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INTEGRATION OF NAVIGATION SYSTEMS AND IDENTIFICATION OF
NONLINEAR MODEL PARAMETERS FOR AUTONOMOUS UNDERWATER
VEHICLES IN THE PRESENCE OF MEASUREMENT BIASES

SUMMARY

The research on underwater systems has gained enormous attention during the last
two decades because of applications taking place in many fields. Therefore, the
significant number of Unmanned Underwater Vehicles (UUVs) has been developed
for solving the wide range of scientific and applied tasks of ocean research and
development in the world. Guidance, navigation, and control techniques are key
research and development areas for the success of those sophisticated UUV missions.

Autonomous Underwater Vehicle (AUV), a type of UUV, requires a precise
navigational system for localization, positioning, path tracking, guidance, and
control. In order to develop a robust and precise AUV navigation system, we need to
know an overall modeling of an AUV, which is a complex problem and involves
interdisciplinary studies of kinematic, hydrostatics, and hydrodynamics.

One of the main objective of this thesis is to provides detailed explanations on the
theory behind the main concepts that directly influence the design of the dynamic
mathematical model of AUV and then to accomplish dynamic mathematical
modeling of an AUV in MATLAB Simulink environment under different swimming
conditions. Based on this model we develop three different types of low-cost
Integrated Navigation System based on error models of Inertial Navigation System
(INS) and its aiding devices such as Doppler Velocity Log (DVL), compass, and a
Pressure Depth Sensor. An INS error model and the corresponding measurement
models of those aiding sources will be derived for the Kalman Filter (KF). The
simulation results confirmed that low-cost IMU sensors produce a notable amount of
noisy measurements but our Integrated Navigation System models for AUV based on
KF can effectively mitigate those drawbacks.

Another main focus of this thesis is to accomplish the parameter identification of
hydrodynamic coefficients of AUV based on a Least Square Estimation (LSE)
algorithm in the presence of measurement biases. Parameter Identification is very
important to have the estimated values of these coefficients in order to accurately
simulate the AUV’s dynamic performance. The estimated hydrodynamic coefficients
can be used as inputs not only for a mathematical model to analyze the maneuvering
performance but also for a controller model to design AUVs under development.
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INSANSIZ SUALTI ARACLARI ICIN SEYRUSEFER SISTEMLERININ
TUMLESTIRILMESI VE OLCUM KAYNAKLI KAYMA HATALARININ
OLDUGU DURUMDA NONLINEER MODELIN PARAMETRELERININ

TANILAMASI

OZET

Diinyada son yirmi yillik gelismeler dikkate alindiginda, sualti sistemlerinin farkli
uygulamalarina yonelik arastirmalar muazzam sekilde artis gostermistir. Bu
kapsamda, genis c¢aplt kullanim alani olan, okyanus ve deniz tabanm
arastirma/gelistirme faaliyetlerine yonelik ¢ok sayida Insansiz Sualti Araci (ISA)
tasarlanarak, hizmete sunulmustur. ISA’larn gergeklestirdigi goérevler dikkate
alindiginda, askeri ve sivil uygulamalar1 6n plana ¢ikmaktadir.

Tipik olarak sualt1 araclari ii¢ ana grupta incelenmektedir;

1. Insanli Sualt1 Sistemleri (Denizaltilar, insanl Sualt1 Robotlar1, vb.),
2. Uzaktan Kumandal1 Sualt1 Robotlar1 (ROV’lar) ve
3. Otonom Sualt1 Araglar1 (OSA -AUV).

Yukarida adi gegen her bir tip sualtt aracinin kendine has ozellikleri olmasinin
yaninda, birbirleriyle kiyaslandiginda kullanim alanlarina bagl olarak istiinliikleri ve
zafiyetleri mevcuttur. Bu tez kapsaminda sadece insansiz sualt1 araglarinin 6zellikleri
hakkinda bilgi verilmistir. Kavram olarak, insansiz sistemler olan ROV’lar ile
ISA’lar arasindaki temel fark kisaca ifade etmek gerekirse, ROV’lar bir suiistii
gemisine veya denizaltiya bir kablo yardimiyla bagh olup, bu platformlar tizerinden
kumanda edilebilen genellikle dikddrtgenler prizmasi veya kiip seklinde tasarlanmis
diisiik siiratli, hantal sualti araglardir. Diger taraftan OSA’lar, genellikle bir
platformdan tamamen bagimsiz kendi basina hareket edebilen, silindirik yapili,
askeri ve sivil kullanim alanlarina baglh olarak farkli stiratlere sahip, otonom sualti
araglaridir. ISA’larin  diinyadaki farkli uygulama alanlarm asagidaki sekilde
siralayabiliriz.

Mayin avlama,

Kesif,

Sualt1 kablolarinin désenmesi,

Sualt1 hedeflerine ekipman taginmasi,

Deniz ve okyanus suyu incelemeleri,

Petrol ve dogalgaz borular1 gézlem ve bakimi,
Sualt1 arkeoloji caligmalari,
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e Deprem arastirmalari,
e Torpido sistemleri.

Tiirkiye’de mevcut olan insansiz araglari incelendiginde, ¢alismalarin biiyiik bir
cogunlugunu insansiz kara araglarini kapsamaktadir. Kara araclarindan sonra, ikinci
seviyede arastirmalar hava araclar {izerine yogunlasmaktadir. Ulkemizin {i¢ tarafi
denizlerle ¢evrili olmasina ve halad bir denizci millet olamamamizin bir sonucu
olarak, Tiirkiye’de Insansiz Sualt1 Araglar1 (ISA’lar) birkag istisna proje disinda, bir
inceleme konusu olarak istenilen ragbeti ve ilgiyi gérmemektedir. Cok farklh
kullanim alanlar1 olan bu araglar, diinyada son yirmi yildir basta ABD olmak iizere
gelismis iilkeler tarafindan okyanus arastirmalarinda yogun olarak kullanilmaktadir.

OSA'lar, sualtinda gergeklestirdikleri uzun siireli seyirleri boyunca giidiim, kontrol,
yol takibi, konumlandirma ve mevkilendirme agisindan yiiksek dogruluga sahip bir
seyriisefer sistemine ihtiya¢ duyarlar. OSA’lara yonelik saglam, giivenilir ve dogru
bir seyriisefer sistemi tasarlamak icin ise ISA’nin tiim gdvde modeline ihtiyag
duyulmaktadir. Ancak OSA modellemesi ¢ok karmasik ve zor bir islem olup,
hidrodinamik ve hidrostatik bilim dallarinin birlikte kullanilmasini1 gerektirir.

Bir OSA’nin sualti modellemesi, kati bir cisim olarak ele alinsa bile oldukca
karmasik siirecleri icermektedir. Bir OSA sistemi sualt1 ortaminda hareket ederken
dogrusal olmayan (nonlinear) etkilere maruz kalir. Bu etkiler arasinda serbest yiizey
etkisi, kavitasyon, dalgalar, zamanla degisen kiitle ve pervane siirati, rijid olmayan
govde dinamigi, diizensiz akislar ile hareketli kanatlarin etkisi sayilabilir. Biitiin bu
etkilerin modellemeye katilmasi, modelleme siirecini i¢inden ¢ikilmaz bir duruma
itmektedir ve bu etkilerin biiyiik bir ¢ogunlu ¢ekme tanklarinda dikkate alinmaktadir.

Hidrodinamik etkiler OSA’nin su ortamindaki hareketinden kaynaklanmaktadir. Bir
ISA sisteminin hidrodinamik parametrelerinin belirlenmesinde tamamen kendi sekil
ve formuna bagli olarak deney ve teoriye dayali yontemler kullanilir. Genel olarak,
bir ISA’nin hidrodinamik parametreleri ii¢ fakli yontemle belirlenir. Bunlar:

1.Hesaplamal1 Yontemler (Navier Stokes Denklemleri, Hesaplamali
Akigkanlar Dinamigi, vb.),

2. Cekme tanki (towing tank) testleri,

3. Gergek Ortaminda Testler.

Bu tezin ana amaglarindan biri, bir OSA sisteminin dinamik hareket modelinin
olusturulmasi ve MATLAB yazilim ortami kullanilarak olusturulan hareket modeli
tizerinde, Ataletsel Seyriisefer Sistemi (ASS)’den elde edilen seyriisefer ¢6ziimiinii
diizeltmek i¢in Dopler Hiz Kaydedici, Manyetik Pusula ve Derinlik Olger yardimci
sensorleri kullanarak Kalman Siizgeci tabanl olusturulan timlesik seyriisefer sistemi
tasariminmi gerceklestirmektir.

Tez kapsaminda, OSA’lar i¢in gelistirilmis tiimlesik seyriisefer sistemi i¢in ti¢ farkl
yaklasim kullanilmistir. Birinci yaklasimda, Dopler Hiz Kaydedici, Manyetik Pusula
ve Derinlik Olger yardimci sensdrlerin kalibrasyonlarinin miikemmel yapildig1 farz
ve kabul edilerek, sadece ASS’nin hatalarinin Kalman Siizgeci kullanilarak
kestirimleri hesaplanmis ve yardimci sensorlerin diizeltmeleri Kalman 6l¢iim vektorii
yardimiyla girdi yapilmistir. Bu yaklasimda Kalman durum vektorii boyutu 9’dur.
Ikinci yaklasimda, yine yardime1 sensdrlerin kalibrasyonlarmin miikkemmel yapildig
farz ve kabul edilerek, ASS ile ASS sensorleri olan gyro ve ivmedlgerlerin
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hatalariin Kalman Siizgeci kullanilarak kestirimleri hesaplanmis ve yardimci
sensorlerin diizeltmeleri Kalman 6l¢iim vektorii yardimiyla girdi yapilmigtir. Bu
yaklasimda Kalman durum vektdrii boyutu 15°dir. Ugiincii ve son yaklasimda ise,
ASS sensorlerinin  kalibrasyonlarinin - miikemmel yapildigi farz ve kabul
edilerek,ASS 1ile yardimci sensorlerin hatalar1 Kalman Siizgeci kullanilarak
kestirimleri hesaplanmistir. Bu yaklasimda Kalman durum vektorii boyutu 14’tiir.
Daha sonra bu li¢ tiimlesik seyriisefer sistem yaklasimi grafiksel ve niimerik
yaklasimla kiyaslanarak iistlinliikleri ortaya konmustur.

Simiilasyon sonuglar1 gostermistir ki, diisiik maliyetli ASS sistemi zamanla dikkate
deger oranda Ol¢iim hatasi iiretmesine ragmen, farkli boyutlu durum vektorlerine
sahip Kalman Siizgeci tabanli gelistirdigimiz Timlesik Seyriisefer Sistemi bu
hatalarin azaltilmasinda etkin bir rol oynamaistir.

Bu tezin diger ana hedefi ise, en kiiciik kareler yontemi yardimiyla ISA’nin mevcut
dogrusal olmayan (nonlineer) hareket modeline ait hidrodinamik parametrelerin,
seyriisefer sistemlerinden kaynaklanan kayma hatalarinin mevcut oldugu durumda
tamlanmasidir. Bu hidrodinamik parametrelerin dogru olarak belirlenmesi, ISA
sisteminin dinamik performansinin gergege yakin bir sekilde simiile edilmesinde
onemli rol oynar. Ayrica kestirimi yapilan bu parametreler sadece dinamik modelin
manevra performansinin analizinde kullanilmaz ayn1 zamanda gelistirme agsamasinda
olan ISA’larin kontrolcii tasariminda da etkin olarak kullanilir.

Tanilama yontemi olarak en kiigiik kareler yontemi basit ve kisa zamanda ¢6ziim
rettigi icin tercih edilmistir. En kiigiik kareler yontemi kullanilarak bulunan
hidrodinamik parametreler, Hortling’s T istatiksel yontemi kullanilarak
dogrulanmaya calisilmistir. Tiimlesik seyriisefer sistemi ile biiyiik oranda diizeltilen
seyriisefer bilgileri kullanilarak, elde edilen Hidrodinamik parametreler ger¢ek
degerine yakin istatiksel olarak dogrulanmis, elde edilen simiilasyon sonuglari
niimerik ve grafiksel olarak gosterilmistir.
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1. INTRODUCTION

The researches on Unmanned Underwater Vehicles (UUVSs) began in the 1960s, with
the first prototypes emerging in the 1980s. Nevertheless, the research on underwater
systems has gained immense interest during the last two decades with applications
taking place in multiple fields of marine systems. Therefore, the significant numbers
of UUVs have been developed for solving a wide range of scientific and applied
tasks of ocean and seabed research and development in the world [29]. The military
as well as civilian industaries can see great potential uses of UUVs in the underwater

environment.

UUVs by definition are small submersible vehicles that contain independent
propulsion systems and are capable of carrying sensors such as side-scan sonar,
video cameras, depth sensor, and other oceanographic measuring devices [29]. UUVs
are highly desirable as they can at least limit the level of human life risk and direct

physical human involvement in a mission.

Typically, UUVs can be classified into two unmanned underwater systems that are
Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles
(AUVs): Each branch has its own pros and cons due to the mission type. ROV,
characterized by direct human assistance, is remotely operated through the presence
of a tether cable; the other group is known as the AUVs, which is the topic of this
thesis, characterized by their autonomous behavior, having cylindrical geometric
shape and absence of a tether cable. This classification is of course not precise given
the varying degrees of autonomy in both groups which can differ according to the
requirements of the designed mission. In addition, the presence of a tether cable does
not necessarily mean that the vehicle cannot perform autonomous tasks. The basic
difference between AUVs and ROVs is that AUVs use “intelligence”, such as
sensing and automatic decision-making. They have predefined plan of operations in

its “mind” allowing them to perform tasks autonomously [29]. ROVs are remotely



controlled by a human with the help of communication links based on tether cable

(such as cupper, fiber optic, etc.).

The AUVs have shown efficiency at performing complex search and inspection
missions, and opening a number of new important application areas which include
environmental monitoring, surveillance, underwater inspection of harbors and

pipelines, geological and biological surveys, mine countermeasures, etc. [29].

The key element of the AUV navigation system is the Inertial Navigation System
(INS), which integrates the output of a set of sensors (gyros and accelerometers) to
compute position, velocity, and attitude. Among these sensors, gyros measure
angular rate, and accelerometers measure linear acceleration with respect to an
inertial frame. Integration is a simple process; complexities arise due to the various
coordinate frames encountered, sensor measurement errors, and noise in the system.
During the last 70 years, INS has progressed from the crude electromechanical
devices that guided the early V-2 rockets to the current solid-state devices that are in
many modern vehicles. The impetus for this significant progress came during the
ballistic missile programs of the 1960s, in which the need for high accuracy at ranges
of thousands of kilometers using autonomous navigation systems was made apparent
[48]. Today, INS is used in all types of commercial and military UUVs and ships,

submarines, torpedoes, and missiles of all sizes.

Although INS is autonomous and provides good short-term accuracy, its usage as a
stand-alone navigational system is limited due to the time-dependent growth of the
inertial sensor errors that is the main disadvantage of using the INS. Therefore, the
accuracy of the INS is highly dependent on the sensor quality, navigational system
mechanization and dynamics of the vehicle [25]. Thus, the major error sources of
the INS are due to gyro and accelerometer inertial sensor imperfections, incorrect
navigational system initialization, and imperfections in the gravity model used in the

computations [3].

Additionally, the challenge in an AUV navigational system is maintaining the
accuracy of an AUV’s position over the course of a long mission time. An initial
accurate position can quickly become uncertain through variations in the AUV’s
motion. This effect can be reduced by using accurate heading, position, and velocity



sensors, but these sensors cannot be made arbitrarily accurate. During long mission
periods, these inaccuracies become significant. Strong sea currents and other
underwater phenomena that affect the motion of the AUV cannot be precisely

modeled which leads to greater inaccuracies [52].

1.1 Purpose of Thesis

One of the main purposes of this thesis is to develop of dynamic model of an AUV
under different swimming conditions, and then to apply Integrated AUV
Navigational System based on the Kalman Filter (KF) to this model. This thesis also
addresses the issue of providing low cost, high integrity, and small size aided INS
based on each sensor error model and filter structure for a generic AUV system. In
order to achieve this, it is important to develop an INS fitting into the AUV dynamic
model. Because the key element of AUV navigation system is INS, which is
accomplished by integrating the output of a set of sensors (including, Doppler
Velocity Log (DVL), compass, depth sensor, gyros and accelerometers) to compute

position, velocity and attitude.

Another main focus of this thesis is to realize the parameter identification of
hydrodynamic coefficients based on the Least Square Estiomation (LSE) algorithm
for a nonlinear mathematical modeling of AUV. It is important to have the estimated
values of these coefficients in order to accurately simulate the AUV’s dynamic
performance. The estimated coefficients can be used as inputs not only for a
mathematical model to analyze the maneuvering performance but also for a

controller model to design AUVs under development.

1.2 Literature Review

Autonomous guidance, navigation, and control techniques are key research &
development areas for the success of AUV specific missions. However, further work
is needed for in precision navigation, sensor development and integration, and
improving the realiability and robustness of long term and complex mission

completion [48].

This thesis is primarily focused on integrated AUV navigation system, which is a

complex problem that has been the subject of a great amount of research efforts in



recent years. For AUVSs, precise navigation solution is one of the key issues that
require accurate navigation system for localization, positioning, path tracking,
guidance and control. In order to develop an accurate and robust navigation system,
we need to know an overall mathematical modeling of AUV, which involves the
interdisciplinary study of kinematics, hydrostatics, and hydrodynamics. Hydrostatics
Is concerned with the equilibrium of underwater bodies at rest or moving with
constant velocity, whereas hydrodynamics is concerned with bodies having
accelerated motion [8]. In this thesis, we develop nonlineer dynamic model of an
AUV for different swimming conditions, and then to apply Integrated AUV
Navigation System based on KF to this model. In many literature, authors employ

parameter specific nonlineer AUV model for only one swimming condition.

In real world applications, an AUV does not have continuous position updates;
hence, a navigational system based on INS has an unacceptable position error drift
without sufficient aiding. The navigational system of AUVs play a crucial role
together with the sensor architecture in the degree of system autonomy that can be
achieved. A typical navigation sensor outfitted for an AUV may consist of standard
components such as compass, pressure depth sensor, and some class of Inertial
Measurement Unit (IMU). In addition, some aiding devices may be available, for
instance acoustic sonar, pressure depth sensor, compass, DVL, terrain-based

techniques, and surface Global Positioning System (GPS) [53].

Navigational accuracy depends not only on the initialization and on drift errors of the
low cost IMU and the aiding sensors, but also on the performance of the sensor
fusion filter (i.e. KF) used in the navigation algorithm. In the design of an integrated
navigational system, KF plays a key role for which KF, resident in the INS, performs
real-time integration of the sensor measurements to provide accurate position,

velocity, and attitude information in all axes of the vehicle [7].

The KF is a set of mathematical equations that provides an efficient computational
(recursive) mean to estimate the state of a process in a way that minimizes the mean
of the squared error. The filter is very powerful in several aspects: it supports
estimations of past, present, and even future states, and it can do so even when the

precise nature of the modeled system is unknown [58].



In reference [12], Geng, Martins and Sousa focused on the performance analysis of
the bias of inertial sensors and the error of position using different level IMU. An
extended KF is employed to estimate the bias of the inertial sensors and then give the
ultimate error of position in about one hour campaign. In another reference [25],
Hegrenas, Berglund, and Hallingstad made a study on the implementation and
experimental evaluation of a complete model-aided INS for underwater vehicle
navigation. The proposed approach showed promise to improve underwater
navigation capabilities both for systems lacking disparate velocity measurements,
typically from a DVL, and for systems where the need for redundancy and integrity
IS important, e.g. during sensor dropouts or failures, or in case of emergency
navigation. In another study (reference [64]), Zhao and Gao proposed a KF method
working in the GPS/INS/DVL integrated mode, which combines output of INS, DVL
and GPS (when available). They acknowledged that the test results show that the
system is able to achieve high precision, which is one meter approximately, with
GPS and DVL working properly. Similarly, in reference [36], Lee, Jun, Kim, Lee,
Aoki and Hyakudome made a study on an integrated navigation system for
underwater vehicles to improve the performance of a conventional inertial acoustic
navigation system by introducing range measurement. The integrated navigation
system is based on a strapdown inertial navigation system (SINS) accompanying

range sensor, DVL, magnetic compass, and depth sensor.

On the other hand, in reference [36], Lee and Jun presented an integrated
navigational algorithm for UUV using two acoustic range transducers and strap-
down inertial measurement unit (S-IMU). The proposed algorithm, called pseudo
long base line (PLBL), estimates the position of the vehicle integrating the S-IMU
signals corrected with the two range measurements. Extended KF was applied to
propagate error covariance, to update measurement errors and to correct state
equation whenever the external measurements are available. Additionally, in
reference [28], Li, Tang, and Yuan proposed the navigation equipments of Synthetic
Aperture Sonar (SAS) comprise SINS and DVL. For the large attitude error, the
nonlinear error models of SINS/DVL based on quaternion error are presented.
Overall, we develop nonlineer dynamic model of an AUV for different swimming
conditions, and then to apply this model to Integrated AUV Navigation System

model based on KF that we developed.



Another main focus of this thesis is to realize the parameter identification of
hydrodynamic coefficients based on Least Square Estiomation (LSE) algorithm for a
nonlinear mathematical modeling of AUV. The hydrodynamic coefficients of AUV
can be estimated based on the calculations of the first principle of dynamics of AUVs
and from statistical LSE of experimental data, or a combination of the two [7]. The
identification of the parameters of the item being tracked can be approached in many
different ways. The parameters can be determined once, from a model of the
expected input signal. It could also be done adaptively utilizing a recursive method to

identify the parameters of the incoming signal.

Another approach that estimates the hydrodynamic coefficients of AUVs is the
observer method, in which a model-based estimation algorithm is used. A
representative method amongst observer methods is the KF, which has been widely
used to estimate state variables and parameters [7]. Hwang [29] estimated the
maneuvering coefficients of a ship and identified the dynamic system of a
maneuvering ship using an EKF technique. Additionally, referencing [44], Meng &
Veras, they concentrated on the application and comparison of EKF and iterated EKF
for aerodynamic parameter estimation of a fixed wing UAV. In another reference [4],
Chowdhary compared the performance of three recursive parameter estimation
algorithms for aerodynamic parameter estimation of two aircrafts derived from real
flight data. These algorithms are the EKF -the simplified version of the Unscented
Kalman Filter (UKF) and the augmented version of the UKF.

On the other hand, the report [47] compares responses obtained by the KF, the least
squares estimation, and the linear model for the NPS Phoenix AUV. The LSE
provided results similar to those obtained by the KF, but the latter produced a more

accurate model.

Referencing [58] Vandersteen, Rolain, Schoukens & Pintelon, they proposed a robust
estimation algorithm for the estimation of static and nonlinear systems which can be
described as a nonlinear function corrected with a rational form. The errors-in-
variables-based algorithm solves the starting-value problem using an iterative,
weighted least-squares procedure, which constructs the rational form such that the set
of normal equations becomes best conditioned, and uses a maximum-likelihood

estimation step to increase the efficiency of the estimates.



2. DYNAMIC MATHEMATICAL MODELING OF AN AUV

2.1 Purpose

This section provides detailed explanations on the theory behind the main concepts
that directly influence the design of the dynamic mathematical model of AUV. AUV
modeling is fairly complicated, and even when considered as a rigid body, an exact
analysis is only possible by including the underlying infinite dimensional dynamics
of the surrounding fluid [62], which is seawater. This can be done using partial
differential equations, which are solved by Computational Fluid Dynamics (CFD),
but it still involves a formidable computational burden, which is infeasible for most
practical applications [8]. As a result, the conventional approach has been to use

finite-dimensional approximations.

On the other hand, AUV modeling involves the interdisciplinary study of kinematics,
hydrostatics, and hydrodynamics. The study of hydrostatics is concerned with the
equilibrium of underwater bodies at rest or moving with constant velocity, whereas
hydrodynamics is concerned with bodies having accelerated motion [8]. An
increased knowledge of hydrodynamic parameters then leads to a better navigational

system design and performance on AUVSs.

The aim of this thesis does not directly involve the modeling of AUV systems from
scratch since this is a different area of research interest alltogether. However, in this
study we try to develop nonlineer mathematical modeling of an AUV for different
swimming conditions and then, directly use the mathematical model of REMUS
AUV that is designed to perform hydrographic analysis in the very shallow water. In
Figure 2.1, a picture of REMUS is shown. REMUS is used for missions such as
hydrographic surveys, mine counter-measure operations, harbor security operations,
environmental monitoring debris field mapping, search and resque operations,

fishery operations, and scientific sampling and mapping.



Figure 2.1 : REMUS AUV [46].

2.2 Modeling Assumptions

2.2.1 Environmental assumptions
The corresponding assumptions are made about the vehicle with respect to its

environment [44]:

e The AUV is deeply submerged in a homogeneous and unbounded fluid. In
other words, the AUV is located far from the free surface (no surface effects, i.e. no
sea wave or vehicle wave-making loads), walls and bottom.

e  The AUV does not experience underwater currents.

2.2.2 Dynamics assumptions
In dynamic modeling of AUV, the following assumptions are used [22]:

e The AUV behaves as a rigid body of a constant mass.

o The earth’s rotation is negligible for acceleration components of the vehicle’s
center of mass

e The primary forces that act on the AUV are inertial and gravitational in the
center of buoyancy and are derived from hydrostatic, propulsion, thruster, and
hydrodynamic lift and drag forces.

o The thruster assumption is that it uses an extremely simple propulsion model,

which treats the vehicle propeller as a source of constant thrust and torque.

2.3 6-DOF Rigid-Body Equations of Motion

AUVs move in six degrees of freedom (6-DOF) since six independent coordinates
are necessary to determine the position and orientation of a rigid body dynamics.
The first three coordinates and their time derivatives are based off of translational

motion along the x, y and z-axes, while the last three coordinates (¢, @,y ) and their



time derivatives are used to describe orientation and rotational motion [26]. Velocity
and angular velocity components of the AUV relative to the body axes (x,y,z) are
denoted by the velocity of surge, sway, heave motion, (u,v,w) and angular velocity
of roll, pitch, and yaw motion (p.q,r), respectively. X, Y, Z, K, M, and N represent
the resultant forces and moments with respect to the x, y, and z axis. For AUVS, it is
common to use the SNAME notation. In Table 2.1 below, the six different
translational and rotational motion components are defined as: surge, sway, heave,

roll, pitch and yaw respectively [8].

Table 2.1 : AUV dynamic components.

Linear and
Motion Components  Forces and Angular Position and Euler
Moments Velocities Angles
Surge X u X
Sway Y v Y
Heave Z w YA
Roll K p @
Pitch M q 0
Yaw N r b4

2.3.1 Coordinate frames
Typically, three different right-handed and rectangular coordinate frames are used for

defining AUV motion. First, the body axes (x,y,z) have their origin at the center of

buoyancy (CB) with x directed toward the bow along the hull centerline axis, y

directed to the starboard side, and z toward the keel (see Figure 2.3). The axes fixed
in the earth are (x,,Y.,z.) with the Xy, plane in the water surface and z, directed
downward into the ocean. Second, the Earth-fixed coordinates frame is also

measured to CB of AUV. If roll, pitch and yaw orientation angles ¢, 9,y of the

AUV are zero, the (X, y,z) axes will be parallel to the (x,,Y,,Z,) axes, respectively.



Greenwich e
Meridian

Figure 2.2 : 6-DOF navigational frame [22].
The third coordinate frame (x,,y,,z,) is fixed in the fluid, which can move with a
constant velocity (u,,v,,w,) relative to the earth-fixed frame. The x,, y,, z, axes are

always parallel to the x.,Y.,z, axes, respectively [3]. In Figure 2.3, it is shown 6-

DOF AUV angular and transaltion motions in body frame.

Figure 2.3 : 6-DOF AUV angular and translational motions [46].

A set of axes commonly used with the Earth-fixed axis system is shown in Figure 2.4

;, where X, axis is chosen to point north, v, axis points east with the orthogonal triad

being completed when z_axis pointing down.
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Figure 2.4 : AUV body-fixed and earth-fixed coordinate system [29].

A transformation matrix containing ‘Euler’ angles ¢,8,y, where ¢ is roll, 6 is

pitch, and y is yaw, must be defined. The transformation order from the earth-fixed
frame (3, ) to the body-fixed frame (3,) is given by

2.1)
Transformation matrix is defined in the following equation (2.2):
CoS y cos 6 siny cos 6 -sinf

T(p,0,w)=| cos y sin 0 sin @ - sinycos ¢ siNy sin O sinp+cosy cos ¢ cos 0 sin @

(22)

COS y sin 8 cos ¢ + sinysin ¢ siny sin @ CoS ¢ - cos y sinp  cos 0 cos

The Simulink model of direction cosine matrix is shown in Figure 2.5.

FeaTret

FeaTren

[pnhetzp>
osTheta

Fomtrei>

MATLAB Function |© " orkspaced

Figure 2.5 : Direction cosine matrix.
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Transformation from a global velocity vector to the local velocity vector is given by

u X
v (=T (ga,@,t//)- Y
v ; (2.3)

On the other hand, transformation from a local velocity vector to a global velocity

vector is derived in equation (2.4):

X u
Y =T (p.0w)| v
. W (2.4)

The global angular velocity vector [p,q,r] can be transformed into the rates of

change of the Euler angles as given by:

1 sinptan@  cosetanf || p

@
0|=0 cosQ -sing q (2.5)
" .

0 sinp/cos@ cosp/cosl || r

The Simulink model of transformation of Euler angles is shown in Figure 2.6.

Figure 2.6 : Transformation of Euler angles.

Three dimensional (3D) spatial rotations can be parametrized using both Euler angles
and unit quaternions. Unit quaternion provides a convenient mathematical notation
for representing orientations and rotations of vehicle in three dimensions. Compared

to Euler angles, unit quaternions are simpler to compose and avoid the problem of

12
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the gimbal lock. Additionally, compared to rotation matrices, they are more
numerically stable and may be more efficient [15]. Nevertheless, Euler angles are

preferred in this study for simplification reasons.

After a general model structure for AUV is derived, we look further into the
modeling aspects in terms of environmental disturbance models, in which waves
(wind generated), wind, and sea currents will be considered. In general, these

environmental disturbances will both be additive and multiplicative to dynamic EOM

[3]. Transformation order from body-fixed frame (J,) to sea current frame (3,)

using orientation angles of a and g are given in equation 2.6.

o~ U2

Us

3—5—3

(2.6)

The transformation matrix from body-fixed frame (5, ) to the sea current frame (s, ):

Com = R, (-a)% Ry ()

coso. 0 -sina cosfp -sinff 0
Ry(-w)=| 0 1 0 | , R(B)=|sinB cosp 0 (2.7)
sina 0 cosa 0 0 1

After mathematical calculations, the transformation matrix from the body-fixed

coordinate to the sea coordinate axes including sea current can be expressed as

cosacospf —cosasing -sina
ct™ =  sinpg cos f3 0
sinecosff —sinasinf cosa

(2.8)
The sea current velocity components are assumed constant relative to axes fixed in
the earth. This permits the use of axes fixed in the fluid as an inertial frame of

reference. AUV velocity with respect to the sea is expressed as

V,

b/w

:Vb/e _Vw/e (29)
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Then, dynamic pressure is calculated as

1 .
> PV (2.10)

Qd =
In this study, however, we ignore the sea currents, which normally effects the AUV
motion. Additionally, wind and wind generated waves phenomena will not be
discussed since the attention is focused on AUVs performing a motion or

manipulation task in an underwater environment.

2.3.2 Newtonian and Lagrangian mechanics

The EOM of AUVs are highly nonlinear, time-varying and coupled due to
hydrodynamic added mass, lift, drag, coriolis and centripetal forces, which are acting
on the vehicle and generally include uncertainties [8]. Overall 6-DOF nonlinear

dynamic EOM can be expressed in the matrix form as

M\V)V+C(V)v+D\V)v+g(n) =7 (2.12)

Where:
M(v) = inertia matrix (including added mass),
C(v) = matrix of Coriolis and centripetal terms (including added mass),
D(v) = damping matrix,
g(77) = vector of gravitational forces and moments,
7 = vector of control inputs,

v=[uv,w,p,q,r],
n=[xy,2,40,y] .

The coupled EOM of AUV are derived from two possible modeling approaches; one
is a Lagrangian method and the other is a Newtonian-Euler formulation. Basically,
the Lagrangian approach consists of three main steps: first, to formulate a suitable
expression for the vehicle's kinetic (T) and potential energy (P), second, to compute
the Lagrangian L (L=T-P), and finally to apply the Lagrangian (L) to the

Lagrangian formulation [2].

d (oL\ 0L __p
E(%)”EE"’ () T (212)

Another modeling approach is the Newtonian-Euler formulation, which is based on

Newton’s Second Law that relates mass (m), acceleration (a) and force (F). Euler

14



suggested expressing Newton's Second Law in terms of conservation of both linear
and angular momentum. The forces (F) and moments (M) refers to the body's center
of gravity [8].

In this study, the dynamic behavior of an AUV is described through Newton's laws of

linear and angular momentum.

Newton'’s Second Law is expressed as:

d
Feqt™v 2.13)

d
M=t (2.14)

where F represents the sum of all externally applied forces, M represents the sum of

all applied torques, and H is the angular momentum.

It is convenient to regard the sums of applied torque (M) and force (F) as consisting
of an equilibrium point and a perturbational component. Thus, assuming constant
AUV mass

d
F=F,+AF=m—_{V} (2.15)

d
M =M, +AM = —{H} (2.16)

The subscript “,” denotes the equilibrium condition, and “A> the component of
perturbation. Equilibrium of AUV by definition must be an unaccelerated motion
along a straight path; during this motion the linear velocity vector relative to fixed
space is invariant, and the angular velocity is zero. Therefore, M, are zero, but . F,

is not zero due to drag. Furthermore, since the axis system being used as an inertial
reference system is the Earth-fixed coordinate system, Equation (2.15) and (2.16) can

be expressed as

15



d
AF = ma{\/T}E (217)

d
AM = Ak (2.18)

The force equation based on the rate of change of velocity V relative to the Earth’s

fixed axis frame is given by

F= De(m\7): Db(m\7)+5)b/exm\7 (2.19)

where ,,, is the angular velocity of the AUV with respect to the Earth fixed

coordinate frame. The open form of Equation 2.19 is given by

Fo=X=m(u+qw-rv)
F=JF=Y=m(V+ru-pw)

(2.20)
F,=Z=m(W+ pv-qu)
After the rearrangement of F, translational accelerations become:
_F
U=-—2X-qw+rv
m
_F

. _F,
W=-L-pv+qu
m

In Figure 2.7, the Simulink model of translational transformation is shown.

16



s
*
H

W_be_Fb [miz]

omega_be_Fb [radi]

Vdot_be_Fb [mis2]

=

pp &6 (e g on U

s
H
e

Figure 2.7 : Translational transformation matrix.

Similarly, after transforming from the body-fixed frame to the Earth-fixed frame the

moment equation and its open form becomes

M = De(f&')b/e):D (Ia)b/e)+wb/e (f

By
M, =K=1,p-1,(q"-r*)- 1, (f+pa)-1, (4-rp)- (1, -1, )ar
M=>:M=M=14g-1, ( ) S (p+ar)-1,(¢F-pg)-(1,-1,)rp (2.22)
M, =N=1r-1,(p*-a°)-1,(4+rp)-1,(p-ar)-(1,-1,)pq

For a rigid body, angular momentum can be defined as

H=lo (2.23)

where the inertia matrix is defined as

XX Xy ed
I=|-1, 1, -l
(2.24)
Iy Iyz Iz

where, I;; denotes a moment of inertia, and 1, a product of inertia j=1.

In this thesis, we assume that the AUV is symmetrical along the XY and XZ planes,

therefore cross inertia parameters become

=1l =l_=0and | =
ly=1,=1,=0 I, =1, (2.25)
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As a result of this symmetry, the rotational EOM of AUV in particular, becomes:

M, =1L p
M =1 qg-(1 -1 )r
y Yq (Z X) p (226)
M,=1,t-(1,-1,)pg
After rearrangement, Equation 2.26 is expressed as:
. _ M,
p:
IX
q:i[M +(1,-1,)rp]
e (2.27)
1

v omega_be_Fb [@dfs]

Figure 2.8 : Rotational transformation matrix.

Finally, the derivative of Euler angles is defined as:

. gsing + rcosp

B cosd
0= qcose - rsing (2.28)
Q=p+ (qsingo + rCOS(p) tan6
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2.3.3 Gravitational forces

Gravitational forces always exist in the AUV. It can be assumed that gravity acts at
the center of gravity (CG) of the vehicle. Since the centers of mass and gravity
coincide in an AUV, there is no external momentum produced by gravity on the CG.
Therefore, for the body axis system, gravity contributes only to the external force
vector F. Three components of the gravitational force in the body frame depend on
the AUV’s attitude relative to an inertia frame. The gravitational force acting upon
an AUV is most obviously expressed in terms of the Earth’s axes. With respect to
these axes, the gravity vector mg, is directed along the Z, axis. Figure 2.9
demonstrates the alignment of the gravity vector with respect to the body-fixed axes.
In Figure 0, @ represents the pitch angle between the gravity vector and the Y,Z,
plane; the angle is positive when the nose of the AUV goes up. ¢ represents the roll

angle between Z, axis and the projection of the gravity vector on the Y,Z, plane.

Direct solution of the vector mg into x , v and z components produces:

g, =mgsin(-¢) =-mgsin g

g, = mgcos(—6)sin ® = mgcos &sin © (2.29)
g, = mg cos(—#) cos ® = mg cos & cos '

mgcos (—©)

R SIRL | [

Figure 2.9 : Orientation of gravity vector with respect to the body axis [24].

In general, the Euler angles (o, ¢ and w) are not simply the integrals of the angular
velocity p, g, and r (see Equation 2.28). It is necessary to relate these and their
derivatives to the angular velocities p, g, and r. This depends upon whether the
gravitational vertical seen from the AUV is fixed or whether it rotates relative to

inertial space [2].
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The manner in which the angular orientation and velocity of the body axis system
with respect to the gravity vector is expressed by depending upon the angular

velocity of the body axes about the vector mg.

The external forces acting on the AUV can be expressed as:

X=F+g9,
Y=F +g9, (2.30)
Z=F, +g,

where g,,d,, and g, are the gravitational terms, and F,, F,, and F, represent the

hydrodynamic and thrust forces respectively. Hence, from the Equations (2.13) and

(2.15), the force equations become:

F =ma,_ =m(u+qw-rv+gsind)
F,=ma,_ =m(V+ru— pw-gcosdsind) (2.31)
F, =ma, =m(W+ pv—qu—gcosécosd)

In Figure 2.10, the Simulink model of gravitational force calculation is shown.

] Watrix
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useGravity )‘{

massll ™

Figure 2.10 : Gravitational force calculation.

The gravitational acceleration forces and moments are represented by the weight
minus buoyancy (W—B) and weight moment terms respectively [24].

2.3.4 Hydrostatic forces and moments
When an AUV is submerged in a fluid under the effect of gravity, two forces act on
the vehicle: the gravitational force, which is metioned in the previous sub-section and

the buoyancy, which is called “hydrostatic effect”.
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The buoyancy force acting on the center of buoyancy (CB) is represented in the
body-fixed frame (See Figure 2.11). It can be recognized that the difference between
gravity and buoyancy (W—B) only affects the linear force acting on the vehicle. It is
also clear that the restoring linear force is constant in the Earth-fixed frame [22]. On
the other hand, the two vectors of the first moment of inertia W and B affect the
momentum acting on the vehicle and are constant in the body-fixed frame. A solid
body submerged in a fluid will have upward buoyant force acting on it equivalent to
the weight of displaced fluid, enabling it to float or at least appear to become lighter.
If the buoyancy exceeds the weight, then the object floats; if the weight exceeds the
buoyancy, the object sinks. If the buoyancy equals the weight, the body has neutral
buoyancy and may remain at its level. Discovery of the principle of buoyancy, which

is a result of the hydrostatic pressure in the fluid, is attributed to Archimedes [60].

Figure 2.11 : Hydrostatic forces and moments [24].

After applying hydrostatic force coefficients to Equation 2.31, translational force

equations become:

F,=ma,  =m(u-+qgw-rv)+W —B)sind
F,=ma, =m(+ru-—pw)—(W —B)cosdsin® (2.32)
F, =ma, =m(W+ pv—qu)—(W —B)cosdcosd '

Similarly, after applying the hydrostatic moment coefficients to Equation 2.26, the

moment equations become:
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M, =1, p+(z,W - z,B)cosbsing
M, =1,4G-(1,-1,)rp+@,W - z,B)sind

2.33
M, =1,¢-(1,-1,)pq (2.33)

In Figure 2.12, hyrostatic forces and moments are implemented in Simulink.
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¥
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Figure 2.12 : Hydrostatic force and moment calculation.

2.3.5 Added mass and inertia

When a rigid body is moving in a fluid, the additional inertia of the fluid surrounding
the body, which is accelerated by the movement of the body, has to be considered.
This effect can be neglected in industrial robotics since the density of the air is much
lighter than the density of a moving mechanical system. However, in underwater
applications the density of the water, p ~ 1000 kg/m°, is comparable with the density
of the vehicles. In particular, at zero degrees, the density of the fresh water is
1002.68 kg/m?; for sea water with 3.5% of salinity it is p = 1028.48 kg/m°. Since the
fluid surrounding the body is accelerated with the body itself, a force is then
necessary to achieve this acceleration (the fluid exerts a reaction force which is equal
in magnitude and opposite in direction). This reaction force is the added mass

contribution [2].

The added mass is not a quantity of fluid to add to the system such that it has an
increased mass. Different properties hold with respect to the six by six inertia matrix
of a rigid body due to the fact that the added mass is a function of the body’s surface
geometry. As an example, the inertia matrix is not necessarily positive definite. The

added mass has also an added Coriolis and Centripetal contribution [8].
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As for the rigid body dynamics, it is desirable to separate the added mass forces and
moments in terms of which belong to an added inertia matrix and a matrix of
hydrodynamic Coriolis and Centripetal terms. Added (virtual) mass should be
understood as pressure-induced forces and moments due to a forced harmonic motion
of the body, which are proportional to the acceleration of the body [8]. Consequently,
the added mass forces and acceleration will be 180° out of phase to the forced

harmonic motion. However, this isnot true when AUV is close to the free surface.

In this study, “Added Mass and Inertia” effects of water is not taken into

consideration.

2.3.6 Hydrodynamic forces and moments

In this section, the main hydrodynamic effects acting on an AUV moving in a fluid
(seawater) will be briefly discussed. Standard EOM contain only stability derivatives
for the specific AUV configuration of interest. Hence, trajectory simulation or
prediction using traditional methods requires a priori knowledge of the
hydrodynamic characteristics of the vehicle in the flow regimes, which may occur

during the maneuver [24].

All hydrodynamic parameters are defined uniquely for a given AUV shape by
formulae based on the results of theory and experiment. There are primarily three
methods of determining the hydrodynamic coefficients in the design process of
underwater vehicles: (1) towing tank tests, (2) numerical computations, and (3) field
tests. Among these methods, the most reliable results are obtained from the field
tests, where the whole designed model is tested in a real sea environment [29].
Towing tank tests are performed with a scaled model and the hydrodynamic forces
and moments can accurately be determined. However, experimental testing of
designs is a time consuming and costly process (construction of the models,
instrumentations, test infrastructure, etc.). Numerical Computations are mainly based
on semi-empirical or CFD methods. Semi-empirical or potential theory-based
methods are generally utilized in the preliminary design process, where it is
important to determine the hydrodynamic characteristics in a short period of time.
CFD methods give accurate results and are used in the detailed design process [26].
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The theory of fluid dynamics is rather complex and it is difficult to develop a reliable
and robust model for most of the hydrodynamic effects. A rigorous analysis for
incompressible fluids would need to resort to the Navier-Stokes equations, which are
the basic governing equations for a viscous, heat-conducting fluid [20]. These
equations describe how the velocity, pressure, temperature and density of a moving
fluid are related. The hydrodynamic prediction method is coupled with a 6-DOF
EOM solver to predict vehicle trajectories. The predicted motion characteristics of
the AUV are also sensitive to details of the predicted hydrodynamic characteristics of
the vehicle. Small perturbations in the flow field, which cause small; variations in the
vehicle forces and moments, accumulate over the length of the hull, and can produce

large perturbation; in the calculated trajectory.

In this thesis in order to determine hydrodynamic forces and moments, we used
SUBFLO_2, which is an engineering physically based and commercially available
software tool. SUBFLO_2 has four major components which are hull separation
vortex method, fin horseshoe vortex method, propeller/propulsion models, and 6-
DOF equations of motion solver. The hydrodynamic prediction method is coupled
with a 6-DOF EOM solver to predict vehicle trajectories. The predicted motion
characteristics of the AUV are also sensitive to details of the predicted hydrodynamic
characteristics of the vehicle. Small perturbations in the flow field, which cause
small; variations in the vehicle forces and moments, accumulate over the length of

the hull, and these can produce large perturbation; in the calculated trajectory [62].

In order to determine hydrodynamic coefficients with utilizing SUBFLO_2 software
tool, first we find three static hydrodynamic force coefficients of CFx, CFy, and CFz,

and three static hydrodynamic moment coefficients of cmsF,,cMsF,,cmsk, for the

predefined AUV geometry. These coefficients are calculated due to the parameters

of 9,,6,,a, BV, which are elevator deflection, rudder deflection, angle of attack,

side slip angle, and velocity vector with respect to water, respectively. In Figure

2.13, the Simulink hydrodynamic model is shown.
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2.3.7 Propeller effect

Figure 2.13 : Hydrodynamic force and moment calculation.

The propeller produces the main thrust. Consequently, the reaction of the body to

the load torque of the propeller produces a moment with respect to its rotational axis.

The vehicle is a nonlinear system: all equations of motion of the system include

coupled terms [29]. The main terms of this type are in the longitudinal (X) force and

roll moment (K) equations because the thrust forces and moments act in the direction

of the x-axis. A propeller with a rudder can produce a thrust vector within a range of

directions and magnitudes in the horizontal plane for low speed maneuvering and

dynamic positioning. In Figure 2.14, AUV propeller effect is shown.

|xtr:-;-

Figure 2.14 : AUV propeller effect [24].

In Figure 2.15, Simulink model of thrust calculation is shown. In this model, we used

as a simple fixed-trust model due to the AUV velocity.
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Figure 2.15 : Thrust calculation.
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2.4 Mathematical Model of AUV

Detailed explanations on the theory behind the main concepts that directly influenced
the design of the dynamic mathematical model of AUV are given in the previous
sub-section. Now we arrive at the combined overall non-linear EOM for the AUV in
6-DOF [26] as follows:

Surge or translational motion along the x-axis:
X = X,u+m[—U—2z5G+ ysr]+ X, ulu|+ (X, —m)wqg +
(qu +mxg)q2 + (X, +m)vr+(Xrr +mxg)r2 —mz, pr —

(W —B)sin@+ X (2:34)

prop

Sway or translational motion along the y-axis:
Y =YV4+Y,.r+m[—v+z,p—x,¢ |+ Y, uv+ (Y, +m)wp +
(Y, —m)ur —(ng )qr + (qu —mx ) PA + Y, V|V + Y, r|r|l+

2.35
(W —B)cos@sing +Y,,; u>s, ( )

us,

Heave or translational motion along the z-axis:
Z =Z,W+Z,q+m[—W+X,q—yyp |+(Z, +m)ug+(Z,, —m)vp+
(ng ) p? + Zuwuw+(ng )q2 + (er —mx, ) rp+Z,,w|w/+Z,qlg|+

(W —B)cos@cosgp+Z,,; us,

e

(2.36)

Roll or rotation about the x-axis:

K=mz,a—my,r—(1,—K,)p+(my,)w—(1,—1,)ar -
(ng)Wp+(ng)ur—(ng —sz)cosesinz//— 237
(ng—be)Cosecosw+ K., P|p|+K :

prop

Pitch or rotation about the y-axis:

M =-—mz,u+(mx, + M )w— (1, —M,)q+
(M, +1, =1, )rp-+(mzy)vr —(mz,)wg +(Mug—mx, )uq +

M, uw -+ (M, +mx, )vp+ M, ql|g|+ M, w|w|— (2.38)
(z,W —2,B)sin @ — (x,W — x,B)cos@cosy + M, u>s,

e

Yaw or rotation about the z-axis:
N =my,u+ (N, —mx, )v+(N, —1,,)r+(Npg+1, —1,)pg+
(N, —mx, )wp + (N, —mx, Jur + N, uv+ N_r|r[+ N,v|v|+

(2.39)
(XW —x,B)cos@siny +(y,W —y,B)sin @+ N, u>s,
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where; X, Y, Z, K, M, and N represent the resultant forces and moments with respect

to the body-fixed coordinates.

Finally, these equations can be summarized in matrix form

~_[(m=X,) 0 0 0 mz, -my, S
\‘; 0 (m-Y,) 0 —mz, 0 (mx, %) | | Sy
W 0 0 (m-2,) my, —(mx, +2,) 0 57
p 0 -mz, my, (IXX - Kp) 0 0 2K (2.40)
C_.* mz, 0 —(mx, +M,,) 0 (1,-M,) 0 M
LF -my,  (mx;-N,) 0 0 0 (1,-N,) (2N
Table 2.2 : AUV physical parameters [45].
Parameter Value SClunit  Definition
P) 1010 g/m® Fluid density
g 9.81 m/s’ Gravitational acceleration
Xn 0.6 m Distance from nose to aerodynamic force center
X -0.73 m Distance from the aerodynamic force center of the hull to
! ' Aerodynamic force center of the horizontal tail
d 0.191 m Hull cylindrical radius
| 1.33 m Overall hull length
Sw 0.7981 m? Submerged Area (zd)
A, 0.2540 m? Body base area (dI)
A 0.0287 m? Body cross area (wd*/4)
Cds 0.004 - Surface drag coefficient
Car 0.3 - Drag coefficient (A¢)
Cda 0.0166 - Total drag coefficient (for S,)
lep 0.2645 m Distance to center of pressure
thin 1010 g/m® Fluid density
hrin 0.0960 m Rudder hight
A A 0.0071 m? Vertical/horizantal rudder surface area
Caf 1.558 - Rudder drag coefficient
Cr, Cs 2.3685 - Vertical/horizantal rudder bouyancy
liin 0.8190 m Rudder moment length
W 300 N AUV weight
B 306 N Bouyant force
Xp 0 m Bouyancy center about the x-axis
Vb 0 m Bouyancy center about the y-axis
Zy 0 m Bouyancy center about the z-axis
Xq 0 m Gravity center about the x-axis
Yq -0.008 m Gravity center about the y-axis
Z, 0.0196 m Gravity center about the z-axis
Ly 0.177 kg m? Moment of inertia about the x-axis
Iy 3.45 kg m? Moment of inertia about the y-axis
1, 3.45 kg m? Moment of inertia about the z-axis
R 5.87E-2 m Diameter of propeller
Ug 1.5 m/s Design velocity
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Table 2.3 : AUV hydrodynamic force coefficients [45].

Parameter Value SCI unit Definition
X -6.68 kg/m Axial drag
X, -0.513 kg Added mass
You -196.26 kg/m Cross flow drag
Yo 8.30 kg m/rad? Cross flow drag
Y, -38.39 kg/m Body and rudder bouyancy
Y, -42.13 kg Added mass
Y, -5.16 kg m/rad Added mass
Yy 13.41 kg/rad Added mass + Rudder bouyancy
YM' 16.99 kg/m/rad Bouyant force of rudder
L, -196.26 kg/m Cross flow drag
qu -8.30 kg m/rad? Cross flow drag
Z -38.39 kg/m Body and rudder bouyancy
Z, -42.13 kg Added mass
Z, 5.16 kg m/rad Added mass
Zuq -13.41 kg/rad Added mass + Rudder bouyancy
Ly, -16.99 kg/m/rad Rudder bouyancy
Table 2.4 : AUV hydrodynamic moment coefficients [45].
Parametre Deger Birim Tanim
Ko -5.03 kg m?/rad? Roll drag
K, -0.095 kg m*/rad? Added mass moment
([ 7.95 kg Cross flow drag
Myq -24.13 kg m*/rad? Cross flow drag
M,, 2189 kg Q%drggntrimss + Rudder bouyancy + Munk
M, 5.16 kg m Added Mass Inetia
M, -7.57 kg m?/rad Added Mass Inetia
l\/luq -16.56 kg m/rad Added mass + Rudder bouyancy
Muugs -13.92 kg/rad Rudder Bouyancy Moment
Ny -7.95 kg Cross flow drag
Nrm -24.13 kg m?*/rad Cross flow drag
N, -21.89 k Qc(i)ciﬁgntrrass + Rudder bouyancy + Munk
N, -5.16 kgm Added Mass Inertia
N, -7.57 kg m?/rad Added Mass Inertia
Nyss, -13.92 kg rad Rudder Bouyancy Moment
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2.5 Numerical Integration of The AUV EOM

The nonlinear differential equations defining the AUV accelerations and the
kinematic equations give us the vehicle accelerations in two different reference
frames. Given the complex and non-linear nature of these equations, we will use
numerical integration to solve for the vehicle speed, position, and attitude in time
frame [42]. Consider that at each time step, we can express nonlinear differential

equation as follows:

X, = (%u,) (2.41)
where x is the AUV state vector:
x=[uvaqrxyz¢6?z,//]T (2.42)
and u,, is the input vector:
Uy =[ 8, 6 Kooy Koo | (2.43)

There are two common numerical iteration methods to solve the non-linear

differential equation: one is Euler’s method and the other is Runge-Kutta method.

2.5.1 Euler's method first order
We will first consider Euler's method, a simple numerical approximation that

consists of applying the iterative formula:

Xy =X, + T (X,,u,).At (2.44)

where, At is the modeling time step.

Although the least computationally intensive method, Euler's method is unacceptable

as it can lead to divergent solutions for large time steps [42].

2.5.2 Runge-Kutta method

In this subsection, we will introduce one of the most powerful predictor-corrector
algorithms —one which is so accurate, that most computer packages designed to find
numerical solutions for differential equations will use it by default—the Runge-Kutta
fourth order method. The Runge-Kutta method further improves the accuracy of the
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approximation by averaging the slope at four points [42]. We used this method to
solve the nonlinear dynamic model of the AUV. In this method, numerical

approximations that consist of applying the iterative formula:

E At } (2.45)
( 2

where the interpolated input vector is:

1
U 1 =5 (U +u,y) (2.46)

n+

The combination of these two Equations (2.45 — 2.46) yields to:

X . =X +%(k1+2k2 +2k; +k,) (2.47)
which is simply the x-value of the current point plus a weighted average of four
different x-jump estimates for the interval, with the estimates based on the slope at
the midpoint being weighted twice as heavily as those using the slope at the end-
points [42]. For estimations of rigid-body dynamic models, the second order Runge-
Kutta algorithm is usually adequate and hence recommended during the initial
iterations of the iterative estimation algorithms, switching over the forth-order
Runge-Kutta only during the final iteration [31].

2.6 AUV Control

Sliding-mode control (SMC) is one of the robust and nonlinear control methods. In
control theory, SMC is a nonlinear control method that alters the dynamics of a
nonlinear system by application of a discontinuous control signal that forces the

system to slide along a cross-section of the system's normal behavior. The state-
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feedback control law is not a continuous function of time. Instead, it can switch from
one continuous structure to another based on the current position in the state space.
Hence, SMC is a variable structure control method [62]. Consider the problem of

doing set point control for a system of the form
xM™ = f(x) + b(x)u (2.48)

Where x, u € R. Further, we seek a solution that is robust to uncertainties in f(x) and
b( x).

Note that the system can be re-written in vector form. It is then equivalent to

1] Xy | | X
= {, with x =

Xy X, » . o (2.49)
x ) \f(x)+b(x)u | | x

The system is a diagonal nonlinear system.
Define x, (setpoint) and % (the error signal) the difference between x and x,.

We take a 2-step approach to designing the controller:

1. Define the sliding mode. This is a surface that is invariant of the controlled
dynamics, where the controlled dynamics are exponentially stable, and where
the system tracks the desired set-point

2. Define the control that drives the state to the sliding mode in finite time

Define the sliding mode S(t) as follows:
S(t) = {x|s(x,t) = 0} (2.50)

where s(x, t) is defined by
n-1

s(x, t) = (% + ,1) #(),1>0 (2.51)

Note that on the surface S(t), the error dynamics are governed by the equation
n-1

(% + /1) x(t)>0 (2.52)

31



On this surface, the error will converge to zero exponentially. This implies that if
there exists a control input u such that x(t)is in S(t) it follows that x(T)is in
S(T) for all T,t and the error will converge exponentially to zero for this control
input. Namely, the objective of SMC is to force both error and derivative of error to
the equilibrium point. Then the selected sliding surface s(t), tends to zero in a finite

time and the system states should remain on the surface.

In this thesis, the parameters of the controller are tuned because of avoiding

complicated calculations which may cause large chattering.

The control input of course is

u=1y— 4y —Ar — 4¢) (2.53)

The SMC law for course control of AUV is

—5r
S [ 2.54
T lulsign(u) (2.54)

The control strategy used for physically based model of AUV is depicted in Figure
2.16, which is the Simulink model of sliding mode control of yaw ().
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Figure 2.16 : Simulink model of sliding mode control
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2.7 Dynamic Simulink Model of AUV

The data achieved from the modeling and identification process of the AUV was
implemented into a vehicle which was used in a MATLAB Simulink environment.
This makes it possible to simulate the behaviour of the AUV or programs without the

need of a real sea environment.

The detailed AUV Simulink models are depicted in Figure 2.17. In this model,
hydrodynamic, hydrostatic, gravitational, and kinematic EOM of AUV and sliding

mode control are implemented in the MATLAB version 7.5 Simulink environment.

W_he_Fe [mis] »_he_Fe
r_he_Fe [m {2 e, 28 [
F_FbM _he_Fe [m] e ve Ze [m]
{-psithetaphi]
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psi_theta_phi # nsi |, theta, phifrad]
DCM_be |—I' DCw_be
W_he_Fhb [mis] - _he_Fh [mis]
W M_Fh [N omega_be_Fh [radfs] » omega_be_Fhb [radis]
[par]
vdot_be_Fhb - de [deg]
M_Fh [N*rm]
BDOF Euler Angles o | dr [deg]
Constt
i} - da [deq]
Const? - -
o Hydrostatic and Hydrodynamic

Figure 2.17 : Full AUV Simulink model and sliding mode control.
2.8 Simulation Results

The simulation of the dynamic model is developed by using the MATLAB version
7.5 Simulink environment. Numerical simulations are made to show the dynamic
model of the AUV.

In Figure 2.20 and 2.21, the AUV dynamic model simulation results are shown. For
this simulation, the AUV has a maneuver speed of 8 m/s and rudder angle applies to
10 deg. From the start, elevator angle applies to 1 deg, and the simulation time is 50

SecC.
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3. DEVELOPMENT OF INS MODEL

3.1 Purpose

The aim of this chapter is to explain how to develop an INS, which is the main
navigational component applied to nonlineer dynamic model of AUV. The key
element of the AUV navigational system is INS, which is accomplished by
integrating the output of a set of sensors (including gyros and accelerometers) to

compute position, velocity, and attitude.

Typically, INS is a self-contained system with high short-term stability and is not
influenced by interference. INS is a stand-alone navigational system using motion
sensors to continuously keep track of position, orientation and velocity of a vehicle
[48]. An INS contains an Inertial Measurement Unit (IMU), including an
accelerometer and a gyroscope for all three axes, measuring the linear acceleration
and angular velocity of a vehicle with a 6-DOF. By processing signals from these
sensors, it is possible to track the position and orientation of a device. The INS
system is usually mounted in a gimbaled or strap-down, using updating algorithms
based on Euler angles, kinematics and integration to keep track of position and
orientation. Without requiring any external references, an INS determines vehicle’s
position, orientation, or velocity once it has been initialized. The major drawback of
inertial navigational is that initialization and sensor errors cause the computed
quantities to drift [51]. Therefore, INS does not indicate position perfectly because of
errors in components (the gyroscopes and accelerometers) and therefore produces
errors in the model of the gravity field that the INS implements.

Today, INS is commonly used in a wide range of vehicles such as: airplanes, ships,
cars, submarines, UAVs, UUVs, and guided missles and bombs.  Recent

technological advances in the construction of Micro-Electro-Mechanical System
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(MEMS) devices have made it possible to manufacture small, low cost, and light
weight INSs [48].

3.2 Inertial Measurement Unit

The INS is based on measurements of vehicle specific forces and rotation rates
obtained from on-board instrumentation consisting of triads of gyros and
accelerometers that create an IMU. These inertial sensors have for decades served as
essential navigational tools especially in the aerospace industry. In Figure 3.1, an
example of MEMS IMU sensor is shown. Recent advancements in MEMS
technology enabled production of low-cost inertial sensors. Therefore, the
application area of these sensors quickly expanded particularly in the automotive,
robotics, AUV, and UAV industries.

Figure 3.1 : Xsens MEMS IMU system [53].

Inertial sensors are non-jammable, non-radiating, and self-consistent, so they cannot
be disturbed by any external factors and do not affect anything else around
themselves. However, even in the highest quality MEMS inertial sensors which are
used in AUVs, there are still errors corrupting useful data. Whether the inertial
sensor error is caused by internal mechanical imperfections, electronics errors, or
other sources, the effect is to cause errors in the indicated outputs of these devices.
For the gyros, the major errors are in measuring angular rates. For the
accelerometers, the major errors are in measuring acceleration [45]. For both

instruments, the largest errors are usually a bias instability (measured in deg/hr for
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gyro bias drift or micro g (u«g) for the accelerometer bias), and scale-factor stability
(which is usually measured in parts per million (ppm) of the sensed inertial quantity)
[52]. The smaller the inertial sensor errors we have, the better the quality of the
instruments, the improved accuracy of the resulting navigation solution, and the

higher the cost of the system.

3.2.1 Rate gyros
Rate gyros are sensors that measure angular velocities in contrast to attitude angles

measured by free gyros, which are typically mounted in gimbaled platforms. Rate

gyros sense the vehicle’s angular rate relative to the inertial space [53]. These rate
components are the craft angular rate relative to the Earth @,,, a angular rate as it
moves about the spherical Earth o, and the angular rate of the Earth itself «,. The

vector sum of these angular rates «, is given by:

o b b
Wy, = O T Oy + Oy (3.2)

sensor

laser output

© 2004 Encyclopzedia Britannica, Inc.

(a) (b)
Figure 3.2 : a) Ring laser gyro. b) Fibre optic gyro [56].

There are three types of gyro technology used in today’s IMU systems:

e Ring Laser Gyro (RLG).
e Fibre Optic Gyro (FOG).
e MEMS.
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The RLG has recently seen increased usage in strap-down navigational system
mechanizations. Most current RLG sensors are single DOF sensors requiring three
mechanizations for an INS implementation. A single DOF RLG is shown
schematically in Figure 3.2 : (a). This figure illustrates a triangular version on the
RLG. The gyro includes a laser as a source, a closed-path cavity, mirrors at each
intermediate corner in the path, and an interferometer / photodetector. The operation
of the gyro is based on optical and electronic phenomena rather than the mechanical

phenomena.

On the other hand, the FOG is a maturing gyro technology. FOGs in comparison to
RLGs require no mechanical dither for their operation and thus eliminate a
troublesome noise source. They do not require high voltage for the laser plasma,
hence reduce power consumption; and, with the exception of a laser diode for the
light source are composed of passive optical components and thus yield extremely
high reliability compared to any other available technology [55]. A typical FOG is
shown in Figure 3.2 : (b).

As a “rule-of-thumb,” an INS equipped with gyros whose bias stability is 0.01 deg/hr
will see its navigational error grow at a rate of 1 nmi/hr of operation [48]. Solid-state
inertial sensors, such as MEMS devices, have potentially significant cost, size, and
weight advantages. The MEMS and Interferometric FOG (IFOG) technologies are
expected to replace many of the current systems using RLGs and mechanical
instruments. However, one particular area where the RLG is expected to retain its
superiority over the IFOG is in applications requiring extremely high scale-factor
stability [48]. The change to all-MEMS technology hinges primarily on MEMS gyro
development. The performance of MEMS sensors is continually improving, and they
are currently being developed for many applications. This low cost device can only
be attained by leveraging off the consumer industry, which will provide the
infrastructure for supplying the MEMS sensors in extremely large quantities. The
use of these techniques will result in low-cost, high-reliability, small-size, and light-

weight inertial sensors into the systems which they will be integrated.
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3.2.2 Accelerometers

Accelerometers in comparison to gyros have more mature technology. An
accelerometer is a device that converts acceleration into an electrical signal. Both
dynamic and static acceleration can be measured using an accelerometer where
dynamic acceleration is the acceleration due to any force except for the gravitational
force applied on a rigid body and the static acceleration (or gravitational
acceleration) is due to the gravitational force. The output of an accelerometer can be
analog or digital. In the analog case, the output voltage or the duty cycle of a square
wave is directly proportional to the acceleration. On the one hand, the output of a
digital accelerometer can be directly accessed using protocols such as serial
interfaces [3]. The principle of accelerometer is illustrated simply in Figure 3.3.

a
Direction of Acceleration
w.r.t. Inertial Space

Pickup

Displacement ‘

Proof
Mass (m)

Spring

Case

Figure 3.3 : Principle of accelerometer [52].

The accelerometer is a specific force sensor that senses both AUV inertial

accelerationa,, and the gravitational field vector g, which is the force of mass

attraction to the Earth. Therefore the accelerometer sensed AUV specific force a, is

given by

=&~ 0n (32)
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3.3 INS Framework and Design

The INS employs a dead-reckoning algorithm that computes attitude, velocity and
position based on the inertial sensors. The idea behind the INS is simply to integrate
accelerometer signal to determine velocity, and position in a desired coordinate
system and to integrate gyro signals to determine attitude information [53]. However,
The INS has poor accuracy in the long term, which arises from the unbounded
growth in the position and velocity errors due to the integration of inertial

measurements containing various forms of errors.
INS typically has the properties of

e initialization is needed.

¢ high position and velocity accuracy over the short term.
e accuracy decreasing with time.

o affected by gravity.

e high measurement output rate.

e not affected by electromagnetic interference.

e autonomous.

The position and velocity of the vehicle is predictable for all times. It is when
changes in motion occur that the concept of forces comes into play. Two types of
forces determine the motion of a vehicle: gravity and inertia. Gravitational mass has
been described as being like a charge the object feels in proportion to its gravitational
mass, whereas inertial mass describes the resistance of a vehicle to changing the state
of motion. There are a number of inertial forces. The most commonly encountered
are thrust, lift, and drag [10].

The major drawbacks of inertial navigational are initialization and sensor errors,
which cause the computed quantities to drift. INS donot indicate position perfectly
because of errors in components (the gyroscopes and accelerometers) and errors in
the model of the gravity field that the INS implements. Those errors cause the error
in indicated position to grow with time [45]. For vehicles with short mission times,

such errors might be acceptable. For longer missions, it is usually necessary to
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provide periodic updates to the navigational system such that the errors caused by the

inertial system are reset as close to zero as possible [10].

For an INS, the navigational equation of a vehicle based on the Earth-center-Earth
fixed reference coordinates can be obtained with the differential equations from the
instrument coordinates, considering the frame rotation and acceleration, coordinate
transformation, and sensor error dynamics. In the navigational frame mechanism,
the ground speed is expressed in the navigational coordinates to give Vx, Vy, and Vz
velocities. The rate of change of velocities with respect to navigational axes can be
expressed in terms of its rate of change in inertial axes. The rate of change in x, y
and z can be expressed in terms of the Earth radius and the speed of the vehicle in the

navigational coordinate [36].

The diagram in Figure 3.4 briefly depicts the computational flow of the inertial
navigation equations that we used in this study. The main input data to this diagram
are the three gyros (") and accelerometer (a”) measurements in 6-DOF of the body
frame. The Earth spin rate (%) is assumed as a constant input to the system. The
gravity vector (g") is aslo shown as an input, which would be constant if it does not
vary significantly. Otherwise it will be computed as a function of height (h) and the
Earth’s latitude (®). Finally, the data flow in this diagram merely shows the variable
interdependence but not necessarily the actual computation in the navigational

computer.

Compute

Figure 3.4 : INS framework [3].
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As depicted in Figure 3.4 : above, the essential functions of an INS may be defined

as follows [3]:

e Determination of the angular motion of a vehicle using gyroscopes, from
which its attitude is relative to a reference frame may be derived.

e Measure specific forces using accelerometers.

e Resolve the specific force measurements into the reference frame using the
knowledge of attitude derived from the information provided by the
gyroscopes.

e Evaluate the force resulting from the gravitational field — the gravitational
attraction of the Earth in the case of systems operating in the vicinity of the
Earth.

e Integrate the resolved specific force measurements to obtain estimates of the

velocity and position of the vehicle.

The INS framework in Figure 3.4 :5 below is implemented in MATLAB version 7.5
Simulink environment. This INS module is used as a main navigational tool applied

to AUV dynamic model.
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Figure 3.5 : INS Simulink model.
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4. DEVELOPMENT OF THE INTEGRATED AUV NAVIGATIONAL
SYSTEM

4.1 Objectives

The goal of this chapter is to explain how to develop an Integrated AUV
Navigational System. AUVs require a precise navigation system for localization,
positioning, path tracking, guidance, and control. In the following paragraphs, we
will try to explain how to achieve a more accurate and reliable navigational system

for AUVs by combining multi-sensor data based on the Kalman filtering technique.

For decades, GPS and INS are the standard navigational systems, which are widely
used in surveying or service and maintenance applications that requires the most
accurate navigational information [6]. However, underwater navigation requires
different kinds of sensors than commonly used airborne or land vehicle navigational

applications due to the limited usage of GPS signals in the water [39].

Primarily, the challenge in INS is maintaining the accuracy of an AUV’s position
over the course of a long mission time. An initially accurate position can quickly
become uncertain through maneuvers and variations in the AUV’s motion. AS
mentioned earlier, the key problem of INS is that it exhibits position errors that grow
unbounded with time, which are caused by the accumulation of gyro and
accelerometer errors over time, as well as oscillatory velocity errors [3]. During the
long duty cycle, these inaccuracies become significant. Strong sea currents and other
underwater phenomena affect the motion of the AUV. This therefore cannot be

precisely modeled because data will be skewed by greater inaccuracies.

Any AUV navigational system that requires accurate navigation over long duty cycle
must use an external sensor reference. Mainly for this reason, in long-term AUV
navigational applications, the INS is often used in conjunction with various
navigational aids: such as acoustic devices, compass, pressure depth sensor, DVL,
terrain-based techniques, and surface GPS [7]. Additionally, the improvements in

computer technology and increased data processing rates brought the ability to
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improve the navigational systems of both air and underwater vehicles in precision,

robustness, correctness, and reliability.

4.2 Integrated AUV Navigational System Framework

We developed an Integrated AUV navigational system solution, which is illustrated
in Figure 4.1. In the left hand side of this framework, the IMU inputs with its gyros
and accelerometers exist. The navigational equations read these three gyros and three
accelerometers with a 100 Hz or more data rate. Based on these measurements; the
navigational equations resident in the INS calculate the change in position, velocity
and attitude. Due to noise and errors in the readings, errors in the calculation
increase with time if it is not corrected for. To the right, we see the KF. It estimates
the attitude, velocity, position, and sensor errors. It also calculates the accuracy of
each estimate. The input to the KF is the difference between the values calculated by
the navigational equations and the external aiding devices” measurements such as the
compass, DVL, and pressure sensor.

« o A )

NAVIGATION KALMAN
ACCELERO EQUATIONS FILTER
METERS (INTEGRATION)

Figure 4.1 : Integrated AUV navigational system solution.
4.3 Navigational Aiding Devices

The navigational system of UVs plays a crucial role together with the sensor
architecture in the degree of system autonomy that can be achieved. A typical
navigational sensor outfit for an AUV may consist of standard components such as a
compass, pressure depth sensor, and some class of INS [45]. In the following
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subsections, we briefly explain the aiding devices of DVL, compass, and pressure
depth sensor that we used in this study.

4.3.1 Doppler velocity logger

One of the most important devices that has been developed to aid the INS is the
Doppler Velocity Log (DVL). The DVL is a sonar used to measure both speed and
height above the sea bottom, and relies on the Doppler effect. The DVL measures
ground velocity in the vehicle frame and since the heading is known from the INS;
the incremental change of position in the geographic frame can be calculated. In
practice the longer-term position error will eventually grow to an unacceptable level
and this is a general drawback of pure dead reckoning techniques. It should be noted
however, that sea currents do not influence DVL/INS integrated navigation since the

DVL can measure the true ground speed [45]. This is the main advantage of DVL.

Figure 4.2 : Doppler velocity log [12].

Since the DVL works properly the distance to the bottom must be limited, which
varies from a maximum of 30 m to 200 m of depth, depending on the frequency of
sound emmited by the DVL. However, the DVL can only generate accurate velocity
measurements as long as the distance to the seafloor is within a certain boundary
depth.

4.3.2 Pressure depth sensor

Depth sensor, which measures the water pressure from sea surface, gives the
vehicle’s depth. At depths beyond a few hundred meters, the equation of the state of
seawater must be invoked to produce an accurate depth estimate based on the
ambient pressure. With a high-quality sensor, these estimates are reliable and

accurate, giving a small error of order 0.01%.

45



A pressure sensor is determined by calculating the static pressure head (also called
elevation head) [21]:

h =p/pg @.1)
where
h = depth below the still water surface
p = pressure
p = density

g = gravitational acceleration

4.3.3 Compass

A compass measures the heading or direction of the vehicle it sits on. Tpically, there
are two types of compass: gyrocompass and magnetic. A gyrocompass can provide
an estimate of geodetic north accurate to a fraction of a degree. Magnetic compasses
can provide estimates of magnetic north with an accuracy of less than 1" if carefully
calibrated to compensate for magnetic disturbances from the vehicle itself. Tables or

models can be used to convert from magnetic north to geodetic north.

4.4 Error Models of INS and Its Aiding Devices

In the following subsections, we explain the error models used for the INS and its
aiding devices in this study.

4.4.1 INS error model

Error analysis of INS not only affects the accuracy of various types of data which is
provided by the INS, but also the basis of theory and practice of various sections.
The error source of INS sensors are commonly measurement errors, acceleration-
dependent biases, scale factor errors, nonlinearity, axis misalignment, and gyro
sensitivity to the force applied. The errors of inertial sensors and gyros of an INS can
generally be modeled as a combination of random bias and random noise [37].

The INS error model simulates IMU measurement data. The simulation is based on
parameterisation of the general IMU errors. The error model includes noise, bias,

scaling, (cross) coupling and quantisation of both the gyro and the accelerometer.

The perturbation method is used to derive the error equation of the INS algorithm.

The perturbation method analyzes the navigational system by defining the error as
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the difference between the estimated and true values. For a nonlinear system, this

method can be applied when the error is small. In this study, the error model of INS

is derived consisting of nine parameters, which includes three potion error (x, y and

z), three linear velocities (Vy ,Vy, and V;) and w, yy, and y, are the attitude errors of

the vehicle with respect to the navigation coordinates along the x, y, and z direction,

respectively. Assuming the errors exist in the position, velocity, and attitude error,

the perturbation method induces the corresponding differential equations:

AXns = AVX+[\|2‘ tanqojAy + \é‘ AX

AYins= AV, _[\F/\’X tan¢ij + \|:/\>X AX

— Vy vx
AZINS_ sz — Ftan@ AX + R AX

AV, = -%Ax+(2w‘e sing + \éx tan(p]AVy +(2a)le cos @ + \r:: jAVZ +a,y, —ay,+V,

. . vV, V,
AV, = —%Ay—(Z(u‘e sing+ RX tangijVx+?yAVZ+ a,y,—ay,+V,

--9 vV, Vs
= ZEAZ —?Avy —| 2w, COS @ + R AV, +a .y, —a,wp, +V,

Zins

. . vV, V,
Ve = | @SN+ tang |y, +| @, COS @ + R VT

. . vV, V,
Yy = | @eSIN@+ RX tang Wit R Ve

. — Vy Vx
Wz,NS - _?l/jy —| @ie COos @ + R L7Z8% +gz

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

The output errors of gyros ¢,,¢,,¢,and those of accelerometers v ,v ,v,of IMU

can be expressed as the first-order Markov process variables and white noise vector
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Ex = “LyproEx TW,

< o (4.11)
Ey = Loy Wy, (4.12)
£, = PapoEz Wy (4.13)
V, =-B.V, W, (4.14)
V, =BV, W, (4.15)
V, =BV, +W, (4.16)

w, (1) N(0,Q,), w, (1)) N(0,Q,) (4.17)

The bias errors of the accelerometers v ,v ,v, and gyros ,,¢,,s, are assumed to

be random constant drift, which are irregular values decided when the sensors are

turned on. Furthermore, the random measurement errors of gyros w_,w

gx? Thgy’ WQZ and

accelerometers w_,w, ,w,,, are assumed to be white noise [66]. Finally, g, and

ay’

B are correlative time constants of accelerometers and gyros respectively.

4.4.2 Error models of aiding devices

Auxiliary navigational sensors can improve the navigational performance and
accuracy by correcting the state variables in the navigational equation. The auxiliary
navigational sensors that is the pressure depth sensor, DVL, and the magnetic
compass are good complementary sensors for the INS. In this study, we modeled the
errors of the auxilary devices as the summation of random constants, white noises,
and the first order Markov process similar to the accelerometers and the gyros [36].
We assumed that the random constants of the biases are unknown but the variances

of the initial values are known.

According to the principle of DVL, it measures the velocity and log angle relative to
the seabed. The measuring error consists of the velocity offset error, log

misalignment angle error expressed by first-order Markov process, and the scale
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coefficient error, which is a random constant drift [66]. After the appropriate
coordinate transformation, DVL velocities are expressed in x, y and z on the Earth’s

fixed coordinate system. The measuring DVL velocity errors are expressed:

Vde‘,, = _ﬂxdv, VV>< +Ww,

(4.18)
Vaya = Py Voy Wy, (4.19)
Vei =BV W, (4.20)

Woy (1)1 N (0,Qpy ) (4.21)

where
B, By, P, ~—-correlative time constants of velocities,

W, W, ,W

Xav T Yot Zg

. ---stimulating Gaussian white noises.

Similarly, the error model of pressure the depth sensor and magnetic compass used in

this study are expressed as the summation of random bias and white noises. The

pressure measurement is modelled as the correct water depth with superimposed

white noise. Correspondingly, the heading measurement is modelled as the correct

direction of the vehicle with superimposed Gaussian white noise.
A, =Bias, +w,

Zq

(4.22)

A = Bias, +w
Yeom ¥com Yeom (4. 23)

Where, @, , @, --- Gaussian white noises.
d Yeom

4.5 Kalman Filter Techniques

4.5.1 Objectives

The goal of this section is to explain the Kalman Filter (KF) algorithm and how to
develop a KF for Integrated AUV Navigational System that consists of an error-state
KF that estimates the drift parameters in the inertial sensors, using the external

information as the measurement vector [21].
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KF was first improved by Rudolf Emil Kalman in 1960 to estimate the linear
dynamic of a system. The least mean-square estimation approach of random
parameters is the foundation of KF [33]. The optimality criterion of KF comes from

the criterion of minimizing the state variable error standard deviation [42].

Today, KF techniques are widely used in many real world applications, i.e.,
navigation, sensor fusion, state estimation, tracking land, air and underwater
vehicles, computer vision applications, economics, weather forecasting, earthquake
prediction, deformation monitoring in geodesy, and dynamic and kinematics

monitoring of objects.

A distinctive feature of a KF is that its mathematical formulation is described in
terms of state-space concepts. Another novel feature of a KF is that its solution is
computed recursively. In particular, each updated estimate of the state is computed
from the previous estimate and the new input data, so only the previous estimate
requires storage [1]. In addition to eliminating the need for storing the entire past
observed data, a KF is computationally more efficient than computing the estimate

directiy from the entire past observed data at each step of the filtering process.

4.5.2 Optimal linear kalman filter

The linear KF is a set of mathematical equations that provides an efficient recursive
computational solution of the least-squares estimation. The KF is very powerful in
several aspects and supports estimations of past, present, and even future states.
Additionally, the KF is an algorithm for the computation of best estimates of system
variables arising from sensor-based data and a dynamic system model. The algorithm
is a recursive algorithm that is well suited to the use of digital computers.
Essentially, the data from measurements together with a measurement model are
used in a system model to provide the least squares fit estimate of system states
based on those measurements [58].

KF is widely used in the processing of navigational problems. This filter is used for:

e Minimizing the measurement errors and obtaining more accurate

measurement values.
e Mixing various information sources.

e Obtaining non-measurable state variables of a vehicle.
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e Diagnosing of noises in a vehicle.

Let us consider the discrete linear dynamical system. The state equation statesthe
dynamics of the system, and the observation equation states the measurement

mechanism. These equations are written below for the linear system:
State equation of KF:

X(k +1) = g(k +1, K)x(k) + G(k +1, k)w(k) (4.24)

Where x(k) is the n dimensional system state vector. gk+1k) IS its nxn
dimensional transfer matrix, w(k) is the r dimensional zero-mean Gaussian noise
vector (process noise), with the correlation matrix efw(k)wT (j)IQ(k)s(ki), in which E

Is stochastic mean operator and 5(kj) is the Kroenecker delta symbol.

Lk=j

oK)= {o, K# | (4.25)

Finally, G(k +1,k) is the nxr dimensional transfer matrix of system noise.

Observation or measurement equation of KF:

(k) = H(K)x(K) +v(k) (4.26)

Where z(k) is s dimensional observation vector, H(k) is sxn dimensional
observation matrix, v(k) is s dimensional noise vector of the measurements with

zero-mean Gaussian noise, and the correlation matrix is Efw(k)vT (j)]=0, VK, j -

However, there is no correlation between process noise w(k) and measurement
noise v(k). When desired to estimate the state vector due to the z(k) observation

vector sequences, the linear filter method based on the KF approach should be used.

The optimal evaluation algorithm of the linear discrete system state vector is

expressed with the following equations:
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R(k / k) is the state estimation:

R(k 1K) = p(k, k —1)R(k —1/k —1) + K (K)[2(K) — H (K)(k, k —1)R(k —1/ k —1)]
R(k 1K) = %(k /k —1) + K (K)Z(k / k -1) (4.27)

K(k) is the KF gain:

K (k) =P(k/k)HT (k)R (k)
K(k) =P(k/k—1)HT (K)[H (K)P(k /k —1)H" (k) + R(K)]™ (4.28)

Correlation matrix P(k/k) of KF estimate error is:

P(k/k)=P(k/k—-1)—P(k/k—D)HT (K)[HK)PK/Kk-DHT +RK)]H K)P(Kk/k —1) (4.29)

Correlation matrix of extrapolation error:

P(k/k 1) = g(k,k~)P(k ~1/k~1)¢" (k. k~1)Q(k ~1)G" (k,k 1) (4.30)

2(0/0) = x(0)
P(0/0) = P(0)

Initial conditions:

The optimal filter algorithm stated in equations (4.27)-(4.30) is called the KF; the

following equivalent equations are also valid for K(k) and P(k/k);

K(K) =Pk /k)HT (K)R(K)

P(k/k) =[1 — K(K)H (k)]P(k / k —1)

P(k/k) =[P (k/k -1 +HT(K)R*(K)H (K)P(k / k —1)] ™ (4.31)
P(k/k) =P (k/k—-D[I + HT (K)R(K)H (K)P(k / k —D)]*

where | is the unity matrix.

AK) = z(k) = H(K)R(k /k 1) (4.32)

Expression (4.32) is called an innovation process A(k), and after rearranging

Equation (4.27), we obtain;

R0k /) = R(k Tk ~D) + K (QAK) (4.33)
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X(0) and P(0) are initial conditions that is known. In this algorithm, P(k/K) is the
error covariance and Q(K) is the process noise covariance. The gain matrix K(k) is
determined from the Riccati equation and the measurement noise covariance R(k) is
determined by satisfying the Lyapunov function of error. In practice, the process
noise covariance Q(k) and measurement noise covariance R(k) matrices might
change with each time step or measurement, therefore for this study we assume they

are constant [58].

Based on the formula (4.33), the estimation is the sum of the X(k/k-1)
extrapolation value and the K(k)Z(k/k —1) correction difference. The extrapolation

value is obtained by the multiplication of the value of previous steps by the system
transfer matrix. Then, the extrapolated value is give an innovation. Namely, The KF

works on the principle of innovating the estimated value.

The process of the evolution of the KF estimate in time is demonstrated in Figure 4.3
.. Typical KF cycles involve the following processes:

e Estimation of the value one step further(finding of the extrapolation value)
X(k/k-1).

Multiplication of X(k/k —1) by H(k) from the left, which is the estimation

of measurement.

Finding the difference between the measurement and the extrapolation value
(the innovation process) Z(k/k —1) =z(k)—H(k)X(k/k -1) .

Multiplication of Z(k/k—-1) from left by K(k) and summation with
X(k /k —1), thus obtaining X(k/K).

Storage of the X(k/k) estimation for the next cycle and repeating the
process.
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Initial Conditions
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Figure 4.3 : Structural KF schematics [16].

Based on this structure, key features of the KF are as follows:

The KF estimate is more linear compared to the measurement value.

For the reason of this filter being linear, the correlation matrix P(k/k) of the
estimate error is not coupled with the measurement z(k), and can be
calculated beforehand.

When the mathematical model of the dynamical system is clearly stated, the

filter algorithm can easily be performed by the help of a computer.

The filtering algorithms can easily be deployed for multidimensional states.

4.6 Integration Method Used for AUV Navigational System

One of the main purposes of this study is to integrate INS and auxiliary navigational

devices on the base of an Optimal KF. Instead of system state variable estimates, the

system’s navigational error estimates will be obtained by the KF.

The integrated AUV navigational system framework is shown in Figure 4.1 above.
The high frequency of sampling feature of the INS is used in the integrated system.
The other sensors have a longer sampling period than the INS. However, time
synchronization is made between INS and auxiliary sensors during the Kalman

filtering process.
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4.7 KF based Integrated Navigational System Applied to AUV Dynamics

The integration algorithm utilizes the KF, which provides optimal performance for
linear systems. INS error model Equations (4.2)—(4.10) for the variations of position,
velocity, attitude, and angular velocities, and the inertial sensor output errors in
Equations (4.11)(4.16) constitute the navigational system error model.
Additionally, Equations (4.18)—(4.20) and (4.22)—(4.23) are also used as the auxiliary
sensor measurement for the KF. The system error model of the AUV navigation can

be written as follows:

X(k +1) = Ax(k) +w(k) (4.38)

where, w(t)[ N(0,Q(t))zero mean Gaussian system noise vector.

We used three different approaches for integration of navigation systems because of
the limited number of observations, which are five, in contrary to higher number of

error state vector.

4.7.1 AUV integrated navigation system with INS calibration

In this approach, we assume that DVL, compass, Depth sensor, gyros and
accelometers are calibrated properly and and the errors of these sensors are
minimized to the reasonable level in the laboratory environment. The system error

state vector with required parameters [n=9] is as follows:

X=[X, Y, Z VY,V w0, | (4.39)

Where [X, Y, z] are the position errors of INS, [va v,, vZ]are the velocity errors of
INS, and [y,,4,.p,] are attitude errors for each variables in the Cartesian

coordinates. The error model of the INS can be expressed in a discrete matrix form

as follows:
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r v V. tang 1
1+-2 X 1 0 0 0 0 0
R R
-V _tang+V,
% 1 0 0 1 0 0 0 0
- _ 7Vy tan¢5+VX ~ ~
X (k +1) — R 0 1 0 0 1 0 0 0 X (k)
Y(k+1) B V. tang v Yk
Z(k+1) ?g 0o 0 1 20, sing+~—— 20, cosg+ X 0 a, a, Z(k)
V, (k+1) V. tang v Vi (k)
V,(k+1) | = 0 % 0 2w,sing- X 1 o -a, 0 a, X|Vy (k)
V,(k+1) v Ry V, (k)
v, (k+D) 0 0 2 2mc05p-% 7 1 3, 2 0 v (4.40)
w, (k +1) R R R v () .
y V. tang ¢
Ly, (k+1) ] 0 0 0 0 0 0 1 (@, sing+-=% ——) @.cosg+V, IR| [y.(K)]
Vv V
0 o 0 0 0 0 (@,sing+ X 1 rz/
v -V
0 o o 0 0 0 (@, sing +-X) - 1
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Using the INS error model and auxiliary aiding devices measurement differences as
measurements observation vector in the KF, the observation vector can be expressed

as:

Zl(k) :VZINS + VVINSZ - VVD

22 (k) = VVINSx + VVINSx o VVDVLX
Z3 (k) = VVINSy + VVINSy N VVDV'—V (4 41)
Z4 (k) = VVINSZ VVINSZ o VVDVLZ

25 (k) =V'/’le +V'/’|Ns _V'/’COmp
In Equation (4.41), V,,.c» Vv,yse Vvinsy Vvinsy Vs @re the z position, x, y and z
velocities and yaw measurement errors of the INS respectively and
Vzins' VVinsy’ vVlNSy’ Vvins, Vuns and Vzp» VVpyry vVDVLy’ Vvpyiz v¢60mp are the
zero-mean Gaussian noises of INS, the depth sensor, DVL and compass respectively.

However, this information includes the random noises of both systems.

The measurements in Equation (4.41) is rewritten in matrix form:

2] [ Zws=Z | [001000000 Yz =V,
2,(k)| |Vins, Vow, | [000100000 Vi =W,
2(k) =| 2,(k) |=| Vins, ~Vow, [=[000 010000 |x(k)+| Yy Y, ,
’ 4.4
2,K) | | Vis, ~Vou, | [000001000 — (4.42)
_ZS(k)_ _‘//INSZ _l//comp_ —O 00000001 J _V‘/’z — Ve |

H (k)

To obtain true INS error values that will be used in the simulation, the system error

model is used:

X (K +1) = gk + LK) X (k) +w(Kk) (4.43)

Solving (4.43) according to the initial values, the true error values are obtained. Here
¢ s the transfer matrix of the system error model which describes the evolution of

the system error at Equation (4.42).
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Since the system noise involves position, speed, and attitude errors, the noise transfer
matrix becomes a unity matrix and the noise correlation matrix Q(k) is defined as

[0.001 0 0 0 0 0 0 0 0
0 0.001 0 0 0 0 0 0 0
0 0 0.001 0 0 0 0 0 0
0 0 0 0.001 0 0 0 0 0
Qk)=| o0 0 0 0 0.001 0 0 0 0
0 0 0 0 0 0001 O 0 0 (4.44)
0 0 0 0 0 0 0.001 0 0
0 0 0 0 0 0 0 0.001 0
0 0 0 0 0 0 0 0 0.001 |
The initial correlation matrix P(0/0) of KF are defined as:
[100 0 0 0 0 0 0 0 0]
0 100 0 0 0 0 0 0 0
0 0 100 0 0 0 0 0 0
0 0 0 50 0 0 0 0 0
P(0/0)=| 0 0 0 0 50 O 0 0 0
0 0 0 0 0 5 0 0 o0 (4.45)
0 0 0 0 0 0 5 0 0
0 0 0 0 0 0 0 50 O
lo 0o o0 0 0 0 0 0 50

The diagonal correlation matrix R(k) are obtained by summing the standard
deviations of the INS z-position, and depth, INS and DVL velocities and INS yaw

and compass heading error, respectively.

oy oy, 0 0 0 0
0 o +0y 0 0 0
2 2
Rk) = 0 0 T, T 0, 0 0 (4 46)
0 0 0 G oy 0 '
0 0 0 0 U\Z INS: \/2 'C

4.7.2 AUV integrated navigation system with INS, gyro, and accelometer
calibration

In this approach, we assume that DVL, compass, and Depth sensor are calibrated
properly and and the errors of these sensors are minimized to the reasonable level in

the laboratory environment.

The system error state vector with required parameters [n=15] is as follows:

T
X:|:Xl Yl Zl Vxl Vy) Vzl l/lxl l//yi l//zlgxygylgzlvx1vy)vz:| (447)
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Where [X, Y, z] are the position errors of INS, [VX, v,, vZ]are the velocity errors of

INS, [,/,X,y,y,v,z] are attitude errors and [gx,gy,gz,vx,vy,VZ] are the drifts of gyros

and accelometers for each variables in the Cartesian coordinates. Using the INS
error model and auxiliary aiding devices measurement differences as measurements

observation vector in the KF, the observation vector can be expressed as:

z,(K)=V,, +V, —V,

z,(k)= VV,NSX TWiee ~ Wou

Z3(K) =V, Wiy ~Wou, (4.48)
2,(K) =V, Voo, ~ Wou,

z5(k) = V'/’ms Vs ~ V’/’comp

In Equation (4.48), V,,e» Vv s VVmsy' Vvinse Vippns @€ the z position, x, y and z
velocities and yaw measurement errors of the INS respectively and
Vzins' VVinsy’ vVlNSy’ Vvins, Vuns and Vzp» UVpyry vVDVLy’ Vvpyiz v¢60mp are the
zero-mean Gaussian noises of INS, the depth sensor, DVL and compass respectively.

However, this information includes the random noises of both systems.

The measurements in Equation (4.48) is rewritten in matrix form:

(2007 [ Zws=Z: | [001000000000000] 2
2,(k)| [Viws, Vow, | [000100000000000 Ve =W,
2(k)=| 2,(k) | =| Vins, Vow, |=|0 0002000000000 0|x(k)+| Yy,
2,K)| | Viss, ~Vou, | [000001000000000 v, —V, (4.49)
L2(0)] | Wins, ~Weonp | (000000001000000] v, v,

H (k)

To obtain true INS error values that will be used in the simulation, the system error
model is used:

X(k+1)=¢(k+Lk)X(k)+W(k) (4.50)

Solving (4.50) according to the initial values, the true error values are obtained. Here

¢ is the transfer matrix of the system error model which describes the evolution of

the system error at (4.49).
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Since the system noise involves position, speed, and attitude errors, the noise transfer

matrix becomes a unity matrix and the noise correlation matrix Q(k) is defined as

[0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.001 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.001 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.001 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.001 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.001 0 0 0 0 0 0 0 0
Qk)=| o0 0 0 0 0 0 0 0.001 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.001 0 0 0 0 0 0 (4.52)
0 0 0 0 0 0 0 0 0 0.001 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.001 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.001 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.001 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.001 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0.001
The initial correlation matrix P(0/0) of KF are defined as:
[100 O 0 0 0 0 0 0 0 0 0 0 0 0 0]
0 100 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 100 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 100 O 0 0 0 0 0 0 0 0 0 0
0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 100 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 100 O 0 0 0 0 0 0 0
P(0/0)=| 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 (453)
0 0 0 0 0 0 0 0 0 100 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 100 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 100 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 100 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 100 0
L O 0 0 0 0 0 0 0 0 0 0 0 0 0 100

The diagonal correlation matrix R(k) are obtained by summing the standard
deviations of the INS z-position, and depth, INS and DVL velocities and INS yaw

and compass heading error, respectively.

oy, +oq, 0 0 0 0
0 5VINS \i/D\/L 0 O 0
R(k) = 0 O g\fvws \f\lnu O 0
' L, (4.54)
0 0 0 O-v‘/ws o, 0
0 0 0 0 o +a}

4.7.3 AUV integrated navigation system with INS, DVL, compass, and depth
sensor calibaration

In this approach, we assume that gyro and accelometer sensors are calibrated
properly and and the errors of these sensors are minimized to the reasonable level in

the laboratory environment.
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The system error state vector with required parameters [n=14] is as follows:

.
X=[X, Y, Z,V, Vy’ Vv, v, Wy l//leDVLx’VDVLy’VDVLz'ZDeptth//CUmpz:| (4.55)

Where [X, Y, z] are the position errors of INS, I:va v,, vZ]are the velocity errors of

INS, [y,.i, .1, ] are attitude errors and [gx,gy,gz,vx,vy,VZ] are the drifts of gyros

and accelometers for each variables in the Cartesian coordinates.

Using the INS error model and auxiliary aiding devices measurement differences as
measurements observation vector in the KF, the observation vector can be expressed

as.

Zl(k) :VZINS +VVINSZ _VVD

z,(k) =V, +Vw, -V

INSX Vinsx Vovix
23 (k) = VV,,\,Sy + VVINSy o VVDVLV (4 56)
Z, (k) = VVINSz VVlez - VVDVLZ

= +Vv, -V
25 (k) V'/’le ¥ ins ¥ comp
In Equation (4.56), V,,\c» Vs Vvinsy Vvinse Viprys @re the z position, x, y and z
velocities and yaw measurement errors of the INS respectively and
Vzins' VVinsy’ vVlNSy’ Vvins,y Vins and Vzp» UVpyry vVDVLy' Vvpyiz leJcOmp are the
zero-mean Gaussian noises of INS, the depth sensor, DVL and compass respectively.

However, this information includes the random noises of both systems.

The measurements in Equation (4.56) is rewritten in matrix form:

2,001 | Zws=Z | [001000000000-10] Ve Ve,
2,(k)| Vs, Vow, | [000100000-10000 Vi =W,
2(k) =| 25(k) |=| Vins, Vo, |[={00002000000 10 0 |x(k)+| Yy~
2,()| | Vis, Vo, | |000002000000-10 v, -, (4.57)
%00 [, V| (0000000020000-1) )y

H (k)

To obtain true INS error values that will be used in the simulation, the system error

model is used:
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X (k+1) =gk +1K)X (k) +w(k) (4.58)

Solving (4.58) according to the initial values, the true error values are obtained. Here

¢ is the transfer matrix of the system error model which describes the evolution of

the system error at (4.57).

Since the system noise involves position, speed, and attitude errors, the noise transfer

matrix becomes a unity matrix and the noise correlation matrix Q(k) is defined as

[ 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.001 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.001 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.001 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.001 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.001 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.001 0 0 0 0 0 0 0
Qk)={1 0 0 0 0 0 0 0 0.001 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.001 0 0 0 0 0 (459)
0 0 0 0 0 0 0 0 0 0.001 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.001 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.001 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.001 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.001
The initial correlation matrix P(0/0) of KF are defined as:
[100 0 0 0 0 0 0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 0 0 0 0 0 0 0
0 0 100 0 0 0 0 0 0 0 0 0 0 0
0 0 0 100 0 0 0 0 0 0 0 0 0 0
0 0 0 0 100 0 0 0 0 0 0 0 0 0
0 0 0 0 0 100 0 0 0 0 0 0 0 0
0 0 0 0 0 0 100 0 0 0 0 0 0 0
P(0/0)=| 0 0 0 0 0 0 0 100 0 0 0 0 0 0
0 0 0 0 0 0 0 0 100 0 0 0 0 0 (460)
0 0 0 0 0 0 0 0 0 100 0 0 0 0
0 0 0 0 0 0 0 0 0 0 100 0 0 0
0 0 0 0 0 0 0 0 0 0 0 100 0 0
0 0 0 0 0 0 0 0 0 0 0 0 100 0
0 0 0 0 0 0 0 0 0 0 0 0 0 100

The diagonal correlation matrix R(k) are obtained by summing the standard
deviations of the INS z-position, and depth, INS and DVL velocities and INS yaw

and compass heading error, respectively.

oy, +oq, 0 0 0 0
0 szv.Ns +ch2VDVL 0 0 0
R@9=| O o o, to, 0 0
AP PE (4.61)
0 0 0 o, tOu 0
0 0 0 0 GVZMNS +G‘Z@
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The error model of the INS, DVL, compass and depth sensors can be expressed in a discrete matrix form as follows:

v V. tang 1
X X 1 0 0 0 0 0 0 0 0 00
R R
-V tang+V
% 1 0 0 1 0 0 0 0 0 0 0 00
-V tan¢+vX
X(k+1) B 0 0 | 0 0 0 0 0 0 00 |[XK 0
Y(k+1 0
(k4D y V. tang v Y 0
Z(k+1) = 0 0 1 20, 5ing+X— 20, cosg+ L 0 a, 4, 1 0 0 00 ||ZK
V. (k+) R R V.0 0
V. (k41 - Vg Yy e 0
j(k+1) 0 30 2a,sing- 1 J 4, 0 a, 0 1 o o0 |WK
V,(k+D) R y R (k) 0
v - 0
wlke) b 0 B g asp-X J 1 2, 4, 0 oo 1 oo (WM
bl 0 0 g 0 : g 0 1 ing+V tang/R VIR 0 0 0 10 h 0
v+ (w,sing+ Xtan¢ ) ©,C0S¢+ . v. () k
e 0 00 0 0 0 ngot? 1 b o o o o1 | Y WDVLXEk;
(@, sing+ = W,
VDVLY (k ¥ 1) (wle / ) R VD\/L\/ (k) WDVLy (k)
Vo, (k+) v -V Yy, (0 DvLz (4 62)
0 00 0 0 0 ing+X J Ve (K) :
Lo (k+1) (@, Sing+—=) s 1 0 0 0 00 Z, ) Wo ot (k)
Com)
ek 4D 0 00 0 0 0 0 0 0 1-By O 0 00 ||y '
0 00 0 0 0 0 0 0 0 1B, 0 00 e
0 00 0 0 0 0 0 0 0 0 1-B, 00 w(K)
0 0 0 0 0 0 0 0 0 0 0 0 10
0 00 0 0 0 0 0 0 0 0 0 01
]
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5. PARAMETER IDENTIFICATION WITH LEAST SQUARES
ESTIMATION

5.1 Objectives

This section focuses on the parameter identification of hydrodynamic coefficients of
AUVs based on the Least Square Estimation (LSE) algorithm for a nonlinear
mathematical modeling of AUVs. Hydrodynamic coefficients strongly affect the
dynamic performance of an AUV. Therefore, it is important to have the true values
of these coefficients in order to accurately simulate the AUV’s dynamic
performance. The estimated coefficients can be used as inputs not only for a
mathematical model to analyze the maneuvering performance but also for a
controller model to design AUVs under development. However, parameter
identification of AUV dynamics is complicated because of its nonlinear

identification models and the combination of noisy and biased sensor measurements.

5.2 AUV System ldentification

System identification is the determination on the basis of an observation of input and
output, of a system within a specified class of systems to which the system under test
is equivalent [31]. When the system identification is applied to AUVs, the equations
governing the AUV dynamic motion are postulated and an experiment is designed to

obtain measurements of input and output variables [35].

The hydrodynamic forces and moments acting on AUV cannot be measured directly.
However, hydrodynamic modeling followed by parameter estimation allows
determination of specific hydrodynamic characteristics (such as lift, drag, and side
force coefficients, and rolling, pitching, and yawing moment coefficients in terms of
stability and control derivatives) from the related measurements such as

accelerations, angular rates, etc. [31].
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The selected EOM for system identification are sway and yaw

Y :va+Yfr+m[—v+ z, p—xgr']+Yuvuv+(YWp +m)wp+

(Yo —m)ur —(mzy ) ar +(Y,q —mxy ) pa+Y, V|V +Y,.r|r|+

(5.1)
(W —B)cos@sing+Y,,; us,
N = mygu+(Nv —mxg)\‘/+(Nr. - IZZ)I‘+(Npq+ . — Iyy) pq +
(N, —mxg Ywp + (N, —mxg Jur + N,uv+ N, r|r|+ N,v|v|+ (5.2)

(xW —x,B)cos@siny +(y,W —y,B)sin 0+ N,,; u’s,
The dynamic Equations (5.1) and (5.2) are augmented with output equations that
specify the connection of AUV states and controls to measured outputs, along with

measurement equations describing the measurement process [35].

[MODELPOSTULATION —b[ EXPERIMENT DESIGN h __________________ a

MEASURED DATA

DATA COMPATIBILITY
ANALYSIS

INPUT/OUTPUT DATA

A 4

MODEL STRUCTURE
DETERMINATION COLLINEARTIY

ftTTTTm TS & DIAGNOSTICS
PARAMETER AND

STATE ESTIMATION  j€----=-=--=--——-——————- \

v
DIFFERENT SETS —.[ MODEL VALIDATION ] --------------------------
OF DATA

Figure 5.1 : AUV system identification method [35].

In Figure 5.1, Model Postulation is based on a priori knowledge about the AUV
kinematics and hydrodynamics. The Experiment Design includes selection of an
instrumentation system, and specification of an AUV configuration and maneuvers
for system identification. Data Compatibility Analysis, in practice, measured AUV

response data that can contain systematic errors, even after careful instrumentation
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and experimental procedures. To verify data accuracy, data comapatibility analysis
can be applied to measured AUV responses. Model Structure Determination in AUV
system identification means selecting a specific form for modeling from a class of
models, based on measured data. Parameter and State Estimation constitute a
principal part of the AUV system identification procedure. Parameter estimation for
linear dynamic systems based on maximum likelihood and the least squares
principles can also be formulated in the frequency domain. Collinearity diagnostics
is in almost all practical applications of linear regression and the model terms are
correlated to some extent. Diagnostic information can aid in deciding what corrective
actions are necessary. Model Validation is the last step in the identification process.
The identified model must demonstrate that its parameters have physically
reasonable values and acceptible accuracy, and that the model has a good prediction

capability on comparable maneuvers [35].

5.3 Parameter Estimation for AUV

The parameters can be estimated from calculating the first principles of dynamics of
AUVs, from statistical LSE of experimental data, or a combination of the two. The
identification of the parameters of the item being tracked can be approached in many
different ways. The parameters can be determined once, from a model of the
expected input signal. It also could be done adaptively utilizing a recursive method

to identify the parameters of the incoming signal.

The modern era of system identification is marked by the implementation of the
maximume-likelihood method [31]. Therefore, we used the Least Square model for
the uncertainities in the parameters and measurements in this study. Based on this
model, @ is a vector of unknown constant parameters and v is a random vector of
measurement noise. There are two different models that are Bayesian and Fisher
[35]. The LSE algorithm always gives the best linear fit when the noise is white and
Gaussian. Moreover, it is easier to tune the identification process in the latter part
with a priori knowledge of the system [40]. A recursive LSE was chosen in this study
for the parameter estimation since it is easy to apply the system dynamic and allows

for the consideration of modeling and measurement errors.
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The parameter estimation process consists of finding values of unknown model
parameter @ in an assumed model structure, based on noisy measurements z. An
estimator is a function of the random variable z that produces an estimate ® of the
unknown parameters @. Since the estimator computes ® based on noisy

measurements z, ® is a random variable [35].

In order to estimate the hydrodynamic coefficients of AUVs, the LSE is designed

using the observer model. The state variable yields to

0 = [va Yrr Yuv Yur pr va Nrr Nuv Nur pr ]

(5.3)
The output variables are chosen as two types according to these measurements.
A model is called linear in the parameters if the output y is given by:
y = X6 (5.4)

where, the matrix X is assumed to be known. Then the measurement equation can be

expressed as:

z=X0+v (5.5)

where;
z =[z(1) z(2) ...z(N)]" = N x 1 is the length measurement vector,
0 =6, 6, ... 6,]" = n, x 1is the vector of unknown parameters (n,, = n + 1),
X =[1¢ .. &] = N xn, is the matrix of vectors of ones and regressors,
v=[v(1)v(2)..v(N)]T = N x 1 is the vector of measurement errors.

In general, there are n, measured outputs, and a vector of measurements is taken at
each sample i, where i = 1,2,3,......, N is the number of sampled data points. A
single measured output is assumed, so n, = 1, and z is a vector composed of N scalar

measurements [35].
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Neglecting interactions from other parts of the system, the sway and yaw

measurement subsystems can be modeled as

uzs

ZYmeas =Y —mwp +(ng )qr +(ng ) Pd _Y”“5r r (56)

This measurement equation is rewritten as

Zomeas = Yoo UV — (Yo, —m)wp + (Y, —m)ur +Y, v|v|+Y,r|r|

Ymeas w (5.7)
Zmeas = N = (N + 1, — 1) pa + (YW )sin @+ N, u>3, (5.9)
This measurement equation is rewritten as

Zmeas = NypWp — N ur + N uv + N, v|v|+ N, r|r| (5.9)

The difference between measurement vector z and estimation result y gives us v.

Yy . Ty\1lyT
v=1-y=71-X0=1-X(X"X)*X"z (5.10)

For the least squares model, there are no probability statements regarding 6 or v, but

v is assumed to be zero mean and uncorrelated, with a constant variance:

E(wv)=0 E(wT) = a?I (5.11)
Then the maximum likelihood estimate is:
P max
0=, L0 (5.12)
which minimizes the cost function
(5.13)

J(H)z%(z—XG)T(z—XE))
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In specifying the form of the least-squares model, no uncertainity models for # and v
are used. An estimate for the least-squares model can be obtained by the reasoning
that, given z, the “best” estimate of # comes from minimizing the weighted sum of
squared differences between the measured outputs and the model outputs [35]. The

parameter estimate @ that minimizes the cost fuction J(@) must satisfy

O _ TXO — or; XTX0=X"z
= XTz+XTX6=0 (5.14)
The n, = n+l equations represented in Equation (5.13) are called the normal
equations. The solution of these equations for the unknown parameter vector @ gives
the formula for the least square estimator,
N (XYTy)1yT
O=(X"X)'X"z (5.15)
The n,, x n, matrix X"X matrix is always symmetric. If the regressor vectors that
make up the columns of X are linearly independent, then X7 X is positive definite and

the eigen values of X7 X are positive real numbers, and the associated eigenvectors

are mutually orthogonal so the X7 X exists (Klein & Morelli, 2006).

Finally, the covariance matrix of the parameter estimate 8, also known as the

covariance marix of the estimation error 8 — 0, is simplified to

Cov(B) = E[(6 —6)(@ — 0)7] = a2(X"X)"! (5.16)

5.4 Model Verification

Development of the theory of identification and application of contemporary
computer technology has made it possible to assure necessary conditions for the
realisation of methods for constructing adequate mathematical models of dynamical
systems with measurements obtained during the operation of real systems. It is
impossible to construct an identification algorithm with a zero error probability. As a
result, the identification is a multistage process whose last stage is the verification of

the accuracy of of the real model [11].
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The process of selecting important features and associated mathematical
approximations needed to represent the reality of interest in the mathematical model
is termed modeling. Assessing the correctness of the modeling is termed
confirmation. The verification activity focuses on the identification and removal of

errors in the software implementation of the mathematical model [3].
Typically, model verification is generally done to ensure that:

e The model is programmed correctly.

e The algorithms have been implemented properly.

e The model does not contain errors, oversights, or bugs.

Verification ensures that the specification is complete and that mistakes have not
been made in implementing the model. Verifications do not ensure the model will:

e Solve an important problem.
e Meet a specified set of model requirements.
e Correctly reflect the workings of a real world process.
We used Hotelling’s T-Square statistics for verification of model proposed.

5.4.1 Hotelling’s T-square distribution

In this study, Hotelling's T-squared distribution is used for model verification
because it arises as the distribution of a set of statistics which are natural
generalizations of the statistics. In particular, the distribution arises in multivariate
hypothesis testing in undertaking tests of the differences between the (multivariate)
means of different populations, where tests for univariate problems would make use
of a t-test [61].

We assume that the given two hypotheses below are true:
H,: Model verified.

H: Model not verified.
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If the notation Tf,,m is used to denote a random variable having a Hotelling's T-
squared distribution with parameters p and m, then if a random variable X has

Hotelling's T-squared distribution:
X~T5 ., then
Hotelling's T-squared statistic is defined as follows [28]. Let NV, (u, X) denote a p-
variate normal distribution with location u and covariance X. Let
(5.17)

be n independent random variables, which may be represented by px1 as column

vectors of real numbers. Defined as:

n (5.18)
i=1
to be the sample mean. It can be shown that:

where XIZ, is the chi-squared distribution with p degrees of freedom. To show this use
the fact that and then derive the characteristic function of the random variable [61].
However, X is often unknown and we wish to do hypothesis testing on the location pu.

Defined as:

1 < B .,
W=— ;(xi —®)(x;— %) (5.20)

to be the sample covariance. Here we denote the transposition by an apostrophe. It
can be shown that W is a positive-definite and follows a p- variate Wishart
distribution with n — 1 degrees of freedom [61]. Hotelling's T-squared statistic is

then defined to be:
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t? =nE@-pwW'WIE-p (5.21)

because it can be shown that:

2 2
t ~Tp,n—1

Better results can be obtained from the transformation of the Hotelling T? statistic as
with the F distribution. A transformation of t? yields an exact F distribution such

that:

(n—p)
CEE R (5:22)

When H, hypothesis is true and the statistical value ¢ will be larger than the T,Z,,n_l,

the distribution n-1 safety tolerance value is:

Hyp:t? <T%, vk
(5.23)
Hy:t?>T2, 3k
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6. SIMULATION

The simulations included physically based models of AUV systems and the sensor
units. This study derived a measurement model for the integrated navigational
system including a range model to implement an optimal KF. The navigational
system predicts the errors of the state variables based on the IMU sensors with the
KF, while the bias and scale errors of the state equation are updated indirectly
whenever external measurements are available. Numerical simulations were
conducted using the 6-DOF equations of motion of an AUV in a specific mode. The
performance of the INS is first examined for the AUV excluding bottom-fixed DVL,
compass, and pressure depth sensor. Then, we examined the performance of INS
including these auxiliary devices and simulation results illustrated the effectiveness
of the integrated navigational system compared with the conventional dead

reckoning navigation.

In this study, all simulations were done in the MATLAB version 7.5 environment.
Simulation methods are introduced here to demonstrate the validity of the proposed

method.

6.1 Simulation Parameters

The EOM that would be used in the AUV dynamic model are:

X = AX+W 6.1)

where; x is the vector matrix that contains the state variables, x is the output vector,
u is the control or input vector, A is the state matrix, w is the noise wector of the

dynamic system.
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The state vector of physically based AUV model is:

x=[u,v,w,p,q,1rX,Y,Z, ¢ 0, z//]T
u, =[5, 5, u] (6.2)

where the order of the state vector is 12.

The variables in the state vector (6.2) are:

u: AUV speed in direction X(m/sec)
v: AUV speed in direction Z(m/sec)
w: AUV speed in direction Z(m/sec)
¢ : roll angle (degree)

0 : pitch angle (degree)

¥ : yaw angle (degree)

p: roll angular speed(degree/sec)

g: pitch angular speed(degree/sec)

r: yaw angular speed(degree/sec)

Standard deviations and bias errors of sensors are defined in Table6.1.

Table 6.1 : Standard deviations and bias errors of sensors.

Bias error |Random noise (std. dev.)
Accelerometer 5mg 500.0 ug
Gyro 0.5°/h 0.31°/s
Magnetic Compass| 1.0° 1.0°
Depth Sensor 0.5m 0.5m
DVL 0.01m/s 0.1m/s

Correlation times of gyros and accelometers are defined as:
Biyros =1/1300 [s'], By =1/1500 [s7]

Correlation times of DVL X, y, z velocities are defined as:
Biyo, =LITOO[s7], A, =1/900[s7], A, =1/850[s7]

Sampling time interval is taken at T=0.002 [sec] in the simulation.
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6.2 Simulation Results of AUV Model and Navigation System Errors

The combined performance of navigation was evaluated in the simulation with a
nonlinear model of the vehicle using the MATLAB version 7.5 environment. The
simulation included physically based models of AUV systems. Trajectory simulation

results of the AUV are shown in Figure 6.1 — 6.3.

A position{m)

¥ positionim)

Fposition(mn)

Wi Welocity(mis)

Wy Welocity(m/s)

Wz Yelocity(mds)

Figure 6.2 : Velocity simulation results of physically based AUV model (100 sec).
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40 a0

time (s)

Figure 6.3 : Attitude simulation results of physically based AUV model (100 sec).

Similarly, in Figure 6.4-6.7, the error model simulation results of INS, accelometers,

gyros, DVL, compass, and pressure depth sensor are shown respectively.
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Figure 6.4 : Simulation results of INS error model.
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AccY(rm2is) Acck(m2/s)

AccZ(m2fs)

DvL,, Errar(m/s) DL, Error(m/s)

D\/LZ Errar(rmés)

Gyrox Error (rad/sec)

GyroY Errar(radfsec)

GyroZ Eror rad/sec)

time (g)

Figure 6.6 : Simulation results of gyro error models.

Figure 6.7 : Simulation results of accelometer error models.
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6.3 Simulation Results of Integrated Navigation Systems

6.3.1 Simulation results of INS calibration

Simulation results of physically based AUV model combined with integrated
navigation solution and diagonal elements of covariance matrix are shown in Figure
6.8 — 6.13. For this, the trajectory of an AUV was generated and models of the
strapdown INS sensor errors were developed. The trajectory is characterized by

minimum changes of movement parameters without a control.

In the graphs, the blue line represents the real physically based AUV model, and the
red line corresponds to integrated navigation solution of position, velocity and
attitude angles, respectively. As seen from the graphs below, red and blue lines
overlapped most of the time because the integrated navigation system gives the best

results.

W Welocity(mids)

Wy Yelocity (m/s)

T 2 T T T T T

£

=0 ——

B

]

>

g _2 . L Lot [ [ o T
1] 10 20 30 40 a0 B0

Figure 6.8 : Simulation results of AUV model & INS velocity estimation.
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Figure 6.9 : Diagonal elements of covariance matrix for velocities.
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Figure 6.10 : Simulation results of AUV model & INS position estimation.
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Figure 6.12 : Simulation results of AUV model & INS attitude estimation.
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Figure 6.13 : Diagonal elements of covariance matrix for attitude anlges.

6.3.2 Simulation results of INS, gyro, and accelometer calibration

Simulation results of the physically based AUV model combined with integrated
navigation solution and diagonal elements of covariance matrix are shown in Figure
6.14 — 6.19. For this, the trajectory of an AUV was generated and models of the
strapdown INS sensor errors were developed. Errors of the IMU were modeled in
the navigation grade systems where accelerometer errors are biased at 0.02 m/s and
noise at 2 mm/s*/Hz™, and the rate gyro errors are modeled with a bias of 5 deg/h
and noise at 0.1deg/h /Hz™¥2. The trajectory is characterized by minimum changes of

movement parameters without a control.

In the graphs, the blue line represents the real physically based AUV model, and the
red line corresponds to integrated navigation solution of position, velocity and
attitude angles, respectively. As seen from the graphs below, red and blue lines

overlapped most of the time because the integrated navigation system gives the best

results.
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Figure 6.14 : Simulation results of AUV model & INS velocity estimation.
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Figure 6.15 : Diagonal elements of covariance matrix for velocities.
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Figure 6.16 : Simulation results of AUV model & INS position estimation.
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Figure 6.17 : Diagonal elements of covariance matrix for positions.
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Figure 6.18 : Simulation results of AUV model & INS attitude estimation.
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Figure 6.19 : Diagonal elements of covariance matrix for attitude anlges.

6.3.3 Simulation results of INS, DVL, compass, and depth sensor calibration

Simulation results of the physically based AUV model combined with integrated
navigation solution with INS, DVL, compass and depth sensor calibration, and
diagonal elements of covariance matrix are shown in Figure 6.20 — 6.25. The
trajectory is characterized by minimum changes of movement parameters without a

control.

In the graphs, the blue line represents the real physically based AUV model, and the
red line corresponds to integrated navigation solution of position, velocity and
attitude angles, respectively. As seen from the graphs below, red and blue lines
overlapped most of the time because the integrated navigation system gives the best

results.
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Figure 6.20 : Simulation results of AUV model & INS velocity estimation.
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Figure 6.21 : Diagonal elements of covariance matrix for velocities.
I I I T
E D‘___ ................ FE T R .......................... .......................... Real
B OUR U U U TR U TP PP e Lo ] Pos.Int.Mav.
g
E
2
E :
™ | 1 I 1 1

i| —+—Real H

welInt. Nay. ||

Figure 6.22 : Simulation results of AUV model & INS position estimation.
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Figure 6.23 : Simulation results of AUV model & INS attitude estimation.
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Figure 6.24 : Diagonal elements of covariance matrix for attitude anlges.

6.3.4 Comparison of integrated navigavigation systems

In this section, we compare three different types of integrated navigation systems
which are INS calibration, integration of INS with accelometers and gyros
calibration, and integration of INS with DVL, compass and depth sensor calibration,
based on absolute error values. In Table 6.2 — 6.4, absolute error values of velocities,
postions and attitude angles for those calibration methods are given during 60
seconds with 5 second time intervals. In the tables, INS calibration has superiority to
the others with the minimum absolute errors becouse of lower number of state
variables (n=9). Integration of INS with DVL, compass and depth sensor calibration
has better performance than with gyro and accelometer calibration on all velocity,

positon Y, roll, pitch and yaw angles. However, the integration of INS with
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accelometers and gyros calibration has better performance than with DVL, compass

and depth sensor calibration on positions X and Z. On the other hand, the integration

of INS with accelometers and gyros calibration has the worst performance on attitude

angles in comparsion with the other integration metods.

Table 6.2 : Coparision of absolute velocity errors.

Absolute Error of Velocity X (m/sec) | Absolute Error of Velocity Y (m/sec) | Absolute Error of Velocity Z (m/sec)
with DVL, with DVL, with DVL,
Compass, & Compass, Compass, &
Time with Gyro & [Depth with Gyro & |& Depth with Gyro & |Depth
(sec) [INS Only |Accelometer|Sensor INS Only |Accelometer [Sensor INS Only [Accelometer [Sensor
0 2,0000 1,0000 1,0250 2,0100 1,0500 0,0150 2,2100 1,0500 0,0680]
5| 0,0015 0,0187 0,0179] 0,0024 0,0040 0,0091] 0,0005 0,0132 0,0028
10]  0,0008 0,0102 0,0129] 0,0018 0,0144 0,0109] 0,0008 0,0038 0,0016
15 0,0027 0,0135 0,0163 0,0010 0,0064 0,0075 0,0009 0,0123 0,0002
20] 0,0036 0,0141 0,0086] 0,0010 0,0107 0,0075] 10,0014 0,0069 0,0032
25 10,0011 0,0060 0,0143] 0,0018 0,0090 0,0078] 0,0013 0,0074 0,0005
30 0,0026 0,0085 0,0081 0,0019 0,0127 0,0114 0,0012 0,0071 0,0006
35] 10,0031 0,0200 0,0171] 0,0026 0,0129 0,0085] 00,0008 0,0057 0,0028
40  0,0010 0,0133 0,0098] 0,0014 0,0122 0,0041] 0,0014 0,0083 0,0072
45 0,0018 0,0120 0,0079 0,0023 0,0147 0,0089 0,0012 0,0049 0,0007|
50 10,0045 0,0130 0,0153| 0,0025 0,0154 0,0082] 0,0012 0,0110 0,0018
55| 0,0029 0,0169 0,0154] 0,0023 0,0136 0,0093] 0,0011 0,0075 0,0040,
60 0,0032 0,0072 0,0125 0,0010 0,0090 0,0077| 0,0012 0,0037 0,0046
Table 6.3 : Coparision of absolute position errors.
Absolute Error of Position X (m) | Absolute Error of Position Y (m) | Absolute Error of Position Z (m)
with DVL, with DVL, with DVL,
Compass, Compass, Compass,
Time with Gyro & |& Depth with Gyro & |& Depth with Gyro & [& Depth
(sec) [INSOnly [Accelometer [Sensor [INS Only [Accelometer|Sensor |INS Only |Accelometer|Sensor
0 0,1366 0,0363 0,0697 0,0683 0,2017 0,0983 0,0750 0,0250 0,0917
5 0,1385 0,0386 0,0674 0,0697 0,2031 0,1000 0,0008 0,0009 0,0523
10 0,1406 0,0407 0,0655 0,0711 0,2045 0,1017 0,0008 0,0010 0,0523
15 0,1428 0,0429 0,0630 0,0725 0,2059 0,1028 0,0008 0,0008 0,0519
20 0,1450 0,0450 0,0618 0,0739 0,2074 0,1041 0,0005 0,0009 0,0523
25| 0,1471 0,0472] 0,0590] 0,0753 0,2088| 0,1055| 0,0009 0,0008| 0,0522
30 0,1493 0,0494 0,0581 0,0768 0,2102 0,1080 0,0010 0,0007 0,0522
35 0,1515 0,0516/ 0,0542] 0,0782 0,2117| 10,1085 0,0008 0,0008| 0,0524
40 0,1536 0,0538 0,0540 0,0797 0,2132 0,1082 0,0008 0,0009 0,0519
45 0,1559 0,0560 0,0525 0,0811 0,2147 0,1113 0,0008 0,0011 0,0522
50 0,1580 0,0581 0,0481 0,0824 0,2161 0,1121 0,0008 0,0012 0,0525
55 0,1602 0,0603 0,0461 0,0839 0,2176 0,1145 0,0006 0,0008 0,0524
60 0,1619 0,0625| 0,0453] 0,0849 0,2190| 0,1145| 0,0060 0,0010] 0,0523
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Table 6.4 : Coparision of absolute errors of attitude angles.

Absolute Error of Roll (deg) Absolute Error of Pitch (deg) Absolute Error of Yaw (deg)

with DVL, with DVL, with DVL,

Compass, Compass, Compass,

Time with Gyro & [& Depth with Gyro & |& Depth with Gyro & (& Depth

(sec) |INS Only |Accelometer|Sensor [INSOnly |Accelometer|Sensor [INS Only |Accelometer|Sensor

0] 3,0000 0,0000f 0,4500 0,2300 0,2300f 0,1150] 0,2000 0,8000| 0,1000

5| 4,7450 18,6121|  3,6658 1,9447 6,8068| 0,4280] 4,1210 3,9269 0,4933

10| 2,8087 9,7762  2,7003 0,9888 3,8476| 0,0937] 2,0190 59130 2,4854

15| 0,9244 10,0079| 2,8327 0,1506 5,1445( 0,8685| 3,1976 3,6111| 2,3200

20 0,4174 9,8990 4,9493 1,4167 6,0118) 1,8510] 4,8400 2,1854| 0,7132

25|  2,0276 7,4079(  3,6007 0,9900 6,1978| 11,6078 11,8182 2,3094| 0,5463

30 11,2120 4,8101 1,9784 4,6105 4,4019| 2,8211] 4,2057 4,4348| 0,6920

35| 11,4686 4,8610| 2,3355 4,7632 3,6040( 14,8420 0,6005 2,7959| 0,5681

40| 3,7283 50994 2,5111 5,3677 3,4966| 12,9356 14,0208 0,5837| 10,5294

45|  4,2374 6,1384  2,7507 3,3716 1,1773] 2,6994f 0,2094 2,8602| 0,1610

50 0,5008 0,7748  2,3062 4,8646 3,3240( 0,2795] 00,3886 3,7295| 0,4047

55| 11,4924 3,0005( 0,2934 0,3968 5,2771| 0,0296] 1,6650 3,8827| 10,1198

60] 11,6811 2,9614( 0,8089 1,7361 5,8955 1,2459| 4,3712 1,3583| 0,2105

6.4 Simulation Results of Parameter Identification

Numerical simulations are made to show the parameter identifications of the AUV.
The hydrodynamic coefficients associated with horizontal and vertical motions are

estimated by simulating the combined yaw and sway motion of the AUV.

We will describe how state-of-the art algorithms are used to find a dynamic model
that enables accurate simulation of steering dynamics. Simulation is in fact much
more than what is required by sensor fusion algorithms for integrated navigation,

where only the predictive ability of the model is important.

In summary, the system identification task to estimate the parameters is:

0 = [YUU YT'T' Yuv Yur pr N‘U‘U NTT Nuv Nur pr ] (65)

In this study, we used two different simulation settings for parameter identification:

one is with measurement bias and the other is with integrated navigational system.

6.4.1 Numerical simulation for measurement bias
The combined problem of state and parameter identification leads to a nonlinear
filtering problem. Furthermore, many AUV systems are characterized by nonlinear

models as well as noisy and biased sensor measurements. In Figure 6.25, parameter
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identification simulation setting is illustrated in the presence of measurement bias

used in this study.

BIASED MEASUREMENT

NONLINEAR NAVIGATION

AUV T — EQUATIONS
MODEL ACCELERO

METERS

IMU

Figure 6.25 : Parameter identification in the presence of measurement biases.

Parameter identification was done by recording the rudder and elevator input angles
and the AUV’s yaw and pitch response during a closed-loop heading and depth
maneuver. However, the AUV has to maintain constant speed and small roll angle
during this maneuver. The Figures 6.26 — 6.28 show that the AUV had a surge
velocity changed between 2.5 and 0 m/s and a heave velocity of 0.13 m/s. The depth
changed between -15 m and -13.5 m. At the same time, the AUV pitched up and
down between -40 deg and 0 deg in response to the changing elevator plane angle.
The elevator was operated at the maximum deflection of 15 deg for most of the time
and similarly the rudder deflection was operated at the maximum deflection of -11
deg. The iteration number N is chosen to be 5,000 and the sampling time is chosen

to be 0.001 sec in this simulation.

K position(rn)

¥ position(m)

Lposition(m)

time (s)

Figure 6.26 : Position results of real and identified model.
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Figure 6.28 : Attitude results of real and identified model.

As seen in Figures 6.26 — 6.28, the difference between simulation results of real
phsically based AUV model and identified model are shown. Most of the velocites
are quite resonalable. However, there big difference in attitude and position response

of the real and identified model as we expected.

The estimated values of the parameters and error differences are given in Table 6.5.
This table also shows that iterated LSE has a performance under the condition of
integration of navigational sensors with the maximum error difference of 172.42 %

in Y,.. percent and the minimum error difference of 2.32% in Y,,,..
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Table 6.5 : Parameter identification with measurement bias.

Est. Value | Percent
Parameters |Real Value | with Bias % Difference

Yvv -196,26| -50,223| 74,410 146,037

Yrr 8,30 22,611| 172,419| 14,311
Yuv 38,39 13,647 64,452 24,743
Yur 13,41 13,099 2,322 0,311
Ywp 35,50 95,156| 168,046| 59,656
Nvv -7,95 -7,436 6,465 0,514
Nrr -24,13| -18,457| 23,511 5,673
Nuv -21,89 -12,239| 44,089 9,651
Nur 1,93 3,822 98,026 1,892
Nwp -19,30 -3,489 81,922 15,811

For model verification, the sample variance-covariance matrix is calculated:

0.0065 —0.0118
[ —0.0118 0.0284
W =10.0229 —-0.0260

l—0.0268 0.0499
~0.0002 0.0003

Hotelling’s T-square comes out to be:

Similarly, the F-statistic is:

T? = 17318

0.0229

— 0.0268

—0.0260 0.0499

0.1159

— 0.0937

—0.0937 0.1210
—0.0008 0.0006

0.0003
— 0.0008

0.0006J

0.0000

- 0.0002}

F = 3461 > 241 = F10’4995’0.01

Using the statistical hypothesis test to evaluate the null hypothesis of the parameter
identification model which was verified, the resulting test statistics is 17318. For an
0.01 level test, the critical F value is approximately found as 2.41 from the F-

statistic table. Since 17318 is greater than this value, as a result we can reject the

null hypothesis that the proposed model is not valid.

T2 = 17318; F = 3461; df = 10,4995;p < 0.01

6.4.2 Numerical simulation for integrated navigation

The simulation setting of parameter identification after integrating the navigational

systems are shown in Figure 6.28.
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Figure 6.29 : Parameter identification after integration of navigational systems.

Parameter identification was done and the Figures 6.30 -6.32 show that the AUV had
a surge velocity changed between 2.5 and 0 m/s. The depth changed between -15 m
and -13.5 m. The elevator was operated at the maximum deflection of 15 deg for
most of the time and similarly the rudder deflection operated at the maximum
deflection of -11 deg. The iteration number N is chosen to be 5,000 and the

sampling time is chosen to be 0.001 sec.

As seen from Figures 6.30 — 6.32 outputs of real and identified models are converged
perfectly. Simulation results show that the proposed method works very well and

iterated LSE has a better performance.
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Figure 6.30 : Velocity simulation results of real and identified model.
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Figure 6.32 : Attitude simulation results of real and identified model.

In Table 6.6, parameter identification values for ten different hydrodynamic
parameters are given. This table also shows that iterated LSE has a better
performance under the condition of integration of navigational sensors with the
maximum error difference of 3.37% in parameter Y,, and the minimum error

difference 0.22% in parameter N,,,,.
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Table 6.6 : Parameter identification after integrated navigation.

Est. Value
with
Parameters|Real Value| Int.Nav. % Difference
Yvv -196,26| -192,650 1,839( 3,610
Yrr 8,30 8,580 3,373 0,280
Yuv 38,39 38,277 0,295 0,113
Yur 13,41 13,320 0,674 0,090
Ywp 35,50 36,105 1,704 0,605
Nvv -7,95 -7,733 2,736/ 0,218
Nrr -24,13| -24,051 0,328 0,079
Nuv -21,89| -21,843 0,216 0,047
Nur 1,93 1,922 0,435/ 0,008
Nwp -19,30[ -19,367 0,347| 0,067

Numerical results demonstrated that the proposed method works very well in the
case of using simulated data. It has been shown that the characteristic functions for

LSE can be obtained in a stable way even in noisy environments.

For model verifation, the sample variance-covariance matrix is calculated as:

0.0031 -—0.0125 0.0118 —0.0071 —0.0004
[—0.0125 0.0913 - 0.0561 0.1112 - 0.0061}
W =1 00118 —-0.0561 0.0576 —0.0461 —0.0019
l —-0.0071 0.1112 -0.0461 0.1969 —0.0158 J
—0.0004 -0.0061 -0.0019 -—0.0158 0.0022

Hotelling’s T-square comes out to be:
T? = 5.27
Similarly, the F-statistic is:
F =1.054 < 241 = F10,4995001

Using the statistical hypothesis test to evaluate the null hypothesis of the parameter
identification model verified, the resulting test statistics is 1.054. For an 0.01 level
test, the critical F value is approximately found as 2.41. Since 1. 054 is smaller than

this value, so we accept the null hypothesis that the proposed model is valid.

T? = 5.27; F = 1.054; df = 10,4995;p < 0.01

In conclusion, our results indicate that for AUV hydrodynamic parameter
identification purposes, the LSE algorithm is a feasible tool, which consistently

returns quality results and is the least costly in terms of computational demand.
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7. CONCLUSIONS

The research on underwater systems has gained immense attention during the last
two decades because of applications taking place in many fields. Therefore, the
significant number of UUVs has been developed for solving the wide range of
scientific and applied tasks of ocean research and development in the world. . The
military, as well as civilian industary can see great potential uses of AUVs in the

underwater environment.

Autonomous guidance, navigation, and control techniques are key research and
development areas for success of the specific AUV missions. Moreover, further work
iIs needed for in precision navigation, sensor development and integration, and
improving the realiability and robustness of long term and complex mission

completion.

This thesis is primarily concerned with implementing dynamic modeling of an AUV
for different swimming conditions and then is to accomplish integration of
navigational sensors to dynamic modeling of AUV based on sensor error models and
Kalman filtering technique. This thesis has also given an insight and theoretical
background about AUV kinematics, hydrodynamics and hydrostatic, as well as INS,
and recent Kalman Filtering techniques. In addition, it has reported the current
research interests on these subjects. However, the aim of this thesis does not directly
involve the modeling of AUV systems from scratch since this is a different area of
research interest alltogether. Because physically based mathematical modeling of
AUV is an interdisciplinary study of kinematics, hydrostatics, and hydrodynamics
and to achieve an accurate hydrodynamic model for AUV is extremely difficult at
best. However, an INS framework is implemented in MATLAB Simulink
environment since this INS module is used as a main navigational tool applied to

AUV dynamic model.

Second, Based on dynamic nonlinear model, we develop three different types of low-

cost Integrated Navigation System based on error models of INS and its aiding
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devices such as DVL, compass, and a pressure depth sensor. An INS error model
and the corresponding measurement models of those aiding sources will be derived
for the Kalman Filter (KF). The simulation results confirmed that low-cost IMU
sensors produce a notable amount of noisy measurements but our Integrated
Navigation System models for AUV based on KF can effectively mitigate those
drawbacks. The simulation also shows that the method is satisfying and is preferable

to the linear error models with linear KF.

It is found that the errors in the aided INS position, velocity and attitude estimates
are significantly lower than that of the traditional INS during time. The aided INS
also performs equally well or better than the traditional INS in cases with regular

position updates.

This thesis also focused on the use of parameter identification methods to predict the
hydrodynamic derivatives of the AUV based on the dynamic nonlinear modeling.
LSE is used to tackle the problem of parameter identification of an AUV. This
classical approach seems to have a better performance in cases where a specific
parameter will be identified and the LSE results obtained are satisfactory. Therefore,
numerical results demonstrate that the proposed method works very well, in both
cases of using simulated data. It has been shown that the characteristic functions for

LSE can be obtained in a stable way even in noisy environments.

Numerical simulations are made to show the parameter identifications of the AUV.
The hydrodynamic coefficients associated with horizontal and vertical motions are
estimated by simulating the combined yaw and sway motion of the AUV. The
simulation results of this thesis indicate that for AUV hydrodynamic parameter
identification purposes, the LSE algorithm remains a feasible tool, which constantly

returns quality results.

In this study, Hotelling's T2 distribution is used for model verification because it
arises as the distribution of a set of statistics which are natural generalizations of the
statistics. Test result indicates that the chosen model for parameter identification is

verified.
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Future work will concern on the identification of whole or faulty hydrodynamic
parameters of the AUV, which involves a 6-DOF dynamics. Moreover, other
approaches such as Extended KF, unscented KF is considered to be applied and

compared alternatively.
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APPENDIX A : Coordinate Systems
APPENDIX A.1 : ECEF Coordinate System

The Cartesian coordinate frame of reference used in GPS is called Earth-Centered,
Earth-Fixed (ECEF). ECEF uses three-dimensional XYZ coor-dinates (in meters) to
describe the location of a GPS user or satellite. The term "Earth-Centered" comes
from the fact that the origin of the axis (0,0,0) is located at the mass center of gravity
(determined through years of tracking satellite trajectories). The term "Earth-Fixed"
implies that the axes are fixed with respect to the earth (that is, they rotate with the
earth). The Z-axis pierces the North Pole, and the XY-axis defines the equatorial
plane. ECEF coordinates are expressed in a reference system that is related to

mapping representations.

Because the earth has a complex shape, a simple yet accurate, method to approximate
the earth’s shape is required. The use of a reference ellipsoid allows for the
conversion of the ECEF coordinates to the more commonly used geodetic-mapping
coordinates of Latitude, Longitude, and Altitude (LLA).

A reference ellipsoid can be described by a series of parameters that define its shape
and which include a semi-major axis (a), a semi-minor axis (b) and its first
eccentricity e) and its second eccentricity (e’) as shown in Figure A.2. Depending

on the formulation used, ellipsoid flattening ( f ) may be required.

WGS84 Parameters:

a=6378137
b=a(1-f)=6356752.31424518
Fo 1

298.257223563

o faz -b?
a2
For global applications, the geodetic reference (datum) used for GPS is the World
Geodetic System 1984 (WGS84). This ellipsoid has its origin coincident with the

ECEF origin. The X-axis pierces the Greenwich meridian and the XY plane make up
the equatorial plane. Altitude is described as the perpendicular distance above the

ellipsoid surface (which should not to be confused with the mean sea level datum).
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APPENDIX A.2 : Conversion between ECEF and Local Tangential Plane (LTP)

The conversion between the two reference coordinate systems can be performed
using closed formulas (although iteration methods also exist). The conversion from
LLA to ECEF (in meters) is shown in Figure A.1.

X =(N +h)cosgpcos 1
Y =(N +h)cosgcos 1

b? .
Z= (§N +h)sing
where
@ = Latitude
A =Longitude

h = height above ellipsoid(meters)
N =Radius of Curvature(meters),defined as:

a

«/1 —e’sin’ ¢

N:

X

Figure A.1: ECEF and reference ellipsoid [10].
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APPENDIX B : Simulation Trials of Parameter Identification

n_steps=10000;

time_step=0.001;

delta_e = 0.5*pi/180;

delta_r = -5.0*pi/180;

theta_1 =[Ywv, Yrr, Yuv, Yur, Ywp]

theta_est = [ -197.5817 7.9543 38.5746 13.4362 35.6808]
theta_real = [-196.26 8.3 38.39 13.41 35.5]

n_steps=13000;

time_step=0.001;

delta_e = 0.5*pi/180;

delta_r = -5.0*pi/180;

thetal = [Ywv, Yrr, Yuv, Yur, Ywp]

theta_est = [-197.1223 8.0780 38.5232 13.4306 35.7777]
theta_real = [ -196.26 8.3 38.39 13.41 35.5]

n_steps=20000;

time_step=0.001;

delta_e = 0.5*pi/180;

delta_r = -5.0*pi/180;

thetal = [Ywv, Yrr, Yuv, Yur, Ywp]

theta_est = [-196.8926 8.1415 38.4958 13.4260 35.8205]
theta_real = [ -196.26 8.3 38.39 13.41 35.5]

n_steps=30000;
theta_est = [-196.4287 8.2659 38.4319 13.4134 35.8343]

n_steps=9000;

time_step=0.001;

theta2 = [Nvv, Nrr, Nuv, Nur, Nwp]

theta_est = [-4.5817 -23.4772 -21.9566 2.1652 -16.9166]
theta_real = [-7.95 -24.13 -21.89 1.93 -19.3]

n_steps=20000;
time_step=0.001;
theta_est = [-5.2085 -23.6097 -21.8947 2.1577 -17.0834]

n_steps=30000;
time_step=0.001;
theta_est = [-6.1476 -23.8145 -21.8453 2.1247 -17.6819]

n_steps=20000;

time_step=0.001;

delta_e = -1.5*pi/180;

delta_r = -12.0*pi/180;

theta_est = [-8.0435 -24.1785 -21.9281 1.9454 -19.4908

n_steps=20000;

time_step=0.001;

delta_e = -1.5*pi/180;

delta_r = -10.0*pi/180;

theta_est = [-7.7011 -24.0868 -21.8873 1.9214 -18.9961]
theta_real = [-7.95 -24.13 -21.89 1.93 -19.3]
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n_steps=20000;

time_step=0.001;

delta_e = -1.5*pi/180;

delta_r =-11.0*pi/180;

theta_est = [-7.9699 -24.1509 -21.9053 1.9402 -19.3280]

Measurement Bias

n = 10000

theta = [-8.0048 -24.1617 -21.9051 1.9443 -19.3432]
thetal est=[11.3830 -21.3121 -16.0633 4.9128 1.0230]
Theta_real =[-7.95 -24.13 -21.89 1.93 -19.3]

n = 15000

dr =-11 deg

est = [-8.0036 -24.1614 -21.9051 1.9442 -19.3426]
estl=[-11.8132 -18.9949 -11.8354 3.7643 -1.4132]

n = 5000

dr =-15deg

est = [-8.3023 -24.3042 -21.9941 1.9875 -19.7561]
estl = [-16.2704 -19.1578 -11.8048 3.0637 -3.2743]

n = 10000
est=[-8.3028 -24.3011 -21.9923 1.9860 -19.7559]
estl =[-11.8029 -19.2546 -12.5286 3.1299 -2.9808]

n = 3000
est=[-8.2272 -24.2895 -22.0473 1.9613 -20.2272]
estl=[-16.5333 -19.1425 -11.7635 3.0577 -3.3742]
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APPENDIX D : MATLAB Source Code

AUVSIM.M

disp(sprintf(\n\n AUV Simulation begins....") ;

getlnputs;
n_steps=6000;
time_step=0.01;

% Initial Conditions
X = [u0 vO w0 p0 g0 r0 x0 y0 z0 phi0 theta0 psiO]’;
ui=[delta_e delta_r u0];

% -- -

% MM matrisi olustur

%acc = [udot vdot wdot pdot gdot rdot]’

MM = [m-Xudot 0O 0 0 m*zg  -m*yg;
0 m-Yvdot O -m*zg 0  m*xg-Yrdot;
0 0 m-Zwdot m*yg -m*xg-Zqdot O;
0 -m*zg m*yg Ixx-Kpdot O 0;
m*zg 0 -m*xg-Mwdot 0 Ilyy-Mqgdot O;
-m*yg m*xg-Nvdot 0 0 0  Izz-Nrdot];

Minv=inv(MM);

xout(:,1)=x;

time(1)=time_step;

kuvvet(:,1)=[0 0000 0];
Xdot(:,1)=[0000000000007;

%AUV Model ltereation
for i =1:n_steps,

% Calculate forces, accelerations
[xdot,forces] = states(x,ui,Minv);

% RUNGE-KUTTA
k1l vec = xdot;
k2_vec = states(x+(0.5.*time_step.*k1_vec),ui,Minv);
k3_vec = states(x+(0.5.*time_step.*k2_vec),ui,Minv);
k4 _vec = states(x+(time_step.*k3_vec),ui,Minv);
X = X + time_step/6.*(k1_vec + 2.*k2_vec + 2.*k3_vec + k4_vec);
xout(:,i+1) = x;
time(i+1) = (i+1)*time_step;
kuvvet(:,i+1) = forces;
Xdot(:,i+1) = xdot;
end

Fy = kuwvet(2,3)’;
Mz = kuvvet(6,:)";
v_dot = Xdot(2,:);
p_dot = Xdot(4,:);
r_dot = Xdot(6,:);
u = xout(1,))’;

v = xout(2,:)";
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w = xout(3,:)";

p = xout(4,)";

g = xout(5,:)";

r = xout(6,:)";

thet = xout(11,:)";

% thetal = [Yvv, Yrr, Yuv, Yur, Ywp ]
% theta2 = [Nvv, Nrr, Nuv, Nur, Nwp ]

% [theta] = AUVPI(Fy, Mz, v_dot, p_dot, r_dot, u, v, w, p, q, r, thet, W, delta_r);

%-----------m- - Error Model basgliyor
% erX = [Delta_x_ins, Delta_y ins, Delta_z_ins, Delta_Vx_ins, Delta_Vy_ins, Delta_Vz_ins, ...
% Phi_x_ins, Phi_y ins, Phi_z ins]’;

glb_var = [g R omega_ie lat Beta_xdvl Beta_ydvl Beta_zdvl Alfa_gyro Beta_acc sigma_acc ...
sigma_gyro sigma_Vdvl sigma_depth sigma_smag ];
%

% errOut(:,1)=[Delta_x_ins, Delta_y _ins, Delta_z_ins, Delta_Vx_ins, Delta_Vy_ins, Delta_Vz_ins,
Phi_x_ins,...
% Phi_y ins, Phi_z ins Bias_Vx_dvl, Bias_Vy_dvl, Bias_Vz_dvl, Bias_zd, Bias_mag]’

errOut(:,1)=[Delta_x_ins, Delta_y ins, Delta_z_ins, Delta_Vx_ins, Delta_Vy _ins, Delta_Vz_ins,
Phi_x_ins,...

Phi_y ins, Phi_z_ins Epsilon_x Epsilon_y Epsilon_z Grad_x Grad y
Grad_z]";

% errOut(:,1)=[Delta_x_ins, Delta_y ins, Delta_z_ins, Delta_Vx_ins, Delta_Vy ins, Delta_Vz_ins,
Phi_x_ins,...

% Phi_y ins, Phi_z ins]’

erX = errOut(:,1);

% Kalman State (14) Initialization

% Xk1(:,1) =[ -2, 3, 3.5, Delta_Vx_ins*1.05, Delta_Vy_ins*1.02, Delta_Vz_ins*1.08, Phi_x_ins*1.3,
Phi_y ins*1.05, ...

% Phi_z_ins*0.9, Bias_Vx_dvl, Bias_Vy_dvl, Bias_Vz_dvl, Bias_zd*0.9, Bias_mag*1.2]";

% Kalman State (15) Initialization

Xk1(:;,1)=[-1,-6,1.5,15,1.8, 1.9, Phi_x_ins*1.2, Phi_y ins*1.2, Phi_z_ins*1.1, ...
0.042, 0.00061, 0.00083, 0.11*pi/180, 0.12*pi/180, 0.15*pi/180]’;

% Kalman State (9) Initialization

% Xk1(:,1) =[ -4, -2, -1.5, 10.5, 10.8, 11.9, -Phi_x_ins*1.0, Phi_y_ins*1.1, Phi_z_ins*1.2];

Pk1(:,:,1) = P;

Pk11(:,1)= diag(Pk1(:,:,1));

s=1;

for i =1:n_steps,

% Error Model

% Calculate forces, accelerations
Vx = xout(1,i);
Vy = xout(2,i);
Vz = xout(3,i);
a_x = Xdot(1,i);%kuvvet(i,1);
a_y = Xdot(2,i);%kuvvet(i,2);
a_z = Xdot(3,i);%kuvvet(i,3);

[Xout,A, F] = error_model(erX,Vx,Vy,Vz,a x,a y,a z,glb_vartime_step);
ifi==

erXdot(:,i) = A*erX;
end
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erX = Xout;
erxdot(:,i+1) = A*erX;

errOut(:,i+1) = Xout;

% Kalman Measurements;%

z(1,i) = errOut(3,i)- sigma_mdepth*rand(1,1)-0.2*rand(1,1); % INS_Z-Z dept

z(2,i) = errOut(4,i)- sigma_Vmdvl*rand(1,1)-0.21*rand(1,1); % INS_Vx-DVL_Vx

z(3,i) = errOut(5,i)- sigma_Vmdvl*rand(1,1)-0.12*rand(1,1); % INS_Vy-DVL_Vy

z(4,i) = errOut(6,i)- sigma_Vmdvl*rand(1,1)-0.1*rand(1,1); % INS_Vz-DVL_Vz

z(5,i) = errOut(9,i)- sigma_mag*rand(1,1)-0.1*rand(1,1); % INS_Phi_z-Phi_mag
%

% Kalman Filter Algorithm

%

Pk = F*PK1(:,;,i)*F'+G*Q*G",;
% diag(Pk)
Sk = H*Pk*H'+s*KalR; %s is adaptive parameter
K = Pk*H™*inv(Sk);
PK1(:,:,i+1) =(eye(15)-K*H)*Pk;
Pk11(:,i+1)= diag(PK1(:,:,i+1));
Xk = F*XK1(:,);
Delta = z(:,i)-H*Xk;
XKk1(:,i+1)=Xk + K*Delta;
end

%Measurement Bias
%
% UEr = xout(1,:)'+ errOut(4,:)'/5;

% VEr = xout(2,:)'+ errOut(5,:)'/5;

% WETr = xout(3,:)'+ errOut(6,:)'/5;

% thetEr = xout(11,:)'+ errOut(8,:)'*3;

%

% pEr = xout(4,:)'+ erXdot(7,:)"*3;

% gEr = xout(5,:)'+ erXdot(8,:)"*3;

% rEr = xout(6,:)'+ erXdot(9,:)"*3;

%

% % thetal = [Yvv, Yrr, Yuv, Yur, Ywp ]

% % theta2 = [Nvv, Nrr, Nuv, Nur, Nwp ]

%

% [thetal] = AUVPI(Fy, Mz, v_dot, p_dot, r_dot, ukr, ver, wkr, pEr, gEr, rEr, theter, W, delta_r);
%

% %Integrated Navigation

% %
% ulN = xout(1,:)'+ errOut(4,:)'/5-Xk1(4,:)'/5;

% VIN = xout(2,:)'+ errOut(5,:)'/5-Xk1(5,:)'/5;

% wIN = xout(3,:)'+ errOut(6,:)'/5-Xk1(6,:)'/5;

% thetIN = xout(11,:)'+ errOut(8,:)"*3-Xk1(8,:)"*3;

%

% pIN = xout(4,:)'+ erXdot(7,:)"*3;

% qIN = xout(5,:)'+ erXdot(8,:)"*3;

% rIN = xout(6,:)'+ erXdot(9,:)"*3;

%

% % thetal = [Yvv, Yrr, Yuy, Yur, Ywp ]

% % theta2 = [Nvv, Nrr, Nuv, Nur, Nwp ]

%

% [theta2] = AUVPI(Fy, Mz, v_dot, p_dot, r_dot, ulN, VIN, wiN, pIN, gIN, rIN, thetIN, W, delta_r);

disp(sprintf(\n\n AUV Simulation ends ...")) ;
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STATES.M

function [ACCELERATIONS,FORCES] = states(x,ui,Minv)
% - ----

% STATE VECTOR:

% x =[u v wp qrxpos ypos zpos phi theta psi]’

% INPUT VECTOR

% ui = [delta_e delta_r]’

getlnputs;

% Get state variables
u=x(1);v=x(2);w=x@);p=x(4);q=x(5);
r = X(6) ; phi = x(10); theta = x(11) ; psi = x(12) ;
delta_e = ui(1) ; delta_r = ui(2);

%trigonometrik kisaltmalar

% - -

¢l = cos(phi); c2 = cos(theta); c3 = cos(psi); s1 = sin(phi); s2 = sin(theta);
s3 = sin(psi); t2 = tan(theta);

%A local lever North-East-Down frame is defined as navigation frame.
%Transformation matrix from body to navigation frame
C_bn =[c2*c3 -cl*s3+s1*s2*c3  s1*s3+cl*s2*c3;

€2*s3 cl*c3+s1*s2*s3 -s1*c3+cl*s2*c3,;

-s2 s1*c2 cl*c2 1,

% AUV a etkiyen toplam kuvvet hesaplanir

00 - -

X = -(W-B)*sin(theta) + Xuu*u*abs(u) + (Xwqg-m)*w*q + (Xqq + m*xg)*g"2
+(Xvr+m)*v*r + (Xrr + m*xg)*r*2 - m*yg*p*q - m*zg*p*r + Xprop ;

Y = (W-B)*cos(theta)*sin(phi)+ Yuv*u*v + (Ywp+m)*w*p + (Yur-m)*u*r
- (m*zg)*g*r + (Ypg - m*xg)*p*q + Yvv*v*abs(v) + Yrr*r*abs(r)
+ Yuudr*u”2*delta_r;

Z = (W-B)*cos(theta)*cos(phi) + (Zug+m)*u*q + (Zvp-m)*v*p + (m*zg)*p"2 ...
+ Zuw*u*w + (m*zg)*g"2 + (Zrp - m*xg)*r*p +Zww*w*abs(w) + Zgg*g*abs(q) ...
+ Zuude*u"2*delta_e;

K = -(yg*W-yb*B)*cos(theta)*cos(phi) - (zg*W-zb*B)*cos(theta)*sin(phi) ...
-(Izz-lyy)*q*r - (m*zg)*w*p + (m*zg)*u*r +Kpp*p*abs(p) + Kprop ;

M = -(zg*W-zb*B)*sin(theta) - (xg*W-xb*B)*cos(theta)*cos(phi) + ...
(Mrp - (IXx-1zz))*r*p + (m*zg)*v*r - (m*zg)*w*q + (Muq - m*xg)*u*q + ...
+ Muw*u*w + (Mvp + m*xg)*v*p + Mqg*g*abs(g)+Mww*w*abs(w)+ Muude*u”2*delta_e;

N = (xg*W-xb*B)*cos(theta)*sin(phi) + (yg*W-yb*B)*sin(theta)+ ...
(Npq - (lyy-1xx))*p*q + (Nwp-m*xg)*w*p + (Nur + m*xg)*u*r ...
+ Nuv*u*v + Nrr*r*abs(r) + Nvv*v*abs(v) + Nuudr*u~2*delta_r;

% x =[uvwp qr xpos ypos zpos phi theta psi]’
% Kalman Fu matrix
FORCES=[XYZKMN]';

% - — % MMdot

Mvindot=Minv*FORCES;
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ACCELERATIONS =[ Mvindot; %ax,ay,az,pdot,qdot,rdot
§3*Cc2*U + (€3*s2*s1-s3*C1)*V + (s3*s1+c3*c1*s2)*w; %Xdot=u
§3*c2*U + (c1*c3+s1*s2*s3)*v + (c1*s2*s3-c3*s1)*w; %Ydot=v

-S2*U + c2*s1*v + cl*c2*w; %Zdot=w
p + s1*t2*q + c1*t2*r; %Phidot
cl*q - sl*r; %Thetadot
sl/c2*q + cl/c2*r ], %Psidot

ERRORMODEL.M

function [Xdot,A,Fy] = error_model(X,Vx,Vy,Vz,a_x,a_y,a_z,glb_var,time_step)

g =glb_var(1);

R = glb_var(2);
omega_ie = glb_var(3);
lat = glb_var(4);
Beta_xdvl = glb_var(5);
Beta_ydvl = glb_var(6);
Beta_zdvl = glb_var(7);

M_ins=[ VxR Vx*tan(lat)/R 0 1 00 0 0 0;
-Vx*tan(lat)/R + Vx/R 0 0 0 1 0 0 0 0;
-Vy*tan(lat)/R + Vx/R 0 0 0 0 1 0 0 0;

-gR 0 O 0 2*omega_ie*sin(lat)+ VVx*tan(lat)/R 2*omega_ie*cos(lat)+Vx/R... 0 a z -
ay;

0 -g/R 0 -2*omega_ie*sin(lat)-Vx*tan(lat)/R 0 Vy/IR .. az 0 ax
0 0 2*g/R -(2*omega_ie*cos(lat)+Vx/R) -Vy/R 0 .. ay -ax G0
0 0 0 0 0 O 0  omega_ie*sin(lat)+Vx*tan(lat)/R

omega_ie*cos(lat)+Vx/R;

0 0 0 0 0 0 (omega_ie*sin(lat)+Vx*tan(lat)/R) 0
VYIR;

0 0 0 0 0 0 (omega_ie*cos(lat)+Vx/R) Vz/IR 0 1];
AUVPI.M

function [Theta] = AUVPI(Fy, Mz, v_dot, p_dot, r_dot, u, v, w, p, q, r, thet, W, delta_r)

%% MOMENT CARPANLARININ HESAPLANMASI
Nwv_mult = v.*abs(v) ;

Nrr_mult =r.*abs(r) ;

Nuv_mult =u.*v;

Nur_mult =u.*r;

Npg_mult =p.*q;

Nwp_mult = w.*p;

Nuud_r_mult = u.~2.*delta_r;

lyy = 3.45;

Ixx =1.77e-01;
Nuudr =-13.92;
Npq = -4.86;

% zg = 1.96e-2;
yg = -0.8e-2; %m

% xg =0;

% xb =0;

parameter_cell = {
‘Nwv' ‘Nvv_mult'
'Nrr' '‘Nrr_mult'
‘Nuv' ‘Nuv_mult'
‘Nur' ‘Nur_mult'

‘Nwp' ‘Nwp_mult' };
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z_olcum = Mz - Nuudr*Nuud_r_mult - yg*W*sin(thet) - (Npq - (lyy-1xx))*Npg_mult;

%% REGRESSION ANALYSIS
X_reg=];
for i = 1:length(parameter_cell)
eval( ['X_reg = [X_reg ' parameter_cell{i,2} ']; 1)

end

NDP =size(X_reg,1);

np = size(X_reg,2); % Number of normal equations

cr = corrcoef(X_reg) ; % Regressor correlation coefficients

Theta = inv(X_reg™X_reg)*X_reg'*z_olcum % Ordinary Least Squares Estimation
check = inv(X_reg™*X_reg)*X_reg'*X_reg;

y_est = X_reg*Theta; % Model equation

v_err =z_olcum - y_est; % Residuals

X_m = mean(X_reg);

W_cov = cov(X_reg)

invW = iwishrnd(W_cov,np);

T_sqr = NDP*(x_m' - Theta)"*invW*(x_m' - Theta)

F_stat = (NDP - np)/(np*(NDP-1))*T_sqr
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