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SYNTHESIS OF POLYCAPROLACTONE VIA ENZYMATIC RING 

OPENING POLYMERIZATION 

SUMMARY 

Recently, aliphatic polyesters obtained with enzymatic ring opening polymerization 

of lactones are of considerable interest due to its biocompatibility, biodegradability 

and superior mechanical properties. Biomedical applications of these polymers such 

as drug delivery systems and biomaterial area has been increasing nowadays because 

of their biodegradability and non-toxic effect in living systems. 

Among polyesters, PCL has been receiving increased attention as an important tool 

for biomedical field. Since it has relatively low melting points (~60 
o
C) and blending 

ability with numerous polymers, design and manufacturing of desired structures can 

be obtained at lower temperatures. Also, it is a hydrophobic, semi-crystalline linear 

polymer and its glass transition temperature is -60 
o
C. Due to its superior rheological 

and viscoelastic properties comparing with other polyesters, PCL can be easily 

produced and large range of biomaterials can be manufactured. In comparison with 

other polyesters used in tissue engineering applications such as PLA and PGA, PCL 

can be degraded slower in living cells. This property is very important for drug 

delivery systems since drug can stay in cells longer time and therapeutic effect of the 

drugs are increasing. Due to these advantageous properties for biomedical 

applications, PCL has become an important tool for polymer science and 

biotechnological applications. 

PCL is synthesized via ring opening polymerization of ɛ-caprolactone which is a 

cyclic ester. ROP can be carried out with organometallic initiators such as Zn, Al, 

Sn, Ge or chemical catalysts. However, it is impossible to remove entirely these toxic 

metallic compounds from polymer matrix. This is of concern for biomedical 

applications since residues of these compounds can cause inflammatory response 

when the polymer used as a biomaterial. Therefore, application of biocatalysts to 

polymer synthesis is one of the most promising trends nowadays. Since biocatalysts 

are derived from renewable resources, they are referred as eco-friendly materials. 

Another advantage of biocatalysts is mild reaction conditions: enzymes can catalyze 

reactions at relatively low temperatures and pressures comparing with chemical 

catalysts. Also enzymes can be active in different organic media and due to high 

entio- and regio-selectivity of enzymes, well-defined polymers can be synthesized. 

On the other hand, biocatalysts may have a stability problem and lose its activity for 

long reaction time. Thus, immobilization of enzymes has been receiving great 

attention since this process enhances enzyme stability, activity and reusability in 

reaction medium. 

This study focused on PCL synthesis via enzymatic ring opening polymerization of 

ɛ-CL. It was aimed to develop different immobilized enzymes for PCL synthesis.  
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For this purpose, firstly polymerization reaction was performed with candida 

antarctica lipase B (CALB) enzyme immobilized on acrylic resin. This enzyme is 

available commercially (trade name: novozym 435) and often used for polyester 

synthesis in literature. Although it can catalyze the reaction efficiently, high costs 

and enzyme leakage problem leads scientists to solve these negative sides of 

novozym 435. Due to this, in the second part of the study, different supports are used 

for CALB immobilization in order to obtain efficient catalysts for PCL synthesis. As 

support material for immobilization process, chitin and chitosan was chosen in this 

study. The reason why chitin and chitosan was chosen as a support material is that 

they are cheap, ubiquitous and nontoxic materials; also they have high protein 

affinity. 

Furthermore, immobilization methods were optimized by using two different 

techniques: physical adsorption and cross-linking with gluteraldehyde. Resulting 

immobilized catalysts were evaluated in polymerization reactions and immobilized 

lipases via cross-linking with gluteraldehyde were more efficient than physically 

adsorbed enzymes. Also, optimization of coupling agent amount (gluteraldehyde) 

was carried out. Thus, moderate gluteraldehyde ratio (0.2% v/v) provided most 

efficient catalysts either chitin or chitosan. 

This study was concluded with evaluation of immobilized enzymes (novozym 435, 

K2, Immob2) at three different temperatures (60, 70 ve 80 
o
C) within a time range for 

ROP of ɛ-CL. Obtained polymers were characterized by 
1
H NMR and FTIR analysis. 

Furthermore, DSC analysis was applied in order to observe thermal behaviors and 

crystallinity of polymers. Molecular weights and polydispersities of obtained 

polymers were determined with GPC.  

In conclusion, performance of chitin and chitosan immobilized lipases were 

compared with novozym 435. Thus, it was seen that novozym 435 can catalyze 

reaction faster than chitin and chitosan immobilized lipases. However, polydispersity 

of polycaprolactones obtained with this enzyme was higher than the polymers 

synthesized via prepared enzymes in this study. Also, performance of chitin 

immobilized lipases was higher than chitosan immobilized lipases.  
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ENZİMATİK HALKA AÇILMASI POLİMERİZASYONU İLE 

POLİKAPROLAKTON SENTEZİ 

ÖZET 

Laktonların halka açılımı polimerizasyonu ile elde edilen alifatik poliesterler, 

biyobozunur olmaları, biyouyumlulukları, toksik özellik göstermemeleri ve üstün 

mekanik özellikleri ile biyomedikal ve ilaç endüstrisinde gittikçe artan bir oranda yer 

almaktadır. Biyobozunur özellikleri, bu polimerlerin implant malzeme olarak ve 

kontrollü ilaç salınım sistemlerinde önemli bir araç olmasını sağlamıştır. 

Poliesterler içerisinde yer alan polikaprolakton, sahip olduğu birtakım özellikleri ile 

son yıllarda ön plana çıkmaktadır. Polikaprolakton (PCL), üstün mekanik özelliklere 

sahip, hidrofobik, yarı kristalin lineer bir polimerdir. Camsı geçiş sıcaklığı (Tg) -60 
o
C, erime noktası ise 60 

o
C’dir.  Düşük erime noktası ve diğer polimerler ile 

kolaylıkla karışarak kompozit oluşturabilme kapasitesi, PCL ile ilgili araştırmaların 

özellikle biyomedikal alanda odaklanmasına neden olmaktadır. Bu sayede, polimerin 

şekillendirilmesi düşük sıcaklıklarda gerçekleştirilebilmekte ve istenilen özellikteki 

malzemeler kolaylıkla üretilebilmektedir. Buna ilaveten, büyük çapta üretimlerde 

PCL’nin üstün viskoelastik ve akış özellikleri üretim prosesini kolaylaştırmaktadır. 

PCL’nin kendisi gibi doku mühendisliği çalışmalarında kullanılan polilaktik asit ve 

poliglikolit gibi diğer poliesterlere kıyasla canlı ortamlarda daha uzun sürede 

biyobozunur olması, ilaç salım sistemlerinde kullanımı için önemli bir üstünlük 

sağlamaktadır. Tüm bu özellikler, araştırma dünyasında ve biyoteknoloji 

araştırmalarında polikaprolaktonu odak noktası haline getirmiştir. 

PCL, halkalı bir ester olan ɛ-kaprolakton monomerinden halka açılımı 

polimerizasyonu ile sentezlenmektedir. Halka açılımı polimerizasyonu Zn, Al, Sn, 

Ge gibi organometalik başlatıcılarla veya kimyasal katalizörlerle gerçekleştirilebilir. 

Ancak toksik özellik gösteren bu kimyasalların polimerden tamamen uzaklaştırılması 

mümkün olmamaktadır. Bu nedenle biyokatalizörlerin kullanımı ile polimerizasyon 

işlemini yürütmek son yıllarda yeni bir eğilim olarak gündemdedir. Biyokatalizörler, 

yenilenebilir kaynaklardan elde edildiklerinden dolayı çevre dostu malzemeler olarak 

görülmektedir. Biyokatalizörlerin bir diğer avantajı ise; reaksiyonun daha ılıman 

koşullarda gerçekleştirilebilmesidir. Enzimler, kimyasal katalizörlere kıyasla daha 

düşük sıcaklık ve basınçlarda, farklı organik ortamlarda etkili olabilmektedir. Ayrıca 

enzim katalizli proseslerde, enzimlerin enantio ve regio seçicilikleri nedeniyle 

istenilen özellikte polimer sentezi gerçekleştirilebilmektedir. Bunlara paralel olarak 

enzimlerin immobilizasyonu ile oluşturulan farklı biyokatalizörlerin poliester 

sentezinde kullanımı son yıllarda dikkat çekmektedir. 

Bu çalışma, halkalı bir ester olan ε-kaprolakton monomerinden enzimatik halka 

açılması polimerizasyonu ile polikaprolakton eldesi üzerine odaklanmıştır. PCL 

sentezi, farklı taşıyıcılar üzerine immobilize edile enzimlerin katalizörlüğünde 

gerçekleştirilmiş, ve poliester sentezinde yeni biyokatalizörlerin geliştirilmesi 

üzerine yoğunlaşılmıştır. 
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Bu amaçla, öncelikle polimerizasyon işlemi literatürde poliester sentez işlemlerinde 

sıklıkla kullanılan akrilik rezin üzerine immobilize edilmiş candida antarctica lipase 

B (CALB) enzimi kullanılarak gerçekleştirilmiştir. Ticari ismi ‘Novozym 435’ olan 

bu enzimin reaksiyonda yüksek performans göstermesine rağmen, pahalı olması ve  

taşıyıcı ile arasındaki bağın zayıflığı çözülmesi gereken bir sorun olarak göze 

çarpmaktadır. Bu nedenle çalışmanın ikinci kısmında, poliester sentezinde 

kullanılmak üzere lipaz enzimi farklı taşıyıcılar üzerine immobilize edilmiştir. 

Çalışmada, taşıyıcı malzeme olarak kitin ve kitosan doğal polimerleri seçilmiştir. 

Bunun nedeni kitin ve kitosanın ucuz, doğada bol bulunan ve toksik etki yaratmayan 

yapısıdır. 

Deneysel çalışmanın devamında lipaz enziminin kitin ve kitosan polimerleri üzerine 

immobilizasyon işlemi optimize edilmiştir. Fiziksel adsorpsiyon ve çapraz bağlanma 

olmak üzere iki farklı immobilizasyon yöntemi uygulanarak elde edilen enzimlerin 

performansı polimerizasyon işleminde değerlendirilmiştir. Sonuçta, çapraz bağlanma 

yöntemi ile immobilizasyon fiziksel adsorpsiyona göre daha etkili olmuştur. Bu 

aşamada çapraz bağlanma ajanı olarak kullanılan gluteraldehit miktarı değiştirilerek, 

en uygun immobilizasyon işlemine karar verilmiştir. Deneysel çalışmanın bu 

kısmında, hem kitin hem de kitosan taşıyıcısı için hacimsel olarak 0.2% gluteraldehit 

kullanılarak elde edilen immobilize lipazların verimli olduğu görülmüştür.  

Çalışmanın son kısmında elde edilen immobilize enzimler 60, 70 ve 80 
o
C olmak 

üzere üç farklı sıcaklıkta halka açılımı polimerizasyonunda değerlendirilmiştir. Elde 

edilen polimerlerin NMR ve FTIR analizleri ile yapısal karakterizasyonu yapılmış, 

DSC analizi ile ısıl özellikleri incelenmiştir. Ayrıca, sıcaklığın etkisi üretilen 

polimerlerin molekül ağırlıkları GPC analizi ile belirlenerek gözlenmiştir. Sonuçta 

kitin ve kitosan üzerine immobilize edilmiş lipaz enzimleri ile novoyzm 435 enzimi 

karşılaştırılmıştır. Novozym 435 enzimi polimerizasyon reaksiyonunu daha hızlı 

katalizlemesine rağmen, bu enzimle elde edilen polikaprolaktonların polimerizasyon 

derecesi kitin ve kitosan immobilizasyonu ile elde edilen lipazlara göre yüksektir. 

Kitin immobilizasyonu ile elde edilen lipaz enziminin performansı kitosan ile elde 

edilene göre daha yüksek olmuştur. 
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1. INTRODUCTION 

Today, polymeric materials are indispensable part of a modern society and used in 

many applications such as electronics, communications, transportations, drug 

delivery systems, tissue engineering and medical devices [1]. Among them, 

biomedical applications are of considerable interest for last two decades. Therefore, 

development of biopolymers which are biodegradable, biocompatible and non-toxic 

has been an ongoing study field of polymer chemistry recently. 

On the other hand, environmental aspects should also be concerned during polymer 

production. Since synthetic polymers are generally obtained from petroleum based 

resources, they have many harmless effects to the environment. Therefore, new trend 

‘green’ chemistry has been rising in order to prevent negative effects of chemical 

synthetic methods. Energy minimization, using recyclable resources and moderate 

reaction conditions are aimed with these environmentally benign synthetic routes. 

Application of enzymes to polymer synthesis is the most promising eco-friendly tool 

for green chemistry [2]. 

Among biopolymers, aliphatic polyesters synthesized by ring opening 

polymerization (ROP) of lactones have extensively studied since their superior 

mechanical properties, biodegradable and biocompatible behaviors [3].  Polyesters 

are very important materials since they are in fourth place in living systems followed 

nucleic acids, proteins and polysaccharides. They can be synthesized by 

polycondensation or ring opening polymerization [1]. Among them, 

polycaprolactone is one of the important polyester which has the ability of blending 

with numerous polymers. This polymer can be produced easily for large scale 

because it has superior viscoelastic and rheological properties. On the other hand, 

long-term biodegradability leads PCL to drug-delivery systems. Therefore, it is a 

promising area for polymer technology. 

Synthesis of PCL consisted of chemical and enzymatic modes of polymerization. 

Chemical polymerization can be performed with organometallic initiators or catalysts 

such as Zn, Al, Sn and Ge by ring opening polymerization of ɛ-caprolactone. 
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However, metallic compounds cannot be removed entirely from PCL and for 

biomedical applications they cause high toxicity. Also, chemical polymerizations 

proceed at high temperatures and residues of metallic compounds can effect 

environment negatively. On the other hand, enzymatic polymerization provides many 

advantages such as moderate reaction conditions, pure resulting polymer and 

recyclable biocatalyst. Also, well defined polymer structure can be obtained with 

enzymatic catalysis [4]. 

Enzymatic ring opening polymerization of ɛ-CL is performed by using lipase 

enzyme, a kind of hydrolyses that catalyze the hydrolysis of fats in living cells. Their 

hydrolysis effect can be reversed into ester synthesis in non-aqueous media. In 

literature, novozym 435 which is an immobilized form of candida antarctica lipase 

B is used for this polymerization mode.  Immobilization is applied since enzyme 

activity, stability, selectivity and reusability is improved with this process. Although 

novozym 435 can catalyze the ROP reaction efficiently, because of the cost reasons 

and enzyme leakage problem, new supports for immobilization of lipases are 

investigated in literature [5-8].  

In this study, chitin ad chitosan are used as supports for lipase immobilization since 

they are cheap, ubiquitous and nontoxic material [9, 10]. Firstly, reference 

polymerization reactions were performed with novozym 435 at three different 

temperatures (60, 70, 80 
o
C) within a determined time range. Secondly, chitin and 

chitosan were immobilized to lipase by two different methods: physical adsorption 

and cross-linking with glutaraldehyde which is a common coupling agent. Obtained 

immobilized enzymes were evaluated by polymerization reactions and the highest 

performance was determined. In the following steps of the study, chosen 

immobilization method was applied to lipases and these enzymes are used in further 

polymerization reactions. In this step, like novozym 435 catalyzed polymerizations, 

ROP of ɛ-CL was performed at three different temperatures (60, 70, and 80 
o
C) 

within a determined time range in order to optimize polymerization reactions. Thus, 

obtained polymers with different catalysts were characterized by FTIR, 
1
H-NMR, 

GPC and DSC. 

 

 



3 

 

2. THEORETICAL STUDY 

2.1  Poly (ɛ-caprolactone) (PCL) 

PCL is a part of polyester family that is an important class of biomacromolecules in 

living systems. Polyesters and other biomacromolecules such as polysaccharides and 

proteins are synthesized by enzymes in living cells. By the use of this natural 

process, production of biopolymers with enzymes is a demanding trend for the last 

years since it is an eco-friendly technique. In comparison to annual synthetic polymer 

production, natural polymers are produced four to five magnitudes bigger than those 

derived from petroleum stock [1, 4]. 

PCL was synthesized by the Carothers Group in the early 1930s. It can be 

synthesized by ring opening polymerization of ɛ-caprolactone with enzymes or 

organometallic catalysts. It is hydrophobic, semi-crystalline linear aliphatic 

polyester. Its crystallinity is inversely proportional with its molecular weight. 

Researches about PCL are mainly focused on biomedical field because of its low 

melting point (59-64 
o
C), good solubility and blending capacity with other polymers. 

Solubility behavior of PCL in some solvents is seen in Table 2.1. It has also good 

mechanical properties, biodegradable and biocompatible structure. Its glass transition 

temperature (Tg) is -60 
o
C and molecular weight is in the range of 3000-80000 

g/mol. Its easy formability at low temperatures and good viscoelastic and rheological 

properties provides easy manufacturing for PCL. Therefore, PCL can be easily 

produced in large scales as implants and devices. Among the polymers, which are 

used in biomedical field, these properties make PCL advantageously [11, 12]. 

Table 2.1 :Solubility of PCL 

Solvent Solubility Behavior of PCL 

Chloroform, Dichloromethane, Benzene Soluble at room temperature 

Carbon Tetrachloride, Toluene Soluble at room temperature 

Acetone, Ethyl Acetate, Acetonitrile Low solubility 

2-butanone, Dimethylformamide Low solubility 

Alcohol, petroleum ether, diethyl ether Insoluble 



4 

 

One of the important properties of PCL is biodegradable nature of the polymer. It can 

be said that although PCL can be degraded by outdoor living organisms such as 

bacteria and fungi, the degradation process is slower in human and animal bodies. 

Degradation studies in literature shows that degradation process is consisted of two 

steps: in the first step; ester linkages are cleaved by non-enzymatic hydrolysis, then 

in the second step; when the molecular weight decreases to less than 3000 g/mole 

intracellular degradation is shown. In this step, PCL is completely resorbed by the 

activity of macrophages and giant cells. Bioresorbability is another important 

property for PCL when it is used as a biomedical device or in drug delivery systems. 

Long-term biodegradable behavior in human beings provides PCL advantage for the 

usage in drug-delivery systems. As it is shown in Table 2.2, comparing with PCL 

degradation, poly (lactide) (PLA), Poly (glycolide) (PGA) and their copolymers’ 

degradation is fast. Also, other properties such as melting point and glass transition 

temperature of these polymers are seen in Table 2.2. Another important characteristic 

of PCL is biocompatible nature of the polymer. Biocompatibility means that in a 

specific application, appropriate host response is obtained by the use of related 

material. In order to use the polymer as a medical device or in drug delivery systems, 

polymer has to be biocompatible. Therefore, PCL becomes important element for 

tissue engineering applications with its important properties [11]. 

Table 2.2: Comparison of PCL and some degradable polymer properties 

Polymer 

type 

Melting Point 

(
o
C) 

Glass Transition 

Point (
o
C) 

DegradationTime 

(months) 

 

PLA 

 

173-178 

 

60-65 

 

6-12 

 

PGA 

 

225-230 

 

35-40 

 

>24 

 

PCL 

 

65-60 

 

-65-60 

 

>24 

 

 

 

 

 

 

Poly(D,L-lactide-
co-glycolide) 

       Amorphous 50-55 5-6 

Poly(L-lactide-co-

glycolide) 

 Amorphous 50-55 5-6 

Poly(L-lactide-co-
D,L-lactide) 

 Amorphous 55-60 12-16 
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2.2 Enzymatic Polymerization 

In the recent decades, enzymatic polymerization has become an important field in 

polymer chemistry. Enzymes provide a new ‘green’ synthetic strategy for well-

defined and useful polymers. Enzymatic polymerization is an environmentally 

benign process since it uses renewable resources, performed under mild reaction 

conditions and it does not produce nontoxic compounds. Therefore, it is an ongoing 

field of study in polymer synthesis [13]. 

According to enzyme commission, enzymes are classified into six groups as shown 

in Table 2.3. Also, typical polymers synthesized by these enzymes can be seen from 

Table 2.3.  Some of these enzymes are commercially available and used for industrial 

applications. Oxidoreductates, hydrolases, and isomerases are relatively stable and 

therefore among them some of enzymes are used in industry such as chemical, food 

and pharmaceutical industries. On the other hand, living cells contain ligases and 

lyases less amount than other enzymes. Additionally, they are less stable for 

separation from living organisms. Therefore, these classes of enzymes are not used in 

enzymatic polymerization [1]. 

Table 2.3: Classifications of enzymes, their examples and synthesized polymers 

Enzymes Example Enzymes Synthesized Polymers 

Oxidoreductases Peroxidase, Laccase, Tyrosinase, 

Glucose Oxidase 

Polyphenols, Polyanilines, 

Vinyl Polymers 

Transferases Glycosyltransferase, Acyltransferase Polysaccharides, Polyesters, 

Cyclic Oligosaccharides 

Hydrolases Cellulase, lipase, Chitinase, 

Peptidase, Protease 

Polysaccharides, Polyesters, 

Polycarbonates, Polyamides 

Lyases Decarboxylase, Aldolase, 

Dehydratase 

 

Isomerases Recemase, Epimerase, Isomerase  

Ligases Ligase, Acyl CoA Synthethatase  
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Among the polymers synthesized by enzymatic polymerization, polyesters are one of 

the most important materials. They are in the fourth place in living systems following 

nucleic acids, proteins and polysaccharides. Some of significant polyesters are 

poly(ethylene terephthalate) (PET), poly(butylene succinate), PCL and poly(lactic 

acid) (PLA). In order to synthesize polyester, a kind of hydrolase called lipase 

enzyme (EC3.1.1.3) is used for polymerization. In living systems, lipases catalyze 

the hydrolysis of fatty acid esters in an aqueous environment. However, they show 

stable structure in organic solvents and hydrolytic effect of lipase in water can be 

changed into ester synthesis in non-aqueous media. By utilizing this special behavior, 

lipases are used to synthesize functional aliphatic polyesters by different 

polymerization routes [1, 3, 14]. Major polymerization types to synthesize polyesters 

by lipase are divided into two groups: polycondensation and ring opening 

polymerization. Polycondensation is consisted from two different polymerization 

modes: polycondensation of oxyacids or their esters and polycondensation of 

carboxylic acids or their esters with alcohols. In 1985, the first study was appeared 

which showed polycondensation of oxyacid monomer, 10-hydroxydecanoic acid in 

benzene with lipase enzyme. In this study, the degree of polymerization (DP) value 

was more than five. Another study for this type of polymerization was obtaining 

polyesters from 10-hydroxydecanoic acid and 11-hydroxyundecanoic acid by 

candida rugosa lipase. O’Hagan et.al. synthesized polyester with molecular weight of 

22000 in the presence of activated molecular sieves from 11-hydroxyundecanoic in 

this study. The latter polycondensation type was seen firstly in 1984. Okumura et.al. 

reported dehydration polycondensation of several free dicarboxylic acids in the 

presence of an excess amount of a diol by Aspergillus niger lipase. For instance, a 

polyester with a degree of polymerization (DP) 20 was synthesized by 

polycondensation of adipic acid and 1,4-butanediol in diisopropyl ether [1].Typical 

polycondensation reactions to obtain aliphatic polyesters are seen in Figure 2.1 [13]. 
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Figure 2.1: Typical Polycondensation Reactions Catalyzed by Lipase 

Second type of polymerization for polyester synthesis is ring opening polymerization 

of cyclic esters. Among polymerization reactions ROP has been most extensively 

studied for polyester synthesis. Cyclic esters (lactones) used as a monomer for ROP 

reactions is shown in Figure 2.2. As it is seen from Figure, ring size changed as m 

values varies between 2-15 [4]. 

 

Figure 2.2: Monomers for Enzymatic ROP 

There are many studies for every type of lactone in the literature. For example, ɛ-

caprolactone (ɛ-CL, 7-membered lactone) and δ-valerolactone (δ-VL, 6-membered 

lactone) were polymerized by Uyama and Kobayashi in 1993. Polymerization was 

performed by lipase PF (Pseudomonas fluorescens), lipase CC (Candida 

cylindracea) and lipase PPL (Porcine pancreatic lipase) in bulk at 75 
o
C for 10 days. 

The highest monomer conversion was obtained by lipase PF (92%). Molecular 

weight Mn, and polydispersity of synthesized poly (ɛ-CL) in this study was 7700 and 

2.4 respectively [15]. Another study by Knai et al. was ROP of ɛ-CL by crude PPL 

with methanol as nucleophile in n-hexane solution [16]. Solution polymerization was 
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also investigated by different independent groups. One of them is Gross et al. that 

they applied polymerization by using different solvents such as dioxane, toluene and 

heptane. As a monomer, enzyme and initiator, it was used ɛ-CL, PPL and butanol 

respectively. After polymerization, poly (ɛ-CL) with molecular weight (Mn) of 2700 

was obtained [4]. Matsumura et al. investigated polymerization of different types of 

monomers such as cyclic diester-D, L-lactide and β-propiolactone. Polymerization 

reaction was carried out at 80-130 
o
C to obtain poly (lactic acid) with molecular 

masses up to 12600 [17]. Nobes et al. was first discovered lipase catalyzed 

polymerization of β-butyrolactone (β-BL, 4-membered lactone). Polymerization was 

performed by the use of equal weights of lipase and monomer for several weeks. 

After the reaction, only low molecular weight of polymers (Mw, 256-1045) was 

synthesized [18]. On the other hand, Matsumura et al. synthesized polymers with 

higher molecular weights (up to 7300) with PPL and lipase CC. Polymerization time 

was ranging from 12 to 20 hours and temperature was varies between 60 and 100 
o
C. 

Because of the intramolecular cyclisation, cyclic oligomers were formed during this 

polymerization process [19, 20].There are also studies comparing chemical and 

enzymatic polymerization modes. Albertsson and co-workers have studied 

extensively for polymerization of 1,5-dioxepan-2-one (DXO) [4]. The bulk 

polymerization of DXO by the use of organometallic initiators was performed at 110 

o
C and monomer is fully consumed after 20 hours whereas using novozym 435 

(immobilized form of lipase, 10 wt. %) provided 97% conversion only after 4 hours 

at 60 
o
C. It is obvious from this result; enzymatic polymerization could be performed 

at mild reaction conditions [21]. On the other hand, long reaction time, high cost of 

enzymes and synthesized of low molecular weight polymers are some problems of 

enzymatic polymerization for large scale production in industry. In order to solve 

these negative sides, protein engineering has been studying to improve enzyme 

activity, stability and efficiency by different methods such as immobilization and 

covalent modification of enzymes [4]. 

2.3 Chemical Polymerization 

Polyesters could be synthesized by using metal-based initiators or catalysts such as 

aluminum alkoxides, tin octoate and Na
+
, K

+
, Mg

2+
, Ca

2+
, Zn

2+
 , Fe

2+
which are 

referred as ’friendly metals’. Aliminum alkoxides are chosen because of their high 
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selectivity since well-defined polyesters with well-controlled molecular weight could 

be obtained in ring opening polymerization of lactones. Among these chemical 

initiators or catalysts, stannous octoate (Sn(Oct)2) is the popular one since US Food 

and Drug Agency (FDA) accepted this compound as a food additive. Therefore, 

polymers obtained by this type of catalysts could be used for packaging without any 

further purification. However, even if they could be used in food applications, this 

toleration could not be employed for biomedical applications. Another way of 

chemical catalysis is using bioresorbable salts referred as ‘friendly metals ‘for the 

ROP of polyesters [22]. Zinc alkoxides were prepared and used for ROP of ɛ-CL. 

Also, zinc dichloride initiated ROP of ɛ-CL according to a coordination-insertion 

mechanism [23, 24]. Comparing with enzymatic polymerization, although some 

chemical initiators or catalysts polymerized lactones efficiently and can be used in 

food applications, there are some problems observed for biomedical applications 

[22]. 

2.4 Advantages of Enzyme Catalyzed Polymerization 

Enzymatic polymerization offers an eco-friendly biosynthetic pathway for polymer 

production.  Chemical catalysts or initiators such as Zn, Al, and S cannot be removed 

entirely from the polymer when they are used in the synthesis. Remnants of these 

metal compounds may be toxic and cause problem in biomedical applications. 

Therefore, enzymatic polymerization provides advantages when polymer is used in 

biomedical field. Other advantages of enzyme catalyzed polymerization are as 

follows [3, 4]:   

 Enzymes are biocatalysts; therefore enzymatic reactions are performed under 

mild conditions such as lower temperature and pressure. 

 It is possible to obtain well-defined polymers by use of enzymes. 

 Separation of enzymes from synthesized polymer is easy and they can be 

used more than one application. Therefore, enzymes are recyclable eco-

friendly materials. 

 Enzymes are derived from renewable resources. 

 ROP of lactones by enzymes can be performed easily since enzymes do not 

require strict precautions such as exclusion of water and air. On the other 
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hand, metal catalysts are very sensitive and water has to be removed from the 

polymerization media. 

 Enzymes have high entio- and regio-selectivity and can be used in bulk or 

organic media. 

 Enzymes have the ability of polymerization of large ring lactones (higher 7 

member-macrolides) in normal reaction conditions. However, low molecular 

weights can be obtained with organometallic catalysts.  

2.5  Synthesis of Poly(ɛ-caprolactone) by  Enzymatic Ring Opening   

Polymerization 

PCL is synthesized by ring opening polymerization of ɛ-caprolactone (ɛ-CL, 7-

membered) which is a cyclic ester as shown in Figure 2.2. The most extensively 

studied type of lactone for lipase catalyzed ROP is ɛ-CL and this monomer could be 

rapidly polymerized by different lipases originated from different organism: 

microbial, plant and animal kingdom [22, 25].These lipases and organisms from 

which they were isolated are seen in Table 2.4 [4]. Among them, lipase CA was the 

most effective one for ROP of ɛ-CL [26, 27].  

Table 2.4: Lipases used in polyester synthesis 

Organism Lipases 

Mammalian Porchine pancreatic lipase (PPL) 

Fungal CALB, Candida Rugosa (CR), Aspergillus 

Niger (AN) Penicillium roruefortic (PR), 

Rhizopus delemar (RD), Rhizomucor 

miehei (RM), candida cylindracea (CC) 

Bacterial Pseudomonas cepacia (PC), Pseudomonas 

flourescens (PF), Pseudomonas species 

(PS) 

The proposed reaction mechanism for poly (ɛ-caprolactone) synthesis by lipase is 

shown in Figure 2.3. Firstly, ring opening of the ɛ-CL is performed to form acyl-
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enzyme intermediate (enzyme-activated monomer, EM). In the following step, 

initiation is carried out in which first chain of polymer is synthesized by a compound 

containing hydroxyl group.  Generally, this nucleophilic attack is performed by water 

which is probably contained in the enzyme. Other nucleophiles such as alcohol or 

amine can also be used in this polymerization [2, 28]. Gross et.al.used butanol and  

butylamine as an initiator for ROP of ɛ-CL by PPL catalyst. In this study, they 

showed rate of initiation by butanol and water was slower than by butylamine. There 

were also differences in molecular weight of resulting polymers obtained by using 

these nucleophiles. When water was used alone, resulting Mn of PCL was 7600 

g/mol whereas butanol and butylamine usage resulted with 1900 and 1200 g/mol 

respectively [29]. After initiation step, ω-hydroxycarboxylic acid is formed and 

propagation is proceeded by formation of additional polymer chain. It was found that 

the rate determining step of the overall polymerization reaction is the formation of 

enzyme-activated monomer from kinetic studies [2]. 

 

Figure 2.3: Reaction mechanism of ring opening polymerization of ɛ-caprolactone 

Matsumura et. al. synthesized PCL  with immobilized form of lipase CA (novozym 

435). In this study, both bulk polymerization and solvent polymerization was applied 

by using toluene as a solvent. Polymerization was performed at 70 
o
C for 24 hours. 

Enzyme/monomer ratio was 1% wt and by using toluene, resulting polymer has 

reached molecular weight (Mn) of 25000 with polydispersity of 1.6 whereas by bulk 

polymerization under the same conditions, molecular weight of PCL was 16000 with 

polydispersity of 1.6. In addition to that, monomer conversion was 99% and 41% 
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respectively by solvent and bulk polymerization of ɛ-CL [30]. Kumar and Gross 

showed lipase CA was stabilized by the help of toluene and reported polymerization 

could be performed effectively at 90 
o
C. In this study, reaction parameters such as 

temperature, solvent effect and monomer concentration were investigated. As a 

solvent, acetonitrile, dioxane, tetrahydrofuran, chloroform, butyl ether, isopropyl 

ether, isooctane and toluene were used. Among them, isooctane and toluene gave the 

highest percent monomer conversion as it is shown in Figure 2.4. Comparing with 

isooctane, toluene was more advantageous since both monomer and polymer dissolve 

in toluene and enzyme could be easily separated from the solution. However, ɛ-CL 

could not dissolve in isooctane. Therefore, 2 immiscible phase and enzyme were 

obtained when isooctane was used in polymerization. 

 

Figure 2.4: Different solvents used in PCL synthesis 

Gross et.al also investigated ratio of toluene amount with respect to monomer on 

polymerization reaction. They changed toluene/ɛ-CL ratio (vol/vol) (0:1, 1:1 ,1.5:1, 

2:1, 2.5:1, 3:1,4:1, 5:1, 10:1) and examined molecular weight of resulting polymers. 

Optimum results were seen when the ratio was 2:1 since molecular weight of PCL 

and monomer conversion were 17200 g/mol and 85% respectively. When bulk 

polymerization was applied, molecular weight and conversion was low comparing 

with solvent polymerization. Monomer concentration was another important reaction 

parameter for ROP of ɛ-CL. When Gross et.al. scaled up the polymerization process 

and used 10 g monomer and 20 ml toluene with 1 g novozym 435, within only 4 

hours at 70 
o
C molecular weight was increased to 44800 g/mol. Additionally, 

polydispersity of resulted polymer was 1.7. They also investigated temperature 

effects on reaction rate. It was shown that when temperature was 100 and 105 
o
C, 

monomer conversion was low comparing with 90, 80, 70 and 60 
o
C. Monomer 
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conversion was lower than 5% after 3 hours at 105 
o
C since protein denaturation and 

deactivation were happened at these temperatures [31]. 

Water content of polymerization media is another important reaction parameter. 

Gross et.al examined effect of water content varies between 0.6-2.8% on molecular 

weight of polymer. They found that molecular weight was depended on water 

content not temperature [32]. Although molecular weight was decreased because of 

increasing water content, monomer conversion was favored by water. Since 

concentration of propagating chains has increased with water, monomer conversion 

was increased but molecular weight was decreased. Therefore, water content has to 

be chosen in optimum amounts [4]. For example, immobilized lipase catalyzed 

polymerization of 1,4-dioxan-2-one was performed with different water amount and 

it was shown that an increase in water content (up to 100 ppm) increased the rate of 

polymerization whereas excess water depressed the rate (app.224 ppm) [33]. 

Lipase concentration also effects PCL synthesis since different catalyst amount 

resulted with different monomer conversion and molecular weight of the polymer. 

Gross and Deng investigated ROP bulk polymerization of ɛ-CL using different 

amounts of catalyst: 9.77, 1.80 and 0.50 mg catalyst/ mmol ɛ-CL. The higher amount 

of lipase catalyzed polymerization rapidly within only 4 hours, conversion has 

reached 78% whereas the same conversion was gained within 48 hours using 1.80 

mg enzyme. When 0.50 mg lipase was used, after 50 hours only 18% monomer 

conversion was seen. They concluded the study with comparing molecular weight of 

resulting polymers in which lower catalyst amount gave higher molecular weight 

[34].  

Kind of lipase was a significant parameter on ROP of ɛ-CL. The rate of 

polymerization with different lipases (lipase CA, PC and PF) was investigated by 

using another lactone (8-octanolide). Comparing with lipase PF, lipase CA and PC 

was more effective on polymerization rate [35]. 

Studies on PCL synthesis has been focused on recycling of enzymes, improving 

enzyme activity and using green solvents such as supercritical carbon dioxide [36, 

37]. Matsumura et.al and Kobayashi et.al. have studied on sustainable polymer 

recycling by degradation of polymer into oligomers and synthesized polymer from 

these resulted oligomers with same enzyme as it is shown in Figure 2.5 [30, 38]. 
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Figure 2.5: Sustainable polymer recycling with enzymes 

2.5.1 Lipases for polymerization reactions 

Lipase (EC3.1.1.3) is a kind of hydrolyse that catalyze the hydrolysis of fats in living 

cells. They have a widely usage area as important drugs for digestive diseases and 

pancreas disorders [25]. Also, they are used in organic synthesis as a catalyst to 

produce organic compounds since lipases can catalyze diverse amount of substrates 

comparing to other enzymes. In addition to that, they show stable structure in organic 

solvents and hydrolytic effect of lipase in water can be changed into ester synthesis 

in non-aqueous media [3]. By utilizing this special behavior, lipases are used to 

catalyze ring opening polymerization of lactones. All lipase types have similar 

structure and functionalities. However, when the origin of enzyme is changed, small 

variations in substrate binding site is seen. These small variations may have a 

significant effect on catalytic activities and stability of the catalyst [5]. 

Lipases used for polyester synthesis is shown in Table 2.4. Among them, CALB is 

the most effective one. Two different lipases A and B were produced by candida 

antarctica which was originally isolated in Antarctica as it is indicated by the name 

of the yeast. These two types of lipases show very different properties. CALA is 

highly thermostable whereas CALB is less thermostable. Additionally, these two 

types of lipases have distinct substrate specificity. Although CALB is less active 

toward large triglycerides, it is very active towards most of other esters, amides, 

thioesters, etc. On the other hand, CALA shows low activity towards simple esters. 

Molecular weight of CALB is 33 kD with 317 amino acid residues and it has an 

isoelectronic point (pI) of 6.0 [5, 46]. Uppenberg et al. has solved amino acid 

sequence and 3 dimensional structure of CALB. Size of enzyme is 30x40x50 
o
A and 

Ser-His-Asp triad is responsible for the catalysis as seen in Figure 2.6 [39]. 
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Figure 2.6: Ser-His-Asp triad for the catalytic mechanism of CALB 

Optimum CALB catalysis is seen in pH 7.0 and this enzyme is stable in the range of 

pH 3.5-9.5 in aqueous media. Depending on pH of the media, denaturation 

temperature is in the range of 50-60 
o
C. When the pH value decreased, higher 

denaturation temperature is observed. In order to reach more thermostable enzymes, 

immobilization was applied to CALB and it can be used continuously at 60-80 
o
C 

without any significant activity loss. Also, substrate specificity of this enzyme is 

because of deep and narrow positioned active site [5, 39]. 

Industrially, CALB is produced by submerged fermentation of a genetically modified 

Aspergillus Niger microorganism and commercially available CALB used for 

organic synthesis is novozym 435 which is immobilized on macro porous acrylic 

resin. Immobilization of CALB on acrylic resin was performed by physical to reach 

novozym 435. Therefore, enzyme leaching is a known problem pointed out by 

various researchers. Although performance of novozym 435 is satisfactory, there 

were studies to strengthen linkage between enzyme and support and applied different 

immobilization procedures. For example, coating the immobilized enzyme enhanced 

the stability of novozym 435 [5-7]. 

2.6  Applications of Poly (ɛ-caprolactone) 

PCL has wide application areas especially in biomedical field and food industry as a 

packaging material. It has numerous advantages such as easy manufacturing, 
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biodegradable and biocompatible structure. Since its degradation products are non-

toxic and it has FDA approval, researches of PCL applications are focused on drug-

delivery systems, medical devices and tissue engineering.  

In addition to long-term biodegradation behavior, PCL has also high permeability to 

many drugs. Therefore, its usage in drug-delivery systems is increasing within last 

years. Blending capacity of PCL with other polymers is another important property 

since degradation kinetics can be controlled through this ability [11]. PCL have also 

been of interest to deliver peptide or protein drugs that have unusual 

physicochemical properties compared to other drugs. PCL can be prepared as 

microspheres or nanospheres in order to improve therapeutic efficiency for drug 

delivery systems [40]. 

Application of PCL for medical devices can be grouped as sutures, wound dressings, 

contraceptive devices, fixation devices and dentistry. For example, a block 

copolymer of PCL with glycolide provides reduced stiffness compared with other 

sutures obtained with different polymers [11]. On the other hand, tissue engineering 

applications of PCL is another important area of biomedical industry. For instance, 

bone repair is one of the usage areas of PCL for tissue engineering applications. For 

example, PCL networks were obtained by the reaction of PCL diol with acryloyl 

chloride as a scaffold for tissue engineering [41]. 

Moreover, PCL is also used in synthetic leather, fabrics, fibers and bags. For 

example, bags originated from PCL has been produced in Sweden, however they 

degraded before reaching the customers [42]. 

2.7  Immobilization of Enzymes 

Immobilization of enzymes provides significant benefits such as increasing stability 

and improving catalytic activity of the catalyst. Recycling of enzymes is an important 

topic because of cost reasons and by immobilization process, activity of enzymes 

enhanced and they can be used several times in reactions [43]. 

Different immobilization methods can be applied to enzymes which are adsorption, 

covalent binding, entrapment, encapsulation and cross-linking methods as shown in 

Figure 2.7 [44]. 
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Figure 2.7: Immobilization methods of enzymes 

The simplest method is immobilization by adsorption. Enzyme and support material 

may show reversible surface interactions in this type of immobilization method since 

forces of bonds are relatively weak. The major forces observed in adsorption are van 

der Waals, ionic and hydrogen bonding interactions. Advantages of adsorption are in 

the following: 

 It is a cheap and simple process, thus it can be applied easily. 

 Enzymes are not damaged during immobilization procedure. 

 It is only physical process; there are no chemical changes in support or 

enzyme. 

 Since it is a reversible process, enzymes can be regenerated. 

Although it has significant advantageous, there are some problems including 

nonspecific binding, overloading on the support, steric hindrance by the support and 

leakage of enzymes from the support. The last problem may cause contamination of 

products by unwanted compounds. Also overloading the support may increase 

activity of enzyme and not having enough space between support and enzyme may 

lead to steric hindrance. 



18 

 

Second immobilization method is covalent binding which involves covalent bond 

between enzyme and support. Functional groups on the surface of the support and 

functional groups on the surface of the enzymes (from amino acid residues) are 

cleaved to form covalent bonding. There are diverse amount of support materials for 

covalent bonding. On order to use appropriate support, both advantages and 

disadvantages must be taken into account. The most significant factor for a support is 

hydrophilicity since it maintains enzyme activity. Therefore, one of the important 

support materials is polysaccharides such as starch, cellulose, dextran. Porous silica 

and porous glass are other popular supports for enzyme immobilization by covalent 

bonding. 

Entrapment is another immobilization method for enzymes which differs from 

adsorption and covalent binding. As it is seen from Figure 2.7, enzyme molecules are 

not bounded to the support. They are free in solution and surrounded by lattice 

structure of a gel. Leakage of enzymes is not observed in this type of immobilization. 

Also in order to protect enzymes from harmful substances like unwanted cells, 

proteins or enzymes, support act as a barrier to mass transfer. 

The last two methods are encapsulation and cross-linking. The former is similar to 

entrapment of enzymes in which enzymes are free and restricted by the support. As a 

support material, semipermeable membranes are used. The most important benefit of 

encapsulation is coimmobilization that can construct desired immobilization for 

particular applications. The last immobilization method is cross-linking divided into 

physical and chemical routes. Chemical route of cross-linking method is consisted of 

covalent bond formation between enzyme and multifunctional reagent such as 

glutaraldehyde and toluene diisocyanate. Physical route of cross-linking method is 

cross-linking of enzymes by flocculation. Polyamines and polystyrene sulfonates are 

important flocculation agents used in physical cross-linking. Generally, cross-linking 

method is used to strengthen other immobilization methods in order to prevent 

enzyme leakage [45]. 

2.7.1 Immobilization of lipases for polymerization reactions 

Immobilization of CALB favored ring opening polymerization reaction since 

catalytic activity and stability of enzyme was improved with this process. As it was 

indicated previous sections, novozym 435 is one of immobilized form of CALB that 
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was physically adsorbed on macroporous acrylic resin. This enzyme was very 

effective for ROP of lactones since only small amount could be catalyzed the 

reaction. In different kinds of support materials were investigated by independent 

study groups [5, 7, 46, 47]. Uyama et.al.investigated the performance of supports 

such as ceramic, polypropylene, polystyrene and acrylic resin for CALB 

immobilization. Immobilization procedure for these supports was carried out as 

follows: firstly, support was washed with ethanol, ethanol-water mixture 

(equivolume) and water respectively. Washed support, lipase CA solution and 

phosphate buffer (pH 7.0) mixed and stirred at 4 
o
C for 4 hours. After immobilization 

process, the support was separated from aliquot and lyophilized. In the second part of 

the study, immobilized CALB were evaluated by ROP of ɛ-CL. Polypropylene 

immobilized CALB was the most effective one that catalyzed reaction with 88% 

monomer conversion. The other immobilized lipases by polystyrene and ceramic 

gave 51% and 57% respectively. Also, acrylic resin immobilized CALB were not 

able to catalyze the reaction. Molecular weights (Mn) of the resulting polymers were 

7200, 4100 and 3100 g/mol by using polypropylene, polystyrene and ceramic as 

supports [7].  

In another study, CALB was immobilized on silica particles by cross-linking method 

via the carriers PEI and GA. This method has prevented enzyme leakage whereas 

physically immobilized enzyme and carrier had weak bonds and enzyme was leached 

from the carrier in leakage test. After preparation immobilized enzymes, catalytic 

activity of the enzyme was evaluated by ring opening of polymerization. Activity of 

prepared enzyme was lower than novozym 435. Therefore, to reach same activity 

higher amount of enzyme was used in polymerization. Comparing with novozym 

435, synthesized polymer by prepared enzyme has reached lower molecular weight 

(Mn) [5]. 

CALB was also  covalently immobilized on epozy-activated macroporous poly 

(methyl methacrylate amberzyme beads and nanoparticles. In order to evaluate 

activity of enzymes, they used in ROP of lactones and step condensation 

polymerizations.In this study, nanoparticle immobilized enzyme gave the highest ɛ-

CL conversion (65%) for 20 min whereas monomer conversion was 16% by 

novozym 435 catalysts [6]. 
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2.7.2 Supports for lipase immobilization 

Supports for enzyme immobilization has to be chosen according to the needs since 

there is no universal support suitable for all type of enzymes. However, there are 

some common properties that a support must have [10]: 

 It must have high protein affinity and loading capacity. 

 There must be reactive functional groups in support structure in order to react 

directly with enzymes. 

 It must have mechanical stability, rigity and feasibility of regeneration. 

Also, depending on the application such as food, biomedical and agricultural, 

nontoxicity and biodegradability can be required. There were many supports such as 

acrylic resins, polypropylene, amberlite, fumed silica, polystyrene, ceramic, rice husk 

and rice straw, chitin and chitosan used for lipase immobilization [6, 7, 9, 10, 48, 

49]. Among them, chitin and chitosan is an ongoing study of enzyme immobilization 

since they are cheap, ubiquitous and nontoxic material [9, 10]. Also, their some other 

excellent properties such as biocompatibility, biodegradability to harmless products, 

physiological inertness, hydrophlicity, gel forming properties and high affinity for 

proteins make these supports significant topic for biological systems [50]. 

Chitin and chitosan are natural polyaminosaccaharides and chitosan is a derivative of 

chitin. Chitin is the most abundant renewable organic resources and exoskeletons of 

insects, cell walls of fungi and shells of crustaceans are consisted of chitin to supply 

stability and strength to the organism. Therefore, currently crab and shrimp shells are 

used in chitin and chitosan production. Now, India, Japan, Poland, Norway and 

Australia are produced these biopolymers. Structure of chitin and chitosan is shown 

in Figure 2.8. Chitin is formed from 2-acetamido-2-deoxy-β-D-glucose through β (1-

4) linkage. Chitosan is formed by N-deacetylation of chitin that this process s is 

almost never complete. Dilute acids such as acetic acid and formic acid can dissolve 

chitosan whereas chitin is insoluble in most organic solvents. Also it is highly 

hydrophobic and insoluble in water [50, 51]. 
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Figure 2.8: Structure of chitin and chitosan 

Due to properties mentioned in above, chitin and chitosan is a valuable support for 

enzymes. There are studies about immobilization of enzymes on chitin and chitosan 

by different methods [9, 10, 48]. Foresti et.al. investigated chitosan immobilized 

lipases for the catalysis of fatty acid esterifications. Two different immobilization 

procedures were applied to CALB and 2 other kinds of lipases (Candida Rugosa 

lipase, P.fluorescens): physical adsorption, gluteraldehyde pretreated lipases. In the 

latter process, gluteraldehyde was used as a coupling agent. Among lipases, 

immobilized CALB on chitosan was the most active one for esterification reactions in 

this study [10]. Also, binary immobilization of candida rugosa on chitosan was 

examined. In this study different immobilization methods were applied. The best 

method was as follows: firstly, immobilization of lipase to the hydroxyl groups of 

chitosan was performed by activation with 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC). Then, by using gluteraldehyde, more lipases were immobilized 

through its amino groups. Figure 2.9 shows this immobilization method [48]. 

 

Figure 2.9: Binary immobilization of lipase 
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3. EXPERIMENTAL PART 

3.1  Materials and Chemicals 

Novozym 435, immobilized form of CALB and free form of lipase enzyme 

(Novozymes CALB L) was purchased from Sigma Aldrich Company. Enzymes were 

used as received. Monomer of the polymerization reaction ε-caprolactone (99%) was 

provided from Alfa Aesar Company and stored under dry nitrogen over molecular 

sieves (3A
o
) to decrease the water content. Molecular sieves 3 A

o 
is obtained from 

Sigma Aldrich and it was chosen according to literature [52]. Chemical properties of 

ɛ-caprolactone are shown in Table 3.1. 

Table 3.1: Chemical properties of ɛ-caprolactone 

Formula C6H10O2 

Molecular weight (g/mol) 114.14 

Melting Point (
o
C) -2 

Boiling Point (
o
C) 235-236 

Flash Point (
o
C) 109 

Density  1.078 

Chloroform and the supports chitin and chitosan were provided from Sigma Aldrich 

Company. Chitosan and chitin were from crab shells. Toluene and methanol was 

supplied from Merck Company with a high purity and used as received.  

Gluteraldehyde solution, a coupling agent for immobilization process was obtained 

from Sigma Aldrich Company. Tetrahydrofuran (THF) used in GPC analysis (HPLC 

grade) obtained from Sigma Aldrich Company. 

In order to prepare phosphate buffer for immobilization process, monobasic sodium 

phosphate (NaH2PO4.H2O) was obtained from Carlo Erba Company and dibasic 

sodium phosphate (Na2HPO4.7H2O) was purchased from Merck Company. 
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3.2  Equipment 

 Digital Round-Top Stirring Hot Plate, IKA
®
 RCT Basic IKAMAG 

 pH meter, Inolab, TWT 

 Shaking Water Bath, YUMATO 

 Precision Scale,  And, Gr-200 

 Fourier transform infrared spectroscopy (FT-IR),Perkin Elmer FT-IR 

Spectrum One B Spectrometer 

 Gel Permeation Chromatography (GPC), Agilent 1100 Serisi 

 Scanning Electron Microscopy (SEM), Jeol, JSM-6390LV 

 UV mini 1240 SHIMADZU spectrophotometer 

 Differential Scanning Calorimetry, Perkin Elmer, Diamond DSC 

 Proton Nuclear Magnetic Resonance (
1
H-NMR), Bruker NMR Spectrometer 

 Drying Oven, Binder 

 Rotary Evaporator, Heidolph 

3.3 Methods 

3.3.1 Lipase immobilization 

Immobilization of lipase was carried out with 2 organic supports (chitin, chitosan) by 

applying 2 different procedures: physical adsorption and cross-linking with a 

coupling agent. As a coupling agent, gluteraldehyde was chosen since it has been 

used widely in literature for immobilization of enzymes on chitosan [10, 53]. During 

the experiments, firstly gluteraldehyde pretreated supports (chitin, chitosan) were 

prepared by adding corresponding support (400 mg) into 50 ml 0.02%(v/v), 

0.2%(v/v), 2% (v/v) gluteraldehyde/phosphate buffer solution (ph 7, 0.015M). Then 

this suspension was stirred (160 rpm) for 1 hour at 25 
o
C in shaking water bath. The 

gluteraldehyde pretreated supports were filtered and washed with distilled water for 3 

times. Secondly, 1 mL CALB enzyme solution (Novozyms CALB L) was diluted by 

50 mL phosphate buffer (ph 7, 0.015 M) and gluteraldehyde-pretreated supports were 

suspended in prepared diluted enzyme solutions. In order to perform physical 

adsorption method, supports without any pretreatment were also suspended into 

diluted enzyme solutions and enzyme-support suspensions were stirred (160 rpm) for 
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5 hours at 25 
o
C. After this step, immobilized enzymes were filtered and dried in an 

oven at 30 
o
C for 12 hours. From this procedure, 8 immobilized lipases were 

obtained which were K1, K2, K3, K4, Immob1, Immob2, Immob3 and Immob4. 

Immobilizations of enzymes were characterized by SEM. Apparatus that 

immobilization process was performed is seen in Figure 3.1. 

 

Figure 3.1: Apparatus for immobilization process 

Phosphate buffer was prepared by adding 29.25 mL NaH2PO4.H2O and 45.75 mL 

Na2HPO4.7H2O into 1 L deionized water and pH was adjusted to neutral condition. 

The reason why pH 7 was chosen for immobilization medium was based on 

gluteraldehyde structure. There are 2 amino groups (ionic groups) under GLT and it 

leads supports to act as an anionic exchanger. Because of this, changing the ionic 

strength during immobilization can affect the immobilization rate [10]. 

3.3.1.1 Lipase protein determination 

Among several protein determination techniques, UV spectroscopy was chosen since 

it is a simple and quick method. Lipase enzyme solution was used as a standard in 

order to construct standard curve seen in Figure A.1. All samples were prepared in 

the same buffer solution which was used in immobilization procedure since UV 

detection is sensitive to pH and ionic strength. Absorbance measurements were 

recorded at 280 nm in which ultraviolet absorption usually depends on tyrosine and 

tryptophan amino acids at this wavelength.  Immobilization efficiency of chitin and 

chitosan immobilized lipases were evaluated as follows [48]. 

                              
                         

                        
                             (3.1)                                       

Amount of protein coupled (mg/mL) = (protein loaded-protein in supernatant)  (3.2)                       
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3.3.2 Characterization methods for lipase immobilization 

3.3.2.1 Scanning electron microscopy (SEM) 

Immobilization of enzymes on chitin and chitosan supports were observed by JEOL 

JSM-6390LV SEM. Analysis was performed at 10 kV with appropriate 

magnification rates. 

3.3.4.2 Ultraviolet spectrophotometer (UV) 

Efficiency of lipase immobilization was evaluated by UV mini 1240 SHIMADZU 

spectrophotometer in this study. Absorbance was measured at 280 nm and as a blank 

sample, phosphate buffer was used. 

3.3.3. Polymerization reactions 

Polymerization reactions were performed with prepared enzymes by immobilization 

and commercially available CALB ‘novozym 435’. Firstly, reaction was carried out 

in 2 mL toluene (toluene to ε-caprolactone ratio, 2:1(v/v)) under dry nitrogen at 70 

o
C with 4 different chitin immobilized CALB. Reaction medium was stirred at 200 

rpm with a magnetic stirrer and enzyme concentration was 10% (w/w) 

(enzyme/monomer ratio). At a specified time, chloroform was added to reaction 

mixture and enzyme was separated by filtration. There is a conflict between different 

independent groups about the aim of adding chloroform or THF after reaction. Some 

researchers believe that it denatures enzyme and terminates the reaction. However, it 

is known that polymerization reaction can occur in these solvents [5, 31]. Therefore, 

in this study chloroform was added to the reaction mixture in order to dilute viscous 

solution. After this step, chloroform in the filtrate was largely evaporated by rotary 

evaporator at 40 
o
C under vacuum and resulted solution was precipitated in 

methanol. Polymer was filtered and dried at 35 
o
C in an oven. 

Secondly, the results were evaluated with respect to molecular weight (Mn) of the 

PCL and percent monomer conversion of reaction. The best result (K2) was chosen 

and for chitin immobilized lipases, further reactions were performed by this enzyme. 

This procedure was also applied to chitosan immobilized lipases and again best result 

was chosen (immob2). Lastly, in order to optimize the polymerization process, 

reactions were carried out at 3 different temperatures (60 
o
C, 70 

o
C, 80 

o
C) with 

novozym 435, immob2 and K2. Also enzyme concentration was changed in order to 
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determine optimum amount of enzyme in this study (enzyme to ε-caprolactone ratio, 

5%, 10%, 15%, 20%(w/w)). In Figure 3.2, apparatus that polymerization reaction 

was performed can be seen. 

 

Figure 3.2: Apparatus for polymerization reactions 

3.3.4 Characterization methods for poly (ɛ-caprolactone) 

3.3.4.1 Fourier transform infrared spectroscopy (FTIR) 

In order to define chemical structure and composition of PCL, Perkin Elmer FT-IR 

Spectrum One B Spectrometer was used in this study. To demonstrate that resulting 

polymer was PCL, characteristic functional groups and bonds were defined from 

FTIR spectra. Also spectrum of PCL was compared with ɛ-CL spectra and showed 

differences in bond length. From FTIR study of PCL, characteristic infrared bands 

were defined as shown in Table 3.1. In this Table, the band corresponding to 1727 

cm
-1

 has been the major transmission peak of PCL which belongs to carbonyl 

stretching (COO) [12, 54]. 

Table 3.2: Major infrared bands of PCL 

Wavenumber (cm
-1

) Assignment 

2949 Asymmetric CH2 stretching 

2865 Symmetric CH2 stretching 

1727 Carbonyl stretching (C=O) 

1293 C-O and C-C stretching in the crystalline phase 

1240 Asymmetric COC stretching 

1190 OC-O stretching 

1170 Symmetric COC stretching 

1157 C-O and C-C stretching in the amorphous 

phase 
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3.3.4.2 Gel permeation chromatography (GPC) 

Molecular weight and polydispersity of PCL was determined by GPC with an 

Agilent 1100 HPLC system consisting of a pump, refractive index and UV detectors 

and Zorbax PSM columns (1000-S, 300-S, 60-S).Calibration was performed with 

polystyrene standards ranging from 580 to 504.500 g/mol. As an eluent, THF was 

used with a flow rate of 0.5 mL/min. Analysis was carried out at 25 
o
C. Sample 

concentration was 0.5% wt/vol and injections were 20 µL. All samples were filtered 

via 0.45 m filter syringe to prevent columns of GPC from impurities.  

3.3.4.3  Proton nuclear magnetic resonance spectroscopy (
1
H-NMR) 

Molecular structure of PCL was determined by using Bruker NMR spectrometer at 

300 MHz. 
1
H spectra was obtained with respect to tetramethylsilane (TMS) as an 

internal standart. In the analysis, polymer was dissolved in chloroform-d (CDCl3).  

3.3.4.4 Differential scanning calorimetry (DSC) 

Thermal analysis of PCL was performed by Perkin Elmer, Diamond DSC with 10 

o
C/min heating rate under nitrogen. 3.6 mg sample was heated from -100 

o
C to 150 

o
C in order to observe glass transition temperature (Tg) and melting point (Tm). 

Heating range (-100-150) was chosen according to expected Tg and Tm values of 

PCL. The melting point was determined at the maximum of the melting endotherms 

and the glass transition temperature was calculated as the midpoint of heat capacity 

increase [55-57]. The crystallinity (Xc) of polymers were computed by determining 

heat of fusion (ΔHf) of each PCL obtained with three different lipases (novozym 435, 

Immob2, K2). Percent crystallinity was determined with the following equation [58]. 

                                                                         (3.3) 

In above equation, ΔHa is the enthalpy change of pure amorphous standard where 

ΔHcand ΔHis the enthalpy change of pure crystalline standard and unknown sample 

respectively. This equation is simplified by assuming ΔHa=0 and it becomes as 

follows [58]. 

                                                                                           (3.4) 

As a reference enthalpy change of pure crystalline standard of PCL was used as 

            and crystallinity was determined by using above equation [12]. 
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4. RESULTS AND DISCUSSION 

4.1 Synthesis of PCL by Novozym 435 

PCL was synthesized by commercially available CALB (novozym 435) at three 

different temperatures (60 
o
C, 70 

o
C, 80 

o
C) in toluene (toluene to ε-caprolactone 

ratio, 2:1(v/v)) with 10% (w/w) enzyme concentrations (enzyme to ɛ-CL ratio). 

Table 4.1 shows molecular weight (Mn) and polydispersity of resulted polymer at 

T=60 
o
C with respect to time.  

Table 4.1: Effect of time on polymerization reaction catalyzed by Novozym 435 at  

T=60 
o
C 

Time 

(h) 

Conversion
a 

(%) 

Mn
b 

(g/mol) 

Polydispersity 

(Mw/Mn) 

2 52 10492 1,49 

5 42 12069 1,63 

7 35 12086 1,66 

13 39 11290 1,39 

48 33 14959 1,74 

72 38 15836 1,71 
aConversion was calculated by gravimetrically 
bMn and polydispersity was obtained by GPC 

From Table 4.1, it is seen that the highest molecular weight (Mn) was obtained after 

72 hours. It was an expected result since studies showed that novozym 435 catalyzed 

ROP reactions showed living polymerization behaviors [31, 34]. Gross et.al studied 

kinetics of novozym 435 catalyzed polymerizations and reported that there was no 

chain termination and monomer consumption during polymerization at 60, 70, 80 

and 85 
o
C. Also in this study, rate constant of initiation was larger than the rate 

constant of propagation which was an evidence of immortal characteristic of 

polymerization reactions [31]. On the other hand, increasing polydispersity with 

respect to time showed that heterogeneity of polymer samples was increasing [59].  
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Results of experiments carried out at 70 
o
C with the same conditions are shown in 

Table 4.2. Again, polydispersity and molecular weight (Mn) of PCL was investigated 

with respect to time. Similar trend was observed with results obtained at 60 
o
C. 

Again, molecular weight was increased with time. However, there was a different 

condition seen in this experiment. Polydispersity of PCL was decreased with time 

unlike the polymers obtained at 60 
o
C.    

Table 4.2: Effect of time on polymerization reaction catalyzed by Novozym 435 at 
T=70 

o
C 

Time 

(h) 

Conversion
a 

(%) 

Mn
b 

(g/mol) 

Polydispersity 

(Mw/Mn) 

2 46 16485 1,71 

5 56 14540 2,31 

7 45 16444 1,63 

13 34 16227 1,67 

24 38 14126 1,58 

48 41 17708 1,18 

72 58 20402 1,30 
aConversion was calculated by gravimetrically 
bMn and polydispersity was obtained by GPC 

Novozym 435 catalyzed polymerization was concluded by performing the reaction at 

80 
o
C.  The highest molecular weight (Mn) of the resulting polymer was obtained 

after 72 hours which was 21571 g/mol. Polydispersities were changing between 1.79 

and1.97. Also, within only 2 hours, PCL with a molecular weight 18408 g/mol was 

obtained. This result is consistent with studies in literature [31]. 

Table 4.3: Effect of time on polymerization reaction catalyzed by Novozym 435 at  
T=80 

o
C 

Time 

(h) 

Conversion
a 

(%) 

Mn
b 

(g/mol) Polydispersity (Mw/Mn) 

2 23 18408 1,79 

5 41 16455 1,63 

7 40 18785 1,62 

24 36 14979 1,94 

48 45 14453 1,97 

72 38 21571 1,81 
aConversion was calculated by gravimetrically 
bMn and polydispersity was obtained by GPC 
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Plots of molecular weight (Mn) versus time for three different temperatures (60, 70, 

80 
o
C) were seen in Figure 4.1. From this graph, it is obvious the highest molecular 

weight was obtained at 80 
o
C followed by 70 and 60 

o
C.  It can be said that activity 

of enzyme was decreased with increasing temperature and Mn was favored from this 

condition. At 60 
o
C, Mn of resulting polymer was 15836 g/mol while 20042 and 

21571 g/mol at 70 and 80 
o
C respectively. Another important point was for 70 and 80 

o
C, at short periods such as 2 and 5hours, polymerization was resulted with a high 

value of molecular weight. This result is significant since if enzyme catalyzed 

polymerizations are adapted to large scale productions, it will help to decrease the 

costs by time saving. 

 

     Figure 4.1: Effect of temperature on molecular weight of PCL synthesized by 

Novozym 435 

FTIR spectrum of PCL (Figure 4.2) synthesized at 70 
o
C within 24 hours was 

evaluated according to major infrared bands of the polymer represented in Table 

3.1.From spectrum, major transmission peak is seen clearly at 1721 cm
-1

wave length 

which corresponds to carbonyl stretching (C=O) of the polymer. Other characteristic 

infrared bands of PCL are 2943, 2864, 1293, 1239 and 1176 cm
-1

 wave lengths 

corresponding to asymmetric CH2 stretching, symmetric CH2 stretching, C-O and C-

C stretching in the crystalline phase, asymmetric COC stretching and symmetric 

COC stretching respectively. Among them, the band at 1293 cm
-1

 also showed 

crystalline structure of PCL [12]. This spectrum is consistent with the studies in 

literature and showed that synthesized polymer was PCL [12, 54]. 
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Figure 4.2: FTIR Spectrum of PCL synthesized with Novozym 435 

In order to confirm molecular structure of PCL, 
1
H NMR analysis was applied 

(Figure 4.3). From spectrum, chemical shifts (ppm) of PCL are as follows: 4.05 ppm 

(t, OCH2), 3.65 ppm (t, CH2OH, end group), 2.3 ppm (t, CH2CO), 1.6-1.7 ppm (m, 

2xCH2), 1.30-1.45 ppm (m, CH2). Structure of PCL was justified from these results 

and it is consistent with literature [31]. 

 

Figure 4.3: 
1
H NMR spectrum of PCL synthesized with Novozym 435 

In addition to NMR and FTIR analysis, DSC analysis was also applied to PCL 

synthesized at 70 
o
C within 24 hours (Figure 4.4). It was aimed to observe thermal 

behaviors and weight percent crystallinity of obtained PCL. DSC thermogram 
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showed glass transition temperature (Tg) and melting point (Tm) of PCL were -56.9 

and 61.5 
o
C respectively. Also enthalpy of fusion (ΔHf) was computed as 114 J/g 

from the area of melting peak. By using equation 3.2 and reference enthalphy change 

of total crystalline PCL, percent crystallinity was calculated as 80%. This result 

showed that obtained PCL was highly crystalline and the band at 1293 cm
-1

in FTIR 

spectrum also justified this result [12]. 

 

Figure 4.4: DSC thermogram of PCL synthesized with Novozym 435 

4.2 Synthesis of PCL by Chitin Immobilized CALB 

4.2.1 Optimization of immobilization methods for polymerization reaction 

Lipase immobilization on chitin was performed with two different methods: physical 

adsorption and cross-linking with a coupling agent. It is known that amount of 

coupling agent could affect immobilization conditions significantly [10, 60]. 

Therefore, 3 different concentrations of gluteraldehyde were also applied to 

immobilization procedure. After immobilization process, obtained catalysts were 

evaluated with polymerization reactions in order to reach most efficient enzyme for 

PCL synthesis. Figure 4.5 shows comparison of immobilized catalysts with respect to 

percent monomer conversion of polymerization reaction. In this Figure, K1, K2 and 

K3 was obtained by cross-linking with 0.02%, 0.2% and 2% (v/v) gluteraldehyde 

concentrations in 50 ml phosphate buffer solution respectively. K4 was obtained by 

physical adsorption of lipase on chitin. Polymerization was performed at the same 

Tm=61.5 
o
C 

Tg=-56.9
o
C 

ΔHf=114 J/mg 
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conditions for all kinds of catalyst: (T=70 
o
C, toluen/e-cl ratio=2:1 (v/v), 

stirring=200 rpm, enzyme/e-cl ratio=10% (w/w), polymerization time: 24 h). 

 

                Figure 4.5: Evaluation of different immobilization methods for chitin 

immobilized CALB with respect to monomer conversion 

It was observed that K2 catalyzed ring opening polymerization of ɛ-CL was more 

rapidly than the other catalysts. After 24 hours, conversion of ɛ-CL into PCL was 

32% with K2 while the closer competitive K4 catalyzed reaction with 30% 

conversion (Figure 4.5). This result showed that both physical adsorption and cross-

linking method resulted with similar trend. However, in order to evaluate the 

obtained catalysts, molecular weight of resulting polymer was also an important 

factor since properties of polymeric materials are largely dependent on average 

molecular weights. For instance, low molecular weight polymers and oligomers are 

not useful for applications in which high strength is required [58, 59]. Figure 4.6 

shows comparison of molecular weights of resulting polymers catalyzed by K1, K2, 

K3 and K4 catalyst. Again polymerization reaction conditions were the same for all 

kind of immobilized enzymes (T=70 
o
C, toluen/e-cl ratio=2:1 (v/v), stirring=200 

rpm, enzyme/e-cl ratio=10% (w/w), polymerization time: 24 h). 

 

Figure 4.6: Evaluation of different immobilization methods for chitin immobilized 

CALB with respect to molecular weight (Mn) 
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In this part of the study, Mn was increased with the following order of catalysts: 

K1>K2>K3>K4. Thus, although K1 gave the highest molecular weight, it catalyzed 

reaction with only 18% monomer conversion after 24 hours. On the other hand, K2 

was the most rapid catalyst as explained in above (Figure 4.6). Also, it was the 

second effective catalyst with respect to Mn results that synthesized PCL with a 

molecular weight of 11319 g/mol. Eventually, this was an acceptable result since 

different immobilized CALB rather than novozym 435 has been investigating by 

different study groups and molecular weight of obtained PCL’s were in the range of 

600-12000 g/mol [5, 7]. Therefore, K2 was used for further reactions in order to 

optimize polymerization. 

Characterization of chosen chitin immobilized lipase (K2) was performed with SEM 

analysis. Figure 4.7 shows two SEM images of (a) chitin powder and (b) K2. Lipases 

on SEM image were not seen clearly since it was scarce on the surface. 

Agglomerates of lipases on support could not be obtained from SEM images because 

lipases could be linked to inner places of chitin. This result was also seen in other 

studies and agglomerates of enzyme may not be positioned in the surface of support 

material [10]. TEM analysis can be performed in order to see if the enzymes were 

linked to inner places. Also, in literature imaging of protein distribution by infrared 

microscopy was used to observe bonded enzymes on support [6].  

 

(a)                                                                            (b) 

Figure 4.7: SEM images (a) Chitin powder (250 x), (b) K2 (250 x) 

In order to determine immobilization efficiency and see the differences between 

physical adsorption and cross-linking method, UV spectroscopy was also used. By 

the use of equation 3.1 and 3.2 calculated immobilization efficiencies are 15.50 % 

and 6.33 % for K2 and K4 enzyme respectively.  
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4.2.2 Parametric study of polymerization reactions 

After K2 was chosen, firstly drying effect of immobilized catalyst on polymerization 

reaction was investigated. In trial 1, K2 was dried in an oven for 12 hours at 30 
o
C 

while in trial 2, it was not dried after immobilization procedure. The conditions of 

polymerization as follows: T=70 
o
C, toluen/e-cl ratio=2:1 (v/v), stirring=200 rpm, 

enzyme/e-cl ratio=10% (w/w), polymerization time: 24 h (Figure 4.8). 

 

Figure 4.8: Drying effect on polymerization reaction for K2 

As it is shown in Figure 4.8, molecular weight (Mn) of the resulting polymers was 

changed significantly after drying. Polymerization mechanism of lactones showed 

that water acts as the initiator when no other nucleophiles are present in 

polymerization system by different study groups [14, 28, 61]. However, it was 

reported if water amount was high, molecular weight of the resulting polymers were 

decreased. Therefore water amount should be optimized [4, 33]. It is believed that 

high concentration of water leads to generate lots of polymer chains and this 

condition caused to obtain low molecular weights of polymer [4, 5, 31]. Thus, it was 

decided to dry immobilized catalysts prior to polymerization. 

Second parametric study of K2 catalyzed polymerization was performed to observe 

temperature and time effect on molecular weight of the resulting polymer and 

percent monomer conversion. Table 4.4 shows effect of time on polymerization 

reaction carried out at 60 
o
C. Reaction conditions were as follows: 2 mL toluene, 1 

mL ɛ-CL, stirring=200 rpm, enzyme/e-cl ratio=10% (w/w). 
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Table 4.4: Effect of time on polymerization reaction catalyzed by K2 at T=60 
o
C 

Time 

(h) 

Conversion
a 

(%) 

Mn
b 

(g/mol) 

Polydispersity 

(Mw/Mn) 

7 23 6488 1,26 

24 38 9245 1,40 

48 45 10664 1,50 

72 40 11413 1,53 

96 50 11224 1,54 
aConversion was calculated by gravimetrically 
bMn and polydispersity was obtained by GPC 

It was observed from Table 4.4, molecular weight of the polymer was rising as the 

polymerization time increased. The highest molecular weights were 11413 g/mol and 

11224 g/mol obtained after 72 and 96 hours respectively. Also polydispersities of 

polymers were increased with respect to time. Comparing with novozym 435, 

polymerization was slower and molecular weights were lower. However, 

polydispersity of the resulting polymers were decreased by this type of catalyst. 

Parametric study was proceede with 70 and 80 
o
C respectively. Table 4.5 shows the 

results of polymerization at 70 
o
C. Polymerization conditions were the same as 

explained in above.  Similar trend was seen in this polymerization either. Again, 

molecular weights were rising with increased time. Also, polydispersity was 

increasing with the time range of 2 to 96 hours since Mw was increased more rapidly 

than Mn with respect to time. On the other hand, after 96 hours polymerization has 

reached 45% monomer conversion, this showed that for longer periods monomer 

consumption could go further. 

Table 4.5: Effect of time on polymerization reaction catalyzed by K2 at T=70 
o
C 

Time 

(h) 

Conversion
a 

(%) 

Mn
b 

(g/mol) 

Polydispersity 

(Mw/Mn) 

2 1,2     3132 1,15 

13 33 9317 1,33 

24 32 11319 1,27 

48 32 10170 1,49 

72 32 10657 1,46 

96 45 13261 1,54 
aConversion was calculated by gravimetrically 
bMn and polydispersity was obtained by GPC 
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Polymerization reactions catalyzed by K2 were concluded with 80 
o
C. From Table 

4.6, it is obvious that like the previous reactions, molecular weight was increased 

with time. However, a deviation was seen in conversion at this temperature. With 

increased time, lower conversion was obtained. This result can be explained by 

denaturation of proteins in enzyme structure. It is known that high temperatures can 

cause deactivation of enzymes [31].  

Table 4.6: Effect of time on polymerization reaction catalyzed by K2 at T=80 
o
C 

 
aConversion was calculated by gravimetrically 
bMn and polydispersity was obtained by GPC 

In order to observe the effect of temperature on K2 catalyzed polymerizations, Figure 

4.9 is given. To summarize, reactions performed 70 
o
C gave higher molecular 

weights with short time period. Within 24 hours, polymers with Mn of 9245, 11319 

and 9289 g/mol were obtained at 60, 70, 80 
o
C respectively. On the other hand, 

results were close to each other since change of temperatures were not in a wide 

range. 

 

Figure 4.9:Effect of temperature on molecular weight of PCL synthesized by K2 

Time 

(h) 

Conversion
a 

(%) 

Mn
b 

(g/mol) 

Polydispersity 

(Mw/Mn) 

7 15 5192 1,19 

24 26 9289 1,38 

48 58 9643 1,52 

72 46 11643 1,48 

96 37 11586 1,60 
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Also, monomer conversions with respect to time were plotted on the same graph as 

shown in Figure 4.10. After 48 hours, obtained PCL amount was decreased for all 

temperatures as seen in Figure 4.10. An explanation for this condition is the 

depolymerization effect of enzymes since lipases also catalyzes hydrolysis reactions 

and for long polymerization processes, reaction can be reversed. 

 

   Figure 4.10:  Effect of temperature on monomer conversion for polymerization 

reaction catalyzed by K2 

In this study, effect of enzyme concentration on polymerization reaction and 

molecular weight of synthesized polymer was also investigated.  4 different enzyme 

concentration was evaluated which were 5%, 10%, 15%, 20% (w/w)( enzyme to ε-

caprolactone ratio). Table 4.7 shows the results of polymerization by different 

enzyme concentrations.  Reactions were performed at 70 
o
C, with a toluen/e-cl 

ratio=2:1 (v/v) ratio for 24 hours. It is obvious that optimum result was 10% enzyme 

concentration for PCL synthesis via chitin-immobilized lipases. 

Table 4.7: Effect of enzyme concentration on polymerization reaction catalyzed by 

K2. 

Ratio of enzyme/-cl 

(%) 

Conversion
a 

(%) 

Mn
b 

(g/mol) 

Polydispersity  

(Mw/Mn) 

5 5 6487 1,22 

10 32 11319 1,27 

15 39 9521 1,41 

20 35 8095 1,33 
aConversion was calculated by gravimetrically 
bMn and polydispersity was obtained by GPC 
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Structure of polycaprolactone obtained with chitin immobilized lipases was analyzed 

by FTIR and NMR methods. FTIR spectrum of PCL obtained at 70 
o
C after 24 hours 

is seen in Figure 4.11.Like novozym 435 catalyzed polymerization, PCL synthesized 

using K2 was proven with FTIR spectrum. Characteristic infrared bands of PCL 

(2943, 2864, 1293, 1239 and 1176 cm
-1

wave lengths) corresponding to asymmetric 

CH2 stretching, symmetric CH2 stretching, C-O and C-C stretching in the crystalline 

phase, asymmetric COC stretching and symmetric COC stretching can be seen from 

spectrum and again PCL structure is proven [12, 54]. 

 

Figure 4.11: FTIR Spectrum of PCL synthesized using K2 

1
H NMR spectrum of PCL obtained at 70 

o
C after 24 hours is seen in Figure 4.12. 

This spectrum justified the FTIR results that synthesized polymer was PCL. 

Chemical shifts (ppm) of PCL seen in Figure are in the following: 4.05 ppm (t, 

OCH2), 3.65 ppm (t, CH2OH, end group), 2.3 ppm (t, CH2CO), 1.6-1.7 ppm (m, 

2xCH2), 1.30-1.45 ppm (m,CH2).This molecular structure corresponds to PCL and 

also consistent with literature [31]. 

 

Figure 4.12: 
1
H NMR spectrum of PCL synthesized using K2 
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Moreover, DSC analysis was also applied to PCL synthesized at 70 
o
C within 24 

hours (Figure 4.13) in order to see thermal behaviors and crystallinity of obtained 

PCL. It is shown in DSC thermogram,Tg and Tm of PCL were -60.3 and 62.1
o
C 

respectively. Also enthalpy of fusion (ΔHf) was computed as 99.5 J/g from the area 

of melting peak. By using equation 3.4 and reference enthalphy change of total 

crystalline PCL, percent crystallinity was calculated as 70%. Again, degree of 

crystallinity of PCL was relatively high however; it was lower than the polymer 

obtained from novozym 435. Crystalline structure of PCL was also confirmed with 

the band at 1293 cm
-1

 in FTIR spectrum [12]. 

 

Figure 4.13: DSC thermogram of PCL synthesized using K2 

4.3 Synthesis of PCL by Chitosan Immobilized CALB 

4.3.1 Optimization of immobilization methods for polymerization reactions 

As explained in previous section, lipase immobilization on chitosan was performed 

with two different methods: physical adsorption and cross-linking with a coupling 

agent. Again 3 different concentrations of gluteraldehyde were applied to 

immobilization procedure since it is known that amount of coupling agent could 

affect immobilization conditions significantly [10, 60].  

In order to evaluate obtained catalysts with different immobilization methods, same 

procedure was followed with chitin immobilized lipases. Polycaprolactone synthesis 

was carried out by these immobilized enzymes and the most efficient catalyst was 
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chosen for further reactions. Figure 4.14 shows comparison of immobilized catalysts 

with respect to percent monomer conversion of polymerization reaction. In this 

Figure; Immob1, Immob2 and Immob3 were obtained by cross-linking with 0.02%, 

0.2% and 2% (v/v) gluteraldehyde concentrations in 50 ml phosphate buffer solution 

respectively. Immob4 was obtained by physical adsorption of lipase on chitosan. 

Polymerization was performed at the same condition with the other catalysts 

examined in previous sections in order to compare support efficiency (T=70 
o
C, 

toluen/e-cl ratio=2:1 (v/v), stirring=200 rpm, enzyme/e-cl ratio=10% (w/w), 

polymerization time:24 h). 

 

Figure 4.14: Evaluation of different immobilization methods for chitosan 

immobilized CALB with respect to conversion 

It was clearly seen from Figure 4.14, immob2 catalyzed ring opening polymerization 

of ɛ-CL more rapidly than the other catalysts (immob1, immob3, immob4). Monomer 

conversion by immob2 catalysis was 26% while conversion was 2%, 8% and 6% 

with the other immobilized enzymes corresponding in the following order: immob1, 

immob3, immob4. This result showed that both immobilization procedure and 

gluteraldehyde concentration affected efficiency of prepared catalysts. Unlike chitin 

immobilized lipases, physical adsorption was resulted with a very low efficiency 

after 24 hours for PCL synthesis. It can be resulted by enzyme leakage during 

polymerization reactions. It is known that physical adsorption of enzymes on 

supports can be resulted with enzyme leakage during polymerization reactions. Also, 

bounds of the gluteraldehyde concentration caused inactive catalyst formation in this 

study. Optimum result was obtained by 0.2% (v/v) contained buffer solution since 

higher amount of gluteraldehyde could not cleaved to enzymes. It was consistent 

with other studies in which when amout of gluteraldehyde has reached 15%, it could 
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not cleaved to the enzymes [60]. Also, Foresti et.al. prepared chitosan immobilized 

lipases with cross-linking 0.025% and 0.25% (v/v) gluteraldehyde concentrations and 

they used these lipases in fatty acid esterification reactions. Again, the former one 

was more active than the latter catalyst [10].  

It was obviously seen that immob2 was the most efficient catalyst among chitosan 

immobilized lipases. However, molecular weights of the resulting polymers were 

also compared to see the behavior of this catalyst with respect to Mn results. Figure 

4.15 shows comparison of molecular weights of resulting polymers catalyzed by 

Immob1, Immob2, Immob3 and Immob4 catalysts. Polymerization conditions were as 

follows: T=70 
o
C, toluen/e-cl ratio=2:1 (v/v), stirring=200 rpm, enzyme/e-cl 

ratio=10% (w/w), polymerization time: 24 hours. 

 

Figure 4.15: Evaluation of different immobilization methods for chitosan 

immobilized CALB with respect to molecular weight (Mn) 

From Mn results (Figure 4.15), similar trend was obtained as explained in conversion 

comparison. Mn was increased with the following order of catalysts: 

Immob2>Immob1>Immob3>Immob4. Among them, again Immob2was the most 

effective one according to polycaprolactone synthesis. Molecular weight (Mn) of 

PCL obtained by this catalyst was 8460 g/mol while the others were 4850 (Immob1), 

4784 (Immob3) and 5024 (Immob4) g/mol. Results showed that, except Immob1, by 

other chitosan immobilized lipases only mezopolymers with a very slow reactions 

could be obtained.Therefore, Immob2 was used for further reactions in order to 

optimize polymerization and obtain high molecular weights of PCL. 

Characterization of chosen chitosan immobilized lipase (Immob2) was performed 

with SEM analysis. Figure 4.16 shows two SEM images of (a) chitosan powder and 
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(b) Immob2. Compared with chitin immobilized lipases, chitosan immobilized lipases 

are seen distinctly from SEM image. Again agglomerates of lipases on support could 

not be obtained but lipases cleaved on surfaces of chitosan are shown in the 

microphotograph. In order to support that lipases are immobilized on chitosan, 

characterization methods that were indicated in chitin immobilized lipases part, can 

be applied because lipases could be linked to inner places of chitosan as indicated 

previously [6].  

 

                             (a)                                                                (b) 

Figure 4.16: SEM images (a) Chitosan powder (250 x), (b) Immob2 (250 x) 

In order to determine immobilization efficiency and observe the differences between 

physical adsorption and cross-linking method, also UV spectroscopy was used. By 

using equation 3.1 and 3.2 immobilization efficiencies are calculated as 23.0% and 

12.2% for Immob2 and Immob4 enzyme respectively.  

4.3.2 Parametric study of polymerization reactions 

Polymerization reactions were performed at three different temperatures (60, 70, 80 

o
C) within a determined time range by chosen chitosan immobilized lipase (Immob2). 

Previously, drying effect of immobilized catalyst (K2) on polymerization reaction 

was investigated. The study showed that drying has played an important role on 

polymerization reaction. When the water amount was high, molecular weight of the 

resulting polymer decreases significantly. Therefore, Immob2 was dried like K2 and 

used to see temperature and time effect. Table 4.8 shows effect of time on 

polymerization reaction carried out at 60 
o
C. Reaction conditions were as follows: 2 

mL toluene, 1 mL ɛ-CL, stirring=200 rpm, enzyme/e-cl ratio=10% (w/w). 
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Table 4.8:Effect of time on polymerization reaction catalyzed by Immob2 at T=60 
o
C 

Time 

(h) 

Conversion
a 

(%) 

Mn
b 

(g/mol) 

Polydispersity 

(Mw/Mn) 

7 0,9 4880 1,11 

24 25 6768 1,26 

48 36 7420 1,33 

72 47 7082 1,38 

96 44 13626 1,55 
aConversion was calculated by gravimetrically 
bMn and polydispersity was obtained by GPC 

It is clearly seen from Table 4.8, increasing time favored the polymerization reaction. 

After 7 hours, only 0.9% of ɛ-CL was converted into PCL; however conversion has 

reached 47% within 72 hours. Also the highest molecular weight (Mn) was obtained 

after 96 hours at this temperature.  

Table 4.9 shows the results of polymerization at 70 
o
C. Again, molecular weights 

were increasing with time. Also, comparing with 60 
o
C, increasing temperature 

caused to synthesize higher molecular weights of polymer up to 72 hours.  

Table 4.9:Effect of time on polymerization reaction catalyzed by Immob2 at T=70 
o
C 

Time 

(h) 

Conversion
a 

(%) 

Mn
b 

(g/mol) 

Polydispersity 

(Mw/Mn) 

13 14 6207,2 1,20 

24 26 8450,4 1,33 

48 37 7772 1,39 

72 36 12771 1,45 

96 40 12912 1,29 
aConversion was calculated by gravimetrically 
bMn and polydispersity was obtained by GPC 

In order to see, upper limit of temperature for PCL synthesis with Immob2, 

temperature increased to 80 
o
C and the results are seen in Table 4.10. Polymerization 

reaction was performed within 13-96 hours. Although Mn was increased with time 

up to 72 hours, higher molecular weights were obtained at 70 
o
C. Also, after 72 and 

96 hours, Mn was decreased from 11058 to10051 and then 9191 g/mol respectively 
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since reversible reaction could be occurred because of the hydrolysis ability of lipase 

at this temperature. 

Table 4.10: Effect of time on polymerization reaction catalyzed by Immob2 at T=80 
o
C 

Time 

(h) 

Conversion
a 

(%) 

Mn
b 

(g/mol) 

Polydispersity 

(Mw/Mn) 

13 25 7879 1,22 
24 42 7438 1,42 
48 40 11058 1,38 
72 40 10051 1,39 
96 44 9191 1,41 

aConversion was calculated by gravimetrically 
bMn and polydispersity was obtained by GPC 

Plots of molecular weight (Mn) versus time for three different temperatures (60, 70, 

80 
o
C) were given in Figure 4.17 in order to show effect of temperature on 

polymerization reaction. Immob2 catalyzed polymerization did not show a similar 

trend for all temperatures.  As it is seen from Figure, Mn was increasing up to 96 

hours at 60 and 70 
o
C while Mn started to decrease after 48 hours at 80 

o
C. This can 

be explained by reversible reaction due to hydrolysis ability of enzyme at this 

temperature. 

 

Figure 4.17: Effect of temperature on molecular weight of PCL synthesized by 

Immob2 

Figure 4.18 showed the result of increasing the temperature from 60 to 70 and 80 
o
C 

was more rapid conversion of monomer up to 48 hours. However, interestingly after 

48 hours conversion become more rapid at 60 
o
C than the other temperatures. It is 

known that stability of enzymes can change with increasing temperature. Because of 
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this, when enzyme stayed at relatively high temperatures (70, 80 
o
C) for long time, 

its stability has been decreasing. This result is consistent with Figure 4.17 since Mn 

of PCL at 60 
o
C was lower than the other temperatures. This showed that at high 

temperatures for long time, activity of enzyme was lower than it was at 60 
o
C since 

more polymer chains were formed and resulted with low molecular weight at this 

temperature. 

 

       Figure 4.18: Effect of temperature on monomer conversion for polymerization 

reaction catalyzed by Immob2 

Lastly, effect of enzyme concentration on polymerization reaction and molecular 

weight of synthesized polymer was investigated.  4 different enzyme concentration 

were evaluated (5%, 10%, 15%, 20% (w/w) ( enzyme to ε-caprolactone ratio)) in this 

study. Results are shown in table 4.11. Reactions were performed at 70 
o
C for 24 

hours (toluene/-Cl=2:1 v/v). 

Table 4.11: Effect of enzyme concentration on polymerization reaction catalyzed by 

Immob2. 

Ratio of enzyme/-cl 

(%) 

Conversion
a 

(%) 

Mn
b 

(g/mol) 

Polydispersity  

(Mw/Mn) 

5 26 6972 1,26 

10 26 8450 1,33 

15 31 7157 1,34 

20 31 8753 1,37 
aConversion was calculated by gravimetrically 
bMn and polydispersity was obtained by GPC 

FTIR and NMR methods were used to define structure of polycaprolactone obtained 

with chitosan immobilized lipases. FTIR spectrum of PCL synthesized using immob2 
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is shown in Figure 4.19. Characteristic infrared bands of PCL (2943, 2864, 1293, 

1239 and 1176 cm
-1

 wave lengths)assigned to asymmetric CH2 stretching, symmetric 

CH2 stretching, C-O and C-C stretching in the crystalline phase, asymmetric COC 

stretching and symmetric COC stretching are clearly seen in spectrum. Additionally, 

major transmission peak (1721 cm
-1

wave length) seen in spectrum corresponds to 

carbonyl stretching (C=O) of the polymer. As it was indicated in previous sections, 

this spectrum is consistent with the studies in literature too and showed that 

synthesized polymer was PCL [13, 54]. 

 

Figure 4.19: FTIR spectrum of PCL synthesized using Immob2 

As it was indicated in previous sections, to confirm PCL structure 
1
H NMR analysis 

was peformed (Figure 4.20).  Polymer was synthesized at 70 
o
C after 72 hours. 

Similar spectrum was obtained with previous sections. Chemical shifts of PCL 

shown in Figure are as follows: 4.05 ppm (t, OCH2), 3.65 ppm (t, CH2OH, end 

group), 2.3 ppm (t, CH2CO), 1.6-1.7 ppm (m, 2xCH2), 1.30-1.45 ppm (m,CH2). Like 

K2 and novozym 435 catalyzed polymerizations, structure of PCL synthesized with 

Immob2 was also confirmed from these results [31].  

 

Figure 4.20: 
1
H NMR spectrum of PCL synthesized using Immob2 
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In addition to structure characterization, thermal behaviors of PCL synthesized at 70 

o
C within 72 hours were investigated with DSC analysis [Figure 4.21]. DSC 

thermogram showed that Tg and Tm of PCL were -58 and 61.6 
o
C respectively. Also, 

crystallinity of PCL was computed according to equation 3.4 and reference enthalpy 

change of total crystalline PCL.  Enthalpy of fusion (ΔHf) was calculated as 126 J/g 

from the area of melting peak. Thus, percent crystallinity was calculated as 88%. 

Comparing with the above DSC results, crystallinity of this PCL was the highest. It 

is known that crystallinity increases tensile strength of the polymer and it can be said 

that PCL obtained using Immob2can be used in applications which need high tensile 

strength. On the other hand, of course to justify this result mechanical behaviors of 

polymer must be investigated. 

 

Figure 4.21: DSC thermogram of PCL synthesized using Immob2 

 

  

Tm=61.6 
o
C 

Tg = -58 
o
C 

ΔHf =126 J/g 
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5. CONCLUSIONS AND RECOMMENDATIONS 

In this master thesis, enzymatic ring opening polymerization of ɛ-caprolactone was 

investigated. As biocatalysts, chitin and chitosan immobilized lipases were prepared 

via different immobilization methods and evaluated in polymerization reactions. 

Also, polymerization reactions were performed with novozym 435 which is often 

used in polyester synthesis in literature in order to compare the efficiencies of 

prepared catalysts in this study. Furthermore, obtained polymers were characterized 

with 
1
H NMR and FTIR analysis. Thermal behaviors and crystallinity of polymers 

were determined by DSC analysis whereas molecular weights and polydispersities of 

resulting polymeric were obtained from GPC analyses. According to indicated 

experiments and analysis, following results was observed in this study. 

1. According to novozym 435 catalyzed polymerization results, the highest 

molecular weight of PCL was obtained at 80 
o
C (Mn=21571 g/mol) within 72 

hours. Also Mn wasincreasing with time at this temperature. Furthermore, similar 

trend was observed in polymerization reactions performed at 70 and 60 
o
C via 

novozym 435. Molecular weight was increasing with time and within 72 hours; 

Mn of obtained PCL has reached to 20402 and 15836 g/mol at 70 and 60 
o
C 

respectively. 

2. Another result of novozym 435 catalyzed polymerization was at short periods 

such as 2 and 5 hours, polymerization was resulted with a high value of 

molecular weight (within 2 hours, Mn=10492, 16485, 18408 g/mol at 60, 70 and 

80 
o
C). This result is significant since if enzyme catalyzed polymerizations are 

adapted to large scale productions, it will help to decrease the costs by time 

saving. 

3. The effect of reaction temperature on novozym 435 catalyzed reactions showed 

that Mn was increasing following order: 80 
o
C > 70 

o
C > 60 

o
C. On the other 

hand, monomer conversion was decreased when temperature rises from 60 to 80 

o
C (within 2 hours, monomer conversion= 52%, 46%, 23% at 60, 70 and 80 

o
C). 

This can be explained by change of enzyme activity during reaction. It can be 
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said that increasing temperature lowered the activity of novozym 435. Therefore, 

less polymeric chains were obtained at high temperatures and Mn was favored 

from this condition.  

4. Optimization of immobilization methods for chitin immobilized lipases showed 

that cross-linking with gluteraldehyde was the most efficient prepared catalyst 

among other methods. Also, coupling agent ratio significantly affected efficiency 

of prepared catalyst in polymerization reaction. Moderate gluteraldehyde ratio 

(2% v/v) was the best result since the use of drastic conditions such as high ratio 

of coupling agent resulted with uncontrolled reaction condition and coupling 

agent cannot be bonded to the enzyme [60]. 

5. Furthermore, optimization of immobilization methods for chitosan immobilized 

lipases showed similar trend with chitin immobilization. Again, the most efficient 

catalyst was prepared by cross-linking via gluteraldehyde at moderate ratios 

(0.2% v/v).  This is an expected result since chitosan is derived from chitin by 

acetylation and their molecular structure was similar.  

6. Among immobilization methods, physical adsorption of CALB on chitin and 

chitosan was not effective as the ones obtained via cross-linking methods. 

According to results of polymerization reactions; prepared immobilized catalysts 

via cross-linking gave a molecular weight (Mn) of 11319 and 8460 g/mol PCL 

with supports chitin and chitosan respectively (T=70 
o
C within 24 hours).On the 

other hand, physically immobilized lipases gave relatively low molecular weights 

of polymer (9581 g/mol and 5025 g/mol for chitin and chitosan respectively). 

From these results, it was obvious chitosan immobilized lipases via physical 

adsorption could only synthesize mezopolymer. 

7. In addition to above results, it was seen that polymerization was more rapid with 

lipases obtained via cross-linking methods: 32% of monomer was consumed with 

chitin immobilized lipases via cross-linking whereas 30% of monomer was 

consumed with physically adsorbed lipase on chitin after 24 hours at 70 
o
C. 

These results were too close however, molecular weight of obtained PCL was 

higher with cross-linking method as it was explained in above, and for further 

polymerization reactions this enzyme was used (K2). 

8. Similar results were obtained for chitosan immobilized lipases as it was indicated 

in above. Again, polymerization was more rapid with lipases obtained via cross-
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linking methods: 24% of monomer was consumed with chitosan immobilized 

lipases via cross-linking whereas 6% of monomer was consumed with physically 

adsorbed lipase on chitosan after 24 hours at 70 
o
C. Therefore, chitosan 

immobilized lipase with cross-linking method was used for further 

polymerization reactions (Immob2). 

9. The reason why cross-linking methods enhanced efficiency of catalyst for PCL 

synthesis can be explained by enzyme leakage problem seen in physical 

adsorption methods. Due to the weak bonds between enzyme and supports, 

enzyme could easily leak from support in physically adsorbed enzymes [5]. 

Immobilization efficiency results in this study also supported this approach since 

lipases bounded with a lower percentage to both chitin and chitosan with physical 

adsorption immobilization method.  

10. It was also shown in this study that water content should be optimized since 

higher amount of water decreased molecular weight of resulting polymer. In one 

trial, chitin immobilized lipase with cross-linking method was dried at 30 
o
C for 

12 hours and in second trial it was not dried. Both dried and the other one was 

used in polymerization (T=70 
o
C within 24 hours). Mn of obtained polymers was 

11319 g/mol and 5917 g/mol respectively. This result was an excepted result 

since high concentration of water leads to generate lots of polymer chains and 

this condition caused to obtain low molecular weights of polymer [4, 31, 33].  

11. According to optimization of polymerization reactions by using chitin 

immobilized lipases (K2), temperature and time effect on monomer conversion 

and molecular weight of resulting polymer was investigated.  It was seen that Mn 

was increasing with time like novozym 435 catalyzed polymerizations for all 

temperatures. After 96 hours, Mn of PCL was 11224, 13261 and 11586 g/mol at 

60, 70 and 80 
o
C respectively. 

12. It was also observed from chitin immobilized catalysis; reactions performed 70 

o
C gave higher molecular weights with short time period. Within 24 hours, 

polymers with Mn of 9245, 11319 and 9289 g/mol were obtained at 60, 70, 80 
o
C 

respectively. On the other hand, results were close to each other since change of 

temperatures were not in a wide range. 

13. In addition to molecular weight comparison, monomer conversions with respect 

to time were observed for different temperatures (chitin immobilized lipases). 
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After 48 hours, obtained PCL amount was decreased for all temperatures. An 

explanation for this condition is the depolymerization effect of catalysts since 

lipases also catalyzes hydrolysis reactions and for long polymerization processes, 

reaction can be reversed. 

14. According to optimization of polymerization reactions by using chitosan 

immobilized lipases (Immob2), the highest Mn of polymer were 13626 and 12912 

g/mol after 96 hours at 60 and 70 
o
C. For these two temperatures Mn was 

increasing up to 96 hours. However when the temperature has rised to 80 
o
C, Mn 

was increasing up to 48 hours and has reached 11058 g/mol. After 48 hours, Mn 

started to decreased to 10051 and 9191 g/mol after 72 and 96 hours respectively. 

This can be explained by reversible reaction due to hydrolysis ability of enzyme 

at this temperature. 

15. Furthermore, monomer conversion of chitosan immobilized catalysis was 

increased with increase of temperature up to 48 hours. However, interestingly 

after 48 hours conversion become more rapid at 60 
o
C than the other 

temperatures. It is known that stability of enzymes can change with increasing 

temperature. Because of this, when enzyme stayed at relatively high temperatures 

(70, 80 
o
C) for long time, its stability has been decreasing. This result was also 

consistent with Mn results in which Mn of PCL at 60 
o
C was lower than the other 

temperatures.  It can be said that activity of enzyme at high temperatures for long 

time was lower than it was at 60 
o
C since more polymer chains were formed and 

resulted with low molecular weight at this temperature. 

16. In order to optimize enzyme concentration, also amount of enzyme was changed 

in 4 different values (5%, 10%, 15%, 20%) for both chitin and chitosan 

immobilized lipases. Eventually, it was observed 10% was optimum and 

increasing enzyme concentration was not effective. 

17. This study also compared efficiency of prepared catalysts and novozym 435 for 

PCL synthesis. As shown from Figure 5.1, novozym 435 catalyzed reactions was 

more rapid and higher molecular weights of polymer was obtained with this 

enzyme (reaction conditions: T=70 
o
C within 24 hours) Also, chitin immobilized 

lipases were more effective than chitosan immobilized lipases as shown in 

Figure. However, comparing polydispersities of resulting polymer, chitin and 
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chitosan immobilized lipases gave lower polydispersities (1.27 and 1.3 

respectively) than novozym 435 (1.58).  

 

Figure 5.1: Comparison of prepared catalysts and Novozym 435 

18. Thus, it can be concluded that although novozym 435 was an efficient catalyst 

for PCL synthesis, chitin and chitosan could be alternative since they are cheap 

and most abundant biopolymers in nature. Chitin and chitosan immobilized 

lipases were not used in PCL synthesis before this study. Therefore, this study 

can be the beginning and in future studies immobilization methods can be 

improved in order to obtain more rapid polymerization reactions and higher 

molecular weights of PCL.  

19. In addition to above results, DSC analysis showed that obtained 

polycaprolactones were highly crystalline. Crystallinity of polymers obtained via 

novozym 435, chitin and chitosan immobilized lipases were calculated as 80%, 

70% and 88% respectively. These results were also consistent with FTIR 

spectrum of corresponding polymers in which the band at 1293 cm
-1

justified 

highly crystalline structure [12]. 

20. DSC analyses also showed that glass transition temperature of polcaprolactones 

obtained via novozym 435, chitin and chitosan immobilized lipases were -56.9, -

60.3 and -58 
o
C. Tg of polycaprolactone was reported as approximately -60 

o
C in 

literature however Tg also depends on molecular weights of the polymer. 

Increasing molecular weight of the polymer provides increased glass transition 

point [58]. Thus, this information justified the above result since  molecular 

weight (Mn) of the polymers obtained via novozym 435, chitin and chitosan 

immobilized lipase were 14126, 11319 and 12771 g/mol. Also, melting points of 
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obtained polymers were 61.5, 62.1 and 61.6 
o
C. This was consistent with the data 

in literature [55, 56].  

21. Molecular structure of PCL was determined by 
1
H NMR analysis and FTIR 

spectrum. Results were consistent with literature and proved that obtained 

polymers were PCL [12, 31]. 

22. It was reported that lipase catalyzed ring opening polymerizations has the 

characteristics of living polymerization [31, 34]. In order to asses this behavior, 

plot of Mn versus conversion is one of the criteria. If this plot is linear, then it can 

be said polymerization showed immortal characteristics. Also monomer 

consumption should follow first order rate law. [31, 34, 62]. Another criterion for 

living polymerization was increasing molecular weight with time and narrow 

molecular weight distribution.  In this study, it was seen Mn was increasing with 

time and polydispersities were not higher from 2.0. These results can be 

characteristics of living polymerization. However in order to provide better 

understanding, above criteria must be applied in further studies.  

23. In this study, monomer conversion was calculated gravimetrically. However, to 

obtain more precision data, it is recommended to monitor polymerization 

reactions with 
1
H NMR since monomer conversion and degree of polymerization 

can be calculated from reaction mixture taken at determined time.  

24. In further studies, crystallinity of resulting polymers can be justified with XRD 

analysis in addition to DSC results. 

25. In order to observe stability of prepared catalysts and test their recyclability, they 

can be used more than one time and evaluated in polymerization reaction. 

26. Lastly, to obtain higher molecular weights of polymer and more rapid 

polymerization reactions via chitin and chitosan immobilized lipases, toluene 

ratio can be changed for further studies.  



57 

 

REFERENCES 

[1] Kobayashi S., Makino A., 2009. Enzymatic polymer synthesis: an opportunity 

for green chemistry, Chem.Rev, 109, 5288-5353. 

[2] Matsumura S., 2002. Enzyme catalyzed synthesis and chemical recycling of 

polyesters, Macromolecuar Bioscience, 2, 105-126. 

[3] Albertsson A.C., Srivastava R.K., 2008. Recent developments in enzyme-

catalyzed ring opening polymerization, Advanced Drug Delivery 

Reviews, 60, 1077-1093. 

[4] Varma I.K, Albertsson A.C, Rajkhowa R., Srivastava R.K.,2005. Enzyme 

catalyzed synthesis of polyesters, Progress in Polymer Science, 30, 

949-981. 

[5] Loos K., 2011. Biocatalysis in Polymer Chemistry, pp.65-80, Wiley-VCH, 

Germany. 

[6] Chen B., Hu J., Miller E.M., Xie W., Cai M., and Gross R.A., 2008. Candida 

antarctica lipase B chemically immobilized on epoxy-activated micro-

and nanobeads: catalysts for polyester synthesis, 

Biomacromolecules,9, 463-471. 

[7] Uyama H, Kuwabara M., Tsujimoto T., and Kobayashi S., 2002. High 

performance immobilized lipase catalyst for polyester synthesis, 

Polymer Journal, 34, 970-972. 

[8] Matsumura S., 2006. Enzymatic synthesis of polyesters via ring opening 

polymerization, Advances in Polymer Science, 194, 95-132. 

[9] Gomes, M.F., Pereira, E.B., Castro, H.F., 2004. Immobilization of lipase on 

chitin and its use in nonconventional biocatalysis, 

Biomacromolecules, 5, 17-23. 

[10] Foresti, M.L., Ferreira M.L., 2007. Chitosan-immobilized lipases for the 

catalysis of fatty acid esterifications, Enzyme and Microbial 

Technology,40, 769-777. 

[11] Woodruff, M.A., Hutmacher, D.W., 2010.The return of a forgotten polymer-

polycaprolactone in the 21st century, Progress in Polymer 

Science,35,1217-1256. 

[12] Elzein T., Eddine M.N., Delaite C., Bistac S., and Dumas P.,2004.FTIR study 

of polycaprolactone chain organization at interfaces, Journal of 

Colloid and Interface Science,273, 381-387. 

[13] Matsuda T., 2007. Future Directions in Biocatalysis, pp. 205-251, Elsevier, 

Japan. 

[14] Gross R.A., Kumar A., and Kalra B., 2001. Polymer Synthesis by in vitro 

enzyme catalysis, Chem.Rev.,101, 2097-2124. 



58 

 

[15] Uyama H., Kobayashi S., 1993. Enzymatic ring opening polymerization of 

lactones catalyzed  by lipase, Chem.Lett, 1149-1150. 

[16] Knai D., Gutman A.L., Kohn D.H., 1993. Enzymatic polyesterification in 

organic media.Enzyme-catalyzed synthesis of linear polyesters, 

Journal of Polymer Science, 31, 1221-1232. 

[17] Matsumura S., Beppu H., Tsukada K., Toshima K., 1996. Enzyme catalyzed 

ring-opening polymerization of β-propiolactone, Biotechnological 

Letters, 18,1041-1046 

[18] Nobes G.A.R, Kazlauskas R.J., Marchessault R.H., 1996. Lipase catalyzed 

ring opening polymerization of lactones: a novel route to 

polyhydroxyalkonoates, Macromolecules, 29, 4829-4833. 

[19] Matsumura S., Suzuki Y., Tsukada K., Toshima K., Doi Y., and Kasayu K., 

1998. Lipase catalyzed ring opening polymerization of β-

butyrolactone to the cyclic and linear poly (3-hydroxybutyrate), 

Macromolecules, 31, 6444-6449. 

[20] Osanai Y., Toshima K., Matsumura S., 2000. Lipase catalyzed reaction of 

molecularly pure linear and cyclic poly (3-

hydroxybutanoate):evidence of cyclic polymer formation, 

Chem.Lett.,7, 576. 

[21] Srivastava R.K., Albertsson A.C., 2005. High molecular weight poly(1,5-

dioxepan-2-one) via enzyme catalyzed ring opening polymerization, 

Journal of Polymer Science, Polym Chem. Edition, 43. 

[22] Jerome C., Lecomte P., 2008. Recent advances in the synthesis of aliphatic 

polyesters by ring opening polymerization, Advanced Drug Delivery 

Reviews, 60, 1056-1076. 

[23] Abraham G., Gallardo A., Lozano A., and Roman S.J., 2000. ɛ-

caprolactone/ZnCl2complex formation: characterization and ring 

opening polymerization mechanism, Journal of Polymer Science, 38, 

1355-1365. 

[24] Barakat I., Dubois P., Jerome R., and Teyssie P., 1991.Living polymerization 

and selective end functionalization of ɛ-caprolactone using zinc 

alkoxides as initiators, Macromolecules, 24, 6542-6545. 

[25] Schmid R.D., Verger R., 1998. Lipases:interfacial enzymes with attractive 

applications, Angew Chemical Int.Ed., 37, 1608-1633. 

[26] Uyama H., Suda S., Kikuchi H., and Kobayashi S., 1997. Extremely efficient 

catalysis of immobilized lipase in ring opening polymerization of 

lactones, Chem.Lett, 1109-110. 

[27] Sivalingam G., Madras G., 2004. Modeling of lipase catalyzed ring opening 

polymerization of ɛ-caprolactone, Biomacromolecules, 5, 603-609. 

[28] MacDonald R.T., Pulapura S.K., Svirkin Y.Y., Gross R.A, Kaplan D.L., 

Akkara J., Swift G., and Wolk S., 1995. Enzyme catalyzed ɛ-

caprolactone ring opening polymerization, Macromolecules, 28, 73-

78.  



59 

 

[29] Henderson L.A., Svirkin Y.Y., Gross R.A, Kaplan D.L, Swift G., 1996. 

Enzyme catalyzed polymerizations of ɛ-caprolactone: effects of 

initiator on product structure, propagation kinetics, and mechanism, 

Macromolecules, 29, 7759-7766. 

[30] Matsumura S., Ebata H., Toshima K., 2000,A new stragey for sustainable 

polymer recycling using an enzyme: poly (ɛ-caprolactone), 21, 860-

863. 

[31] Kumar, A., Gross, R.A., 2000. Candida antartica lipase B catalyzed 

polycaprolactone synthesis: effects of organic media and 

temperature. Biomacromolecules, 1, 133-138 

[32] Mei Y., Kumar A., Gross R.A., 2002. Probing water-temperature relationships 

for lipase catalyzed lactone ring-opening polymerization, 

Macromolecules, 35, 5444-5448. 

[33] Nishida H., Yamashita M., Nagashima M., Endo T., and Tokiwa Y., 2000. 

Synthesis of metal-free poly (1,4-dioxane-2-one) by enzyme 

catalyzed ring opening polymerization, Journal of Polymer Science, 

38, 1560-1567.   

[34] Deng, F., Gross, R.A.,1999. Ring-opening bulk polymerization of ε-

caprolactone and trimethylenecarbonate catalyzed by lipase 

Novozym 435, International Journal of Biological Macromolecules, 

25, 153-159. 

[35] Kobayashi S., Takeya K., Suda S., Uyama H., 1998. Lipase-catalyzed ring 

opening polymerization of medium-size lactones to polyesters, 

Macromol.Chem.Phys.,199, 1729-1736. 

[36] Matsumura S., Ebata H., Kondo R., and Toshima K.,2001.Organic solvent-

free enzymatic transformation of poly(ɛ-caprolactone) into 

repolymerizable oligomers in supercritical carbon dioxide, Macromol 

Rapid Commun., 22, 1325-1329. 

[37] Loeker, F.C., Duxbury, C.J., Kumar, R., Gao, W., Gross, R.A., Howdle, 

S.M., 2004. Enzyme-catalyzed ring-opening polymerization of ε-

caprolactone insupercritical carbon dioxide, Macromolecules,37, 

2450-2453. 

[38] Kobayashi S., Uyama H., Takamoto T., 2000.Lipase catalyzed degradation of 

polyesters in organic solvents. A new methodology of polymer 

recycling using enzyme as catalyst, Biomacromolecules,1, 3-5. 

[39] Anderson E.M., Larsson K.M., Kirk O., 1998. One biocatalyst-many 

applicaions:the use of candida antarctica B lipase in organic 

synthesis, Biocatalysis and Biotransformations, 16, 181-204. 

[40] Albertsson, A.C., Varma, I.K.,2003.Recent developments in ring opening 

polymerization of lactones for biomedical applications, 

Biomacromolecules, 4, 1466-1486. 

[41] Kweon H., Yoo M.K., Park K., Kim T.H., Lee H.C., Lee H.s, Suk-Oh J., 

Akaike T., and Cho C.S., A novel degradable polycaprolactone 

networks for tissue engineering,2003. Biomaterials, 24, 801-808. 



60 

 

[42] Bedri, T.E., 2006. Synthesis of miktoarm star polymers via combination of 

controlled polymerization systems, PHD Thesis, ITU.Institute of 

Science and Technology, İstanbul. 

[43] Cheng H.N, Gross R.A., 2008. Polymer Biocatalysis and Biomaterials II, pp.4-

9, ACS Symposium series, USA. 

[44] Taşdelen Ç., 2006. Proteaz enziminin fiziksel adsorpsiyon, kovalent ve iyonik 

bağlanma metotları ile immobilizasyonu, Master Tezi, İTÜ.Fen 

Bilimleri Enstitüsü, İstanbul. 

[45] Bickerstaff, G.F., 1997. Immobilization of Enzymes and Cells, pp.1-11, Humana  

Press,Totowa, New Jersey. 

[46] Ebata H., Toshima K., Matsumura S., 2000. Lipase catalyzed tansformation 

of poly (ɛ-caprolactone) into cyclic dicaprolactone, 

Biomacromolecules, 1, 511-514. 

[47] Kobayashi S., Uyama H., Namekawa S., 1998. In-vitro biosynthesis of 

polyesters with isolated enzymes in aqueous systems and organic 

solvents, Polymer Degradation and Stability, 59, 195-201. 

[48] Hung T.C., Giridhar R., Chiou S.H.,and Teng Wu W., 2003. Binary 

immobilization of candida rugosa lipase on chitosan, Journal of 

Molecular Catalysis, 26, 69-78. 

[49] Cruz C.J., Pfromm H.P., Rezac M.E., 2009. Immobilization of Candida 

antarctica lipase B on fumed silica, Process Biochemistry, 44, 62-69.  

[50] Krajewska B., 2004. Application of chitin and chitosan based materials for 

enzyme immobilizations: a review, Enzyme and Microbial 

Technology, 35, 126-139.  

[51] Majeti N.V., Kumar R., 2000. A review of chitin and chitosan applications, 

Reactive&Functional Polymers, 46, 1-27.  

[52] Flesch C., Bourgeat-lami E., Mornet S., Duguet E., Delaite C., and Dumas 

P., 2004. Synthesis of colloidal superparamagnetic nanocomposites 

by grafting poly (ɛ-Cl) from the surface of organosilane-modified 

maghemite nanoparticles, Wiley Interscience. 

[53] Shaw J., Chang R., Wang F.F., 1990. Lipolytic activites of a lipase 

immobilized on six selected supporting materials, Biotechnol 

Bioeng., 35, 7-13. 

[54] Cheng Z., Teoh S.H., 2004. Surface modification of ultra this poly (ɛ-

caprolactone) films using acrylic acid and collagen, Biomaterials, 25, 

1991-2001.  

[55] Matzinos P., Tserki V., Kontoviannis A., Panaviotou C., 2002. Processing 

and characterization of starch-polycaprolactone products, Polymer 

Degradation and Stability, 77, 17-24.  

[56] Averous L., Moro L., Dole P., and Fringant C., 2000. Properties of 

thermoplastic blends: starch-polycaprolactone, Polymer, 41, 4157-

4167. 



61 

 

[57] Kesel C.D., Lefevre C., Nagy J.B., David C., 1999. Blends of 

polycaprolactone with polyvinylalcohol: a DSC, optical microscopy 

and solid state NMR study, Polymer, 40. 1969-1978. 

[58]   Stuart B.H., Polymer Analysis, pp.152-155, John Wiley Sons, UK. 

[59] Carraher C.E., 2003. Seymour/Carraher’s Polymer Chemistry, pp.80-86. 

Marcel Dekker, Newyork. 

[60] Betancor L., Gallego F.L., Hidalgo A., Alonso M.N., Dellamora O.G., 

Mateo C., Fernandez L.R., Guisan J.M., 2006. Different 

mechanisms of protein immobilization on gluteraldehyde activated 

supports: effect of support activation and immobilization conditions, 

Enzyme and Microbial Technology, 39, 877-882. 

[61] Kobayashi S., 2010. Lipase-catalyzed polyester synthesis-A green polymer 

chemistry, Proc.Jpn.Acad., 86, 338-365. 

[62] Dubois P., Coulembier O., and Raquez J.M, 2009.Hand Book of Ring 

Opening Polymerization, pp.25-30, Wiley VCH, Germany. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 

 

APPENDICES 

 

Appendix A.1: Standard Curve for Lipase Protein Determination 
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APPENDIX A.1 

 

 

 

 

Figure A.1: Standard curve for protein assay 
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