similarly the lower triangular system Lc = b can be solved by the steps

c1 = b1/l11 (3.18)

ck = (bk−
k−1

∑
j=1

lk jc j)/lkk, k = 2,3, ..,n (3.19)

on the condition that lkk 6= 0, k = 1,2, ...,n. This process is also called forward

substitution.

Gauss elimination is a process generating zeros in the first column, second column and

so on. It can be generalized on Ax = b with formula

a(k+1)
i j = a(k)i j − (a(k)ik /a(k)kk)a

(k)
i j , i, j > k (3.20)

b(k+1)
i = b(k)i − (a(k)ik /a(k)kk)b

(k)
k , i > k (3.21)

where a1
i j = ai j, i, j = 1,2, ...,n. The very important requirement is that

ak
kk 6= 0, k = 1,2, ...,n.

These entries are known as pivot in Gaussian elimination.

In the situation of that ak
kk = 0, the rows are exchanged. For example:(

0 2
5 3

)(
x1
x2

)
=

(
6

10

)
=⇒

(
5 3
0 2

)(
x1
x2

)
=

(
10
6

)
(3.22)

This operation selecting pivot element as largest absolute value from the column is

called partial pivoting and the equation always can be reordered through interchanging

rows if A is nonsingular [25].

3.1.1 LU factorization

Gaussian elimination produce upper triangular matrix U , and also lower triangular part

L of the linear system A = LU can be obtained. Handling the processes with another

point of view is just enough. Let A ∈ Cnxn be a square matrix. Gaussian elimination

is done by subtracting multiples from subsequent rows and maintaining this process

15

for all rows. This process is equivalent to multiplication of A by a sequence of lower

triangular matrices Lk.

Ln−1...L2L1A =U (3.23)

If we multiply 3.23 with inverses of Ln−1...L2L1 on the left

A = L−1
1 L−1

2 ...L−1
n−1U, L−1

1 L−1
2 ...Ln−1 = L (3.24)

we obtain LU factorization of A. In practical Gaussian elimination, the matrices L

and U are stored on the original matrix A and the entries of L are computed with

formula

lik = a(k)ik /a(k)kk i > k. (3.25)

As an example of LU factorization [25], let A be a square matrix 4x4

A =

2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 (3.26)

Firstly, we subtract first row from second, third and fourth rows relatively two,four and

three times.

L1A =

1 0 0 0
−2 1 0 0
−4 0 1 0
−3 0 0 1

2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

=

2 1 1 0
0 1 1 1
0 3 5 5
0 4 6 8

 (3.27)

Similarly, we subtract second row from third and fourth rows relatively three and four

times.

L2L1A =

1 0 0 0
0 1 0 0
0 −3 1 0
0 −4 0 1

2 1 1 0
0 1 1 1
0 3 5 5
0 4 6 8

=

2 1 1 0
0 1 1 1
0 0 2 2
0 0 2 4

 (3.28)

Thirdly, we subtract third row from fourth row.

L3L2L1A =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1

2 1 1 0
0 1 1 1
0 0 2 2
0 0 2 4

=

2 1 1 0
0 1 1 1
0 0 2 2
0 0 0 2

=U (3.29)

Now, to complete of the factorization, we need to compute L = L−1
1 L−1

2 L−1
3 . Finally,

the multiplication of L−1
1 L−1

2 L−1
3 is the unit lower triangular matrix with a minus times

the non-zeros subdiagonal entries L1, L2 and L3.

16

A = LU →

2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

=

1 0 0 0
2 1 0 0
4 3 1 0
3 4 1 1

2 1 1 0
0 1 1 1
0 0 2 2
0 0 0 2

 (3.30)

3.1.2 LU factorization for sparse matrices

Sparse matrices have mostly nonzero and generally LU factorization based on

Gaussian elimination for sparse matrices has same process phases. But it needs extra

processes because of its data structures. For example, when we consider the matrix S

S =

x x x x x x x x
x x
x x
x x
x x
x x
x x
x x

(3.31)

there will be appeared many nonzero after LU factorization. If they are not controlled,

we can be faced with a big limitation for algorithmic aspect. But if we reorder matrix

S with row Pr and column Pc permutation matrices as below

PrSPc =

x x
x x

x x
x x

x x
x x

x x
x x x x x x x x

(3.32)

stable a matrix appear to handle. After that, LU factorization may start on permuted

matrix PrSPc. After factorization, solution can be reached by following steps.

x = S−1b

PrSPc = LU =⇒

A = Pr
−1LUPc

−1

x = (Pr
−1LUPc

−1)
−1

b

x = PcU−1L−1Prb

17

Gaussian elimination algorithm for sparse matrices has several algorithmic mecha-

nism. In the next chapter, ordering and other related issues will be considered.

18

4. CRITICAL MECHANISMS OF SUPERLU FOR DISTRIBUTED
SYSTEMS

In this chapter, we will handle Distributed version 3.X . Giving of background

with general and improved algorithms, we will separately mention some important

mechanisms in more details.

4.1 Background of Distributed SuperLU

4.1.1 LU factorization for sparse systems

Direct methods for solving linear systems of the form Ax = b are based on computing

A = LU , where L and U are lower and upper triangular, respectively. Computing

the triangular factors of the coefficient matrix is also known as LUdecomposition.

Following the factorization, the original system is trivially solved by solving the

triangular systems Ly = b and Ux = y. L is a unit lower triangular matrix (Lii = 1) and

U is an upper triangular matrix. The factorization can also be applied to non-square

matrices.

A common formulations of LU decomposition for dense matrices are shown as below

[26].

for J=J+1 to N

A[J, I] = A[J, I]/A[I, I]; /*division step, computes column i of L */

end for

for K=I+1 to N

for J=I+1 to N

A[J,J] = A[J,J]−A[J, I] ·A[I,K]; /* update step */

end for

end for

end for

Here, simple column-based algorithm for LU decomposition of an NxN dense matrix.

19

The algorithm overwrites by L and U . The diagonal entries after factorization belong

to U ; the unit diagonal of L is not stored. If we take the coefficient matrix as sparse, we

should differently handle problem from storage of data, data structures, load balancing

to graph partioning and many mechanisms. Let us consider of these phases.

4.2 Four Phases to Solve AX=B

Direct solvers for sparse matrices involve much more complicated algorithms than for

dense matrices. The main complication is due to the need for efficient handling fill-in

in the factors L and U . A typical sparse solver consists of four distinct steps as opposed

to two in the dense case:

1. An ordering step that reorders the rows and columns such that the factors suffer

little fill, or that the matrix has special structure such as block triangular form.

2. An analysis step or symbolic factorization that determines the nonzero structures of

the factors and create suitable data structures for the factors.

3. Numerical factorization that computes the L and U factors.

4. A solve step that performs forward and back substitution using the factors.

4.2.1 The preprocessing of matrix

First processing step for LU decomposition is tuning of the coefficient matrix A.

This preprocessing including three parts, equilibration, row and column ordering, are

practiced for numerical stability and fill reducing.

4.2.1.1 Numerical stability

Distributed SuperLU performs static pivoting instead of dynamic pivoting which are

used for maintaining numerical stability with interchanging of rows. Hence, there

has been avoided from inefficient access pattern of data and, gained ground for

synchronization of the algorithm. And static pivoting approach has been as stable

as partial pivoting for extensive test matrices with equilibration and row ordering [24].

Equilibration

Equilibration is implemented for rows and columns. Here Dr and Dc, diagonal row and

column equilibration matrices respectively, are computed so that A← Dr ·A ·Dc has

20

better condition than A. Each entries of rows and columns are divided by maximum

absolute value of related column or row. After scaling, A has unit norm.

Overwriting to original matrix, equilibration can be serially computed by MC64

developed by Duff and Koster [27] or in parallel. This step can be changed or stopped

by input options if wanted.

Row ordering

The second important step for numerical stability is to compute a row permutation

matrix Pr. Distributed SuperLU use the serial code of MC64 [27] for both equilibration

and row ordering. Firstly coefficient matrix A has maximum absolute entry 1 with

equilibration, then row ordering moves the absolute values 1 on diagonal. So pivoting

numbers are maximized: A← Pr ·Dr ·A ·Dc

Pr is computed by maximizing the product of the diagonal entires. Bipartite graph

taken out from matrix A is used. Each vertices are weighted by entry values and

maximum matching algorithm on that graph finds the related values, using search tree

algorithms [28].

4.2.1.2 Fill reducing

When A is sparse, the triangular factors L and U typically have nonzero entries in

many more locations than A does. This phenomenon is known as fill-in, and results

in a superlinear growth in the memory. Column ordering algorithms are used for fill

reducing in this important part of the direct solution of a sparse linear system. As a

result of this permutation, load balance, communication reducing is also provided [29].

Column ordering

A sparse matrix can be represented with the adjacency matrix of a graph. Column

ordering algorithms typically use this graph. Because of the NP-hard problem,

heuristics are used. The column ordering are implemented on the symmetric structures

which has been obtained by AT +A or AT ·A. Computing of AT ·A may be expensive

both for time and space, so AT +A is generally used.

AMD (Approximate minimum degree), COLAMD (Column approximate minimum

degree), MMD (Multiple minimum degree) and nested dissection used in METIS and

21

ParMETIS are some of the column permutation algorithms. Distributed SuperLU give

several option for column permutation:

• No ordering.

• Minimum degree ordering (on AT +A).

• Minimum degree ordering (on AT ·A).

• METIS ordering (on AT +A).

• ParMETIS ordering (on AT +A).

• User input permutation matrix.

ParMETIS is the parallel choice [13] and PT-Scotch can also used instead [19]. Unlike

ParMETIS, PT-Scotch does not support the partitioning multiconstraint. So ParMETIS

seems better choice. In this step, column permutation matrix Pc is implemented

symmetrically like that Pc ·A ·Pc
T not to lost the entries of the main diagonal which

are same in the matrix Pr ·Dr ·A ·Dc.

4.2.2 Symbolic factorization

The golden rule of sparse matrix theory is to predict the structure of the numerical

results and allocate memory before the numerical computation. So performing

symbolic analysis is very important since it is used to determine the nonzero structures

of L and U when there is no need to pivot. Thus there has been avoided from indirect

addressing for very large data. It also allows us to organize numerical factorization

before we it is done [20].

The building of elimination tree for Cholesky factorization of symmetric positive

definite matrices is the base of symbolic factorization. This process is executed on

reduction graph of Cholesky L factor.

In the case of unsymmetric matrices, symbolic factorization replaced directed acyclic

graph of L and U apart from of symmetric matrices. Since tree structure can not be

used, the parallelization of symbolic factorization is more difficult than which are for

symmetric matrices.

22

Distributed SuperLU can handle symbolic factorization as sequentially or in parallel.

Parallel symbolic factorization use ParMETIS and works only on power of two

processors. If the number of processors is not equal to 2q, possible smaller number

processor is chosen and the data are redistributed.

4.2.3 Numerical factorization

In Gaussian elimination, there are several approaches for numerical factorization.

Often used algorithms are left-looking (fan-in) and right-looking (fan-out). Both of

them have same floating point operation but their memory access patterns are different

as it can be seen in Figure 4.1, 4.2.

Figure 4.1: LU factorization as left looking algorithm [1].

Figure 4.2: LU factorization as right looking algorithm [1].

23

The pseudo-code of block left and right looking Gaussian elimination algorithm are

respectively given below.

for block K = 1 to N

Compute U(1 : K−1,K)

Update A(K : N,K)← A(K : N,K)−L(1 : N,1 : K−1) ·U(1 : K−1,K)

Factorize A(K : N,K)→ L(K : N,K)

end for

for block K = 1 to N

Factorize A(K : N,K)→ L(K : N,K)

Compute U(K,K +1 : N)

Update A(K +1 : N,K +1 : N)←

A(K +1 : N,K +1 : N)−L(K +1 : N,K) ·U(K,K +1 : N)

end for

Distributed SuperLU choose right-looking algorithm for following reasons.

• The sparsity pattern can be determined before numerical factorization.

• Parallelization are easier since having independent update submatrices.

• there is only need a small amount of buffer space for transferring a block column

of L and a block row of U .

Distributed SuperLU use pipelined right-looking algorithm with mpi_isend and

mpi_irecv. Thus, loss of time were prevented arising from blocking operation [4].

4.2.4 Triangular solution

Distributed SuperLU use the data structures to perform the sparse triangular solution

using L and U . In parallel, routines solves the sparse linear system by forward and

back substitutions. Here right-hand side matrix B can handle as distributed such in

coefficient matrix A.

24

After factorization of Pc ·Pr ·Dr ·A ·Dc ·Pc
T , we can solve AX = B by evaluating

X = A−1 ·B

Pc ·Pr ·Dr ·A ·Dc ·Pc
T = L ·U =⇒

A = Dr
−1 ·Pr

−1 ·Pc
−1 ·L ·U ·Pc

T−1 ·Dc
−1

As a result:

X = (Dr
−1 ·Pr

−1 ·Pc
−1 ·L ·U ·Pc

T−1 ·Dc
−1)
−1
·B

X = Dc · (Pc
T · (U−1 · (L−1 · (Pc ·Pr · (Dr ·B)))))

Multiplication from the right to left solves the system. Here, Diagonal matrices D

scales and permutation matrices P permutes the rows. Multiplication by L−1 and U−1

is to solve triangular system with L and U respectively.

4.3 Iterative Refinement

Iterative refinement is a phase used sometimes after the numerical factorization to

improve the accuracy of computed solution [30]. Given a computed solution x, iterative

refinement algorithm works for A · x = b like

Compute residual r = A · x−b

While residual too large

Solve A ·d = r for correction d

Update solution x = x−d

Update residual r = A · x−b

End while

The computed triangular factors are again used for iterative refinement. The criterion

of not being “residual too large“ in the iterative refinement algorithm above is that

BERR (componentwise relative backward error) [31] should not exceed the machine

roundoff level. And BERR is calculated

BERR≡ maxi|ri|/si

where the scale factor si is

si = (|A| · |x|+ |b|)i = ∑
j
|Ai j| · |x j|+ |bi|

25

4.4 Supernode

Supernodes, considered to enhance the performance of solver, are the consecutive

columns with identical structures. These consecutive structures are stored as dense

blocks and used in block partitioning. The size of each supernode is matrix dependent.

For unsymmetric matrices, there are several supernode definition. Some possible of

them are in Figure 4.3. Here, stripes show patterns having same structure and black

box is dense storage of structure [2].

Figure 4.3: Supernodes for unsymmetric matrices [2].

When we consider the supernodes, T1 seems more suitable for Gaussian elimination.

But T2 and T3 have cache advantage in update process. Distributed SuperLU use T2

because of larger structure and upper triangular part of supernode can be empty. As a

result od supernode, nonzero entries in matrix A is addressed by two dimensional array.

So algorithm has been able to use BLAS routines [3]. The advantage of supernodal

approach for BLAS routines will mention in numerical results chapter.

26

5. NUMERICAL RESULTS

In this chapter, we discuss numerical results, advantages and limitations of the

SuperLU solvers. Although the existing versions of SuperLU are scalable and tuned

for many matrices, they are sensitive to tuning and need further customization for

various large sparse matrices. Therefore, we designed and generated a collection of

large patterned and random sparse matrices which are larger than most of those real

matrices from the University of Florida sparse matrix collection [14]. For example, we

did sensitivity analysis to several parameters including total number of non-zeros and

degree of sparsity for randomly populated sparse matrices.

We modify the SuperLU solvers in order to improve their scalability via several ways.

We propose a new hybrid algorithm utilizing the MPI+OpenMP hybrid programming

approach.

5.1 Experimental Testbeds

Research test has done on two HPC system at National Center for High Performance

Computing (UHeM) [32] and Rechenzentrum Garching (RZG) of the Max Planck

Society whose sources were provided by DECI9 call that PRACE (Partnership for

Advanced Computing in Europe), the European research infrastructure for High

Performance Computing (HPC), makes it possible for researchers from across Europe

and the world. Brief information about systems is in Table 5.1

5.2 Experimental Setups

For all experiments in this thesis, we used the Distributed SuperLU SuperLU with

MC64 for static pivoting and equilibration, ParMETIS for column ordering, and

parallel symbolic factorization for estimation fill-in. All programs were compiled by

Intel MPI and TAU 4.2.222 was used for analyses.

27

Table 5.1: Description of used hardware metrics of CPU.

System name Karadeniz Hydra
Processor Intel Xeon 5500 Intel Sandy Bridge-EP

[Quad Core] (Nehalem) [8 core]
Frequency 2.67 GHz 2.6 GHz
L1 cache 4x32 KB 8x32 KB
L2 cache 4x256 KB 8x256 KB
L3 cache 8 MB 20 MB

Number of compute nodes 64 610
Number of compute cores 512 9760

Memory architecture Distributed Distributed
Per core memory amount 3 GB 4 GB

Disk Space per node 292 GB 40 TB
High performance network InfiniBand 20 Gbps InfiniBand FDR14

Operating system Linux Linux

5.3 Test Matrices

Many multi-scale modeling applications in science and engineering would like to

capture more details of the system without ignoring any important conservation laws as

much as possible, resulting in more general matrices. Therefore we consider a portfolio

of test matrices containing randomly populated sparse matrices in addition to patterned

matrices. We generate 30 different randomly populated matrices RAND_30K_3, ...,

RAND_30K_100 for each. Each experiment is done at least four times. We describe

the matrices in Table 5.2 and Table 5.3, respectively.

5.3.1 Description of matrices

Table 5.2: Description of randomly populated matrices.

Name Order NNZ NNZ N Condition Number Origin
RAND_30K_9 30000 270000 9 2.51 x 106 UHeM

RAND_30K_11 30000 330000 11 8.82 x 105 UHeM
RAND_30K_30 30000 900000 30 1.13 x 106 UHeM
RAND_30K_50 30000 1500000 50 7.03 x 105 UHeM
RAND_30K_75 30000 2250000 75 1.16 x 106 UHeM

RAND_30K_100 30000 3000000 100 3.39 x 106 UHeM
RAND_10K_3 10000 30000 3 7.10 x 105 UHeM
RAND_20K_3 20000 60000 3 3.19 x 105 UHeM
RAND_30K_3 30000 90000 3 1.20 x 106 UHeM
RAND_40K_3 40000 120000 3 3.90 x 106 UHeM
RAND_50K_3 50000 150000 3 1.20 x 106 UHeM
RAND_60K_3 60000 180000 3 2.14 x 106 UHeM

28

Ta
bl

e
5.

3:
D

es
cr

ip
tio

n
of

pa
tte

rn
ed

m
at

ri
ce

s.

N
am

e
O

rd
er

N
N

Z
N

N
Z

/N
N

on
ze

ro
N

um
er

ic
C

on
di

tio
n

O
ri

gi
n

K
in

d
of

Pa
tte

rn
V

al
ue

N
um

be
r

Pr
ob

le
m

Sy
m

m
et

ry
Sy

m
m

et
ry

SB
1_

45
54

17
79

45
81

69
2

8.
45

45
.1

9
29

.3
1

U
H

eM
7D

IA
G

_1
M

_5
45

10
00

00
0

54
50

00
0

5.
45

0.
00

%
0.

00
%

3.
47

x
10

5
U

H
eM

B
B

M
A

T
38

74
4

17
71

72
2

45
.7

3
53

.0
0%

0.
00

%
2.

09
x

10
9

U
FM

M
C

om
pu

ta
tio

na
l

flu
id

dy
na

m
ic

s
(C

FD
)

E
C

L
32

51
99

3
38

04
15

7.
32

92
.0

0%
60

.0
0%

9.
41

x
10

15
U

FM
M

Se
m

ic
on

du
ct

or
de

vi
ce

E
M

IL
IA

_9
23

92
31

36
40

37
35

38
43

.7
4

10
0.

00
%

10
0.

00
%

U
FM

M
G

eo
m

ec
ha

ni
ca

l
st

ru
ct

ur
al

G
7J

A
C

20
0S

C
59

31
0

71
76

20
12

.1
3.

00
%

0.
00

%
1.

43
x

10
14

U
FM

M
E

co
no

m
ic

H
E

L
M

2D
03

L
O

W
E

R
_2

0K
39

22
57

19
39

35
3

4.
94

0.
00

%
0.

00
%

U
H

eM
IN

V
E

X
T

R
1_

N
E

W
30

41
2

17
93

88
1

58
.9

9
97

.0
0%

72
.0

0%
2.

77
x

10
18

U
FM

M
C

FD
L

H
R

71
C

70
30

4
15

28
09

2
21

.7
4

0.
00

%
0.

00
%

1.
56

x
10

17
U

FM
M

L
ig

ht
hy

dr
oc

ar
bo

n
re

co
ve

ry
M

A
R

K
3J

A
C

14
0S

C
64

08
9

37
63

95
5.

87
7.

00
%

1.
00

%
5.

83
x

10
13

U
FM

M
E

co
no

m
ic

M
IX

TA
N

K
_N

E
W

29
95

7
19

90
91

9
66

.4
6

10
0.

00
%

99
.0

0%
4.

40
x

10
11

U
FM

M
C

FD
PR

E
2

65
90

33
58

34
04

4
8.

85
33

.0
0%

7.
00

%
3.

11
x

10
23

U
FM

M
Fr

eq
ue

nc
y-

do
m

ai
n

ci
rc

ui
ts

im
ul

at
io

n
ST

O
M

A
C

H
21

33
60

30
21

64
8

14
.1

6
85

.0
0%

0.
00

%
8.

01
x

10
1

U
FM

M
3D el

ec
tr

o-
ph

ys
ic

al
m

od
e

29 ??

5.4 Scalability

The code of Distributed SuperLU has been tested in order to measure the performance

scalability of various randomly populated sparse matrices and patterned sparse

matrices up to 512 cores (depending on number of non-zeros and sparsity level) on

the Linux Nehalem Cluster [32] available at the National Center for High Performance

Computing (UHeM).

Figure 5.1: Speed up for matrix RAND_40K_3.

Table 5.4: Wall clock time and normalized speed-up for RAND_40K_3.

Number of Cores Meshes Wall Clock Time (s) Speed-up
16 (4x4) 849.69 1.00
64 (8x8) 218.49 3.89

128 (8x16) 117.55 7.23
256 (16x16) 63.21 13.44
512 (16x32) 28.58 29.73

The rich pattern spectrum of matrices and the NP-complete problem of best reordering

for minimum fill-in are important challenges. For example, the code has shown

scalable speed-up up to 512 cores for RAND_40K_3 in our tests as illustrated in Figure

5.1 and Table 5.4. While the speed-up for the symmetric matrix EMILIA_923 is close

30

to ideal up to 256 cores, we observe divergence at 512 cores in Figure 5.2 and Table

5.5.

Figure 5.2: Speed up for matrix EMILIA_923.

Table 5.5: Wall clock time and normalized speed-up for EMILIA_923.

Number of Cores Meshes Wall Clock Time (s) Speed-up
16 (4x4) 1472.02 1.00
64 (8x8) 743.29 1.98

128 (8x16) 394.78 3.73
256 (16x16) 217.85 6.76
512 (16x32) 149.63 9.84

For randomly populated large sparse matrices, we find a peak of numerical

factorization, symbolic factorization, and consequently wall clock time for a value of

seven non-zeros per row in Figure 5.3 and Table 5.6. This may be related to availability

of supernodes. After 7, they decrease gradually as sparsity decreases to 75 with a slow

rise at 100 non-zeros per row.

In Table 5.7, the numerical factorization time dominates in the distribution of total wall

clock time as expected for the randomly populated sparse matrices with 3 non-zeros

per row. We observe that the wall clock time and consequently total time increases as

matrix order and number of non-zeros increase, given fixed sparsity.

31

Figure 5.3: Average wall clock time as a function of various sparsity levels for
randomly populated sparse matrices.

Table 5.6: Wall clock time for randomly populated sparse matrices RAND_30K_3, ...,
RAND_30K_100 as the sparsity level decreases using 64 core (8x8).

NNZ per row 3 5 7 9 11
Wall clock time 61.87 352.10 721.95 583.15 527.20
NNZ per row 30 50 75 100

Wall clock time 500.66 465.00 450.08 553.23

Table 5.7: Distribution of wall clock time for randomly populated sparse matrices
RAND_10K_3, ..., RAND_60K_3 as the number of non-zeros increases
using 64 core (8x8).

Order 10000 20000 30000 40000 50000 60000
NNZ 30000 60000 90000 120000 150000 180000

Equil time 0.00 0.01 0.01 0.01 0.02 0.02
RowPerm time 0.01 0.02 0.04 0.06 0.12 0.11
ColPerm time 0.82 1.20 1.48 2.05 1.65 2.04
SymFact time 0.06 0.38 1.08 2.11 3.54 5.42
Distribute time 0.06 0.07 0.20 0.20 0.30 0.45

Factor time 0.98 14.65 74.95 212.43 334.01 857.66
Solve time 0.02 0.05 0.11 0.18 0.22 0.33

Refinement time 0.08 0.15 0.26 0.47 0.48 0.70
Total 2.03 16.53 78.13 217.51 340.34 866.73

We find that the memory overhead coming from ParMETIS [13] becomes one of the

dominating factors in the distribution of wall clock time on n-diagonal sparse matrices

for certain large numbers of cores. For example, we generated 7DIAG_1M_545 as

32

a seven diagonal unsymmetric matrix with distances +50000, +100000, +400000,

- 200000, -300000 and -500000 from main diagonal having random 5450000 real

numbers between 0.5 and 1. The column permutation time takes 41% of the wall

clock time for 7DIAG_1M_545 when 64 cores are used. We find similar results for

this kind of n-diagonal unsymmetric/symmetric sparse matrices while using a number

of cores such as 64. This affects the scalability of SuperLU_DIST negatively. In Table

5.8, the total time increased from 9.96 s. (16 cores) to 17.38 s. (64 cores).

Table 5.8: Distribution of wall clock time for randomly populated sparse matrices
RAND_10K_3, ..., RAND_60K_3 as the number of non-zeros increases
using 64 core (8x8).

ParMETIS MeTiS
Number of cores 4 16 64 4 16 64

Mesh (2x2) (4x4) (8x8) (2x2) (4x4) (8x8)
Equil time 0.09 0.17 0.21 0.09 0.17 0.21

RowPerm time 0.83 0.85 0.88 0.80 0.85 0.88
ColPerm time 3.41 2.30 7.11 10.06 10.29 10.55
SymFact time 0.34 0.17 0.20 0.24 0.25 0.25
Distribute time 1.17 0.64 0.54 0.59 0.41 0.13

Factor time 2.00 2.62 6.07 0.53 0.43 0.55
Solve time 0.92 0.75 0.56 0.25 0.15 0.08

Refinement time 3.09 2.46 1.81 1.04 0.66 0.37
Total 11.85 9.96 17.38 13.60 13.21 13.02

5.5 Column Ordering

One of the important phase for sparse LU factorization is column ordering. This

operation that is not necessary for the decomposition on dense matrices is needed

to reduce fill-in and preserve sparsity when we carry out the decomposition. We

compared three important options from several column permutations for Distributed

SuperLU.

• Minimum degree ordering on structure AT +A.

• METIS (nested dissection ordering on structure AT +A).

• ParMETIS (nested dissection ordering on structure AT +A).

Ordering on structure AT ∗A was not chosen because of the cost of the matrix-matrix

multiplication.

33

Figure 5.4: Major column ordering algorithm comparison for distributed systems.

As result seen in Figure 5.4, ParMETIS is the appealing selection even for sequential

cases. Certainly, ParMETIS which is parallel version of METIS is better for distributed

systems and manipulation of large matrices. Hence we will be solved the memory

requirement.However ParMETIS fails for some matrices with dimension more than

five millions. Indeed it is not expected that heuristic column ordering algorithms as a

NP-hard problem [18] is works for all cases, but it is the open work to optimize and

tune the algorithms for more cases. On the other hand, PARMETIS is the essential

choice as a parallel version of column ordering necessary for sparse direct because of

the intra-node memory limitations.

5.6 Linking with Different BLAS Libraries

Computation based on block submatrix updating is important part of the numerical

factorization for SuperLU solvers, as well. Factorization algorithms in sequential

SuperLU and Distributed SuperLU are based on supernodes [12]. and most

time-consuming function in factorization is the following block update:

A(I,J)← A(I,J)−L(I,K)xU(K,J).

Since L has a regular dense structure and block U(K, J) contains dense vectors, Level

3 BLAS is used effectively. So optimizing of the calling of the dense matrix-matrix

34

multiplication routine (Level 3 BLAS) on used system brings advantages about wall

clock time and accuracy.

Table 5.9: TAU time analysis of factorization routine (pdgstrf) of Distributed SuperLU
for matrix767440.

Number of Processes 1 4 16 64
Mesh 1x1 2x2 4x4 8x8
MKL 9139.529 928.314 286.586 167.216

C BLAS3 15131.786 2829.78 687.423 284.662

In our test, we generally observe that Distributed SuperLU solves the sparse linear

about three times faster as seen in Table 5.9 when using GEMM routine of Intel MKL

tuned for the Nehalem cluster instead of standard C BLAS3 routines; and tests with

Intel MKL BLAS often appear more accurate because of its specific CPU vendor

optimization. So there are a lot of BLAS libraries like ATLAS [33], GenBLAS [34]

and GOTO BLAS [35] but, BLAS routines which are written for specific their own

CPU by vendor should be chosen.

5.7 Tuning Factor

Supernodal mechanism of Distributed SuperLU has important role in algorithm. So

tuning of the supernode parameters effect significantly the performance of the solver.

There are three important machine-dependent parameters.

• relax: the relaxation parameter; if the number of nodes (columns) in a subtree of

the elimination tree is less than relax, this subtree is considered as one supernode,

regardless of the their row structures.

• maxsuper: the maximum size for a supernode.

• fill: the estimated fills factor for the adjacency structures of L and U , compared with

A.

Firstly, we tested the maxsuper parameter without changing other two parameters.

After average of the test result that are in Tables 5.10, 5.11, 5.12; it has been clear

that maximum supernode size should be 110 as a different from default value 60.

35

Secondly, we continued to test f ill values with constant parameters relax = 110 and

without changing the default value of rest = 12. It can be seen in Table 5.13 that

Distributed SuperLU lost a little performance by reason of f ill parameter which cause

the memory expansion when it is given not enough.

After the test of the maxsuper and f ill parameters, we examined the relax parameter.

Relax parameter is very important for performance because it can cause the cache

missing. We take constant for the maxsuper and f ill parameters with their optimal

performance values 110 and 100 respectively. As it can be seen in Tables 5.14 and

5.15, optimal value is obtained as 80.

The solving wall clock time of matrix SB1_45 is 176.42 seconds with default

parameters (maxsuper = 60,relax = 12, f ill = 5) and it also is 162.22 seconds

with optimal tuning parameters (maxsuper = 110,relax = 80, f ill = 100). we get

approximately % 10 extra performance when we compare the test result of matrix

SB1_45. Performance income may arise to %17 with different test matrices like

diagonal dominant matrices.

As a result, it can be concluded that machine-dependent tuning parameters are

important factor for Distributed solvers and auto tuning mechanism is an open problem

to get more performance and to avoid failed results.

5.8 Parallel Matrix Input

Distributed SuperLU has a subroutine which reads compress column storage (CCS)

format matrix file. But it is not an efficient method while we are handling huge matrices

since memory limitation. Reading a huge matrix from a single data file is limited by

memory in nodes and also effects performance negatively. So we added a function in

SuperLU_MCDT for parallel matrix input. Hence we have possibility to process big

data.

For parallel input, we use separate matrix file parts which are written as compress

row storage (CRS) file format and have local indexes. As it seen in Figure 5.5, root

processes read the related parts of matrix file, divide and send matrix portion to leaves

36

Figure 5.5: Parallel input (CRS format) for SuperLU_MCDT (Multi-core Distributed
SuperLU).

of process tree. It is not necessary that number of processes is product of number of

matrix file parts.

5.9 Memory Limitations

Although the existing versions of SuperLU work well for many matrices, they need

to be improved for certain types of sparse matrices, even for simple pattern matrices

produced by basic differential equations.

Memory requirement of direct method solvers grows in a superlinear with respect

to the size of the sparse linear system because of the fill-in phenomenon. Although

Distributed SuperLU uses optimized routines to take advantage of computer

architecture, in particular memory hierarchy (caches) and parallelism while performing

Gaussian elimination (LU factorization), there has been the situation that it uses the

swap memory even for very simple matrix patterns.Here we test the sparse symmetric

tridiagonal matrices with different diagonal distances on Nehalem Cluster by four

processors having about three or six GB memory for each. And we got average of

results after eight times repeating on four cores. In Table 5.16, we see that Distributed

SuperLU can get the result three or five times slower while memory limit decreases

by half. Extra memory usage coming from parallelism force to use swap memory. If

we can avoid from intra-node communication and use the inter-node communications

via infiniband (IB) network, we obtain several advantages of parallelism without some

limitations. So Hybrid programming with MPI+OpenMP becomes indispensable for

bigger matrices and thousands cores.

37

Ta
bl

e
5.

10
:A

na
ly

si
s

of
tu

ni
ng

fa
ct

or
of

m
ax

su
pe

r
fo

rm
at

ri
x

SB
1_

45
w

ith
64

pr
oc

es
se

s.

m
ax

su
pe

r
20

30
40

60
80

re
la

x
12

12
12

12
12

fil
l

5
5

5
5

5
N

on
-z

er
os

in
L

92
60

74
06

4
92

60
74

06
4

92
60

74
06

4
92

60
74

06
4

92
60

74
06

4
N

on
-z

er
os

in
U

93
12

32
14

2
93

12
32

44
8

93
12

32
64

0
93

12
33

00
2

93
12

33
16

6
no

n-
ze

ro
s

in
L

+U
18

56
76

44
27

18
56

76
47

33
18

56
76

49
25

18
56

76
52

87
18

56
76

54
51

no
n-

ze
ro

s
in

L
SU

B
31

99
93

04
7

30
43

93
41

1
29

73
65

93
7

29
10

75
55

6
28

85
57

48
1

no
of

su
pe

rs
17

96
36

17
67

48
17

53
75

17
40

52
17

34
14

E
Q

U
IL

tim
e

(s
)

0.
14

0.
14

0.
14

0.
14

0.
14

R
O

W
PE

R
M

tim
e

(s
)

14
.6

5
14

.8
3

14
.8

3
14

.6
2

14
.8

C
O

L
PE

R
M

tim
e

(s
)

9.
78

8.
81

8.
76

8.
71

8.
8

SY
M

B
FA

C
T

tim
e

(s
)

19
.4

8
19

.1
17

.8
9

17
.2

3
17

.4
8

D
IS

T
R

IB
U

T
E

tim
e

(s
)

3.
2

2.
42

2.
64

2.
87

2.
48

FA
C

TO
R

tim
e

(s
)

19
9.

39
15

3.
07

13
8.

57
13

0.
09

12
5.

29
SO

LV
E

tim
e

(s
)

0.
46

0.
44

0.
41

0.
4

0.
4

R
E

FI
N

E
M

E
N

T
tim

e
(s

)
2.

69
2.

57
1.

62
2.

35
2.

38

TO
TA

L
tim

e
(s

)
24

9.
79

20
1.

38
18

4.
86

17
6.

41
17

1.
77

38

Ta
bl

e
5.

11
:A

na
ly

si
s

of
tu

ni
ng

fa
ct

or
of

m
ax

su
pe

r
fo

rm
at

ri
x

SB
1_

45
w

ith
64

pr
oc

es
se

s.

m
ax

su
pe

r
90

98
11

0
12

0
16

0
re

la
x

12
12

12
12

12
fil

l
5

5
5

5
5

N
on

-z
er

os
in

L
92

60
74

06
4

92
60

74
06

4
92

60
74

06
4

92
60

74
06

4
92

60
74

06
4

N
on

-z
er

os
in

U
93

12
33

50
7

93
12

33
58

8
93

12
33

72
4

93
12

33
75

7
93

12
34

27
1

no
n-

ze
ro

s
in

L
+U

18
56

76
57

92
18

56
76

58
73

18
56

76
60

09
18

56
76

60
42

18
56

76
65

56
no

n-
ze

ro
s

in
L

SU
B

28
72

48
02

4
28

77
38

70
8

28
65

76
31

9
28

75
64

29
0

28
79

40
05

6
no

of
su

pe
rs

17
32

01
17

30
65

17
28

97
17

27
89

17
24

94
E

Q
U

IL
tim

e
(s

)
0.

14
0.

14
0.

14
0.

14
0.

14
R

O
W

PE
R

M
tim

e
(s

)
14

.8
4

14
.7

9
14

.6
4

14
.8

2
14

.6
9

C
O

L
PE

R
M

tim
e

(s
)

8.
76

8.
75

8.
69

8.
82

8.
8

SY
M

B
FA

C
T

tim
e

(s
)

17
.4

9
17

.3
7

17
.2

9
17

.5
6

17
.2

5
D

IS
T

R
IB

U
T

E
tim

e
(s

)
2.

44
2.

5
2.

45
2.

24
2.

55
FA

C
TO

R
tim

e
(s

)
12

5.
74

12
6.

16
12

3.
33

12
4.

73
12

6.
43

SO
LV

E
tim

e
(s

)
0.

4
0.

4
0.

4
0.

39
0.

4
R

E
FI

N
E

M
E

N
T

tim
e

(s
)

2.
33

1.
55

2.
35

1.
53

2.
35

TO
TA

L
tim

e
(s

)
17

2.
14

17
1.

66
16

9.
29

17
0.

23
17

2.
61

39

Ta
bl

e
5.

12
:A

na
ly

si
s

of
tu

ni
ng

fa
ct

or
of

m
ax

su
pe

r
fo

rm
at

ri
x

SB
1_

45
w

ith
64

pr
oc

es
se

s.

m
ax

su
pe

r
18

0
32

0
64

0
12

80
re

la
x

12
12

12
12

fil
l

5
5

5
5

N
on

-z
er

os
in

L
92

60
74

06
4

92
60

74
06

4
92

60
74

06
4

92
60

74
06

4
N

on
-z

er
os

in
U

93
12

34
73

1
93

12
36

84
7

93
12

40
00

9
93

12
47

24
5

no
n-

ze
ro

s
in

L
+U

18
56

76
70

16
18

56
76

91
32

18
56

77
22

94
18

56
77

95
30

no
nz

er
o

in
L

SU
B

28
70

41
48

2
29

52
98

21
5

31
70

58
43

7
34

92
40

02
3

no
of

su
pe

rs
17

23
83

17
20

51
17

18
43

17
17

51
E

Q
U

IL
tim

e
(s

)
0.

14
0.

14
0.

14
0.

14
R

O
W

PE
R

M
tim

e
(s

)
14

.8
4

14
.5

9
14

.5
7

14
.7

9
C

O
L

PE
R

M
tim

e
(s

)
8.

75
8.

75
9.

47
13

.6
4

SY
M

B
FA

C
T

tim
e

(s
)

16
.9

8
17

16
.9

4
16

.7
6

D
IS

T
R

IB
U

T
E

tim
e

(s
)

2.
67

2.
9

3
77

.3
6

FA
C

TO
R

tim
e

(s
)

12
6.

01
14

2.
74

21
1.

93
39

5.
74

SO
LV

E
tim

e
(s

)
0.

4
0.

41
0.

41
0.

45
R

E
FI

N
E

M
E

N
T

tim
e

(s
)

2.
36

2.
44

1.
64

11
.6

8

TO
TA

L
tim

e
(s

)
17

2.
15

18
8.

97
25

8.
1

53
0.

56

40

Ta
bl

e
5.

13
:A

na
ly

si
s

of
tu

ni
ng

fa
ct

or
of

fil
lf

or
m

at
ri

x
SB

1_
45

w
ith

64
pr

oc
es

se
s.

fil
l

5
50

60
10

0
m

em
or

y
ex

pa
ns

io
n

14
3

2
0

re
la

x
12

12
12

12
m

ax
su

pe
r

11
0

11
0

11
0

11
0

no
n-

ze
ro

s
in

L
92

60
74

06
4

92
60

74
06

4
92

60
74

06
4

92
60

74
06

4
no

n-
ze

ro
s

in
U

93
12

33
72

4
93

12
33

72
4

93
12

33
72

4
93

12
33

72
4

no
nz

er
o

in
L

+U
18

56
76

60
09

18
56

76
60

09
18

56
76

60
09

18
56

76
60

09
no

nz
er

o
in

L
SU

B
28

65
76

31
9

28
65

76
31

9
28

65
76

31
9

28
65

76
31

9
no

of
su

pe
rs

17
28

97
17

28
97

17
28

97
17

28
97

E
Q

U
IL

tim
e

(s
)

0.
14

0.
14

0.
14

0.
14

R
O

W
PE

R
M

tim
e

(s
)

14
.6

4
14

.7
14

.6
4

14
.8

3
C

O
L

PE
R

M
tim

e
(s

)
8.

69
8.

69
8.

8
8.

78
SY

M
B

FA
C

T
tim

e
(s

)
17

.2
9

15
.8

4
15

.7
14

.7
D

IS
T

R
IB

U
T

E
tim

e
(s

)
2.

45
2.

47
4.

46
2.

23
FA

C
TO

R
tim

e
(s

)
12

3.
33

12
3.

78
13

5.
22

12
2.

93
SO

LV
E

tim
e

(s
)

0.
4

0.
41

0.
4

0.
4

R
E

FI
N

E
M

E
N

T
tim

e
(s

)
2.

35
1.

6
1.

55
2.

32

TO
TA

L
tim

e
(s

)
16

9.
29

16
7.

63
18

0.
91

16
6.

33

41

Ta
bl

e
5.

14
:A

na
ly

si
s

of
tu

ni
ng

fa
ct

or
of

re
la

x
fo

rm
at

ri
x

SB
1_

45
w

ith
64

pr
oc

es
se

s.

re
la

x
10

20
30

40
50

m
ax

su
pe

r
11

0
11

0
11

0
11

0
11

0
fil

l
10

0
10

0
10

0
10

0
10

0
no

n-
ze

ro
s

in
L

92
40

08
52

0
93

22
22

88
1

93
81

27
64

3
94

33
74

18
8

94
84

38
96

0
no

n-
ze

ro
s

in
U

92
92

06
96

7
93

72
44

99
4

94
30

86
88

4
94

83
34

64
2

95
33

31
25

4
no

nz
er

o
in

L
+U

18
52

67
37

08
18

68
92

60
96

18
80

67
27

48
18

91
16

70
51

19
01

22
84

35
no

nz
er

o
in

L
SU

B
28

66
84

87
6

28
67

11
31

3
28

67
37

68
0

28
65

35
46

0
28

60
90

01
2

no
of

su
pe

rs
18

04
97

15
45

68
14

32
92

13
67

33
13

17
96

E
Q

U
IL

tim
e

(s
)

0.
14

0.
14

0.
14

0.
15

0.
14

R
O

W
PE

R
M

tim
e

(s
)

14
.6

9
14

.6
1

14
.6

6
14

.6
9

14
.6

1
C

O
L

PE
R

M
tim

e
(s

)
8.

78
8.

78
8.

75
8.

69
8.

68
SY

M
B

FA
C

T
tim

e
(s

)
14

.5
5

14
.4

7
14

.4
1

14
.4

14
.3

5
D

IS
T

R
IB

U
T

E
tim

e
(s

)
2.

25
2.

25
2.

3
2.

29
2.

18
FA

C
TO

R
tim

e
(s

)
12

4.
07

12
2.

85
12

1.
69

12
2.

69
12

2.
03

SO
LV

E
tim

e
(s

)
0.

42
0.

37
0.

36
0.

37
0.

36
R

E
FI

N
E

M
E

N
T

tim
e

(s
)

1.
61

2.
19

2.
14

1.
46

1.
43

TO
TA

L
tim

e
(s

)
16

6.
51

16
5.

66
16

4.
45

16
4.

74
16

3.
78

42

Ta
bl

e
5.

15
:A

na
ly

si
s

of
tu

ni
ng

fa
ct

or
of

re
la

x
fo

rm
at

ri
x

SB
1_

45
w

ith
64

pr
oc

es
se

s.

re
la

x
60

70
80

90
10

0
m

ax
su

pe
r

11
0

11
0

11
0

11
0

11
0

fil
l

10
0

10
0

10
0

10
0

10
0

no
n-

ze
ro

s
in

L
95

43
23

90
3

96
02

44
02

1
96

53
88

90
3

97
00

20
36

7
97

38
59

22
4

no
n-

ze
ro

s
in

U
95

91
69

32
3

96
50

72
54

6
97

01
94

85
3

97
48

45
45

8
97

87
02

32
8

no
nz

er
o

in
L

+U
19

12
95

14
47

19
24

77
47

88
19

35
04

19
77

19
44

32
40

46
19

52
01

97
73

no
nz

er
o

in
L

SU
B

28
54

69
54

6
28

46
65

97
3

28
38

68
94

6
28

30
70

47
3

28
23

56
59

1
no

of
su

pe
rs

12
68

59
12

20
61

11
81

63
11

49
81

11
23

35
E

Q
U

IL
tim

e
(s

)
0.

14
0.

14
0.

14
0.

14
0.

14
R

O
W

PE
R

M
tim

e
(s

)
14

.6
5

14
.6

1
14

.7
14

.6
2

14
.6

1
C

O
L

PE
R

M
tim

e
(s

)
8.

74
8.

73
8.

71
8.

71
8.

71
SY

M
B

FA
C

T
tim

e
(s

)
14

.3
1

14
.2

7
14

.2
1

14
.1

7
14

.1
6

D
IS

T
R

IB
U

T
E

tim
e

(s
)

2.
21

2.
18

2.
17

2.
17

2.
17

FA
C

TO
R

tim
e

(s
)

12
1.

16
12

1.
37

12
0.

63
12

1.
71

12
1.

71
SO

LV
E

tim
e

(s
)

0.
36

0.
34

0.
34

0.
33

0.
33

R
E

FI
N

E
M

E
N

T
tim

e
(s

)
2.

08
2.

01
1.

32
1.

9
1.

92

TO
TA

L
tim

e
(s

)
16

3.
65

16
3.

65
16

2.
22

16
3.

75
16

3.
75

43

Ta
bl

e
5.

16
:W

al
lc

lo
ck

tim
e

fo
rs

pa
rs

e
th

re
e

di
ag

on
al

m
at

ri
ce

s
w

ith
di

ff
er

en
tm

em
or

y
si

ze
s

pe
rp

ro
ce

ss
on

fo
ur

co
re

s.

M
at

ri
x

3D
20

0K
3D

60
0K

3D
80

0K
3D

99
0K

3D
12

00
K

3D
40

0K
3D

18
00

K
3D

19
00

K
D

ia
go

na
lD

is
ta

nc
e

20
0K

60
0K

80
0K

99
0K

12
00

K
14

00
K

18
00

K
19

00
K

N
N

Z
56

00
K

48
00

K
44

00
K

40
20

K
36

00
K

32
00

K
24

00
K

22
00

K
N

N
Z

/N
2.

8
2.

4
2.

2
2.

01
1.

8
1.

6
1.

2
1.

1
W

al
lC

lo
ck

Ti
m

e
(s

)
vi

a
3

G
B

m
em

or
y

48
.3

81
80

.5
13

34
.4

21
17

2.
57

5
14

.3
08

15
.1

93
28

.2
53

8.
91

3
pe

rp
ro

ce
ss

W
al

lC
lo

ck
Ti

m
e

(s
)

vi
a

6
G

B
m

em
or

y
22

.1
88

49
.1

82
20

.8
2

10
1.

68
7

8.
41

6.
97

5
5.

67
3

5.
28

1
pe

rp
ro

ce
ss

44

6. CONCLUSIONS

We believe that it is not possible to use only one direct solver for all pattern of matrices

because of wide range of matrix sets, the NP-hard problems of graph partitioning used

in ordering and unavoidable fill-in factor.

SuperLU_DIST has shown scalable speed-up between 256 and 512 cores for many

test matrices. Also the tests of randomly populated large sparse matrices seemed that

Distributed SuperLU is successful about finding supernodes. Moreover, we find that

the memory overhead is coming from usage of ParMETIS in symbolic factorization

for some matrices. We also showed that tuning of the algorithm related to dependency

of distributed system gains approximately % 14 performance advantage for overall.

After obtaining a robust version of scalable SuperLU, we proposed a new hybrid

algorithm for multi-core distributed server systems. Our studies reveal that inter-node

communication and intra-node memory requirements are critical and this existing

overhead is partly removed with our new algorithm SuperLU_MCDT (see [9] and

[10]).

Proposed multi-core algorithm SuperLU_MCDT is specially works fine for sparse

matrices resulting from coupled partial differential equations. Effectiveness of the

algorithm is presented for both random sparse matrices and Emilia_923 sparse matrix

(taken from Florida Matrix Collection [36]). This study is an initial works for SuperLU

algorithm to effectively run on multi-core distributed system and further improvements

on both algorithmic and programming perspectives are required.

Beside the point of development progress for SuperLU_MCDT, we work on

parallelization of row ordering, auto tuning, hybrid programming with MPI + OpenMP

and integration of PLASMA (The Parallel Linear Algebra for Scalable Multi-core

Architectures). Also we will implement SuperLU_MCDT for heterogeneous systems

with GPUs.

45

46

7. ACKNOWLEDGMENTS

This work was partially supported by the PRACE (Partnership for Advanced

Computing in Europe) project funded in part by the EUs 7th Framework Programme

(FP7/2011-2013) under grant agreement no. 283493

Computing resources used in the work of this thesis were provided by

the National Center for High Performance Computing of Turkey (UHeM)

(http://www.uybhm.itu.edu.tr) under grant number 1001682012 for Ahmet Duran, M

Serdar Çelebi, Mehmet Tunçel.

Many thanks to ITU, UHeM and PRACE for their important support.

47

48

REFERENCES

[1] Li, X.S., SuperLU: Sparse Direct Solver and Preconditioner, 13th DOE ACTS
Collection Workshop, August 14-17, 2012.

[2] Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S. and Liu, J.W. (1999). A
supernodal approach to sparse partial pivoting, SIAM Journal on Matrix
Analysis and Applications, 20(3), 720–755.

[3] Duff, I.S., Erisman, A.M. and Reid, J.K. (1986). Direct methods for sparse
matrices, Clarendon Press Oxford.

[4] Li, X.S. and Demmel, J.W. (2003). SuperLU_DIST: A scalable
distributed-memory sparse direct solver for unsymmetric linear systems,
ACM Transactions on Mathematical Software (TOMS), 29(2), 110–140.

[5] Amestoy, P.R., Duff, I.S. and L’Excellent, J.Y. (2000). Multifrontal parallel
distributed symmetric and unsymmetric solvers, Computer methods in
applied mechanics and engineering, 184(2), 501–520.

[6] Schenk, O. and Gärtner, K. (2004). Solving unsymmetric sparse systems of linear
equations with PARDISO, Future Generation Computer Systems, 20(3),
475–487.

[7] Duran, A., and Saunders, B. Gen_SuperLU package (version 1.0, August
2002), a part of LinBox package, containing a set of subroutines to
solve a sparse linear system A*X=B over any field., Internet Address:
http://web.itu.edu.tr/aduran/Gen_SuperLU.pdf.

[8] Duran, A., Saunders, B.D. and Wan, Z. (2003). Hybrid algorithms for rank of
sparse matrices, Proceedings of the SIAM International Conference on
Applied Linear Algebra (SIAM-LA), Williamsburg, VA, pp.July 15–19,
2003.

[9] Duran, A., Celebi, M.S., Tuncel, M. and Akaydın, B. (2012). Design and
implementation of new hybrid algorithm and solver on CPU for large
sparse linear systems PN:283493, PRACE-2IP white paper, Libraries, WP
43, (3), 720–755.

[10] Celebi, M.S., Duran, A., Tuncel, M. and Akaydın, B. (2012). Scalable
and improved SuperLU on GPU for heterogeneous systems PN:283493,
PRACE-2IP white paper, Libraries, WP 43, (3), 720–755.

[11] Duran, A., Celebi, M.S. and Tuncel, M. (2012). Scalability of SuperLU solvers
for large scale complex reservoir simulations, SPE and SIAM Conference
on Mathematical Methods in Fluid Dynamics and Simulation of Giant Oil
and Gas Reservoirs, Istanbul, Turkey, pp.September 3–5, 2012.

49

[12] Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S. and Liu, J.W. (1999). A
supernodal approach to sparse partial pivoting, SIAM Journal on Matrix
Analysis and Applications, 20(3), 720–755.

[13] Karypis, G., Schloegel, K. and Kumar, V. (2003). Parmetis, Parallel graph
partitioning and sparse matrix ordering library. Version 3.1, 2.

[14] Duff, I.S. Development and History of Sparse Direct Methods, The SIAM
Conference on Applied Linear Algebra, p.11/34.

[15] Duff, I.S. Development and History of Sparse Direct Methods, The SIAM
Conference on Applied Linear Algebra, p.21/34.

[16] Davis, T.A. (2006). Direct methods for sparse linear systems, volume 2, Society
for Industrial and Applied Mathematics.

[17] Yannakakis, M. (1981). Computing the minimum fill-in is NP-complete, SIAM
Journal on Algebraic Discrete Methods, 2(1), 77–79.

[18] Karypis, G. and Kumar, V. (1998). A parallel algorithm for multilevel
graph partitioning and sparse matrix ordering, Journal of Parallel and
Distributed Computing, 48(1), 71–95.

[19] Chevalier, C. and Pellegrini, F. (2008). PT-Scotch: A tool for efficient parallel
graph ordering, Parallel Computing, 34(6), 318–331.

[20] Grigori, L., Demmel, J.W. and Li, X.S. (2007). Parallel symbolic factorization
for sparse LU with static pivoting, SIAM Journal on Scientific Computing,
29(3), 1289–1314.

[21] Dongarra, J., Freely Available Software for Linear Algebra, http://www.
netlib.org/utk/people/JackDongarra/la-sw.html, may
2013.

[22] Li, X.S., Demmel, J.W., Gilbert, J.R., Grigori, L., Shao, M. and Yamazaki,
I. (2011). SuperLU Users’ Guide, Internet Address: http://crd. lbl. gov/˜
xiaoye/SuperLU/superlu_ug. pdf.

[23] Message Passing Interface (MPI) forum, http://www.mpi-forum.org.

[24] Li, X.S. and Demmel, J.W. (1999). A scalable sparse direct solver using
static pivoting, Proceedings of the Ninth SIAM Conference on Parallel
Processing for Scientific Computing, pp.22–24.

[25] Trefethen, L.N. and Bau III, D. (1997). Numerical linear algebra, Society for
Industrial and Applied Mathematics.

[26] Gupta, A. (2000). Parallel Sparse Direct Methods: A short tutorial, Technical
Report, Technical Report RC 25076, IBM TJ Watson Research Center,
Yorktown Heights, NY.

[27] Duff, I.S. and Koster, J. (1999). The design and use of algorithms for permuting
large entries to the diagonal of sparse matrices, SIAM Journal on Matrix
Analysis and Applications, 20(4), 889–901.

50

[28] Duff, I.S. and Koster, J. (2001). On algorithms for permuting large entries to
the diagonal of a sparse matrix, SIAM Journal on Matrix Analysis and
Applications, 22(4), 973–996.

[29] Amestoy, P.R., Duff, I.S., L’excellent, J.Y. and Li, X.S. (2001). Analysis
and comparison of two general sparse solvers for distributed memory
computers, ACM Transactions on Mathematical Software (TOMS), 27(4),
388–421.

[30] Skeel, R.D. (1980). Iterative refinement implies numerical stability for Gaussian
elimination, Mathematics of Computation, 35(151), 817–832.

[31] Arioli, M., Demmel, J.W. and Duff, I.S. (1989). Solving sparse linear systems
with sparse backward error, SIAM Journal on Matrix Analysis and
Applications, 10(2), 165–190.

[32] National Center for High Performance Computing of Turkey (UHeM), http:
//www.uhem.itu.edu.tr/page.php?id=106.

[33] Clint Whaley, R., Petitet, A. and Dongarra, J.J. (2001). Automated empirical
optimizations of software and the ATLAS project, Parallel Computing,
27(1), 3–35.

[34] Duran, A., and Saunders, B. Gen_BLAS Generic Basic Linear Algebra
Subroutines in C++,2002, http://www.math.pitt.edu/˜ ahd1/GenBLAS.pdf.

[35] GOTO-BLAS-High-Performance, B. by Kazushige Goto, See http://www. cs.
utexas. edu/users/flame/goto.

[36] Davis, T.A. and Hu, Y. (2009). University of Florida sparse matrix collection.

51

52

CURRICULUM VITAE

Name Surname: Mehmet Tunçel

Place and Date of Birth: Istanbul, 01/17/1985

Adress: Informatics Institute, ITU Ayazaga Campus,Maslak-34469, İstanbul, Turkey

E-Mail: mehmet.tuncel@be.itu.edu.tr

B.Sc.: Mimar Sinan Fine Arts University

M.Sc.: Istanbul Technical University

List of Publications and Patents:

Duran, A., Çelebi, M.S., Tunçel, M. and Akaydın, B. (2012). Design and
implementation of new hybrid algorithm and solver on CPU for large sparse linear
systems PN:283493, PRACE-2IP white paper, Libraries, WP 43, (3), 720–755.

Çelebi, M.S., Duran, A., Tunçel, M. and Akaydın, B. (2012). Scalable and improved
SuperLU on GPU for heterogeneous systems PN:283493, PRACE-2IP white paper,
Libraries, WP 43, (3), 720–755.

PUBLICATIONS/PRESENTATIONS ON THE THESIS

Çelebi M.S., Duran A., Tunçel M., 2012: Scalability of SuperLU solvers for large
scale complex reservoir simulations. SPE and SIAM Conference on Mathematical
Methods in Fluid Dynamics and Simulation of Giant Oil and Gas Reservoirs,
September 3-5, 2012 Istanbul, Turkey.

53

