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Tezin Enstitüye Verildiği Tarih: 2 Mart 2007
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HIGH PERFORMANCE DYNAMICAL MODELING OF COMPLEX

TOPOLOGY SYSTEMS

SUMMARY

A mechanical system is said to be in a complex topology when itincludes multiple

subgroups, which may include one or more of the serial topology, tree topology and

closed topology systems. These subgroups can be further classified according to their

actuation (under-actuated or fully-actuated), accordingto their manipulability (kine-

matically deficient, full DOF or redundant) and according totheir constraints (holo-

nomic or nonholonomic). Out of all possible configurations,we identified the issues

and provided the solutions. For example, in the pseudo-joint method we first augment

the system with additional joints called pseudo joints and then remove them from the

system by constraints called pseudo-torques. These constraints actually correspond to

stress along the pseudo-joints. Therefore, for the price ofstress computation, we ob-

tain full propagation of forces and torques including the constrained ones throughout

the system. Our goal from the forward dynamics problem, on the other hand, is to

solve for the complete force/torque and acceleration distribution of the system includ-

ing those at the constraints. The methodology presented is modular so as to apply no

matter how complicated the systems is. Mass matrix factorization and inversion is also

an issue for large order systems. A modified order-n algorithm is embedded to enhance

the performance. We believe that the application of our algorithm to complex topology

systems with nonholonomic constraints is the domain where it fits best.

xii



KOMPLEKS TOPOLOJ İ SİSTEMLER İN Y ÜKSEK PERFORMANSLI

DİNAM İK MODELLEMES İ

ÖZET

Kompleks topoloji sistemler çoklu rijid cisim dinamiğinin en üst kümesini oluşturur.

Bu küme içerisinde seri topoloji, ağaç topolojisi ve kapalı çevrim topoloji bulunur.

Ayrıca tahrik düzenine göre eksik-tahrikli ya da tam-tahrikli sistemler, serbestlik dere-

celerine göre de kinematik-yeterli ya da kinematik-yetersiz, kısıtlarına göre holonomik-

olan ya da holonomik-olmayan olarak sınıflandırılabilirler. Bütün bunların kombinasy-

onları değerlendirildiğinde ortaya çıkan problemler anlatılmış ve bunlar için yöntemler

geliştirilmiştir. Örnek olarak kinematik yetersiz manipulatörler, çalışma uzaylarında

geçerli bütün konfigürasyonlara ulaşmak için gereken serbestlik derecelerinden (SD)

daha azına sahip olan manipülatörlerdir.Üç boyutlu çalışma uzayı için bu durum, bir

manipülatörün serbestlik derecesinin (SD) altıdan daha küçük olmasına karşı düşer.

Çünkü üç boyutlu çalışma uzayına sahip kinematik yeterliliği olan bir manipülatörün

uç noktası, üç boyutta dönme ve üç boyutta öteleme olmak üzere toplam altı boyutlu

bir manifold tanımlar. Birlikte çalışan manipülatörlerden oluşan bir sistem üzerindeki

kuvvet ve moment dağılımlarını hesaplayabilmek için sistemin Jakobiyen matrisinin

sütunlarının bütün kombinasyonları bu manifoldu tamamıyla tarayabilmelidir. Bundan

dolayı literatürde genellikle manipülatörlerin kinematik yeterliliği ve tekil durumda

olmamaları bu problemin çözümüne ön koşul olarak getirilmektedir. Birlikte çalışan

manipülatörlerin dinamik analizinde kinematik yeterlilik ön koşulunun kaldırılması

amacıyla manipülatörlerin taşıdığı yükü bir mobil platform olarak modellemek ve

gerektiğinde sisteme “sözde eklem” eklemek olarak özetlenebilecek bir yöntem tanıtıl-

mıştır.
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1. INTRODUCTION

A manipulator is a mechanical device generally built as a chain of structurally rigid

links articulated by rotary or sliding joints which contribute as a degree of freedom

(DOF). Multiple manipulators that work together to performa common task are called

cooperating manipulators.In this regard, a multibody system forming a closed-kinematic

chain, from the modeling perspective, is equivalent to cooperating manipulators. In

real life, there is a good likelyhood that a mechanical system has multiple open and/or

closed-kinematic chains. We call such system acomplex topology system.

Most mechanical systems are subject to certain auxiliary conditions called constraints.

Keen understanding of the motion and the interaction of subsystems some of which

may be constrained is the essence of multibody dynamics. This can only be achieved

by through analysis using particular methodology which provides great insight into

the structure in a concise manner. The most concise way of examining physical phe-

nomena can be carried out through the use of vector analysis.Since the formulation of

Newton-Euler, when compared to that ofLagrange-Euler, provides greater insight into

the structure of the rigid multibody dynamics, the core of the methodology presented

in this dissertation isNewton-Eulerbased dynamic modeling methodology using vec-

torial representation.

1.1 Problem Statement and Motivation

For the forward dynamics problem, inverse of the mass matrixis needed. In general-

ized coordinates, mass matrix isn×n matrix wheren is the number of links. Generally

speaking,n3 operations are required to invert a nonsparcen × n matrix. Therefore,

its complexity is said to beO(n3). If n is a large number, this becomes a major is-

sue regarding the overall performace of the computation. Onthe other hand, utilizing

the properties of the mass matrix, one can reduce the complexity of this process to
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O(n). In this thesis, the factorization and inversion techniqueis adopted from [1] and

modified to broaden its applicability.

Manipulators can be classified into a few categories. If the number of actuators to drive

individual joints is equal to or less than the number of DOF ofthat manipulator than

it is called afully actuatedor anunderactuatedmanipulator, respectively. Depending

upon having more, same, or less DOF to achieve any admissibleconfiguration in its

workspace, a manipulator is called aredundant, full DOF, or kinematically deficient,

in the order given. Full DOF and redundant manipulators temporarily may become

kinematically deficient when they are at singularity.

Generally speaking, the load at the end effector of a manipulator is known when deal-

ing with the dynamics of a serial manipulator. If the end effector of a manipulator is

in contact either with that of another manipulator or with the environment, the com-

putation of induced forces and torques at the contact is not astraight forward task.

Obviously, dynamical modeling of complex topology systemsis a major challenge.

Often times, forward dynamics problem of a complex topologysystem means to solve

for the acceleration of its center of mass when the applied torques or forces are given.

These are usually over simplified models that lack inner dynamics of the system. Our

goal from the forward dynamics problem, on the other hand, isto solve for the com-

plete force/torque and acceleration distribution of the system including those at the

constraints. The algorithms known in the literature deal with this problem only when

the manipulators are fully actuated and are not kinematically deficient. Our challenge

is to remove these limitations.

A manipulator does not need to be in the form of a robotic arm. In fact a bicycle, for

example, can very well be considered as a cooperating manipulator if each wheel is

regarded as a manipulator subject to nonholonomic constraint. To be able to compute

the traction forces between the wheel and the terrain and even perform a stress analysis

on the spokes of the wheel motivates us. One should note that the constraint at the con-

tact point of a pure rolling wheel is anonholonomicconstraint where the generalized

velocity satisfies an auxiliary condition that is not expressible as a function of its gen-

eralized position. We believe that the application of our algorithm to complex topology

systems with nonholonomic constraints is the domain where it comes to fruition.
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1.2 Historical Review of Related Studies

To understand what had been available in the literature by the time the ideas in this dis-

sertation were defended is very important to assess the contributions listed in the next

section. Therefore, this section is dedicated for literature review which is divided, for

clarity purposes, to five subsections;O(n) algorithms, spatial operators in multibody

dynamics, underactuated systems, kinematically deficientsystems, nonholonomic sys-

tems.

1.2.1 O(n) algorithms

Armstrong [2] presented one of the first results inO(n) formulation of multi-body

dynamics. The method was based on a Newton-Euler formulation, and it could model

chain systems with spherical joints for the forward dynamics problem. Shortly after

that, Walker and Orin [3] presented theirO(n) algorithm also based on a Newton-Euler

formulation.

Several studies yieldingO(n) formulations for rigid body dynamics rooted in Kane’s

method [4, 5]. One of these works was done by Rosenthal [6] whopresented an algo-

rithm that performs about 200 multiplication and 200 addition per degree of freedom

in an open loop system. Another researcher needed to be mentioned here is Anderson

whose work is explained next.

Based on Kane’s method, Anderson [7] presented an algorithmwhich accommodates

closed loop topologies inO(n). The algorithm consist of three recursive steps: calcu-

lation of velocities from base through tip, calculation of forces through base, and fi-

nally, calculation of accelerations through tip. The proposed method first deems some

of the joints to be cut by removing the constraints so that closed loops become open

loops. After performing the velocity, force and acceleration propagations, constraint

forces are considered. In finding these forces, proposed method introduces an advanta-

geous approach over penalty formulation [8], constraint stabilization [9], and stabilized

penalty procedures [10] based on Lagrange multipliers. Thechallenge with finding the

multipliers, or constrained forces in Anderson’s case, is to avoid drift resulting from

the roundoff error characteristic of digital computer floating point operations which

may cause numerical instability. The proposed alternativeapproach adds a PD-type
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control law to the constrained forces to limit the constraint violation. More precisely,

proportional and derivative terms include kinematic constraint and its time derivative,

respectively.

An Order-N formulation of multi-body tethered systems has recently been studied [11].

Although this is not a rigid body dynamics, once the equationof motion is driven the

rest of the algorithm is analogous to that of rigid body dynamics. The proposed method

for solving the equation of motion for accelerations inO(n) is to factor generalized

mass matrix in a way similar to the one proposed in spatial operator algebra [1] with

certain differences still yielding to same results. As an example to such differences

it can be shown that after coordinate and velocity transformations to inertial frame,

kinetic energy formulation is used to factor generalized mass matrix.

As another approach based on velocity transformation, Keat[12] has reported anO(n)

recursive algorithm for the Newton-Euler equations. This work is similar to Spatial

Operator Algebra and differs in that constraint forces are calculated only at so called

cut jointswhich are, essentially, the minimal set of joints in the absence of which the

topology of the system changes from closed-loop to open-loop.

Flexible links and flexible joints have been considered in [13]. For closed kinematic

chain systems, [14] obtains dynamical modeling based on thetechnique given by

[15]. Although all of these algorithms are claimed to be computationally efficient,

the method they use is stillorder n3 (specifically, the number of computational op-

erations required at each temporal integration step increase as a cubic function of the

number of system generalized coordinatesn). Multibody dynamical algorithm with

order nperformance (indicating that the number of numerical computations increases

as a linear function of the number of generalized coordinates) has been the focus of

many researchers [2, 16, 17, 18, 6, 19], since it was first introduced by Vereshchagin

[20] in 1974.

What needs to be underlined here is the fact as stated in [21] that “all of theO(n)

algorithms are closely related and have the same inherent structure.”

1.2.2 Spatial operators in multibody dynamics

Spatial quantities have been known for many decades. For example, at the beginning

of the 20th century, it was employed by Ball [22] in thetheory of screws. In 1983,
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Featherstone [16] developed anO(n) method usingarticulated body inertiaswhich is

derived utilizing the spatial algebra. It is applicable to open chain systems, and it is

more efficient than that of Armstrong [2].

In 1987, Guillermo Rodriguez [23] utilized spatial quantities to solve the rigid body dy-

namics as a two point boundary value problem. This work was inspired from Kalman

filtering and Bryson-Frazier smoothing techniques yielding a newO(n) algorithm

for forward and inverse dynamics of multi-body systems forming open-chain and/or

closed-chain systems [24, 25]. In 1991, Abhinandan Jain [21] presented a discussion

on comparison of several algorithms for serial rigid multibody system dynamics by uti-

lizing the tools provided by the spatial operator algebra(SOA). This helped to establish

the bridge between SOA and other multibody dynamics algorithms. Applications of

SOA has been presented by Rodriguez, Kreutz-Delgado and Jain [26, 1]. The research

given here is rooted in these studies.

Jain and Rodriguez has applied SOA to flexible multibody systems [27], linearized sys-

tems [28], molecular dynamics [29], and decomposable systems based on their joints

[30, 29]. More recently, sensitivity analysis of SOA has been published [31]. Yen and

Jain has published ROAMS: rover analysis modeling and simulation software based

on SOA [32].

1.2.3 Underactuated systems

Modeling of underactuated mechanical systems has been studied, such as [33], in the

robot dynamics field for more than a decade. Among such work, there are a few pa-

pers which address the dynamic modeling of underactuated closed-kinematic-chain

systems. Of these, there are some that were misidentified as underactuated systems,

such as [34]. When dealing with kinematic loops, one needs tobe careful about that it

is not sufficient to call it an underactuated system just because there is a passive joint

in a system. As stated earlier, there has to be an uncontrolled DOF in the system. If

a passive joint has a constraint such that it is kinematically dependent on an actuated

joint, then that passive joint does not constitute for an uncontrolled DOF. For instance,

let us take a planar four-bar linkage mechanism into consideration. As well-known,

there is only one DOF in a planar four-bar linkage mechanism,and therefore actuat-

ing only one joint while leaving the other three joints passive makes the system fully
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actuated.

Iannitti and Lynch [35] presented a case study in kinematically controllable underactu-

ated systems as a minimum control-switch motions for the snakeboard. Another work

given in [36] introduces an underactuated system in the formof biped walking robot.

This system was modeled for two separate cases consisting ofthe swing phase where

only one foot is in contact with the ground, and the impact phase where both feet are

in contact with the ground. The impact phase was assumed to last for an infinitesimal

time and, therefore, was not included in the overall plant model.

There are some notable works on the control of underactuatedsystems such as the

book by Fantoni and Lozano [37], and [38] by Ortegaet.al introducing a methodology

namedinterconnection and damping assignmentfor the stabilization of a underactu-

ated systems.

1.2.4 Kinematically deficient systems

Although constrained manipulators and kinematically redundant manipulators have

been studied extensively, such as the work by Bruyninckx andKhatib [39], kinemat-

ically deficient manipulators have not attracted enough attention from the scientific

community. Abdel-Maleket al. [40] studied the workspace issues of kinematically

deficient manipulators. Dynamics of two-finger grippers as kinematically deficient

manipulators was studied by Prattichizzo and Bicchi [41]. Teleoperated surgical robots

were considered in both kinematically redundant and kinematically deficient cases by

Funda et al. [42]. Mobility criterion was considered by Ricoet.al [43].

1.2.5 Nonholonomic systems

Analytical formalism of Euler and Lagrange was believed to be applicable to any me-

chanical system until as late as 1894 when Hertz [44] introduced the existence of kine-

matic constraints that impose no restrictions on the possible configurations. Having

the distinction between holonomic and nonholonomic constraints recognized, many

researchers (̌Caplygin, Volterra, Appell, Maggi, and others) proposed methodologies

to solve the dynamics of nonholonomic systems.

In order to analyze a nonholonomic system like a holonomic one, constraint forces are
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introduced via the Lagrange multipliers. However, the computation of the multipliers

is usually not straight forward. Among others we can mentionHamel [45] who in

1949 developed a method to eliminate the necessity of explicit computation of non

working constraint forces. However, Hamel’s method introduces other detailed and

lengthy computations which require perhaps as much computation as the constraint

forces themselves. Later in 1961, Kane [46] developed a method to eliminate non

working constraint forces with much less computational effort than that of Hamel.

Orthogonal complement based methods of dynamics consist ofdetermining a matrix

whose columns span the nullspace of the matrix of velocity constraints. The idea

of the orthogonal complement of velocity constraints in thederivation of dynamical

equations is not new, for it has been extensively used in multibody dynamics. In 1991

Saha and Angeles [47] make a use of this method in their algorithm.

Dynamics and control of multiple cooperating manipulatorswith rolling contacts by

Deo and Walker [48] models the rolling contact as an unactuated joint of the manipula-

tor. Dynamic Modeling and Adaptive Traction Control for Mobile Robots was studied

by Albagul [49]. A mobility analysis method of closed-chainmechanisms with over-

constraints and non-holonomic constraints was examined byKim et.al. [50]. From the

practical point of view, it needs to be mentioned here that Sorensen’s Ph.D. thesis [51]

includes implementation on a four-wheel-drive four-wheel-steer vehicle.

1.3 Contributions

The contributions made in this thesis can be classified underthe following categories:

• Kinematically Deficient Cooperating Manipulators:The numerical problems

associated with the computation of the interaction forces and torques, among

themselves and/or with the environment, of multiple manipulators at least one

of which is kinematically deficient is addressed. A new concept named “pseudo

joint” has been introduced as a methodology to solve such complicated systems.

• Cooperating Underactuated Systems:The roots of the algorithm on the underac-

tuated systems can be found in [30] which presents the dynamics of underactu-

ated open chain manipulator in order n formulation. Our contribution is to extend

7



this algorithm to include underactuated manipulators forming closed kinematic

loop on a free-flying space platform.

• O(n) Formulation: Mass matrix factorization, which is the core of theO(n)

formulation, has been reformulated to ease the use of it.

• Nonholonomic systems:Application of the proposed algorithm to nonholonomic

systems enjoys a preeminence among the algorithms known in the literature for

its use as a high performance observer of the contact forces between tires and

the road.

Next section outlines the organization of this thesis.

1.4 Thesis Outline

Following the introductory material in this chapter, the thesis begins with the dynamics

of open and closed kinematic chain systems in chapter 2, where both open and closed-

kinematic chain systems are considered to be mounted on a mobile platform instead

of a fixed one so that the equation of motions are applicable toa wider set of systems.

Later in the thesis, we benefit from this perspective.

The performance of the algorithm is determined by the numberof operations necessary

for the inversion of the generalized mass matrix. In chapter3, modified mass matrix

factorization and inversion technique based on [1] is explained in detail.

Within a complex topology system, there are two distinct cases that needs to be ad-

dressed separately. These are namely underactuated and kinematically deficient struc-

tures of closed-kinematic chains. Dynamical modeling theory has been developed for

both of these cases in chapter 4 which constitutes for the theoretical foundation of the

thesis.

Application and results are given in chapter 5. Finally, chapter 6 provides the conclud-

ing remarks.
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2. DYNAMICS OF SERIAL AND CLOSED TOPOLOGY SYSTEMS

A system of rigid bodies connected by hinges or sliders form either one or the combina-

tions of three different structures; serial, tree and closed topology systems, an example

for each of which is given in Figure 2.1. Any of the two bodies in both serial and

tree topology systems has a unique path. The difference in between the two is that a

serial topology system has only one terminal body while a tree topology system has

multiple terminal bodies. As for the closed topology system, there exist a non-unique

path between any two bodies at the system.

Out of the three topologies mentioned above, the serial rigid multibody system is the

most basic and the simplest structure. Therefore, it is an ideal platform for laying

out the ingredients of the dynamic modeling algorithm used in this thesis. Closed

topology systems, on the other hand, constitute for the difficult case where the closure

forces and torques need to be computed. Consequently, the dynamical modeling of

these two distinct cases will be covered in this chapter.

2.1 Notation

The notation introduced in this section applies not only to this chapter but also to the

rest of the thesis.

Let α represent any variable in this thesis. Three indicesa, b, c can be used asabαc to

mean the following. The superscripta indicates the number of the associated manipu-

lator, the left subscriptb indicates the dimension of the variable, and the right subscript

c indicates the number of the link (body) being considered.

The algorithm presented here utilizes a basis-free vectorial representation. Vectors

in 3 dimensional space are represented with an overarrow (~x). Spatial vectors in 6

dimensional space are represented with two overarrows (~~x). In mathematical sense,

vectors in all other cases are represented as underlined (x). For matrices, bold capital
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Figure 2.1: Examples of (a) a serial topology system, (b) a tree topology system, and
(c) a closed topology system. Here TB stands for “Terminal Body.”
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letters (X) or caligraphic fonts (X ) are used. Some key vectors used throughout the

thesis are displayed in Figure 2.2.

k,k+1

i

f
k

i

f
k+1

i
k+1

i
O

h
k+1

i

θ
k+1

i

k,c
i

h
k

θ
k

i

i

τ
k+1

i

i

kO

τi
k

Center of Mass

Link k of Arm i

Figure 2.2: Vectors associated with linkk of the manipulatori

2.2 Serial Manipulator On A Mobile Platform

A serial manipulator constitutes a serial topology system whose dynamics will be given

in this section. Although the dynamics of such systems is well-known and can be found

in many textbooks such as [52, 53, 54, 55], here we will present the methodology
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very similar to the one introduced in [1] so that the basic ingredients of the dynamic

modeling algorithm are introduced. Let us start with the kinematics.

2.2.1 Kinematics

Angular and linear link velocities of theith manipulator propagate from linkk − 1 to

link k for a revolute joint as follows:

i~ωk = i~ωk−1 + i~hk
iθ̇k (2.1)

i~vk = i~vk−1 + i~ωk−1 ×
i~ℓk−1,k = i~vk−1 −

i~ℓk−1,k ×
i~ωk−1

= i~vk−1 −
iLk−1,k

i~ωk−1 (2.2)

whereiLk−1,k
△
= ( i~ℓk−1,k×) is an operator in the form of a skew symmetric matrix

given as

iLk−1,k =




0 −iℓ(k−1,k)z

iℓ(k−1,k)y

iℓ(k−1,k)z
0 −iℓ(k−1,k)x

−iℓ(k−1,k)y
iℓ(k−1,k)x

0




and [iℓ(k−1,k)x

iℓ(k−1,k)y

iℓ(k−1,k)z
]T is the representation of~ℓk−1,k in the reference

frame. Equations (2.1) and (2.2) can be written in a matrix form as follows:

i~~V k = iΦk,k−1
i~~V k−1 + i~~Hk

iθ̇k (2.3)

where, link spatial velocity is defined as

i~~V k
△
=




i~ωk

i~vk


 (2.4)

and the propagation operator is defined as

iΦk,k−1
△
=




3I 30

−iLk−1,k 3I


 (2.5)

and, finally, axis of rotation spatial vector is defined as

i~~Hk
△
=




i~hk

~0


 (2.6)
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If it is a prismatic joint, all we have to do is to change the definition of i~~Hk in (2.6) as

i~~Hk
△
=




~0

i~hk


 (2.7)

Next, we write the spatial velocities of each link from base to tip (outboard) of armi

on a mobile base as

i~~V o =
~~V b

i~~V 1 = iΦ1,0
i~~V o + i~~H1

iθ̇1

i~~V 2 = iΦ2,1
i~~V 1 + i~~H2

iθ̇2
...

i~~V ni
= iΦni,ni−1

i~~V ni−1 + i~~Hni

iθ̇ni

(2.8)

whereni is the number of DOF of theith manipulator. Figure 2.3, which shows a con-

ceptual serial manipulator on a mobile platform, helps to understand the propagation

given in (2.8).

Using the state transition property of the propagation matrix

iΦa,b
iΦb,c = iΦa,c (2.9)

we rewrite the equations in (2.8) so that the spatial velocity terms (except for the base

spatial velocity) on the right side of the equations are eliminated

i~~V 1 = iΦ1,0
~~V b + i~~H1

iθ̇1

i~~V 2 = iΦ2,0
~~V b + iΦ2,1

i~~H1
iθ̇1 + i~~H2

iθ̇2
...

i~~V ni
= iΦni,0

~~V b + · · · + iΦni,ni−1
i~~Hni−1

iθ̇ni−1 + i~~Hni

iθ̇ni

(2.10)

Equations in (2.10) can be written in a matrix form as follows:

iV = iΦ( iH iθ̇ + iΦb
~~V b) (2.11)

where,

iV =




i~~V 1

i~~V 2

...

i~~V ni




iΦ =




6I 60 · · · 60

iΦ2,1 6I · · · 60

...
...

. . .
...

iΦni,1
iΦni,2 · · · 6I




iθ̇ =




iθ̇1

iθ̇2
...

iθ̇ni



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Figure 2.3: Serial manipulator on a free-flying mobile platform
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iH =




iH1 0

iH2

. . .

0 iHni




iΦb =




iΦ1,0

60

...

60




Tip velocity is written as

i~~V t = iΦt
iV (2.12)

where,

iΦt =
[

60 · · · 60
iΦni+1,ni

]

Substituting equation (2.11) into (2.12), we get

i~~V t = iJ iθ̇ + iΦt,b
~~V b (2.13)

whereiJ which is the Jacobian operator of theith manipulator andiΦt,b are defined

as

iJ
△
= iΦt

iΦ iH iΦt,b
△
= iΦni+1,0 = iΦt

iΦiΦb

This concludes the kinematics of an open-chain manipulator.

2.2.2 Dynamics

In order to move to dynamical analysis, we need to take the time derivative of equations

(2.1) and (2.2).

i~̇ωk = i~̇ωk−1 + i~hk
iθ̈k + i~ωk ×

i~hk
iθ̇k

= i~̇ωk−1 + i~hk
iθ̈k + i~ωk × (i~ωk −

i~ωk−1)

= i~̇ωk−1 + i~hk
iθ̈k + i~ωk−1 ×

i~ωk (2.14)

i~̇vk = i~̇vk−1 + i~̇ωk−1 ×
i~ℓk−1,k + i~ωk−1 × (i~ωk−1 ×

i~ℓk−1,k)

= i~̇vk−1 −
i~ℓk−1,k ×

i~̇ωk−1 + i~ωk−1 × (i~ωk−1 ×
i~ℓk−1,k) (2.15)

Equations (2.14) and (2.15) can be written in a matrix form asfollows:

i ~̇~Vk = iΦk,k−1
i ~̇~Vk−1 + i ~~Hk θ̈k + i~~ak (2.16)
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wherei~~ak is the spatial bias accelerations.

i~~ak =




i~ωk−1 ×
i~ωk

i~ωk−1 × (i~ωk−1 ×
i~ℓk−1,k)




Stacking up all of the link accelerations of armi using equation (2.16), we get

iV̇ = iΦ(iH iθ̈ + ia + iΦb
~̇~V b) (2.17)

Now, we will write the propagation of link torques and forces. This cannot be done

outboard because of the boundary conditions. Hence, it willbe done inboard. In

this thesis, the term outboard is used to mean the traverse from base towards tip, and

inboard is used to mean the traverse from tip towards base.

i ~Tk = i~Tk+1 + i~ℓk,k+1 × ~fk+1 + i~ℓk,c ×
i~̇vk

imk +
d

dt
(iIk

i~ωk) (2.18)

On the right hand side of equation (2.18), the first and the second terms come from

joint k + 1, the third term is due to translation, and the last term is dueto rotation.

Similar to torque propagation, the following is written forthe link forces:

i~fk = i~fk+1 + imk

d

dt
(i~vk + i~ωk ×

i~ℓk,c) (2.19)

Equations (2.18) and (2.19) can be written in a matrix form asfollows:

i~~F k = iΦT
k+1,k

i~~F k+1 + iMk
i ~̇~V k + i~~bk (2.20)

wherei~~F k is the link spatial forces,iMk is the link mass matrix, andi~~bk is the link

spatial forces remainder terms, as defined below:

i~~F k =




i ~Tk

i~fk


 iMk =




iIk
imk

iLk,c

−imk
iLk,c 3I

imk




i~~bk =




i~ωk ×
iIk

i~ωk

imk
i~ωk × (i~ωk ×

i~ℓk,c)




Stacking up all the link spatial forces of armi using equation (2.20), we get

iF = iΦT (iM iV̇ + ib+ iΦT
t
i~~F t) (2.21)
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where

iF =




i~~F 1

...

i~~F ni




iM =




iM1 0

. . .

0 iMni




ib =




i~~b1
...

i~~bni




Next, we substitute equation (2.17) into (2.21),

iF = iΦT ( iM iΦ iH iθ̈ + iM iΦ ia+ iM iΦ iΦb
i ~̇~V b + ib+ iΦT

t
i~~F t) (2.22)

Here, we are going to utilize the fact that the applied torques are the projection of the

link spatial forces along the axes of rotation. This is mathematically stated as:

iT = iHT iF (2.23)

Therefore, premultiplying the equation (2.22) byiHT , the left hand side becomes the

applied torques. This yields the inverse dynamics of armi as follows:

iT = iM iθ̈ + iC + iMb
i ~̇~V b + iJ T i~~F t (2.24)

where

iM = iHT iΦT iM iΦ iH

iC = iHT iΦT ( iM iΦ ia + ib)

iMb = iHT iΦT iM iΦ iΦb

Here, iM is the generalized mass matrix,iC is the bias terms including coriolis and

gravity, iMb is the mass matrix regarding the dynamic interaction between the base

and theith arm.

2.3 Cooperating Manipulators On A Mobile Platform

Dynamical modeling of cooperating manipulators is a subsetof dynamical modeling

of cooperating manipulators on a mobile platform whose conceptual drawing is shown

in Figure 2.4. In this section, we will study this larger set.

Mobile platform, also known asfree flying platform, refers to, in this thesis, a plat-

form that is free to move without constraints. Its bias spatial force, spatial force and

generalized mass matrix are given as:
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Figure 2.4: Cooperating manipulators with rigid grasp on a free-flyingmobile plat-
form
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~~bb =




~ωb × Ib~ωb

mb~ωb × (~ωb × ~ℓb,c)


 (2.25)

~~F b =



~Tb

~fb


 (2.26)

Mb =




Ib mbLb,c

−mbLb,c 3Imb


 (2.27)

where,Lb,c is the zero matrix if the origin of the base frame is chosen such that it

is coincident with the center of mass of the platform. Otherwise, Lb,c is the skew-

symmetric matrix representing the operator~ℓb,c×, i.e., the cross product of the vector

from the origin of the base frame to the center of mass of the platform.

In order to get the dynamical model, we need to stack the accelerations given for an

individual manipulator in (2.17) for all the manipulators in the system. Lettingp be

the number of arms (manipulators) on a mobile platform, we have

V̇ = Φ(Hθ̈ + a) (2.28)

where,

V =




~~V b

1V

2V
...

pV




θ̇ =




~~V b

1θ̇

2θ̇
...

pθ̇




θ̈ =




~̇~V b

1θ̈

2θ̈
...

pθ̈




a =




~~ab

1a

2a
...

pa




Φ =




6I 0 0 · · · 0

1Φ 1Φb
1Φ 0 · · · 0

2Φ 2Φb 0 2Φ · · · 0

...
...

...
. . .

...

pΦ pΦb 0 0 · · · pΦ




H =




6I 0 0 · · · 0

0 1H 0 · · · 0

0 0 2H · · · 0

...
...

...
. . .

...

0 0 0 · · · pH




Gravity is introduced to the system by assigning

~~ab =



~0

~g


 (2.29)
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where~g is the gravitational acceleration vector. We first look at the spatial force prop-

agation for all of the arms.

F = ΦT (MV̇ + b+ ΦT
t F t) (2.30)

where,

F =




~~F b

1F

2F
...

pF




b =




~~bb

1b

2b
...

pb




F t =




1~~F t

2~~F t

...

p~~F t




M =




Mb 0 0 · · · 0

0 1M 0 · · · 0

0 0 2M · · · 0

...
...

...
. . .

...

0 0 0 · · · pM




Φt =




0 1Φt 0 · · · 0

0 0 2Φt · · · 0

...
...

...
. . .

...

0 0 0 · · · pΦt




Just the same way as was done for a single manipulator in (2.23), now we write the

following equation to single out the applied torques from (2.30) for the complete sys-

tem.

T = HTF (2.31)

We now obtain the equation of motion in the form of inverse dynamics from (2.30) and

(2.31).

T = Mθ̈ + C + J TF t (2.32)

where

M
△
= HTΦTMΦH (2.33)

=




bMb
1MT

b
2MT

b · · · pMT
b

1Mb
1M 0 · · · 0

2Mb 0 2M · · · 0

...
...

...
. . .

...

pMb 0 0 · · · pM



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bMb = Mb +
p∑

i=1

iΦT
b
iΦT iM iΦ iΦb (2.34)

C
△
= HTΦTMΦa+ HTΦT b (2.35)

=




Cb

1C

2C
...

pC




Cb = Mb
~~ab +

~~bb +
p∑

i=1

iΦT
b
iΦT

(
iM iΦ(iΦb

~~ab + ia) + ib
)

(2.36)

and the Jacobian

J
△
= ΦtΦH (2.37)

=




1Φt,b
1J 0 · · · 0

2Φt,b 0 2J · · · 0

...
...

...
. . .

...

pΦt,b 0 0 · · · pJ




Therefore, the equation of motion regarding the forward dynamics is obtained as

θ̈ = M−1
(
T − C − J TF t

)
(2.38)

2.3.1 Computation of the termJ̇ θ̇

Tip velocity for an arm was given in (2.12). This can be written for the complete

system as

V t = ΦtV (2.39)

where

V t =




1~~V t

2~~V t

...

p~~V t



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Taking the time derivative of (2.39) and utilizing (2.28) and (2.37), we can write the

tip accelerations as

V̇ t = ΦtV̇ + Φ̇tV

V̇ t = ΦtΦ(Hθ̈ + a) + Φ̇tV

= J θ̈ + ΦtΦa + Φ̇tΦHθ̇ (2.40)

SinceV t = J θ̇ by definition, we can take the time derivative of it and compare the

result by (2.40):

V̇ t = J θ̈ + J̇ θ̇ (2.41)

= J θ̈ + ΦtΦa + Φ̇tΦHθ̇ (2.42)

As a result of a comparison between (2.41) and (2.42), we can conclude that

J̇ θ̇ = ΦtΦa + Φ̇tΦHθ̇ (2.43)

2.3.2 Computation of the tip forces

In order to obtain the dynamical model of the cooperating manipulators, we need to

consider a common payload forming loops or closed kinematicchains. In this case,

the tip forces need to be calculated. Let us first take a look atthe kinematic constraint

due to holding the common load. As displayed at Figure 2.5, the idea is to propagate

the tip velocities to a common point.

VtV1
t

Vc
2

Figure 2.5: An example of cooperating manipulators holding a common object
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V t = J θ̇ = A
~~V c (2.44)

Kinematic constraint given by equation (2.44) has a dual pair on the dynamical side:

ATF t =
~~F c (2.45)

where~~F c is the spatial force vector due to common load whose mass, acceleration and

bias force are represented asMc, V̇ c, bc. Hence, the spatial force due to common load

interaction is also equal to

~~F c = Mc
~̇~V c +

~~bc (2.46)

If we solve (2.46) for~̇~V c and using (2.45) we get

~̇~V c = M−1
c ATF t −M−1

c

~~bc (2.47)

On the other hand, taking time derivative of (2.44) provides

V̇ t = J θ̈ + J̇ θ̇ = A
~̇~V c + ~~ac (2.48)

where~~ac is the bias spatial accelerations of the common load. Here, the termJ̇ θ̇ is

conveniently obtained as shown in (2.43). From (2.47) and (2.48), we can write

J θ̈ = AM−1
c ATF t − AMc

~~bc + ~~ac − J̇ θ̇ (2.49)

While multiplying (2.38) byJ provides

J θ̈ = JM−1T̄ − JM−1J TF t (2.50)

By equating (2.49) and (2.50),F t can be solved from

ΩF t = JM−1J T −AMc
~~bc + ~~ac − J̇ θ̇ (2.51)

where

Ω = JM−1J T + AM−1
c AT (2.52)

provided thatΩ is full rank.

All of these derivations yield the following equation of motion of forward dynamics

θ̈ = DT̄ + E (2.53)
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where

D = M−1 −M−1J TΩ−1JM−1

E = −M−1J TΩ−1(AM−1
c

~~bc − ~~ac + J̇ θ̇)

Hence, equation of motion for cooperating manipulators on amobile platform is ob-

tained in a compact form as given in equation (2.53).

2.4 Discussion

Step by step details for obtaining the equation of motion of aserial manipulator as well

as a cooperating manipulator on a mobile platform have been provided in this chapter.

It needs to be highlighted that no arm can be at a singularity in order to compute the tip

forces in a closed kinematic chain. This restriction will beremoved later in the thesis.
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3. HIGH PERFORMANCE COMPUTATION OF MULTIBODY SYSTEM

DYNAMICS

Dynamical modeling of multibody systems, in general, refers to forward dynamics

problem which requires inversion of the mass matrix. In generalized coordinates, mass

matrix isn× n matrix wheren is the number of links. Generally speaking,n3 opera-

tions are required to invert a nonsparcen× n matrix. Therefore, its complexity is said

to beO(n3). If n is a large number, this becomes a major issue regarding the over-

all performace of the computation. On the other hand, utilizing the properties of the

mass matrix, one can reduce the complexity of this process toO(n). Therefore,high

performance algorithmin particular for the multibody dynamics, refer to the inversion

technique of the mass matrix.

A through review of literature onO(n) was given in Chapter 1 and more detail on

the subject can be found in [56]. Out of the algorithms available in the literature,

here we will benefit first from the work by Featherstone [16] and then the work by

Rodriguez, Jain, and Kreutz [1] in which the formulation is based on the convention of

numbering the links from tip towards base (inboard) where the base is called “n + 1”

and the end-effector is called “0” for an n link manipulator. This way of modeling is

very uncommon and often times it is considered inconvenientas if Arabic writing were

enforced within Latin alphabet. Here, this methodology is modified to incorporate with

common manipulator models whose links are numbered from base to tip (outboard).

In addition, mobile base parameters are included so that thefactorization given in this

chapter is consistant with the formulations given in the previous chapter which includes

the mobile base.

This chapter is organized in three sections; mass matrix factorization, mass matrix

inversion, and discussions.
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3.1 Mass Matrix Factorization

The most important step in mass matrix factorization is the definition of articulated-

body inertia, IAB, introduced by Featherstone [16]. The basic idea is to detach link

i from link i − 1, and relate the relationship between its spatial force and resulting

acceleration. Based on Featherstone’s idea, we propose thefollowing recursion for the

computation of articulated-body inertias:

iIABk
= iΨT

k+1,k
iIABk+1

iΨk+1,k + iMk (3.1)

iΨk,k−1 =


I −

i~~Hk
i~~H

T

k
iITABk

i~~H
T

k
iIABk

i~~Hk


 iΦk,k−1 (3.2)

iIAB ’s are constructed for each manipulator in a recursive manner using (3.1) and (3.2)

starting fromk = ni and takingiIABni+1
= 0. Thenk is decremented untilk = 1 at

which step (3.2) is not evaluated. Finally,IAB is constructed fromiIAB ’s in the form

of a block diagonal matrix as

IAB =




Mb 0

1IAB
. . .

0 pIAB




(3.3)

Now, we can associate each joint acceleration with its link spacial force through articulated-

body inertia.

F = IAB V̇ + Z (3.4)

whereZ represents the remaining terms due to the spatial forces propagating from the

other links. Using (2.31) in (3.4) we get

T = HTF = HTIAB V̇ + HTZ (3.5)

Let ξ be the effective joint force defined asξ = T − HTZ. Hence, we have the

following equality

ξ = HTIAB V̇ (3.6)
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We are going to utilize (2.28) to substitute forV̇ . From (2.3) we know thatiΦ is a

lower-diagonal matrix which implies the fact that the elements of iV̇ are related with

their inboard set. On the other hand, we are looking for the term on the relationship

between spatial force and acceleration of the joint only without the inboard set, in other

words, a block diagonal matrix. Therefore, we need to separate the diagonal from the

off-diagonal ofiΦ whose diagonal part is an identity matrix.

V̇ = Φ(Hθ̈ + a)

= Φ(Hθ̈ + a) + Hθ̈ − Hθ̈

= Hθ̈ + (Φ − I)Hθ̈ + Φa

(3.7)

Next we define theadjacent-link propagation operator of the system

Eφ =




0 0

1Φb
1Eφ

...
. . .

pΦb
pEφ




(3.8)

where,

iEφ =




0 0 · · · 0 0

iΦ2,1 0 · · · 0 0

0 iΦ3,2 · · · 0 0

...
...

. . .
...

...

0 0 · · · iΦni,ni−1 0




(3.9)

iEkφ is the kth power of iEφ and is also−kth diagonal ofiΦ. This means thatiEkφ

is an operator propagating between the two links whose “distance” isk. The term

distance between two linksis defined as the difference of their link numbers. With this

definition, now we can write the following equality:

Φ = I +
max∑

k=1

Ekφ (3.10)

wheremax is the maximum ofni for i = 1 · · · p. Eφ is a nilpotent matrix and holds the

following property:

Φ = (I − Eφ)
−1 (3.11)
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If we use (3.10) in (3.7), we get

V̇ = Hθ̈ + EφHθ̈ +

(
max∑

k=2

Ekφ

)
Hθ̈ + Φa (3.12)

We use (3.12) in (3.6)

ξ = Dθ̈ + HTIABEφHθ̈ + HTIAB

((
max∑

k=2

Ekφ

)
Hθ̈ + Φa

)
(3.13)

where,

D = HT IAB H (3.14)

Rearranging (3.13) we get

θ̈ = D−1ξ −KHθ̈ −D−1HTIAB

((
max∑

k=2

Ekφ

)
Hθ̈ + Φa

)
(3.15)

where,

K = D−1HT IAB Eφ (3.16)

Now we go back to (3.1) and (3.2) to rewrite them in a more compact way as follows:

IAB = M + ETψ IAB Eψ (3.17)

Eψ = (I −HD−1HT IAB)Eφ (3.18)

where,

Eψ =




0 0

1Eψ
. . .

0 pEψ




(3.19)

iEψ =




0 0 · · · 0 0

iΨ2,1 0 · · · 0 0

0 iΨ3,2 · · · 0 0

...
...

. . .
...

...

0 0 · · · iΨni,ni−1 0




(3.20)

Similar to (3.10) and (3.11), the following definition and property holds forEψ

ψ
△
= (I− Eψ)

−1 = I +
max∑

k=1

Ekψ (3.21)

In addition to the equations written so far, the following lemmas are needed for the

factorization of the mass matrix.
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Lemma 1

Ψ̃
△
= ΨEψ = EψΨ = Ψ − I (3.22)

Proof: From (3.21) we haveEψ = I − ψ−1. Pre- and post-multiplyEψ by

ψ yields the equation in the lemma.

Lemma 2

ΨTMΨ = IAB + Ψ̃TIAB + IABΨ̃ (3.23)

Proof: From (3.17) we haveM = IAB − ETψ IAB Eψ. Pre- and post-multiplyM by

ψT andψ, and using (3.22) we get

ψTMψ = (ψ̃T + I)IAB(ψ̃ + I) − ψTETψ IABEψψ

yields the equation in the lemma.

Lemma 3

ψ−1Φ = I + HKΦ (3.24)

Φψ−1 = I + ΦHK (3.25)

Proof: From (3.21), (3.18) and (3.16) we have

ψ−1 = I− Eψ

= (I− Eφ) + HK

= Φ−1 + HK

Pre- and post-multiplying this byΦ yields the equations in the lemma.

Lemma 4

HT IAB Eψ = 0 (3.26)

Proof: Let us start withHT IAB Eφ. Premultiplying this byDD−1 and then using

(3.14) we get

HT IAB Eφ = DD−1HT IAB Eφ

= HT IAB HD−1HT IAB Eφ
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Taking this inHT IAB paranthesis and using (3.18) yields the equation in the lemma.

Lemma 5

HTΨTMΨH = D (3.27)

Proof: Pre- and post-multiplying (3.23) byHT andH, we get

HTΨTMΨH = HTIABH + HTΨ̃TIABH + HTIABΨ̃H

Using (3.14) and (3.22), we have

HTΨTMΨH = D + HTΨT (HTIABEψ)
TH + (HTIABEψ)ΨH

(3.26) yields the equation in the lemma.

In the light of the lemmas given above, we can achieve the LDU type factorization

of the mass matrix. The followings steps and their explanations afterwards, yield the

mass matrix factorization and its proof.

M = HTΦTMΦH (3.28)

= HT (Ψ−1Φ)TΨTMΨ(Ψ−1Φ)H (3.29)

= HT (I + HKΦ)TΨTMΨ(I + HKΦ)H (3.30)

= [(I + HKΦ)H]T ΨTMΨ(I + HKΦ)H (3.31)

= [H(I + KΦH)]T ΨTMΨH(I + KΦH) (3.32)

= (I + KΦH)THTΨTMΨH(I + KΦH) (3.33)

= (I + KΦH)T D (I + KΦH) (3.34)

(3.28) is the definition of generalized mass matrix given in (2.33). Pre-multiplyingH

by ΨΨ−1 and post-multiplyingHT by (ΨΨ−1)T , we have (3.29) in which the term

Ψ−1Φ is put in paranthesis to help understand the next step, (3.30), where the terms

in paranthesis are replaced byI + HKΦ according to (3.24). Then (3.31) is obtained

using the distribution property of the transpose operator for HT (I + HKΦ)T . Next

we use the fact that(I + HKΦ)H = H(I + KΦH) to obtain (3.32). Distributing
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the transpose over the square paranthesis, we have (3.33). Finally, we use (3.27) to

get (3.34), the factorization for which we have been aiming.(3.34) is an LDU type

factorization becauseI+KΦH is a lower diagonal matrix andD is a diagonal matrix.

3.2 Mass Matrix Inversion

The following is the key lemma for the inversion of the mass matrix.

Lemma 6

(I + KΦH)−1 = I −KΨH (3.35)

Proof: We utilize the following Matrix Inversion Lemma which can befound in many

textbooks such as [57]:

(X−1 − YQ−1Z)−1 = X−1 + X−1Y(Q − ZX−1Y)−1ZX−1 (3.36)

Now, we make the following assignments for the variables in (3.36)

X = I Z = I

Y = −KΦ Q = H

and we have

(I + KΦH)−1 = I −KΦ(I + HKΦ)−1H (3.37)

Using (3.24) in (3.37) yields the equation in the lemma.

Using (3.35), the factorization given in (3.34) yields the computationally fast inversion

of the mass matrix as

M−1 = (I− KΨH) D−1 (I −KΨH)T (3.38)

3.3 Discussion

We have studied the factorization and inversion of the generalized mass matrix. How-

ever, we need to make it clear that we do not claim the algorithm is completelyO(n)

since there are matrices due to constraints need to be inverted as well, and the factor-

ization and inversion technique presented in this chapter do not apply them. This does

not prevent it to behigh performanceunless the system is dominated by constraints.
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4. DYNAMICAL MODELING OF COMPLEX TOPOLOGY SYSTEMS

A mechanical system is said to be in acomplex topologywhen it includes multiple

subgroups; the main subgroup forms closed topology and others may form same or

different topologies. An example of such a system is shown inFigure 4.1.

The methodology so far presented is modular enough to expandfor the modeling of

complex topology systems, provided that all of the constraints are properly defined.

However, one should note that there are limitations. Each manipulator in the system

has to be non-singular and fully actuated. In other words, noarm can be kinematically

deficient and/or underactuated. These are fatal shortcomings that make the algorithm

not applicable to almost any real life system. In this chapter we will investigate how to

overcome these shortcomings.

4.1 Dynamics of Cooperating Underactuated Manipulators

A linear operatorS is constructed by reordering the rows of an identity matrix to rear-

range the joint space into four subspaces;

• base,

• actuated joints,

• free joints, and

• flexible joints.

in the order given above. SinceS is an orthogonal matrix, the propertyS−1 = ST

holds. When we apply this operator to (2.32), we have

(SMST )Sθ̈ + SC + SJ TF t = ST (4.1)
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Figure 4.1: An example of a complex topology system
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Let θbaf consist of base, actuated and free joint angles andθℓ represent only the flexible

joint angles. Then, we introduceT ℓ for the torques (or forces) generated by the joint

flexibility. Others are similarly defined.




M1 M2

M3 M4






θ̈baf

θ̈ℓ


+



Cbaf

Cℓ


+



J T
baf

J T
ℓ


F t =



T baf

T ℓ


 (4.2)

We know from the joint flexibility thatT ℓ is of the following form

T ℓ = −Ldθ̇ℓ − Lsθℓ (4.3)

whereLs andLd are diagonal matrices representing spring and damper characteristics,

respectively. Using (4.3) in (4.2) we get,

M1θ̈baf + M2θ̈ℓ + Cbaf + J T
bafF t = T baf (4.4)

M3θ̈baf + M4θ̈ℓ + Ldθ̇ℓ + Lsθℓ + Cℓ + J T
ℓ F t = 0 (4.5)

SinceM1 is a positive definite matrix,̈θbaf can be solved from (4.4).

θ̈baf = M−1
1 (T baf − M2θ̈ℓ − Cbaf −J T

bafF t) (4.6)

When (4.6) is substituted in (4.5), we get

M⋆θ̈ℓ + Ldθ̇ℓ + Lsθℓ + C⋆ + J T
⋆ F t = BT baf (4.7)

where

M⋆
△
= M4 − M3M

−1
1 M2 (4.8)

C⋆

△
= Cℓ − M3M

−1
1 Cbaf (4.9)

J⋆
△
= Jℓ −JbafM

−1
1

T
MT

3 (4.10)

B
△
= −M3M

−1
1 (4.11)

(4.7) can be reduced from second order to first order differential equation as

MsẆ + LsdW + Cs + J T
s F t = BsT baf (4.12)
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where

W =



θℓ

θ̇ℓ


 Ms =




I 0

0 M⋆


 Lsd =




0 −I

Ls Ld




Cs =




0

C⋆


 Js =




0

J⋆


 Bs =




0

B




Defining

T s

△
= BsT baf − Cs (4.13)

equation (4.12) becomes

MsẆ + LsdW + J T
s F t = T s (4.14)

Now we will continue our model to include closed-kinematic chains.

Joint accelerations can be written as the sum of so calledfree accelerations(θ̈
f
) and

correction accelerations(θ̈
δ
). (For more detail, please refer to [1])

θ̈(T , F t) = θ̈(T , 0)︸ ︷︷ ︸
θ̈

f

+ θ̈(0, F t)︸ ︷︷ ︸
θ̈

δ

(4.15)

Free accelerations,̈θ
f
, are nothing more than joint accelerations when the loops (due

to cooperation of multiple manipulators) are cut. Therefore, we defineθfℓ as the an-

gle of the flexible joints without taking the constraints imposing grasp into account.

Similarly,W f is defined as

W f =



θ
f
ℓ

θ̇
f

ℓ




For such case, equation (4.14) becomes

MsẆ
f

+ LsdW
f = T s (4.16)

HereLsd is a constant matrix. The time step of the integrator is chosen small when

compared to the time scale ofM⋆ which is the time varying term inMs. Therefore,

(4.16) approximately yields the solution as

Ẇ
f

= M−1
s Lsde

−M
−1
s Lsd(t−to)L−1

sd MsẆ o

W f = −e−M
−1
s Lsd(t−to)L−1

sd MsẆ o + L−1
sd T s

(4.17)
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where

L−1
sd =




L−1
s Ld L−1

s

−I 0




Solution of (4.17) gives us an approximation for the free accelerations of flexible joints.

θ̈
f

ℓ =
[

0 I

]
Ẇ

f
(4.18)

Once we knoẅθ
f

ℓ , we can now obtain the free accelerations of base, actuated and free

joints using (4.6)

θ̈
f

baf = M−1
1 (T baf − Mℓθ̈

f

ℓ − Cbaf ) (4.19)

Putting the two together, and sorting them back in their original form, gives us the full

set of free joint accelerations.

θ̈
f

= ST



θ̈
f

baf

θ̈
f

ℓ


 (4.20)

Now the question is how to solve (4.17) without disturbing the order ncharacteristic

of the algorithm.

Let us partition a full rank square matrixX and its inverseY.

X =




X1 X2

X3 X4


 Y =




Y1 Y2

Y3 Y4


 (4.21)

Since they are the inverses of each other, they hold the following relationship.



X1 X2

X3 X4







Y1 Y2

Y3 Y4


 =




I 0

0 I


 (4.22)

Here, we are particularly interested inY4 for a reason that will be obvious very shortly.

Y4 = (X4 −X3X
−1
1 X2)

−1 (4.23)

Comparing (4.8) with (4.23), we conclude thatM−1
⋆ is easily obtained fromM−1.

This shows that the matrix factorization ofM−1
⋆ can be done as given by (3.38).

Let Yt be defined asYt
△
= −M−1

s Lsd∆t. Series expansion ofeYt is

eYt ≈ I +
k∑

n=1

Yn
t

n!
k → ∞ (4.24)
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As theL2 norm ofYt gets larger,k needs to be incremented enough to prevent unrea-

sonable error. Here,k may be overvalued to eliminate this problem. This yields the

computation of̈θ
f
.

Now we will concentrate on the computation ofθ̈
δ
. For that we will need to obtain

the tip forces of the cooperating manipulators. First, the rigid grasping of the common

load needs to be taken into consideration. Let the spatial mass matrix, the spatial bias

forces and the spatial accelerations of the common load at point c beMc,
~~bc and~~αc

respectively. Furthermore, the propagation matrix definedfrom tip of the manipulators

to pointc of the common load is

Φt,c =




1Φt,c

2Φt,c

...

pΦt,c




Newton-Euler equation in spatial form is stated for the common load as

Mc
~~αc +

~~bc = ΦT
t,cF t (4.25)

Tip point accelerations,αt, and the acceleration of pointc, ~~αc, are not all independent

due to the grasping.

αt = J θ̈ + J̇ θ̇

= Φt,c
~~αc + ac

(4.26)

From (4.25) and (4.26)

J θ̈ = Φt,cM
−1
c ΦT

t,cF t − Φt,cM
−1
c

~~bc + ac − J̇ θ̇ (4.27)

On the other hand,J θ̈ can also be obtained using (2.32)

J θ̈ = JM−1T a − JM−1J TF t (4.28)

where

T a

△
= T − C

Combining (4.27) and (4.28)

ΩF t = JM−1T a + Φt,cM
−1
c

~~bc − ac + J̇ θ̇ (4.29)
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where

Ω = JM−1J T + Φt,cM
−1
c ΦT

t,c

Correction joint accelerations can now be obtained from:

Mθ̈
δ

= −J TF t (4.30)

Since we now know free and correction accelerations, true joint accelerations follow

θ̈ = θ̈
f

+ θ̈
δ

(4.31)

This solves the forward dynamics problem of underactuated cooperating systems.

4.2 Kinematically Deficient Cooperating Manipulators

Kinematically deficient manipulators are those that have fewer degrees of freedom than

necessary to achieve any admissible configuration in their operational space. When

multiple manipulators, some or all of which are kinematically deficient, cooperate to

perform a common task, the constrained forces at the contactpoints cannot be solved

directly due to rank deficiency of the jacobian. This sectionaddresses this challenge

associated with the computation of constrained forces at the contact points by intro-

ducing a novel approach called “pseudo joint.” Forward dynamical model utilizing

pseudo joint has been driven for cooperating kinematicallydeficient manipulators.

Many industrial applications do not require the full kinematic capability to move and

rotate the tip point of the manipulator in any direction. Usually, the desired trajectory

lies in a subset of this six dimensional operational space. Unless kinematic redundancy

is needed for both task space and joint space controls such asobstacle avoidance or

joint limit avoidance problems, kinematically deficient manipulators gain superiority

over more DOF manipulators in terms of cost, manufacturing,and compactness. In

addition, cooperating manipulators bring unprecedented advantage over serial manip-

ulators in terms of precision, load balancing, high payloadcapacity, etc. Therefore,

certain applications require to utilize multiple manipulators that cooperate to perform

a common task and are kinematically deficient.
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Kinematically redundant manipulators have been studied extensively such as [58], the

book by Nakamura. In contrary, kinematically deficient manipulators have not at-

tracted such interest from the research community. Out of the limited number of pub-

lications, some confused constrained manipulators with kinematically deficient ones.

Constraint manipulators and kinematically redundant manipulators have been studied

by Bruyninckx and Khatib [39]. Abdel-Malek et al. [40] studied the workspace issues

of kinematically deficient manipulators. Dynamics of two-finger grippers as kinemati-

cally deficient manipulators was studied by Prattichizzo and Bicchi [41]. Teleoperated

surgical robots were considered in both kinematically redundant and kinematically de-

ficient cases by Funda et al. [42]. The termnonmanipulable graspwas used by Mur-

ray et.al. [53] instead of kinematically deficient manipulator. Theirmethod is based

on finding the nonmanipulable directions and reducing the task space. They also use

lagrange multipliers in finding the constraint forces.

This section of the thesis is aimed at addressing the numerical problems associated

with contact force calculations by introducing a new concept called “pseudo joint.”

4.2.1 Numerical approach

In order to deal with the rank deficiency problem of the jacobian in the case of singular

configuration or with the manipulators having less than six DOF, one may suggest

to reduce the size of the task space. To do that, first we need tofind the directions

towards which the tip of the manipulator cannot move. The information regarding

these directions is hidden in jacobian,J , which is a linear operator that maps joint

space to task space.

Generally speaking, task space is a 6 dimensional manifold per manipulator. This man-

ifold is formed byℜ3 for rotations andℜ3 for translations. For the sake of simplicity,

let us consider only one manipulator in the system without loss of generality. Hence,

mathematical reiteration of the previous statement about jacobian is thatJ : ℜn → ℜ6

or simplyJ ∈ ℜ6×n. This mapping is displayed in Figure 4.2 whereN represents

thenull space, andR represents therange space. Clearly,R(J ) is the space in which

the tip of the manipulator is free to move. On the other hand,N (J T ) is perpendic-

ular to and therefore linearly independent fromR(J ). Both of these spaces together

form ℜ6. Consequently,N (J T ) represents the directions towards which the tip of the
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manipulator cannot move.

0 00

ℜn

ℜ6

J

J T

R(J T )

N (J )

R(J )

N (J T )

Figure 4.2: Jacobian maps joint space to task space

Now that we know these inadmissible directions, the question is how to find a coor-

dinate transformation matrixR to reduce the task space such thatRJ spans it com-

pletely. The answer is as follows:

R = N (N (J T )T )T (4.32)

Using equation (4.32) we can replace the Jacobian byJr as

Jr = RJ (4.33)

This is an orthogonal transformation yielding the inverse transformation as

J = RTJr (4.34)

The six step forward dynamic calculations are updated by replacingAr with A, where

Ar = AR (4.35)

40



The drawback of this method is that the computation of null space requires Singular

Value Decomposition (SVD) which introduces instability due to the fact that singular

vectors are not unique, and may introduce discontinuity. This drawback alone makes

this methodology impractical, not to mention the cost associated with the numerical

computation of SVD.

4.2.2 Pseudo joint

An easy to implement and computationally efficient alternative approach, is to calcu-

late link internal torques. First we assume as if there were extra joints and then we

have to calculate the torques to keep those joints at zero angle at all times as displayed

in Figure 4.3.

First kinematic analysis needs to be done to decide at what location of which link

pseudo joint to be placed in what direction. This analysis isusually straight forward

and easy enough to decide by visual inspection of the manipulator. In the more com-

plicated cases, forward kinematic model is obtained and augmented jacobian is desired

to be full rank.

We first need to obtain a linear operator dividing the joint space into two sub spaces;

real joints and pseudo joints. LetS do that.S can be obtained easily by rearranging

the rows ofn × n identity matrix, where n is the total DOF including pseudo joints.

Rearranging the rows of an identity matrix does not disturb its orthogonality property.

Therefore,S is an orthogonal matrix andS−1 = ST holds. The rearranged form of the

inverse dynamics (2.53) becomes:

Sθ̈augmented = (SDST )STaugmented + SE (4.36)



θ̈

θ̈p


 =



d1 d2

d3 d4







T̄

T̄p


+



e1

e2


 (4.37)

Here,D andE matrices are obtained for the augmented system. By the definition of

the pseudo joint we know thaẗθp = 0. Therefore, the equation of motion is achieved

as:

θ̈ = DrT̄ + Er (4.38)
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Figure 4.3: Pseudo joint in the form of a joint constrained by a key-bushing mechanism
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where

Dr = d1 − d2d
−1
4 d3

Er = e1 − d2d
−1
4 e2

provided thatd4 is full rank.

How to maked4 full rank is, in a way, a design issue that needs to be discussed here.

First, consider a planar four-bar linkage mechanism shown in Figure 4.4. Let say we

want to constrain joints 2 and 3 so thatθ̈2 = 0 and θ̈3 = 0 at all times. Using the

methodology presented in this section, one may assign joints 2 and 3 as the pseudo-

joints. On the other hand, the four angles;θ1, θ2, θ3 andθ4 shown in Figure 4.4 are all

equal to eachother, hence, dependent on one another. Consequently, although there are

four joints in the system, only one of them is independent. Asa result, if we ensure,

for example,̈θ2 to remain zero at all times by applying the necessary torque,this will

already ensure thaẗθ3 to be zero as well. In this simplified system we can see that the

termd4 looses rank to mean that there is a dependency in between the pseudo joints.

joint 1

joint 2

joint 3

joint 4
θ4

θ3

θ1

θ2

Figure 4.4: Planar four-bar linkage mechanism

If it is desired to apply the method of pseudo-joint to a four-bar mechanism as shown

in Figure 4.4, first we need to divide the structure toarm 1andarm 2to claim that they

are cooperating. A logical choice is to divide it from the middle of the bar parallel to

the ground. Then we need to add extra joints to each arm to bring each one to a desired

number of DOF so thatΩ defined in (2.52) becomes invertible. Figure 4.5 displays a
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possible configuration where joints 2 and 5 to be chosen as thepseudo joints.

����������������������

joint 1

joint 2

joint 3 joint 4

joint 5

joint 6

Figure 4.5: Planar four-bar mechanism with slider

4.3 Dynamics of Wheeled Systems Subject to Pure Rolling Constraint

A rolling wheel is a member of nonholonomic systems that are subject to constraints

expressed as functions of generalized speeds but not as functions of positions. The

root of the termholonomycomes fromwhole-lawwhich refers to the system obeying

the laws of Lagrangian mechanics, Hamiltonian mechanics and the conservation of

momentum. Dynamics of nonholonomic systems, on the other hand, do not obey these

laws in general. Instead, Lagrange d’Alembert mechanics, nonholonomic Hamiltonian

mechanics and momentum equation are available for nonholonomic systems [59].

Without a doubt, the most common and basic nonholonomic system is a rolling wheel

subject to no-slip (pure rolling) constraint. In fact, due to the limitation of the scope,

rolling wheel is the only nonholonomic system that has been considered in this thesis.

The reason why this section is dedicated for it is because it unleashes a whole new

world of dynamical modeling of wheeled mobile robots with a goal to observe the full

set of forces and torques at the contact points. This is in contrast to most of the algo-

rithms in the literature regarding the dynamics of wheeled vehicles where constraint

forces and torques are eliminated. However, these forces and torques play a crucial

role in many applications such as rollover prevention of wheeled ground vehicles.

Figure 4.6 displays rolling wheel subject to no-slip constraint. As seen from this fig-

ure, the system has 3 DOF. Its symbolic representation indicating joint assignments as

well as tip and base assignments, shown in Figure 4.7, is the key step here. In this

modeling approach, the wheel mass and inertia are assigned to the mobile base. These

assignments may not be intuitive as intuition may deem joint1 to be placed together

44



θy θz

θxx1

y1

z1
z0

Figure 4.6: Rolling wheel subject to no-slippage constraint
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joint 2

joint 1

mobile base (center of the wheel)

constrained tip (contact point)

Figure 4.7: Symbolic representation of a rolling wheel where r is the radius of the
wheel
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with joint 2, and the choice of base and tip to be reversed. There are few publications

on the dynamics of wheeled vehicles using robotic formalismsuch as [60] and [61].

All of such publications known to us follow this intuition which poses problems unless

the system to be modeled consists of only the single wheel. These problems will be

explained at the end of this section.

Figure 4.8: Unicycle and its symbolic representation

To help understand the methodology, let us consider a unicycle as shown in Figure 4.8.

Orthogonal frames obeyingright hand ruleare assigned as shown in Figure 4.9. It
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Figure 4.9: Frame assignment for a single wheel or unicycle
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needs to be highlighted here that joint 2 has two revolute DOF, and therefore has two

axes of rotation; one in~z2 and the other in~y1. It may be confusing to those who are

accustomed to see each axis of rotation defined in its own bodyframe. This is not the

case here.

Let us start with the constraint analysis. There are two constraints at the tip point; one

prevents lateral slip, and the other prevents longitudinalslip. First we will write the

lateral one in a form reducible to aPfaffian constraint, i.e., f(x)ẋ = 0.

ÃT ~~V t = 0 (4.39)

where

Ã =



~0

~x1


 (4.40)

Now, let Ã be the annihilator ofA. In other words, letA be the matrix such that̃A

spans its null-space. This is stated as

AÃ = 0 (4.41)

Although there is no unique solution of (4.41), one possiblechoice ofA is

A =




~xT1 ~0T

~yT1 ~0T

~zT1 ~0T

~0T ~yT1

~0T ~zT1




(4.42)

Note thatA, as defined in (4.42), is an orthogonal matrix and therefore holds orthogo-

nality property

AAT = I (4.43)

There exists a velocity vectorV c in a five dimensional manifold to express the tip

velocity using (4.39) and (4.41).

~~V t = ATV c (4.44)
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Using the longitudinal slip constraint,V c can be expressed as a function of the joint

space of the wheel.

V c = Bθ̇ (4.45)

where

θ̇ =




~~V b

θ̇1

θ̇2

θ̇3




B =




0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −r 0 0

0 0 0 0 0 0 0 0 0




The constraints considered so far were kinematic. To study the constraint forces let us

look at the work done at the tip point and utilize (4.44)

~~F
T

t

~~V t =
~~F
T

t A
TV c =

(
A
~~F t

)T
V c = F T

c V c (4.46)

which is true for allV c. Here,F c is the externally applied force/torque corresponding

to V c. From (4.46) we have

F c = A
~~F t (4.47)

Let us decompose~~F t as

~~F t = Fm + F s (4.48)

whereFm ∈ R(AT ) andF s ∈ R(Ã) as shown in Figure 4.10. Here,R refers to

range space. As a result of this decomposition,~~F t can be written as

~~F t = AT ξ + Ãη (4.49)

Plugging (4.49) into (4.47) and using (4.43), we get

F c = ξ (4.50)

From (4.49) and (4.50)

~~F t = ATF c + Ãη (4.51)
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Figure 4.10: Decomposition of the task space

Hereη corresponds to theworkless force. Minimum norm solution would be to set it

to zero. This leaves us with

~~F t = ATF c (4.52)

Similar to (4.46), let us write the work done at the tip point again. This time, we will

utilize (4.52), (4.43) and (4.45) in the order given to obtain the equations below.

~~F
T

t

~~V t = (ATF c)
TATV c

= F T
c V c

= F T
c Bθ̇

= (BTF c)
T θ̇ (4.53)

= T T
t θ̇ (4.54)

HereT t is the induced torque due to the constraint forces. From (4.53) and (4.54)

T t = BTF c (4.55)

Inverse dynamics equation of the system is

T a + T t = Mθ̈ + C + J T ~~F t (4.56)

whereT a is the applied torques. Plugging (4.52) and (4.55) into (4.56), we have

T c = Mθ̈ + (AJ − B)TF c (4.57)
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whereT c = T a − C.

Forward dynamics equation is obtained from (4.57) as

θ̈ = M−1
(
T c − (AJ −B)TF c

)
(4.58)

Now, let us go back to kinematics. From (4.44) and (4.45), andusing the jacobian

operator, we have

~~V t = ATBθ̇ = J θ̇ (4.59)

Taking the time derivative of (4.59)

~̇~V t = ATBθ̈ + ȦTBθ̇ = J θ̈ + J̇ θ̇ (4.60)

We know from Section 2.3.1 that

J̇ θ̇ = ΦtΦa + ~~at (4.61)

Here,~~at is zero because the length of the link between the last joint ant the tip is zero.

Using (4.61) and rearranging (4.60) we have

(J − ATB)θ̈ = ȦTBθ̇ − ΦtΦa (4.62)

Premultiplying (4.62) byA yields

(AJ − B)θ̈ = AȦTBθ̇ − AΦtΦa (4.63)

On the other hand, premultiplying (4.58) byAJ −B, we have

(AJ − B)θ̈ = (AJ − B)M−1T c − (AJ − B)M−1(AJ − B)TF c (4.64)

Equating (4.63) and (4.64) yields the solution forF c

F c = Ω−1
(
AΦtΦa+ (AJ −B)M−1T c − AȦTBθ̇

)
(4.65)

where

Ω = (AJ − B)M−1(AJ − B)T (4.66)

It is clear thatΩ needs to be full rank in order to have a solution. Generally speaking,

this is directly related with the rank of the jacobian, hencethe number of DOF of each

manipulator in the system and their singularity issues. If our wheel model were similar
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to those available in the literature on the dynamics of wheeled vehicles using robotic

formalism such as [60] and [61], the jacobian would be6×3 and we would suffer from

rank deficiency inΩ. As we gain full 6 DOF from the mobile base, our jacobian for

a single wheel is6 × 9. At last but not least, we need to mention that having 3 DOF

at the contact is a poor choice because the tip forces cannot be computed correctly if

link 1 posses an angular acceleration corresponding to wheel rotation. As is done in

our approach, this angular acceleration should apply to base only. To comprehend the

methodology, one can think of the following analogy. Consider a unicycle in space

without gravity and without contact to any surface. Now, shrink that mass and inertia

of the wheel to a point and call thatthe base. The rest is to impose constraints.

4.4 Discussion

Dynamic modeling of cooperating kinematically deficient manipulators yielding full

set of force, torque and acceleration distributions including those at the constraint un-

covers a very important domain of multibody dynamics.Pseudo Jointis a stable yet

efficient method to deal with such systems. The best way, probably, is to demonstrate

the use of the algorithm on some examples. Next chapter is dedicated for this purpose.
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5. CASE STUDIES

This chapter includes both theory and application. It enjoys the theoretical foundations

established in the previous chapter, and utilizes them in practical cases. While doing

that, through explanation of the theoretical details on howto apply the algorithm is

the goal of this chapter. It starts with general underactuated cooperating manipulators

in space manipulation and continues on the dynamical modeling of two-wheeled cart.

The following sections include the dynamics of four-wheel steered and four-wheel

driven mobile robot and a four-wheeled full-suspension passanger vehicle dynamics.

5.1 General Underactuated Cooperating Manipulators in Space Manipulation

The example system on which the algorithm will be explained is chosen to be simple

enough so that the reader can easily follow the algorithm without getting lost in the

structural details. The task space of the 3 DOF arm shown in Figure 5.1 is only 2

dimensional. Here, we will define the third coordinate as

~z = ~x× ~y

Angular velocity of the joints will always be parallel to~z and linear velocity of the

joints will always remain in the plane of(~x, ~y). Therefore, the spatial velocity of the

kth joint of theith arm can be written as:

iVk =




iωk

ivk


 ∈ R3×1 (5.1)

Spatial velocity defined in (5.1) holds the following relationship with its counterpart in

3 dimensional space.

iVk = A i~~V k
i~~V k ∈ R6×1 (5.2)
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free−flying platform in 2D

flexible

common load

freeflexible

actuated

free actuated

1~ℓ1,2

1~ℓ2,3
2~ℓ2,3

2~ℓ1,2

1~ℓ3,t
2~ℓ3,t

Figure 5.1: Initial configuration

where,

A =




0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0




Let iΦk+1,k be a linear operator that translatesi~~V k to i~~V k+1. In 2 dimensional space,

we will represent this operator asiφk+1,k.

iφk+1,k = A iΦk+1,kA
T =




1 0 0

−iℓky
1 0

iℓkx
0 1




(5.3)

The rest of the elements of the spatial algebra in 2 and 3 dimensional analysis have

similar relationships as given in equations (5.2) and (5.3).

The closed chain system consisting of two arms and a common load is shown at its

initial configuration in Figure 5.1 in which joints are drawndifferently according to

their actuation. There is no actuation provided to so called“free joints”. Flexible joint,

on the other hand, has a spring and a damper attached to it.

In this proposed system, all the links and the common load arerigid bodies. The

contacts between the common load and the arms are also rigid.
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Joints are numbered in an increasing order from base to tip. Base is common for both

arm 1 and 2 and it is numbered zero. The third joint of Arm 1 and the first joint of Arm

2 are free joints. The first joint of Arm 1 and the second joint of Arm 2 are flexible

joints. The second joint of Arm 1 and the third joint of Arm 2 are actuated joints.

Velocity of the base:

1Vo = 2Vo = Vo (5.4)

Acceleration of the base:

1αo = 2αo = αo (5.5)

The forces on the base:

fo = 1φT1,0
1f1 + 2φT1,0

2f1 +Moαo + bo (5.6)

y

x

θ2

1

θ1 3

θ1

1

����
����
����
����

θ1

2

θ2 3

θ2

2

����
����
����
����

Figure 5.2: Joint angles
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The propagation matrix for each arm is:

iφ =




1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

−iℓ1y
1 0 0 1 0 0 0 0

iℓ1x
0 1 0 0 1 0 0 0

1 0 0 1 0 0 1 0 0

−(iℓ1y
+ iℓ2y

) 1 0 −iℓ2y
1 0 0 1 0

(iℓ1x
+ iℓ2x

) 0 1 iℓ1x
0 1 0 0 1




Since it is a planar system and all of the joints are revolute joints, the axis of rotation

stays constant. Therefore, the axis of rotation matrix for either arm is:

iH =




1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0




T

The spatial acceleration bias term and the spatial force bias terms for either arm is:

ia =




0

0

0

0

−iθ̇2
1
iℓ1x

−iθ̇2
1
iℓ1y

0

−iθ̇2
2
iℓ2x

−iθ̇2
2
iℓ2y




ib = −
1

2




0

iθ̇2
1
iℓ1x

iθ̇2
1
iℓ1y

0

iθ̇2
2
iℓ2x

iθ̇2
2
iℓ2y

0

iθ̇2
3
iℓ3x

iθ̇2
3
iℓ3y



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Propagation to base and propagation to tip operators are respectively:

iσb =




1 0 0

−iℓby 1 0

iℓbx 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0




iσt =




0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 iℓ3y

iℓ3x

0 1 0

0 0 1




T

Mass matrix will be given next. It is assumed that each link has a uniform mass dis-

tribution and the vector from the joint to the center of mass of each link is the half of

the link vector. iIk is the moment of inertia of linkk of manipulatori defined at the

point iOk on the axis of rotation. Mass matrix for each manipulator is in the following

form:

iMk =




iIk
1
2
imk

iℓky
−1

2
imk

iℓkx

1
2
imk

iℓky

imk 0

−1
2
imk

iℓkx
0 imk




iM =




iM1 0 0

0 iM2 0

0 0 iM3




Mass matrix for the base and the mass matrix for the complete system which is formed

by stacking up the mass matrices for the base and the arms are given as follows:

Mb =




Ib 0 0

0 mb 0

0 0 mb




M =




Mb 0 0

0 1M 0

0 0 2M




Spatial acceleration bias term, spatial force bias term, propagation to tip operator, prop-

agation operator, axis of motion matrix and the separator operator for the complete
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system are formed as:

a =




0

1a

2a




b =




0

1b

2b




σt =




0 1σt 0

0 0 2σt




φ =




3×3I 0 0

1φ 1σb
1φ 0

2φ 2σb 0 2φ




H =




3×3I 0 0

0 1H 0

0 0 2H




S =




1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0




Simulation results associated with the given system can be found in Appendix A.

5.2 Two Wheeled Cart

The system consists of two independently actuated wheels that are connected by a rod,

as shown in Figure 5.3.

As explained in Section 4.3, each wheel is modeled as a one-link mechanism having

3 DOF. Each actuator introduces one DOF at the wheel center, making four DOF per

arm. Although the sum of the number of DOF each joint has in thesystem is eight,

only two of them are independently actuated. However, the degree of underactuation

in the system is only one (not six) due to the no-slip constraint reducing the overall

DOF. The explained configuration is shown in Figure 5.4 wherethe mass and inertia

of wheel i are assigned toilink1 (i = 1, 2) as in the case of a unicycle explained in

Section 4.3.
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Figure 5.3: Two-wheeled cart: pictorial representation

z2
1 z2

2x1
2x1

1

link2
1

link1
2

x

z

y

link1
1

link2
2

BASEBASE

Figure 5.4: Two-wheeled cart: manipulator representation
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Frames are assigned in the same way for both arms as follows: Base frame, frame0,

is attached to the axle. Frame1 is on the actuator. Frame2 is attached to a one-DOF

joint at the wheel center. Frame3 is a two-DOF revolute joint, and its origin coincides

with that of the tool frame which is the contact point to the ground.

Equation of motion is obtained similar, to some extend, to that of a single wheel intro-

duced in Section 4.3. In order to keep the continuity within this section, there will be

some repetitions with Section 4.3, but we believe that the differences are great enough

not to mind the similarities.

Here, we present two approaches for the dynamical modeling.The main difference is

in the definition of the axis of rotation. For the first approach the axis of rotation matrix

is defined per arm as

iH =




i~x1
~0 ~0 ~0

~0 ~0 ~0 ~0

~0 i~x2
~0 ~0

~0 ~0 ~0 ~0

~0 ~0 i~y2
i~z3

~0 ~0 ~0 ~0




(5.7)

wherei~x1 andi~x2 are unit vectors along the rod (axel),i~y2 is in the travel direction of

the wheel andi~z3 is the normal vector of the tangent plane of the contact pointwith the

ground.

Now, we start with the lateral slip condition.

1~xT2 ~vt = 2~xT2
2~vt (5.8)

We can express (5.8) in a form reducible to a Pfaffian constraint

ÃTV t = 0 (5.9)

where

Ã =




~0

1~x2

~0

−2~x2




(5.10)
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Now, let Ã be the annihilator ofA. In other words, letA be the matrix such that̃A

spans its null-space. This is stated as

AÃ = 0 (5.11)

Although there is no unique solution of (5.11), one possiblechoice ofA is

A =




1~xT2 ~0T ~0T ~0T

1~yT2 ~0T ~0T ~0T

1~zT2 ~0T ~0T ~0T

~0T ~0T 2~xT2 ~0T

~0T ~0T 2~yT2 ~0T

~0T ~0T 2~zT2 ~0T

~0T
1~xT

2√
2

~0T
2~xT

2√
2

~0T 1~yT2 ~0T ~0T

~0T 1~zT2 ~0T ~0T

~0T ~0T ~0T 2~yT2

~0T ~0T ~0T 2~zT2




(5.12)

Note thatA, as defined in (5.12), is an orthogonal matrix and therefore holds orthogo-

nality property

AAT = I (5.13)

There exists a velocity vectorV c in an eleven dimensional manifold to express the tip

velocity using (5.9) and (5.11).

V t = ATV c (5.14)

Using the longitudinal slip constraint,V c can be expressed as a function of the joint

space of the wheel.

V c = Bθ̇ (5.15)
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where

θ̇ =




~~V b

1θ̇

2θ̇




B =




0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −r 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −r 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0




wherer is the radius of the wheel.

The rest of the formulations here are very similar to those inSection 4.3. We will skip

the intermediate steps and write down the more significant ones.

Tip force can be decomposed as

F t = ATF c + Ãη (5.16)

Hereη corresponds to the squeeze force. Minimum norm solution would be to set it to

zero.

Forward dynamics equation becomes

θ̈ = M−1
(
T c − (AJ −B)TF c

)
(5.17)

whereT c = T a − C, andT a is the applied torques.

Finally, we have

F c = Ω−1
(
AΦtΦa+ (AJ −B)M−1T c − AȦTBθ̇

)
(5.18)

where

Ω = (AJ − B)M−1(AJ − B)T (5.19)
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An alternative approach is the following. Let us change the defining of the axis of

rotation matrix from (5.7) to

iH =




i~x1
~0 ~0 ~0

~0 ~0 ~0 ~0

~0 i~x2
~0 ~0

~0 ~0 ~0 ~0

~0 ~0 i~y2
i~z3

~0 r i~y2
~0 ~0




(5.20)

This means that the longitudinal slip condition is augmented in the Jacobian. Hence,

there is no need to externally enforce the system to obey it. This small modification

of the matrixH results in the removal of the matrixB from the equation of motion.

Therefore, we have

Ω = AJM−1J TAT

F t = ATΩ−1A
(
JM−1T c + ΦtΦa

)

θ̈ = M−1
(
T c − J TF t

)

Simulation results associated with this system can be foundin Appendix B.

5.3 Four-Wheel-Drive Four-Wheel-Steer Mobile Manipulator

Mechanical and electrical design details of the four-wheel-driven and four-wheel-steered

mobile robot manufactured as a mobile platform for the Mitsubishi PA10-7C robotic

arm can be found in [62] and shown in Figure 5.9. We will model the platform only.

A photograph of the mobile platform without the manipulatoris displayed in Figure

5.5 and a generated image using a computer aided three dimensional design package

is shown in Figure 5.6.

Let us concentrate only on the backbone, leg and wheel part ofthe system as shown

in Figure 5.7 which helps us understand the analogy between multiple constrained

manipulators and the actual system, where “the base” is the backbone, and each leg

64



Figure 5.5: A photograph of the 4x4x4 mobile robot

Figure 5.6: Computer generated image of the 4x4x4 mobile robot
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and the wheel are constituted by a manipulator. Manipulatorrepresentation of the

system is given in Figure 5.8. The unconstrained system has 26 DOF in total; 6 from

the base, and 5 from each arm.

Figure 5.7: Backbone, leg and wheel parts of the mobile robot

Dynamical modeling formulation of the four-wheel-driven and four-wheel-steered mo-

bile robot is very similar to that of the two-wheeled cart explained in the previous sec-

tion except that this system has four “arms” instead of two. The most important part

is to come up with the constraint matrix,̃A. As the system gets complicated, it gets

harder to predict it. An easy way to obtain it is to use the rational basis null space of

J T in MATLAB for once. It yields the following independent constraints:

1~xT3
1~vt = 2~xT3

2~vt (5.21)

3~xT3
3~vt = 4~xT3

4~vt (5.22)

3~zT3
3~vt = 4~zT3

4~vt (5.23)

Simulation results associated with this system can be foundin Appendix C.
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Figure 5.8: Manipulator representation of the mobile robot

5.4 Four Wheeled Passenger Vehicle with Full Suspension Mechanism

The proposed model of vehicle will be explained for separateparts first of which is the

tire model. Tire characteristics are known to be highly nonlinear and very complicated.

Since the motivation here is to demonstrate the use of the algorithm, the point contact

tire model [63] is employed. The algorithm, on the other hand, can be extended to

include more complicated tire models.

The joint at the point contact has 3 rotational DOF. Pneumatic characteristics of tire

are represented by spring and damper pairs in both vertical and horizontal directions.

The end effector shown in Fig.5.10 corresponds to the centerof the wheel.

As shown in Fig.5.11, the suspension model has 5-DOF. All of the rotational joints are

represented with a cylinder whose axis is aligned with the axis of rotation. A small

circle in the cylinder indicates that there is a torsional spring and a damper attached

to that joint. Figure 5.12 shows the trapezoidal geometry ofthe steering mechanism.

This design closely approximates the Ackerman condition.

Finally, in Fig.5.13, the full model of a vehicle is given. The total number of DOF is
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Figure 5.9: Mobile manipulator with Mitsubishi PA10-7C

of pneumatic
representation

characteristic

2 DOF
joint

1 DOF
end effector

�����
�����
�����
�����

terrain

Figure 5.10: Tire model
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Figure 5.11: Suspension model

Figure 5.12: Trapezoidal geometry to partially satisfy the Ackerman condition

69



51; however, as to be shown later, only 24 of them are independent.

��������������������
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��������������������
��������������������
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arm 1 arm 2

arm 3 arm 4

arm 6
arm 7

arm 8 arm 9

e

dc

f

arm 5

common object (axle)

Figure 5.13: Full model of a four-wheeled full suspension vehicle

Let Vb+ andVb
−

represent the base spatial velocities of all the arms on the arm side,

and on the base side respectively. No slip condition requires both velocities to be the

same. Let them be equal toVb.



Vb

−

Vb+


 =



I

I


Vb (5.24)

LetV c be the stacked up spatial velocities of contact points wherethe bases and the tips

of arms meet. LetV s consist of the time derivatives of each of the four wheels’ vertical

displacements due to the surface geometry of the terrain. Since these displacements
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are known to be vertical, each elements ofV s, ivs, is scalar.

V c =
[
V T
c V T

d V T
e V T

f

]T

V s =
[

1vs
2vs

3vs
4vs

]T

Base velocity part of the kinematic constraints can be written as:

Vb
−

=
[
Abs0 A0bc

]


V s

V c


 (5.25)

Abs =




i 0 0 0

0 i 0 0

0 0 i 0

0 0 0 i




Abc =




I 0 0 0

I 0 0 0

0 I 0 0

0 0 0 φ1,f

0 0 0 φ2,f




i =
[

0 0 0 0 0 1

]T

Abs0 =
[
ATbs 0

]T
A0bc =

[
0 ATbc

]T

Tip velocity part of the kinematic constraints are:

Vt = AtcV
c (5.26)

Atc =




0 0 I 0 0 0 0 0 0

0 0 0 I I 0 0 0 0

0 0 0 0 0 I I I I

φT1,f φT2,f 0 0 0 0 0 0 0




T

Putting (5.25) and (5.26) together,


Vb

−

Vt


 =



Ab

At






V s

V c


 (5.27)

whereAb =
[
Abs0 A0bc

]
, At =

[
0 Atc

]
. Kinematic constraints are fully ob-

tained from (5.24) and (5.27).

Spatial velocities of the joints with respect to an inertialframe can be obtained by using

velocity propagation.

V = φHθ̇ + φσbVb
−

(5.28)
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Furthermore, tip velocities of arms can be calculated.

Vt = σtV

= J θ̇ + φt,bVb
−

= J θ̇ + φt,bAbs0V
s + φt,bA0bcV

c (5.29)

From (5.26):

V c = A
†
tcVt A

†
tc = (ATtcAtc)

−1ATtc (5.30)

Substituting (5.30) in (5.29)

Vt = LtJ θ̇ + LsV
s (5.31)

whereLt =
(
I − φt,bA0bcA

†
tc

)−1
, Ls = Ltφt,bAbs0. Let us take time derivative of

(5.31)

αt = LtJ θ̈ + LtJ̇ θ̇ + L̇tJ θ̇ + Lsα
s + L̇sV

s (5.32)

Using the known equality,̇J θ̇ = σtφa+ at, finally we get

αt = LtJ θ̈ + L̇tJ θ̇ + Lsα
s + L̇sV

s + Lt(σtφa+ at) (5.33)

Now let us focus on the base accelerations. Taking the time derivative of (5.25)

αb
−

= Abs0α
s + A0bcα

c + Ȧ0bcV
c (5.34)

Substituting (5.31) in (5.30)

V c = A
†
tc(LtJ θ̇ + LsV

s) (5.35)

Taking time derivative of (5.30) and substituting (5.31)

αc = A
†
tcαt + Ȧ

†
tc(LtJ θ̇ + LsV

s) (5.36)

Substituting (5.35) and (5.36) in (5.34)

αb
−

= A0bcA
†
tcαt + LuLtJ θ̇ + Abs0α

s + LuLsV
s (5.37)

whereLu = A0bcȦ
†
tc + Ȧ0bcA

†
tc. Plugging (5.33) in (5.37), now we can obtain the

equation for base accelerations in terms ofθ̈, θ̇, αs andV s.

αb
−

= LaJ θ̈ + LbJ θ̇ + Lcα
s + LdV

s + Le (5.38)
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La = A0bcA
†
tcLt

Lb = LuLt + A0bcA
†
tcL̇t

Lc = Abs0 + A0bcA
†
tcLs

Ld = LuLs + A0bcA
†
tcL̇s

Le = A0bcA
†
tcLt(σtφa+ at) = La(σtφa+ at)

Now we will investigate the feasible sets ofθ̇. Combining (5.26) and (5.31), and pre-

multiplying both sides of the result bỹAtc, we get:

ÃtcLtJ θ̇ = V r V r = −ÃtcLsV
s (5.39)

To uniquely determine the dependent joint velocities in terms of the independent ones,

the elements of the joint space,θ̇, are reordered in a way that these elements are

grouped into independent and dependent subspaces using thematrix Sa formed by

rearranging the rows of an identity matrix. As the choice of these subspaces is not

unique, one can determine his/her choice based on preference and the structure.

ÃtcLtJ S
a−1

Saθ̇ = V r

With the following definitions, (5.40) is obtained.

ÃtcLtJ S
a−1

=
[
Edep E ind

]
Saθ̇ =



θ̇dep

θ̇ind




θ̇dep = Edep−1

(−E indθ̇ind + V r) (5.40)

If Edep is not full rank, it means that the choice ofSa is wrong. Similar equation to

(5.40) can be written for accelerations too. In order to do that, let us first take the time

derivative of (5.26).

αt = Atcα
c + ȦtcV

c (5.41)

From(5.33) and (5.41)

Atcα
c + ȦtcV

c = LtJ θ̈ + L̇tJ θ̇ + Lsαs + L̇sVs + Ltσtφa+ Ltat (5.42)

Using (5.35) in (5.42), and pre-multiplying it with̃Atc

ÃtcLtJ θ̈ = Ãtc(ȦtcA
†
tcLt − L̇t)J θ̇ + αr (5.43)
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where

αr = −Ãtc(Lsαs + (L̇s − ȦtcA
†
tcLs)Vs + Ltσtφa+ Ltat)

Let us apply the operatorSa to separate the dependent and independent variables.

ÃtcLtJ S
a−1

Saθ̈ = Ãtc(ȦtcA
†
tcLt − L̇t)J S

a−1

Saθ̇ + αr

Assigning

Ãtc(ȦtcA
†
tcLt − L̇t)J S

a−1

=
[
Cdep C ind

]

Finally we get

θ̈dep = Edep−1

(−E indθ̈ind + Crθ̇ind + αr + CdepEdep−1

V r) (5.44)

whereCr = C ind − CdepEdep−1

E ind.

Dynamic constraints have a dual relationship with the kinematic constraints. Dual of

(5.24) is

[
I I

]


Fb

−

Fb+


 = Fb (5.45)

whereFb is a spatial force whose torque component represents the frictional term that

slows down rolling wheel. Dual of (5.27) is

[
ATb ATt

]


Fb

−

Ft


 =



F s

F c


 (5.46)

where

F s =




1fs

2fs

3fs

4fs




F c = Kf(Mfαf + bf ) Kf =




0

0

0

I




From the acceleration propagation we can obtain all the accelerations as:

α = φ(Hθ̈ + a+ σbαb
−

) (5.47)

Now we can substitute (5.38) in (5.47)

α = φ((H + σbLaJ )θ̈ + σbLbJ θ̇ + σbLcα
s + σbLdV

s + σbLe + a) (5.48)
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General force equation is

F = φT (Mα + b) + φTσTt Ft (5.49)

Base forces can be written as:

Fb+ = σTb F (5.50)

Using (5.50) and (5.49)

Fb+ = σTb φ
T (Mα + b) + φTt,bFt (5.51)

We can write two dynamic constraints using (5.45)

ATbs0Fb− = F s AT0bcFb− + ATtcFt = F c (5.52)

using (5.52) and annihilator ofAtc, Ãtc

Ft = A
†T

tc (F c − AT0bcFb−) + Ãtc
T
Fta (5.53)

Using (5.45), let us substitute (5.51) in (5.53).

Ft = A
†T

tc F
c + (φσbA0bcA

†
tc)

T (Mα + b) +

(φt,bA0bcA
†
tc)

TFt + Ãtc
T
Fta − (A0bcA

†
tc)

TFb

Finally we get

Ft = (φσbLa)
T (Mα + b) + (A†

tcLt)
TF c + (ÃtcLt)

TFta − LTaFb (5.54)

Let us substitute (5.54) in (5.49)

F = [φ(I + σbLaσtφ)]T (Mα + b) + (A†
tcLtσtφ)TF c +

(ÃtcLtσtφ)TFta − (Laσtφ)TFb (5.55)

Next, substituting (5.48) in (5.55) we get the force equation in terms of the joint accel-

erations

F=(I + σbLaσtφ)TφT
[
Mφ

(
(H + σbLaJ )θ̈+

σb
(
LbJ θ̇ + Lcα

s + LdV
s + Le

)
+ a

)
+ b

]
+

(A†
tcLtσtφ)TF c − (Laσtφ)TFb + (ÃtcLtσtφ)TFta

(5.56)
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The torques on the links can be extracted asT = HTF . Hence,

T = Mθ̈ + Cθ̇ + Laα
s + LbV

s + D + BTb Fb + BTt Fta (5.57)

M=(H + σbLaJ )TφTMφ(H + σbLaJ )

C=(H + σbLaJ )TφTMφσbLbJ

La=(H + σbLaJ )TφTMφσbLc

Lb=(H + σbLaJ )TφTMφσbLd

D=(H + σbLaJ )TφT (Mφ(σbLe + a) + b)+

(A†
tcLtJ )TF c

Bb=−LaJ Bt = ÃtcLtJ

Now the equation of motion can be obtained as

θ̈ = M−1(T − Cθ̇ −Laα
s − LbV

s −D + BTb Fb − BTt Fta) (5.58)

Taking the time derivative of (5.39) and substituting (5.58) in that, we obtain

Fta = GaT +GbFb +Gcθ̇ +Gdα
s +GeV

s +Gf (5.59)

Ga=(BtM
−1BTt )−1BtM

−1

Gb=(BtM
−1BTt )−1BtM

−1BTb

Gc=(BtM
−1BTt )−1(ÃtcL̇tJ +

˙̃
AtcLtJ − BtM

−1C)

Gd=(BtM
−1BTt )−1(ÃtcLs − BtM

−1La)

Ge=(BtM
−1BTt )−1(

˙̃
AtcLs − BtM

−1Lb)

Gf=(BtM
−1BTt )−1(ÃtcLt(σtφa+ at) − BtM

−1D)

As for the suspension dynamics, we substitute (5.59) in (5.58)

θ̈ = NaT +NbFb +Ncθ̇ +Ndα
s +NeV

s +Nf (5.60)

Na=M−1(I − BTt Ga) Nb = M−1(BTb − BTt Gb)

Nc=−M−1(C + BTt Gc) Nd = −M−1(La + BTt Gd)

Ne=−M−1(Lb + BTt Ge) Nf = −M−1(D + BTt Gf)

AssigningB(Fb, αs, Vs) = NbFb +Ndαs +NeVs +Nf

θ̈ = NaT +Ncθ̇ +B
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Now, let us separate the joint variables subject to dynamic effect of suspension mech-

anism from the others. To do that, we first reorder the equations.

Sbθ̈ = SbNaS
b−1

SbT + SbNcS
b−1

Sbθ̇ + SbB

Here,Sb is obtained by rearranging the rows of a54 × 54 identity matrix. Separation

is done as follows:

Sbθ̈ =




θ̈susp

θ̈nosusp


 Sbθ̇ =




θ̇susp

θ̇nosusp




SbNaS
b−1

=



Na1 Na2

Na3 Na4


 SbNcS

b−1

=



Nc1 Nc2

Nc3 Nc4




SbT =




T susp

T nosusp


 SbB =




Bsusp

Bnosusp




Suspension dynamics equation is

Msusp̈θsusp= −d θ̇susp− k θsusp (5.61)

whered andk are damper and spring constants respectively.




θ̈susp

θ̈nosusp


 =



Na2

Na4


T nosusp+




Bsusp

Bnosusp


+



−Na1d+Nc1 Nc2

−Na3d+Nc3 Nc4







θ̇susp

θ̇nosusp


+



−Na1k 0

−Na3k 0







θsusp

θnosusp


 (5.62)

Let the following be defined as:

Pa = Sb
−1



Na2

Na4


 Pc = Sb

−1



Na1k 0

Na3k 0


Sb

Pb = Sb
−1



Na1d+Nc1 Nc2

Na3d+Nc3 Nc4


Sb

Now, the equation of motion can be modified to include suspension dynamics.

θ̈ = PaT
nosusp+ Pbθ̇ + Pcθ +B (5.63)
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Let Sc, andSd be sorting matrices.

Scθ̈ = ScPaS
d−1

SdT nosusp+ ScPbS
c−1

Scθ̇ + ScPcS
c−1

Scθ + ScB



θ̈pseudo

θ̈true


 =



Pa1 Pa2

Pa3 Pa4







T pseudo

T nosusptrue


+



Pb1 Pb2

Pb3 Pb4






θ̇pseudo

θ̇true


+



Pc1 Pc2

Pc3 Pc4






θpseudo

θtrue


+



Bpseudo

Btrue


 (5.64)

By definitionθ̈pseudo= 0, θ̇pseudo= 0, θpseudo= 0

T pseudo= −P−1
a1

(Pa2T
nosusptrue + Pb2 θ̇

true + Pc2θ
true +Bpseudo)

Including pseudo joint torques in the equation of motion, weget:

θ̈true = YaT
nosusptrue + Ybθ̇

true + Ycθ
true + Yd (5.65)

Ya = Pa4 − Pa3P
−1
a1
Pa2 Yb = Pb4 − Pa3P

−1
a1
Pb2

Yc = Pc4 − Pa3P
−1
a1
Pc2 Yd = Btrue− Pa3P

−1
a1
Bpseudo

Let us write (5.65) in the form of first order ODE:


θ̈true

θ̇true


 =



Yb Yc

I 0






θ̇true

θtrue


+



YaT

nosusptrue + Yd

0


 (5.66)

Simulation results associated with this system can be foundin [64].

5.5 Discussion

Both theory and application has been presented in this chapter. It utilized the theo-

retical foundations established in the previous chapter, and applied them in practical

cases. The selection of these cases were done so that the complex system dynamical

modeling is demonstrated without making it too complicatedfor the reader to follow.

The simulation results are in the appendices.
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6. CONCLUDING REMARKS

The research presented in this thesis provides the tools necessary for the analysis of

complex topology system dynamics and concentrates on the development of a frame-

work for the dynamical modeling of wheeled ground vehicles.The contributions were

in the fields of cooperating underactuated systems, kinematically deficient cooperating

manipulators and the nonholonomic systems as well as mass matrix factorization and

inversion techniques. Although they may seem to be distinctareas, they are, in fact, the

significant players under one umbrella; multibody dynamics. Therefore, to understand

how these areas all fit together is essential for evaluating the paramount importance

of this work. Vehicle dynamical simulation can be a good example to see that each

aforementioned field constitutes as an ingredient of an algorithm for high fidelity and

hight efficiency.

We conclude this dissertation with a summary of the work together with proposals for

problems suggesting future research.

6.1 Summary

The focus of this dissertation was the development of dynamical modeling algorithm

capable of handling complex topology systems. Considerable efforts have been made

to apply the presented methodology to wheeled ground vehicles with the goal of achiev-

ing high fidelity simulations while attaining high performance. To achieve this out-

come, we first started with unconstrained problems for the sake of simplicity from the

reader’s point of view. Then we moved to cooperating manipulator dynamics and in-

cluded the base dynamics as a free-flying platform. There were two important cases

which we addressed in detail; 1) The case when there are unactuated joints in the sys-

tem forming a closed kinematic chain where the number of actuators are less then the

number of DOF of the system. 2) The case which can be briefly stated as the singu-
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larity issues. The jacobian is required to be a full rank matrix so that the tip forces

of cooperating manipulators can be computed. If a manipulator is at a singularity, the

jacobian looses rank and prevents the computation of tip forces, hence the dynamics.

We introduced both a numerical and an analytical method to overcome this problem,

and explained that analytical approach was superior to the numerical one. With the

mass matrix factorization and inversion inO(n) and the application of the algorithm

to nonholonomic systems made it a complete tool for complex topology systems.

A complex topology systems, from our perspective, is regarded as a system composed

of multiple “arms” treated as if they were robotic arms. For example a bicycle can very

well be considered as a cooperating manipulator if each wheel is regarded as a manip-

ulator subject to nonholonomic constraint. To be able to compute the traction forces

between the wheel and the terrain and even perform a stress analysis on the spokes of

the wheel motivated us. These traction forces are crucial for roll-over estimation and,

therefore, to compute them has a major value.

Application of the algorithm to an example underactuated system was demonstrated

with simulation results. Two wheeled cart, and four wheel steered and driven (4x4x4)

system were the next case studies. Finally the full dynamical model of a passenger

vehicle was shown.

6.2 Future Directions

Trucking industry can gain substantial economic benefits through use of larger trucks,

there has been rapidly growing interest in using multitrailer vehicles to obtain higher

cargo volume while retaining the practical benefit of good maneuverability. On the

other hand, multitrailer vehicles are known to suffer from special dynamic character-

istics that can limit their stability and emergency maneuverability.

This dynamic characteristic leads a concern over the potential for degradation of the

safety quality of highways. Some noted problems are reducedyaw stability and sus-

ceptibility to roll-over in steady turn, slower response and possible instability during

braking, reduced level of sensory feedback of trailer conditions, off tracking, ampli-

fied trailer response to rapid steering, and oscillatory sway due to road disturbances.

In addition to these problems, due to their isolation in the cabin, most drivers of such
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vehicles do not receive early sensory feedback of imminent roll-over.

This research can be extended as the basis of the developmentof a framework for the

control of multitrailer vehicles. Establishing the feasibility of providing the drivers of

articulated vehicles with information on the roll stability of their trailer can be the goal

of such work.

In this regard, the developed algorithm can be applied, for example, to a triple-trailer-

tractor vehicle to obtain highly accurate analytical dynamical model on any given

terrain. To give an idea, this system would consist of 166 joints with 48 indepen-

dent degrees of freedom in total. Given the steering torque,driving torque and terrain

structure, the forward dynamics algorithm obtains the velocities, the accelerations, the

forces and torques of all joints. Among these, contact forces between tires and the road

can be used to prevent roll-over by adjusting the speed. Tireslip in both longitudinal

and lateral directions and frictional characteristic of terrain [65] can be included in the

model.
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A. SIMULATION RESULTS: GENERAL UNDERACTUATED
COOPERATING MANIPULATORS IN SPACE MANIPULATION

Using the methodology presented in Chapter 5.1, the system was simulated using
MATLAB on a Pentium 4 computer. Torques are applied at the second joint of arm 1
and at the third joint of arm 2 in the form of a ramp function forfive seconds as shown
in Figure A.1 and then the system is let to swing by its own on a free flying platform
in 2D without gravity.

A.1 Results
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(a) t = 5s (b) t = 15s

Figure A.1: Applied torques at the actuated joints

Under the applied torques shown in Figure A.1, the results are plotted for a total time
period of 200s. Figure A.2 shows the joint angles, velocities and accelerations for arm
1 on the left and arm 2 on the right.
Next we look at the motion of the platform. Plots on the top rowof Figure A.3 are for
the platform angle, angular velocity and angular acceleration. The bottom row plots
of the same figure are the position, linear velocity and the linear acceleration of the
platform.
Interaction forces and torques with the common load is presented in Figure A.4.
Figures A.5 through A.11 display the pictorial representation of the configuration of
the system in 5 seconds intervals.
To contribute to the understanding of the numerical stability of the algorithm, the con-
dition number of Jacobian which is defined as the ratio of the largest singular value of
Jacobian matrix to the smallest one, is given in Figure A.12.
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Figure A.2: Joint variables (the left column is for arm 1 and the right column is for
arm 2): (a) joint angles, (b) joint velocities, (c) joint accelerations (solid lines are for
x, dotted lines are for y and dashed lines are for z)
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Figure A.3: Platform variables: (a) platform angle, (b)platform ang.vel, (c) platform
ang. accl, (d) platform x position, (e) platform lin. x vel, (f) platform lin. x accl, (g)
platform y position, (h) platform lin. y vel, (i) platform lin. y accl
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Figure A.4: Torques and forces on the common load

Figure A.5: Initial configuration
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(a) t = 5s (b) t = 10s

(c) t = 15s (d) t = 20s

(e) t = 25s (f) t = 30s

(g) t = 35s (h) t = 40s

Figure A.6: T = 5 - 40 s
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(a) t = 45s (b) t = 50s

(c) t = 55s (d) t = 60s

(e) t = 65s (f) t = 70s

Figure A.7: T = 45 - 70 s
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(a) t = 75s (b) t = 80s

(c) t = 85s (d) t = 90s

(e) t = 95s (f) t = 100s

Figure A.8: T = 75 - 100 s
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(a) t = 105s (b) t = 110s

(c) t = 115s (d) t = 120s

(e) t = 125s (f) t = 130s

Figure A.9: T = 105 - 130 s
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(a) t = 135s (b) t = 140s

(c) t = 145s (d) t = 150s

(e) t = 155s (f) t = 160s

(g) t = 165s (h) t = 170s

(g) t = 175s (h) t = 180s

Figure A.10: T = 135 - 180 s
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(a) t = 185s (b) t = 190s

(c) t = 195s (d) t = 200s

Figure A.11: T = 185 - 200 s
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A.2 Conclusion

We have demonstrated the use of a dynamic algorithm for general underactuated coop-
erating manipulators. We utilized two planar arms each having 3 DOF. Only one joint
is actuated at each arm. The results were displayed as both time charts and pictorial
representation using MATLAB’s visual environment.
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B. SIMULATION RESULTS: TWO WHEELED CART

Using the methodology presented in Chapter 5.2, the system was simulated using
MATLAB on a Pentium 4 computer. Although the simulation timecan be made arbi-
trarily long, here we demonstrate 2 seconds of simulation time for the sake of simplic-
ity in terms of the interprotation.

B.1 Results

Three cases were considered;

• going forward, where equal torques are applied to each wheel

• rotating around the center, where equal but opposite torques are applied

• rotating around off center, where different torques are applied

B.1.1 Going forward
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Figure B.1: Applied torques
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Figure B.2: Base velocities
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Figure B.3: Angular velocities of the links of Arm 1
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Figure B.4: Linear velocities of the links of Arm 1
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Figure B.5: Angular velocities of the links of Arm 2
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Figure B.6: Linear velocities of the links of Arm 2
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Figure B.7: Tip velocities
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Figure B.8: Torques at the links of Arm 1
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Figure B.9: Forces at the links of Arm 1

102



0 0.5 1 1.5 2
0

0.5

1

time [s]

T
or

qu
e x[N

m
]

2 Link 1

0 0.5 1 1.5 2
8

9

10

11

time [s]

T
or

qu
e y[N

m
]

0 0.5 1 1.5 2
0

0.2

0.4

time [s]

T
or

qu
e z[N

m
]

0 0.5 1 1.5 2
0

0.5

1

time [s]

T
or

qu
e x[N

m
]

2 Link 2

0 0.5 1 1.5 2
−1

0

1

time [s]

T
or

qu
e y[N

m
]

0 0.5 1 1.5 2
−1

0

1

time [s]

T
or

qu
e z[N

m
]

0 0.5 1 1.5 2
0

0.1

0.2

time [s]

T
or

qu
e x[N

m
]

2 Link 3

0 0.5 1 1.5 2
−1

0

1

time [s]

T
or

qu
e y[N

m
]

0 0.5 1 1.5 2
−1

0

1

time [s]

T
or

qu
e z[N

m
]

Figure B.10: Torques at the links of Arm 2
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Figure B.11: Forces at the links of Arm 2
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Figure B.12: Tip spatial forces
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Figure B.13: Applied torques
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Figure B.14: Base velocities
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Figure B.15: Angular velocities of the links of Arm 1

105



0 0.5 1 1.5 2
−0.015

−0.01

−0.005

0

time [s]

v x[m
/s

]

1 Link 1

0 0.5 1 1.5 2
0

0.05

0.1

time [s]

v y[m
/s

]

0 0.5 1 1.5 2
−1

0

1

time [s]

v z[m
/s

]

0 0.5 1 1.5 2
−0.03

−0.02

−0.01

0

time [s]

v x[m
/s

]

1 Link 2

0 0.5 1 1.5 2
0

0.1

0.2

time [s]

v y[m
/s

]

0 0.5 1 1.5 2
−1

0

1

time [s]

v z[m
/s

]

0 0.5 1 1.5 2
−1

0

1

time [s]

v x[m
/s

]

1 Link 3

0 0.5 1 1.5 2
−1

0

1

time [s]

v y[m
/s

]

0 0.5 1 1.5 2
−1

0

1

time [s]

v z[m
/s

]

Figure B.16: Linear velocities of the links of Arm 1
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Figure B.17: Angular velocities of the links of Arm 2
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Figure B.18: Linear velocities of the links of Arm 2
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Figure B.19: Tip velocities
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Figure B.20: Torques at the links of Arm 1
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Figure B.21: Forces at the links of Arm 1
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Figure B.22: Torques at the links of Arm 2
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Figure B.23: Forces at the links of Arm 2
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Figure B.24: Tip spatial forces
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B.1.3 Rotating around off center
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Figure B.25: Applied torques
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Figure B.26: Base velocities
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Figure B.27: Angular velocities of the links of Arm 1
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Figure B.28: Linear velocities of the links of Arm 1
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Figure B.29: Angular velocities of the links of Arm 2
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Figure B.30: Linear velocities of the links of Arm 2
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Figure B.31: Tip velocities
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Figure B.32: Torques at the links of Arm 1
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Figure B.33: Forces at the links of Arm 1
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Figure B.34: Torques at the links of Arm 2
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Figure B.35: Forces at the links of Arm 2
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Figure B.36: Tip spatial forces

116



C. SIMULATION RESULTS: FOUR-WHEEL-DRIVE FOUR-WHEEL-STEE R
MOBILE MANIPULATOR

Using the methodology presented in Chapter 5.3, the system was simulated using
MATLAB on a Pentium 4 computer.

C.1 RESULTS

Two cases were considered;

• drive only, where the driving torques are applied to each wheel

• steering only, where the steering torques are applied to each wheel

C.1.1 Steering

0 0.5 1 1.5 2
0

0.5

1

time [s]

to
rq

ue
[N

m
]

Steering

0 0.5 1 1.5 2
−1

0

1

time [s]

to
rq

ue
[N

m
]

Driving

0 0.5 1 1.5 2
0

0.5

1

time [s]

to
rq

ue
[N

m
]

0 0.5 1 1.5 2
−1

0

1

time [s]

to
rq

ue
[N

m
]

0 0.5 1 1.5 2
0

0.5

1

time [s]

to
rq

ue
[N

m
]

0 0.5 1 1.5 2
−1

0

1

time [s]

to
rq

ue
[N

m
]

0 0.5 1 1.5 2
0

0.5

1

time [s]

to
rq

ue
[N

m
]

0 0.5 1 1.5 2
−1

0

1

time [s]

to
rq

ue
[N

m
]

Figure C.1: Applied torques
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Figure C.2: Base velocities
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Figure C.3: Angular velocities of the links of Arm 1
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Figure C.4: Linear velocities of the links of Arm 1
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Figure C.5: Angular velocities of the links of Arm 2
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Figure C.6: Linear velocities of the links of Arm 2
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Figure C.7: Angular velocities of the links of Arm 3
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Figure C.8: Linear velocities of the links of Arm 3
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Figure C.9: Angular velocities of the links of Arm 4
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Figure C.10: Linear velocities of the links of Arm 4
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Figure C.11: Torques at the links of Arm 1
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Figure C.12: Forces at the links of Arm 1
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Figure C.13: Torques at the links of Arm 2
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Figure C.14: Forces at the links of Arm 2
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Figure C.15: Torques at the links of Arm 3
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Figure C.16: Forces at the links of Arm 3
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Figure C.17: Torques at the links of Arm 4
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Figure C.18: Forces at the links of Arm 4
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Figure C.19: Applied torques
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Figure C.20: Base velocities
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Figure C.21: Angular velocities of the links of Arm 1
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Figure C.22: Linear velocities of the links of Arm 1
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Figure C.23: Angular velocities of the links of Arm 2
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Figure C.24: Linear velocities of the links of Arm 2
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Figure C.25: Angular velocities of the links of Arm 3
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Figure C.26: Linear velocities of the links of Arm 3
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Figure C.27: Angular velocities of the links of Arm 4
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Figure C.28: Linear velocities of the links of Arm 4
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Figure C.29: Torques at the links of Arm 1
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Figure C.30: Forces at the links of Arm 1
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Figure C.31: Torques at the links of Arm 2
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Figure C.32: Forces at the links of Arm 2
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Figure C.33: Torques at the links of Arm 3
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Figure C.34: Forces at the links of Arm 3
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Figure C.35: Torques at the links of Arm 4
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Figure C.36: Forces at the links of Arm 4
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