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A KALMAN FILTER APPROACH TO MULTISITE PRECIPITATION
MODELING IN METEOROLOGY

SUMMARY

Precipitation is characterized by variability in space and time. In addition, there are
many factors affecting the magnitude and distribution of precipitation, such as
altitude, various air mass movements, distance from the moisture sources,
temperature, pressure, and topography. The magnitude and distrbution of
precipitation vary temporally and spatially even in small areas. However, the
precipitation predictor should not be fixed with time and space, but adapt itself to the
evolving meteorological conditions. Describing and predicting the precipitation
variability in space and/or time are fundamental requirements for a wide variety of
human activities and water project designs.

Forecasting models can be classified into two categories, those models that have fixed
parameters and variances, and likewise another group of models with varying
parameters and variances. Models with fixed parameters require stationarity in both
the mean and variance throughout the entire range of observations. That is why so
much effort is spent to make the data stationary in the mean and variance. Otherwise,
the results are not meaningful from a statistical point of view. For example, when the
data pattern changes as with a step or trend, or when there are transient shifts,
classical statistical theory will treat those as random effects or temporary shifts. If the
changes are continuous, a new forecasting model will have to be specified to deal with
the new equilibrium conditions. However, the model will be good for those new
equilibrium conditions only when fixed patterns exist. Kalman filter (KF), can deal
with step changes and transient situations because they update their parameters in a
way that takes account of changes in pattern.

The objective of this thesis is to investigate and develop a KF model approach to
multisite precipitation modeling. In order to see the effectiveness of the KF model
developed in this thesis, 30 year records (1956-1985) of annual rainfall for the 52
different meteorology stations are used, and these stations are distributed
approximately covering all of Turkey with more concentration in the northwestern
part. The necessary contour maps of observed and estimated precipitation amounts
are attuned through the results of the software developed during the course of this
study. Furthermore, regional error distribution maps are also attuned for any year.
The results indicates that KF provide an efficient method for modelling annual rainfall
in both time and space dimensions.



METEOROLOJIDE COK ISTASYONLU YAGIS MODELINE KALMAN
FILTRESI YAKLASIMI

OZET

Yagis karaktaristik olarak zaman ve konumla degigir. Ayrica, yagisin siddet ve
dagilimm etkileyen birgok etken vardir. Bunlar arasinda yiikseklik, degisik hava
kiitlelerinin hareketi, nem kaynagindan olan uzaklik, sicaklik, basing ve topografya
gelir. Kiigiik alanlar iizerinde bile yagisin siddet ve dagilimi alansal ve zamansal olarak
degisir. Ancak, yagis tahmin edicileri, zaman veya konum ile sabitlestirilmemeli, fakat
degisen meteoroloji sartlarina gore kendisini yenileyebilmelidir. Birgok insan faaliyeti
ve su kaynaklani tasanimlan igin yafis degiskenlifinin zaman ve konumla dnceden
tahmin edilebilmesi temel ihtiyaglar arasinda gelir.

Tahmin yontemleri biri sabit parametre ve varyansh digeri ise degisken parametre ve
varyansh olmak iizere iki grupta simflandinlabilir. Sabit parametreli olanlar, yapilan
gozlemlerin tiimiinde ortalama ve varyans olarak duragan (stasyoner) olmas: gerekir.
Iste bu nedenle verilen bir veri dizisinin ortalama ve varyans bakimindan duragan hale
doniistiiriilmesine ¢aligihr. Aksi taktirde vanlan sonuglar istatistik bakimindan anlamh
olmaz. Mesela, veri gidigi bir basamak veya trend olarak degisiklik gosterirse, veya
gecici kaymalar bulunuyorsa klasik istatistiksel yontemler bunlar gegici kaymalar veya
rastgele etkiler olarak algilayarak igler. Eger degigimler siirekli olursa, yeni denge
durumlan igin yeni tahmin modellerinin gelistirilmesi gerekir. Eger sabit paternler soz
konosu olursa yeni modeller yeni denge sartlan igin gegerli olur. Kalman filtreleri
(KF) adim adim degisiklikleri modellemede ve gegici durumlarda basariidir. Ciinkii
parametrelerini degisen durumlara gore ayarlar.

Bu tezin amaci ¢ok istasyondaki yagiglarin modellenmesi yaklagimina KF gelistirilerek
uygulanmasidir. Bu tezde gelistirilen KF etkinligini gorebilmek i¢in 52 ayn
meteoroloji istasyonunda 1965-1985 yillan arasinda yapilan 30 yillik kayitlardan
yararlamlmgtir. Bu istasyonlar, ¢ogunlukla Tiirkiye’nin kuzeybat: kisimlarinda olmak
iizere oldukga iiniform bir gekilde yayilmigtir. Bu ¢aligma esnasinda gelistirilmis
yazihm sayesinde gézlenmis ve tahmin edilmis yagiglarin eg yagis egrisi haritalan
cizilerek kiyaslamalar yapilmigtir. Buna ilave olarak boélgesel hata dagihimi haritalan da
her sene igin geligtirilmigtir. Elde edilen sonuglar KF zaman ve uzay boyutlannda
yagislari modellemede etkin oldugunu gosterir.



1. INTRODUCTION

1.1 Overview

Estimation is the process of extracting information from data, which can be used
to infer the desired information and may contain errors. An optimal estimator is
a computational algorithm that processes measurements to deduce a minimum
error estimate of the state of a system by utilizing knowledge of the system and
measurement dynamics, assumed statistics of system noises and measurement error,
in addition to conditional initial information. At the beginning of the last century,
Gauss developed estimation theory, in order to determine the orbits of comets from
the few available astronomical observations. In essence, the atmospheric data
assimilation problem is just a much larger version of Gauss’s problem. In fact, modern
methods of data assimilation such as Kalman filters, can be directly traced to the ideas
of Gauss.

As shown in Figure 1.1 the three types of estimation problems are of interest:

1. As shown in Figure 1.1.a when the time at which an estimate is desired
coincides with the last measurement point, the problem is referred to as
filtering (estimating the state vector at the current time, based on all
measurements taken up to the current time),

2. When the time of interest falls within the span of available measurement
data, the problem is termed smoothing (estimating the value of the state at
some prior time), (see Figure 1.1.b)

3. When the time of interest occurs after the last available measurement, the
problem is then called prediction (estimating the state vector at a future

time), (see Figure 1.1.c)
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Figure 1.1 Three types of estimation problems (a) filtering, (b) smoothing, (c) prediction.
1.2 Historical Perspective

The development of data estimation methods can be traced back to Gauss (1809),
who invented the technique of deterministic least-squares approach and employed it
in a relatively simple orbit measurement problem. The next significant contribution to
the extensive subject of estimation theory occurred more than 100 years later when
Fisher (1912), working with probability density function, introduced the approach of
maximum likelihood estimation. However, Wiener (1942, 1949) set forth a procedure
for the frequency domain design of statistically optimal filters. The technique
addressed the continuous-time problem in terms of correlation functions and the
continuous filter impulse response. Moreover, the Wiener solution does not lend
itself very well to the corresponding discrete-data problem nor is it easily extended to
more complicated time-variable, multiple-input/output problems. It was limited to
statistically stationary processes and provided optimal estimates only in the
steady-state regime. In the same time period, Kolmogorov (1941) treated the
discrete-time problem. He was primarily interested in the mathematics rather than in
the concepts inherent in the problem. Kolmogorov’s solution was difficult as well as

elegant. Therefore, mathematicians automatically assumed that his formulation must



be a relevant one. Kalman (1960) re-examined the Wiener-Kolmogorov theory of
filtering and prediction by using the Bode-Shannon representation of random
processes and the state-transition method of analysis in a dynamic systems. The new
results are :

1. The formulation and methods of solution of the problem apply without
modification to stationary and nonstationary statistics and to growing-memory
and infinite-memory filter,

2. A nonlinear differential equation is derived for the covariance matrix of the
optimal estimation error. From the solution of this equation the coefficients of
the differential equation of the optimal linear filter are obtained without further
calculations,

3. The filtering problem is shown to be the dual of the noise-free regulator
problem. This new method applied to well-known problems, confirming and

extending earlier results.

About a year after Kalman and Bucy (1961) presented a paper on continuous filtering
which proved to be a turning point in the area of optimal filtering. Kalman filtering
(KF) has been widely used in many areas of industrial and government applications
such as video and laser tracking systems, satellite navigation, ballistic missile
trajectory estimation, radar, and fire control. With the recent development of
high-speed computers, KF has become more useful even for complicated real-time
applications. Later, KF found applications in such varied disciplines as the
environmental and earth sciences, hydrology, economics and the social sciences.
Unfortunately, its use in the domain of atmospheric sciences and meteorology is
rather few but increasing significantly in recent years. For more than 25 years, KF
has been an established technique in the design and operation of real-time systems.
This powerful technique has also been applied to various hydrologic problems,
following the pioneering work by Hino (1973). The KF has been applied to
water-related problems among many others by, Todini and Bouillot (1975),
Szo6llosi-Nagy (1976), Szollosi-Nagy et al. (1977), Chiu (1978), Sen (1980a, 1980b,
1984), O’Connell and Clarke (1981) and Bras and Rodriguez-Iturbe (1985).



1.3 Definition of Filtering

Human beings have been filtering things practically for the entire history. Water
filtering is a simple example. Foreign matter can be filtered from water as simply
as by using our hands to skim dirt and leaves off the top of the water. Another
example is filtering out noise from our surroundings. If we paid attention to all the
little noises around us we would go crazy. We learn to neglect needless sounds
(traffic, appliances, etc.) and get detail on important sounds, like the voice of the

person.

There are also many examples in engineering where filtering is desirable. Radio
communication signals are often corrupted with noise. A good filtering algorithm can
remove the noise from electromagnetic signals while still keeping the useful
information. Another example is voltages. Many countries require in-home filtering
of line voltages in order to power personal computers and peripherals. Without

filtering, the power fluctuation would extremely shorten the life length of the devices.

The word ““filter”’ is a relic from the early history of electrical engineering and it is
concerned with the extraction of signals from noise. Kalman (1978) defined the
filtering as any mathematical operation which uses past data or measurements on a
given dynamical system (that is, systems which vary with time) to make more accurate
statements about present, future, or past variables in that system. When and how this
can be done is the concern of a new subscience of system theory, usually called

filtering (or estimation) theory.

KF is an optimal state estimation process applied to a dynamic system that involves
random perturbations. The atmosphere can be regarded as an uncertain dynamical
system (Dee, 1991). More precisely, KF gives a linear, equitable, and minimum error
variance recursive algorithm to optimally estimate the unknown state of a dynamic

system from noisy data taken at continuous or discrete real-time intervals.



1.4 Problem Statement

Precipitation is characterized by variability in space and time. In addition, there are
many factors affecting the magnitude and distribution of precipitation, such as
altitude, various air mass movements, distance from the moisture sources,
temperature, pressure, and topography. The magnitude and distribution of
precipitation vary from place to place and from time to time even in small areas.
Describing and predicting the precipitation variability in space and/or time are
fundamental requirements for a wide variety of human activities and water project

designs.

Forecasting models can be classified into two categories, those models that have fixed
parameters and variances, and likewise another group of models with varying
parameters and variances (Makridakis et al. 1983). Models with fixed parameters
require stationarity in both the mean and variance throughout the entire range of
observations. That is why so much effort is spent to make the data stationary in the
mean (through differencing) and variance (through appropriate power logarithmic,

square root, etc. transformations).

Otherwise, the results are not meaningful from a statistical point of view. Classical
statistical estimation theory has not been able directly with nonstationarity, and this
can cause problems of significant practical consequences. For example, when the data
pattern changes as with a step or trend, or when there are transient shifts, classical
statistical theory will treat those as random effects or temporary shifts. If the changes
are continuous, a new forecasting model will have to be specified to deal with the new
equilibrium conditions. However, the model will be good for those new equilibrium

conditions only when fixed patterns exist.

Classical statistical methods must be used in conjunction with other control processes
(Page, 1957, 1961, and Barnard, 1959), if permanent or significant changes in the
data are to be identified. Methods based on classical statistics cannot sense a shift by
themselves and once a shift has taken place, the model will not do well, because it will

still be tuned to the specification of the old data set .
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Adaptive-response-rate exponential smoothing, and filtering, on the other hand, can
deal with step changes and transient situations because they update their parameters in
a way that takes account of changes in pattern. Furthermore, they can deal with
changes in trend better than fixed model / fixed parameter methods. However, even
these two methods cannot do as well as the KF, which can deal with variable models,

parameters, and variances all together.

1.5 The Aim of Thesis

KF is the most general approach to statistical estimation and prediction. It has been
shown by Harrison and Stevens (1975a) that all forecasting methods are special cases
of KF. This filter can deal with changes in the model, the parameters, and the
variances. The difficuity with KF is that many technical questions have not yet been
answered satisfactorily. The approach itself has grown out of engineering practices.
Consequently, many statisticians and operation researchers know little about it, or find
it difficult to understand, because it is most often described in state space notation.
Furthermore, many practical difficulties still exist as the initial estimates for

parameters, variances, covariances and for the transition matrix.

The objective of this thesis is to investigate and develop a KF model approach to
multisite precipitation modeling, and prediction in addition to the assessment of
associated errors. In order to have an on-line prediction operation, it is desirable to be
able to deal with a multitude of rainfall events. The precipitation predictor should not
be fixed with time and space, but adapt itself to the evolving meteorological
conditions. Any stochastic model is associated with various uncertainties. KF consists
of combining two independent estimates to form a weighted estimate or prediction.
One estimate can be a prior prediction or an estimate based on prior knowledge, and
other a prediction based on new information (new data). The purpose of the KF is to

combine these two pieces of information to obtain an improved estimate.

In order to see the effectiveness of the KF model developed in this thesis, annual

precipitation data are used that are recorded at 52 different meteorology stations



scattered all over Turkey. The application of KF to Turkish data will be presented in
Chapter 6 after the development and explanation of suitable KF model.



2. LITERATURE REVIEW

2.1 Overview

The precipitation data which consist of long time series at various locations in space,
have both spatial and temporal variations. However, beginning with cluster model
framework introduced by Le Cam (1961), research on modeling rainfall process in
space and time has been conducted. Subyani (1997) reviewed most of the publications
that have studied precipitation characteristics using common statistical methods
(Mejia and Rodriguez-Iturbe, 1974; Bras and Rodriguze-Iturbe, 1976, Eagleson,
1984; Rodriguze-Iturbe et al,, 1984; Stein, 1986; Sivapalan and Wood, 1987,
Obeysekera et al., 1987, Smith and Krajewski, 1987, Rouhani and Myersa, 1990;
Smith et al., 1994 and Zhang et al., 1995).

The theoretical foundation of KF is described in detail in numerous textbooks and
articles. The following literature review is a discussion of the KF and its development
fundamentals. With the recent development of high-speed computers, KF has become
more useful even for complicated real-time applications. Unfortunately, its use in the
domain of atmospheric sciences and meteorology is rather few but increasing
significantly in recent years. This powerful technique has also been applied to various
hydrologic problems, following the pioneering work by Hino (1973).

2.2 Fundamentals of Kalman Filter

Jazwinski (1970) wrote a book which presents a united treatment of linear and
nonlinear filtering theory for engineers, with sufficient importance on applications to
make possible the reader to use the theory. A review of probability and stochastic
processes is included in the first chapters of the book. Of particular interest might be

the relatively complete treatment of the mean square calculus and the chapter on



stochastic differential equations. Nonlinear filtering results are derived first, and these
are then specialized to linear systems. The treatment of linear filtering includes filter
stability and model error sensitivity. The last chapter deals with the development of
approximate nonlinear filters and presents real applications in nonlinear problems. The

performance of these nonlinear filters is critically analyzed.

On the other hand, Gelb (1974) presented the first book on optimal estimation that
places its major importance on practical applications. Even so, theoretical and
mathematical concepts are introduced and developed sufficiently to make the book a
self-contained source of teaching for readers without former knowledge of the basic
principles of the field. Numerical examples, based on actual applications, have been
interspersed throughout the text to lead the readers to an actual understanding of the
theoretical material. After a short historical preface, the book introduces the
mathematics underlying random process theory and state-space performance of linear
dynamic systems. The theory and practice of optimal estimation are then presented,
including filtering, smoothing, and prediction. Both linear and nonlinear systems, and
continuous and discrete-time cases are covered in important detail. New results are
described about the application of covariance analysis to nonlinear systems and the
connection between observers and optimal estimators. The final chapters treat such
practical and frequently central issues as suboptimal filtering, sensitivity analysis,

algorithm structure, and computer loading considerations.

The mathematical theory of KF and its implications are not well understood even
among many applied mathematicians and engineers. In fact, most practitioners are just
told what the filtering algorithms are without knowing why they work so well.
Chui and Chen (1987) presented a book to answer there questions by presenting
a fairly thorough discussion of its mathematical theory and applications to various
elementary real-time problems. A very elementary derivation of filtering equations
is first presented to understand the optimality of the KF. This filtering for nonlinear
systems with an application to adaptive system identification is also discussed in the
same book. Moreover, the limiting or steady-state KF theory and efficient
computational schemes such as the sequential and square-root algorithms are included

for real-time application purposes.



2.3 Kalman Filter in Atmospheric Sciences and Hydrology

Chiu (1978) presented a book that consists of lectures and papers exhibited at the
American Geophysical Union, Chapman Conference on Applications of KF Theory
and Technique to Hydrology, Hydraulics and Water Resources. The objective of the
conference was to give the KF a significant amount of disclosure to water scientists
by giving an introduction to the fundamental KF theory and technique; to identify and
illustrate cases using KF in hydrology; hydraulics and water resources; and to
determine directions of future study, and finally, to investigate areas where
applications of KF are most effective. This book covers KF and other estimators,
along with applications of KF to an extensive spectrum of subjects in hydrology,
hydraulics and water resources, such as design of experimental, or monitoring
systems, rainfall-runoff system studies, streamflow modeling and forecasting,
hydraulics of flow and other transport processes in streams and rivers, water quality

studies, groundwater problems, and other areas of water resources and geophysics.

Effective planning, design and operation of any water resources system depend on the
available water volume which can be determined by studying the statistical
characteristics of many hydrologic series such as precipitation, runoff, ground water
levels etc., and hence, the concept of multivariate models became needed. The
multivariate models involve large matrices and hence, their inversion creates
mathematical as well as computational difficulties. $en (1980a) presented a multisite
recursive disaggregation model which led to the optimum prediction of lower-level
(seasonal) events from a given series of higher-level (annual) events at these sites. In
his model, a partiotioning technique has been employed together with the
Kalman-Bucy linear filtering theory which incurs computational difficulties, especially,

in the application to large dimensional systems.

The KF differs from optimal interpolation (OI) primarily in that it determines
the forecast error covariance accurately, by actually evolving it in time according
to the forecast model dynamics. To do so, the KF requires knowledge of the

observation error covariance and also of the model error covariance. The model error
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is the forecast error committed over one time step, starting from perfect initial data.
Dee et al. (1985) showed that the model and observation error covariances can both
be determined in a systematic and mathematically sound fashion. They described a
two part algorithm which estimates these covariances directly from the observed data,
during the coming data assimilation cycle. Authors demonstrated the effectiveness and
accuracy of the algorithm by applying it to a simple one-dimensional shallow-water
model (SWM). The first part of the algorithm is a KF which evolves the forecast
error covariance. The second part is a filter which estimates the observation and
model error covariances required by the primary KF. The altogether algorithm is
considerably more effective computationally than other adaptive filters which have

come into view previously in the estimation literature.

The problem of determining the best initial conditions for numerical weather
prediction (NWP) is of great practical importance, and has been the subject of many
studies by people from different backgrounds. Lorenc (1986) used Bayesian
probabilistic arguments to derive idealized equations for finding the best analysis
for NWP. These equations are compared with those from other published methods
in the light of the physical characteristics of the NWP analysis problem. Methods
discussed include variational techniques, smoothing splines, Kriging, OL, successive
corrections, constrained initialization, the Kalman-Bucy filter, and adjoint model data
assimilation. These are all shown to be related to the idealized analysis, and hence

to each other.

The KF supplies a measure of the accuracy of an analysis in the form of its error
covariance. Therefore, it allows the impact of different observation sets to be
compared. Cohn and Parrish (1991) implemented the KF algorithm for a linearized
SWM over the continental United States to assimilate simulated data from the
existing radiosonde network, from the demonstration network of 31 Doppler wind
profilers in the central United States, and finally, from the hypothetical radiometers
located at five of profiler sites. They provided some theoretical justification of Phillips
(1986) hypothesis and used it with some modification, to formulate the model error

covariance matrix required by the KF. The results show that the wind profiler
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observation can particularly reduce forecast / analysis errors in heights as in winds
when compared with the results of assimilating the radiosonde data alone. The
forecast error covariance matrices, that the KF calculates to obtain this error
reduction, differ from these prescribed by the OI schemes that are employed for data
assimilation at operational centers. They expect the KF to yield substantially more

accurate analyses and forecasts than OI method.

Sen (1991) combined the KF with the orthogonal Walsh series which are proposed
as an effective model to account for periodicities in observed hydrologic series. This
combination led to a real-time prediction procedure of the state variables which are
monthly hydrologic variables. General application is performed for monthly flow and
rainfall volume sequences. The method has been applied to monthly stream flow data
from Turkey and U.S.A, and monthly rainfall data from Saudi Arabia as
representatives of extremely arid zones. Comparison with the already available results
indicates that the combination of the Walsh functions with KF leads to, a better
adaptive predictions than the Fourier series. In terms of computer memory and time,
Walsh functions are the most economical approach, because their piecewise linearity,
orthogonality and symmetry properties result in the basic operations being additions

and subtractions only.

Dee (1991) presented a new statistical method of data assimilation that is based on a
simplification of the KF equations. The forecast error covariance evolution is
approximated simply by advecting the mass error covariance field, deriving the
remaining covariances geostrophically, and accounting for external model-error
forcing only at the end of each forecast cycle. This greatly reduces the cost of
computation of the forecast error covariance. In simulations with a linear
one-dimensional SWM and data generated artificially, the performance of the
simplified filter is compared with that of the KF and OI method. This simplified filter
produces analyses that are nearly optimal, and represents a significant improvement

over OI method.
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Daley (1992a) introduced lagged innovation covariances, which is defined as the
covariance of observed-minus-forecast differences at different observation stations at
selected time lags, through a discussion or KF theory and simplified models (a scalar
model, a linear univariate one-dimensional model, and a linear quasi-geostrophic
model) and then gone on to discuss an observational study with operational data
assimilation system. The model results are compared with actual lagged innovation
covariances derived from the innovation sequences of an operational data assimilation

system and then extensions and limitations of the procedure are discussed.

Over certain special observation networks, such as the North American radiosonde
network, forecast-error statistics can be obtained by the zero lag innovation
covariance technique. However, over data-sparse regions of the tropics, Southern
Hemisphere, and oceans, these techniques cannot be applied and much more ad hoc
methods must be employed. Daley (1992b) attempted to examine this problem
through the use of KF system to actually generate forecast-error statistics for a
hierarchy of wind-height observation network. The forecast-error statistics are
characterized by their variance and measures of their spatial scale and anisotropy.
Several methods of generating forecast-error statistics in data-sparse regions are
compared with optimal results. All methods produce results similar to those of the

optimal KF for very low or very high observation densities.

The spectral characteristics of optimal (statistical) interpolation were examined by
Daley (1983, 1985) and by Hollingsworth (1987) using eigenvector decomposition
techniqes. Ikawa (1984) introduced the concept of a continuous analog and it was
exploited by Daley (1991) to examine the spectral respones for successive correction
and statistical interpolation methods. Recently, there has been considerable interest in
the application of KF methods to data assimilation (Miller, 1986; Cohn and Parrish,
1991, and Daley, 1992a). Daley and Menard (1993) extended the earlier studies of the
spectral characteristics of statistical interpolation and successive correction methods
to a simple KF system. The system employed a one-dimensional advective-diffusive
equation on a uniform grid that coincided with the observation network. They
described the process to obtain the complete covariance structure at any time from

knowledge of the observation and model as well as the initial forecast error
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covariances. The results are discussed for specified model and observation error
spectra and certain asymptotic results. The theory is extended to the multivariate case,
and a simple method of determining model error statistics from forecast error

statistics are also discussed.

Ahsan and Connor (1994) reviewed some of application of the KF technique in river
flow forecasting. It is argued that the minimum mean-square error forecasts
obtained by using the KF technique are identical with those obtained by using the
conventional Box and Jenkins-type time series forecasting method when the flow
forecasting model assumed to be autoregressive moving average (ARMA) model and
the corresponding flow data are considered to be free of measurement errors.
However, with the assumption of the presence of measurement errors in the river flow

time series, the use of the KF technique assumes relevance.

Todling and Ghil (1994) implemented a KF for a two-dimensional SWM, with one
layer (1-L) or two layer (2-L) situations. Both a 1-L and a 2-L. SWM linearized
about a meridionally or vertically dependent basic flow were used to estimate a
barotropic and a baroclinic atmosphere, respectively. The model-error covariance
matrix for both the 1-L and the 2-L systems is constructed by using Phillips (1986)
basic hypothesis that these errors are limited to an ensemble of slow modes.
The major conclusions of this work are physically reasonable energy partition among
the modes in specifying the model’s error which is fundamental in producing small
forecast and analysis errors bounded in the presence of strong barotropic instability
and very few observation. Furthermore, forecast-error correlations can be strongly
influenced by the system’s instability, causing them to became quite anisotropic and

inhomogeneous.

Todling and Cohn (1994) studied the performance of different algorithms based on
the simplification of the standard KF to approximating the evolution of forecast error
covariances for data assimilation. These are several versions of OI and suboptimal
schemes (SOSs) when compared to the KF, which is optimal for linear problems with

known statistics. They presented the methodology of estimation theory for comparing
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linear SOSs, in which a bets-plane SWM linearized about a constant zonal flow is
chosen for the test-bed dynamics. The results suggest that even modest enhancements
of OI go a long way toward achieving the performance of the KF, provided that
dynamically balanced cross-covariances are constructed and model errors are
accounted for properly. The results indicate that such enhancements are necessary if

unconventional data are to have a positive impact.

Cohn et al. (1994) introduced the fixed-lag Kalman smoother (FLKS) as a means to
perform retrospective analysis and to produce model-assimilated datasets for climate
studies. They derived the linear FLKS in a method that directly generalizes the KF.
Moreover, in order to incorporate current and past observations, the smoother has the
ability to make use of future data to improve current analyses. An application of the
FLKS to the linear SWM of Cohn and Parrish (1991) served as a test-bed for
understanding the behavior of the FLKS in somewhat more realistic situations. The
numerical experiments also demonstrated the ability of FLKS to propagate
information upstream as well as downstream, thus improving analysis quality
substantially in data voids.

Bouttier (1994) used an approximation of the extended Kalman filter (EKF) to
estimate the forecast and analysis error covariances of an operational assimilation
system. The estimation error covariances for the model state are updated during the
analysis and prediction cycles. Although no model error term is specified, the
estimation error variances grow according to the dynamics on poorly observed areas.
The behaviors of the error variances and correlations are shown to be particularly
interesting over and around the oceans. A comparison with observation minus analysis
and forecast statistics provides an estimate of model error, which is then introduced -

into the covariance estimation procedure.

Miller et al. (1994) applied advanced data assimilation methods to simple but highly
nonlinear problems. The dynamical systems studied here are the stochastically forced
double well and Lorenz models. Three generalizations of the EKF are described. The

first is based on inspection of the successive differences between observation and
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forecasts. It works very well for the double-well problem. The second is an extension
to fourth-order moments and yields excellent results for the Lorenz model but will be
unwieldy when applied to models with high-dimensional state spaces. A third but
more practical method based on an empirical statistical model is derived from Monte

Carlo simulation, which is formulated and shown to work very well.

Analyses of the atmospheric circulation could be substantially improved, if it were
possible to estimate the wind field from chemical constituent observations. The
modern data assimilation algorithms such as the EKF or the four-dimensional
variational algorithm have this capability because of the coupling in the transport
equation between the wind and the constituent. Daley (1995) examined this possibility
by applying an EKF to one-dimensional constituent transport equation and to a
prognostic linear wind model. The transport and wind models are assumed to be
perfect. EKF experiments with constituent observations only showed that the wind
field can indeed be sufficient structure in the constituent field, the observations are

sufficiently frequent and accurate, and data voids are small.

The detection of trends in climatological data has become central to the discussion on
climate change due to the enhanced greenhouse effect. To prove detection, flexible
mathematical tools are needed. Visser and Molenaar (1995) proposed a structural
time series model with which a stochastic trend, a deterministic trend, and regression
coefficients can be estimated simultaneously. The stochastic trend component is
described using the class of autoregressive integrated moving average (ARIMA)
models. The regression component is assumed to be linear. However, the regression
coefficients corresponding with the explanatory variables may be time dependent to
validate this assumption. The KF technique is used to estimate the trend-regression
model. The authors discussed the main features of the filter and gave some examples

of trend estimations.
Todling and Ghil (1994) set up 1-L and 2-L versions of a two-dimensional SWM.

The performance of the KF in assimilating sparse and inaccurate data was studied for

the 1-L version both for stable and unstable basic flow profile. Ghil and Todling
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(1996) presented the part II of this work. They studied KF performance for the
model’s 2-L version in a stable and an unstable cases. Baroclinic instability was
induced by vertical shear between the two layers with no horizontal shear present.
The authors experiments showed that both cases were quite similar to their barotropic
counterparts. Once again, the KF is shown to keep the estimated flow’s error bars

bounded, even when a small number of observations taken with realistic frequency
was utilized.

Evensen and Leeuwen (1996) studied the ring-shedding process in Agulhas Current
using the ensemble Kalman filter (EnKF), which is based on the theory of stochastic
dynamic prediction that described the evolution of error statistics and proposed by
Evensen (1994) to assimilate the data into a 2-L quasi-geostrophic model (QGM).
They found that the method produced results consistent with the data and that
the assimilation of data provided a means to correct for deficiencies or neglected
physics in the QGM. The method limited too fast meander growth observed in
quasi-geostrophic models compared to more advanced models, and the eddy shedding
was enhanced by the data. These results suggested that a data assimilation system
could indeed be useful for pure physical process studies and could be used to account
for ageostrophic effects contained in the data that are missing in the QGM. The
conclusion of this work is that by allowing the model to contain errors, it is possible
to introduce to results physics contained in the data were neglected in model

formulation.

The KF is the optimal linear assimilation scheme only if the first-and second-order
statistics of the observational and system noise are correctly specified. If not,
optimality can be reached in principle by using an adaptive filter that estimates both
the state vector and the system error statistics. Blanchet et al. (1997) developed and
tested a reduced space adaptive KF for linear model of the tropical Pacific Ocean.
The authors tested three different adaptive algorithms. The first two, the empirical
and the maximum-likelihood estimators of Maybeck (1982) were shown to be
equivalent if the system noise has zero mean. Both algorithms showed similar

performance in forecasting the state of the ocean when using an averaged system
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noise covariance matrix based on the last part of the adaptive runs. The third
algorithm is a maximum-likelihood estimator inspired by Dee (1995), designed to
estimate a few parameters of the system error covariance matrix using the entire
sequence of the innovation vector. Its performance is comparable even though the
estimated system errors covariance matrix differs notably from those estimated with
the algorithm Maybeck.

Advanced data assimilation methods become extremely complicated and challenging
when used with strongly nonlinear models. Evensen (1997) examined and compared
the properties of three advanced data assimilation methods when used with highly
nonlinear Lorenz equations. Ensemble smoother method and a gradient decent
method are used to minimize two different weak constraint formulation, and the
EnKF is used for sequential data assimilation. EnKF does a good job in tracking the
reference solution. The filter estimate is actually better than the ensemble smoother
estimate in reproducing the peaks of the reference solution, and with low data density

the ensemble smoother gives a rather poor result.

Houtekamer and Mitchell (1998) examined the possibility of performing data
assimilation using the flow-dependent statistics calculated from an ensemble of
short-range forecasts (a technique referred to an EnKF) in an idealized environment.
These flow-dependent statistics are calculated at each point directly from the
ensemble. They are not parameterized in terms of simple correlation models, as
normally done, and, they need not be either homogeneous or isotropic. A series of
30-day data assimilation cycles is performed using ensembles of different sizes. It was
found that, the root-mean-square analysis error decreases as the size of ensembles
increases, and ensembles having on the order 100 members are sufficient to accurately
describe local anisotropic and baroclinic correlation structures. The estimation of
small correlations associated with remote observations, is much more difficult and
may require very large ensembles. To deal with these small correlations at large
distances, authors implemented a cutoff radius beyond which observations were not
used. It was found that the optimal value of this cutoff radius increased as the number

of available ensemble members increased.
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3. THE DISCRETE KALMAN FILTER

3.1. Overview

The discrete-time processes may arise in either of two ways. First, there is the
situation where a sequence of event takes place in discrete steps. The length of each
step may be either a fixed or random variable. In either case, the random variable of
interest is the distance from the origin after taking » steps. In this problem, there is
no such thing as fractional steps. The time variable moves in discrete jumps. The
discrete-time processes may also arise from sampling a continuous process at discrete

times.

The discrete KF is a recursive predictive update technique used to determine the
correct parameters of a process model. Given some initial estimates, it allows the
parameters of a model to be predicted and adjusted with each new measurement,
providing an estimate of error at each update. Its ability to incorporate the effects of
noise (from both measurement and modelling), and its computational structure, have

made it very popular for use.

In 1960, Rudolph Emil Kalman published his famous paper describing a recursive
solution to the discrete-data linear filtering problem (Kalman, 1960). Since that time,
due in large part advances in digital computing, the KF has been the subject of
extensive research and application, particularly in the area of autonomous or assisted
navigation. Unfortunately, its use in the domain of atmospheric sciences and
meteorology is rather few but increasing significantly recent years. Maybeck (1979),
introduced the general idea of the discrete KF, while a more complete introductory
discussion which can be found in Sorenson (1970) with some interesting historical
narratives. More extensive references include Gelb (1974), Lewis (1986), Brown and

Hwang (1992), and Jacobs (1993). It has been suggested that, in the right situations,



the performance of discrete KF is better than any other linear filters (Meditch, 1969,
Gelb, 1974, Mendel, 1973).

3.2. Description of the Discrete Kalman Filter

As shown in Figure 3.1 the discrete KF is an iterative procedure containing several

elements which are described in the next sections.

Enter vrior estimate and the error
covariance matrix associated with it.

Figure 3.1 Kalman filter iterative procedure.

The filter is supplied with initial information, including the prior estimate of initial
parameters, which is based on all the knowledge about the process, and the error
covariance associated with it, and these are used to calculate a Kalman gain. The error
between the parameter estimation and the measured data is determined and multiplied
by Kalman gain to update the parameter estimate and estimation error. The updated
error and parameters are used as inputs to a model, in order to predict the projected

error and parameters at the next time instance. The first derivation of the KF
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recursive equations is the ““filter’” equation. The equations used in the discrete KF

are given in detailed by Brown and Hwang (1992).

3.3. One-Dimensional Kalman Filter

Suppose that there is a random variable, X, , whose values should be estimated at a

set of certain times t, , t,, t,, ..., t,. Also, suppose that X, , satisfies the dynamic

equation

X, = ¢ X+ W, G.1

In this expression () is a known parameter relating X, to X, ,, and W,_, is a

random number selected by picking a number randomly. Suppose the numbers are

with the mean of W, , =0 and the variance of W, , is Q. W,_, is called white

noise, which means that it is not correlated with any other random variable and

especially not correlated with past values of W.

Let an initial estimate Xk .y be based on all the available knowledge about the

process prior to t, ,. The estimation error then becomes by definition

~

Coa =™ Xk - Xk/k—l (3.2)

and the variance of the estimation error is equat to P, .

Pk/k—l =E |:(Xk _)A(k/k—l)z:| (3.3)

where E is the expected value operator.
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Now, let us assume a noisy measurement of X and call it as Z.
Z =HX, +V, (3.4)

where V| is white noisy with variance, R, and H is measurement parameter. In

~

order to improve the prior estimate X, , ,, the noisy measurement at time k, Z, is

used as

A

Xk/k = Xk/k—l + Kk (Zk - Hka/k~1) (3.5)

where:

¥ - updated estimate,
k/k

K, :the Kalman gain.

k
Notice, that (Z, —H X, , ,) is just the error in estimating Z, . Part of this is due

to the noise, V, and part due to error in estimating X . If, all the errors were due to

error source in estimating X, then it would be convinced that X , was lessened by

k/k

the amount (Z, —H, X, , ,). However, since some of this error is due to V,, a

correction of less than (Z, —H,j(k 1) is needed to come up with X, ... For

k/k*

deciding on the value of K, let the variance of the error be computed as
2
E [(Xk - Xk/k)z:l =E (Xk - X — K (Z, -H, X, ))

=E [(1 ~KH)X, -X,, )+ Kkvk]
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=P, ,(1-K.H,)”+R K: (3.6)

where the cross product terms drop out because V, is assumed to be uncorrelated

with X, and Xk 1k - S0, the variance of updated estimation error is given by
P, =P,,1-K,H,) +R K} 3.7

If it is necessary to minimize the estimation error, then minimization of P, is
required by differentiating P, , with respect to K, and setting the derivatives equal

to zero. A little algebra shows that the optimal K is obtained as
-1
K = H Pk/k—l |:Pk/k—l(I<1n:)2 + le (38)

The updated estimate )A(k ,x can be projected one-time step ahead as

~ A

Xk+1/k - (p Xk/k (39)

The variance of the error of this estimate is
2
E I:(Xk _Xk/k )Z:I =E (Xk —Xk/k—l _Kk(zk _Hka/k—l))

2
=E l:(l K HIXX, -X )+ Kkvkj}

=P, ,1-K,H, ) +R K; (3.10)
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The last term is equal to zero because W, is assumed to be uncorrelated with X,

and X, , . So, the remaining term becomes

P..=P,0"+Q (3.11)

Consequently, equations (3.5), (3.7), (3.8), (3.9) and (3.11) are the five expressions
necessary for the application of the KF procedure. At next time step, it is necessary

again to use the projected ahead values to be the value of prior estimate. And this

goes on computer cycle after cycle. In the case of X, is a column matrix with many

components. Then equations (3.1) through (3.8) become matrix equations and the
simplicity as well as the intuitive logic of the KF becomes obscured. This
multi-dimensional KF is explained in the next section

3.4. Multi-Dimensional Kalman Filter Recursive Equations

Let any random process be modeled through the following recursive equation as

X =0, X +W_ (3.12)
where:
X, » X, :(nx1)state vectors at times t, , and t, , respectively,
D, , : (n x n) transition matrix relating X, | toX,,
W, | : (n x 1) white noise sequence vector with known covariance

structure.

The measurement of the process is assumed to occur at discrete points along time in

accordance with linear relationship

Z =HX +V (3.13)
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where:
Z, :(mx 1) vector measurement at time t,,

H, :(mxn) matrix giving the ideal (noiseless) connection between the

measurement and the state vectors at time {, ,

V, :(mx 1) measurement error assumed to be a white noise sequence with
known covariance structure and zero cross-correlation with the W,

sequence.

The covariance matrices for W, and V,  vectors are given by

T ) 1=k
E {Wkwi ] = Q. , (3.14)
0, 1#zk
E[VVT] _IRe Y 3.15)
o, izk( @
E [kaf] =0, forall k and i. (3.16)

where subscript T denotes transpose of the vector.

Let an initial estimate of the process at same point in time t,  is available, and

that this estimate is based on all the previous knowledge about the process prior

tot, .. This initial estimate will be denoted as X, ,, , . It is also assumed that the error

covariance matrix associated with X, , is known. Hence, the estimation error

becomes by definition as

o

I
»
|
4>

/K 3.17)

k/k-1 k
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and the error covariance matrix associated with initial estimate is

— T
Pk/k—l - E [ek/k—]ek/k—l j'

=E [(Xk - Xk/k—l)(xk - Xk/k—l)T] (3.18)

In the case of no prior measurements, if the process mean is equal to zero, it implies
that the initial estimate is zero, and therefore, the associated error covariance matrix is

just the covariance matrix of X itself
With the assumption of a prior estimate X, , , the measurement Z _ is used to

improve this prior estimate by a linear blending of the noisy measurement and the

posterior estimate appears in accordance with the following equation
Xk/k = Xk/k--l + Kk(Zk - Hka/k—l) (3.19)

where:

X : updated estimate,

k/k

K, :Dblending factor, which is referred to as the Kalman gain.

The problem now is to find the particular blending factor K, that yields an updated

estimate that is optimal in some sense. For this purpose, it is necessary first to form an

expression for the error covariance matrix P, associated with the updated

estimate. Since, the updated estimation error is by definition

€ = xk - Xk/k (3.20)
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Therefore,

_ T
Pk/k - E [ek/kek/k:l

=E l:(xk —Xk/k)(xk _Xk/k )T] (3.21)

Furthermore, substituting Eq. (3.13) into Eq. (3.19) and then substituting the equation

obtained into the expression for )A(k .« in Eq. (3.21), it is possible to get after some
algebra

A

Xon = Xk/k—l +K, (Hkxk +V, - Hkxk/k—l) (3.22)

k/k

with the following covariance matrices

[(xk - Xk/k-—l) - Kk(Hka + Vk _ Hka/k—l)

Kk

. N
[(Xk - Xk/k—l) - Kk(Hka + Vk - Hkxk/k-l)

or in terms of expectation multiplication

Pk/k =E (Xk - Xk/k—l) - Kka(Xk - Xk/k—l) - Kkvk):l

-E (Xk - Xk/k—n) - Kka (Xk - Xk/k-l ) - Kka )J
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and finally,

P, = E|(I- Kka)(Xk - X1;/1:-1) -K.V, ):|

— T
E|@-KH )X, -X,,.,)-K,V, )] (3.23)

after performing the necessary expectation operation and noting that (X, — f(k 1)

is a prior estimation error which is uncorrelated with the measurement error V, and

further consideration E [VkViT]= R,, it is possible to reach to the following

expression.
P,.=I-KH)P, (- Kka)T + KkRkKE (3.24)

This is a general expression for the updated error covariance matrix, and it is valid for

any gain, whether suboptimal or otherwise.

Returning to the optimization problem, it is desired to find the particular K, that
minimizes the individual terms along the major diagonal of P, ,, , because these terms

represent the estimation error covariance for the elements of the state vector being
estimated. It is achieved using a straightforward differentiation calculus approach

through the following matrix operations

d [trace(AB) ]

=B
dA 2

(A and B must be square matrices)  (3.25)

or, likewise

d [trace(ACAT )]

=2AC, (C must be symmetric matrix)  (3.26)
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The derivative of a scalar quantity (s) with respect to a matrix is defined, in general, as

& ds
d dall d'aln
S
—=] .... 3.27
A (3.27)
ds ds
——danl ..... ————dam
L J

With these points in mind, Eq. (3.24) may be expanded leading to the following form

P

k/k

=P,

k/k-1

~K,H,P

K/k-1

+K,(HP  H +R)K, (3.28)

P, HK,

The second and third terms on the right hand side are linear, however, the fourth
term is quadratic in K . Egs. (3.25) and (3.26) may now be combined with Eq. (3.28).
It is desired to minimize the trace of P,,, which is the sum of the mean-square
errors in the estimates of all the elements in the state vector. The argument that can be
used at this stage, is that the individual mean-square errors are also minimized when

the total is minimized. Hence, one can proceed to differentiate the trace of P, with
respect to K, noting that the trace of P, ,k_IHkTKkT is equal to the trace of its

transpose, K, H P, . , . After the derivation the result becomes

4

d [trace P }
dK,

=2 (H,P, ) +2 K ,(HP, H +R) (329

k™ k/k-1

It is necessary, for minimization to set this expression equal to zero and then its

solution yields the optimal gain as
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K, =P H'(HP

k/k-1 k/k-1

H +R,)" (3.30)

This particular K, namely, the one that minimizes the mean-square estimation

k>
error, is called Kalman gain. Now, updated estimate Xk , can be calculated by the
use of Eq. (3.19) with K, set equal to the Kalman gain as given previously by

Eq. (3.30). The covariance matrix associated with the updated estimate may now be

computed by substituting Eq. (3.30) into Eq. (3.28) which leads to

Pk/k = Pk/k—l - Pk/k—lHE (HkPk/k—lHI + Rk )_lHkPk/k—l - Pk/k—lHEK:
+ Pk/k—lH: (HkPk/k—le + Rk )hl (HkPk/k—lHT + Rk )K:

P,= Pk/k—l —P k/k—lHI(HkPk/k—lHi + Rk )~I HkP

k/k-1

- Pk/k—lH:K: +P k/k—lHEKI
P,.=P, - Pk/k~lH: (HkPk/k—lH: + Rk )_lHkPk/k—l
P,=P,,-KHP, = (I-KH)P,, (3.31)

It is to be noticed that this equation is valid only for Kalman gain. The updated

estimation X, , can be projected ahead via the following transition matrix

k/k

A A

X o X (3.32)

Kk T kkNk/k

where the contribution of W, in Eq. (3.12) is ignored, because it has zero mean and

is not correlated with any of the previous W's.

The error covariance matrix associated with X, is obtained by first forming the

expression for the updated estimation error defined as
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A

D G, S (3.33)
Substitution of Egs. (3.12) and (3.32) into this final expression leads to
., =D X +W, - (I)kﬂka,k
€. =D (X, Xk,k)+Wk
€. =D ... +tW (3.34)

Herein, again W, and e, have zero cross-correlations, because W, is the process

noise for the one step ahead of t, . Thus, one can write the expression for P, a

- T
Pk+1/k F— E |:ek+1/kek+1/k :|

Pk+l/k =E [((I)kﬂkek/k + wk )(q)kﬂkek/k + Wk )T:|

Pp..=0 P O

k+1/k k+1k ™ k/k & k+ik Qk

(3.35)

Hence, finally the necessary expressions for prediction at time t,,, are available

as equations (3.19), (3.30), (3.31), (3.32) and (3.35) which comprise the

multi-dimensional KF recursive equations.

These equations fall into two groups, time and measurement update equations. The
time update equations are responsible for projecting forward (in time) the current
state and error covariance estimates to obtain the a priori estimates for the next time
step. The measurement update equations are responsible for incorporating a new

measurement into the a priori estimate to obtain an improved estimate. The time
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update equations can also be thought of as predictor equations, while the
measurement update equations can be thought of as corrector equations. Indeed the
final estimation algorithm resembles that of a predictor algorithm for solving

numerical problems as shown in the Figure 3.2.

Figure 3.2 The ongoing discrete KF cycle.

The specific equations for the time and measurement updates are presented below in

Tables 3.1 and Table 3.2 .

Table 3.1 The time update (predictor) equations.

Time update equations

A
Xk+1/k ¢k+lka/k
_ T
Pk+l/k q)kﬂkPk/chka + Qk

Table 3.2 The measurement update (corrector ) equations.

Measurement update equations

K, =P, H(HP_ H +R)’

k/k-1 k™ k/k-1

X,, =X, +K,(Z,-HX,, )
P,=P,, - -K H Pk/kl

32



The pertinent equations and the sequence of computational steps will be shown in the

next section.

3.5. Kalman Filter Loop

Kalman filter estimation requires the execution of the following steps. These are :

~

1. Enter prior estimate X, ,, , which is based on all our knowledge about the process

prior to time t

P

k/k-12

..1» and also suggest the error covariance matrix associated with it

2. Compute the Kalman gain as,

K, = Pk/k—lH:(HkPk/k—IHE +R, )~1

(3.30)
3. Update estimate with measurement Z, ,
Xk/k = Xk/k—l + Kk(Zk - Hka/k—l) (3.19)
4. Compute error covariance for updated estimate,
Pk/k = Pk/k—l - KkaPk/k—l (3.31)

5. Project ahead the updated estimate X, ,, and the error covariance matrix

associated withit P, ,, , to use it as a prior estimation for the next time step,

Xian = Pon X (3.32)
Pow= (Dk+lkPk/k(D:+lk +Q, (3.35)
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Once the loop is entered as shown in Figure 3.1 then it can be continued as much as
necessary. Initially, when the model parameters are only rough estimates, the gain
matrix ensures that the measurement data is highly influential in estimating the state
parameters. Then, as confidence in the accuracy of the parameters grows with each
iteration, the gain matrix values decrease, causing the influence of the measurement

data in updating the parameters and associated error to reduce.

3.6. The Extended Kalman Filter

As described before, the KF addresses the general problem of trying to estimate the
state of a first-order, discrete-time process that is covered by a linear difference
equation. But what happens, if the process to be estimated and / or the measurement
relationship to the process is non-linear ? Some of the most interesting and successful
applications of Kalman filtering have appeared in such situations. A KF that is
linearized about the current mean and covariance is referred to as an extended Kalman
filter or EKF. In standard Kalman filter , we started with a system whose equations

were,

X, =0u X + W, (3.12)

and

Z =HX, +V, (3.13)

These equations are linear in the state vector, X . Now, we will extend the Kalman

filter to these non-linear problems by using the linearization tricks,

X, =f(X,)+W, (3.36)

and

Z, =gX,)+V, (337)
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where f is a vector whose components f, are non-linear functions of X, X, etc.

Choose some nominal value of X and callit X and write

D5 = —
axi (3.38)

where X is evaluated at X . Now, expansion of X, in a Taylor series about

X, gives

Xk+l =f(xnom)+q)k+1k(xk _Xnom)+ """ (3.39)

where the higher order terms are ignored Without the higher order terms, this

equation is linear in X and, therefore, the optimum estimate of X, is given by
Xian =X ) + (X, — X)) (3.40)

where as usual X, is the best estimate of X, inherited from the previous

computing cycle. Now using trick of setting X = Xk 1y » BiVes

A

X, =X, 0) (3.41)

The equation for the covariance matrix of the error in this estimate is just

Poo= (I)k+1kPk/kq):+lk + Qk (3.42)
However, by defining that
g,
() T Ay
X, (3.43)
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it is possible to expand Z,_ into a Taylor series as follows

Zk =g(Xnom)+Hk(Xk _Xnom)+"‘ (344)

Again, by ignoring the higher order terms, it is possible to get Z as a linear function

of X and, therefore, the optimal estimate after using linearization trick becomes

A

Xk/k = Xk/k-l + Kk [Zk - g(Xk/k—l )] (3.45)

The covariance matrix associated with this estimation and the Kalman gain matrix

equations unchanged from those of the standard KF are obtained as follows
Pk/k = Pk/k~1 - KkaPk/k—l —~ (I - Kka )Pk/k—l (3.46)

K, = Pk/k—lH: (HkPk/k—lHZ + Rk)—l (3.47)
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4. KALMAN FILTER DESIGN AND TESTING

4.1. Overview

Prediction models are powerful tools which estimate the most likely state of
hydrologic variable at a certain future time lag such that the estimation error is
expected to be minimal, i.e. an optimal estimation of a future state variable. The main
purpose of prediction is to yield the optimum state variable for a certain lead time
(hours, days, weeks, months, years, etc.) on the basis of the available historic record.
The most efficient category of prediction models that appear to have adaptive
behavior is based on the Kalman (1960) procedure (Sen, 1991).

For the design of Kalman filters certain guidelines can be developed based on practical
experience. Mehra (1978) discussed these under the headings of model selection,
parameter specification, algorithm selection, sensitivity analysis, validation and

testing.

4.2. Model Selection

This is the most important step in KF design since, it ultimately determines the
usefulness, accuracy, and computational requirements of the filter. It is recommended
that the state variables of the model have physical significance and that the model is
not overly complex unless great confidence can be placed on it. In some applications,
there may be so little a priori modeling information that it would be better to identify
the state vector model directly from the historical data. Mehra and Comeron (1977),
discussed this problem and described a general technique for identifying state vector

models from historical data.



Annual floods and alike hydrologic extremes may be treated as isolated independent
events and hence can be considered as pure-random variables (Chow, 1978a). A
complete-duration series of hydrologic data consists of daily, weekly, monthly,
seasonal or mean annual observations. It has trend components, whether periodical

or of straight-line type, which are dependent sequentially.

The dependence among sequential values of a series of observations cannot be
satisfactorily modeled by probabilistic distributions of pure-random variables. In
attempts to consider this dependence, progressive average values have been used.
Hoyt (1936) provided graphs showing the annual and ten-year progressive average
precipitation for selected drainage basins in the United States. This graphical approach
eventually led to the use of the moving-average (MA) model for a stochastic
hydrologic process. This model may be expressed as

X,=bg +bg,  +..+b.g =D bg 4.1)
=0
where:
X, : the stochastic variable at time t,
€ : a pure-random variable having zero mean and finite
variance,

b,, b,, ...,b_ : the weights with ij being convergent usually equal to

one,

M : the extent of the moving average.

Harmonic or spectral analysis has been applied to hydrometeorological data to
ascertain their periodicity. Chow and Kareliotis (1970) have applied the analysis to
determine the periodical dependence in the precipitation, evaportranspiration, and
streamflow components in a stochastic watershed system. The general form of the
so-called sum-of-harmonics (SH) model for stochastic hydrologic process may be

expressed by
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X, =X+ i(Aj cos 2xfjt + B, sin 2xfjt) +¢, 4.2)
1
where:

: the stochastic variable at time t of the hydrologic process,

X : the mean of X,

AJ_ and B. : Fourier coefficients or amplitudes,

f : the fundamental frequency,

2xnfjt : cyclicity with j=1, 2, ..., m,

m : the total number of cycles involved in the model,
€ : the pure-random component.

The Russian mathematician A. A. Markov, 1856-1922, introduced a concept that the
outcome of any one of a series of trials depends only on the outcome of the directly
preceding trial. Following this concept, a simple Markov model for stochastic

processes may be written as

X, =a X, +¢, (4.3)
where:
X,, : the stochastic variable at time t-1,
a . a Markov coefficient.

1
This model simply says that the value of a variable at any time depends only upon its
preceding value plus a probabilistic component. It has been first applied to the annual

flows of the Colorado River at Lees Ferry, Arizona by Brittan (1961).

The simple Markov model is, in fact, a special case of a more general linear

autoregressive (AR) mode, which may expressed as

X =g +a X  +..+a X, _ 4.9
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or

X, =>aX_ +g, (4.5)
j=1
where:
a, :anautoregression coefficient withj=1,2, ..., m,
n : the order of the model.

The simple Markov model is a first-order or lag one AR model. Julian (1960) and
Yevjevich (1971), respectively, have shown that the AR model has its roots in the SH

model and the MA model, and can be so derived.

To extend the Markovian concept, the MA, SH, and AR models can also be classified
as Markovian approaches. They have been variously used in the analysis of stochastic
hydrologic data in the last three decades (Kisiel, 1969; Fiering and Jackson, 1971;
Chow, 1978b). These models contain a random component. Once a model is
formulated from the given hydrologic data, its random component can be generated
by the Monte Carlo methods. Therefore, given the initial condition, the models can be
used to generate pseudo-random or synthetic hydrologic sequences. This procedure
was utilized first in the Harvard Water Resources Program (Julian, 1960) and also in
the Colorado River study (Brittan, 1961). It was given the name of “Synthetic
Hydrology” (Julian, 1960) or “Operational Hydrology” (Fiering, 1966). However, the
term “Operational Hydrology” was later adopted by the World Meteorology
Organization (WMO) with the meaning practically equivalent to applied hydrology.

4.3 Parameter Specification

Once a Markov model has been selected, then KF design requires specification of

matrices @, H, Q, R, X and P

/., - For theoretically based models, most of

k/k-1
this information comes from the physical understanding of the process. Maximum
likelihood, Bayesian and other techniques have also been developed for estimating

unknown parameters using past historical data. For black-box models, special
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canonical forms have to be assumed so that the parameters can be identified uniquely

from the historical input-output data.

However, there are several applications where no or very little historical information
is available to specify the above matrices. Indeed, KF may be started with very little
objective information and adapted as data becomes available. For example, if the
initial state is known very poorly, then the KF is started with large diagonal elements
in the covariance matrix. Similarly, if the other matrices are known poorly, then the
process noise covariance matrix is assumed to be large. Both of these choices have
the relative effects of increasing the filter covariance matrix and the Kalman gain

matrix.

The implication of the above interpretation for KF design is that the forecaster can
use his judgement regarding the relative accuracy of the model versus the

observations to select appropriate values for the noise covariance matrices, Q and

R. He can then examine the actual operation of the filter and adjust these values
on-line, if the situation changes at a later time.

4.4 Algorithm Selection

Different types of numerical algorithms may be used to implement Kalman filters.
The square-root algorithms are numerically most stable, but the initial effort in
developing them may be more than that for the covariance algorithms. If it is
anticipated that a number of bias terms would be included in the model and the
flexibility of neglecting some of these terms is required, the square-root filters with

triangular factorizations are very attractive (Bierman, 1976).

Cases in which the measurement noise is correlated or some of the measurements are
noise-free has been considered by Bryson and Henrickson (1968). It is possible to
reduce the size of the KF in these cases. Gelb (1974) discussed other techniques for

reducing the dimension of Kalman filtering.
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For time-invariant systems, if it is not necessary to compute the state covariance
matrix at each step, Chandrashekhar-type algorithms may be used to reduce the

computational requirements (Kailath, 1973; and Lindquist, 1974).

A number of practical algorithms for nonlinear state estimation are discussed by
Mehra (1970) and Wishner et al. (1971).

4.5 Sensitivity Analysis

The effect of the modeling and parameter errors on the performance of the KF can be
determined via sensitivity analysis. It is only necessary to solve the covariance
equations to study the effect of errors, but the covariance equations for the
suboptimal KF are different. In general, a 2x2 linear matrix equation has to be solved
to study the large scale sensitivity of the KF.

4.6 Validation and Testing

An optimal KF has the property that the innovation sequence has zero mean white
noise with constant covariance. Statistical tests for checking the randomness property
are:
1. Correlation tests for testing local linear dependence (Mehra, 1970),
2. Integrated spectrum test for periodic linear dependence, (Jenkins and Watts,
1968),

3. Run tests for linear and nonlinear dependence, (Fama, 1965).
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S. STUDY AREA AND DATA CHARACTERISTICS

5.1 Overview

To investigate and develop a KF model approach to multisite precipitation modeling,
30 year records (1956-1985) of annual rainfall for the 52 stations used. As shown in
Figure 5.1 these stations are distributed over an area approximately covering all of

Turkey with more concentration in the northwestern part.

Distance (km)
8

| EEE
Okm 100 km 200 km

% 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
Distance (km)

Figure 5.1 Distribution of rainfall stations over Turkey.

5.2 Geographical Setting of Study Area

The study area lies between latitudes 36°: 70" N and 42°:03' N and longitude
25°:90" E and 44°:03' E, extended over an area of about 780,576 square
kilometers. The geographic locations (latitude, longitude and elevation in meter above
mean sea level) of precipitation stations are represented in Table 5.1. However,

Figure 5.2 shows rough contour line of equal height of stations for the study area.



Table 5.1 Station locations and elevation above mean sea level.

No. | Station No. Station Name Latitude Longitude Elevation
™) E) (meter)

01 068 Adapazan 40°: 78 30°: 42 31
02 662 Ali Fuat Paga — Adapazan 40°: 52 30°: 30 100
03 102 Afn 39°: 7 40°: 05’ 1631
04 350 Adana 37°: 00 35°:33 20
05 620 Bahgekoy — Istanbul 41°:17 29°: 05 130
06 070 Bolu 40°: 73 31°: 60 742
07 150 Balikesir 39°:62 27°:92 120
08 116 Bursa 40°: 18 29°:07 100
09 115 Bandirma — Baliksir 40°: 32 27°:97 58
10 122 Bilecik 40°: 15 29°: 98 539
11 164 Bitlis 38°: 40’ 42°:12 1578
12 112 Canakkale 40°:13 26 : 40 3
13 054 Corlu — Tekirdag 41°:17 27°: 80 183
14 084 Corum 40°: 55 34°:97 776
15 280 Diyarbalir 37 : 88 40°: 18 677
16 651 Dursunbey — Balikesir 39°: 58 28°: 63 639
17 653 Edremit — Balikesir 39°: 60 27°:02 21
18 096 Erzurum 39°: 92 41°:27 1869
19 050 Edime 41°: 67 26°:57 51
20 124 Eskigehir 39°: 78 30°: 57 789
21 058 Florya — Istanbul 40°: 98 28°:80' 36
22 673 Gokgeada — Canakkale 40°: 20’ 257:90' 72
23 062 Goztepe — Istanbul 40°: 97 29°: 08 33
24 674 Ipsala — Edirne 40°: 93 26°: 40 10
25 010 fzmit 40°: 78 29°: 93 76
26 063 Kartal — Istanbul 40°: 90 29°: 18 28
27 059 Kumkdy — Istanbul 41°:25 29°: 02 30
28 601 Kirklareli 41°:73 27°:23 232
29 011 Kandilli 41°: 10 29°: 06 114
30 098 Kars 40°: 60’ 43°: 08 1775
31 052 Luleburgaz — Kirklareli 41°: 40 27:35 46
32 210 Siirt 37°:93 41°:95 896
33 020 Sile — Istanbul 41°:18 29°:62 31
34 026 Sinop 42°:03 35°:17 32
35 056 Tekirdag 40°; 98 27°:48 4
36 118 Yalova — Istanbul 40°: 65 29°:27 4
37 132 Yozgat 39°: 83 34°: 82 1298
38 170 Van 38": 50' 43°: 50’ 1671
39 190 Afyon 38°:75 30°: 53’ 1034
40 195 Kayseri — Erkilet 38°: 78 35°: 48 1053
41 240 Isparta 37°:75 30°: 55 997
42 244 Konya 37°:97 32°:55' 1032
43 292 Mugla 37°:20 28": 35 646
44 030 Samsun 41°:28 36°: 33 4
45 300 Antalya 36°: 70 30°: 73’ 50
46 034 Giresun 40°: 92 38°: 40 38
47 074 Kastamonu 41°:37 33°:77 799
48 090 Sivas 39°: 75 37°:02 1285
49 092 FErzincan 39°: 73 39°: 50' 1156
50 061 Sartyer — Istanbul 41°:17 29°: 05 56
51 100 Ipdir 39°: 93 44°:03 858
52 200 Malatya — Erhav 38°:43 38°: 08 0862
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5.3 Topographical Structure

Turkey has different topographic structures, and it can be divided into eight land

regions as follows (The World Book Encyclopedia, 1988)

Distance (km)

1.

The Northern Plains: They cover Thrace and extend along the Black Sea coast
of Anatolia,

The Western Valleys: These are broad, fertile river valleys along the Aegean
Sea coast,

The Southern Plains: Narrow strips of land along the Mediterranean Sea,

The Western Plateau: Region of highlands with scattered river valleys that
extend across central Anatolia,

The Eastern Plateau: Rugged terrain of towering mountains and barren plains. It
extends from the Western Plateau to Turkey’s eastern border. The Taurus and
Pontic mountains meet in this region. Ararat, the country’s highest point, rises
5,185 meters above mean sea level near the Iranian border,

The Northern Mountains or Pontic Mountains: They rise between the Northern
Plains and the Anatolian Plateau,

The Southern Mountains: This region consist of the Taurus Mountains and
several smaller ranges on the southern edge of the Anatolian Plateau. These
mountains almost completely cut off the plateau from the Mediterranean Sea,
The Mesopotamian Lowlands: They are fertile plains and river valleys in

southeastern Anatolia.
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Figure 5.2 Rough contour map of equal height for Turkey (meters above mean sea level).
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5.4 Synoptic Situation

The winter atmospheric circulation in this part of Asia is determined by the Asian
High to the north-east and ridges of the Azores High to the west. The effect of the
Asian High is experienced more in the east. Common too is advection of tropical air
from north Africa and Mesopotamia which are drawn there by depressions travelling

along more southerly tracks.

In spring, there is a rapid increase in the inflow of solar energy and lower layers of the
atmosphere become overheated. Cyclonic activity then comes alive again and
depressions from the north Atlantic and central Europe arrive more often. Thunder

clouds form rapidly and these bring heavy rain, mainly to mountain areas.

The summer atmospheric circulation is associated with the Azores High and Asian
Low which is centered over Baluchistan and the Indus Plain. Polar air masses arriving
from the north-west and north are transformed here into continental air. From May to
October, winds over the Aegean Sea and Turkey are northerly, and because of their
regularity of occurrence, they have been known since ancient times as annual winds

(etesian winds-meltem in Turkish).

5.5 Climate Condition

The term “Climate” has a very wide variety of meanings. To many of us “Climate”
often first suggests temperature although rainfall and humidity may also come to
mind. A useful definition might be “all of the statistics of a climatic state determined
over an agreed time interval (seasons, decades or longer), computed for the global or

possibly for a selected region.

The climate differs greatly from one region of Turkey to another. Danuta (1992)
classified the climate conditions of Turkey, due to its position in the subtropical
climate zone, into some of the categories as follows

1. The climate is moist subtropical in north-east and south-west Turkey and on the

northern slopes of the Elburz Mountains,
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2. In the rest of coastal Turkey the climate is intermediate between moist and
continental,

3. Western Anatolia experiences continental climates,

4. Towards eastern Turkey the dryness and continently of climate increases,

5. Each mountain area has a mountain climate of its own.
5.5.1 Temperature

The coldest month of the year is January (February on Mediterranean). Temperatures
are below zero at altitudes above 1000 m with temperatures of over 8°C in south-
west and south-east coasts. The maximum temperature varies from 10°C on the

Black Sea but 13-15°C on the Mediterranean. Night-time temperature drops are
particularly severe at high altitudes and in interior depressions, but are much less so

on coasts. Negative temperature have been recorded all over the study area. In central

Anatolia the absolute minimum temperature has fallen to -28 °C.

In summer, because of the great aridity and the intensity of the solar radiation at this
time, absolute maximum temperatures exceed 40°C in many spots in Anatolia and

Mediterranean coast. On north coasts, they are lower, 27 °C on Black Sea and 34°C

on the Mediterranean coast.
5.5.2 Relative humidity

The annual variation in relative humidity corresponds to the seasonal inflow of air
masses. Over most of the study area, the humidity is highest in winter, also because
of the lower temperatures. In January, the relative humidity is 70-80 % on north and

west coasts.
The very high temperatures of summer in central Anatolia make these area very dry.

In many places, the July and August relative humidity drops to 20-30 % (Malatya,

Urfa) and even 15 % in the afternoon. The frequent inflow of moist air masses with
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sea breezes or the etesian (meltém) or monsoon winds on the appropriate coasts raises

the relative humidity in summer (Rize), in July to over 60 %.

5.5.3 Cloud

The cloudiest area throughout the year is the northern part of study area especially
east of Samsun, where at Rize 30-40 % of days per month are cloudy. In winter
(January), cloudiness ranges from 75 % in the north to 50 % in the south. July is the
finest month of the year, and on the north-eastern part of the Turkish coast cloudiness
is over 60 %. Cloudiness falls off rapidly westwards and southwards from that area
even as low as 5-6 %, eastwards to 5-20 %. Away from north-east Turkey, there is
extremely little cloudiness, from June to September, the monthly percentage is no
more than 20 %, and 70-80 % of days are clear.

5.6 Some Statistical Characteristics

The dry and the wet seasons are immediately obvious. All year round precipitation is
recorded only on eastern Black Sea coast. Autumn-winter precipitation is rather
higher than in remainder of the year. On the west and south coasts, the precipitation
increases from October to December-January and decreases from March-April.
Onwards the Anatolia receives precipitation associated with frequent lows in May.
The duration of the dry season varies from 1-2 months (July-August) in central

Turkey and four months (June-September) in southern Turkey.

The some statistical parameters of the annual (1956-1985) rainfall values observed at

the selected precipitation stations are summarized in Table 5.2 .

48



Table 5.2 Some statistical parameters of observed annual rainfall values (1956-1985)

No Station Name Mean (mm) St. Dev. (inm) Skewness
1 | Adapazan 835.5 1834 2.18615
2 | Ali Fuat Paga — Adapazan 660.6 107.7 0.36170
3 |Agn 506.7 91.9 0.13271
4 |Adana 690.4 2213 0.86862
5 | Bahgekoy — Istanbul 1287 478.6 1.73873
6 |Bolu 549.2 83.3 0.14283
7 | Balikesir 606.7 163.6 1.59256
8 [Bursa 680.6 109.1 0.16262
9 |Bandirma — Balikesir 719 149.3 0.71735
10 [Bilecik 445.1 75.4 0.62528
11 |[Bitlis 1164 287.5 0.27270
12 {Canakkale 636.6 139.9 0.64583
13 | Corlu - Tekirdaf 570.6 104.1 0.58876
14 |Corum 432.1 79.7 -0.05457
15 |Diyarbakir 490 134.5 -0.10185
16 | Dursun bey — Balikesir 779.1 171.6 0.36409
17 | Edremit — Balikesir 696.2 144.1 1.36238
18 |Erzurum 410.1 85.3 0.92707
19 |Edime 593.2 102.2 0.85735
20 |Eskisehir 393.1 94.8 -0.18598
21 |Florya — Istanbul 656.4 117.3 1.02088
22 | Gokgeada — Canakkale 792.5 212.2 1.28517
23 | Goztepe — Istanbul 698.7 127.4 0.87054
24 |Ipsala - Edirne 612.5 98.7 0.15228
25 |Izmit 766.6 150.2 0.37969
26 {Kartal — Istanbul 651.1 118.5 0.16123
27 |Kumkéy — Istanbul 796.1 185.8 1.02989
28 | Kurklareli 5894 133.9 1.17951
29 |Kandilli 827.7 148.7 0.54675
30 |Kars 470.5 106.1 0.75373
31 |Luleburgaz — Kuirklareli 652.3 182.2 2.00788
32 [Siirt 684.5 183.4 1.02095
33 |Sile — Istanbul 800.8 251.5 1.74568
34 |Sinop 640.2 134.2 0.83072
35 |Tekirdag 604.2 192.6 3.1807

36 | Yalova —~ Istanbul 770.4 266.9 3.216

37 |Yozgat 565.8 109.2 0.72179
38 [Van 377.9 62.7 -0.1035
39 |Afyon 408.6 89.5 0.14329
40 | Kayseri — Erkilet 364.8 60 0.75670
41 |Isparta 557.6 160 0.70164
42 |Konya 326.1 77.6 0.95732
43 |Mugla 1165 298.3 0.53785
44 | Samsun 693.7 1294 0.45975
45 |Antalya 1074 2934 0.29616
46 | Giresun 1240 1532 1.17704
47 |Kastamonu 457.6 82.2 0.17054
48 |Sivas 411.8 79.2 0.03905
49 |Erzincan 368.8 71.7 0.86580
50 | Sanyer — Istanbul 796.6 150.8 0.91685
51 [Igdir 251.9 77.3 1.0145

52 [Malatya — Erhav 402.7 100 0.42067
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6. APPLICATION OF KALMAN FILTER

6.1 Overview

Hydrologic variables occur in nature as a result of interconnected physical
elements, among which unknown climatic and physiographic factors play a
dominant role. Hence, hydrologic variables such as rainfall are products of
complex time-varying phenomena which can be measured by a finite number of
observations. These observations indicate that hydrologic variables are stochastic
in nature (Yevjevich, 1971) and that they are nonlinear (Amorcho and Orlob,
1961), as a result of

1. time -variable geologic processes of erosion, deposition, weathering, etc.,

2. climatic changes,

3. state uncertainty in time,

4

energy transfer of the hydrologic cycle, which is nonlinear in its character.

In practice, the inputs and outputs of the hydrologic phenomena are measurable
with time at a fixed point. However, the data obtained include a noise component

with statistical parameters that can be estimated from the same data.

A detailed study of hydrologic phenomena requires mathematical models that
should take into account time variability. Hence, the planner might want either to
simulate the underlying generating mechanism of the phenomenon concerned or to

make future predictions.
6.2 State Space Formulation of the Problem

Consider the problem of estimating the variable of some system. In dynamic

systems (that is, system which vary with time) the system variables are often
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denoted by the term state variables. An adaptive prediction algorithm for the
estimation of the state variables and the unknown parameters of a time-varying
hydrologic variable with noisy data requires a system model and measurement of
its behavior, i.e. observation, in addition to statistical models which characterize

the system and measurement errors as well as the initial conditions.

In the application of Kalman filtering theory, the mathematical formulation of the
problem and computational techniques used may depend heavily on the
computational simplicities of the system model used (Sen, 1991). Such an

inference is particularly important in real-time predictions.

As the problem here is to develop a real-time prediction scheme for annual
rainfall, their system and measurement models must first be identified. Assume

that the system variables are governed by the equation

X, ®y O, - - %J X, €,
X, ® @5 - - X, €,
=| . Ll . . + . (6.1)
ng (p52,1 . .- (psz,sz LX” 852
- Ak L Jkk-1 Jdk-1 L Jdk-1
H_J — -~ AN -~ S ;_.w._J
¢)) 2) 3 4)

where:
(1) : State variable vector at time t,,
(2) : Transition matrix relating (1) to (3),
(3) : State variable vector at time t,_,

(4) : System error vector.

The measurement of the process is assumed to occur at discrete points along time in

accordance with linear relationship

51



=

1,2

2,2

1,52

52,52

52

z,| In,
ZZ h 21
ZSZ h52,l
L dk L
a

where:;

Q)

(1) :Vector measurement at time t,,

H—I
3

N
n,

L P

H——J
Q)

(6.2)

(2) :Connection matrix between the measurement and the state vectors

at

time t_,

(3) :State variable vector at time t,,

(4) :Measurement error vector.

Assume that the system randomness is white Gaussian noise with a covariance

matrix Q. Further, assume that the measurement noise is also random with a

covariance matrix R, and that is not correlated with the system noise. We might

want to formulate an estimation algorithm such that the following statistical

conditions hold

1. The expected value of our estimate is equal to the expected value of the

state. That is, “on average,” our estimate of the state will equal the true

state,

2. We want an estimation algorithm such that all possible estimation

algorithms, our algorithm minimizes the expected value of the estimation

error. That is, “on average,” our algorithm gives the “smallest” possible

estimation error.
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6.3 Multisite Kalman Filter Algorithm

The Kalman filtering algorithm is applied to the rainfall measured data, at 52 stations,
in a forward direction (Figure 6.1). As discussed in previous chapters, once a model
has been selected, KF processing requires specification of

1. initial state vector,

2. error covariance matrix associated with this initial state vector,
3. system noise covariance,

4. measurement noise covariance,

5. state transition matrix,

6. connection matrix.

Most of this information should be based on physical understanding and all the

previous knowledge about the process prior to t, . If little historical information is

available to specify the above matrices, then KF may be started with very little
objective information and adapted as data becomes available. However, the less the
initial information, greater diagonal elements should be selected in the covariance
matrices. In this manner, the algorithm will have flexibility to adjust itself to sensible

values in a relatively short space of time.
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\ 4
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Figure 6.1 Kalman filter processing algorithm
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6.3.1 Initial State Description

The average amount of rainfall values at the selected stations (X, X,, ... X))

are used as the elements of initial state vector X, , , as follows

X, =| . (6.3)

As discussed throughout the thesis, the way to approach the problem is to make sure

that whatever initial values are, a sufficiently great diagonal elements of error
covariance matrix P,,, , are needed with initial state vector provided in the initial

moment.

2000 ; o all 0
. 2000 . . .

P.=| . . .. . . (6.4)
0 . . 0 2000

As shown in Figure 6.2, the prediction error covariance steadily decreases with time
and arrives at a stable value after some steps, indicating the efficiency of the

prediction algorithm .

The KF is initially influenced by its initial conditions, but eventually ignores them,

paying much greater attention to model parameters and the measurements
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P(k/k-1)

Figure 6.2 Estimation error variance

6.3.2 Kalman Gain Matrix

10

15
k

After the estimates, the initial state description are read into the program as first step.

Kalman gain matrix for the one-step prediction can be computed by modified Eq.

(3.30) with necessary assumptions as

2000 0

0

0 2000

2000 0O

0

0

0 2000

(6.5)

where: connection matrix H is unity, i.e., all stations are reporting their observations

and the diagonal elements of measurement noise covariance matrix R is taken

as 50, which is smaller than those of Q because the observed value are
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relatively noise free compared with the errors which result from the system.

This implies that the measurements are expected to have small errors.

50 0 . . 0

0 50 . . .
R=|. . . . . (6.6)

.0

0 0 50

Initially, when the model parameters are only rough estimates, with little objective
information, the Kalman gain matrix ensures that the measurement data is highly
influential in estimating the state parameters. Then, as confidence in the accuracy of
the parameters grows with each iteration, the gain matrix values decrease, causing the
influence of the measurement data in updating the parameters and associated error
(Figure 6.3).
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Figure 6.3 Kalman gain



6.3.3 Update Estimate With Measurement

With the assumption of an initial estimate, X the measurement Z, is used to

1/0°
improve the initial estimate by a linear blending of the noisy measurement and the

prior estimate in accordance with the following equation

S B T (- 7 - 7\
X, kl,l k1,2 SR k1,52 Zl Xl
X | |k k., - . - |llz.| |
Xl/l = + - (6.7)
X, | kpy o o o kgulllZ X,
L - L _1\_ 1 . —)

6.3.4 Error Covariance for Updated Estimate

The covariance matrix associated with the updated estimate may now be computed
by substituting the error covariance matrix associated with initial state vector,
connection and Kalman gain matrices as given previously by Eq.(6.5) which when

substitute into Eq. (3.31) leads to

2000 0 . 0 k, . k. 2000 0 . 0
0 . : o . .
Po=l 7| 7| ) (6.8)
0 . 0 2000 ko, - kg 0 . 0 2000
R dio L Jl R dso

6.3.5 Project Ahead the Updated Estimate

The contribution of €, in Eq. (6.1) can be ignored, because it has zero mean and is

~

not correlated with any of the previous €'s. However, the updated estimated X,

can be projected ahead via the following transition matrix
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(6.9)

In fact, the estimate of transition matrix may be difficult, but Harrison and Stevens

(1971, 1975a,b) claim that the system is quite robust to the transition matrix values,

and that they can, therefore, be set to fixed values. They have a minimal effect on the

results. However, for simplicity transition matrix assumed to be unity which leads to

A2

X
X

52

6.3.6 Project Ahead the Error Covariance Matrix

(6.10)

The error covariance matrix associated with projected ahead estimation P,,, may be

obtained by modified Eq. (3.35) to satisfy our assumption as

g
g

A ,2

.-
.

2,1 2,2

2/1

52.1

1,52

52,52

100
0
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where: P,,, given previously by Eq.(6.8), and for the system noise covariance matrix
Q, one can use his judgement to select appropriate values. He can then

examine the actual operation of the filter and adjust these values on-line if the
situation changes at a later time. Similar to the covariance of initial values KF

is started with large diagonal elements in the system noise covariance matrix.

100 0O 0

0 100 . . .
Q=|. . . . . (6.12)

0

0 0 100

The projected ahead estimation X, and the error covariance matrix P,, are used as

initial estimation for the next time step.

Equations (6.5), (6.7), (6.8), (6.10) and (6.11) comprise the multisite KF recursive
equations. Once the loop is entered as shown in Figure 6.1, then it can be continued
as much as necessary. All the calculations needed in this work are carried out by

computer program in Quick Basic written by the author and provided in Appendix A.

6.4 Result and Discussion

Precipitation is characterized by variability in space and time. In addition, there are
many factors affecting the magnitude and distribution of precipitation, elevation of
station above mean sea level, various air mass movement, moisture, temperature,
pressure, and topography. The magnitude and distribution of precipitation vary from
place to place and from time to time, even in small areas. The application of multisite
KF model as developed in this thesis approach to multisite precipitation modeling

which illustrates some interesting points in the annual precipitation pattern.

Observed and estimated annual rainfall values time variation at each selected station

over Turkey for the 30 year time period (1956-1985) are presented in Figures



D.1-D.52 in Appendix D. Figure 6.4 provides the observed and estimated annual
rainfall values at Adapazan from 1956 to 1984.
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Figure 6.4 Observed and estimated annual rainfall values
at Adapazan from 1956 to 1985.

It is to be noticed from this figure that the observed and estimated values follow each
other closely, which indicates that KF provides an efficient method for modelling of

annual rainfall.

Some statistical parameters of annual observed and estimated rainfall values during

the time period (1956-1985) are summarized in Table 6.1.
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From another point of view, Figure 6.5 provides the observed and estimated annual
rainfall values at 52 selected station in Turkey for 1985 (Figures for other years are
presented in appendix E). From Figure 6.5 and Table 6.2, again as noticed before, in
the case of one station (Adapazan), the observed and estimated values follow each
other closely, which indicates that KF provides an efficient method for modelling of
annual rainfall in both time and space dimension.
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Figure 6.5 Observed and estimated annual rainfall values
at selected stations in Turkey for 1985.
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Contour maps of observed and estimated annual rainfall for 1956-1985, and
percentage error of estimated annual rainfall are shown in Figures B.1-B.30 in
Appendix B and in Figure C.1-C.30 in Appendix C, respectively. In this section, maps
of observed and estimated annual rainfall values and percentage errors of estimated
annual rainfall for 1985 are presented in Figure 6.6 and Figure 6.7, respectively.
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Figure 6.6 Contour map of observed and estimated annual rainfall for 1985
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According to the areal values of observed and estimated annual rainfalls, the multisite
KF method has a slight tendency toward underestimation. Standard deviation of
estimated value is smaller than that of observed one (Figure 6.8). It means less

variability. Therefore, more smoothed than observed values.
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Figure 6.7 Contour map of the percentage error of estimated annual rainfall for 1985.
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Figure 6.8 Standard deviation of observed and estimated
areal rainfall values for 1956-1985

Furthermore, Figure 6.7 proves that the estimated values of annual rainfall at most of
the sites in the study area are close to the observed values, specially in the part where
more stations are available such as in the northwestern part of Turkey. The
percentage error of estimated values vary from -6 in station number 52
(underestimation) to 6 in station number 49 (overestimation) with overall average

about 0.12 %.
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7. CONCLUSIONS AND RECOMMENDATIONS

The development of data estimation methods can be traced back to Gauss (1809),
who invented the technique of deterministic least-squares approach and employed it
in a relatively simple orbit measurement problem. Estimation is the process of
extracting information from data, which can be used to infer the desired information
and may contain errors. when the time at which an estimate is desired coincides with

the last measurement point, the problem is referred to as filtering

The word ““filter’” is a relic from the early history of electrical engineering and it is
concerned with the extraction of signals from noise. Kalman (1978) defined the
filtering as any mathematical operation which uses past data or measurements on a
given dynamical system to make more accurate statements about present, future, or

past variables in that system.

Precipitation is characterized by variability in space and time. In addition, there are
many factors affecting the magnitude and distribution of precipitation, such as
altitude, various air mass movements, distance from the moisture sources,

temperature, pressure, and topography.

The magnitude and distribution of precipitation vary from place to place and from
time to time even in small areas. Describing and predicting the precipitation variability
in space and / or time are fundamental requirements for a wide variety of human

activities and water project designs.

Classical statistical estimation theory has not been able to predict directly
nonstationarity. For reliable predictions it is necessary to have stationarity both in the
mean and variance throughout the entire range of observations. That is why so much

effort is spent to make the data stationary in the mean and variance. Otherwise, the



results are not meaningful from a statistical point of view. For example, when the data
pattern changes as with a step or trend, or when there are transient shifts, classical
statistical theory will treat those as random effects or temporary shifts. If the changes
are continuous, a new forecasting model will have to be specified to deal with the new
equilibrium conditions. However, the model will be good for those new equilibrium

conditions only when fixed patterns exist.

Classical statistical methods must be used in conjunction with other control processes
if permanent or significant changes in the data are to be identified. Methods based on
classical statistics cannot sense a shift by themselves and once a shift has taken place,
the model will not do well, because it will still be tuned to the specification of the old
data set.

Kalman filtering, on the other hand, can deal with step changes and transient
situations because they update their parameters in a way that takes in to account the
changes in pattern. All forecasting methods are special cases of KF. This filter can
deal with changes in the model, the parameters, and the variances. The difficulty with
KF is that many technical questions have not yet been answered satisfactorily.

Kalman filter consists of combining two independent estimates to form a weighted
estimate or prediction. One estimate can be a prior prediction or an estimate based on
prior knowledge, and other a prediction based on new information (new data). The
purpose of the KF is to combine these two pieces of information to obtain an

improved estimate.

The precipitation data which consist of long time series at various locations in space,
have both spatial and temporal variations. In order to see the effectiveness of the KF
model developed in this thesis, 30 year records (1956-1985) of annual rainfall data for
the 52 different meteorology stations scattered all over Turkey with more
concentration in the northwestern part are used. In practice, the inputs and outputs
of the hydrologic phenomena are measurable with time at a fixed point. However,
the data obtained include a noise component with statistical parameters that can

be estimated from the same data.
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The discrete KF is a recursive predictive updating technique used to determine the
correct parameters of a process model. Given some initial estimates, it allows the
parameters of a model to be predicted and adjusted with each new measurement,
providing an estimate of error at each update. Its ability to incorporate the effects of
measurement and system noises, and its computational structure, have made it very

popular for use.

An adaptive prediction algorithm for the estimation of the state variables and the
unknown parameters of a time-varying annual rainfall with noisy data requires a
system model and measurement of its behavior in addition to statistical models
which characterize the system and measurement errors as well as the initial

conditions.

In the application of Kalman filtering theory, the mathematical formulation of the
problem and computational techniques used may depend heavily on the
computational simplicities of the system model used. Such an inference is
particularly important in real-time predictions. The system randomness is assumed

white Gaussian noise with a covariance matrix Q. Also the measurement noise is

assumed to be random with a covariance matrix R, and that is not correlated

with the system noise

Once a model has been selected, then KF processing requires specification of initial
state vector, error covariance matrix associated with this initial state vector, system
noise covariance, measurement noise covariance, state transition matrix and

connection matrix. Most of this information should be based on physical

understanding and all the previous knowledge about the process prior to t, , . If little

historical information is available to specify the above matrices, then KF may be
started with very little objective information and adapted as data becomes available.
However, the less the initial information, greater diagonal elements should be selected
in the covariance matrices. In this manner, the algorithm will have flexibility to adjust

itself to sensible values in a relatively short space of time.
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The average amount of rainfall values at the selected stations are used as the elements
of initial state vector. A sufficiently great diagonal elements of error covariance matrix
are needed with initial state vector provided in the initial moment. Then the prediction
error covariance steadily decreases with time and arrives at a stable value after some

steps, indicating the efficiency of the prediction algorithm.

After the initial state descriptions are read as first step, then the Kalman gain matrix
for the one-step prediction can be computed, with necessary assumptions, as the
connection matrix H is unity, i.e., all stations are reporting their observations. The
diagonal elements of measurement noise covariance matrix R is taken smaller than
those of Q because the observed values are relatively noise free compared with the

errors which result from the system.

Initially, when the model parameters are only rough estimates, with little objective
information, the Kalman gain matrix ensures that the measurement data is highly
influential in estimating the state parameters. Then, as confidence in the accuracy of
the parameters grows with each iteration, the gain matrix values decrease, causing the

influence of the measurement data in updating the parameters and associated error

With the assumption of an initial estimate, the measurement Z, is used to improve

the initial estimate by a linear blending of the noisy measurement and the prior
estimate. The covariance matrix associated with the updated estimate computed by
using the error covariance matrix associated with initial state vector, connection and

Kalman gain matrices.

The updated estimates can be projected ahead via the transition matrix, where the
contribution of system error can be ignored, because it has zero mean. However, the
estimate of transition matrix may be difficult, but the system is quite robust to the
transition matrix values, and that they can, therefore, be set to ﬁxed values. They have
a minimal effect on the results. However, for simplicity transition matrix is assumed to

be unity.
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Project ahead the error covariance matrix, where the updated error covariance matrix

can be computed, and for the system noise covariance matrix Q, one can use his

judgement to select appropriate values. He can then examine the actual operation of
the filter and adjust these values on-line if the situation changes at a later time. Similar
to the covariance of initial values KF is started with large diagonal elements in the

system noise covariance matrix.

The projected ahead estimation and the error covariance matrix are used as initial
estimation for the next time step. Once the multisite KF loop is entered, then it can be

continued as much as necessary.

It is to be noticed that for one station the observed and estimated values follow each
other closely, which indicates that KF provides an efficient method for modelling of
annual rainfall. The observed and estimated annual rainfall values at 52 selected
stations in Turkey for 1985, follow each other closely, which indicates that KF
provides an efficient method for modelling of annual rainfall in both time and space

dimensions.

According to the areal values of observed and estimated annual rainfalls, the multisite
KF method has a slight tendency toward underestimation. Standard deviation of
estimated value is smaller than that of observed one. It means less variability.

Therefore, more smoothed than observed values.

The estimated values of annual rainfall at most of the sites in the study area are close
to the observed values, specially in the part where more stations are available such as
in the northwestern part of Turkey. The percentage error of estimated values vary

from -6 (underestimation) to 6 (overestimation) with overall average about 0.12 %.

Although a lot of papers and textbooks have been written on Kalman filtering since
its inception in 1960 some issues which complicate the application of the KF are as
follows. These points are open for future researches

1. It is assumed that the system equation is linear. What if the equation is
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nonlinear?

What if the measurement noise and process noise are not Gaussian, and not
independent of each other?

What if the statistics (for example, the covariance matrix) of the noise is not
known?

What if, rather than estimating the state of system as measurements are made,
we already have all the measurements and we want to reconstruct a time history
of the state? Can we do better than a KF? It would seem that we could, since
we have more information available (that is, we have future measurements) to
estimate the state at a given time. This is called the smoothing problem.

KF recursive equations are matrix expressions, and as such can impose a large
computational burden for high-dimensional systems. Is there a way to
approximate the KF for large systems, reducing the computational load while
still approaching the theoretical optimum of the KF?

What if the noise characteristics change with time? Can we somehow formulate
a KF that adapts over time to changes in the noise characteristics?

What if, rather than desired to minimize the “average” estimation error, we
desire to minimize the “worst case” estimation error? This is known as the

minimax or H-infinity estimation problem.
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APPENDIX A

Computer Program For Multi-Dimensional Kalman Filter



CLS

NS =52
NM =52
ND =30

' NUMBER OF STATIONS
' NUMBER OF MEASUREMENT
' NUMBER OF DATA

DIM Q(NS,NS), RINM,NM), PHI(NS,NS), PHIT(NS,NS), IX(NS,1), UX(NS,1),X(NS,1), IP(NS,NS)
DIM UP(NS,NS), P(NS,NS), HINM,NS), HT(NS,NM), KG(NS,NM), Z(NM, 1), RAIN(ND,NM)

FORI=1TONS
FOR J=1TONS
IF J < ITHEN
IPL)=0 ' INITIAL ERROR COVARIANCE MATRIX
QLN=0 ' COVARIANCE MATRIX OF SYSTEM ERROR
PHI(L))=0 ' TRANSATION MATRIX
END IF
IP{,I) = 2000
QLD =100
PHIILD =1
PHIT(L,J) = PHI(J,D) ' TRANSPOSE OF TRANSATION MATRIX
NEXT]J
NEXTI
FORI=1TONM ' COVARIANCE MATRIX OF MEASUREMENT ERROR
FORJ=1TONM
IF J < I THEN
RELH=0
END IF
R(I) = .50
NEXT J
NEXT I
FORI=1TONM ' CONNECTION MATRIX
FORJ=1TONS
IF J < I THEN
HEH=0
END IF
HII)=1
HTID) =HJ,D ' TRANSPOSE OF CONNECTION MATRIX
NEXTJ
NEXT I

OPEN "DATA DAT" FOR INPUT AS #1
FORI=1TOND
FOR J=1TONM
INPUT #1, RAIN(LJ))
NEXT J
NEXT I

' RAINFALL DATA OF NS STATIONS

OPEN "MEAN.DAT" FOR INPUT AS #2
FORI=1TONS
INPUT #2, IX(1,1)
NEXT1I

' INITIAL ESTIMATE OF THE PROCESS X

OPEN "KG.DAT" FOR OUTPUT AS #3
OPEN "X DAT" FOR OUTPUT AS #4
OPEN "P.DAT" FOR OUTPUT AS #5

FORK=1TOND

' OPEN OUTPUT FILES
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FORI=1TONM ' MEASEREMENT MATRIX
Z(I,1) = RAIN(K.I)
NEXT I

CALL KALGAIN(NS,NM,IP(),H(),HT(),R(,KG() ' COMPUTE KALMAN GAINMATRIX
FORI=1TONS
FORJ=1TONM
IF I =J THEN
PRINT #3,USING "#.##HHHHHE", KG(L,));
END IF
NEXT J
NEXT1I
PRINT #3,

CALL UPDATEX(NS,NM,IX(,KG0,Z(0,H0,UX0) ' UPDATE INITIAL ESTIMATE
CALL UPDATEP(NS,NM,IP(),KG(,H(,UP() ' UPDATE ERROR COVARIANCE
CALL PRAHEAD(NS,NM,PHI(),PHIT(),Q(),UX(),UP(,P0,X() ' PROJECT AHEAD
FORI=1TONS
FOR J=1TONS
PRINT #4, USING "##i; X(1,1);
IF I = J THEN
PRINT #5,USING "##HH. #HH" P(L ),
END IF
NEXT J
NEXTI
PRINT #4,
PRINT #5,
FORI=1TONS
FOR J=1TONS
IX(,1) = X{,1)
IP(,J) = P(LJ)
NEXT J
NEXT I
NEXT K

SUB GAUSSJ (AQ),N,NP,BO,M,MP)
DIM IPIV(N),INDXR(N),INDXC(N)
FORJ=1TON
IPIV()=0
NEXT J
FORI=1TON
BIG = 0!
FORJ=1TON
IF IPIV(J) < 1 THEN
FORK=1TON
IF IPIV(K) = 0 THEN
IF ABS(A(J,K)) >= BIG THEN
BIG = ABS(A(JK)): IROW =]: ICOL =K
END IF
ELSEIF IPIV(K) > 1 THEN
PRINT "SINGULAR MATRIX"
EXIT SUB
END IF
NEXT K
END IF
NEXTJ
IPIV(ICOL) = IPIV(ICOL) + 1
IF IROW <> ICOL THEN
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FORL=1TON
DUM = A(IROW,L): AIROW,L) = A(ICOL,L): ACCOL,L) = DUM
NEXTL
FORL=1TOM
DUM = B(IROW,L): BIROW,L) = BUCOL,L): B(ICOL,L) = DUM
NEXT L
END IF
INDXR(I) = IROW: INDXC(T) = ICOL
IF AQCOL,ICOL) = 0! THEN
PRINT "SINGULAR MATRIX": EXIT SUB
PIVINV = 1! / A(ICOL,ICOL)
A(ICOL,ICOL) = 1!
FORL=1TON
A(ICOL.L) = A(ICOL.L) * PIVINV
NEXTL
FORL=1TOM
B(ICOL,L) = BICOL,L) * PIVINV
NEXT L
FORLL=1TON
IF LL <> ICOL THEN
DUM = A(LL,ICOL): A(LL, ICOL)= 0!
FORL=1TON
A(LL,L) = A(LL,L) - ACCOL,L) * DUM
NEXTL
FORL=1TOM
B(LL,L) = B(LL,L)-BACOL,L) * DUM
NEXT L
END IF
NEXT LL
NEXT I
FORL=NTO 1 STEP -1
IF INDXR(L) <> INDXC(L) THEN
FORK =1TON
DUM = A(K, INDXR(L)): AKX, INDXR(L)) = A(K, INDXC(L))
A(K, INDXC(L)) = DUM
NEXT K
END IF
NEXT L
ERASE INDXC, INDXR, IPIV
END SUB

SUB KALGAIN (NS,NM,IP( ),HT( ),H( ),R(),KG())
DIM M1(NS,NM), M2(NM,NS), M3(NM,NM), M4(NM,NM)
FORI=1TONS "Ml =PHT
FOR J =1 TONM
SUM =0
FORK =1TONS
SUM = SUM + IP(LK) * HT(K.J)
MI(,]) = SUM
NEXT K
NEXT J
NEXT I
FORI=1TONM 'M2=HP
FOR J=1TONS
SUM =0
FORK =1TONS
SUM = SUM + H(LK) * [P(K,])
M2(L,]) = SUM
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NEXT K
NEXTJ
NEXT I
FORI=1TONM ‘M3 =M2.HT
FORJ=1TONM
SUM=0
FORK=1TONS
SUM = SUM + M2(LK) * HT(K,J)
M3(,J) = SUM
NEXT K
NEXTJ
NEXT1
FORI=1 TONM 'M4=M3+R
FORJ=1TONM
M4(LJ) =M3(LJ) + RLD)
NEXTJ
NEXT I

CALL GAUSSJ(M4(),NM,NP,M1(),NM,MP)

M4 1S REPLACED BY ITS MATRIX INVERSE, AND M1 IS REPLACED BY THE
' CORRESPONDING SET OF SOLUTION VECTORS (KG).
FORI=1TONS
FOR J=1TONM
KG(L)) = MIL)
NEXT J
NEXT I
END SUB

SUB PRAHEAD (N,M,PHI(),PHIT(),Q(),UX(),UP( ),P(),X())
DIM MI(N,N), M2(N,N)
FORI=1TONS 'X = PHL.X
SUM =0
FORK = 1 TONS
SUM = SUM + PHI(LK) * UX(K,1)
X(,1) = SUM
NEXTK
NEXT I
FORI=1TONS ‘M1 = PHLP
FOR J=1TONS
SUM = 0
FORK =1TONS
SUM = SUM + PHI(LK) * UP(K,J)
MI(LJ) = SUM
NEXT K
NEXT J
NEXT I
FORI=1TONS ' M2 = M1.PHIT
FOR J=1TONS
SUM =0
FORK = 1 TONS
SUM = SUM + MI(L,K) * PHIT(K,J)
M2(1, J) = SUM
NEXT K
NEXT J
NEXT I
FORI=1TONS 'P = PHLP.PHIT + Q
FORJ=1TONS

P(LJ) = M2(L)) + QL))
NEXTJ
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NEXT1
END SUB

SUB UPDATEP (NS,NM, IP(,KGQ,H(),UP()
DIM M1(NS,NS), M2(NS,NS)
FORI=1TONS

FOR J=1TONS
SUM=0
FORK =1 TONM
SUM = SUM + KG(LK) * HK,J)
Mi(, ) = SUM
NEXT K
NEXT J
NEXT I
FORI=1TONS
FOR J=1TONS
SUM =0
FORK =1 TONS
SUM = SUM + MI(LK) * IP(K,])
M2(L,3) = SUM
NEXT K
NEXT J
NEXTI
FORI=1TONS
FOR J=1TONS
UP(L,J) = IP(LJ) - M2(L,J)
NEXT J
NEXT I
END SUB

'M1=KH

‘M2 =MI1P

'UP=P-M2

SUB UPDATEX (N§,NM,IX( ),KG(),Z(),H(),UX())

DIM MI(NM, 1), M2(NM, 1), M3(NS,1)
FORI=1TONM
SUM =0
FORK =1TONS
SUM = SUM + H(LK) * IX(K, 1)
M1(,1) = SUM
NEXT K
NEXT I
FORI=1TONM
M2(L,1) = Z(L,1) - M1(L,1)
NEXT I
FORI=1TONS
SUM =0
FORK = 1 TONM
SUM = SUM + KG(LK) * M2(K,1)
M3(,1) = SUM
NEXT K
NEXT I
FORI=1TONS
UX(LT) = IX(L,1) + M3(1,1)
NEXT I
END SUB
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APPENDIX B

Contour Maps Of Observed (—)And Estimated (~--)Annual Precipitation
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Figure B.1 Contour map of observed and estimated annual
precipitation for 1956.
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Figure B.2 Contour map of observed and estimated annual
precipitation for 1957.
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Figure B.3 Contour map of observed and estimated annual
precipitation for 1958.
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Figure B.4 Contour map of observed and estimated
annual precipitation for 1959.
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Figure B.5 Contour map of observed and estimated
annual precipitation for 1960.
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Figure B.6 Contour map of observed and estimated
annual precipitation for 1961.
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Figure B.7 Contour map of observed and estimated
annual precipitation for 1962.
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Figure B.8 Contour map of observed and estimated
annual precipitation for 1963.
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Figure B.9 Contour map of observed and estimated
annual precipitation for 1964.
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Figure B.10 Contour map of observed and estimated
annual precipitation for 1965.
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Figure B.11 Contour map of observed and estimated
annual precipitation for 1966.
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Figure B.12 Contour map of observed and estimated
annual precipitation for 1967.
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Figure B.13Contour map of observed and estimated
annual precipitation for 1968.
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Figure B.14 Contour map of observed and estimated
annual precipitation for 1969.
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Figure B.15 Contour map of observed and estimated
annual precipitation for 1970.
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Figure B.16 Contour map of observed and estimated
annual precipitation for 1971.
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Figure B.17 Contour map of observed and estimated
annual precipitation for 1972.
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Figure B.18 Contour map of observed and estimated
annual precipitation for 1973.
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Figure B.19 Contour map of observed and estimated
annual precipitation for 1974.
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Figure B.20 Contour map of observed and estimated
annual precipitation for 1975.
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Figure B.21 Contour map of observed and estimated
annual precipitation for 1976.
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Figure B.22 Contour map of observed and estimated
annual precipitation for 1977.
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Figure B.23 Contour map of observed and estimated
annual precipitation for 1978.
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Figure B.24 Contour map of observed and estimated
annual precipitation for 1979.
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Figure B.25 Contour map of observed and estimated
annual precipitation for 1980.
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Figure B.26 Contour map of observed and estimated
annual precipitation for 1981.
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Figure B.27 Contour map of observed and estimated
annual precipitation for 1982.
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Figure B.28 Contour map of observed and estimated
annual precipitation for 1983.
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Figure B.29 Contour map of observed and estimated
annual precipitation for 1984.
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Figure B.30 Contour map of observed and estimated
annual precipitation for 1985.
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APPENDIX C

Contour Maps Of Percentage Error Of Estimated Annual Rainfall



Figure C.1 Contour map of percentage error of estimated
annual rainfall for 1956.
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Figure C.2 Contour map of percentage error of estimated
annual rainfall for 1957.
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Figure C.3 Contour map of percentage error of estimated
annual rainfall for 1958.
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Figure C.4 Contour map of percentage error of estimated
annual rainfall for 1959.

b0 20 300 400 500 600 700 800 S0 1000 1160 1200 1300 1400 1500 1600 1700
Distance (ian)

Figure C.5 Contour map of percentage error of estimated
annual rainfall for 1960.
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Figure C.6 Contour map of percentage error of estimated
annual rainfall for 1961.
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Figure C.7 Contour map of percentage error of estimated
annual rainfall for 1962.

Figure C.8 Contour map of percentage error of estimated
annual rainfall for 1963.
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Figure C.9 Contour map of percentage error of estimated
annual rainfall for 1964.
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Figure C.10 Contour map of percentage error of estimated
annual rainfall for 1965.
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Figure C.11 Contour map of percentage error of estimated
annual rainfall for 1966.
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Figure C.12 Contour map of percentage error of estimated
annual rainfall for 1967.
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Figure C.13 Contour map of percentage error of estimated
annual rainfall for 1968.

Figure C.14 Contour map of percentage error of estimated
annual rainfall for 1969.
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Figure C.15 Contour map of percentage error of estimated
annual rainfall for 1970.
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Figure C.16 Contour map of percentage error of estimated
annual rainfall for 1971.

\\\ \\

. ol e N ) N
(6 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
Distence (kam)

Figure C.17 Contour map of percentage error of estimated
annual rainfall for 1972.
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Figure C.18 Contour map of percentage error of estimated
annual rainfall for 1973.
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Figure C.19 Contour map of percentage error of estimated
annual rainfall for 1974.
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Figure C.20 Contour map of percentage error of estimated
annual rainfall for 1975.
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Figure C.21 Contour map of percentage error of estimated
annual rainfall for 1976.
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Figure C.22 Contour map of percentage error of estimated
annual rainfall for 1977.
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Figure C.23 Contour map of percentage error of estimated
annual rainfall for 1978.
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Figure C.24 Contour map of percentage error of estimated
annual rainfall for 1979.
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Figure C.25 Contour map of percentage error of estimated
annual rainfall for 1980.

Figure C.26 Contour map of percentage error of estimated
annual rainfall for 1981.
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Figure C.27 Contour map of percentage error of estimated
annual rainfall for 1982.
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Figure C.28 Contour map of percentage error of estimated
annual rainfall for 1983.

Figure C.29 Contour map of percentage error of estimated
annual rainfall for 1984.
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Figure C.30 Contour maps of percentage error of estimated
annual rainfall for 1985.
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APPENDIX D

Observed And Estimated Annual Rainfall Values
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Figure D.3 Observed and estimated annual
rainfall values at Agn.
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111

Rainfall {mm)

Rainfall (mm)

Rainfall (mm)

1100

Obasrvad

= s~ =~ Predicted

: . ;
NSNS TSI AU TS I ST SrUETEES DY

|
300 } I T

1
1855 1880 1865 19870

Time (Year)

1978 1880 1885
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rainfall values at Adana.
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Figure D.6 Observed and estimated annual
rainfall values at Bolu.
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Figure D.7 Observed and estimated annual
rainfall values at Balikesir.
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Figure D.9 Observed and estimated annual
rainfall values at Bandirma.
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Figure D.11 Observed and estimated annual
rainfall values at Bitils.
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rainfall values at Bursa.
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Figure D.10 Observed and estimated annual
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Figure D.12 Qbserved and estimated annual
rainfall values at Canakkale.



Rainfall (mm)

Rainfall (mm)

Rainfall {(mm)

Observed

- = = = = Predicted

TSN RN ST AU SN AU A N A [
400 —+ T 1 | E— i
1885 1960 1965 1970 1975 1880 1885
Time (Year)

Figure D.13 Observed and estimated annual
rainfall values at Corlu.
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Figure D.15 Observed and estimated annual
rainfall values at Diyarbakar.
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Figure D.17 Observed and estimated annual
rainfall values at Edremit.
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Figure D.14 Observed and estimated annual
rainfall values at Corum.
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Figure D.16 Observed and estimated annual
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Figure D.18 Observed and estimated annual
rainfall values at Erzurum.
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Figure D.23 Observed and estimated annual
rainfall values at Goztepe.

Figure D.24 Observed and estimated annual
rainfall values at Ipsala.
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Figure D.47 Observed and estimated annual
rainfall values at Kastamonu.
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Figure D.48 Observed and estimated annual
rainfall values at Sivas.
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Figure D.49 Observed and estimated annual

rainfall values at Erzincan.
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Figure D.51 Observed and estimated annual
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Figure D.52 Observed and estimated annual
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APPENDIX E

Observed And Estimated Annual Rainfall Values At Selected Stations In
Turkey For 1956-1985.
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Figure E.6 Observed and estimated annual
rainfall values for 1961

Figure E.5 Observed and estimated annual
rainfall values for 1960
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Figure E.7 Observed and estimated annual
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Figure E.11 Observed and estimated annual

rainfall values for 1966.
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Figure E.10 Observed and estimated annual

rainfall values for 1965.
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Figure E.12 Observed and estimated annual

rainfall values for 1967.
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Figure E.13 Observed and estimated annual
rainfall values for 1968.
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Figure E.15 Observed and estimated annual
rainfall vatues for 1970.
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Figure E.17 Observed and estimated annual

rainfall values for 1972.
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Figure E.14 Observed and estimated annual
rainfall values for 1969.
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Figure E.18 Observed and estimated annual

rainfall values for 1973.
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Figure E.19 Observed and estimated annual
rainfall values for 1974.
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Figure E.21 Observed and estimated annual

rainfall values for 1976.
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Figure E.23 Observed and estimated annual
rainfall values for 1978.
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Figure E.20 Observed and estimated annual
rainfall values for 1975.
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Figure E.22 Observed and estimated annual
rainfall values for 1977.
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Figure E.24 Observed and estimated annual
rainfall values for 1979.
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Figure E.25 Observed and estimated annual
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Figure E.26 Observed and estimated annual
rainfall values for 1981.

rainfall values for 1980.
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Figure E.28 Observed and estimated annual

Figure E.27 Observed and estimated annual

rainfall values for 1983.

rainfall values for 1982.
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Figure E.30 Observed and estimated annual

Figure E.29 Observed and estimated annual

rainfall values for 1985.

rainfall values for 1984.
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