
 

 

 
 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE 

ENGINEERING AND TECHNOLOGY 

Ph.D. THESIS 

JANUARY 2013 

INTEGRATION OF NAVIGATION SYSTEMS AND IDENTIFICATION OF 

NONLINEAR MODEL PARAMETERS FOR AUTONOMOUS UNDERWATER 

VEHICLES IN THE PRESENCE OF MEASUREMENT BIASES 

Mustafa DĠNÇ 

Department of Aeronautical and Astronautical Engineering  

 

Aeronautical and Astronautical Engineering Programme 

 

 

 

Anabilim Dalı : Herhangi Mühendislik, Bilim 

Programı : Herhangi Program 

 



 

  



 

    

JANUARY 2013 

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE 

ENGINEERING AND TECHNOLOGY 

INTEGRATION OF NAVIGATION SYSTEMS AND IDENTIFICATION OF 

NONLINEAR MODEL PARAMETERS FOR AUTONOMOUS UNDERWATER 

VEHICLES IN THE PRESENCE OF MEASUREMENT BIASES 

Ph.D. THESIS 

Mustafa DĠNÇ 

(511052011) 

Department of Aeronautical and Astronautical Engineering 

 

Aeronautical and Astronautical Engineering Programme 

 

 

 

Anabilim Dalı : Herhangi Mühendislik, Bilim 

Programı : Herhangi Program 

 

Thesis Advisor: Prof. Dr. Çingiz HACIYEV 



 

  



 

    

OCAK 2013 

ĠSTANBUL TEKNĠK ÜNĠVERSĠTESĠ  FEN BĠLĠMLERĠ ENSTĠTÜSÜ 

ĠNSANSIZ SUALTI ARAÇLARI ĠÇĠN SEYRÜSEFER SĠSTEMLERĠNĠN 

TÜMLEġTĠRĠLMESĠ VE ÖLÇÜM KAYNAKLI KAYMA HATALARININ OLDUĞU 

DURUMDA NONLĠNEER HAREKET MODELĠN PARAMETRELERĠNĠN TANILAMASI 

DOKTORA TEZĠ 

Mustafa DĠNÇ 

(511052011) 

Uçak ve Uzay Mühendisliği Anabilim Dalı 

 

Uçak ve Uzay Mühendisliği Programı 

 

 

 

 

Anabilim Dalı : Herhangi Mühendislik, Bilim 

Programı : Herhangi Program 

 

Tez DanıĢmanı: Prof. Dr. Çingiz HACIYEV 



 

 



v 

 

  

Thesis Advisor :  Prof. Dr. Çingiz HACĠYEV   .............................. 

 İstanbul Technical University  

Jury Members :  Prof.Dr. Ġbrahim ÖZKOL   ............................. 

İstanbul Technical University 

Prof.Dr. Muammer KALYON  ............................. 

İstanbul Commerce University 

Prof.Dr. Ömer GÖREN   .............................. 

İstanbul Technical University 

   Doç.Dr. Ali Can TAKĠNACI  .............................. 

İstanbul Technical University 

 

Mustafa DĠNÇ, a Ph.D. student of ITU Graduate School of Science, Engineering 

and Technology student ID 511052011, successfully defended the thesis entitled 

―Integration of Navigation Systems and Identification of Nonlinear Model 

Parameters for Autonomous Underwater Vehicles in the Presence of 

Measurement Biases‖, which he prepared after fulfilling the requirements specified 

in the associated legislations, before the jury whose signatures are below. 

 

 

Date of Submission  : October 12, 2012 

Date of Defense  : January 18, 2013 
 



vi 

 

  



vii 

 

 

 

 

To my family, 

 

 

 

  



viii 

 



ix 

 

FOREWORD 

I would like to express my deepest appreciation to my supervisor, Prof. Chingiz 

HACIYEV, Ph.D., who gave me valuable advices and support in this Ph.D. program.  

Additionally, I would like to thank to my thesis committee: Prof. İbrahim ÖZKOL, 

Ph.D., and Prof. Muammer KALYON, Ph.D., for their valuable comments and 

guidance. This work is supported by ITU Institute of Science and Technology. 

I would like to express my special thanks to my family: my wife and daughter, for 

their valuable support and patience. 

Finally, I sincerely commemorate the memory of Prof. Yücel ODABAŞI, Ph.D., 

whom I would like to express my special thanks for giving me the opportunity to 

share his deep knowledge and the best available information regarding Autonomous 

Underwater Vehicle (AUV) modeling. 

 

 

 

 

 

October 2012 

 

Mustafa DİNÇ 

(Computer Engineer, M.Sc.) 

 

  

 

 

 

 

 

 

 

 

 

  



x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

TABLE OF CONTENTS 

Page 

FOREWORD ............................................................................................................. ix 

TABLE OF CONTENTS .......................................................................................... xi 

ABBREVIATIONS ................................................................................................. xiii 

LIST OF TABLES ................................................................................................... xv 

LIST OF FIGURES ............................................................................................... xvii 

SUMMARY ............................................................................................................. xxi 

ÖZET ...................................................................................................................... xxiii 

1. INTRODUCTION .................................................................................................. 1 

1.1 Purpose of Thesis ............................................................................................... 3 

1.2 Literature Review ............................................................................................... 3 

2. DYNAMIC MATHEMATICAL MODELING OF AN AUV ............................ 7 

2.1 Purpose ............................................................................................................... 7 

2.2 Modeling Assumptions ...................................................................................... 8 

2.2.1 Environmental assumptions ........................................................................ 8 

2.2.2 Dynamics assumptions ................................................................................ 8 

2.3 6-DOF Rigid-Body Equations of Motion ........................................................... 8 

2.3.1 Coordinate frames ....................................................................................... 9 

2.3.2 Newtonian and Lagrangian mechanics ..................................................... 14 

2.3.3 Gravitational forces ................................................................................... 19 

2.3.4 Hydrostatic forces and moments ............................................................... 20 

2.3.5 Added mass and inertia ............................................................................. 22 

2.3.6 Hydrodynamic forces and moments ......................................................... 23 

2.3.7 Propeller effect .......................................................................................... 25 

2.4 Mathematical Model of AUV .......................................................................... 26 

2.5 Numerical Integration of The AUV EOM ....................................................... 29 

2.5.1 Euler's method first order .......................................................................... 29 

2.5.2 Runge-Kutta method ................................................................................. 29 

2.6 AUV Control .................................................................................................... 30 

2.7 Dynamic Simulink Model of AUV .................................................................. 33 

2.8 Simulation Results ............................................................................................ 33 

3. DEVELOPMENT OF INS MODEL .................................................................. 35 

3.1 Purpose ............................................................................................................. 35 

3.2 Inertial Measurement Unit ............................................................................... 36 

3.2.1 Rate gyros ................................................................................................. 37 

3.2.2 Accelerometers .......................................................................................... 39 

3.3 INS Framework and Design ............................................................................. 40 

4. DEVELOPMENT OF THE INTEGRATED AUV NAVIGATIONAL 

SYSTEM ................................................................................................................... 43 

4.1 Objectives ......................................................................................................... 43 

4.2 Integrated AUV Navigational System Framework .......................................... 44 



xii 

 

4.3 Navigational Aiding Devices ........................................................................... 44 

4.3.1 Doppler velocity logger ............................................................................. 45 

4.3.2 Pressure depth sensor ................................................................................ 45 

4.3.3 Compass .................................................................................................... 46 

4.4 Error Models of INS and Its Aiding Devices ................................................... 46 

4.4.1 INS error model ......................................................................................... 46 

4.4.2 Error models of aiding devices.................................................................. 48 

4.5 Kalman Filter Techniques ................................................................................ 49 

4.5.1 Objectives .................................................................................................. 49 

4.5.2 Optimal linear kalman filter ...................................................................... 50 

4.6 Integration Method Used for AUV Navigational System ................................ 54 

4.7 KF based Integrated Navigational System Applied to AUV Dynamics .......... 55 

4.7.1 AUV integrated navigation system with INS calibration ......................... 55 

4.7.2 AUV integrated navigation system with INS, gyro, and accelometer 

calibration ........................................................................................................... 58 

4.7.3 AUV integrated navigation system with INS, DVL, compass, and       

depth sensor calibaration .................................................................................... 61 

5. PARAMETER IDENTIFICATION WITH LEAST SQUARES 

ESTIMATION .......................................................................................................... 65 

5.1 Objectives ......................................................................................................... 65 

5.2 AUV System Identification .............................................................................. 65 

5.3 Parameter Estimation for AUV ........................................................................ 67 

5.4 Model Verification ........................................................................................... 70 

5.4.1 Hotelling‘s T-square distribution .............................................................. 71 

6. SIMULATION ...................................................................................................... 73 

6.1 Simulation Parameters ...................................................................................... 75 

6.2 Simulation Results of AUV Model and Navigation System Errors ................. 77 

6.3 Simulation Results of Integrated Navigation Systems ..................................... 80 

6.3.1 Simulation results of INS calibration ........................................................ 80 

6.3.2 Simulation results of INS, gyro, and accelometer calibration................... 82 

6.3.3 Simulation results of INS, DVL, compass, and depth sensor calibration . 84 

6.3.4 Comparison of integrated navigavigation systems.................................... 86 

6.4 Simulation Results of Parameter Identification ................................................ 88 

6.4.1 Numerical simulation for measurement bias ............................................. 88 

6.4.2 Numerical simulation for integrated navigation........................................ 91 

7. CONCLUSIONS................................................................................................... 95 

REFERENCES ......................................................................................................... 99 

APPENDICES ........................................................................................................ 103 

CURRICULUM VITAE ........................................................................................ 117 

 

 

 



xiii 

 

ABBREVIATIONS 

App : Appendix  

AUV : Autonomous Underwater Vehicle 

CB : Center of Buoyancy 

CFD : Computational Fluid Dynamics 

CG : Center of Gravity 

DOF : Degree of Freedom 

DVL : Doppler Velocity Log 

EOM : Equations of Motion 

EKF : Extended Kalman Filter  

FOG  : Fiber-Optic Gyro  

GPS : Global Positioning System 

GRV  : Gaussian Random Variable 

IMU : Inertial Measurement Unit 

INS : Inertial Navigation System 

KF : Kalman Filter  

LSE : Least Square Estimation 

MEMS : Micro Electro-Mechanical System 

PLBL  : Pseudo Long Base Line  

PPM : Part Per Million 

ROV : Remotely Operated Vehicle 

RLG : Ring Laser Gyro 

SINS : Strap-down INS 

SMC : Sliding Mode Control 

UAV : Unmanned Air Vehicle 

UUV : Unmanned Underwater Vehicle 

WGS-84 : World Geodetic System 1984 

 

  



xiv 

 



xv 

 

LIST OF TABLES 

Page 

Table 2.1 : AUV dynamic components. ...................................................................... 9 

Table 2.2 : AUV physical parameters. ...................................................................... 27 

Table 2.3 : AUV hydrodynamic force coefficients. .................................................. 28 

Table 2.4 : AUV hydrodynamic moment coefficients. ............................................. 28 

Table 6.1 : Standard deviations and bias errors of sensors. ...................................... 76 

Table 6.2 : Coparision of absolute velocity errors. ................................................... 87 

Table 6.3 : Coparision of absolute position errors. ................................................... 87 

Table 6.4 : Coparision of absolute errors of attitude angles. .................................... 88 

Table 6.5 : Parameter identification with measurement bias. ................................... 91 

Table 6.6 : Parameter identification after integrated navigation. .............................. 94 

 

  



xvi 

 



xvii 

 

LIST OF FIGURES 

Page 

Figure 2.1 : REMUS AUV. ......................................................................................... 8 

Figure 2.2 : 6-DOF navigational frame ..................................................................... 10 

Figure 2.3 : 6-DOF AUV angular and translational motions .................................... 10 

Figure 2.4 : AUV body-fixed and earth-fixed coordinate system............................. 11 

Figure 2.5 : Direction cosine matrix. ........................................................................ 11 

Figure 2.6 : Transformation of Euler angles. ............................................................ 12 

Figure 2.7 : Translational transformation matrix. ..................................................... 17 

Figure 2.8 : Rotational transformation matrix. ......................................................... 18 

Figure 2.9 : Orientation of gravity vector with respect to the body axis .................. 19 

Figure 2.10 : Gravitational force calculation. ........................................................... 20 

Figure 2.11 : Hydrostatic forces and moments ......................................................... 21 

Figure 2.12 : Hydrostatic force and moment calculation. ......................................... 22 

Figure 2.13 : Hydrodynamic force and moment calculation. ................................... 25 

Figure 2.14 : AUV propeller effect ........................................................................... 25 

Figure 2.15 : Thrust calculation. ............................................................................... 25 

Figure 2.16 : Simulink model of sliding mode control ............................................. 32 

Figure 2.17 : Full AUV Simulink model and sliding mode control. ........................ 33 

Figure 2.18 : Simulation results of X, Y, Z, roll, pitch and yaw angles (50 sec.). ... 34 

Figure 2.19 : Simulation results of V_tot, δr and δe (50 sec.). ................................. 34 

Figure 3.1: Xsens MEMS IMU system ..................................................................... 36 

Figure 3.2: a) Ring laser gyro   b) Fibre optic gyro .................................................. 37 

Figure 3.3: Principle of accelerometer ...................................................................... 39 

Figure 3.4: INS framework ....................................................................................... 41 

Figure 3.5: INS Simulink model ............................................................................... 42 

Figure 4.1: Integrated AUV navigational system solution ....................................... 44 

Figure 4.2: Doppler velocity log ............................................................................... 45 

Figure 4.3: Strucstural KF schematics ...................................................................... 54 

Figure 5.1: AUV System Identification Method ....................................................... 66 

Figure 6.1 : Position simulation results of physically based AUV model               

(100 sec). .................................................................................................................... 77 

Figure 6.2 : Velocity simulation results of physically based AUV model              

(100 sec). .................................................................................................................... 77 

Figure 6.3 : Attitude simulation results of physically based AUV model (100 sec). 78 

Figure 6.4 : Simulation results of INS error model. ................................................. 78 

Figure 6.5 : Simulation results of DVL error model. ................................................ 79 

Figure 6.6 : Simulation results of gyro error models. ............................................... 79 

Figure 6.7 : Simulation results of accelometer error models. ................................... 79 

Figure 6.8 : Simulation results of AUV model & INS velocity estimation. ............. 80 

Figure 6.9 : Diagonal elements of covariance matrix for velocities. ........................ 80 

Figure 6.10 : Simulation results of AUV model & INS position estimation. ........... 81 



xviii 

 

Figure 6.11 : Diagonal elements of covariance matrix for positions. ....................... 81 

Figure 6.12 : Simulation results of AUV model & INS attitude estimation. ............ 81 

Figure 6.13 : Diagonal elements of covariance matrix for attitude anlges. .............. 82 

Figure 6.14 : Simulation results of AUV model & INS velocity estimation. ........... 82 

Figure 6.15 : Diagonal elements of covariance matrix for velocities. ...................... 83 

Figure 6.16 : Simulation results of AUV model & INS position estimation. ........... 83 

Figure 6.17 : Diagonal elements of covariance matrix for positions. ....................... 83 

Figure 6.18 : Simulation results of AUV model & INS attitude estimation. ............ 84 

Figure 6.19 : Diagonal elements of covariance matrix for attitude anlges. .............. 84 

Figure 6.20 : Simulation results of AUV model & INS velocity estimation. ........... 85 

Figure 6.21 : Diagonal elements of covariance matrix for velocities. ...................... 85 

Figure 6.22 : Simulation results of AUV model & INS position estimation. ........... 85 

Figure 6.23 : Simulation results of AUV model & INS attitude estimation. ............ 86 

Figure 6.24 : Diagonal elements of covariance matrix for attitude anlges. .............. 86 

Figure 6.25 : Parameter identification in the presence of measurement biases. ....... 89 

Figure 6.26 : Position results of real and identified model. ...................................... 89 

Figure 6.27 : Velocity results of real and identified model. ...................................... 90 

Figure 6.28 : Attitude results of real and identified model. ...................................... 90 

Figure 6.29 : Parameter identification after integration of navigational systems. .... 92 

Figure 6.30 : Velocity simulation results of real and identified model. .................... 92 

Figure 6.31 : Position simulation results of real and identified model. .................... 93 

Figure 6.32 : Attitude simulation results of real and identified model. .................... 93 

Figure A.1 : ECEF and reference ellipsoid ............................................................. 106 

Figure C.1 : Simulation results of compass and pressure depth senors. ................. 109 

Figure C.2 : Simulation results of gyros. ................................................................ 109 

Figure C.3 : Simulation results of accelometers. .................................................... 109 

  



xix 

 

  



xx 

 

  



xxi 

 

 

 

 

INTEGRATION OF NAVIGATION SYSTEMS AND IDENTIFICATION OF 

NONLINEAR MODEL PARAMETERS FOR AUTONOMOUS UNDERWATER 

VEHICLES IN THE PRESENCE OF MEASUREMENT BIASES 

SUMMARY 

The research on underwater systems has gained enormous attention during the last 

two decades because of applications taking place in many fields.  Therefore, the 

significant number of Unmanned Underwater Vehicles (UUVs) has been developed 

for solving the wide range of scientific and applied tasks of ocean research and 

development in the world. Guidance, navigation, and control techniques are key 

research and development areas for the success of those sophisticated UUV missions. 

Autonomous Underwater Vehicle (AUV), a type of UUV, requires a precise 

navigational system for localization, positioning, path tracking, guidance, and 

control. In order to develop a robust and precise AUV navigation system, we need to 

know an overall modeling of an AUV, which is a complex problem and involves 

interdisciplinary studies of kinematic, hydrostatics, and hydrodynamics. 

One of the main objective of this thesis is to provides detailed explanations on the 

theory behind the main concepts that directly influence the design of the dynamic 

mathematical model of AUV and then to accomplish dynamic mathematical 

modeling of an AUV in MATLAB Simulink environment under different swimming 

conditions. Based on this model we develop three different types of low-cost 

Integrated Navigation System based on error models of Inertial Navigation System 

(INS) and its aiding devices such as Doppler Velocity Log (DVL), compass, and a 

Pressure Depth Sensor.  An INS error model and the corresponding measurement 

models of those aiding sources will be derived for the Kalman Filter (KF).  The 

simulation results confirmed that low-cost IMU sensors produce a notable amount of 

noisy measurements but our Integrated Navigation System models for AUV based on 

KF can effectively mitigate those drawbacks. 

Another main focus of this thesis is to accomplish the parameter identification of 

hydrodynamic coefficients of AUV based on a Least Square Estimation (LSE) 

algorithm in the presence of measurement biases. Parameter Identification is very 

important to have the estimated values of these coefficients in order to accurately 

simulate the AUV‘s dynamic performance. The estimated hydrodynamic coefficients 

can be used as inputs not only for a mathematical model to analyze the maneuvering 

performance but also for a controller model to design AUVs under development. 
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ĠNSANSIZ SUALTI ARAÇLARI ĠÇĠN SEYRÜSEFER SĠSTEMLERĠNĠN 

TÜMLEġTĠRĠLMESĠ VE ÖLÇÜM KAYNAKLI KAYMA HATALARININ 

OLDUĞU DURUMDA NONLĠNEER MODELĠN PARAMETRELERĠNĠN 

TANILAMASI 

ÖZET 

Dünyada son yirmi yıllık gelişmeler dikkate alındığında, sualtı sistemlerinin farklı 

uygulamalarına yönelik araştırmalar muazzam şekilde artış göstermiştir. Bu 

kapsamda, geniş çaplı kullanım alanı olan, okyanus ve deniz tabanı 

araştırma/geliştirme faaliyetlerine yönelik çok sayıda İnsansız Sualtı Aracı (İSA) 

tasarlanarak, hizmete sunulmuştur.  İSA‘ların gerçekleştirdiği görevler dikkate 

alındığında, askerî ve sivil uygulamaları ön plana çıkmaktadır.  

Tipik olarak sualtı araçları üç ana grupta incelenmektedir;  

1. İnsanlı Sualtı Sistemleri (Denizaltılar, İnsanlı Sualtı Robotları, vb.),  

2. Uzaktan Kumandalı Sualtı Robotları (ROV‘lar) ve  

3. Otonom Sualtı Araçları (OSA -AUV). 

Yukarıda adı geçen her bir tip sualtı aracının kendine has özellikleri olmasının 

yanında, birbirleriyle kıyaslandığında kullanım alanlarına bağlı olarak üstünlükleri ve 

zafiyetleri mevcuttur. Bu tez kapsamında sadece insansız sualtı araçlarının özellikleri 

hakkında bilgi verilmiştir. Kavram olarak, insansız sistemler olan ROV‘lar ile 

İSA‘lar arasındaki temel fark kısaca ifade etmek gerekirse, ROV‘lar bir suüstü 

gemisine veya denizaltıya bir kablo yardımıyla bağlı olup, bu platformlar üzerinden 

kumanda edilebilen genellikle dikdörtgenler prizması veya küp şeklinde tasarlanmış 

düşük süratli, hantal sualtı araçlardır. Diğer taraftan OSA‘lar, genellikle bir 

platformdan tamamen bağımsız kendi başına hareket edebilen, silindirik yapılı, 

askeri ve sivil kullanım alanlarına bağlı olarak farklı süratlere sahip, otonom sualtı 

araçlarıdır. İSA‘ların dünyadaki farklı uygulama alanlarını aşağıdaki şekilde 

sıralayabiliriz. 

 Mayın avlama, 

 Keşif, 

 Sualtı kablolarının döşenmesi, 

 Sualtı hedeflerine ekipman taşınması, 

 Deniz ve okyanus suyu incelemeleri, 

 Petrol ve doğalgaz boruları gözlem ve bakımı, 

 Sualtı arkeoloji çalışmaları, 
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 Deprem araştırmaları,  

 Torpido sistemleri. 

 

Türkiye‘de mevcut olan insansız araçları incelendiğinde, çalışmaların büyük bir 

çoğunluğunu insansız kara araçlarını kapsamaktadır. Kara araçlarından sonra, ikinci 

seviyede araştırmalar hava araçları üzerine yoğunlaşmaktadır. Ülkemizin üç tarafı 

denizlerle çevrili olmasına ve halâ bir denizci millet olamamamızın bir sonucu 

olarak, Türkiye‘de İnsansız Sualtı Araçları (İSA‘lar) birkaç istisna proje dışında, bir 

inceleme konusu olarak istenilen rağbeti ve ilgiyi görmemektedir. Çok farklı 

kullanım alanları olan bu araçlar, dünyada son yirmi yıldır başta ABD olmak üzere 

gelişmiş ülkeler tarafından okyanus araştırmalarında yoğun olarak kullanılmaktadır.  

OSA`lar, sualtında gerçekleştirdikleri uzun süreli seyirleri boyunca güdüm, kontrol, 

yol takibi, konumlandırma ve mevkilendirme açısından yüksek doğruluğa sahip bir 

seyrüsefer sistemine ihtiyaç duyarlar.  OSA‘lara yönelik sağlam, güvenilir ve doğru 

bir seyrüsefer sistemi tasarlamak için ise İSA‘nın tüm gövde modeline ihtiyaç 

duyulmaktadır. Ancak OSA modellemesi çok karmaşık ve zor bir işlem olup, 

hidrodinamik ve hidrostatik bilim dallarının birlikte kullanılmasını gerektirir. 

Bir OSA‘nın sualtı modellemesi, katı bir cisim olarak ele alınsa bile oldukça 

karmaşık süreçleri içermektedir. Bir OSA sistemi sualtı ortamında hareket ederken 

doğrusal olmayan (nonlinear) etkilere maruz kalır. Bu etkiler arasında serbest yüzey 

etkisi, kavitasyon, dalgalar, zamanla değişen kütle ve pervane sürati, rijid olmayan 

gövde dinamiği, düzensiz akışlar ile hareketli kanatların etkisi sayılabilir. Bütün bu 

etkilerin modellemeye katılması, modelleme sürecini içinden çıkılmaz bir duruma 

itmektedir ve bu etkilerin büyük bir çoğunlu çekme tanklarında dikkate alınmaktadır. 

Hidrodinamik etkiler OSA‘nın su ortamındaki hareketinden kaynaklanmaktadır. Bir 

İSA sisteminin hidrodinamik parametrelerinin belirlenmesinde tamamen kendi şekil 

ve formuna bağlı olarak deney ve teoriye dayalı yöntemler kullanılır. Genel olarak, 

bir İSA‘nın hidrodinamik parametreleri üç faklı yöntemle belirlenir. Bunlar: 

1.Hesaplamalı Yöntemler (Navier Stokes Denklemleri, Hesaplamalı 

Akışkanlar Dinamiği, vb.),  

2. Çekme tankı (towing tank) testleri,  

3. Gerçek Ortamında Testler. 

Bu tezin ana amaçlarından biri, bir OSA sisteminin dinamik hareket modelinin 

oluşturulması ve MATLAB yazılım ortamı kullanılarak oluşturulan hareket modeli 

üzerinde, Ataletsel Seyrüsefer Sistemi (ASS)‘den elde edilen seyrüsefer çözümünü 

düzeltmek için Dopler Hız Kaydedici, Manyetik Pusula ve Derinlik Ölçer yardımcı 

sensörleri kullanarak Kalman Süzgeci tabanlı oluşturulan tümleşik seyrüsefer sistemi 

tasarımını gerçekleştirmektir.  

Tez kapsamında, OSA‘lar için geliştirilmiş tümleşik seyrüsefer sistemi için üç farklı 

yaklaşım kullanılmıştır. Birinci yaklaşımda, Dopler Hız Kaydedici, Manyetik Pusula 

ve Derinlik Ölçer yardımcı sensörlerin kalibrasyonlarının mükemmel yapıldığı farz 

ve kabul edilerek, sadece ASS‘nin hatalarının Kalman Süzgeci kullanılarak 

kestirimleri hesaplanmış ve yardımcı sensörlerin düzeltmeleri Kalman ölçüm vektörü 

yardımıyla girdi yapılmıştır. Bu yaklaşımda Kalman durum vektörü boyutu 9‘dur. 

İkinci yaklaşımda, yine yardımcı sensörlerin kalibrasyonlarının mükemmel yapıldığı 

farz ve kabul edilerek, ASS ile ASS sensörleri olan gyro ve ivmeölçerlerin 
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hatalarının Kalman Süzgeci kullanılarak kestirimleri hesaplanmış ve yardımcı 

sensörlerin düzeltmeleri Kalman ölçüm vektörü yardımıyla girdi yapılmıştır. Bu 

yaklaşımda Kalman durum vektörü boyutu 15‘dir. Üçüncü ve son yaklaşımda ise, 

ASS sensörlerinin kalibrasyonlarının mükemmel yapıldığı farz ve kabul 

edilerek,ASS ile yardımcı sensörlerin hataları Kalman Süzgeci kullanılarak 

kestirimleri hesaplanmıştır. Bu yaklaşımda Kalman durum vektörü boyutu 14‘tür. 

Daha sonra bu üç tümleşik seyrüsefer sistem yaklaşımı grafiksel ve nümerik 

yaklaşımla kıyaslanarak üstünlükleri ortaya konmuştur. 

Simülasyon sonuçları göstermiştir ki, düşük maliyetli ASS sistemi zamanla dikkate 

değer oranda ölçüm hatası üretmesine rağmen, farklı boyutlu durum vektörlerine 

sahip Kalman Süzgeci tabanlı geliştirdiğimiz Tümleşik Seyrüsefer Sistemi bu 

hataların azaltılmasında etkin bir rol oynamıştır. 

Bu tezin diğer ana hedefi ise, en küçük kareler yöntemi yardımıyla İSA‘nın mevcut 

doğrusal olmayan (nonlineer) hareket modeline ait hidrodinamik parametrelerin, 

seyrüsefer sistemlerinden kaynaklanan kayma hatalarının mevcut olduğu durumda 

tanılanmasıdır. Bu hidrodinamik parametrelerin doğru olarak belirlenmesi, İSA 

sisteminin dinamik performansının gerçeğe yakın bir şekilde simüle edilmesinde 

önemli rol oynar.  Ayrıca kestirimi yapılan bu parametreler sadece dinamik modelin 

manevra performansının analizinde kullanılmaz aynı zamanda geliştirme aşamasında 

olan İSA‘ların kontrolcü tasarımında da etkin olarak kullanılır. 

Tanılama yöntemi olarak en küçük kareler yöntemi basit ve kısa zamanda çözüm 

ürettiği için tercih edilmiştir. En küçük kareler yöntemi kullanılarak bulunan 

hidrodinamik parametreler, Hottling’s T
2 

istatiksel yöntemi kullanılarak 

doğrulanmaya çalışılmıştır. Tümleşik seyrüsefer sistemi ile büyük oranda düzeltilen 

seyrüsefer bilgileri kullanılarak, elde edilen Hidrodinamik parametreler gerçek 

değerine yakın istatiksel olarak doğrulanmış, elde edilen simülasyon sonuçları 

nümerik ve grafiksel olarak gösterilmiştir.   
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1.  INTRODUCTION 

The researches on Unmanned Underwater Vehicles (UUVs) began in the 1960s, with 

the first prototypes emerging in the 1980s.  Nevertheless, the research on underwater 

systems has gained immense interest during the last two decades with applications 

taking place in multiple fields of marine systems. Therefore, the significant numbers 

of UUVs have been developed for solving a wide range of scientific and applied 

tasks of ocean and seabed research and development in the world [29]. The military 

as well as civilian industaries can see great potential uses of UUVs in the underwater 

environment.  

UUVs by definition are small submersible vehicles that contain independent 

propulsion systems and are capable of carrying sensors such as side-scan sonar, 

video cameras, depth sensor, and other oceanographic measuring devices [29]. UUVs 

are highly desirable as they can at least limit the level of human life risk and direct 

physical human involvement in a mission.  

Typically, UUVs can be classified into two unmanned underwater systems that are 

Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles 

(AUVs): Each branch has its own pros and cons due to the mission type.  ROVs, 

characterized by direct human assistance, is remotely operated through the presence 

of a tether cable; the other group is known as the AUVs, which is the topic of this 

thesis, characterized by their autonomous behavior, having cylindrical geometric 

shape and absence of a tether cable. This classification is of course not precise given 

the varying degrees of autonomy in both groups which can differ according to the 

requirements of the designed mission. In addition, the presence of a tether cable does 

not necessarily mean that the vehicle cannot perform autonomous tasks. The basic 

difference between AUVs and ROVs is that AUVs use ―intelligence‖, such as 

sensing and automatic decision-making. They have predefined plan of operations in 

its ―mind‖ allowing them to perform tasks autonomously [29]. ROVs are remotely 
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controlled by a human with the help of communication links based on tether cable 

(such as cupper, fiber optic, etc.).  

The AUVs have shown efficiency at performing complex search and inspection 

missions, and opening a number of new important application areas which include 

environmental monitoring, surveillance, underwater inspection of harbors and 

pipelines, geological and biological surveys, mine countermeasures, etc. [29].  

The key element of the AUV navigation system is the Inertial Navigation System 

(INS), which integrates the output of a set of sensors (gyros and accelerometers) to 

compute position, velocity, and attitude. Among these sensors, gyros measure 

angular rate, and accelerometers measure linear acceleration with respect to an 

inertial frame. Integration is a simple process; complexities arise due to the various 

coordinate frames encountered, sensor measurement errors, and noise in the system.  

During the last 70 years, INS has progressed from the crude electromechanical 

devices that guided the early V-2 rockets to the current solid-state devices that are in 

many modern vehicles.  The impetus for this significant progress came during the 

ballistic missile programs of the 1960s, in which the need for high accuracy at ranges 

of thousands of kilometers using autonomous navigation systems was made apparent 

[48].  Today, INS is used in all types of commercial and military UUVs and ships, 

submarines, torpedoes, and missiles of all sizes.  

Although INS is autonomous and provides good short-term accuracy, its usage as a 

stand-alone navigational system is limited due to the time-dependent growth of the 

inertial sensor errors that is the main disadvantage of using the INS.  Therefore, the 

accuracy of the INS is highly dependent on the sensor quality, navigational system 

mechanization and dynamics of the vehicle [25].  Thus, the major error sources of 

the INS are due to gyro and accelerometer inertial sensor imperfections, incorrect 

navigational system initialization, and imperfections in the gravity model used in the 

computations [3].  

Additionally, the challenge in an AUV navigational system is maintaining the 

accuracy of an AUV‘s position over the course of a long mission time.  An initial 

accurate position can quickly become uncertain through variations in the AUV‘s 

motion.  This effect can be reduced by using accurate heading, position, and velocity 
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sensors, but these sensors cannot be made arbitrarily accurate.  During long mission 

periods, these inaccuracies become significant. Strong sea currents and other 

underwater phenomena that affect the motion of the AUV cannot be precisely 

modeled which leads to greater inaccuracies [52]. 

1.1 Purpose of Thesis 

One of the main purposes of this thesis is to develop of dynamic model of an AUV 

under different swimming conditions, and then to apply Integrated AUV 

Navigational System based on the Kalman Filter (KF) to this model.  This thesis also 

addresses the issue of providing low cost, high integrity, and small size aided INS 

based on each sensor error model and filter structure for a generic AUV system.  In 

order to achieve this, it is important to develop an INS fitting into the AUV dynamic 

model.  Because the key element of AUV navigation system is INS, which is 

accomplished by integrating the output of a set of sensors (including, Doppler 

Velocity Log (DVL), compass, depth sensor, gyros and accelerometers) to compute 

position, velocity and attitude. 

Another main focus of this thesis is to realize the parameter identification of 

hydrodynamic coefficients based on the Least Square Estiomation (LSE) algorithm 

for a nonlinear mathematical modeling of AUV. It is important to have the estimated 

values of these coefficients in order to accurately simulate the AUV‘s dynamic 

performance. The estimated coefficients can be used as inputs not only for a 

mathematical model to analyze the maneuvering performance but also for a 

controller model to design AUVs under development. 

1.2 Literature Review 

Autonomous guidance, navigation, and control techniques are key research & 

development areas for the success of AUV specific missions. However, further work 

is needed for in precision navigation, sensor development and integration, and 

improving the realiability and robustness of long term and complex mission 

completion [48]. 

This thesis is primarily focused on integrated AUV navigation system, which is a 

complex problem that has been the subject of a great amount of research efforts in 



4 

recent years. For AUVs, precise navigation solution is one of the key issues that 

require accurate navigation system for localization, positioning, path tracking, 

guidance and control.  In order to develop an accurate and robust navigation system, 

we need to know an overall mathematical modeling of AUV, which involves the 

interdisciplinary study of kinematics, hydrostatics, and hydrodynamics.  Hydrostatics 

is concerned with the equilibrium of underwater bodies at rest or moving with 

constant velocity, whereas hydrodynamics is concerned with bodies having 

accelerated motion [8]. In this thesis, we develop nonlineer dynamic model of an 

AUV for different swimming conditions, and then to apply Integrated AUV 

Navigation System based on KF to this model. In many literature, authors employ 

parameter specific nonlineer AUV model for only one swimming condition.  

In real world applications, an AUV does not have continuous position updates; 

hence, a navigational system based on INS has an unacceptable position error drift 

without sufficient aiding. The navigational system of AUVs play a crucial role 

together with the sensor architecture in the degree of system autonomy that can be 

achieved.  A typical navigation sensor outfitted for an AUV may consist of standard 

components such as compass, pressure depth sensor, and some class of Inertial 

Measurement Unit (IMU).  In addition, some aiding devices may be available, for 

instance acoustic sonar, pressure depth sensor, compass, DVL, terrain-based 

techniques, and surface Global Positioning System (GPS) [53].  

Navigational accuracy depends not only on the initialization and on drift errors of the 

low cost IMU and the aiding sensors, but also on the performance of the sensor 

fusion filter (i.e. KF) used in the navigation algorithm.  In the design of an integrated 

navigational system, KF plays a key role for which KF, resident in the INS, performs 

real-time integration of the sensor measurements to provide accurate position, 

velocity, and attitude information in all axes of the vehicle [7]. 

The KF is a set of mathematical equations that provides an efficient computational 

(recursive) mean to estimate the state of a process in a way that minimizes the mean 

of the squared error. The filter is very powerful in several aspects: it supports 

estimations of past, present, and even future states, and it can do so even when the 

precise nature of the modeled system is unknown [58]. 
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In reference [12], Geng, Martins and Sousa focused on the performance analysis of 

the bias of inertial sensors and the error of position using different level IMU. An 

extended KF is employed to estimate the bias of the inertial sensors and then give the 

ultimate error of position in about one hour campaign. In another reference [25], 

Hegrenæs, Berglund, and Hallingstad made a study on the implementation and 

experimental evaluation of a complete model-aided INS for underwater vehicle 

navigation. The proposed approach showed promise to improve underwater 

navigation capabilities both for systems lacking disparate velocity measurements, 

typically from a DVL, and for systems where the need for redundancy and integrity 

is important, e.g. during sensor dropouts or failures, or in case of emergency 

navigation. In another study (reference [64]), Zhao and Gao proposed a KF method 

working in the GPS/INS/DVL integrated mode, which combines output of INS, DVL 

and GPS (when available).  They acknowledged that the test results show that the 

system is able to achieve high precision, which is one meter approximately, with 

GPS and DVL working properly. Similarly, in reference [36], Lee, Jun, Kim, Lee, 

Aoki and Hyakudome made a study on an integrated navigation system for 

underwater vehicles to improve the performance of a conventional inertial acoustic 

navigation system by introducing range measurement. The integrated navigation 

system is based on a strapdown inertial navigation system (SINS) accompanying 

range sensor, DVL, magnetic compass, and depth sensor. 

On the other hand, in reference [36], Lee and Jun presented an integrated 

navigational algorithm for UUV using two acoustic range transducers and strap-

down inertial measurement unit (S-IMU). The proposed algorithm, called pseudo 

long base line (PLBL), estimates the position of the vehicle integrating the S-IMU 

signals corrected with the two range measurements. Extended KF was applied to 

propagate error covariance, to update measurement errors and to correct state 

equation whenever the external measurements are available. Additionally, in 

reference [28], Li, Tang, and Yuan proposed the navigation equipments of Synthetic 

Aperture Sonar (SAS) comprise SINS and DVL. For the large attitude error, the 

nonlinear error models of SINS/DVL based on quaternion error are presented.  

Overall, we develop nonlineer dynamic model of an AUV for different swimming 

conditions, and then to apply this model to Integrated AUV Navigation System 

model based on KF that we developed. 
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Another main focus of this thesis is to realize the parameter identification of 

hydrodynamic coefficients based on Least Square Estiomation (LSE) algorithm for a 

nonlinear mathematical modeling of AUV.  The hydrodynamic coefficients of AUV 

can be estimated based on the calculations of the first principle of dynamics of AUVs 

and from statistical LSE of experimental data, or a combination of the two [7].  The 

identification of the parameters of the item being tracked can be approached in many 

different ways. The parameters can be determined once, from a model of the 

expected input signal. It could also be done adaptively utilizing a recursive method to 

identify the parameters of the incoming signal. 

Another approach that estimates the hydrodynamic coefficients of AUVs is the 

observer method, in which a model-based estimation algorithm is used. A 

representative method amongst observer methods is the KF, which has been widely 

used to estimate state variables and parameters [7]. Hwang [29] estimated the 

maneuvering coefficients of a ship and identified the dynamic system of a 

maneuvering ship using an EKF technique. Additionally, referencing [44], Meng & 

Veras, they concentrated on the application and comparison of EKF and iterated EKF 

for aerodynamic parameter estimation of a fixed wing UAV. In another reference [4], 

Chowdhary compared the performance of three recursive parameter estimation 

algorithms for aerodynamic parameter estimation of two aircrafts derived from real 

flight data.  These algorithms are the EKF -the simplified version of the Unscented 

Kalman Filter (UKF) and the augmented version of the UKF. 

On the other hand, the report [47] compares responses obtained by the KF, the least 

squares estimation, and the linear model for the NPS Phoenix AUV. The LSE 

provided results similar to those obtained by the KF, but the latter produced a more 

accurate model. 

Referencing [58] Vandersteen, Rolain, Schoukens & Pintelon, they proposed a robust 

estimation algorithm for the estimation of static and nonlinear systems which can be 

described as a nonlinear function corrected with a rational form. The errors-in-

variables-based algorithm solves the starting-value problem using an iterative, 

weighted least-squares procedure, which constructs the rational form such that the set 

of normal equations becomes best conditioned, and uses a maximum-likelihood 

estimation step to increase the efficiency of the estimates. 
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2.  DYNAMIC MATHEMATICAL MODELING OF AN AUV 

2.1 Purpose 

This section provides detailed explanations on the theory behind the main concepts 

that directly influence the design of the dynamic mathematical model of AUV.  AUV 

modeling is fairly complicated, and even when considered as a rigid body, an exact 

analysis is only possible by including the underlying infinite dimensional dynamics 

of the surrounding fluid [62], which is seawater. This can be done using partial 

differential equations, which are solved by Computational Fluid Dynamics (CFD), 

but it still involves a formidable computational burden, which is infeasible for most 

practical applications [8]. As a result, the conventional approach has been to use 

finite-dimensional approximations.  

On the other hand, AUV modeling involves the interdisciplinary study of kinematics, 

hydrostatics, and hydrodynamics.  The study of hydrostatics is concerned with the 

equilibrium of underwater bodies at rest or moving with constant velocity, whereas 

hydrodynamics is concerned with bodies having accelerated motion [8]. An 

increased knowledge of hydrodynamic parameters then leads to a better navigational 

system design and performance on AUVs. 

The aim of this thesis does not directly involve the modeling of AUV systems from 

scratch since this is a different area of research interest alltogether.  However, in this 

study we try to develop nonlineer mathematical modeling of an AUV for different 

swimming conditions and then, directly use the mathematical model of REMUS 

AUV that is designed to perform hydrographic analysis in the very shallow water.  In 

Figure 2.1, a picture of REMUS is shown.  REMUS is used for missions such as 

hydrographic surveys, mine counter-measure operations, harbor security operations, 

environmental monitoring debris field mapping, search and resque operations, 

fishery operations, and scientific sampling and mapping. 
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Figure 2.1 : REMUS AUV [46]. 

2.2 Modeling Assumptions 

2.2.1 Environmental assumptions 

The corresponding assumptions are made about the vehicle with respect to its 

environment [44]: 

 The AUV is deeply submerged in a homogeneous and unbounded fluid.  In 

other words, the AUV is located far from the free surface (no surface effects, i.e. no 

sea wave or vehicle wave-making loads), walls and bottom. 

 The AUV does not experience underwater currents. 

2.2.2 Dynamics assumptions 

In dynamic modeling of AUV, the following assumptions are used [22]: 

 The AUV behaves as a rigid body of a constant mass. 

 The earth‘s rotation is negligible for acceleration components of the vehicle‘s 

center of mass 

 The primary forces that act on the AUV are inertial and gravitational in the 

center of buoyancy and are derived from hydrostatic, propulsion, thruster, and 

hydrodynamic lift and drag forces. 

 The thruster assumption is that it uses an extremely simple propulsion model, 

which treats the vehicle propeller as a source of constant thrust and torque. 

2.3 6-DOF Rigid-Body Equations of Motion 

AUVs move in six degrees of freedom (6-DOF) since six independent coordinates 

are necessary to determine the position and orientation of a rigid body dynamics.  

The first three coordinates and their time derivatives are based off of translational 

motion along the x, y and  z-axes, while the last three coordinates ( , ,   ) and their 
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time derivatives are used to describe orientation and rotational motion [26].  Velocity 

and angular velocity components of the AUV relative to the body axes ( , , )x y z  are 

denoted by the velocity of surge, sway, heave motion, ( , , )u v w  and angular velocity 

of roll, pitch, and yaw motion ( , , )p q r , respectively. X, Y, Z, K, M, and N represent 

the resultant forces and moments with respect to the x, y, and z axis.  For AUVs, it is 

common to use the SNAME notation.  In Table 2.1 below, the six different 

translational and rotational motion components are defined as: surge, sway, heave, 

roll, pitch and yaw respectively [8]. 

Table 2.1 : AUV dynamic components. 

 

Motion Components 

 

Forces and 

Moments 

Linear and 

Angular 

Velocities 

 

Position and Euler 

Angles 

Surge X u X 

Sway Y v Y 

Heave Z w Z 

Roll K p Φ 

Pitch M q θ 

Yaw N r Ψ 

 

2.3.1 Coordinate frames 

Typically, three different right-handed and rectangular coordinate frames are used for 

defining AUV motion.  First, the body axes ( , , )x y z  have their origin at the center of 

buoyancy (CB) with x directed toward the bow along the hull centerline axis, y 

directed to the starboard side, and z toward the keel (see Figure 2.3).  The axes fixed 

in the earth are ( , , )e e ex y z  with the ,e ex y  plane in the water surface and ez directed 

downward into the ocean.  Second, the Earth-fixed coordinates frame is also 

measured to CB of AUV. If roll, pitch and yaw orientation angles , ,    of the 

AUV are zero, the ( , , )x y z  axes will be parallel to the ( , , )e e ex y z  axes, respectively.  
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Figure 2.2 : 6-DOF navigational frame [22]. 

The third coordinate frame ( , , )f f fx y z  is fixed in the fluid, which can move with a 

constant velocity ( , , )f f fu v w  relative to the earth-fixed frame.  The ,  ,  f f fx y z axes are 

always parallel to the , ,e e ex y z  axes, respectively [3]. In Figure 2.3, it is shown 6-

DOF AUV angular and transaltion motions in body frame. 

 

Figure 2.3 : 6-DOF AUV angular and translational motions [46]. 

A set of axes commonly used with the Earth-fixed axis system is shown in Figure 2.4 

:, where 
eX  axis is chosen to point north, 

eY  axis points east with the orthogonal triad 

being completed when eZ axis pointing down. 
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Figure 2.4 : AUV body-fixed and earth-fixed coordinate system [29]. 

A transformation matrix containing ‗Euler‘ angles  , , ,    where   is roll, θ is 

pitch, and ψ is yaw, must be defined.  The transformation order from the earth-fixed 

frame ( e ) to the body-fixed frame (b ) is given by 

3 2 1
1 2

u u u
e b       

 (2.1) 

Transformation matrix is defined in the following equation (2.2): 

cos ψ cos θ sin ψ cos θ - sin θ

T(φ,θ,ψ)= cos ψ sin θ sin φ - sinψcos φ sin ψ sin θ sin φ + cos ψ cos φ cos θ sin φ

cos ψ sin θ cos φ + sinψsin φ sin ψ sin θ cos φ - cos ψ sin φ cos θ cos φ

 
 
 
 
 
 
 
   

(2.2) 

The Simulink model of direction cosine matrix is shown in Figure 2.5. 

 

 

Figure 2.5 : Direction cosine matrix. 
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Transformation from a global velocity vector to the local velocity vector is given by 

 

u X

v = T φ,θ,ψ • Y

w Z

  
  
  
       

(2.3) 

On the other hand, transformation from a local velocity vector to a global velocity 

vector is derived in equation (2.4): 

 -1

X u

Y = T φ,θ,ψ • v

Z w

   
   
   
       

(2.4) 

The global angular velocity vector  , ,p q r  can be transformed into the rates of 

change of the Euler angles as given by: 

φ 1 sinφtanθ cosφtanθ p

θ = 0 cosφ -sinφ q

ψ 0 sinφ/cosθ cosφ/cosθ r

     
     
     
            

(2.5) 

The Simulink model of transformation of Euler angles is shown in Figure 2.6. 

 

Figure 2.6 : Transformation of Euler angles. 

Three dimensional (3D) spatial rotations can be parametrized using both Euler angles 

and unit quaternions.  Unit quaternion provides a convenient mathematical notation 

for representing orientations and rotations of vehicle in three dimensions.  Compared 

to Euler angles, unit quaternions are simpler to compose and avoid the problem of 

http://en.wikipedia.org/wiki/Coordinate_system
http://en.wikipedia.org/wiki/Euler_angles
http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
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the gimbal lock. Additionally, compared to rotation matrices, they are more 

numerically stable and may be more efficient [15].  Nevertheless, Euler angles are 

preferred in this study for simplification reasons. 

After a general model structure for AUV is derived, we look further into the 

modeling aspects in terms of environmental disturbance models, in which waves 

(wind generated), wind, and sea currents will be considered. In general, these 

environmental disturbances will both be additive and multiplicative to dynamic EOM 

[3].  Transformation order from body-fixed frame (
b

) to sea current frame (w ) 

using orientation angles of α and β are given in equation 2.6: 

32
1

uu
wb     

 (2.6) 

The transformation matrix from body-fixed frame (
b
) to the sea current frame (w

):

         

   

b,w

2 3

2 3

C = R -α × R β

cosα 0 -sinα cosβ -sinβ 0

R -α = 0 1 0 , R β = sinβ cosβ 0

sinα 0 cosα 0 0 1

   
   
   
      

ˆ

 

(2.7) 

After mathematical calculations, the transformation matrix from the body-fixed 

coordinate to the sea coordinate axes including sea current can be expressed as 

 

    

 

    

  
 


 
  

,

cos cos cos sin sin

ˆ sin cos 0

sin cos sin sin cos

b w
C

 
 (2. 8) 

The sea current velocity components are assumed constant relative to axes fixed in 

the earth. This permits the use of axes fixed in the fluid as an inertial frame of 

reference.  AUV velocity with respect to the sea is expressed as 

 b w b e w eV V V
 (2.9) 
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Then, dynamic pressure is calculated as 

 21

2
d b wQ V

 (2.10) 

In this study, however, we ignore the sea currents, which normally effects the AUV 

motion.  Additionally, wind and wind generated waves phenomena will not be 

discussed since the attention is focused on AUVs performing a motion or 

manipulation task in an underwater environment.  

2.3.2 Newtonian and Lagrangian mechanics 

The EOM of AUVs are highly nonlinear, time-varying and coupled due to 

hydrodynamic added mass, lift, drag, coriolis and centripetal forces, which are acting 

on the vehicle and generally include uncertainties [8].  Overall 6-DOF nonlinear 

dynamic EOM can be expressed in the matrix form as  

 
(2.11) 

Where: 
M(v) = inertia matrix (including added mass), 

C(v) = matrix of Coriolis and centripetal terms (including added mass), 

D(v) = damping matrix, 

( )g  = vector of gravitational forces and moments, 

 = vector of control inputs, 

[ , , , , , ]Tv u v w p q r , 

[ , , , , , ]Tx y z    . 

 

The coupled EOM of AUV are derived from two possible modeling approaches; one 

is a Lagrangian method and the other is a Newtonian-Euler formulation.  Basically, 

the Lagrangian approach consists of three main steps: first, to formulate a suitable 

expression for the vehicle's kinetic (T) and potential energy (P), second, to compute 

the Lagrangian L (L=T-P), and finally to apply the Lagrangian (L) to the 

Lagrangian formulation [2]. 

 
(2.12) 

Another modeling approach is the Newtonian-Euler formulation, which is based on 

Newton‘s Second Law that relates mass (m), acceleration (a) and force (F).  Euler 

( ) ( ) ( ) ( )M v v C v v D v v g     
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suggested expressing Newton's Second Law in terms of conservation of both linear 

and angular momentum. The forces (F) and moments (M) refers to the body's center 

of gravity [8].  

In this study, the dynamic behavior of an AUV is described through Newton's laws of 

linear and angular momentum.  

Newton’s Second Law is expressed as: 

{ }
d

m
dt

F V
 (2.13) 

{ }
d

dt
M H

 

(2.14) 

where F represents the sum of all externally applied forces, M represents the sum of 

all applied torques, and H is the angular momentum. 

It is convenient to regard the sums of applied torque (M) and force (F) as consisting 

of an equilibrium point and a perturbational component.  Thus, assuming constant 

AUV mass 

0 { }
d

m
dt

  F F F V
 (2.15) 

0 { }
d

dt
  M M M H

 

(2.16) 

The subscript ―
0
‖ denotes the equilibrium condition, and ―  ‖ the component of 

perturbation.  Equilibrium of AUV by definition must be an unaccelerated motion 

along a straight path; during this motion the linear velocity vector relative to fixed 

space is invariant, and the angular velocity is zero. Therefore, 0M  are zero, but . 0F

is not zero due to drag.  Furthermore, since the axis system being used as an inertial 

reference system is the Earth-fixed coordinate system, Equation (2.15) and (2.16) can 

be expressed as 
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{ }T E

d
m

dt
 F V

 (2.17) 

{ }E

d

dt
 M H

 (2.18) 

The force equation based on the rate of change of velocity V relative to the Earth‘s 

fixed axis frame is given by 

    
e b b e

F = D mV = D mV + × mV  
(2.19) 

where /b e is the angular velocity of the AUV with respect to the Earth fixed 

coordinate frame.  The open form of Equation 2.19 is given by 

 
 

 

x

y

z

F = X = m u + qw - rv

F F = Y = m v + ru - pw

F = Z = m w+ pv - qu




 

  

(2.20) 

After the rearrangement of F, translational accelerations become: 

x

y

z

F
u = - qw+ rv

m

F
v = - ru + pw

m

F
w = - pv + qu

m  

(2.21) 

 

In Figure 2.7, the Simulink model of translational transformation is shown. 
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Figure 2.7 : Translational transformation matrix. 

Similarly, after transforming from the body-fixed frame to the Earth-fixed frame the 

moment equation and its open form becomes 

     

       

       

       





 



e b e b b e b e b e

2 2

x x yz zx xy y z

2 2

y y zx xy yz z x

2 2

z z xy yz zx x y

M = D I ω = D I ω + ω × I ω

M = K = I p - I q - r - I r + pq - I q - rp - I - I qr

M = M = I q - I r - p - I p + qr - I r - pq - I - I rp

M = N = I r - I p - q - I q + rp - I p - qr - I - I pq

ˆ ˆ ˆ

M
 

(2.22) 

For a rigid body, angular momentum can be defined as 

IH   (2.23) 

where the inertia matrix is defined as 

























zzyzxz

yzyyxy

xzxyxx

III

III

III

I

 

(2.24) 

where, 
iiI  denotes a moment of inertia, and 

ijI  a product of inertia j i .  

In this thesis, we assume that the AUV is symmetrical along the XY and XZ planes, 

therefore cross inertia parameters become 

0  xy yz xzI I I  and y zI I  
(2.25) 
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As a result of this symmetry, the rotational EOM of AUV in particular, becomes: 

 

 

x x

y y z x

z z x y

M = I p

M = I q - I - I r p

M = I r - I - I p q
 

(2.26) 

After rearrangement, Equation 2.26 is expressed as: 

 

 

x

x

y z x

y

z x y

z

M
p =

I

1
q = M + I - I r p

I

1
r = M + I - I p q

I

  

 
 

 

(2.27) 

In Figure 2.8, AUV rotational transformation is implemented in Simulink. 

 

 

Figure 2.8 : Rotational transformation matrix. 

Finally, the derivative of Euler angles is defined as: 

 

qsinφ+ rcosφ
ψ =

cosθ

θ = qcosφ - rsinφ

φ = p + qsinφ+ rcosφ tanθ
 

(2.28) 
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2.3.3 Gravitational forces  

Gravitational forces always exist in the AUV.  It can be assumed that gravity acts at 

the center of gravity (CG) of the vehicle. Since the centers of mass and gravity 

coincide in an AUV, there is no external momentum produced by gravity on the CG.  

Therefore, for the body axis system, gravity contributes only to the external force 

vector F.  Three components of the gravitational force in the body frame depend on 

the AUV‘s attitude relative to an inertia frame.  The gravitational force acting upon 

an AUV is most obviously expressed in terms of the Earth‘s axes.  With respect to 

these axes, the gravity vector mg, is directed along the eZ  axis. Figure 2.9 

demonstrates the alignment of the gravity vector with respect to the body-fixed axes. 

In Figure 0, θ represents the pitch angle between the gravity vector and the b bY Z  

plane; the angle is positive when the nose of the AUV goes up.  Φ represents the roll 

angle between 
bZ axis  and the projection of the gravity vector on the b bY Z  plane.  

Direct solution of the vector mg into X , Y  and Z  components produces: 

sin( ) sin

cos( )sin cos sin

cos( )cos cos cos

x

y

z

g m m

g m m

g m m

 

 

 

   

    

    

g g

g g

g g

 
(2.29) 

 

Figure 2.9 : Orientation of gravity vector with respect to the body axis [24]. 

In general, the Euler angles ( ,   and  ) are not simply the integrals of the angular 

velocity p, q, and r (see Equation 2.28). It is necessary to relate these and their 

derivatives to the angular velocities p, q, and r. This depends upon whether the 

gravitational vertical seen from the AUV is fixed or whether it rotates relative to 

inertial space [2]. 
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The manner in which the angular orientation and velocity of the body axis system 

with respect to the gravity vector is expressed by depending upon the angular 

velocity of the body axes about the vector mg.  

The external forces acting on the AUV can be expressed as: 

x x

y y

z z

X F g

Y F g

Z F g

 

 

 
 

(2.30) 

where , ,  and x y zg g g are the gravitational terms, and ,  ,x yF F  and zF  represent the 

hydrodynamic and thrust forces respectively. Hence, from the Equations (2.13) and 

(2.15), the force equations become: 

( sin )

( cos sin )

( cos cos )







    

     

     

CG

CG

CG

x x

y y

z z

F ma m u qw rv

F ma m v ru pw

F ma m w pv qu

g

g

g

 (2.31) 

In Figure 2.10, the Simulink model of gravitational force calculation is shown. 

 

 

Figure 2.10 : Gravitational force calculation. 

The gravitational acceleration forces and moments are represented by the weight 

minus buoyancy (W−B) and weight moment terms respectively [24]. 

2.3.4 Hydrostatic forces and moments 

When an AUV is submerged in a fluid under the effect of gravity, two forces act on 

the vehicle: the gravitational force, which is metioned in the previous sub-section and 

the buoyancy, which is called ―hydrostatic effect‖. 
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The buoyancy force acting on the center of buoyancy (CB) is represented in the 

body-fixed frame (See Figure 2.11). It can be recognized that the difference between 

gravity and buoyancy (W−B) only affects the linear force acting on the vehicle.  It is 

also clear that the restoring linear force is constant in the Earth-fixed frame [22].  On 

the other hand, the two vectors of the first moment of inertia W and B affect the 

momentum acting on the vehicle and are constant in the body-fixed frame.  A solid 

body submerged in a fluid will have upward buoyant force acting on it equivalent to 

the weight of displaced fluid, enabling it to float or at least appear to become lighter.  

If the buoyancy exceeds the weight, then the object floats; if the weight exceeds the 

buoyancy, the object sinks. If the buoyancy equals the weight, the body has neutral 

buoyancy and may remain at its level. Discovery of the principle of buoyancy, which 

is a result of the hydrostatic pressure in the fluid, is attributed to Archimedes [60].  

 

Figure 2.11 : Hydrostatic forces and moments [24]. 

After applying hydrostatic force coefficients to Equation 2.31, translational force 

equations become: 

( ) ( )sin

( ) ( )cos sin

( ) ( )cos cos







     


       


      

CG

CG

CG

x x

y y

z z

F ma m u qw rv W B

F ma m v ru pw W B

F ma m w pv qu W B

 
(2.32) 

Similarly, after applying the hydrostatic moment coefficients to Equation 2.26, the 

moment equations become: 
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x x g b

y y z x g b

z z x y

M = I p+(z W - z B)cos sin

M = I q - I - I rp+(z W - z B)sin

M = I r - I - I pq

 



 

(2.33) 

In Figure 2.12, hyrostatic forces and moments are implemented in Simulink. 

 

 

Figure 2.12 : Hydrostatic force and moment calculation. 

2.3.5 Added mass and inertia 

When a rigid body is moving in a fluid, the additional inertia of the fluid surrounding 

the body, which is accelerated by the movement of the body, has to be considered. 

This effect can be neglected in industrial robotics since the density of the air is much 

lighter than the density of a moving mechanical system.  However, in underwater 

applications the density of the water, ρ ≈ 1000 kg/m
3
, is comparable with the density 

of the vehicles. In particular, at zero degrees, the density of the fresh water is 

1002.68 kg/m
3
; for sea water with 3.5% of salinity it is ρ = 1028.48 kg/m

3
.  Since the 

fluid surrounding the body is accelerated with the body itself, a force is then 

necessary to achieve this acceleration (the fluid exerts a reaction force which is equal 

in magnitude and opposite in direction). This reaction force is the added mass 

contribution [2].  

The added mass is not a quantity of fluid to add to the system such that it has an 

increased mass. Different properties hold with respect to the six by six inertia matrix 

of a rigid body due to the fact that the added mass is a function of the body‘s surface 

geometry. As an example, the inertia matrix is not necessarily positive definite. The 

added mass has also an added Coriolis and Centripetal contribution [8].  
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As for the rigid body dynamics, it is desirable to separate the added mass forces and 

moments in terms of which belong to an added inertia matrix and a matrix of 

hydrodynamic Coriolis and Centripetal terms. Added (virtual) mass should be 

understood as pressure-induced forces and moments due to a forced harmonic motion 

of the body, which are proportional to the acceleration of the body [8]. Consequently, 

the added mass forces and acceleration will be 180˚ out of phase to the forced 

harmonic motion. However, this isnot true when AUV is close to the free surface. 

In this study, ―Added Mass and Inertia‖ effects of water is not taken into 

consideration. 

2.3.6 Hydrodynamic forces and moments  

In this section, the main hydrodynamic effects acting on an AUV moving in a fluid 

(seawater) will be briefly discussed. Standard EOM contain only stability derivatives 

for the specific AUV configuration of interest. Hence, trajectory simulation or 

prediction using traditional methods requires a priori knowledge of the 

hydrodynamic characteristics of the vehicle in the flow regimes, which may occur 

during the maneuver [24]. 

All hydrodynamic parameters are defined uniquely for a given AUV shape by 

formulae based on the results of theory and experiment.  There are primarily three 

methods of determining the hydrodynamic coefficients in the design process of 

underwater vehicles: (1) towing tank tests, (2) numerical computations, and (3) field 

tests.  Among these methods, the most reliable results are obtained from the field 

tests, where the whole designed model is tested in a real sea environment [29]. 

Towing tank tests are performed with a scaled model and the hydrodynamic forces 

and moments can accurately be determined. However, experimental testing of 

designs is a time consuming and costly process (construction of the models, 

instrumentations, test infrastructure, etc.). Numerical Computations are mainly based 

on semi-empirical or CFD methods. Semi-empirical or potential theory-based 

methods are generally utilized in the preliminary design process, where it is 

important to determine the hydrodynamic characteristics in a short period of time. 

CFD methods give accurate results and are used in the detailed design process [26]. 
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The theory of fluid dynamics is rather complex and it is difficult to develop a reliable 

and robust model for most of the hydrodynamic effects.  A rigorous analysis for 

incompressible fluids would need to resort to the Navier-Stokes equations, which are 

the basic governing equations for a viscous, heat-conducting fluid [20].  These 

equations describe how the velocity, pressure, temperature and density of a moving 

fluid are related.  The hydrodynamic prediction method is coupled with a 6-DOF 

EOM solver to predict vehicle trajectories.  The predicted motion characteristics of 

the AUV are also sensitive to details of the predicted hydrodynamic characteristics of 

the vehicle. Small perturbations in the flow field, which cause small; variations in the 

vehicle forces and moments, accumulate over the length of the hull, and can produce 

large perturbation; in the calculated trajectory. 

In this thesis in order to determine hydrodynamic forces and moments, we used 

SUBFLO_2, which is an engineering physically based and commercially available 

software tool.  SUBFLO_2 has four major components which are hull separation 

vortex method, fin horseshoe vortex method, propeller/propulsion models, and 6-

DOF equations of motion solver. The hydrodynamic prediction method is coupled 

with a 6-DOF EOM solver to predict vehicle trajectories. The predicted motion 

characteristics of the AUV are also sensitive to details of the predicted hydrodynamic 

characteristics of the vehicle. Small perturbations in the flow field, which cause 

small; variations in the vehicle forces and moments, accumulate over the length of 

the hull, and these can produce large perturbation; in the calculated trajectory [62].  

In order to determine hydrodynamic coefficients with utilizing SUBFLO_2 software 

tool, first we find three static hydrodynamic force coefficients of CFx, CFy, and CFz, 

and three static hydrodynamic moment coefficients of , ,x y zCMSF CMSF CMSF  for the 

predefined AUV geometry.  These coefficients are calculated due to the parameters 

of    , , , ,s r b wV ,which are elevator deflection, rudder deflection, angle of attack, 

side slip angle, and velocity vector with respect to water, respectively. In Figure 

2.13, the Simulink hydrodynamic model is shown. 
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Figure 2.13 : Hydrodynamic force and moment calculation. 

2.3.7 Propeller effect  

The propeller produces the main thrust.  Consequently, the reaction of the body to 

the load torque of the propeller produces a moment with respect to its rotational axis. 

The vehicle is a nonlinear system: all equations of motion of the system include 

coupled terms [29]. The main terms of this type are in the longitudinal (X) force and 

roll moment (K) equations because the thrust forces and moments act in the direction 

of the x-axis.  A propeller with a rudder can produce a thrust vector within a range of 

directions and magnitudes in the horizontal plane for low speed maneuvering and 

dynamic positioning. In Figure 2.14, AUV propeller effect is shown. 

 

Figure 2.14 : AUV propeller effect [24]. 

In Figure 2.15, Simulink model of thrust calculation is shown. In this model, we used 

as a simple fixed-trust model due to the AUV velocity. 

 

Figure 2.15 : Thrust calculation. 
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2.4 Mathematical Model of AUV  

Detailed explanations on the theory behind the main concepts that directly influenced 

the design of the dynamic mathematical model of AUV are given in the previous 

sub-section. Now we arrive at the combined overall non-linear EOM for the AUV in 

6-DOF [26] as follows: 

Surge or translational motion along the x-axis: 
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(2.34) 

Sway or translational motion along the y-axis: 
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(2.35) 

Heave or translational motion along the z-axis: 

   

     

 

2 2

2cos cos
e

w q g g uq vp

g uw g rp g ww qq

uu e

Z Z w Z q m w x q y p Z m uq Z m vp

mz p Z uw mz q Z mx rp Z w w Z q q

W B Z u  

            

      

 
 

(2.36) 

Roll or rotation about the x-axis: 
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(2.37) 

Pitch or rotation about the y-axis: 
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(2.38) 

Yaw or rotation about the z-axis: 
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where; X, Y, Z, K, M, and N represent the resultant forces and moments with respect 

to the body-fixed coordinates. 

Finally, these equations can be summarized in matrix form 
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(2.40) 

Table 2.2 : AUV physical parameters [45]. 

 

Parameter 

 

Value 

 

SCI unit 

 

Definition 
ρ 1010 g/m

3 
Fluid density 

g 9.81 m/s
2
 Gravitational acceleration 

xn 0.6 m Distance from nose to aerodynamic force center 

xt -0.73 m 
Distance from the aerodynamic force center of the hull to 

Aerodynamic force center of the horizontal tail 

d 0.191 m Hull cylindrical radius 

l 1.33 m Overall hull length 

Sw 0.7981 m
2
 Submerged Area (πdl) 

Ap 0.2540 m
2
 Body base area (dl) 

Af 0.0287 m
2
 Body cross area (πd

2
/4) 

cds 0.004 - Surface drag coefficient 

cdF 0.3 - Drag coefficient (Af ) 

cda 0.0166 - Total drag coefficient (for Sw) 

lcp 0.2645 m Distance to center of pressure 

tfin 1010 g/m
3
 Fluid density 

hfin 0.0960 m Rudder hight 

Ar, As 0.0071 m
2
 Vertical/horizantal rudder surface area 

cdf 1.558 - Rudder drag coefficient 

cr, cs 2.3685 - Vertical/horizantal rudder bouyancy 

lfin 0.8190 m Rudder moment length 

W 300 N AUV weight  

B 306 N Bouyant force 

xb 0 m Bouyancy center about the x-axis 

yb 0 m Bouyancy center about the y-axis 

zb 0 m Bouyancy center about the z-axis 

xg 0 m Gravity center about the x-axis 

yg -0.008 m Gravity center about the y-axis 

zg 0.0196 m Gravity center about the z-axis 

Ixx 0.177 kg m
2
 Moment of inertia about the x-axis 

Iyy 3.45 kg m
2
 Moment of inertia about the y-axis 

Izz 3.45 kg m
2
 Moment of inertia about the z-axis 

R 5.87E-2 m Diameter of  propeller 

u0 1.5 m/s Design velocity 
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Table 2.3 : AUV hydrodynamic force coefficients [45]. 

Parameter Value SCI unit Definition 

| |u uX  -6.68 kg/m Axial drag 

uX  -0.513 kg  Added mass  

| |v vY  -196.26 kg/m Cross flow drag 

| |r rY  8.30 kg m/rad
2
 Cross flow drag 

uvY  -38.39 kg/m Body and rudder bouyancy  

vY  -42.13 kg  Added mass 

rY  -5.16 kg m/rad Added mass 

urY  13.41 kg/rad Added mass + Rudder bouyancy  

ruuY 
 16.99 kg/m/rad Bouyant force of rudder  

| |w wZ  -196.26 kg/m Cross flow drag 

| |q qZ  -8.30 kg m/rad
2
 Cross flow drag 

uwZ  -38.39 kg/m Body and rudder bouyancy 

wZ  -42.13 kg Added mass 

qZ  5.16 kg m/rad Added mass 

uqZ  -13.41 kg/rad Added mass + Rudder bouyancy 

suuZ 
 -16.99 kg/m/rad Rudder bouyancy 

 

Table 2.4 : AUV hydrodynamic moment coefficients [45]. 

Parametre Değer Birim Tanım 

| |p pK  -5.03 kg m
2
/rad

2
 Roll drag 

pK  -0.095 kg m
2
/rad

2
 Added mass moment 

| |w wM  7.95 kg Cross flow drag 

| |q qM  -24.13 kg m
2
/rad

2
 Cross flow drag 

uwM  21.89 kg 
Added mass + Rudder bouyancy + Munk 

Momenti 

wM  5.16 kg m Added Mass Inetia 

qM  -7.57 kg m
2
/rad Added Mass Inetia 

uqM  -16.56 kg m/rad Added mass + Rudder bouyancy 

suuM 
 -13.92 kg/rad Rudder Bouyancy Moment 

| |v vN  -7.95 kg Cross flow drag  

| |r rN  -24.13 kg m
2
/rad Cross flow drag 

uvN  -21.89 kg 
Added mass + Rudder bouyancy + Munk 

Momenti 

vN  -5.16 kg m Added Mass Inertia 

rN  -7.57 kg m
2
/rad Added Mass Inertia 

ruuN 
 -13.92 kg rad Rudder Bouyancy Moment 
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2.5 Numerical Integration of The AUV EOM 

The nonlinear differential equations defining the AUV accelerations and the 

kinematic equations give us the vehicle accelerations in two different reference 

frames. Given the complex and non-linear nature of these equations, we will use 

numerical integration to solve for the vehicle speed, position, and attitude in time 

frame [42]. Consider that at each time step, we can express nonlinear differential 

equation as follows: 

 ,n n nx f x u
 (2.41) 

where x is the AUV state vector: 

            
T

x u v w p q r x y z   

 
(2.42) 

and 
nu , is the input vector: 

  X  
T

n s r prop propu K      (2.43) 

There are two common numerical iteration methods to solve the non-linear 

differential equation: one is Euler‘s method and the other is Runge-Kutta method. 

2.5.1  Euler's method first order 

We will first consider Euler's method, a simple numerical approximation that 

consists of applying the iterative formula: 

 1 , .n n n nx x f x u t   
 (2.44) 

where, t  is the modeling time step.  

Although the least computationally intensive method, Euler's method is unacceptable 

as it can lead to divergent solutions for large time steps [42]. 

2.5.2 Runge-Kutta method 

In this subsection, we will introduce one of the most powerful predictor-corrector 

algorithms —one which is so accurate, that most computer packages designed to find 

numerical solutions for differential equations will use it by default—the Runge-Kutta 

fourth order method. The Runge-Kutta method further improves the accuracy of the 
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approximation by averaging the slope at four points [42].  We used this method to 

solve the nonlinear dynamic model of the AUV. In this method, numerical 

approximations that consist of applying the iterative formula: 
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(2.45) 

where the interpolated input vector is: 

 1 1
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(2.46) 

The combination of these two Equations (2.45 – 2.46) yields to: 

 1 1 2 3 42 2
6

n n

t
x x k k k k


    

 
(2.47) 

which is simply the x-value of the current point plus a weighted average of four 

different x-jump estimates for the interval, with the estimates based on the slope at 

the midpoint being weighted twice as heavily as those using the slope at the end-

points [42].  For estimations of rigid-body dynamic models, the second order Runge-

Kutta algorithm is usually adequate and hence recommended during the initial 

iterations of the iterative estimation algorithms, switching over the forth-order 

Runge-Kutta only during the final iteration [31]. 

2.6 AUV Control  

Sliding-mode control (SMC) is one of the robust and nonlinear control methods.  In 

control theory, SMC is a nonlinear control method that alters the dynamics of a 

nonlinear system by application of a discontinuous control signal that forces the 

system to slide along a cross-section of the system's normal behavior. The state-
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feedback control law is not a continuous function of time. Instead, it can switch from 

one continuous structure to another based on the current position in the state space. 

Hence, SMC is a variable structure control method [62]. Consider the problem of 

doing set point control for a system of the form 

                (2.48) 

Where      . Further, we seek a solution that is robust to uncertainties in f(x) and 

b( x). 

Note that the system can be re-written in vector form. It is then equivalent to 

 

(2.49) 

The system is a diagonal nonlinear system. 

Define    (setpoint) and  ̃ (the error signal) the difference between x and   . 

We take a 2-step approach to designing the controller: 

1. Define the sliding mode. This is a surface that is invariant of the controlled 

dynamics, where the controlled dynamics are exponentially stable, and where 

the system tracks the desired set-point 

2. Define the control that drives the state to the sliding mode in finite time 

Define the sliding mode      as follows: 

     { |        } (2.50) 

where        is defined by 

       (
 

  
  )

   

 ̃        (2.51) 

Note that on the surface     , the error dynamics are governed by the equation 

(
 

  
  )

   

 ̃      (2.52) 



32 

On this surface, the error will converge to zero exponentially. This implies that if 

there exists a control input u such that      is in S(t) it follows that      is in 

     for all T,t and the error will converge exponentially to zero for this control 

input. Namely, the objective of SMC is to force both error and derivative of error to 

the equilibrium point. Then the selected sliding surface     , tends to zero in a finite 

time and the system states should remain on the surface. 

In this thesis, the parameters of the controller are tuned because of avoiding 

complicated calculations which may cause large chattering.  

The control input of course is 

        (    ̇) (2.53) 

The SMC law for course control of AUV is 

   

  
| |        (2.54) 

The control strategy used for physically based model of AUV is depicted in Figure 

2.16, which is the Simulink model of sliding mode control of yaw (ψ). 

 

Figure 2.16 : Simulink model of sliding mode control 
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2.7 Dynamic Simulink Model of AUV  

The data achieved from the modeling and identification process of the AUV was 

implemented into a vehicle which was used in a MATLAB Simulink environment.  

This makes it possible to simulate the behaviour of the AUV or programs without the 

need of a real sea environment. 

The detailed AUV Simulink models are depicted in Figure 2.17.  In this model, 

hydrodynamic, hydrostatic, gravitational, and kinematic EOM of AUV and sliding 

mode control are implemented in the MATLAB version 7.5 Simulink environment. 

 

Figure 2.17 : Full AUV Simulink model and sliding mode control.  

2.8 Simulation Results 

The simulation of the dynamic model is developed by using the MATLAB version 

7.5 Simulink environment.  Numerical simulations are made to show the dynamic 

model of the AUV. 

In Figure 2.20 and 2.21, the AUV dynamic model simulation results are shown.  For 

this simulation, the AUV has a maneuver speed of 8 m/s and rudder angle applies to 

10 deg. From the start, elevator angle applies to 1 deg, and the simulation time is 50 

sec.  
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Figure 2.18 : Simulation results of x, y, z, roll, pitch and yaw angles (50 sec.). 

 

 

Figure 2.19 : Simulation results of V_tot, δr and δe (50 sec.). 

.
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3.  DEVELOPMENT OF INS MODEL 

3.1 Purpose 

The aim of this chapter is to explain how to develop an INS, which is the main 

navigational component applied to nonlineer dynamic model of AUV. The key 

element of the AUV navigational system is INS, which is accomplished by 

integrating the output of a set of sensors (including gyros and accelerometers) to 

compute position, velocity, and attitude. 

Typically, INS is a self-contained system with high short-term stability and is not 

influenced by interference. INS is a stand-alone navigational system using motion 

sensors to continuously keep track of position, orientation and velocity of a vehicle 

[48].  An INS contains an Inertial Measurement Unit (IMU), including an 

accelerometer and a gyroscope for all three axes, measuring the linear acceleration 

and angular velocity of a vehicle with a 6-DOF. By processing signals from these 

sensors, it is possible to track the position and orientation of a device. The INS 

system is usually mounted in a gimbaled or strap-down, using updating algorithms 

based on Euler angles, kinematics and integration to keep track of position and 

orientation. Without requiring any external references, an INS determines vehicle‘s 

position, orientation, or velocity once it has been initialized. The major drawback of 

inertial navigational is that initialization and sensor errors cause the computed 

quantities to drift [51]. Therefore, INS does not indicate position perfectly because of 

errors in components (the gyroscopes and accelerometers) and therefore produces 

errors in the model of the gravity field that the INS implements. 

Today, INS is commonly used in a wide range of vehicles such as: airplanes, ships, 

cars, submarines, UAVs, UUVs, and guided missles and bombs.  Recent 

technological advances in the construction of Micro-Electro-Mechanical System 
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(MEMS) devices have made it possible to manufacture small, low cost, and light 

weight INSs [48]. 

3.2 Inertial Measurement Unit 

The INS is based on measurements of vehicle specific forces and rotation rates 

obtained from on-board instrumentation consisting of triads of gyros and 

accelerometers that create an IMU.  These inertial sensors have for decades served as 

essential navigational tools especially in the aerospace industry.  In Figure 3.1, an 

example of MEMS IMU sensor is shown. Recent advancements in MEMS 

technology enabled production of low-cost inertial sensors. Therefore, the 

application area of these sensors quickly expanded particularly in the automotive, 

robotics, AUV, and UAV industries. 

 

Figure 3.1 : Xsens MEMS IMU system [53]. 

Inertial sensors are non-jammable, non-radiating, and self-consistent, so they cannot 

be disturbed by any external factors and do not affect anything else around 

themselves. However, even in the highest quality MEMS inertial sensors which are 

used in AUVs, there are still errors corrupting useful data.  Whether the inertial 

sensor error is caused by internal mechanical imperfections, electronics errors, or 

other sources, the effect is to cause errors in the indicated outputs of these devices.  

For the gyros, the major errors are in measuring angular rates. For the 

accelerometers, the major errors are in measuring acceleration [45]. For both 

instruments, the largest errors are usually a bias instability (measured in deg/hr for 
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gyro bias drift or micro g (μg) for the accelerometer bias), and scale-factor stability 

(which is usually measured in parts per million (ppm) of the sensed inertial quantity) 

[52]. The smaller the inertial sensor errors we have, the better the quality of the 

instruments, the improved accuracy of the resulting navigation solution, and the 

higher the cost of the system. 

3.2.1 Rate gyros 

Rate gyros are sensors that measure angular velocities in contrast to attitude angles 

measured by free gyros, which are typically mounted in gimbaled platforms. Rate 

gyros sense the vehicle‘s angular rate relative to the inertial space [53]. These rate 

components are the craft angular rate relative to the Earth nb , a angular rate as it 

moves about the spherical Earth 
en and the angular rate of the Earth itself 

ie . The 

vector sum of these angular rates 
ib  is given by: 

b b b b

ib ie en nb     
 (3.1) 

 
   (a)                                             (b) 

Figure 3.2 : a) Ring laser gyro.   b) Fibre optic gyro [56]. 

There are three types of gyro technology used in today‘s IMU systems: 

 Ring Laser Gyro (RLG). 

 Fibre Optic Gyro (FOG). 

 MEMS. 
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The RLG has recently seen increased usage in strap-down navigational system 

mechanizations. Most current RLG sensors are single DOF sensors requiring three 

mechanizations for an INS implementation. A single DOF RLG is shown 

schematically in Figure 3.2 : (a). This figure illustrates a triangular version on the 

RLG. The gyro includes a laser as a source, a closed-path cavity, mirrors at each 

intermediate corner in the path, and an interferometer / photodetector. The operation 

of the gyro is based on optical and electronic phenomena rather than the mechanical 

phenomena. 

On the other hand, the FOG is a maturing gyro technology.  FOGs in comparison to 

RLGs require no mechanical dither for their operation and thus eliminate a 

troublesome noise source. They do not require high voltage for the laser plasma, 

hence reduce power consumption; and, with the exception of a laser diode for the 

light source are composed of passive optical components and thus yield extremely 

high reliability compared to any other available technology [55].  A typical FOG is 

shown in Figure 3.2 : (b).  

As a ―rule-of-thumb,‖ an INS equipped with gyros whose bias stability is 0.01 deg/hr 

will see its navigational error grow at a rate of 1 nmi/hr of operation [48].  Solid-state 

inertial sensors, such as MEMS devices, have potentially significant cost, size, and 

weight advantages.  The MEMS and Interferometric FOG (IFOG) technologies are 

expected to replace many of the current systems using RLGs and mechanical 

instruments. However, one particular area where the RLG is expected to retain its 

superiority over the IFOG is in applications requiring extremely high scale-factor 

stability [48].  The change to all-MEMS technology hinges primarily on MEMS gyro 

development. The performance of MEMS sensors is continually improving, and they 

are currently being developed for many applications. This low cost device can only 

be attained by leveraging off the consumer industry, which will provide the 

infrastructure for supplying the MEMS sensors in extremely large quantities.  The 

use of these techniques will result in low-cost, high-reliability, small-size, and light-

weight inertial sensors into the systems which they will be integrated.  
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3.2.2  Accelerometers 

Accelerometers in comparison to gyros have more mature technology. An 

accelerometer is a device that converts acceleration into an electrical signal. Both 

dynamic and static acceleration can be measured using an accelerometer where 

dynamic acceleration is the acceleration due to any force except for the gravitational 

force applied on a rigid body and the static acceleration (or gravitational 

acceleration) is due to the gravitational force.  The output of an accelerometer can be 

analog or digital.  In the analog case, the output voltage or the duty cycle of a square 

wave is directly proportional to the acceleration. On the one hand, the output of a 

digital accelerometer can be directly accessed using protocols such as serial 

interfaces [3].  The principle of accelerometer is illustrated simply in Figure 3.3. 

Proof

Mass (m)

Direction of Acceleration 

w.r.t. Inertial Space

Displacement 

Pickup

Case

a

Spring

 

Figure 3.3 : Principle of accelerometer [52]. 

The accelerometer is a specific force sensor that senses both AUV inertial 

acceleration
ia , and the gravitational field vector 

mg  which is the force of mass 

attraction to the Earth.  Therefore the accelerometer sensed AUV specific force a , is 

given by  

i ma a g 
 (3.2) 
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3.3 INS Framework and Design 

The INS employs a dead-reckoning algorithm that computes attitude, velocity and 

position based on the inertial sensors. The idea behind the INS is simply to integrate 

accelerometer signal to determine velocity, and position in a desired coordinate 

system and to integrate gyro signals to determine attitude information [53]. However, 

The INS has poor accuracy in the long term, which arises from the unbounded 

growth in the position and velocity errors due to the integration of inertial 

measurements containing various forms of errors.  

INS typically has the properties of  

 initialization is needed. 

 high position and velocity accuracy over the short term. 

 accuracy decreasing with time. 

 affected by gravity. 

 high measurement output rate. 

 not affected by electromagnetic interference. 

 autonomous. 

The position and velocity of the vehicle is predictable for all times. It is when 

changes in motion occur that the concept of forces comes into play. Two types of 

forces determine the motion of a vehicle: gravity and inertia. Gravitational mass has 

been described as being like a charge the object feels in proportion to its gravitational 

mass, whereas inertial mass describes the resistance of a vehicle to changing the state 

of motion. There are a number of inertial forces. The most commonly encountered 

are thrust, lift, and drag [10]. 

The major drawbacks of inertial navigational are initialization and sensor errors, 

which cause the computed quantities to drift.  INS donot indicate position perfectly 

because of errors in components (the gyroscopes and accelerometers) and errors in 

the model of the gravity field that the INS implements. Those errors cause the error 

in indicated position to grow with time [45]. For vehicles with short mission times, 

such errors might be acceptable. For longer missions, it is usually necessary to 
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provide periodic updates to the navigational system such that the errors caused by the 

inertial system are reset as close to zero as possible [10]. 

For an INS, the navigational equation of a vehicle based on the Earth-center-Earth 

fixed reference coordinates can be obtained with the differential equations from the 

instrument coordinates, considering the frame rotation and acceleration, coordinate 

transformation, and sensor error dynamics.  In the navigational frame mechanism, 

the ground speed is expressed in the navigational coordinates to give Vx, Vy, and Vz 

velocities.  The rate of change of velocities with respect to navigational axes can be 

expressed in terms of its rate of change in inertial axes.  The rate of change in x, y 

and z can be expressed in terms of the Earth radius and the speed of the vehicle in the 

navigational coordinate [36]. 

The diagram in Figure 3.4 briefly depicts the computational flow of the inertial 

navigation equations that we used in this study. The main input data to this diagram 

are the three gyros (ω
b

ib) and accelerometer (a
b
) measurements in 6-DOF of the body 

frame. The Earth spin rate (ω
e
ie) is assumed as a constant input to the system. The 

gravity vector (g
n
) is aslo shown as an input, which would be constant if it does not 

vary significantly.  Otherwise it will be computed as a function of height (h) and the 

Earth‘s latitude (Φ). Finally, the data flow in this diagram merely shows the variable 

interdependence but not necessarily the actual computation in the navigational 

computer.  

 

Figure 3.4 : INS framework [3]. 
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As depicted in Figure 3.4 : above, the essential functions of an INS may be defined 

as follows [3]: 

 Determination of the angular motion of a vehicle using gyroscopes, from 

which its attitude is relative to a reference frame may be derived. 

 Measure specific forces using accelerometers. 

 Resolve the specific force measurements into the reference frame using the 

knowledge of attitude derived from the information provided by the 

gyroscopes. 

 Evaluate the force resulting from the gravitational field – the gravitational 

attraction of the Earth in the case of systems operating in the vicinity of the 

Earth. 

 Integrate the resolved specific force measurements to obtain estimates of the 

velocity and position of the vehicle.  

The INS framework in Figure 3.4 :5 below is implemented in MATLAB version 7.5 

Simulink environment. This INS module is used as a main navigational tool applied 

to AUV dynamic model. 

 

Figure 3.5 : INS Simulink model. 
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4.  DEVELOPMENT OF THE INTEGRATED AUV NAVIGATIONAL 

SYSTEM 

4.1 Objectives 

The goal of this chapter is to explain how to develop an Integrated AUV 

Navigational System. AUVs require a precise navigation system for localization, 

positioning, path tracking, guidance, and control.  In the following paragraphs, we 

will try to explain how to achieve a more accurate and reliable navigational system 

for AUVs by combining multi-sensor data based on the Kalman filtering technique.  

For decades, GPS and INS are the standard navigational systems, which are widely 

used in surveying or service and maintenance applications that requires the most 

accurate navigational information [6]. However, underwater navigation requires 

different kinds of sensors than commonly used airborne or land vehicle navigational 

applications due to the limited usage of GPS signals in the water [39].  

Primarily, the challenge in INS is maintaining the accuracy of an AUV‘s position 

over the course of a long mission time. An initially accurate position can quickly 

become uncertain through maneuvers and variations in the AUV‘s motion.  As 

mentioned earlier, the key problem of INS is that it exhibits position errors that grow 

unbounded with time, which are caused by the accumulation of gyro and 

accelerometer errors over time, as well as oscillatory velocity errors [3].  During the 

long duty cycle, these inaccuracies become significant.  Strong sea currents and other 

underwater phenomena affect the motion of the AUV. This therefore cannot be 

precisely modeled because data will be skewed by greater inaccuracies.  

Any AUV navigational system that requires accurate navigation over long duty cycle 

must use an external sensor reference. Mainly for this reason, in long-term AUV 

navigational applications, the INS is often used in conjunction with various 

navigational aids: such as acoustic devices, compass, pressure depth sensor, DVL, 

terrain-based techniques, and surface GPS [7]. Additionally, the improvements in 

computer technology and increased data processing rates brought the ability to 
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improve the navigational systems of both air and underwater vehicles in precision, 

robustness, correctness, and reliability. 

4.2 Integrated AUV Navigational System Framework 

We developed an Integrated AUV navigational system solution, which is illustrated 

in Figure 4.1.  In the left hand side of this framework, the IMU inputs with its gyros 

and accelerometers exist. The navigational equations read these three gyros and three 

accelerometers with a 100 Hz or more data rate. Based on these measurements; the 

navigational equations resident in the INS calculate the change in position, velocity 

and attitude.  Due to noise and errors in the readings, errors in the calculation 

increase with time if it is not corrected for. To the right, we see the KF.  It estimates 

the attitude, velocity, position, and sensor errors.  It also calculates the accuracy of 

each estimate.  The input to the KF is the difference between the values calculated by 

the navigational equations and the external aiding devices` measurements such as the 

compass, DVL, and pressure sensor. 

 

Figure 4.1 : Integrated AUV navigational system solution. 

4.3 Navigational Aiding Devices 

The navigational system of UVs plays a crucial role together with the sensor 

architecture in the degree of system autonomy that can be achieved. A typical 

navigational sensor outfit for an AUV may consist of standard components such as a 

compass, pressure depth sensor, and some class of INS [45]. In the following 
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subsections, we briefly explain the aiding devices of DVL, compass, and pressure 

depth sensor that we used in this study. 

4.3.1 Doppler velocity logger  

One of the most important devices that has been developed to aid the INS is the 

Doppler Velocity Log (DVL).  The DVL is a sonar used to measure both speed and 

height above the sea bottom, and relies on the Doppler effect.  The DVL measures 

ground velocity in the vehicle frame and since the heading is known from the INS; 

the incremental change of position in the geographic frame can be calculated.  In 

practice the longer-term position error will eventually grow to an unacceptable level 

and this is a general drawback of pure dead reckoning techniques. It should be noted 

however, that sea currents do not influence DVL/INS integrated navigation since the 

DVL can measure the true ground speed [45]. This is the main advantage of DVL. 

 

Figure 4.2 : Doppler velocity log [12]. 

Since the DVL works properly the distance to the bottom must be limited, which 

varies from a maximum of 30 m to 200 m of depth, depending on the frequency of 

sound emmited by the DVL.  However, the DVL can only generate accurate velocity 

measurements as long as the distance to the seafloor is within a certain boundary 

depth. 

4.3.2 Pressure depth sensor 

Depth sensor, which measures the water pressure from sea surface, gives the 

vehicle‘s depth. At depths beyond a few hundred meters, the equation of the state of 

seawater must be invoked to produce an accurate depth estimate based on the 

ambient pressure. With a high-quality sensor, these estimates are reliable and 

accurate, giving a small error of order 0.01%. 
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A pressure sensor is determined by calculating the static pressure head (also called 

elevation head) [21]: 

 = p/ g h   (4.1) 

where 
h = depth below the still water surface 

p = pressure  

ρ = density 

g = gravitational acceleration 

 

4.3.3 Compass 

A compass measures the heading or direction of the vehicle it sits on.  Tpically, there 

are two types of compass: gyrocompass and magnetic. A gyrocompass can provide 

an estimate of geodetic north accurate to a fraction of a degree.  Magnetic compasses 

can provide estimates of magnetic north with an accuracy of less than 1
◦
 if carefully 

calibrated to compensate for magnetic disturbances from the vehicle itself.  Tables or 

models can be used to convert from magnetic north to geodetic north. 

4.4 Error Models of INS and Its Aiding Devices 

In the following subsections, we explain the error models used for the INS and its 

aiding devices in this study. 

4.4.1 INS error model  

Error analysis of INS not only affects the accuracy of various types of data which is 

provided by the INS, but also the basis of theory and practice of various sections. 

The error source of INS sensors are commonly measurement errors, acceleration-

dependent biases, scale factor errors, nonlinearity, axis misalignment, and gyro 

sensitivity to the force applied. The errors of inertial sensors and gyros of an INS can 

generally be modeled as a combination of random bias and random noise [37].  

The INS error model simulates IMU measurement data. The simulation is based on 

parameterisation of the general IMU errors. The error model includes noise, bias, 

scaling, (cross) coupling and quantisation of both the gyro and the accelerometer. 

The perturbation method is used to derive the error equation of the INS algorithm.  

The perturbation method analyzes the navigational system by defining the error as 
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the difference between the estimated and true values. For a nonlinear system, this 

method can be applied when the error is small.  In this study, the error model of INS 

is derived consisting of nine parameters, which includes three potion error (x, y and 

z), three linear velocities (Vx ,Vy, and Vz) and ψx, ψy, and ψz are the attitude errors of 

the vehicle with respect to the navigation coordinates along the x, y, and z direction, 

respectively.  Assuming the errors exist in the position, velocity, and attitude error, 

the perturbation method induces the corresponding differential equations: 
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The output errors of gyros 
y, ,  x z

and those of accelerometers , ,  x y z
of IMU 

can be expressed as the first-order Markov process variables and white noise vector  
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gyro = -  +  x x gxw  
(4.11) 

gyro = -  +  y y gyw  
(4.12) 

gyro = -  +  z z gzw  
(4.13) 

acc = -  +   x x axw  
(4.14) 

acc = -  + y y ayw  
(4.15) 

acc = -  + z z azw  
(4.16) 

       0, ,   0,g g a aw t N Q w t N Q  (4.17) 

The bias errors of the accelerometers , ,x y z   and gyros , ,x y z    are assumed to 

be random constant drift, which are irregular values decided when the sensors are 

turned on. Furthermore, the random measurement errors of gyros , ,gx gy gzw w w and 

accelerometers , ,ax ay azw w w , are assumed to be white noise [66].  Finally, 
acc and 

gyro
 are correlative time constants of accelerometers and gyros respectively. 

4.4.2 Error models of aiding devices 

Auxiliary navigational sensors can improve the navigational performance and 

accuracy by correcting the state variables in the navigational equation.  The auxiliary 

navigational sensors that is the pressure depth sensor, DVL, and the magnetic 

compass are good complementary sensors for the INS.  In this study, we modeled the 

errors of the auxilary devices as the summation of random constants, white noises, 

and the first order Markov process similar to the accelerometers and the gyros [36].  

We assumed that the random constants of the biases are unknown but the variances 

of the initial values are known. 

According to the principle of DVL, it measures the velocity and log angle relative to 

the seabed. The measuring error consists of the velocity offset error, log 

misalignment angle error expressed by first-order Markov process, and the scale 
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coefficient error, which is a random constant drift [66].  After the appropriate 

coordinate transformation, DVL velocities are expressed in x, y and z on the Earth‘s 

fixed coordinate system.  The measuring DVL velocity errors are expressed: 

dvlx = -  + 
dvl dvlVx Vx xw  

(4.18) 

dvly = -  +   
dvl dvlVy Vy yw  

(4.19) 

dvlz = -  + 
dvl dvlVz Vz zw  

(4.20) 

   0,DVL DVLw t N Q  
(4.21) 

where 

dvl dvl dvlx y z, ,   ---correlative time constants of velocities, 

, ,
dvl dvl dvlx y zw w w ---stimulating Gaussian white noises. 

 

Similarly, the error model of pressure the depth sensor and magnetic compass used in 

this study are expressed as the summation of random bias and white noises.  The 

pressure measurement is modelled as the correct water depth with superimposed 

white noise.  Correspondingly, the heading measurement is modelled as the correct 

direction of the vehicle with superimposed Gaussian white noise. 

 =  +w
d d dz z zBias  

(4.22) 

 =  +  
com com com

Bias w  
(4.23) 

Where, ,
d comz   --- Gaussian white noises. 

4.5 Kalman Filter Techniques 

4.5.1 Objectives 

The goal of this section is to explain the Kalman Filter (KF) algorithm and how to 

develop a KF for Integrated AUV Navigational System that consists of an error-state 

KF that estimates the drift parameters in the inertial sensors, using the external 

information as the measurement vector [21]. 
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KF was first improved by Rudolf Emil Kalman in 1960 to estimate the linear 

dynamic of a system. The least mean-square estimation approach of random 

parameters is the foundation of KF [33]. The optimality criterion of KF comes from 

the criterion of minimizing the state variable error standard deviation [42]. 

Today, KF techniques are widely used in many real world applications, i.e., 

navigation, sensor fusion, state estimation, tracking land, air and underwater 

vehicles, computer vision applications, economics, weather forecasting, earthquake 

prediction, deformation monitoring in geodesy, and dynamic and kinematics 

monitoring of objects. 

A distinctive feature of a KF is that its mathematical formulation is described in 

terms of state-space concepts.  Another novel feature of a KF is that its solution is 

computed recursively.  In particular, each updated estimate of the state is computed 

from the previous estimate and the new input data, so only the previous estimate 

requires storage [1].  In addition to eliminating the need for storing the entire past 

observed data, a KF is computationally more efficient than computing the estimate 

directiy from the entire past observed data at each step of the filtering process. 

4.5.2 Optimal linear kalman filter 

The linear KF is a set of mathematical equations that provides an efficient recursive 

computational solution of the least-squares estimation. The KF is very powerful in 

several aspects and supports estimations of past, present, and even future states.  

Additionally, the KF is an algorithm for the computation of best estimates of system 

variables arising from sensor-based data and a dynamic system model. The algorithm 

is a recursive algorithm that is well suited to the use of digital computers.  

Essentially, the data from measurements together with a measurement model are 

used in a system model to provide the least squares fit estimate of system states 

based on those measurements [58].  

KF is widely used in the processing of navigational problems. This filter is used for: 

 Minimizing the measurement errors and obtaining more accurate 

measurement values. 

 Mixing various information sources. 

 Obtaining non-measurable state variables of a vehicle. 
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 Diagnosing of noises in a vehicle. 

Let us consider the discrete linear dynamical system. The state equation statesthe 

dynamics of the system, and the observation equation states the measurement 

mechanism. These equations are written below for the linear system: 

State equation of KF: 

( 1) ( 1, ) ( ) ( 1, ) ( )x k k k x k G k k w k      (4.24) 

Where ( )x k  is the n dimensional system state vector. ( 1, )k k   is its nxn 

dimensional transfer matrix, ( )w k  is the r dimensional zero-mean Gaussian noise 

vector (process noise), with the correlation matrix [ ( ) ( )] ( ) ( )E w k wT j Q k kj , in which E  

is stochastic mean operator and ( )kj  is the Kroenecker delta symbol. 

1,  
( )

0,  

k j
kj

k j



 

  
(4.25) 

Finally, ( 1, )G k k  is the nxr dimensional transfer matrix of system noise. 

Observation or measurement equation of KF: 

( ) ( ) ( ) ( )z k H k x k v k   (4.26) 

Where ( )z k  is s dimensional observation vector, ( )H k  is sxn dimensional 

observation matrix, ( )v k  is s dimensional noise vector of the measurements with 

zero-mean Gaussian noise, and the correlation matrix is [ ( ) ( )] 0,  ,  E w k vT j Vk j . 

However, there is no correlation between process noise ( )w k  and measurement 

noise ( )v k . When desired to estimate the state vector due to the ( )z k  observation 

vector sequences, the linear filter method based on the KF approach should be used. 

The optimal evaluation algorithm of the linear discrete system state vector is 

expressed with the following equations: 
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ˆ( / )x k k is the state estimation: 

ˆ ˆ ˆ( / ) ( , 1) ( 1/ 1) ( )[ ( ) ( ) ( , 1) ( 1/ 1)]

ˆ ˆ( / ) ( / 1) ( ) ( / 1)

x k k k k x k k K k z k H k k k x k k

x k k x k k K k z k k

         

         (4.27) 

K(k) is the KF gain: 

1

1

( ) ( / ) ( ) ( )

( ) ( / 1) ( )[ ( ) ( / 1) ( ) ( )]

T

T T

K k P k k H k R k
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     (4.28) 

Correlation matrix ( / )P k k  of KF estimate error is: 

1( / ) ( / 1) ( / 1) ( )[ ( ) ( / 1) ( )] ( ) ( / 1)T TP k k P k k P k k H k H k P k k H R k H k P k k        (4.29) 

Correlation matrix of extrapolation error: 

( / 1) ( , 1) ( 1/ 1) ( , 1) ( 1) ( , 1)T TP k k k k P k k k k Q k G k k          (4.30) 

Initial conditions: 
ˆ(0 / 0) (0)

(0 / 0) (0)

x x

P P




 

The optimal filter algorithm stated in equations (4.27)-(4.30) is called the KF; the 

following equivalent equations are also valid for ( )K k  and ( / )P k k ; 

1

1 1 1
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(4.31) 

where I is the unity matrix. 

ˆ( ) ( ) ( ) ( / 1)k z k H k x k k     (4.32) 

Expression (4.32) is called an innovation process ( )k , and after rearranging 

Equation (4.27), we obtain; 

ˆ ˆ( / ) ( / 1) ( ) ( )x k k x k k K k k     (4.33) 
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x(0) and P(0) are initial conditions that is known.  In this algorithm, P(k/k) is the 

error covariance and Q(k) is the process noise covariance. The gain matrix K(k) is 

determined from the Riccati equation and the measurement noise covariance R(k) is 

determined by satisfying the Lyapunov function of error.  In practice, the process 

noise covariance Q(k) and measurement noise covariance R(k) matrices might 

change with each time step or measurement, therefore for this study we assume they 

are constant [58]. 

Based on the formula (4.33), the estimation is the sum of the ˆ( / 1)x k k   

extrapolation value and the ( ) ( / 1)K k z k k   correction difference.  The extrapolation 

value is obtained by the multiplication of the value of previous steps by the system 

transfer matrix.  Then, the extrapolated value is give an innovation.  Namely, The KF 

works on the principle of innovating the estimated value. 

The process of the evolution of the KF estimate in time is demonstrated in Figure 4.3 

:. Typical KF cycles involve the following processes: 

 Estimation of the value one step further(finding of the extrapolation value) 

ˆ( / 1)x k k  .  

 Multiplication of ˆ( / 1)x k k   by ( )H k  from the left, which is the estimation 

of measurement. 

 Finding the difference between the measurement and the extrapolation value 

(the innovation process) ˆ( / 1) ( ) ( ) ( / 1)z k k z k H k x k k    .  

 Multiplication of ( / 1)z k k   from left by K(k) and summation with 

ˆ( / 1)x k k  , thus obtaining ˆ( / )x k k .  

 Storage of the ˆ( / )x k k  estimation for the next cycle and repeating the 

process. 
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Figure 4.3 : Structural KF schematics [16]. 

Based on this structure, key features of the KF are as follows: 

 The KF estimate is more linear compared to the measurement value. 

 For the reason of this filter being linear, the correlation matrix P(k/k) of the 

estimate error is not coupled with the measurement z(k), and can be 

calculated beforehand. 

 When the mathematical model of the dynamical system is clearly stated, the 

filter algorithm can easily be performed by the help of a computer. 

 The filtering algorithms can easily be deployed for multidimensional states. 

4.6 Integration Method Used for AUV Navigational System 

One of the main purposes of this study is to integrate INS and auxiliary navigational 

devices on the base of an Optimal KF.  Instead of system state variable estimates, the 

system‘s navigational error estimates will be obtained by the KF. 

The integrated AUV navigational system framework is shown in Figure 4.1 above.  

The high frequency of sampling feature of the INS is used in the integrated system. 

The other sensors have a longer sampling period than the INS. However, time 

synchronization is made between INS and auxiliary sensors during the Kalman 

filtering process. 
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4.7 KF based Integrated Navigational System Applied to AUV Dynamics  

The integration algorithm utilizes the KF, which provides optimal performance for 

linear systems.  INS error model Equations (4.2)–(4.10) for the variations of position, 

velocity, attitude, and angular velocities, and the inertial sensor output errors in 

Equations (4.11)–(4.16) constitute the navigational system error model.  

Additionally, Equations (4.18)–(4.20) and (4.22)–(4.23) are also used as the auxiliary 

sensor measurement for the KF.  The system error model of the AUV navigation can 

be written as follows: 

( 1) ( ) ( )x k Ax k w k    
(4.38) 

where,     0,w t N Q t zero mean Gaussian system noise vector. 

We used three different approaches for integration of navigation systems because of 

the limited number of observations, which are five, in contrary to higher number of 

error state vector. 

4.7.1 AUV integrated navigation system with INS calibration 

In this approach, we assume that DVL, compass, Depth sensor, gyros and 

accelometers are calibrated properly and and the errors of these sensors are 

minimized to the reasonable level in the laboratory environment. The system error 

state vector with required parameters [n=9] is as follows: 

,  ,  ,  ,  ,  ,  ,  ,       
T

x y z x y zx X Y Z V V V  
(4.39) 

Where  ,  ,  X Y Z  are the position errors of INS, ,  ,    x y zV V V are the velocity errors of 

INS, and , ,x y z    
 are attitude errors for each variables in the Cartesian 

coordinates. The error model of the INS can be expressed in a discrete matrix form 

as follows: 

.  
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Using the INS error model and auxiliary aiding devices measurement differences as 

measurements observation vector in the KF, the observation vector can be expressed 

as: 

1

2

3

4

5

( )

( )

( )

( )

( )

INS INSz D

INSx INSx DVLx

INSy INSy DVLy

INSz INSz DVLz

INS INS Comp

Z V V

V V V

V V V

V V V

z k V v v

z k V v v

z k V v v

z k V v v

z k V v v  

  

  

  

  

  
 

(4.41) 

In Equation (4.41),      
        

        
        

       
 are the z position, x, y and z 

velocities and yaw measurement errors of the INS respectively and 

     
        

        
        

       
  and    

        
        

        
        

 are the 

zero-mean Gaussian noises of INS, the depth sensor, DVL and compass respectively.  

However, this information includes the random noises of both systems. 

The measurements in Equation (4.41) is rewritten in matrix form: 

1

2

3

4

5

( )

( ) 0 0 1 0 0 0 0 0 0

( ) 0 0 0 1 0 0 0 0 0

( ) ( ) 0 0 0 0 1 0 0 0 0 ( )
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0 0 0 0 0 0 0 0 1( )  
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(4.42) 

To obtain true INS error values that will be used in the simulation, the system error 

model is used: 

 ( 1) ( 1, ) ( )   X k k k X k w k  
(4.43) 

Solving (4.43) according to the initial values, the true error values are obtained.  Here 

  is the transfer matrix of the system error model which describes the evolution of 

the system error at Equation (4.42). 
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Since the system noise involves position, speed, and attitude errors, the noise transfer 

matrix becomes a unity matrix and the noise correlation matrix Q(k) is defined as 

0.001 0 0 0 0 0 0 0 0

0 0.001 0 0 0 0 0 0 0

0 0 0.001 0 0 0 0 0 0

0 0 0 0.001 0 0 0 0 0

( ) 0 0 0 0 0.001 0 0 0 0

0 0 0 0 0 0.001 0 0 0

0 0 0 0 0 0 0.001 0 0

0 0 0 0 0 0 0 0.001 0

0 0 0 0 0 0 0 0 0.001

 
 
 
 
 
 
 
 
 
 
 
 
 
  

Q k
 

(4.44) 

The initial correlation matrix P(0/0) of KF are defined as: 

100 0 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0 0

0 0 100 0 0 0 0 0 0

0 0 0 50 0 0 0 0 0

(0 / 0) 0 0 0 0 50 0 0 0 0

0 0 0 0 0 50 0 0 0

0 0 0 0 0 0 50 0 0

0 0 0 0 0 0 0 50 0

0 0 0 0 0 0 0 0 50

 
 
 
 
 
 
 
 
 
 
 
 
 
  

P
 

(4.45) 

The diagonal correlation matrix R(k) are obtained by summing the standard 

deviations of the INS z-position, and depth, INS and DVL velocities and INS yaw 

and compass heading error, respectively. 
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(4.46) 

4.7.2 AUV integrated navigation system with INS, gyro, and accelometer 

calibration 

In this approach, we assume that DVL, compass, and Depth sensor are calibrated 

properly and and the errors of these sensors are minimized to the reasonable level in 

the laboratory environment.  

The system error state vector with required parameters [n=15] is as follows: 

,  ,  ,  ,  ,  ,  ,  ,  , , , , , ,          
T

x y z x y z x y z x y zx X Y Z V V V  
(4.47) 
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Where  ,  ,  X Y Z  are the position errors of INS, ,  ,    x y zV V V are the velocity errors of 

INS, , ,x y z    
 are attitude errors and , , , , ,      x y z x y z

 are the drifts of gyros 

and accelometers for each variables in the Cartesian coordinates.  Using the INS 

error model and auxiliary aiding devices measurement differences as measurements 

observation vector in the KF, the observation vector can be expressed as: 
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(4.48) 

In Equation (4.48),      
        

        
        

       
 are the z position, x, y and z 

velocities and yaw measurement errors of the INS respectively and 

     
        

        
        

       
  and    

        
        

        
        

 are the 

zero-mean Gaussian noises of INS, the depth sensor, DVL and compass respectively.  

However, this information includes the random noises of both systems.   

The measurements in Equation (4.48) is rewritten in matrix form: 
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5
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(4.49) 

To obtain true INS error values that will be used in the simulation, the system error 

model is used: 

 ( 1) ( 1, ) ( )   X k k k X k w k  
(4.50) 

Solving (4.50) according to the initial values, the true error values are obtained.  Here 

  is the transfer matrix of the system error model which describes the evolution of 

the system error at (4.49).  
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The error model of the INS can be expressed in a discrete matrix form as follows: 
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Since the system noise involves position, speed, and attitude errors, the noise transfer 

matrix becomes a unity matrix and the noise correlation matrix Q(k) is defined as 

0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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(4.52) 

The initial correlation matrix P(0/0) of KF are defined as: 
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(4.53) 

The diagonal correlation matrix R(k) are obtained by summing the standard 

deviations of the INS z-position, and depth, INS and DVL velocities and INS yaw 

and compass heading error, respectively. 
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(4.54) 

4.7.3 AUV integrated navigation system with INS, DVL, compass, and depth 

sensor calibaration 

In this approach, we assume that gyro and accelometer sensors are calibrated 

properly and and the errors of these sensors are minimized to the reasonable level in 

the laboratory environment.  
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The system error state vector with required parameters [n=14] is as follows: 

,  ,  ,  ,  ,  ,  ,  ,  , , , , ,      z

T

x y z x y z DVLx DVLy DVLz Depth Compx X Y Z V V V V V V Z  
(4.55) 

Where  ,  ,  X Y Z  are the position errors of INS, ,  ,    x y zV V V are the velocity errors of 

INS, , ,x y z    
 are attitude errors and , , , , ,      x y z x y z

 are the drifts of gyros 

and accelometers for each variables in the Cartesian coordinates. 

Using the INS error model and auxiliary aiding devices measurement differences as 

measurements observation vector in the KF, the observation vector can be expressed 

as: 
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(4.56) 

In Equation (4.56),      
        

        
        

       
 are the z position, x, y and z 

velocities and yaw measurement errors of the INS respectively and 

     
        

        
        

       
  and    

        
        

        
        

 are the 

zero-mean Gaussian noises of INS, the depth sensor, DVL and compass respectively.  

However, this information includes the random noises of both systems.   

The measurements in Equation (4.56) is rewritten in matrix form: 
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(4.57) 

To obtain true INS error values that will be used in the simulation, the system error 

model is used: 
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 ( 1) ( 1, ) ( )   X k k k X k w k  
(4.58) 

Solving (4.58) according to the initial values, the true error values are obtained.  Here 

  is the transfer matrix of the system error model which describes the evolution of 

the system error at (4.57). 

Since the system noise involves position, speed, and attitude errors, the noise transfer 

matrix becomes a unity matrix and the noise correlation matrix Q(k) is defined as 
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(4.59) 

The initial correlation matrix P(0/0) of KF are defined as: 

 

100 0 0 0 0 0 0 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0 0 0 0 0 0 0

0 0 100 0 0 0 0 0 0 0 0 0 0 0

0 0 0 100 0 0 0 0 0 0 0 0 0 0

0 0 0 0 100 0 0 0 0 0 0 0 0 0

0 0 0 0 0 100 0 0 0 0 0 0 0 0

0 0 0 0 0 0 100 0 0 0 0 0 0 0

0 / 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

0 0 0 0 0 0 0 0 100 0 0 0 0 0

0 0 0 0 0 0 0 0 0 100 0 0 0 0

0 0 0 0 0 0 0 0 0 0 100 0 0 0

0 0 0 0 0 0 0 0 0 0 0 100 0 0

0 0 0

P

0 0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 0 0 0 0 100

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(4.60) 

The diagonal correlation matrix R(k) are obtained by summing the standard 

deviations of the INS z-position, and depth, INS and DVL velocities and INS yaw 

and compass heading error, respectively. 
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The error model of the INS, DVL, compass and depth sensors can be expressed in a discrete matrix form as follows: 
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5.  PARAMETER IDENTIFICATION WITH LEAST SQUARES 

ESTIMATION 

5.1 Objectives 

This section focuses on the parameter identification of hydrodynamic coefficients of 

AUVs based on the Least Square Estimation (LSE) algorithm for a nonlinear 

mathematical modeling of AUVs.  Hydrodynamic coefficients strongly affect the 

dynamic performance of an AUV.  Therefore, it is important to have the true values 

of these coefficients in order to accurately simulate the AUV‘s dynamic 

performance.  The estimated coefficients can be used as inputs not only for a 

mathematical model to analyze the maneuvering performance but also for a 

controller model to design AUVs under development.  However, parameter 

identification of AUV dynamics is complicated because of its nonlinear 

identification models and the combination of noisy and biased sensor measurements. 

5.2 AUV System Identification 

System identification is the determination on the basis of an observation of input and 

output, of a system within a specified class of systems to which the system under test 

is equivalent [31].  When the system identification is applied to AUVs, the equations 

governing the AUV dynamic motion are postulated and an experiment is designed to 

obtain measurements of input and output variables [35]. 

The hydrodynamic forces and moments acting on AUV cannot be measured directly. 

However, hydrodynamic modeling followed by parameter estimation allows 

determination of specific hydrodynamic characteristics (such as lift, drag, and side 

force coefficients, and rolling, pitching, and yawing moment coefficients in terms of 

stability and control derivatives) from the related measurements such as 

accelerations, angular rates, etc. [31].  
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The selected EOM for system identification are sway and yaw 
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(5.2) 

The dynamic Equations (5.1) and (5.2) are augmented with output equations that 

specify the connection of AUV states and controls to measured outputs, along with 

measurement equations describing the measurement process [35]. 

 

Figure 5.1 : AUV system identification method [35].  

In Figure 5.1, Model Postulation is based on a priori knowledge about the AUV 

kinematics and hydrodynamics.  The Experiment Design includes selection of an 

instrumentation system, and specification of an AUV configuration and maneuvers 

for system identification.  Data Compatibility Analysis, in practice, measured AUV 

response data that can contain systematic errors, even after careful instrumentation 
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and experimental procedures.  To verify data accuracy, data comapatibility analysis 

can be applied to measured AUV responses.  Model Structure Determination in AUV 

system identification means selecting a specific form for modeling from a class of 

models, based on measured data.  Parameter and State Estimation constitute a 

principal part of the AUV system identification procedure. Parameter estimation for 

linear dynamic systems based on maximum likelihood and the least squares 

principles can also be formulated in the frequency domain. Collinearity diagnostics 

is in almost all practical applications of linear regression and the model terms are 

correlated to some extent. Diagnostic information can aid in deciding what corrective 

actions are necessary.  Model Validation is the last step in the identification process. 

The identified model must demonstrate that its parameters have physically 

reasonable values and acceptible accuracy, and that the model has a good prediction 

capability on comparable maneuvers [35]. 

5.3 Parameter Estimation for AUV 

The parameters can be estimated from calculating the first principles of dynamics of 

AUVs, from statistical LSE of experimental data, or a combination of the two.  The 

identification of the parameters of the item being tracked can be approached in many 

different ways. The parameters can be determined once, from a model of the 

expected input signal.  It also could be done adaptively utilizing a recursive method 

to identify the parameters of the incoming signal.  

The modern era of system identification is marked by the implementation of the 

maximum-likelihood method [31].  Therefore, we used the Least Square model for 

the uncertainities in the parameters and measurements in this study.  Based on this 

model,   is a vector of unknown constant parameters and v is a random vector of 

measurement noise.  There are two different models that are Bayesian and Fisher 

[35].  The LSE algorithm always gives the best linear fit when the noise is white and 

Gaussian.  Moreover, it is easier to tune the identification process in the latter part 

with a priori knowledge of the system [40]. A recursive LSE was chosen in this study 

for the parameter estimation since it is easy to apply the system dynamic and allows 

for the consideration of modeling and measurement errors.  
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The parameter estimation process consists of finding values of unknown model 

parameter   in an assumed model structure, based on noisy measurements z. An 

estimator is a function of the random variable z that produces an estimate  ̂  of the 

unknown parameters  . Since the estimator computes  ̂  based on noisy 

measurements z,  ̂  is a random variable [35].  

In order to estimate the hydrodynamic coefficients of AUVs, the LSE is designed 

using the observer model. The state variable yields to  

  [                                        ] 
(5.3) 

The output variables are chosen as two types according to these measurements. 

A model is called linear in the parameters if the output y is given by: 

     
(5.4) 

where, the matrix X is assumed to be known.  Then the measurement equation can be 

expressed as: 

       
(5.5) 

where; 

                          is the length measurement vector, 

                       is the vector of unknown parameters (      ), 

                    is the matrix of vectors of ones and regressors, 

                         is the vector of measurement errors. 

In general, there are    measured outputs, and a vector of measurements is taken at 

each sample i, where i = 1,2,3,……, N is the number of sampled data points.  A 

single measured output is assumed, so    = 1, and z is a vector composed of N scalar 

measurements [35]. 
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Neglecting interactions from other parts of the system, the sway and yaw 

measurement subsystems can be modeled as 

    2

     
rYmeas g g uu rZ Y mwp mz qr mx pq Y u  

  (5.6) 

This measurement equation is rewritten as 

         Ymeas uv wp ur vv rrZ Y uv Y m wp Y m ur Y v v Y r r
   (5.7) 

    2sin       
rNmeas pq xx yy g uu rZ N N I I pq y W N u  

  (5.8) 

This measurement equation is rewritten as 

    Nmeas wp ur uv vv rrZ N wp N ur N uv N v v N r r  
  (5.9) 

The difference between measurement vector   and estimation result   gives us  . 

1( )T Tz y z X z X X X X z         (5.10) 

For the least squares model, there are no probability statements regarding       , but 

v is assumed to be zero mean and uncorrelated, with a constant variance: 

                            
(5.11) 

Then the maximum likelihood estimate is: 

 ̂  
   

 
      

 (5.12) 

which minimizes the cost function 

1
( ) ( ) ( )

2

TJ z X z X     
 

(5.13) 
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In specifying the form of the least-squares model, no uncertainity models for θ and v 

are used.  An estimate for the least-squares model can be obtained by the reasoning 

that, given z, the ―best‖ estimate of θ comes from minimizing the weighted sum of 

squared differences between the measured outputs and the model outputs [35].  The 

parameter estimate  ̂  that minimizes the cost fuction       must satisfy  

ˆT TJ
X z X X


     


      or;        ˆT TX X X z   

(5.14) 

The np = n+1 equations represented in Equation (5.13) are called the normal 

equations. The solution of these equations for the unknown parameter vector θ gives 

the formula for the least square estimator, 

1ˆ )   T TX X X z  
(5.15) 

          matrix     matrix is always symmetric. If the regressor vectors that 

make up the columns of X are linearly independent, then     is positive definite and 

the eigen values of     are positive real numbers, and the associated eigenvectors 

are mutually orthogonal so the     exists (Klein & Morelli, 2006). 

Finally, the covariance matrix of the parameter estimate  ̂  also known as the 

covariance marix of the estimation error  ̂     is simplified to 

Cov( ̂)   [  ̂      ̂     ]            
(5.16) 

5.4 Model Verification 

Development of the theory of identification and application of contemporary 

computer technology has made it possible to assure necessary conditions for the 

realisation of methods for constructing adequate mathematical models of dynamical 

systems with measurements obtained during the operation of real systems.  It is 

impossible to construct an identification algorithm with a zero error probability. As a 

result, the identification is a multistage process whose last stage is the verification of 

the accuracy of of the real model [11]. 
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The process of selecting important features and associated mathematical 

approximations needed to represent the reality of interest in the mathematical model 

is termed modeling. Assessing the correctness of the modeling is termed 

confirmation.  The verification activity focuses on the identification and removal of 

errors in the software implementation of the mathematical model [3]. 

Typically, model verification is generally done to ensure that: 

 The model is programmed correctly. 

 The algorithms have been implemented properly. 

 The model does not contain errors, oversights, or bugs. 

Verification ensures that the specification is complete and that mistakes have not 

been made in implementing the model.  Verifications do not ensure the model will: 

 Solve an important problem. 

 Meet a specified set of model requirements. 

 Correctly reflect the workings of a real world process. 

We used Hotelling’s T-Square statistics for verification of model proposed. 

5.4.1 Hotelling’s T-square distribution 

In this study, Hotelling's T-squared distribution is used for model verification 

because it arises as the distribution of a set of statistics which are natural 

generalizations of the statistics.  In particular, the distribution arises in multivariate 

hypothesis testing in undertaking tests of the differences between the (multivariate) 

means of different populations, where tests for univariate problems would make use 

of a t-test [61].  

We assume that the given two hypotheses below are true: 

    Model verified. 

  : Model not verified. 
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If the notation     
  is used to denote a random variable having a Hotelling's T-

squared distribution with parameters p and m, then if a random variable X has 

Hotelling's T-squared distribution:  

       
  then 

Hotelling's T-squared statistic is defined as follows [28].  Let         denote a p-

variate normal distribution with location   and covariance  . Let 

                     
(5.17) 

be n independent random variables, which may be represented by px1 as column 

vectors of real numbers.  Defined as: 

 ̅  
         

 
   

 

 
∑  

 

   

 
(5.18) 

to be the sample mean.  It can be shown that: 

   ̅          ̅         
  

(5.19) 

where   
  is the chi-squared distribution with p degrees of freedom. To show this use 

the fact that and then derive the characteristic function of the random variable [61].  

However,   is often unknown and we wish to do hypothesis testing on the location  . 

Defined as: 

  
 

   
∑     ̅      ̅  

 

   

 
(5.20) 

to be the sample covariance.  Here we denote the transposition by an apostrophe.  It 

can be shown that   is a positive-definite and follows a p- variate Wishart 

distribution with     degrees of freedom [61].  Hotelling's T-squared statistic is 

then defined to be: 

http://en.wikipedia.org/wiki/Sample_mean
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      ̅          ̅     
(5.21) 

because it can be shown that: 

          
  

Better results can be obtained from the transformation of the Hotelling    statistic as 

with the F distribution.  A transformation of    yields an exact F distribution such 

that: 

     

      
         

  
(5.22) 

When    hypothesis is true and the statistical value    will be larger than the       
 , 

the distribution n-1 safety tolerance value is:  

  :          
                   k  

  :          
          k  

(5.23) 

.   
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6.  SIMULATION 

The simulations included physically based models of AUV systems and the sensor 

units. This study derived a measurement model for the integrated navigational 

system including a range model to implement an optimal KF. The navigational 

system predicts the errors of the state variables based on the IMU sensors with the 

KF, while the bias and scale errors of the state equation are updated indirectly 

whenever external measurements are available. Numerical simulations were 

conducted using the 6-DOF equations of motion of an AUV in a specific mode. The 

performance of the INS is first examined for the AUV excluding bottom-fixed DVL, 

compass, and pressure depth sensor. Then, we examined the performance of INS 

including these auxiliary devices and simulation results illustrated the effectiveness 

of the integrated navigational system compared with the conventional dead 

reckoning navigation. 

In this study, all simulations were done in the MATLAB version 7.5 environment. 

Simulation methods are introduced here to demonstrate the validity of the proposed 

method. 

6.1 Simulation Parameters 

The EOM that would be used in the AUV dynamic model are: 

 x Ax w  (6.1) 

where; x is the vector matrix that contains the state variables,  ̇ is the output vector, 

u is the control or input vector, A is the state matrix, w is the noise wector of the 

dynamic system. 
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The state vector of physically based AUV model is: 

 

0

, v, w, p, q, r, ,  ,  ,  ,  , 

[ ,  ,  ]

T

i r e

x u X Y Z

u u

  

 




 

(6.2) 

where the order of the state vector is 12. 

The variables in the state vector (6.2) are: 

  u: AUV speed in direction X(m/sec) 

 v: AUV speed in direction Z(m/sec) 

w: AUV speed in direction Z(m/sec) 

  : roll angle (degree) 

  : pitch angle (degree) 

  : yaw angle (degree) 

 p: roll angular speed(degree/sec)  

q: pitch angular speed(degree/sec) 

 r: yaw angular speed(degree/sec)  

Standard deviations and bias errors of sensors are defined in Table6.1. 

Table 6.1 : Standard deviations and bias errors of sensors. 

 
 

Correlation times of gyros and accelometers are defined as: 

1 11/1300 [ ],    1/1500 [ ]   gyros accels s  

Correlation times of DVL x, y, z velocities are defined as: 

1 1 11/ 700 [ ],  1/ 900 [ ],  1/ 850 [ ]      
DVLx DVLy DVLzV V Vs s s  

Sampling time interval is taken at T=0.002 [sec] in the simulation. 

                        Bias error Random noise (std. dev.)

 Accelerometer                         5 mg  500.0 μg

 Gyro                             0.5 °/h   0.31 °/s

 Magnetic Compass                          1.0° 1.0 °

 Depth Sensor                            0.5m 0.5 m

 DVL                              0.01 m/s  0.1 m/s
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6.2 Simulation Results of AUV Model and Navigation System Errors 

The combined performance of navigation was evaluated in the simulation with a 

nonlinear model of the vehicle using the MATLAB version 7.5 environment. The 

simulation included physically based models of AUV systems.  Trajectory simulation 

results of the AUV are shown in Figure 6.1 – 6.3.  

  

Figure 6.1 : Position simulation results of physically based AUV model (100 sec). 

  

Figure 6.2 : Velocity simulation results of physically based AUV model (100 sec). 
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Figure 6.3 : Attitude simulation results of physically based AUV model (100 sec). 

Similarly, in Figure 6.4-6.7, the error model simulation results of INS, accelometers, 

gyros, DVL, compass, and pressure depth sensor are shown respectively.  

 

Figure 6.4 : Simulation results of INS error model.  
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Figure 6.5 : Simulation results of DVL error model. 

 

Figure 6.6 : Simulation results of gyro error models. 

 

Figure 6.7 : Simulation results of accelometer error models. 
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6.3 Simulation Results of Integrated Navigation Systems 

6.3.1 Simulation results of INS calibration 

Simulation results of physically based AUV model combined with integrated 

navigation solution and diagonal elements of covariance matrix are shown in Figure 

6.8 – 6.13. For this, the trajectory of an AUV was generated and models of the 

strapdown INS sensor errors were developed. The trajectory is characterized by 

minimum changes of movement parameters without a control.  

In the graphs, the blue line represents the real physically based AUV model, and the 

red line corresponds to integrated navigation solution of position, velocity and 

attitude angles, respectively. As seen from the graphs below, red and blue lines 

overlapped most of the time because the integrated navigation system gives the best 

results. 

 

Figure 6.8 : Simulation results of AUV model & INS velocity estimation. 

 

Figure 6.9 : Diagonal elements of covariance matrix for velocities. 
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Figure 6.10 : Simulation results of AUV model & INS position estimation. 

 

Figure 6.11 : Diagonal elements of covariance matrix for positions. 

 

Figure 6.12 : Simulation results of AUV model & INS attitude estimation. 
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Figure 6.13 : Diagonal elements of covariance matrix for attitude anlges. 

6.3.2 Simulation results of INS, gyro, and accelometer calibration 

Simulation results of the physically based AUV model combined with integrated 

navigation solution and diagonal elements of covariance matrix are shown in Figure 

6.14 – 6.19. For this, the trajectory of an AUV was generated and models of the 

strapdown INS sensor errors were developed.  Errors of the IMU were modeled  in 

the navigation grade systems where accelerometer errors are biased at 0.02 m/s
2
 and 

noise at 2 mm/s
2
/Hz

-1/2
, and the rate gyro errors are modeled with a bias of 5 deg/h 

and noise at 0.1deg/h /Hz
-1/2

. The trajectory is characterized by minimum changes of 

movement parameters without a control.  

In the graphs, the blue line represents the real physically based AUV model, and the 

red line corresponds to integrated navigation solution of position, velocity and 

attitude angles, respectively. As seen from the graphs below, red and blue lines 

overlapped most of the time because the integrated navigation system gives the best 

results. 

 

Figure 6.14 : Simulation results of AUV model & INS velocity estimation. 
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Figure 6.15 : Diagonal elements of covariance matrix for velocities. 

 

Figure 6.16 : Simulation results of AUV model & INS position estimation. 

 

Figure 6.17 : Diagonal elements of covariance matrix for positions. 
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Figure 6.18 : Simulation results of AUV model & INS attitude estimation. 

 

Figure 6.19 : Diagonal elements of covariance matrix for attitude anlges. 

 

6.3.3 Simulation results of INS, DVL, compass, and depth sensor calibration  

Simulation results of the physically based AUV model combined with integrated 

navigation solution with INS, DVL, compass and depth sensor calibration, and 

diagonal elements of covariance matrix are shown in Figure 6.20 – 6.25. The 

trajectory is characterized by minimum changes of movement parameters without a 

control.  

In the graphs, the blue line represents the real physically based AUV model, and the 

red line corresponds to integrated navigation solution of position, velocity and 

attitude angles, respectively. As seen from the graphs below, red and blue lines 

overlapped most of the time because the integrated navigation system gives the best 

results. 
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Figure 6.20 : Simulation results of AUV model & INS velocity estimation. 

 

Figure 6.21 : Diagonal elements of covariance matrix for velocities. 

 

Figure 6.22 : Simulation results of AUV model & INS position estimation. 
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Figure 6.23 : Simulation results of AUV model & INS attitude estimation. 

 

Figure 6.24 : Diagonal elements of covariance matrix for attitude anlges. 

 

6.3.4 Comparison of integrated navigavigation systems 

In this section, we compare three different types of integrated navigation systems 

which are INS calibration, integration of INS with accelometers and gyros 

calibration, and  integration of INS with DVL, compass and depth sensor calibration, 

based on absolute error values. In Table 6.2 – 6.4, absolute error values of velocities, 

postions and attitude angles for those calibration methods are given during 60 

seconds with 5 second time intervals. In the tables, INS calibration has superiority to 

the others with the minimum absolute errors becouse of lower number of state 

variables (n=9). Integration of INS with DVL, compass and depth sensor calibration 

has better performance than with gyro and accelometer calibration on all velocity, 

positon Y, roll, pitch and yaw angles. However, the integration of INS with 
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accelometers and gyros calibration has better performance than with DVL, compass 

and depth sensor calibration on positions X and Z. On the other hand, the integration 

of INS with accelometers and gyros calibration has the worst performance on attitude 

angles in comparsion with the other integration metods. 

Table 6.2 : Coparision of absolute velocity errors. 

 
 

Table 6.3 : Coparision of absolute position errors. 

 
 

 

 

 

 

 

 

Time 

(sec) INS Only

with Gyro & 

Accelometer

with DVL, 

Compass, & 

Depth 

Sensor INS Only

with Gyro & 

Accelometer

with DVL, 

Compass, 

& Depth 

Sensor INS Only

with Gyro & 

Accelometer

with DVL, 

Compass, & 

Depth 

Sensor

0 2,0000 1,0000 1,0250 2,0100 1,0500 0,0150 2,2100 1,0500 0,0680

5 0,0015 0,0187 0,0179 0,0024 0,0040 0,0091 0,0005 0,0132 0,0028

10 0,0008 0,0102 0,0129 0,0018 0,0144 0,0109 0,0008 0,0038 0,0016

15 0,0027 0,0135 0,0163 0,0010 0,0064 0,0075 0,0009 0,0123 0,0002

20 0,0036 0,0141 0,0086 0,0010 0,0107 0,0075 0,0014 0,0069 0,0032

25 0,0011 0,0060 0,0143 0,0018 0,0090 0,0078 0,0013 0,0074 0,0005

30 0,0026 0,0085 0,0081 0,0019 0,0127 0,0114 0,0012 0,0071 0,0006

35 0,0031 0,0200 0,0171 0,0026 0,0129 0,0085 0,0008 0,0057 0,0028

40 0,0010 0,0133 0,0098 0,0014 0,0122 0,0041 0,0014 0,0083 0,0072

45 0,0018 0,0120 0,0079 0,0023 0,0147 0,0089 0,0012 0,0049 0,0007

50 0,0045 0,0130 0,0153 0,0025 0,0154 0,0082 0,0012 0,0110 0,0018

55 0,0029 0,0169 0,0154 0,0023 0,0136 0,0093 0,0011 0,0075 0,0040

60 0,0032 0,0072 0,0125 0,0010 0,0090 0,0077 0,0012 0,0037 0,0046

Absolute Error of Velocity X (m/sec) Absolute Error of Velocity Y (m/sec) Absolute Error of Velocity Z (m/sec)

Time 

(sec) INS Only

with Gyro & 

Accelometer

with DVL, 

Compass, 

& Depth 

Sensor INS Only

with Gyro & 

Accelometer

with DVL, 

Compass, 

& Depth 

Sensor INS Only

with Gyro & 

Accelometer

with DVL, 

Compass, 

& Depth 

Sensor

0 0,1366 0,0363 0,0697 0,0683 0,2017 0,0983 0,0750 0,0250 0,0917

5 0,1385 0,0386 0,0674 0,0697 0,2031 0,1000 0,0008 0,0009 0,0523

10 0,1406 0,0407 0,0655 0,0711 0,2045 0,1017 0,0008 0,0010 0,0523

15 0,1428 0,0429 0,0630 0,0725 0,2059 0,1028 0,0008 0,0008 0,0519

20 0,1450 0,0450 0,0618 0,0739 0,2074 0,1041 0,0005 0,0009 0,0523

25 0,1471 0,0472 0,0590 0,0753 0,2088 0,1055 0,0009 0,0008 0,0522

30 0,1493 0,0494 0,0581 0,0768 0,2102 0,1080 0,0010 0,0007 0,0522

35 0,1515 0,0516 0,0542 0,0782 0,2117 0,1085 0,0008 0,0008 0,0524

40 0,1536 0,0538 0,0540 0,0797 0,2132 0,1082 0,0008 0,0009 0,0519

45 0,1559 0,0560 0,0525 0,0811 0,2147 0,1113 0,0008 0,0011 0,0522

50 0,1580 0,0581 0,0481 0,0824 0,2161 0,1121 0,0008 0,0012 0,0525

55 0,1602 0,0603 0,0461 0,0839 0,2176 0,1145 0,0006 0,0008 0,0524

60 0,1619 0,0625 0,0453 0,0849 0,2190 0,1145 0,0060 0,0010 0,0523

Absolute Error of Position X (m) Absolute Error of Position Y (m) Absolute Error of Position Z (m)
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Table 6.4 : Coparision of absolute errors of attitude angles. 

 

6.4 Simulation Results of Parameter Identification 

Numerical simulations are made to show the parameter identifications of the AUV. 

The hydrodynamic coefficients associated with horizontal and vertical motions are 

estimated by simulating the combined yaw and sway motion of the AUV.  

We will describe how state-of-the art algorithms are used to find a dynamic model 

that enables accurate simulation of steering dynamics. Simulation is in fact much 

more than what is required by sensor fusion algorithms for integrated navigation, 

where only the predictive ability of the model is important. 

In summary, the system identification task to estimate the parameters is: 

  [                                        ] 
(6.5) 

In this study, we used two different simulation settings for parameter identification: 

one is with measurement bias and the other is with integrated navigational system. 

6.4.1 Numerical simulation for measurement bias 

The combined problem of state and parameter identification leads to a nonlinear 

filtering problem. Furthermore, many AUV systems are characterized by nonlinear 

models as well as noisy and biased sensor measurements.  In Figure 6.25, parameter 

Time 

(sec) INS Only

with Gyro & 

Accelometer

with DVL, 

Compass, 

& Depth 

Sensor INS Only

with Gyro & 

Accelometer

with DVL, 

Compass, 

& Depth 

Sensor INS Only

with Gyro & 

Accelometer

with DVL, 

Compass, 

& Depth 

Sensor

0 3,0000 0,0000 0,4500 0,2300 0,2300 0,1150 0,2000 0,8000 0,1000

5 4,7450 18,6121 3,6658 1,9447 6,8068 0,4280 4,1210 3,9269 0,4933

10 2,8087 9,7762 2,7003 0,9888 3,8476 0,0937 2,0190 5,9130 2,4854

15 0,9244 10,0079 2,8327 0,1506 5,1445 0,8685 3,1976 3,6111 2,3200

20 0,4174 9,8990 4,9493 1,4167 6,0118 1,8510 4,8400 2,1854 0,7132

25 2,0276 7,4079 3,6007 0,9900 6,1978 1,6078 1,8182 2,3094 0,5463

30 1,2120 4,8101 1,9784 4,6105 4,4019 2,8211 4,2057 4,4348 0,6920

35 1,4686 4,8610 2,3355 4,7632 3,6040 4,8420 0,6005 2,7959 0,5681

40 3,7283 5,0994 2,5111 5,3677 3,4966 2,9356 4,0208 0,5837 0,5294

45 4,2374 6,1384 2,7507 3,3716 1,1773 2,6994 0,2094 2,8602 0,1610

50 0,5008 0,7748 2,3062 4,8646 3,3240 0,2795 0,3886 3,7295 0,4047

55 1,4924 3,0005 0,2934 0,3968 5,2771 0,0296 1,6650 3,8827 0,1198

60 1,6811 2,9614 0,8089 1,7361 5,8955 1,2459 4,3712 1,3583 0,2105

Absolute Error of Roll (deg) Absolute Error of Pitch (deg) Absolute Error of Yaw (deg)
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identification simulation setting is illustrated in the presence of measurement bias 

used in this study. 

 

 

Figure 6.25 : Parameter identification in the presence of measurement biases. 

Parameter identification was done by recording the rudder and elevator input angles 

and the AUV‘s yaw and pitch response during a closed-loop heading and depth 

maneuver.  However, the AUV has to maintain constant speed and small roll angle 

during this maneuver. The Figures 6.26 – 6.28 show that the AUV had a surge 

velocity changed between 2.5 and 0 m/s and a heave velocity of 0.13 m/s.  The depth 

changed between -15 m and -13.5 m. At the same time, the AUV pitched up and 

down between -40 deg and 0 deg in response to the changing elevator plane angle.  

The elevator was operated at the maximum deflection of 15 deg for most of the time 

and similarly the rudder deflection was operated at the maximum deflection of -11 

deg.  The iteration number N is chosen to be 5,000 and the sampling time is chosen 

to be 0.001 sec in this simulation. 

 

Figure 6.26 : Position results of real and identified model. 
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Figure 6.27 : Velocity results of real and identified model. 

 

Figure 6.28 : Attitude results of real and identified model. 

As seen in Figures 6.26 – 6.28, the difference between simulation results of real 

phsically based AUV model and identified model are shown. Most of the velocites 

are quite resonalable.  However, there big difference in attitude and position response 

of the real and identified model as we expected. 

The estimated values of the parameters and error differences are given in Table 6.5. 

This table also shows that iterated LSE has a  performance under the condition of  

integration of navigational sensors with the maximum error difference of 172.42 % 

in      percent and the minimum error difference of 2.32% in    . 
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Table 6.5 : Parameter identification with measurement bias. 

 
 

For model verification, the sample variance-covariance matrix is calculated: 

   

[
 
 
 
 
                                              
                                                  
                                              
                                                   
                                                   ]

 
 
 
 

 

Hotelling‘s T-square comes out to be: 

          

Similarly, the F-statistic is: 

                          

Using the statistical hypothesis test to evaluate the null hypothesis of the parameter 

identification model which was verified, the resulting test statistics is      . For an 

0.01 level test, the critical F value is approximately found as 2.41 from the F- 

statistic table. Since        is greater than this value, as a result we can reject the 

null hypothesis that the proposed model is not valid. 

                                    

6.4.2 Numerical simulation for integrated navigation 

The simulation setting of parameter identification after integrating the navigational 

systems are shown in Figure 6.28. 

Parameters Real Value

Est. Value 

with Bias

Percent  

% Difference

Yvv -196,26 -50,223 74,410 146,037

Yrr 8,30 22,611 172,419 14,311

Yuv 38,39 13,647 64,452 24,743

Yur 13,41 13,099 2,322 0,311

Ywp 35,50 95,156 168,046 59,656

Nvv -7,95 -7,436 6,465 0,514

Nrr -24,13 -18,457 23,511 5,673

Nuv -21,89 -12,239 44,089 9,651

Nur 1,93 3,822 98,026 1,892

Nwp -19,30 -3,489 81,922 15,811
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Figure 6.29 : Parameter identification after integration of navigational systems. 

Parameter identification was done and the Figures 6.30 -6.32 show that the AUV had 

a surge velocity changed between 2.5 and 0 m/s. The depth changed between -15 m 

and -13.5 m.  The elevator was operated at the maximum deflection of 15 deg for 

most of the time and similarly the rudder deflection operated at the maximum 

deflection of -11 deg.  The iteration number N is chosen to be 5,000 and the 

sampling time is chosen to be 0.001 sec.  

As seen from Figures 6.30 – 6.32 outputs of real and identified models are converged 

perfectly.  Simulation results show that the proposed method works very well and 

iterated LSE has a better performance.  

 

 

Figure 6.30 : Velocity simulation results of real and identified model. 
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Figure 6.31 : Position simulation results of real and identified model. 

 

Figure 6.32 : Attitude simulation results of real and identified model. 

 

In Table 6.6, parameter identification values for ten different hydrodynamic 

parameters are given. This table also shows that iterated LSE has a better 

performance under the condition of  integration of navigational sensors with the 

maximum error difference of 3.37% in parameter      and the minimum error 

difference 0.22% in parameter     . 
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Table 6.6 : Parameter identification after integrated navigation. 

 
 

Numerical results demonstrated that the proposed method works very well in the 

case of using simulated data.  It has been shown that the characteristic functions for 

LSE can be obtained in a stable way even in noisy environments. 

For model verifation, the sample variance-covariance matrix is calculated as: 

   

[
 
 
 
 
                                                  
                                                   
                                               
                                                

                                               ]
 
 
 
 

 

Hotelling‘s T-square comes out to be: 

        

Similarly, the F-statistic is: 

                           

Using the statistical hypothesis test to evaluate the null hypothesis of the parameter 

identification model verified, the resulting test statistics is      .  For an 0.01 level 

test, the critical F value is approximately found as 2.41. Since        is smaller than 

this value, so we accept the null hypothesis that the proposed model is valid. 

                                    

In conclusion, our results indicate that for AUV hydrodynamic parameter 

identification purposes, the LSE algorithm is a feasible tool, which consistently 

returns quality results and is the least costly in terms of computational demand. 

 

. 

Parameters Real Value

Est. Value 

with 

Int.Nav. % Difference

Yvv -196,26 -192,650 1,839 3,610

Yrr 8,30 8,580 3,373 0,280

Yuv 38,39 38,277 0,295 0,113

Yur 13,41 13,320 0,674 0,090

Ywp 35,50 36,105 1,704 0,605

Nvv -7,95 -7,733 2,736 0,218

Nrr -24,13 -24,051 0,328 0,079

Nuv -21,89 -21,843 0,216 0,047

Nur 1,93 1,922 0,435 0,008

Nwp -19,30 -19,367 0,347 0,067
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7.  CONCLUSIONS  

The research on underwater systems has gained immense attention during the last 

two decades because of applications taking place in many fields.  Therefore, the 

significant number of UUVs has been developed for solving the wide range of 

scientific and applied tasks of ocean research and development in the world. . The 

military, as well as civilian industary can see great potential uses of AUVs in the 

underwater environment. 

Autonomous guidance, navigation, and control techniques are key research and 

development areas for success of the specific AUV missions. Moreover, further work 

is needed for in precision navigation, sensor development and integration, and 

improving the realiability and robustness of long term and complex mission 

completion. 

This thesis is primarily concerned with implementing dynamic modeling of an AUV 

for different swimming conditions and then is to accomplish integration of 

navigational sensors to dynamic modeling of AUV based on sensor error models and 

Kalman filtering technique.  This thesis has also given an insight and theoretical 

background about AUV kinematics, hydrodynamics and hydrostatic, as well as INS, 

and recent Kalman Filtering techniques. In addition, it has reported the current 

research interests on these subjects. However, the aim of this thesis does not directly 

involve the modeling of AUV systems from scratch since this is a different area of 

research interest alltogether.  Because physically based mathematical modeling of 

AUV is an interdisciplinary study of kinematics, hydrostatics, and hydrodynamics 

and to achieve an accurate hydrodynamic model for AUV is extremely difficult at 

best. However, an INS framework is implemented in MATLAB Simulink 

environment since this INS module is used as a main navigational tool applied to 

AUV dynamic model. 

Second, Based on dynamic nonlinear model, we develop three different types of low-

cost Integrated Navigation System based on error models of INS and its aiding 
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devices such as DVL, compass, and a pressure depth sensor.  An INS error model 

and the corresponding measurement models of those aiding sources will be derived 

for the Kalman Filter (KF).  The simulation results confirmed that low-cost IMU 

sensors produce a notable amount of noisy measurements but our Integrated 

Navigation System models for AUV based on KF can effectively mitigate those 

drawbacks. The simulation also shows that the method is satisfying and is preferable 

to the linear error models with linear KF.  

It is found that the errors in the aided INS position, velocity and attitude estimates 

are significantly lower than that of the traditional INS during time. The aided INS 

also performs equally well or better than the traditional INS in cases with regular 

position updates. 

This thesis also focused on the use of parameter identification methods to predict the 

hydrodynamic derivatives of the AUV based on the dynamic nonlinear modeling. 

LSE is used to tackle the problem of parameter identification of an AUV.  This 

classical approach seems to have a better performance in cases where a specific 

parameter will be identified and the LSE results obtained are satisfactory.  Therefore, 

numerical results demonstrate that the proposed method works very well, in both 

cases of using simulated data.  It has been shown that the characteristic functions for 

LSE can be obtained in a stable way even in noisy environments. 

Numerical simulations are made to show the parameter identifications of the AUV. 

The hydrodynamic coefficients associated with horizontal and vertical motions are 

estimated by simulating the combined yaw and sway motion of the AUV. The 

simulation results of this thesis indicate that for AUV hydrodynamic parameter 

identification purposes, the LSE algorithm remains a feasible tool, which constantly 

returns quality results. 

In this study, Hotelling's T
2
 distribution is used for model verification because it 

arises as the distribution of a set of statistics which are natural generalizations of the 

statistics. Test result indicates that the chosen model for parameter identification is 

verified.  
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Future work will concern on the identification of whole or faulty hydrodynamic 

parameters of the AUV, which involves a 6-DOF dynamics. Moreover, other 

approaches such as Extended KF, unscented KF is considered to be applied and 

compared alternatively. 
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APPENDIX A : Coordinate Systems 

APPENDIX A.1 : ECEF Coordinate System 

The Cartesian coordinate frame of reference used in GPS is called Earth-Centered, 

Earth-Fixed (ECEF). ECEF uses three-dimensional XYZ coor-dinates (in meters) to 

describe the  location of a GPS user or satellite. The term "Earth-Centered" comes 

from the fact that the origin of the axis (0,0,0) is located at the mass center of gravity 

(determined through years of tracking satellite trajectories). The term "Earth-Fixed" 

implies that the axes are fixed with respect to the earth (that is, they rotate with the 

earth). The Z-axis pierces the North Pole, and the XY-axis defines the equatorial 

plane. ECEF coordinates are expressed in a reference system that is related to 

mapping representations. 

Because the earth has a complex shape, a simple yet accurate, method to approximate 

the earth‘s shape is required. The use of a reference ellipsoid allows for the 

conversion of the ECEF coordinates to the more commonly used geodetic-mapping 

coordinates of Latitude, Longitude, and Altitude (LLA). 

A reference ellipsoid can be described by a series of parameters that define its shape 

and which include a semi-major axis ( a ), a semi-minor axis (b ) and its first 

eccentricity e ) and its second eccentricity ( e ) as shown in Figure A.2.  Depending 

on the formulation used, ellipsoid flattening ( f ) may be required. 

WGS84 Parameters: 

2 2

2

a= 6378137

b = a(1- f) = 6356752.31424518

1
f =
298.257223563

a - b
e =

a

 

For global applications, the geodetic reference (datum) used for GPS is the World 

Geodetic System 1984 (WGS84). This ellipsoid has its origin coincident with the 

ECEF origin. The X-axis pierces the Greenwich meridian  and the XY plane make up 

the equatorial plane. Altitude is described as the perpendicular distance above the 

ellipsoid surface (which should not to be confused with the mean sea level datum). 
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APPENDIX A.2 : Conversion between ECEF and Local Tangential Plane (LTP) 

The conversion between the two reference coordinate systems can be performed 

using closed formulas (although iteration methods also exist). The conversion from 

LLA to ECEF (in meters) is shown in Figure A.1. 
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where 

  Latitude  

 Longitude 

h height above ellipsoid(meters) 

N Radius of Curvature(meters),defined as: 

2 21 sin

a
N
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Figure A.1: ECEF and reference ellipsoid [10]. 
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APPENDIX B : Simulation Trials of Parameter Identification 

 
n_steps=10000; 

time_step=0.001; 

delta_e = 0.5*pi/180; 

delta_r = -5.0*pi/180; 

theta_1 = [Yvv, Yrr, Yuv, Yur, Ywp] 

theta_est = [ -197.5817 7.9543 38.5746 13.4362 35.6808] 

theta_real = [-196.26 8.3 38.39 13.41 35.5] 

  

n_steps=13000; 

time_step=0.001; 

delta_e = 0.5*pi/180; 

delta_r = -5.0*pi/180; 

theta1 = [Yvv, Yrr, Yuv, Yur, Ywp] 

theta_est = [-197.1223 8.0780 38.5232 13.4306 35.7777] 

theta_real = [ -196.26  8.3  38.39  13.41  35.5] 

 

n_steps=20000; 

time_step=0.001; 

delta_e = 0.5*pi/180; 

delta_r = -5.0*pi/180; 

theta1 = [Yvv, Yrr, Yuv, Yur, Ywp] 

theta_est = [-196.8926 8.1415  38.4958  13.4260  35.8205] 

theta_real = [ -196.26  8.3  38.39  13.41  35.5] 

 

n_steps=30000; 

theta_est = [-196.4287  8.2659   38.4319  13.4134  35.8343] 

 

n_steps=9000; 

time_step=0.001; 

theta2 = [Nvv, Nrr, Nuv, Nur, Nwp] 

theta_est = [-4.5817  -23.4772  -21.9566   2.1652  -16.9166] 

theta_real = [-7.95    -24.13   -21.89   1.93   -19.3] 

 

n_steps=20000; 

time_step=0.001; 

theta_est = [-5.2085  -23.6097 -21.8947  2.1577   -17.0834] 

 

n_steps=30000; 

time_step=0.001; 

theta_est = [-6.1476  -23.8145  -21.8453  2.1247   -17.6819] 

 

n_steps=20000; 

time_step=0.001; 

delta_e = -1.5*pi/180; 

delta_r = -12.0*pi/180; 

theta_est = [-8.0435  -24.1785  -21.9281   1.9454   -19.4908 

 

n_steps=20000; 

time_step=0.001; 

delta_e = -1.5*pi/180; 

delta_r = -10.0*pi/180; 

theta_est = [-7.7011  -24.0868  -21.8873    1.9214  -18.9961] 

theta_real = [-7.95    -24.13    -21.89     1.93   -19.3] 
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n_steps=20000; 

time_step=0.001; 

delta_e = -1.5*pi/180; 

delta_r = -11.0*pi/180; 

theta_est = [-7.9699   -24.1509   -21.9053   1.9402   -19.3280] 

 

Measurement Bias 

n = 10000 

theta = [-8.0048  -24.1617  -21.9051    1.9443  -19.3432] 

theta1_est = [11.3830  -21.3121  -16.0633    4.9128    1.0230] 

Theta_real = [-7.95    -24.13   -21.89   1.93   -19.3] 

------------------------- 

n = 15000 

dr = -11 deg 

est = [-8.0036  -24.1614  -21.9051    1.9442  -19.3426] 

est1= [-11.8132 -18.9949  -11.8354  3.7643   -1.4132]  

 

-------------------------- 

n = 5000 

dr = -15 deg 

est = [-8.3023  -24.3042  -21.9941    1.9875  -19.7561] 

est1 = [-16.2704 -19.1578  -11.8048 3.0637   -3.2743] 

-------------------------------- 

n = 10000 

est= [-8.3028  -24.3011  -21.9923    1.9860  -19.7559] 

est1 = [-11.8029 -19.2546  -12.5286  3.1299   -2.9808] 

 

---------------------------------- 

n = 3000 

est= [-8.2272  -24.2895  -22.0473    1.9613  -20.2272] 

est1= [-16.5333  -19.1425  -11.7635    3.0577   -3.3742] 
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APPENDIX C : Simulation Results of Integrated Navigation System 

 

 

Figure C.1: Simulation results of compass and pressure depth senors. 

 

 

Figure C.2: Simulation results of gyros. 

 

Figure C.3: Simulation results of accelometers. 
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APPENDIX D : MATLAB Source Code 

AUVSIM.M 

disp(sprintf('\n\n AUV Simulation begins....')) ; 
  
getInputs; 
n_steps=6000; 
time_step=0.01; 
  
% Initial Conditions 
x  = [u0 v0 w0 p0 q0 r0 x0 y0 z0 phi0 theta0 psi0]';  
ui=[delta_e delta_r u0]; 
  
% ---------------------------------------------------------------- 
% MM matrisi oluştur 
%acc = [udot vdot wdot pdot qdot rdot]' 
MM = [m-Xudot    0         0           0         m*zg       -m*yg; 
        0      m-Yvdot     0         -m*zg        0      m*xg-Yrdot; 
        0        0       m-Zwdot      m*yg   -m*xg-Zqdot     0; 
        0      -m*zg       m*yg     Ixx-Kpdot     0          0; 
      m*zg       0     -m*xg-Mwdot     0      Iyy-Mqdot      0; 
     -m*yg   m*xg-Nvdot     0          0          0      Izz-Nrdot]; 
  
Minv=inv(MM); 
  
xout(:,1)=x; 
time(1)=time_step; 
kuvvet(:,1)=[0 0 0 0 0 0]; 
Xdot(:,1)=[0 0 0 0 0 0 0 0 0 0 0 0 ]; 
  
%AUV Model Itereation 
for i = 1:n_steps, 
  
    % Calculate forces, accelerations     
    [xdot,forces] = states(x,ui,Minv); 
   
   % RUNGE-KUTTA  
    k1_vec = xdot; 
    k2_vec = states(x+(0.5.*time_step.*k1_vec),ui,Minv); 
    k3_vec = states(x+(0.5.*time_step.*k2_vec),ui,Minv); 
    k4_vec = states(x+(time_step.*k3_vec),ui,Minv); 
    x = x + time_step/6.*(k1_vec + 2.*k2_vec + 2.*k3_vec + k4_vec); 
    xout(:,i+1) = x; 
    time(i+1) = (i+1)*time_step; 
    kuvvet(:,i+1) = forces; 
    Xdot(:,i+1) = xdot;     
end 
 
Fy = kuvvet(2,:)'; 
Mz = kuvvet(6,:)'; 
v_dot = Xdot(2,:); 
p_dot = Xdot(4,:); 
r_dot = Xdot(6,:); 
u = xout(1,:)'; 
v = xout(2,:)'; 
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w = xout(3,:)'; 
p = xout(4,:)'; 
q = xout(5,:)'; 
r = xout(6,:)'; 
thet = xout(11,:)'; 
% theta1 = [Yvv, Yrr, Yuv, Yur, Ywp ] 
% theta2 = [Nvv, Nrr, Nuv, Nur, Nwp ] 
  
% [theta] = AUVPI(Fy, Mz, v_dot, p_dot, r_dot, u, v, w, p, q, r, thet, W, delta_r); 
  
%------------------Error Model başlıyor--------------------------- 
% erX = [Delta_x_ins, Delta_y_ins, Delta_z_ins, Delta_Vx_ins, Delta_Vy_ins, Delta_Vz_ins, ... 
%         Phi_x_ins,   Phi_y_ins,   Phi_z_ins]'; 
  
 glb_var = [g R omega_ie lat Beta_xdvl Beta_ydvl Beta_zdvl Alfa_gyro Beta_acc sigma_acc ... 
            sigma_gyro sigma_Vdvl sigma_depth  sigma_smag  ]; 
%---------------------------------------------------------------- 
  
% errOut(:,1)=[Delta_x_ins, Delta_y_ins, Delta_z_ins, Delta_Vx_ins, Delta_Vy_ins, Delta_Vz_ins, 

Phi_x_ins,...   
%              Phi_y_ins,   Phi_z_ins    Bias_Vx_dvl, Bias_Vy_dvl, Bias_Vz_dvl,  Bias_zd,  Bias_mag]'; 
          
errOut(:,1)=[Delta_x_ins, Delta_y_ins, Delta_z_ins, Delta_Vx_ins, Delta_Vy_ins, Delta_Vz_ins, 

Phi_x_ins,...   
             Phi_y_ins,   Phi_z_ins    Epsilon_x    Epsilon_y     Epsilon_z     Grad_x        Grad_y    

Grad_z]'; 
          
% errOut(:,1)=[Delta_x_ins, Delta_y_ins, Delta_z_ins, Delta_Vx_ins, Delta_Vy_ins, Delta_Vz_ins, 

Phi_x_ins,...   
%              Phi_y_ins,   Phi_z_ins]'; 
erX = errOut(:,1);          
% Kalman State (14) Initialization 
% Xk1(:,1) = [ -2, 3, 3.5, Delta_Vx_ins*1.05, Delta_Vy_ins*1.02, Delta_Vz_ins*1.08, Phi_x_ins*1.3, 

Phi_y_ins*1.05, ... 
%             Phi_z_ins*0.9, Bias_Vx_dvl, Bias_Vy_dvl, Bias_Vz_dvl, Bias_zd*0.9, Bias_mag*1.2]'; 
  
% Kalman State (15) Initialization 
Xk1(:,1) = [ -1, -6, 1.5, 1.5, 1.8, 1.9, Phi_x_ins*1.2, Phi_y_ins*1.2, Phi_z_ins*1.1, ... 
            0.042, 0.00061, 0.00083, 0.11*pi/180, 0.12*pi/180, 0.15*pi/180]'; 
% Kalman State (9) Initialization 
% Xk1(:,1) = [ -4, -2, -1.5, 10.5, 10.8, 11.9, -Phi_x_ins*1.0, Phi_y_ins*1.1, Phi_z_ins*1.2]'; 
Pk1(:,:,1) = P; 
Pk11(:,1)= diag(Pk1(:,:,1)); 
s = 1; 
  
for i = 1:n_steps, 
%   Error Model 
%   Calculate forces, accelerations 
    Vx = xout(1,i); 
    Vy = xout(2,i); 
    Vz = xout(3,i); 
    a_x = Xdot(1,i);%kuvvet(i,1); 
    a_y = Xdot(2,i);%kuvvet(i,2); 
    a_z = Xdot(3,i);%kuvvet(i,3); 
     
    [Xout,A, F] = error_model(erX,Vx,Vy,Vz,a_x,a_y,a_z,glb_var,time_step);  
    if i == 1 
        erXdot(:,i) = A*erX; 
    end     
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    erX = Xout; 
    erXdot(:,i+1) = A*erX; 
  
    errOut(:,i+1) = Xout; 
    % Kalman Measurements;% 
    z(1,i) = errOut(3,i)- sigma_mdepth*rand(1,1)-0.2*rand(1,1); % INS_Z-Z_dept   
    z(2,i) = errOut(4,i)- sigma_Vmdvl*rand(1,1)-0.21*rand(1,1); % INS_Vx-DVL_Vx 
    z(3,i) = errOut(5,i)- sigma_Vmdvl*rand(1,1)-0.12*rand(1,1); % INS_Vy-DVL_Vy 
    z(4,i) = errOut(6,i)- sigma_Vmdvl*rand(1,1)-0.1*rand(1,1);  % INS_Vz-DVL_Vz     
    z(5,i) = errOut(9,i)- sigma_mag*rand(1,1)-0.1*rand(1,1);    % INS_Phi_z-Phi_mag    
%    
    % Kalman Filter Algorithm 
    %------------------------------------------------ 
     
    Pk = F*Pk1(:,:,i)*F'+G*Q*G'; 
%     diag(Pk) 
    Sk = H*Pk*H'+s*KalR; %s is adaptive parameter 
    K = Pk*H'*inv(Sk); 
    Pk1(:,:,i+1) =(eye(15)-K*H)*Pk; 
    Pk11(:,i+1)= diag(Pk1(:,:,i+1)); 
    Xk = F*Xk1(:,i); 
    Delta = z(:,i)-H*Xk; 
    Xk1(:,i+1)=Xk + K*Delta;     
end 
  
%Measurement Bias 
%------------------------------------ 
% uEr = xout(1,:)'+ errOut(4,:)'/5; 
% vEr = xout(2,:)'+ errOut(5,:)'/5; 
% wEr = xout(3,:)'+ errOut(6,:)'/5; 
% thetEr = xout(11,:)'+ errOut(8,:)'*3; 
%  
% pEr = xout(4,:)'+ erXdot(7,:)'*3; 
% qEr = xout(5,:)'+ erXdot(8,:)'*3; 
% rEr = xout(6,:)'+ erXdot(9,:)'*3; 
%  
% % theta1 = [Yvv, Yrr, Yuv, Yur, Ywp ] 
% % theta2 = [Nvv, Nrr, Nuv, Nur, Nwp ] 
%  
% [theta1] = AUVPI(Fy, Mz, v_dot, p_dot, r_dot, uEr, vEr, wEr, pEr, qEr, rEr, thetEr, W, delta_r); 
%  
% %Integrated Navigation 
% %----------------------------------------------- 
% uIN = xout(1,:)'+ errOut(4,:)'/5-Xk1(4,:)'/5; 
% vIN = xout(2,:)'+ errOut(5,:)'/5-Xk1(5,:)'/5; 
% wIN = xout(3,:)'+ errOut(6,:)'/5-Xk1(6,:)'/5; 
% thetIN = xout(11,:)'+ errOut(8,:)'*3-Xk1(8,:)'*3; 
%  
% pIN = xout(4,:)'+ erXdot(7,:)'*3; 
% qIN = xout(5,:)'+ erXdot(8,:)'*3; 
% rIN = xout(6,:)'+ erXdot(9,:)'*3; 
%  
% % theta1 = [Yvv, Yrr, Yuv, Yur, Ywp ] 
% % theta2 = [Nvv, Nrr, Nuv, Nur, Nwp ] 
%  
% [theta2] = AUVPI(Fy, Mz, v_dot, p_dot, r_dot, uIN, vIN, wIN, pIN, qIN, rIN, thetIN, W, delta_r); 
  
disp(sprintf('\n\n AUV Simulation ends ...')) ; 
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STATES.M 

function [ACCELERATIONS,FORCES] = states(x,ui,Minv) 
% ---------------------------------------------------------------- 
% STATE VECTOR: 
% x = [u v w p q r xpos ypos zpos phi theta psi]‘ 
% INPUT VECTOR 
% ui = [delta_e delta_r]‘  
getInputs; 
  
% Get state variables 
u = x(1); v = x(2) ; w = x(3) ; p = x(4) ; q = x(5) ;  
r = x(6) ; phi = x(10); theta = x(11) ; psi = x(12) ; 
delta_e = ui(1) ; delta_r = ui(2); 
  
%trigonometrik kısaltmalar 
% ---------------------------------------------------------------- 
c1 = cos(phi); c2 = cos(theta); c3 = cos(psi); s1 = sin(phi); s2 = sin(theta);  
s3 = sin(psi); t2 = tan(theta); 
  
%A local lever North-East-Down frame is defined as navigation frame. 
%Transformation matrix from body to navigation frame 
C_bn = [ c2*c3  -c1*s3+s1*s2*c3     s1*s3+c1*s2*c3; 
         c2*s3   c1*c3+s1*s2*s3    -s1*c3+c1*s2*c3; 
         -s2        s1*c2               c1*c2      ]; 
      
% AUV a etkiyen toplam kuvvet hesaplanır 
% --------------------------------------------------------------- 
X = -(W-B)*sin(theta) + Xuu*u*abs(u) + (Xwq-m)*w*q + (Xqq + m*xg)*q^2      ... 
    +(Xvr+m)*v*r + (Xrr + m*xg)*r^2 - m*yg*p*q - m*zg*p*r + Xprop ; 
  
Y = (W-B)*cos(theta)*sin(phi)+ Yuv*u*v + (Ywp+m)*w*p + (Yur-m)*u*r         ... 
    - (m*zg)*q*r + (Ypq - m*xg)*p*q + Yvv*v*abs(v) + Yrr*r*abs(r)          ... 
    + Yuudr*u^2*delta_r; 
  
Z = (W-B)*cos(theta)*cos(phi) + (Zuq+m)*u*q + (Zvp-m)*v*p + (m*zg)*p^2  ... 
    + Zuw*u*w + (m*zg)*q^2 + (Zrp - m*xg)*r*p +Zww*w*abs(w) + Zqq*q*abs(q) ... 
    + Zuude*u^2*delta_e; 
  
K = -(yg*W-yb*B)*cos(theta)*cos(phi) - (zg*W-zb*B)*cos(theta)*sin(phi) ... 
    -(Izz-Iyy)*q*r - (m*zg)*w*p + (m*zg)*u*r +Kpp*p*abs(p) + Kprop ; 
  
M = -(zg*W-zb*B)*sin(theta) - (xg*W-xb*B)*cos(theta)*cos(phi) +  ... 
    (Mrp - (Ixx-Izz))*r*p + (m*zg)*v*r - (m*zg)*w*q + (Muq - m*xg)*u*q +   ... 
    + Muw*u*w + (Mvp + m*xg)*v*p + Mqq*q*abs(q)+Mww*w*abs(w)+ Muude*u^2*delta_e; 
  
N = (xg*W-xb*B)*cos(theta)*sin(phi) + (yg*W-yb*B)*sin(theta)+ ... 
    (Npq - (Iyy-Ixx))*p*q + (Nwp-m*xg)*w*p + (Nur + m*xg)*u*r ... 
    +  Nuv*u*v + Nrr*r*abs(r) +  Nvv*v*abs(v) + Nuudr*u^2*delta_r; 
  
% x = [u v w p q r xpos ypos zpos phi theta psi]‘ 
% Kalman Fu matrix 
FORCES = [X Y Z K M N]' ; 
  
%--------------------------------------------------% MMdot 
  
Mvindot=Minv*FORCES; 
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ACCELERATIONS =[ Mvindot;         %ax,ay,az,pdot,qdot,rdot 
    s3*c2*u + (c3*s2*s1-s3*c1)*v + (s3*s1+c3*c1*s2)*w;  %Xdot=u 
    s3*c2*u + (c1*c3+s1*s2*s3)*v + (c1*s2*s3-c3*s1)*w;  %Ydot=v 
    -s2*u + c2*s1*v + c1*c2*w;                  %Zdot=w 
       p + s1*t2*q + c1*t2*r;                    %Phidot  
                   c1*q - s1*r;                          %Thetadot 
                s1/c2*q + c1/c2*r   ];                 %Psidot 

ERRORMODEL.M 

function [Xdot,A,Fy] = error_model(X,Vx,Vy,Vz,a_x,a_y,a_z,glb_var,time_step) 

 

g = glb_var(1); 

R = glb_var(2); 

omega_ie = glb_var(3); 

lat = glb_var(4); 

Beta_xdvl = glb_var(5); 

Beta_ydvl = glb_var(6); 

Beta_zdvl = glb_var(7); 

 

M_ins = [       Vx/R            Vx*tan(lat)/R         0          1         0   0                        0                    0               0; 

     -Vx*tan(lat)/R + Vx/R            0               0          0         1          0                    0                    0               0; 

     -Vy*tan(lat)/R + Vx/R            0               0          0         0          1                         0                    0               0; 

    -g/R       0      0          0  2*omega_ie*sin(lat)+ Vx*tan(lat)/R   2*omega_ie*cos(lat)+Vx/R ...      0       a_z   -

a_y; 

      0      -g/R     0  -2*omega_ie*sin(lat)-Vx*tan(lat)/R     0                    Vy/R         ...    -a_z       0     a_x;       

      0        0    2*g/R -(2*omega_ie*cos(lat)+Vx/R)         -Vy/R                   0           ...     a_y     -a_x     0; 

            0                                 0                        0              0        0       0          0       omega_ie*sin(lat)+Vx*tan(lat)/R  

omega_ie*cos(lat)+Vx/R;  

      0                                 0                        0              0        0       0  (omega_ie*sin(lat)+Vx*tan(lat)/R)   0       

Vy/R; 

      0                                 0                        0              0        0       0    (omega_ie*cos(lat)+Vx/R)         Vz/R    0  ]; 

AUVPI.M 

function [Theta] = AUVPI(Fy, Mz, v_dot, p_dot, r_dot, u, v, w, p, q, r, thet, W, delta_r) 

  

%% MOMENT CARPANLARININ HESAPLANMASI   

Nvv_mult   = v.*abs(v) ; 

Nrr_mult   = r.*abs(r) ; 

Nuv_mult   = u.*v; 

Nur_mult   = u.*r; 

Npq_mult   = p.*q;  

Nwp_mult   = w.*p;  

Nuud_r_mult = u.^2.*delta_r ; 

  

Iyy = 3.45;  

Ixx = 1.77e-01; 

Nuudr = -13.92; 

Npq = -4.86; 

% zg = 1.96e-2; 

yg = -0.8e-2; %m 

% xg = 0; 

% xb = 0; 

  

parameter_cell = { 

    'Nvv'        'Nvv_mult'  

    'Nrr'        'Nrr_mult'  

    'Nuv'        'Nuv_mult' 

    'Nur'        'Nur_mult'     

    'Nwp'        'Nwp_mult'  }; 
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z_olcum = Mz - Nuudr*Nuud_r_mult - yg*W*sin(thet) - (Npq - (Iyy-Ixx))*Npq_mult; 

  

%% REGRESSION ANALYSIS 

X_reg = [] ; 

for i = 1:length(parameter_cell) 

    eval( ['X_reg = [X_reg ' parameter_cell{i,2} ']; '] ) 

end 

NDP = size(X_reg,1); 

np = size(X_reg,2);                        % Number of normal equations 

cr = corrcoef(X_reg) ;                  % Regressor correlation coefficients 

Theta = inv(X_reg'*X_reg)*X_reg'*z_olcum % Ordinary Least Squares Estimation 

check = inv(X_reg'*X_reg)*X_reg'*X_reg; 

y_est = X_reg*Theta;                                       % Model equation 

v_err = z_olcum - y_est;                                   % Residuals 

x_m = mean(X_reg); 

W_cov = cov(X_reg) 

invW = iwishrnd(W_cov,np); 

T_sqr = NDP*(x_m' - Theta)'*invW*(x_m' - Theta) 

F_stat = (NDP - np)/(np*(NDP-1))*T_sqr 
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