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MODELING SPATIAL DISTRIBUTION OF ORIENTAL BEECH (Fagus 

orientalis): PAST, PRESENT, AND FUTURE 

SUMMARY 

Climate change affects forest biomes more severely than ever, even with the ~1°C 

temperature warming so far. Geographical distributions of these biomes are linked to 

warming temperatures and decreasing precipitation. Species try to adapt to this change 

by changing these geographical barriers. Recent warming not only impacted the 

survival rates of most tree species, also increased risks in handling extreme events. 

Fagus orientalis is a temperate, deciduous, broad-leaved species, which covers a wide 

area from the eastern Balkans through Turkey, Caucasia, Crimea and northern Iran, 

including the Amanos Mountains in the south, with a large elevational distribution 

from sea level to 2100 m.  Beech has an important role in terms of dominating forests 

and creating new ecosystems, also it is used by many industries. Several research 

indicate that these species are disturbed by changing the climate in terms of increasing 

temperature and decreasing precipitation. Because of its importance in forestry, 

industry and ecosystem Fagus sp. were the focus of interest in this study. We 

conducted species distribution model simulations with five different algorithms 

embedded in biomod2 R package – BIOCLIM, GAM, GLM, RF, MaxEnt –  and with 

environmental data from the climate of the present, past, and future from Wordclim 

version 1.4, as well as digital elevation model for altitude from NASA. Our simulations 

covered an area in Eurasia where Fagus sp. is seen, exact coordinates of 18 – 62 East 

and 33 – 51 North. We verified our model with present-day classifications, which fitted 

well the distributional data obtained from General Directorate of Forestry and 

EUFORGEN project. These models were used to ‘predict’ distributions through 

climate changes spanning Last Glacial Maximum (21,000 bp), Mid-Holocene (6,000 

bp), 2050 and 2070 obtained from two global climate models, MIROC-ESM and 

CCSM4. We observed that F. orientalis distribution is toward the northeast from its 

present distribution, where mountainous regions are intense, colder and wetter climates 

are available according to future conditions. These results led us to verify that drier 
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climate and higher temperatures are considered as limitations to these species. 

Additionally, we could identify refugia areas for this particular species in the past 

which might lead to new studies. We believe that the outcomes of this study would 

help improving management and conservation plans for Fagus orientalis in order to 

protect it from severe effects of climate change. 
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DOĞU KAYINI (Fagus orientalis) AĞACININ TÜR DAĞILIM 

MODELLEMESİ: GEÇMİŞ, GÜNÜMÜZ VE GELECEK 

ÖZET 

İklim değişikliği, şimdiye kadar ~ 1 ° C'lik sıcaklık ısınmasıyla bile orman biyomlarını 

her zamankinden daha ciddi şekilde etkilemektedir. Bu biyomların coğrafi dağılımları, 

artan sıcaklık ve azalan yağışlarla ilişkilendirilmektedir. Türler bu coğrafi bariyerleri 

kaydırarak bu değişikliğe uyum sağlamaya çalışırlar. Global ölçekteki son ısınma, 

çoğu ağaç türünün hayatta kalma oranını etkilemekle beraber, aynı zamanda ekstrem 

olayların türler üzerindeki risklerini de arttırmış oldu. Bu türlerden biri olan Fagus 

orientalis (doğu kayını), Doğu Balkanlardan itibaren, Türkiye, Kafkasya, Kırım ve 

Kuzey İran ile güneydoğudaki Amanos Dağları da dahil olmak üzere, geniş bir alana 

yayılan, aynı zamanda geniş bir yükselti dağılımına da sahip (deniz seviyesinden 2100 

metrelere kadar), ılıman iklimlerde yaşayan, yaprak döken, geniş yapraklı bir türdür. 

Kayın, ormanları domine eden ve yeni ekosistemler yaratan bir tür olmasından ötürü 

bulunduğu yaşam alanında önemli bir role sahiptir, bunun yanında birçok endüstri 

tarafından kullanıldığından ekonomik etkisi de oldukça fazladır. Yapılan 

araştırmalardan bazıları, iklim değişikliğinin sebep olduğu sıcaklık artışı ve yağışların 

azalamasıyla beraber gelen kuraklık riskinin doğu kayınının büyümesini kısıtladığını 

göstermektedir. Kayın ağacının, ormancılık, endüstri ve ekosistemdeki önemi 

nedeniyle Türkiye coğrafyasına daha çok hakim olan Fagus orientalis türü bu 

çalışmada ilgi odağı olmuştur. Bunun için biomod2 R paketine gömülmüş beş farklı 

algoritma - BIOCLIM, General Additive Model (GAM), General Linearized Model 

(GLM), Random Forest (RF), Maximum Entropy (MaxEnt) - ile alansal tür dağılım 

modeli simülasyonları gerçekleştirilmiştir. Bu simülasyonlar için gerekli olan çevresel 

etmenler iklim ve yükselti olarak kararlaştırılmış, günümüz, geçmiş ve gelecek iklim 

verisi WordClim’den (versiyon 1.4), yükselti verisi alışma alanına özel olarak 

NASA'dan dijital yükseklik modeli şeklinde alınmıştır. Modeller için çalışma alanı, 

Avrasya'da Fagus sp.’nin görüldğü yerler baz alınarak tanımlanmıştır, tam olarak 

belirtmek gerekirse 18 - 62 Doğu ve 33 - 51 Kuzey koordinatları bu alanı
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 kapsamaktadır. Çevresel verilere ek olarak modelin gerektirdiği bir diğer veri olan 

dağılım verileri, Orman Genel Müdürlüğü ve EUFORGEN projesinden elde edilen 

verilerin birleşimi ile elde edilmiştir. Günümüz şartlarıyla yürütülen ilk simülasyon bu 

dağılım verisi ile alansal olarak çakıştığından , modelin güvenilirliği doğrulanmıştur. 

Sonrasında bu modeller, iki küresel iklim modeli ile, MIROC-ESM ve CCSM4, elde 

edilen Son Buzul Maksimumu (21.000 g.ö.), Orta Holosen (6,000 g.ö.), 2050 ve 2070 

zaman dilimlerini kapsayan iklim değişikliğini yansıtan parametrelerle, türün ilerideki 

alansal dağılımının tahmini için kullanılmıştır. F. orientalis dağılımının bugünkü 

dağılımından kuzeydoğuya doğru kaydığı görülmüştür ve bu bölgelerin dağlık 

alanların yoğun görüldüğü yerler (genellikle Kafkasya) olduğu saptanmıştır. Ek olarak 

türün, gelecekte soğuk ve yağışlı iklim şartları beklenen alanlara yöneldiği 

gözlemlenmiştir. Kullanılan algoritmalar istatiksel olarak eğri altında kalan alan 

(AUC) değerleri ile karşılaştırılmış ve girdilere göre en iyi modelin RF (AUC = 0.99) 

olduğu görülmüştür. Literatüre göre, RF algoritması etkin sınıflandırma prensibi ile 

daha kesin ve daha güvenilir tahminler yapmaktadır, bu çalışmada bunun doğruluğu 

görülmüştür. İlk tür dağılım modeli algoritması ve ilkel istatiksel hesaplamaları 

sebebiyle BIOCLIM (AUC = 0.79) ise en kötü model olmuştur. Öte yandan GAM 

algoritmasının geçmiş dönemlerdeki simülasyonlarında aşırı yorumlamaya sebebiyet 

verdiği görülmüş ve buna çalışma alanının büyüklüğünün, algoritmanın hesaplama 

istatistiklerinde sebebiyet verdiği hatanın neden olduğu tespit edilmiştir. Bazı 

simülasyonların sonucunda günümüzde görülmeyen alanlarda, özellikle iç Ege ve 

Avrupa, F. orientalis dağılımı tespit edilmiştir. İç Ege’deki dağılımın sebebinin insan 

etkisiyle beraber, ekosistemdeki bitki ve diğer canlılar ile olan kompetisyon 

olabileceği şeklinde yorumlanmıştır. Tür dağılım modellerinin biyolojik faktörleri 

girdi olarak kabul etmemesi bu konuda yapılabilecek bir tahmini bu çalışma için 

engellemektedir. Modeller sadece abiyotik faktörleri kabul etmektedir ve bu 

çalışmmada sadece bunlardan iki tanesi (iklim ve yükselti) kullanılmıştır. Avrupa’daki 

dağılım ise F. orientalis’in yakın akrabası olan F. sylvatica ile ilişkilendirilmiştir. İki 

türün fizyolojik benzerliği, birbirine yakın şartlar ve ekosistemlerde yaşamalarını 

sağlamaktadır, modelin bu bölgelerde uygun iklim şartları gördüğü yerlerde F. 

orientalis bireylerinin olabileceğini düşünmesi bu açıdan beklenilebilir olarak 

görülmüştür.  Her küresel iklim modeli kendi içinde farklı değerlere sahip olduğundan, 

MIROC-ESM ve CCSM4 kendi aralarında karşılaştırılmış ve MIROC-ESM’in daha 

sıcak ve yağışlı olduğu saptanmıştır. İki modelle aynı dönemlerde yapılan tahminlerde  
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CCSM4 simülasyonlarının daha fazla popülasyon yoğunluğuna sahip olduğu 

görülmüştür, bu sonuç ve iki model arasındaki karşılaştırma, F. orientalis üzerindeki 

asıl limitleyici faktörün sıcaklık olduğunun düşünülmesine yol açmıştır. 

Simülasyonların doğrulukları aynı zamanda dönemler arasındaki iklim şartlarının 

karşılaştırılması ile de doğrulanmıştır. Geçmişteki daha soğuk ve kurak dönemler ile, 

gelecekte daha sıcak ve kurak olması beklenen alanlarda türün dağılımı oldukça az 

gözlenmiştir. Bu sonuçlar ile daha kuru ve daha yüksek sıcaklıkların bu türlere 

sınırlama olarak görüldüğü doğrulanmıştır. Ayrıca, geçmiş simülasyonları ile bu 

türlerin sığınak alanlarını kabaca tanımlanmış olup, tür özelinde bu alanda yeni 

çalışmaların ilk adımı atılmıştır. Bu çalışmanın sonuçlarının, Fagus orientalis türünü 

iklim değişikliğinin ağır etkilerinden koruyabilmek için amenajman ve koruma 

planlarının iyileştirilmesine yardımcı olacağına inanıyoruz. Buna ek olarak, çalışmayı 

geliştirmek amacı ile IPCC’den farklı iklim senaryoları ve korelasyon analizi yapılmış 

iklim parametreleri ile simülasyonlar yapılmaya, ayrıca dendrokronoloji ile palinoloji 

alanlarından destek alınmaya çalışılmaktadır.
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 INTRODUCTION 

Climate change was always an issue in Earth’s history. However, this time, its impacts 

are observed more severely than ever, even with the ~1°C temperature warming so far 

(IPCC, 2013). One of the most obvious impacts is on living organisms worldwide, they 

try to adapt to this change by changing their behaviors, physical features, and also 

geographical distributions (Scheffers et al., 2016; Parmesan, 2006). The distribution 

barriers are linked to warming temperatures and decreasing precipitation (IPCC, 

2013). In all of the biomes, forests are the ones which are affected the most by the 

recent warming. These changes not only unbalance the survival rate of tree species, 

also increased risks will force them to handle extreme events, such as severe droughts, 

floods, wildfires etc. (Lindner, 2010). Since trees are the dominant species of forest 

ecosystems, any influence on them would leave marks on the environment in terms of 

resource supply, shelter, local and regional climate, as well as ecosystem services. 

Changes in dominant tree species would force the whole ecosystem and dependent 

organisms to alter their lifestyle and even die (Dyderski, 2017). Climate is the basic 

factor that is responsible for trees’ growth and survival. Changing in climate is causing 

many tree species to be at the edge of relocation or extinction, this would result in the 

decreased endemism in an area. Also, climate dependent factors, such as a shift in time 

frames of biological processes, drought, lack of resources, become the foundation of 

many disturbances and limiting the growth of tree species. Thus, any effect on a forest 

environment would be a collaboration of many factors especially ignited by climate 

change. 

 Climate Change in Turkey and Surrounding 

The Anatolian plate was formed in the Oligocene, which makes it an aged zone with 

lots of changes in its environments, especially with the effects of climate (Aral, 2008). 

This region is rich in providing paleoclimatic information that also helps to construct 

future predictions. In the present day, impacts of global warming can be seen in Turkey 

significantly because of its diverse and endemic biodiversity, vegetation characteristic
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and different climatic zones (Şekercioğlu et al., 2011). For this reason, it is important 

to understand the consequences of climate change around Turkey and try to predict its 

possible outcomes on biodiversity. The study region in this study focuses on the 

northern part of Turkey (Black Sea region) and also the nearest surroundings such as 

Caucasus, Crimea and northern Iran. The study region is determined by the present-

day distribution of the tree species of concern, Eastern beech, Fagus orientalis L., 

which belongs to Fagus genus that is widely distributed across Eurasia.  F. orientalis 

can be seen widely and F. sylvatica can be seen locally in the above-mentioned area 

(Yaltırık, 1982a; Caudullo et al., 2017). Recent studies propose that these two species 

should be considered as subspecies of Fagus sylvatica as F. sylvatica L. subsp. 

sylvatica and F. sylvatica subsp. orientalis L., they can be distinguished by 

morphological characteristics of their leaves and cabin (Figure – 1.1). (Denk, 2003; 

Greuter et al., 1984; Akkemik, 2014).  

:  

Figure – 1.1: Fagus sylvatica (left) and Fagus orientalis (right) (Akkemik, 2014). 

Nevertheless, both are ecologically and economically highly important (Pastorelli et 

al., 2003). Beech has an important role in its own niche in terms of dominating forests 

and creating new ecosystems. Also, beech wood can be used as fuel, paper, furniture 

etc. Because of its importance in forestry, industry, and ecosystem, Fagus was the 

focus of interest in many species across Eurasia. Several studies indicate that F. 

orientalis species are disturbed by changing the climate in terms of increasing 

temperature and decreasing precipitation  (Köse and Güner, 2012; Haghshenas et al., 

2016). The outcomes of these studies with the importance of F. orientalis to its 

environment and ecosystem services led to a need of understanding the current 

situation and future of these species in terms of conservation and management plans 

according to climate change as well as maintaining the biodiversity around it.  
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 Species Distribution Models (SDMs) 

Since climate change is the main driven factor of geographical distributions, this issue 

has been studied by many researchers via various models, either with climate, 

ecosystem or vegetation models. Nevertheless, currently, the most used approach to 

investigate the impacts of climate change on distributions is species distribution 

models (SDMs). SDMs are also called as bioclimatic models, climate envelopes, 

ecological niche models, habitat models, range maps, and resource selection functions. 

SDM is the most commonly used term, yet it can cause confusion from time to time, 

still, the modeling process is the same for all. These models help to identify areas in 

an area that have similar environments to localities where the species has been 

observed. For this purpose, models use mapped observation data (mostly in 

presence/absence format) and environmental (such as climate, among others) data 

provided for the interested area (Elith and Leathwick, 2009; Pearson, 2007). SDMs 

provide predictions of distributions of the given species by using the abiotic factors 

such as environmental data, so it is mostly a tool for understanding the fate of a species 

in the future in terms of ecology and conservation purposes. These models also help 

to understand current and possible interactions between species, organisms, 

environmental parameters and richness in the area (Elith et al., 2006). SDMs can be 

considered as the evolved form of predictive habitat distribution models, described by 

Guisan and Zimmermann in 2000. Many of the known statistical classification 

algorithms which are already in use for prediction of distribution, can also be applied 

to SDM, such as generalized linear models (GLM, Nelder and Wedderburn, 1972; 

McCullagh and Nelder, 1989), generalized additive models (GAM, Hastie and 

Tibshirani, 1990),  machine-learning algortihms (maximum enthropy) (Phillips et al., 

2006), neural networks (Hopfield, 1982), regression trees (Breiman et al., 1984), and 

random forest (Breiman, 2001a). Distribution modeling with the help of climate 

parameters is going back to the 1920s, to attempts by Johnston, the first use of a 

computer for this purpose was in 1971, by Austin, earliest SDM trial was done by 

Henry Nix in 1977 (Guisan and Thuiller, 2005). From that time until now, this tool has 

been improved and advanced which made it significant for answer tons of questions 

in ecology, evolution, biodiversity, conservation, and now also climate change 

research. Improvements on SDMs are continuing day by day by incorporating of 

external and non-climatic factors (Hijmans and Graham, 2006), comparing different  
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model algorithms (Li and Wang, 2013), advancing modeling methods and parameters 

(Elith et al., 2006) and by focusing on model variables and parameters (Jiménez‐

Valverde, Lobo and Hortal, 2008; data to be occurrence/absence/pseudo-absence, 

VanderWal et al., 2009; importance of accessible area concept, Barve et al., 2011). 

This helps to understand the underlying mechanism of change in forest ecosystems 

caused by climate change and let us predict a certain aspect of what will happen in the 

future, how will species react and what would be the costs of it. 

 Hypothesis 

In this study, for the reasons given above, we ran different SDM algorithms on one 

particular tree species, eastern beech, Fagus orientalis L. which can be found across 

the northern Anatolia, Caucasus and Iran. We used past, present and future climatic 

conditions to observe how the species respond to the climate change throughout its 

history. Köse and Güner made a detailed tree ring study on F. orientalis in 2012 to 

identify the most important climate factors that affect the growth and found out that 

the species are vulnerable in high temperature and low precipitation conditions. Also, 

it is observed in the field that there are some biological problems on beech populations 

that are found in the low altitudes can be caused by altering climate. We tested the 

species distribution to explore these two points and expect its distribution zone to be 

shifted to higher altitudes and the areas with wetter and milder climatic conditions.
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 MATERIALS AND METHODS 

 Study Species 

Fagus orientalis is a temperate, deciduous, broad-leaved species that belong to the 

family Fagaceae that is widely distributed across Northern Hemisphere (Feng and 

Lechowicz, 2006; Denk, 2003). In Eurasia when F. sylvatica is found only in regions 

such as Thrace (Turkey), small populations in Black Sea Region, Bulgaria, southern 

Russia;  F. orientalis cover a much wider area from the eastern Balkans, northeastern 

Turkey (Black Sea region), small population around Amanos Mountains (Turkey), 

Caucasia, Crimea and northern Iran. Some hybridization zones between two species 

have been observed around Europe and Asia border, where two species actually 

separating (Feng and Lechowicz, 2006; Kandemir and Kaya, 2009; Akkemik, 2014; 

Caudullo et al., 2017). Considering the distribution area of the species, we defined an 

extent with coordinates of 18 – 62 East and 33 – 51 North (Figure – 2.1). The species 

has several synonyms, including consideration as a subspecies of F. sylvatica 

mentioned before (The Plant List, 2013). F. orientalis has a wide elevational 

distribution from sea level to 2100 m (Şanlı, 1978). It is a wind-pollinated species with 

an average growth temperature ranges from 6.5 °C  to 10.2 °C (Feng and Lechowicz, 

2006). European beech is distributed in a wide area as mentioned above, however, it 

shows different growth rates depending on its location by means of climate, aspect, 

and elevation (Akkemik and Demir, 2003). 

 Data Collection 

2.2.1 Environmental data 

Climate is the main factor shaping species distributions (Pearson & Dawson, 2003) 

and with SDM, climate predictors may provide an effective approach for handling the 

environmental sustainability (Bucklin et al., 2015), thus 19 bioclimatic variables 

(Table – 2.1) (Hijmans et al., 2005) and altitude were used  as environmental input and 

other factors, such as soil type and land use were not taken into account.
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 Figure – 2.1: Distribution of F. sylvatica and F. orientalis adapted from Caudullo et al., 2017. Here,  F. 

orientalis is indicated as subspecies of sylvatica and hybridization zones can be seen clearly. Our 

study site is the region in the red box. 

Table – 2.1: Bioclimatic variables from WorldClim database. 

Abbreviation Bioclimatic variables 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 
BIO3 Isothermality (BIO2/BIO7) (* 100) 
BIO4 Temperature Seasonality (standard deviation *100) 
BIO5 Max Temperature of Warmest Month 

BIO6 Min Temperature of Coldest Month 

BIO7 Temperature Annual Range (BIO5-BIO6) 
BIO8 Mean Temperature of Wettest Quarter 
BIO9 Mean Temperature of Driest Quarter 

BIO10 Mean Temperature of Warmest Quarter 
BIO11 Mean Temperature of Coldest Quarter 
BIO12 Annual Precipitation 

BIO13 Precipitation of Wettest Month 

BIO14 Precipitation of Driest Month 

BIO15 Precipitation Seasonality (Coefficient of Variation) 
BIO16 Precipitation of Wettest Quarter 
BIO17 Precipitation of Driest Quarter 
BIO18 Precipitation of Warmest Quarter 
BIO19 Precipitation of Coldest Quarter 

Past and future climate data were also available on WorldClim version 1.4 database as 

Last Glacial Maximum (LGM), Mid-Holocene (MH) for past, and 2050 (average for 

2041–2060) and 2070 (average for 2061–2080) for future as downscaled global 

climate model (GCM) output from CMIP5. From these options MIROC-ESM 

(Watanabe et al., 2011) and CCSM4 (Gent et al., 2011)  were selected. For each GCM 

representative concentration pathway (RCP) 8.5, which is the pessimistic scenario of 
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IPCC, 5th Assessment Report was applied. The pessimistic scenario assumes 1,350 

ppm CO2 and 2.6–4.8°C increase by 2100, and refers to the A1F1 scenario of IPCC 

AR4 guidelines (Harris et al., 2014; van Vuuren et al., 2011) 2100 relative to to pre-

industrial (Weyant et al., 2009). Raster maps of current (1960–1990) and projected 

(2041–2060 & 2061–2080) bioclimatic variables at 2.50 resolution were obtained from 

the WorldClim version 1.4 dataset (http://www.worldclim.org/; Hijmans et al., 2005). 

Additionally, in order to integrate the altitude in the models, 30 seconds resolution of 

GMTED2010 digital elevation model from NASA’s USGS website was downloaded 

according to our coordinates (https://earthexplorer.usgs.gov/), merged and resampled 

into 2.5 arc minutes resolution. All environmental data was cropped according to our 

defined extent of 18 – 62 East and 33 – 51 North. Entire conversions, operations, and 

formatting on environmental data were done on ArcGIS 10.3 and/or QGIS 2.15. 

2.2.2 Distribution data 

Distribution data of Fagus orientalis was obtained from European Forest Genetic 

Resources Program (EUFORGEN distribution maps, 

http://www.euforgen.org/species/fagus-orientalis/) for areas outside Turkey (since the 

data given to EUFORGEN for Turkey was too coarse) and from Turkey’s General 

Directorate of Forestry (GDF) for areas within Turkey, two occurrence data is merged 

together in QGIS (version 2.14) providing 10,399 presence points in total across the 

study area. Data from GDF includes all the mixed forests in Turkey according to the 

latest management plans, forests that contain Eastern beech species were selected and 

extracted by QGIS. Because the distribution data sources differed in the form we 

merged and transformed all of them into one single raster map at 2.50 resolution in a 

WGS-84 spatial coordinates system, then obtained spatial points from this final raster 

map when needed. 

 

Figure – 2.2: Fagus orientalis distribution data from EUFORGEN (green), GDF (black), and GBIF (red). 
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We are aware that some data provided by Global Biodiversity Information Facility 

(GBIF) database too, yet it was insufficient and containing slightly biased data. In 

Figure – 2.2, all distribution data from these 3 sources can be seen. 

 The Model 

Among all of the algorithms of SDM (Pearson, 2007), we applied five of them for our 

research which are General Linearized Model (GLM), General Additive Model 

(GAM), Random Forest (RF), BIOCLIM, and Maximum Entropy (MaxEnt) (Figure – 

2.3). All these models were applied by using R with the biomod2 package, which is 

mainly designed for species distribution modeling, calibration, evaluation, and an 

ensemble of models by Thuiller et al., 2007. As input, our distribution data and 19 

bioclimatic variables were given. Input data was formatted with default settings, 80% 

as training sample and randomly 20,796 background points as pseudo-absence were 

created. 

MaxEnt is also used from its open source Java platform designed by Phillips et al., 

2006, with randomly selected 10,000 pseudo-absence points, with 70% of data as a 

training sample.  Background points lead more conservative models through shaping 

the model for an equal proportion of presences and pseudo-absences (Elith et al., 

2011), giving more reliable results. 

As evaluation criterion of model performance, we used the area under receiver 

operator curve (AUC) because it depends on true positive and true negative 

overlapping rates between the current and projected models. 

All analyses were applied using R software, code sheets, modeling and evaluation 

scripts are given in appendices (App A). 

 

Figure – 2.3: Representation of model workflow with input and output parameters.
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 RESULTS 

 Model Outputs 

Performance of models was measured by AUC, ranged from 0.76 to 0.99 (Table – 3.1) 

since all were above 0.7, the runs were successful (Elith et al., 2011). 

Table – 3.1: AUC values of all the models. 

Algorithm AUC 

BIOCLIM 0.79 

GAM 0.98 

GLM 0.96 

RF 0.99 

MaxEnt (biomod2) 0.96 

MaxEnt (open source java) 0.76 

All algorithms differed in projected range changes among different time zones, LGM, 

MH, present and average values for 2050 and 2070 with the pessimistic scenario. The 

model outcomes were analyzed with RStudio, following figures show the prediction 

maps of Fagus orientalis distribution in the study area. All of them contain also 

distribution data and present time projection –  in the first row left and right 

respectively – to compare with the predictions. 

The first figure shows the present time distribution projections with all the algorithms 

(Figure – 3.1). Green areas mark the most expected distribution areas of F. orientalis, 

with this information the most distributed projection is BIOCLIM while the least one 

is RF. The closest one to our distribution data (observation data) is also RF. 
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Figure – 3.1: Present time projection distribution maps according to the distribution data as input. The top row 

 shows distribution data (left) and BIOCLIM projection (right), middle row shows GAM (left) and 

 GLM (right) projections, and the bottom row shows RF (left) and MAXENT (right) projections. 

 Grey curves indicate the density of species distribution latitude and longitudewise, whereas color 

 scale meaning the possibility of distribution from 0, absent, to 1, presence. 

Rest of the figures demonstrate a particular algorithm, with MIROC – ESM and 

CCSM4 models, respectively. All of these have distribution data (left) and present time 

projection (right) in the first row, past projections, LGM (left) and MH (right) in the 

middle row, and future projections, 2050 (left) and 2070 (right) in the bottom row. 

Figure – 3.2 shows the BIOCLIM projections of MIROC – ESM model with all time 

zones. There are certain decreases between different time zones in terms of population 

density and distribution area. The geographical shift is observed to the northeast from 

the present distribution, assuming to the higher altitudes. 
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Figure – 3.2: MIROC – ESM BIOCLIM  projection distribution maps. Grey curves indicate the density               

    of species distribution latitude and longitudewise, whereas color scale meaning the possibility 

    of distribution from 0, absent, to 1, presence. 

Figure – 3.3 shows GAM projections with MIROC – ESM model. As it can be seen 

from the maps, GAM predicts an overfitted distribution area during LGM and MH 

time zones, which will be discussed in the next section. From past to future projections, 

it is obvious that density and distribution area decrease again. In future projections, 

species shift to the inner Anatolia, and northeast of Black Sea region. 
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Figure – 3.3: MIROC – ESM GAM  projection distribution maps. Grey curves indicate the density of species 

 distribution latitude and longitudewise, whereas color scale meaning the possibility of distribution 

 from 0 to 1, absence to presence. 

GLM projections of MIROC – ESM model can be seen in Figure – 3.4. Again 

distribution areas differ from past to future, however this time there is no obvious 

decrease in the population density. Also, it is important to point out that, GLM revealed 

the distribution around Amanos Mountains from the input data also in the projections 

(slightly in present time, LGM and MH). Past projections indicate that the species were 

denser in Iran and future projections predict that it will shift to northern parts of its 

present distribution, to the Crimea and Ukraine in 2050 and eastern Russia in 2070. 
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Figure – 3.4: MIROC – ESM GLM  projection distribution maps. Grey curves indicate the density of species 

 distribution latitude and longitudewise, whereas color scale meaning the possibility of distribution 

 from 0, absent, to 1, presence. 

From Figure – 3.5 RF projections of MIROC – ESM model can be seen. According to 

this algorithm, there is a significant decrease in population density in the projections. 

Also, RF’s present time projection (top row, right) is the best-fitted one to the 

distribution data among all of the prediction maps, even the sensitive distribution 

around Amanos Mountains can be seen fully in this algorithm. Iran region was denser 

in the past and future predictions show a shift to the northeastern parts from the present 

distribution, assuming to the higher altitudes. 
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Figure – 3.5: MIROC – ESM RF projection distribution maps. Grey curves indicate the density of species 

    distribution latitude and longitudewise, whereas color scale meaning the possibility of     

    distribution from 0, absent, to 1, presence. 

Final one for MIROC – ESM model is Figure – 3.6, which shows MaxEnt projections. 

There is a certain decrease again in population density and distribution area in time. 

There was more beech in the inner and southern Anatolia in the past, also the future 

predictions show a shift to the northeast of the present distribution, again with higher 

altitudes. 
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Figure – 3.6: MIROC – ESM MAXENT projection distribution maps. Grey curves indicate the density of 

    species distribution latitude and longitudewise, whereas color scale meaning the possibility of 

    distribution from 0, absent, to 1, presence. 

The second part of the outputs focuses on CCSM4 model. Figure – 3.7 shows 

BIOCLIM projections. This time, with respect to distribution data, no significant 

decrease in population density or distribution area is observed. However, according 

to present time prediction (top row, right),  there are declines in the population density 

of past and future. There are no obvious shifts in the future predictions, except some 

regions in the southern Anatolia. 
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Figure – 3.7: CCSM4 BIOCLIM projection distribution maps. Grey curves indicate the density of species 

    distribution latitude and longitudewise, whereas color scale meaning the possibility of   

    distribution from 0, absent, to 1, presence. 

Figure – 3.8 shows the GAM projections of CCSM4 model. Similar to MIROC – ESM 

outputs overfitted distribution area during LGM and MH time zones are observed 

again. There are significant areas in Europe in the past, also future predictions show a 

shift towards there. According to this algorithm, inner Anatolia regions will be covered 

with beech in the future as well. 
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Figure – 3.8: CCSM4 GAM projection distribution maps. Grey curves indicate the density of species    

       distribution latitude and longitudewise, whereas color scale meaning the possibility of   

       distribution from 0, absent, to 1, presence. 

GLM projections of CCSM4 model are seen in Figure – 3.9. During LGM, Iran and 

Azerbaijan were covered with beech, yet they lost this cover through time. There are 

no obvious shifts in the future, except inner and southern Anatolia. 

 



 

18 

 
Figure – 3.9: CCSM4 GLM projection distribution. Grey curves indicate the density of species distribution 

    latitude and longitudewise, whereas color scale meaning the possibility of distribution from 0, 

    absent, to 1, presence. 

Figure – 3.10 shows the RF projections of CCSM4 model. Again this algorithm is 

overlapping with the distribution data in the Amanos Mountains, which is sensitive. 

The population density and distribution area decrease in time according to future 

predictions. The shift is observed around northeast of the present distribution, 

concentrated on higher altitudes. 
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Figure – 3.10: CCSM4 RF projection distribution maps. Grey curves indicate the density of species distribution 

 latitude and longitudewise, whereas color scale meaning the possibility of distribution from 0, 

 absent, to 1, presence. 

Finally, Figure – 3.10, shows MaxEnt projections of CCSM4. It can be said that the 

population density was lower in the past and it will be even lower in the future, also 

there will be a certain shift in the northeast of present distribution. 
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Figure – 3.11: CCSM4 MAXENT projection distribution maps. Grey curves indicate the density of species 

      distribution latitude and longitudewise, whereas color scale meaning the possibility of    

      distribution from 0, absent, to 1, presence. 

In total it can be said that mainly all outputs agree with the direction of the shift of 

Fagus orientalis in the future, which will be northwest of its present distribution, 

accumulating mainly in the mountainous regions around the borders of Turkey, Russia, 

and Georgia. This leads us to make inferences that in the future F. orientalis will prefer 

higher altitudes with milder, slightly colder regions with wetter conditions. 

 GCM Difference 

In this study, as it is mentioned before, two different GCMs were used, MIROC – 

ESM, and CCSM4. Since they are two different models, there are differences between
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values of 19 bioclimatic variables (Table – 2.1). This difference between values affect 

the model predictions as well. To show that, we combined MaxEnt model projections 

(from original MaxEnt open source Java platform, Phillips et al., 2006) in one figure 

with QGIS to see all time zones and two GCMs at once (Figure – 3.12). As it can be 

seen from below, two GCMs have obvious differences in their distribution maps. The 

predicted shift is again, northeast of the present distribution as the other model outputs, 

yet they differ in the predicted distribution area size and population density. 

 
Figure – 3.12: MaxEnt projection distribution maps with all time zones and two different GCMs. The right 

 column shows MIROC – ESM projections, left columns shows CCSM4 projections. First two 

 rows show past distributions, LGM and MH respectively, whereas last two rows show future 

 distributions, 2050 and 2070 respectively. The blue, yellow and red areas indicate the distribution 

 possibilities from low to high, according to the threshold obtained from ROC curve (with 0.76 

 AUC value) of projections. 
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Additionally, with Figure – 3.6, Figure – 3.10 and Figure – 3. 12 the two MaxEnt 

model methods, from biomod2 and the original java platform, can be compared. There 

are no significant differences between outcomes of both methods, they are also both 

reliable according to their AUC values (Table – 3.1), thus they fit well with each other 

and MaxEnt run with biomod2 R package is reliable to use.
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 DISCUSSION 

SDM simulations provided the predicted distribution maps of past, present, and future 

according to the given distribution data and environmental parameters. From the 

distribution maps obtained there are three main things to point out. First one is the 

unusual predicted distribution of F. orientalis in the inner Aegean region. Present 

distribution of beech species is not overlapping with this region. SDM mainly works 

with abiotic factors, and also from these abiotic factors only temperature, precipitation 

and elevation are used in this study. This led us to think the reason that we see 

distribution around Aegean region can be possible human influences and inter-

/intraspecies competition effects on Fagus sp.. Second is slightly predicted 

distributions across Europe. As we mentioned before, Fagus sylvatica and Fagus 

orientalis are very close species with similar physiological characteristics, it is a 

possibility that the models interpret the F. sylvatica habitat, mainly Europe, as suitable 

habitat for F. orientalis because of this similarity. Lastly, in input data (distribution 

data), Amanos Mountains were considered as unexpected since the climate conditions 

around that region are not suitable for F. orientalis to grow. However, Amanos 

Mountains has a microclimate that is providing many species an extraordinary habitat 

and being a connection from the Eastern Mediterranean region to the mountain ranges, 

thus being in the center of the Anatolian diagonal, and serving as one of the important 

biodiversity hotspots of the area (Yılmaz, 1997; Şekercioğlu et al., 2011). Since this is 

a highly specific and unordinary environmental condition, this explains why the 

distribution around the Amanos Mountains did not appear in all of the projections, but 

only in MIROC – ESM model’s GLM, GAM (Figure – 3.4, 3.5) and CCSM4 model’s  

RF (Figure – 3.10). 

In addition to these points, we compared model algorithms, GCMs, and climate 

conditions in different time zones. 
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 Model Algorithm Comparisons 

As it was mentioned before all of the models ran successfully, according to their AUC 

values (Table – 3.1). The most successful one among the algorithms is RF, least 

successful one is BIOCLIM. When we also compare the original MaxEnt software and 

MaxEnt embedded in the biomod2 package, they are both successful as indicated on 

their distribution maps above. RF works with a combination of classification trees to 

produce more accurate classifications, create complex interactions with model 

predictors and data, perform several statistical data analysis, such as regression, 

classification, survival and unsupervised learning (Cutler et al., 2007). Comparing the 

other algorithms, we assumed that this accuracy and verification by different statistical 

data analysis in RF (Figure – 3.5, 3.10) led this algorithm to be the most successful 

one. On the other hand, BIOCLIM algorithm is the primitive one in SDM studies. It 

was the first developed model to apply the spatial analysis of species. It was expected 

to from other algorithms to give better results than BIOCLIM (Figure – 3.2, 3.7) with 

their advanced characteristics and calculations.  

In addition to that, present time projections fitted well with the present distribution 

data, thus our model is verified by the observation data, this means trained model is 

reliable to do further projections for past and future. Also, all future predictions agree 

well with the prediction distribution of Fagus orientalis, northeast from its present 

time distribution, towards mountainous regions with higher altitudes. 

The only critical problem with the model outputs is seen in GAM algorithm (Figure – 

3.3,3.8) with its overfitted distribution in the past projections. In order to check the 

Fagus orientalis presence in the LGM and MH, European Pollen Database was used 

(www.europeanpollendatabase.net), no records were found for F. orientalis in these 

time zones. Even GAM is seen as the second best model with its AUC value (Table – 

3.1), its present time projection perfectly matched with the distribution data, and future 

predictions are seen as expected, we interpreted its past projections as an error in 

calculations. It is known that GAM algorithm is highly sensitive to large sample size 

since the fitted functions are not constrained to any particular functional form when 

sample size increases. Our study area is considered as a very large sample for a default 

SDM, thus it is likely that GAM results would be biased (Perce & Ferrier, 2000; 

Hijmans et al., 2008). 
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 GCM Difference 

Figure – 3.12 in the results section is indicating the main differences between MIROC 

– ESM, and CCSM4. It can be said that GCM difference did not affect the geographical 

shift, yet it caused a higher population density and wider distribution area, both in past 

and future. Tı further investigate this we analyzed mean annual temperature and annual 

precipitation bioclimatic parameters (bio1 and bio12 respectively, according to Table 

– 2.1) for both GCMs during LGM (time zone is selected randomly). Figure – 4.1 

shows the mean annual temperature (top row) and annual precipitation values (bottom 

row) for the models and their difference. Difference values are obtained simply 

subtracting CCSM4 from MIROC values. This analysis points out, MIROC – ESM 

model is wetter but warmer than the CCSM4. Results show that Fagus orientalis 

prefers wetter climate, thus it was expected to see a wider distributional area and denser 

population in the MIROC – ESM projections. However, MIROC – ESM has also 

higher temperatures, this is a strategic limitation to the growth of beech species. With 

this information, it is logical to see wider distribution and denser population in 

CCSM4. 

 

  Figure – 4.1: Mean annual temperature (bio1)  and annual precipitation (bio12) maps of MIROC – ESM model    

 (left column), CCSM4 model (middle column) and the difference between them (right column). 

 Within each map red color indicates warmer regions, whereas purple color indicates wetter 

 regions. 

 Past-Present-Future Climate Comparison 

Since SDM is a great tool to predict past and future distributions of particular species 

with present time information, it is important to point out the difference between 

climatic conditions through time zones. For this purpose, LGM, present, and 2070   



 

26 

climatic conditions from MIROC – ESM model (randomly selected) were compared 

again to annual mean temperature (bio1) and annual precipitation (bio12) parameters. 

In Figure – 4.2, present and LGM conditions were shown. Their difference was taken 

by subtracting LGM values from present values. According to this, LGM was colder, 

4°C to 16°C, and drier, ~500 mm increase, thus it is compatible with the SDM results 

and predicted distribution maps. For past projections, distribution regions in LGM can 

be considered as refuge areas for Fagus orientalis. 

 

Figure – 4.2: Mean annual temperature (bio1)  and annual precipitation (bio12) maps of the present (left   

    column), past – LGM –  (middle column) and the difference between them (right column).    

    Within each map red color indicates warmer regions, whereas purple color indicates wetter     

    regions. 

Figure – 4.3, on the other hand, points out the difference between presence and 2070 

climates. This time, the difference between them was calculated by subtracting present 

conditions from 2070 values.  

 

Figure – 4.3: Mean annual temperature (bio1)  and annual precipitation (bio12) maps of the present (left    

    column), future – LGM – (middle column) and the difference between them (right column).     

    Within each map red color indicates warmer regions, whereas purple color indicates wetter     

    regions.



 

27 

We obtained that in 2070 climate will be warmer, 4.5°C to 6.5°C, and drier, ~300 mm 

decrease, so it is expected for F. orientalis to shift its range to drier regions where the 

colder temperature is available. This was provided from our prediction maps. When 

we compare the distribution maps with this climate difference, the regions that beech 

is accumulating in the future predictions are overlapping with the dry and colder areas 

in future climatic conditions. 
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 CONCLUSION AND FUTURE STEPS 

In conclusion, from the SDM simulations, we obtained past and future distribution 

maps. By comparing our present time projections with distribution – observation – 

data, we were able to validate our models’ performance. We showed that Fagus 

orientalis species will be found in colder and drier climate in the future(2041-2080), 

northeast from its present distribution and higher altitudes. Additionally, by our past 

simulations, we had an idea of possible refuge areas of F. orientalis. As future steps, 

this study can be improved by selecting more precise bioclimatic parameters,  mainly 

by principal component analysis, since there is a correlation between them that affects 

the model algorithms. Also, other possible scenarios from IPCC can be compared with 

our pessimistic scenario outputs. Finally, this study can be supported by additional 

dendrochronology and palynology studies for past and future predictions, as well as 

present observations. 

Species tried to adapt to this climate change in the past and they are trying currently 

too. However, the problem is, with the continuing climate change in the future 

extinction risks will increase, since there will be limited suitable habitat for them to 

survive because climate is also changing spatially and many species are having a hard 

time to keep up with this fast change. This study showed the response of Fagus 

orientalis to climate change through SDM, which is a tool to visualize the species is 

growing and to answer “is there any other suitable regions for it to grow?”.  Lastly, 

this study can help to improve conservation and management plans in the future.
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APPENDICES 

APPENDIX A: R code sheet for modeling with the biomod2 package.
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APPENDIX A 

library(biomod2) 

setwd("C:/Users/dilsa/Desktop") 

#load the data 

fagus <- read.csv("presence25.csv", header = TRUE, sep = ",") 

head(fagus) 

#getting presence values from data 

myRespName <- 'Fagus_orientalis' 

myResp <- as.numeric(fagus[,myRespName]) 

#getting presence coordinates from data 

myRespXY <- fagus[,c("X", "Y")] 

#environmental layers as explanatory variables 

bio1 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio1.tif") 

bio2 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio2.tif") 

bio3 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio3.tif") 

bio4 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio4.tif") 

bio5 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio5.tif") 

bio6 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio6.tif") 

bio7 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio7.tif") 

bio8 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio8.tif") 

bio9 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio9.tif") 

bio10 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio10.tif") 

bio11 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio11.tif") 

bio12 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio12.tif") 

bio13 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio13.tif") 

bio14 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio14.tif") 

bio15 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio15.tif") 

bio16 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio16.tif") 

bio17 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio17.tif") 

bio18 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio18.tif") 

bio19 <- raster("C:/Users/dilsa/Desktop/current_2.5_tif/bio19.tif") 

current_bioclim = 
stack(bio1,bio2,bio3,bio4,bio5,bio6,bio7,bio8,bio9,bio10,bio11,bio12,bio13,bio14,bio15,bio16,bio1
7,bio18,bio19) 

myBiomodData <- BIOMOD_FormatingData(resp.var = myResp, 

                                     expl.var = current_bioclim, 

                                     resp.xy = myRespXY, 

                                     resp.name = myRespName, 

                                     PA.nb.rep = 1, 

                                     PA.nb.absences = 20796, 

                                     PA.strategy = 'random', 

                                     na.rm = TRUE) 

plot(myBiomodData) 

#modeling 

myBiomodOption <- BIOMOD_ModelingOptions() 

myBiomodModelOut <- BIOMOD_Modeling( 

  myBiomodData, 

  models = c('GLM','GAM','RF','SRE','MAXENT.Phillips'), 

  models.options = myBiomodOption, 

  NbRunEval=3, 

  DataSplit=80, 

  Prevalence=0.5, 



 

37 

  VarImport=3, 

  models.eval.meth = c('TSS','ROC'), 

  SaveObj = TRUE, 

  rescal.all.models = TRUE, 

  do.full.models = FALSE, 

  modeling.id = paste('Fagus orientalis',"FirstModeling",sep="")) 

myBiomodModelOut 

#get all models evaluation 

myBiomodModelEval <- get_evaluations(myBiomodModelOut) 

myBiomodModelEval 

# print the ROC scores of all models 

myBiomodModelEval["ROC","Testing.data",,,] 

# variable importances 

get_variables_importance(myBiomodModelOut) 

# Model Projection 

# Firstproject our current conditions (the globe) to visualize them. 

myBiomodProj <- BIOMOD_Projection( 

  modeling.output = myBiomodModelOut, 

  new.env = current_bioclim, 

  proj.name = 'current', 

  selected.models = 'all', 

  binary.meth = 'TSS', 

  compress = 'xz', 

  clamping.mask = F, 

  output.format = '.grd') 

myBiomodProj 

# files created on hard drive 

list.files("Fagus.orientalis/proj_current/") 

# make plots sub-selected by str.grep argument 

plot(myBiomodProj, str.grep = 'RUN1_GLM') 

plot(myBiomodProj, str.grep = 'RUN1_GAM') 

plot(myBiomodProj, str.grep = 'RUN1_RF') 

plot(myBiomodProj, str.grep = 'RUN1_SRE') 

plot(myBiomodProj, str.grep = 'RUN1_MAXENT.Phillips') 

myCurrentProj <- get_predictions(myBiomodProj) 

myCurrentProj 

#CLIMATE CHANGE PROJECTIONS# 

# MIROC # 

#Last Glacial Maximum MIROC 

a_bio1 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio1.tif") 

a_bio2 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio2.tif") 

a_bio3 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio3.tif") 

a_bio4 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio4.tif") 

a_bio5 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio5.tif") 

a_bio6 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio6.tif") 

a_bio7 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio7.tif") 

a_bio8 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio8.tif") 

a_bio9 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio9.tif") 

a_bio10 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio10.tif") 

a_bio11 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio11.tif") 

a_bio12 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio12.tif") 

a_bio13 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio13.tif") 

a_bio14 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio14.tif") 

a_bio15 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio15.tif") 
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a_bio16 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio16.tif") 

a_bio17 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio17.tif") 

a_bio18 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio18.tif") 

a_bio19 <- raster("C:/Users/dilsa/Desktop/lgm_miroc_2.5_tif/bio19.tif") 

a_bioclim <- 
stack(a_bio1,a_bio2,a_bio3,a_bio4,a_bio5,a_bio6,a_bio7,a_bio8,a_bio9,a_bio10,a_bio11,a_bio12,a_bi
o13,a_bio14,a_bio15,a_bio16,a_bio17,a_bio18,a_bio19) 

# projection under lgm_miroc conditions 

LGM_MIROC_Proj <- BIOMOD_Projection( 

  modeling.output = myBiomodModelOut, 

  new.env = a_bioclim, 

  proj.name = 'LGM_MIROC', 

  selected.models = 'all', 

  binary.meth = 'TSS', 

  compress = 'xz', 

  clamping.mask = F, 

  output.format = '.grd') 

LGM_MIROC_Proj 

# files created on hard drive 

list.files("Fagus.orientalis/proj_LGM_MIROC") 

# make some plots sub-selected by str.grep argument 

plot(LGM_MIROC_Proj, str.grep = 'RUN1_GLM') 

plot(LGM_MIROC_Proj, str.grep = 'RUN1_GAM') 

plot(LGM_MIROC_Proj, str.grep = 'RUN1_RF') 

plot(LGM_MIROC_Proj, str.grep = 'RUN1_SRE') 

plot(LGM_MIROC_Proj, str.grep = 'RUN1_MAXENT.Phillips') 

myLGMMProj <- get_predictions(LGM_MIROC_Proj) 

myLGMMProj 

# Do this part again for all climate conditions: MIROC-MH, MIROC-2050, MIROC-2070, CCSM4-LGM, 
CCSM4-MH, CCSM4-2050, CCSM4-2070.
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