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HIGH PERFORMANCE DYNAMICAL MODELING OF COMPLEX
TOPOLOGY SYSTEMS

SUMMARY

A mechanical system is said to be in a complex topology whamclides multiple
subgroups, which may include one or more of the serial tapgltree topology and
closed topology systems. These subgroups can be furthesifetal according to their
actuation (under-actuated or fully-actuated), accordantheir manipulability (kine-
matically deficient, full DOF or redundant) and accordingheir constraints (holo-
nomic or nonholonomic). Out of all possible configuratiows, identified the issues
and provided the solutions. For example, in the pseudd-joethod we first augment
the system with additional joints called pseudo joints drehtremove them from the
system by constraints called pseudo-torques. These aartstactually correspond to
stress along the pseudo-joints. Therefore, for the pricstress computation, we ob-
tain full propagation of forces and torques including thaesteained ones throughout
the system. Our goal from the forward dynamics problem, endather hand, is to
solve for the complete force/torque and accelerationiligion of the system includ-
ing those at the constraints. The methodology presenteddular so as to apply no
matter how complicated the systems is. Mass matrix factidm and inversion is also
an issue for large order systems. A modified order-n algorifeembedded to enhance
the performance. We believe that the application of ourrdlgm to complex topology

systems with nonholonomic constraints is the domain whdits best.

Xii



KOMPLEKS TOPOLOJ | SISTEMLER IN Y UKSEK PERFORMANSLI
DINAM IK MODELLEMES |

OZET

Kompleks topoloji sistemler ¢coklu rijid cisim dinamigmen st kiimesini olusturur.
Bu kiime icerisinde seri topoloji, agac topolojisi vepké cevrim topoloji bulunur.
Ayrica tahrik diizenine gore eksik-tahrikli ya da tamstlinsistemler, serbestlik dere-
celerine gore de kinematik-yeterli ya da kinematik-ysitgrkisitlarina gore holonomik-
olan ya da holonomik-olmayan olarak siniflandirilabilirBtiin bunlarin kombinasy-
onlari degerlendirildiginde ortaya ¢ikan problemlefaimis ve bunlar icin yontemler
gelistirilmistir. Ornek olarak kinematik yetersiz manipulatorler, galasuzaylarinda
gecerli butun konfigiirasyonlara ulasmak icin gerekerbestlik derecelerinden (SD)
daha azina sahip olan manipillatorlerdic boyutlu calisma uzayi icin bu durum, bir
manipulatorin serbestlik derecesinin (SD) altidanadkiiciik olmasina karsi duser.
Cunkd O¢ boyutlu calisma uzayina sahip kinematitegldigi olan bir manipulatorin
uc noktasi, Uc¢ boyutta donme ve ¢ boyutta otelemeadliizere toplam alti boyutlu
bir manifold tanimlar. Birlikte ¢alisan manipulatértien olusan bir sistem Uzerindeki
kuvvet ve moment dagilimlarini hesaplayabilmek icirtesisin Jakobiyen matrisinin
sutunlarinin butiin kombinasyonlari bu manifoldu tamdattarayabilmelidir. Bundan
dolay! literatirde genellikle manipulatorlerin kinatik yeterliligi ve tekil durumda
olmamalari bu problemin ¢oziimune 6n kosul olarakriietektedir. Birlikte calisan
manipulatorlerin dinamik analizinde kinematik yetkklion kosulunun kaldiriimasi
amaciyla manipulatorlerin tasidigr yuka bir moblagiorm olarak modellemek ve
gerektiginde sisteme “stzde eklem” eklemek olaraklémebilecek bir yontem tanitil-

mistir.

Xiii



1. INTRODUCTION

A manipulator is a mechanical device generally built as arcbéstructurally rigid
links articulated by rotary or sliding joints which contue as a degree of freedom
(DOF). Multiple manipulators that work together to perfoamaommon task are called
cooperating manipulatordn this regard, a multibody system forming a closed-kinemat
chain, from the modeling perspective, is equivalent to evapng manipulators. In
real life, there is a good likelyhood that a mechanical sygtes multiple open and/or
closed-kinematic chains. We call such systeocomplex topology system.

Most mechanical systems are subject to certain auxiliangitions called constraints.
Keen understanding of the motion and the interaction of &tbss some of which
may be constrained is the essence of multibody dynamics ¢&ri only be achieved
by through analysis using particular methodology whichvtes great insight into
the structure in a concise manner. The most concise way ohiexag physical phe-
nomena can be carried out through the use of vector ana8isise the formulation of
Newton-Euleywhen compared to that bagrange-Euleyprovides greater insight into
the structure of the rigid multibody dynamics, the core & thethodology presented
in this dissertation idNewton-Euletbased dynamic modeling methodology using vec-

torial representation.

1.1 Problem Statement and Motivation

For the forward dynamics problem, inverse of the mass matneeded. In general-
ized coordinates, mass matrixiscn matrix wheren is the number of links. Generally
speaking;»® operations are required to invert a nonspatce n matrix. Therefore,
its complexity is said to b&(n?). If n is a large number, this becomes a major is-
sue regarding the overall performace of the computationth®rother hand, utilizing

the properties of the mass matrix, one can reduce the complaxthis process to



O(n). In this thesis, the factorization and inversion technipuedopted from [1] and

modified to broaden its applicability.

Manipulators can be classified into a few categories. If tiralper of actuators to drive
individual joints is equal to or less than the number of DORhaft manipulator than
it is called afully actuatedor anunderactuateananipulator, respectively. Depending
upon having more, same, or less DOF to achieve any admissibfegguration in its
workspace, a manipulator is callededundant full DOF, or kinematically deficient
in the order given. Full DOF and redundant manipulators tnemply may become

kinematically deficient when they are at singularity.

Generally speaking, the load at the end effector of a maaipuis known when deal-
ing with the dynamics of a serial manipulator. If the end etffe of a manipulator is
in contact either with that of another manipulator or witle gnvironment, the com-
putation of induced forces and torques at the contact is rettaéght forward task.

Obviously, dynamical modeling of complex topology systese major challenge.

Often times, forward dynamics problem of a complex topolsgstem means to solve
for the acceleration of its center of mass when the applieguts or forces are given.
These are usually over simplified models that lack inner gdyos of the system. Our
goal from the forward dynamics problem, on the other hanth solve for the com-
plete force/torque and acceleration distribution of thstem including those at the
constraints. The algorithms known in the literature dedhwhis problem only when
the manipulators are fully actuated and are not kinemayidaificient. Our challenge

is to remove these limitations.

A manipulator does not need to be in the form of a robotic amfatt a bicycle, for
example, can very well be considered as a cooperating matgpuf each wheel is
regarded as a manipulator subject to nonholonomic constrgo be able to compute
the traction forces between the wheel and the terrain andgéorm a stress analysis
on the spokes of the wheel motivates us. One should noteéhthabnstraint at the con-
tact point of a pure rolling wheel is@onholonomiconstraint where the generalized
velocity satisfies an auxiliary condition that is not exgibke as a function of its gen-
eralized position. We believe that the application of ogoakthm to complex topology

systems with nonholonomic constraints is the domain witer@mes to fruition.



1.2 Historical Review of Related Studies

To understand what had been available in the literaturedyirtine the ideas in this dis-
sertation were defended is very important to assess thelmatns listed in the next
section. Therefore, this section is dedicated for liteateview which is divided, for
clarity purposes, to five subsectior@d(n) algorithms, spatial operators in multibody
dynamics, underactuated systems, kinematically defisigstems, nonholonomic sys-

tems.

1.2.1 O(n) algorithms

Armstrong [2] presented one of the first resultstn) formulation of multi-body
dynamics. The method was based on a Newton-Euler formualadiad it could model
chain systems with spherical joints for the forward dynapooblem. Shortly after
that, Walker and Orin [3] presented thélf ») algorithm also based on a Newton-Euler
formulation.

Several studies yieldin@(») formulations for rigid body dynamics rooted in Kane’s
method [4, 5]. One of these works was done by Rosenthal [6]pvlsented an algo-
rithm that performs about 200 multiplication and 200 adxiitper degree of freedom
in an open loop system. Another researcher needed to beanedthere is Anderson
whose work is explained next.

Based on Kane’s method, Anderson [7] presented an algoxithith accommodates
closed loop topologies i®(n). The algorithm consist of three recursive steps: calcu-
lation of velocities from base through tip, calculation ofdes through base, and fi-
nally, calculation of accelerations through tip. The pregm method first deems some
of the joints to be cut by removing the constraints so thasexidloops become open
loops. After performing the velocity, force and acceleratpropagations, constraint
forces are considered. In finding these forces, proposeldadéitroduces an advanta-
geous approach over penalty formulation [8], constraattitization [9], and stabilized
penalty procedures [10] based on Lagrange multipliers.chiadlenge with finding the
multipliers, or constrained forces in Anderson’s casegiavoid drift resulting from
the roundoff error characteristic of digital computer flogtpoint operations which

may cause numerical instability. The proposed alternatproach adds a PD-type



control law to the constrained forces to limit the constrainlation. More precisely,
proportional and derivative terms include kinematic coaiat and its time derivative,
respectively.

An Order-N formulation of multi-body tethered systems rexently been studied [11].
Although this is not a rigid body dynamics, once the equatibmotion is driven the
rest of the algorithm is analogous to that of rigid body dyi@nThe proposed method
for solving the equation of motion for accelerations(in) is to factor generalized
mass matrix in a way similar to the one proposed in spatiataipealgebra [1] with
certain differences still yielding to same results. As aamgle to such differences
it can be shown that after coordinate and velocity transébions to inertial frame,
kinetic energy formulation is used to factor generalizegsmaatrix.

As another approach based on velocity transformation, K@ahas reported a®(n)
recursive algorithm for the Newton-Euler equations. Thakvis similar to Spatial
Operator Algebra and differs in that constraint forces aleudated only at so called
cut jointswhich are, essentially, the minimal set of joints in the alogeof which the
topology of the system changes from closed-loop to opep:loo

Flexible links and flexible joints have been considered B)].[1For closed kinematic
chain systems, [14] obtains dynamical modeling based ortablenique given by
[15]. Although all of these algorithms are claimed to be catagionally efficient,
the method they use is stitirder n3 (specifically, the number of computational op-
erations required at each temporal integration step iseraa a cubic function of the
number of system generalized coordinatgs Multibody dynamical algorithm with
order nperformance (indicating that the number of numerical com@ans increases
as a linear function of the number of generalized coords)dtas been the focus of
many researchers [2, 16, 17, 18, 6, 19], since it was firsbdhtced by Vereshchagin
[20] in 1974.

What needs to be underlined here is the fact as stated in fiat}‘all of the O(n)

algorithms are closely related and have the same inhereictste.”

1.2.2 Spatial operators in multibody dynamics

Spatial quantities have been known for many decades. Fonmraat the beginning

of the 20th century, it was employed by Ball [22] in ttieeory of screws In 1983,



Featherstone [16] developed @tn) method usingrticulated body inertiasvhich is
derived utilizing the spatial algebra. It is applicable fwea chain systems, and it is
more efficient than that of Armstrong [2].

In 1987, Guillermo Rodriguez [23] utilized spatial quaietitto solve the rigid body dy-
namics as a two point boundary value problem. This work wagired from Kalman
filtering and Bryson-Frazier smoothing techniques yiedaanewO(n) algorithm
for forward and inverse dynamics of multi-body systems fioigropen-chain and/or
closed-chain systems [24, 25]. In 1991, Abhinandan Jaihg8dsented a discussion
on comparison of several algorithms for serial rigid mutlp system dynamics by uti-
lizing the tools provided by the spatial operator algeb@A&¥ This helped to establish
the bridge between SOA and other multibody dynamics algmist Applications of
SOA has been presented by Rodriguez, Kreutz-Delgado andR&il]. The research
given here is rooted in these studies.

Jain and Rodriguez has applied SOA to flexible multibodyesyst[27], linearized sys-
tems [28], molecular dynamics [29], and decomposable systeased on their joints
[30, 29]. More recently, sensitivity analysis of SOA hasreeablished [31]. Yen and
Jain has published ROAMS: rover analysis modeling and sitiard software based
on SOA [32].

1.2.3 Underactuated systems

Modeling of underactuated mechanical systems has beeiegdfsdich as [33], in the
robot dynamics field for more than a decade. Among such wbhekgetare a few pa-
pers which address the dynamic modeling of underactuatesedtkinematic-chain
systems. Of these, there are some that were misidentifieddesactuated systems,
such as [34]. When dealing with kinematic loops, one neetie tvareful about that it
is not sufficient to call it an underactuated system just beedhere is a passive joint
in a system. As stated earlier, there has to be an uncotI@F in the system. If
a passive joint has a constraint such that it is kinemagicpendent on an actuated
joint, then that passive joint does not constitute for aromtolled DOF. For instance,
let us take a planar four-bar linkage mechanism into conaiot®. As well-known,
there is only one DOF in a planar four-bar linkage mechanemad, therefore actuat-

ing only one joint while leaving the other three joints passinakes the system fully



actuated.

lannitti and Lynch [35] presented a case study in kinembyicantrollable underactu-
ated systems as a minimum control-switch motions for th&edmaard. Another work
given in [36] introduces an underactuated system in the fwirbviped walking robot.
This system was modeled for two separate cases consistthg sfving phase where
only one foot is in contact with the ground, and the impactsehahere both feet are
in contact with the ground. The impact phase was assumedttéolaan infinitesimal
time and, therefore, was not included in the overall plantieho

There are some notable works on the control of underactiatstgms such as the
book by Fantoni and Lozano [37], and [38] by Ortegalintroducing a methodology
namedinterconnection and damping assignmémt the stabilization of a underactu-

ated systems.

1.2.4 Kinematically deficient systems

Although constrained manipulators and kinematically rethnt manipulators have
been studied extensively, such as the work by Bruyninckxkamatib [39], kinemat-

ically deficient manipulators have not attracted enougénéitin from the scientific
community. Abdel-Malelet al. [40] studied the workspace issues of kinematically
deficient manipulators. Dynamics of two-finger grippers asekatically deficient

manipulators was studied by Prattichizzo and Bicchi [4E]edperated surgical robots
were considered in both kinematically redundant and kiriexaldy deficient cases by

Funda et al. [42]. Mobility criterion was considered by Retcal[43].

1.2.5 Nonholonomic systems

Analytical formalism of Euler and Lagrange was believedéabplicable to any me-
chanical system until as late as 1894 when Hertz [44] intteduhe existence of kine-
matic constraints that impose no restrictions on the ptssibnfigurations. Having
the distinction between holonomic and nonholonomic camnsts recognized, many
researchersQaplygin, Volterra, Appell, Maggi, and others) proposedhndologies
to solve the dynamics of nonholonomic systems.

In order to analyze a nonholonomic system like a holonomeé; oanstraint forces are



introduced via the Lagrange multipliers. However, the catapon of the multipliers
is usually not straight forward. Among others we can mentiamel [45] who in
1949 developed a method to eliminate the necessity of ekpbenputation of non
working constraint forces. However, Hamel's method introes other detailed and
lengthy computations which require perhaps as much cortipatas the constraint
forces themselves. Later in 1961, Kane [46] developed a odethb eliminate non
working constraint forces with much less computationabrefthan that of Hamel.
Orthogonal complement based methods of dynamics consd#tefmining a matrix
whose columns span the nullspace of the matrix of velocitystraints. The idea
of the orthogonal complement of velocity constraints in deeivation of dynamical
equations is not new, for it has been extensively used inibagy dynamics. In 1991
Saha and Angeles [47] make a use of this method in their dfgori

Dynamics and control of multiple cooperating manipulateith rolling contacts by
Deo and Walker [48] models the rolling contact as an unaetu@int of the manipula-
tor. Dynamic Modeling and Adaptive Traction Control for Mi@Robots was studied
by Albagul [49]. A mobility analysis method of closed-chairechanisms with over-
constraints and non-holonomic constraints was examinddryet.al.[50]. From the
practical point of view, it needs to be mentioned here thaé®sen’s Ph.D. thesis [51]

includes implementation on a four-wheel-drive four-whsteler vehicle.

1.3 Contributions

The contributions made in this thesis can be classified uheédiollowing categories:

e Kinematically Deficient Cooperating Manipulatordhe numerical problems
associated with the computation of the interaction foraes @rques, among
themselves and/or with the environment, of multiple malafors at least one
of which is kinematically deficient is addressed. A new cgncemed “pseudo

joint” has been introduced as a methodology to solve suclptioated systems.

e Cooperating Underactuated Systeniste roots of the algorithm on the underac-
tuated systems can be found in [30] which presents the dysaofiunderactu-

ated open chain manipulator in order n formulation. Ourgbuation is to extend



this algorithm to include underactuated manipulators foghtlosed kinematic

loop on a free-flying space platform.

e O(n) Formulation: Mass matrix factorization, which is the core of tli¥n)

formulation, has been reformulated to ease the use of it.

e Nonholonomic systemg#pplication of the proposed algorithm to nonholonomic
systems enjoys a preeminence among the algorithms knovnae iliterature for
its use as a high performance observer of the contact foretgebn tires and

the road.

Next section outlines the organization of this thesis.

1.4 Thesis Outline

Following the introductory material in this chapter, thegls begins with the dynamics
of open and closed kinematic chain systems in chapter 2,eNd@h open and closed-
kinematic chain systems are considered to be mounted on denpdditform instead
of a fixed one so that the equation of motions are applicabdevtaer set of systems.
Later in the thesis, we benefit from this perspective.

The performance of the algorithm is determined by the nurobeperations necessary
for the inversion of the generalized mass matrix. In chaptenodified mass matrix
factorization and inversion technique based on [1] is @rpl&in detail.

Within a complex topology system, there are two distincesathat needs to be ad-
dressed separately. These are namely underactuated amagtically deficient struc-
tures of closed-kinematic chains. Dynamical modeling théas been developed for
both of these cases in chapter 4 which constitutes for thare¢hieal foundation of the
thesis.

Application and results are given in chapter 5. Finally,atba6 provides the conclud-

ing remarks.



2. DYNAMICS OF SERIAL AND CLOSED TOPOLOGY SYSTEMS

A system of rigid bodies connected by hinges or sliders fatheeone or the combina-
tions of three different structures; serial, tree and addsgology systems, an example
for each of which is given in Figure 2.1. Any of the two bodiesbioth serial and
tree topology systems has a unique path. The differencetinea the two is that a
serial topology system has only one terminal body while a topology system has
multiple terminal bodies. As for the closed topology systémre exist a non-unique
path between any two bodies at the system.

Out of the three topologies mentioned above, the serial ngiltibody system is the
most basic and the simplest structure. Therefore, it is aaliglatform for laying
out the ingredients of the dynamic modeling algorithm usedhis thesis. Closed
topology systems, on the other hand, constitute for thecdifftase where the closure
forces and torques need to be computed. Consequently, trardgal modeling of

these two distinct cases will be covered in this chapter.

2.1 Notation

The notation introduced in this section applies not onlyhis thapter but also to the
rest of the thesis.

Let o represent any variable in this thesis. Three indicésc can be used &sx. to
mean the following. The superscripindicates the number of the associated manipu-
lator, the left subscrigtindicates the dimension of the variable, and the right sujtsc

c indicates the number of the link (body) being considered.

The algorithm presented here utilizes a basis-free vedtogpresentation. Vectors
in 3 dimensional space are represented with an overarfpw $patial vectors in 6
dimensional space are represented with two overarrcﬁ)vslﬁ mathematical sense,

vectors in all other cases are represented as underline&qgr matrices, bold capital
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(b)

base
(c)

Figure 2.1 Examples of (a) a serial topology system, (b) a tree toposygtem, and
(c) a closed topology system. Here TB stands for “TerminalyBo
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letters X) or caligraphic fonts ') are used. Some key vectors used throughout the

thesis are displayed in Figure 2.2.

If k,c

Center of Mass

Link k of Arm i

Figure 2.2 Vectors associated with link of the manipulatof

2.2 Serial Manipulator On A Mobile Platform

A serial manipulator constitutes a serial topology systdrmse dynamics will be given
in this section. Although the dynamics of such systems i$-kwedwn and can be found

in many textbooks such as [52, 53, 54, 55], here we will pretiezm methodology

11



very similar to the one introduced in [1] so that the basia@agents of the dynamic

modeling algorithm are introduced. Let us start with thesknatics.

2.2.1 Kinematics

Angular and linear link velocities of th&" manipulator propagate from linkk— 1 to

link k for a revolute joint as follows:

'O = ‘Wp_1 + "hi'0 (21)
i i i iy i iy i
Up = Vg1 4 W1 X L1 = "1 — L1 X "Dp—q
i i i
= "Wg—1 — L1 Wi (2.2)

. yaN — . . . .
where'Ly_1x = ( “%—1,x) is an operator in the form of a skew symmetric matrix

given as

0 —"Ue—1,k). Z[(k—l,k)y
L1k = Clh—1,1). 0 —Ui-1,k),
"i—1,r) 0

=

—ge-1,p),

and ["Cpe—1x), “La—1k), Li-10).]" is the representation (ﬁ‘;_l,k in the reference

@ y

frame. Equations (2.1) and (2.2) can be written in a matnirfas follows:
Wy = iq)k,k—li‘?k—l +Hy, 6, (2.3)

where, link spatial velocity is defined as

3 '

v, 2l (2.4)
Zﬁk

and the propagation operator is defined as

. I 0

p A 3 3

D1 = 4 (2.5)

—'Lp_1p sl

and, finally, axis of rotation spatial vector is defined as

= i

VP (2.6)
0
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If it is a prismatic joint, all we have to do is to change the igiin of 5, in (2.6) as

1

>

ZH &

SO

i
k

] 2.7)

Next, we write the spatial velocities of each link from bagéip (outboard) of armi

on a mobile base as

W, =V,

’Vl - i(ﬁLino ‘|‘ iﬁl iél

’Vz = i‘I’2,1i‘71 + ’ﬁz iéz (2.8)
Z‘?nZ = Z'(ﬁni,m—li‘_/»m-—l + Zl—_jm Zem

wheren; is the number of DOF of thé" manipulator. Figure 2.3, which shows a con-
ceptual serial manipulator on a mobile platform, helps tdaratand the propagation
givenin (2.8).

Using the state transition property of the propagation matr
Z"I)a,b i‘I)b,c = i‘I)a,c (29)

we rewrite the equations in (2.8) so that the spatial vejdeitms (except for the base
spatial velocity) on the right side of the equations are elated

W, = i(I)l,O‘?b +H L 0,

i‘?2 - i¢270‘7b —|— i(ﬁlli[’_jl iél —|— iﬁg iég

(2.10)
Zvnz = i(I)ni,O‘?b + -+ iq)ni,ni—liﬁni—l iéni—l + Zﬁnz Zenz
Equations in (2.10) can be written in a matrix form as follows
Vo= ®(HO+ ®,V) (2.11)
where,
2‘71 _ 6l 60 - 60_ Z91
iV | i$ I .. 40 g
iy = '2 i _ .2,1 6' 6 ij — 2
L ZVnL ] L Z'(ﬁni,l i‘I)m,Z U 6I ] L ZenZ ]

13



#i

free—flying platform

Figure 2.3 Serial manipulator on a free-flying mobile platform

14



[, 0 | [ i®, |
. ‘H ) 0
ZH: 2 . Z@b: 6
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Tip velocity is written as

W, =1®,'V (2.12)
where,
"Dy =140 .- 40 ‘D, 1,

Substituting equation (2.11) into (2.12), we get
ivt =170+ i(I)Lbe (2.13)

where7 which is the Jacobian operator of tif& manipulator and®; , are defined

as
A AN TR i Ay i iR
J="®'®'H Dy ="Pp,110="P,/' PP,

This concludes the kinematics of an open-chain manipulator

2.2.2 Dynamics

In order to move to dynamical analysis, we need to take the dienivative of equations
(2.1) and (2.2).

'Or = "Wr_1+ "hi'0 + 0y X "hi'0

i ip igo 4 i i i
= "W+ 'O, + "G x ("Dr — D)

= Z(Dk_l —+ thlﬁk -+ ’&k_l X Z(Dk (214)
i i i iy i i iy
U = U1+ D1 X L1 g+ ‘D1 X ("Dr—1 X Cp—1x)
i iy i i i iy
= "Wyt — Up—1 e X "Dy + "G X ("1 X U1 1) (2.15)

Equations (2.14) and (2.15) can be written in a matrix forrfollews:

Wy =@ ' Viy + "Hy O, + (2.16)
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where'd, is the spatial bias accelerations.

i i&k_l X Z(ﬁk
ax = . . .
"1 X (D1 X U1 k)

Stacking up all of the link accelerations of afirasing equation (2.16), we get
W =®(H G+ 'a+ '®V,) (2.17)

Now, we will write the propagation of link torques and forceékhis cannot be done
outboard because of the boundary conditions. Hence, itheildone inboard. In
this thesis, the term outboard is used to mean the travesseliase towards tip, and

inboard is used to mean the traverse from tip towards base.

T = "Ti1 + U1 X frr + e X UMy + E( Iy &) (2.18)

On the right hand side of equation (2.18), the first and thersg:¢erms come from
joint & + 1, the third term is due to translation, and the last term istduetation.
Similar to torque propagation, the following is written tbie link forces:

U = fop1 + imk%(iﬁ'k G X ) (2.19)

Equations (2.18) and (2.19) can be written in a matrix forrfollews:
B =1L Fr + MV + (2.20)

whereiF,, is the link spatial forces'M,, is the link mass matrix, anifk is the link

spatial forces remainder terms, as defined below:

5 zzf i, imiiL
= k - k my L c
Fr= o ‘M, = o .
i —'my'Lg.  3L'my
3 i(Dk X ’Ik’u_}k
Zb _
=

’mk’c_u'k X (Zﬁk X if;ﬁ)
Stacking up all the link spatial forces of arnusing equation (2.20), we get

F="®T(MV + b+ '®TF)) (2.21)
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where

I~
I
Z'
I

I>=
I

i7, 0 iM,, i

>
S

Next, we substitute equation (2.17) into (2.21),

iE _ i(I)T(iMi(I)iHié+ iMi(I)iQ+ iMi(I)i(I)bi‘?b + ib + i(I)Z“ zﬁt) (2.22)
Here, we are going to utilize the fact that the applied toscare the projection of the
link spatial forces along the axes of rotation. This is matagcally stated as:

iT —iHT R (2.23)

Therefore, premultiplying the equation (2.22) #§7, the left hand side becomes the

applied torques. This yields the inverse dynamics of aas follows:
T =M +C+M, ?b + 7T iF, (2.24)
where

M = HT'®T'Mi®H

iC — iHT z'(I,T (ZM Z(I) ig+ Zé)
sz — iHT z'(I)T ZM Z(I) i‘I)b

Here, M is the generalized mass matrix; is the bias terms including coriolis and
gravity, ‘M, is the mass matrix regarding the dynamic interaction betvibe base

and thei*” arm.

2.3 Cooperating Manipulators On A Mobile Platform

Dynamical modeling of cooperating manipulators is a subsetynamical modeling

of cooperating manipulators on a mobile platform whose epheal drawing is shown
in Figure 2.4. In this section, we will study this larger set.

Mobile platform, also known aBee flying platform refers to, in this thesis, a plat-
form that is free to move without constraints. Its bias sgdtirce, spatial force and

generalized mass matrix are given as:

17
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p_Ilinkl

P

free—flying
mobile
platform

2

Fink,

Figure 2.4 Cooperating manipulators with rigid grasp on a free-flymgbile plat-
form
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| (Db X Ib(ﬁb (2 25)
mbu_)’b X ((Db X E),c)
T
N (2.26)
7
_ Ly mbLb,c (2 27)
el 3l

where, L, . is the zero matrix if the origin of the base frame is choserhdbhat it

is coincident with the center of mass of the platform. OthigewL; . is the skew-

symmetric matrix representing the operafggx, i.e., the cross product of the vector

from the origin of the base frame to the center of mass of tagqin.

In order to get the dynamical model, we need to stack the eat@ns given for an

individual manipulator in (2.17) for all the manipulatorsthe system. Letting be

the number of arms (manipulators) on a mobile platform, wesha

V = &(Hf + a) (2.28)
where,
Vb Vb ‘71) C:L:b
Vv i 19 'a
K = K Q = ZQ Q = ZQ a = 2@
Vv rg Py Pa
6l o o0 --- 0 dd O O --- O
''®, ' 0 --- 0 0O 'H o --- 0
d= 2929, 0 2 --- 0 H=|10 0 ?H -.- 0
rerd, 0 0O --- PP O 0 0O ---PH
Gravity is introduced to the system by assigning
. 0
ap = (2.29)
g
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whereg is the gravitational acceleration vector. We first look & $patial force prop-

agation for all of the arms.
F=3®"(MV +b+®F,)

where,

I~
I
kS
|1~
I

M, 0 O
0 'M o
‘M

0 0 0

o

. PM

|~

2‘I)t

PP,

(2.30)

Just the same way as was done for a single manipulator in)(ha®& we write the

following equation to single out the applied torques fronB(® for the complete sys-

tem.

7T =H"F

(2.31)

We now obtain the equation of motion in the form of inverseatyics from (2.30) and

(2.31).

T=MI+C+J"E,

where
M £ HT®"MSH
"My TMT 2MT
M, M 0
2 M

= 2./\/1(, 0

PMy 0 0

oM

PM

20

(2.32)
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p
"My =M, + > 9 o7 MDD, (2.34)

i=1

I
>

HT'®"M®a + H ' ®Tb (2.35)
Gy

- = L ) ) o ) )
Cy = Mydy + by + > '] 107 ("M D('Dyiiy + 'a) + D) (2.36)
i=1
and the Jacobian

J 2 %&H (2.37)
1q>t’b 17 0 --- 0
2B, 0 27 - 0
PPy, 0 0 - 2T

Therefore, the equation of motion regarding the forwardasigits is obtained as

=M (T-C-J"F,) (2.38)

2.3.1 Computation of the term 76

Tip velocity for an arm was given in (2.12). This can be wrtter the complete

system as
V,=®V (2.39)

where

13
Vi

23
Vi
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Taking the time derivative of (2.39) and utilizing (2.28)da(2.37), we can write the

tip accelerations as

Vt = @ZMEK
V, = ®®HI+a)+dV

= JO+ & Pa+ &,PHI (2.40)

SinceV, = 746 by definition, we can take the time derivative of it and conepére
result by (2.40):

V, = Ji+J8 (2.41)

= JO+ &Pa+ &,PHI (2.42)

As a result of a comparison between (2.41) and (2.42), we cadude that

J0 = &,®a + &,SHY (2.43)

2.3.2 Computation of the tip forces

In order to obtain the dynamical model of the cooperating ipidators, we need to
consider a common payload forming loops or closed kinendd#&ns. In this case,
the tip forces need to be calculated. Let us first take a lotfeakinematic constraint
due to holding the common load. As displayed at Figure 2&jdba is to propagate

the tip velocities to a common point.

/ N>

Figure 2.5 An example of cooperating manipulators holding a commgaaib
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V,=J0=AV, (2.44)

Kinematic constraint given by equation (2.44) has a dual@aihe dynamical side:

1

ATF, =F, (2.45)

WhereﬁC is the spatial force vector due to common load whose massleaation and
bias force are representedMk, V., b.. Hence, the spatial force due to common load

interaction is also equal to

Fo— M.V 45, (2.46)
If we solve (2.46) foﬂi and using (2.45) we get

.~ MoIATE, - M-, (2.47)
On the other hand, taking time derivative of (2.44) provides

V= g+ J0= AV, 13, (2.48)

whered, is the bias spatial accelerations of the common load. Hbeeeterm.74 is

conveniently obtained as shown in (2.43). From (2.47) amdB)2 we can write
Jh= AM;'ATF, - AM.b, + i, - J (2.49)
While multiplying (2.38) by provides

Jo=IM T - gM L JTF, (2.50)

By equating (2.49) and (2.50);, can be solved from

QF, = IM'JT — AMb, + G. — J0 (2.51)
where
Q=M T+ AM_ AT (2.52)

provided that? is full rank.

All of these derivations yield the following equation of rmast of forward dynamics

§=DT +E (2.53)
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— M—l . M—leQ—le—l
E = —M‘leQ‘l(AMgla —d.+ J0)

Hence, equation of motion for cooperating manipulators omodile platform is ob-

tained in a compact form as given in equation (2.53).

2.4 Discussion

Step by step details for obtaining the equation of motionsdr@al manipulator as well
as a cooperating manipulator on a mobile platform have be@nded in this chapter.
It needs to be highlighted that no arm can be at a singularityder to compute the tip

forces in a closed kinematic chain. This restriction willreenoved later in the thesis.
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3. HIGH PERFORMANCE COMPUTATION OF MULTIBODY SYSTEM
DYNAMICS

Dynamical modeling of multibody systems, in general, refer forward dynamics
problem which requires inversion of the mass matrix. In galiwed coordinates, mass
matrix isn x n matrix wheren is the number of links. Generally speaking,opera-
tions are required to invert a nonsparce n matrix. Therefore, its complexity is said
to be O(n?). If nis a large number, this becomes a major issue regarding e ov
all performace of the computation. On the other hand, utiljzhe properties of the
mass matrix, one can reduce the complexity of this proceé¥t9. Thereforehigh
performance algorithnm particular for the multibody dynamics, refer to the irsien

technique of the mass matrix.

A through review of literature oi@(n) was given in Chapter 1 and more detail on
the subject can be found in [56]. Out of the algorithms awddan the literature,
here we will benefit first from the work by Featherstone [164l ainen the work by
Rodriguez, Jain, and Kreutz [1] in which the formulation &sbd on the convention of
numbering the links from tip towards base (inboard) wheeelthse is calledrt + 1”
and the end-effector is called™for an n link manipulator. This way of modeling is
very uncommon and often times it is considered inconversgiiftArabic writing were
enforced within Latin alphabet. Here, this methodology @&lified to incorporate with
common manipulator models whose links are numbered frora ttaip (outboard).
In addition, mobile base parameters are included so thdatterization given in this
chapter is consistant with the formulations given in therfones chapter which includes

the mobile base.

This chapter is organized in three sections; mass matrbori@aation, mass matrix

inversion, and discussions.
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3.1 Mass Matrix Factorization

The most important step in mass matrix factorization is téindion of articulated-
body inertig Z,, introduced by Featherstone [16]. The basic idea is to tdtak

¢ from link ¢ — 1, and relate the relationship between its spatial force asdlting
acceleration. Based on Featherstone’s idea, we proposaltheing recursion for the

computation of articulated-body inertias:

iIABk = i‘I’fH,k iIABk+1i‘Ilk+1,k +'M;, (3.1)
= 3T
: ‘Hy, 'H, 'T% ,
Wi = [I- :Tk—Aik ‘P (3.2)
‘H, ‘Tap, "Hy

‘Tap’s are constructed for each manipulator in a recursive mamsieg (3.1) and (3.2)
starting fromk = n; and takingZ,p, ,, = 0. Thenk is decremented unti# = 1 at
which step (3.2) is not evaluated. Finallfy, 5 is constructed fromZ ,5's in the form

of a block diagonal matrix as

M, 0

1
T
Tap = wo (3.3)

0 PTap

Now, we can associate each joint acceleration with its lpdcgal force through articulated-

body inertia.
F=T,pV+Z (3.4)

whereZ represents the remaining terms due to the spatial forcggmpeting from the

other links. Using (2.31) in (3.4) we get
T=H'F=H"Z,,V+H'Z (3.5)

Let ¢ be the effective joint force defined @&s= 7 — H”Z. Hence, we have the

following equality

¢=H"T,pV (3.6)
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We are going to utilize (2.28) to substitute for From (2.3) we know that® is a
lower-diagonal matrix which implies the fact that the elertseofV are related with
their inboard set. On the other hand, we are looking for the ten the relationship
between spatial force and acceleration of the joint onlheuit the inboard set, in other
words, a block diagonal matrix. Therefore, we need to sépdna diagonal from the

off-diagonal of‘® whose diagonal part is an identity matrix.

V = ®H+a)
= ®(H)+qa)+HI-HY (3.7)
= HI+ (®-T)HO + ®a

Next we define thadjacent-link propagation operator of the system

o o]
1o, '€
g=| = (3.8)
_P@b Pg(z)_
where,
0 0 0 0
i®,, 0 0 0
4= 0 idsg, --- 0 0 (3.9)
0 0 - ®,, ;0

i€} is the k" power of '€, and is also—k" diagonal of'®. This means that&}
is an operator propagating between the two links whoseddcd” isk. The term
distance between two links defined as the difference of their link numbers. With this

definition, now we can write the following equality:

max

=1+ &} (3.10)
k=1

wheremax is the maximum ofy; fori = 1-- - p. £, is a nilpotent matrix and holds the

following property:

d=(I1-&)" (3.11)
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If we use (3.10) in (3.7), we get

V =Hf+EH) + <mz 5};) Hi + ®a (3.12)
We use (3.12) in (3.6k):2

§=D0+H TpEHI+ H T p ((mz 5];) HO + (I@) (3.13)
where, -

D=H"TI,;H (3.14)

Rearranging (3.13) we get

f=D'¢ -~ KHf - D 'H'Z,p ((Z 8!;) Hi + <I>g> (3.15)
k=2

where,

K=D"'H" Z45 &, (3.16)

Now we go back to (3.1) and (3.2) to rewrite them in a more carhpay as follows:

TIap =M+E] Tap Ey (3.17)
Ey=(1—-HD 'H" Z,45)&, (3.18)
where,
- .
15¢
Ey = . (3.19)
0 PEy |
0 0o - 0 0
Wy, 0 - 0 0
1y = 0 Wy, --- 0 0 (3.20)
0 0 - W, ., 0

Similar to (3.10) and (3.11), the following definition andperty holds foi,,

max

PEA-&) =1+ & (3.21)
k=1

In addition to the equations written so far, the followingnimas are needed for the

factorization of the mass matrix.
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Lemma 1
TEWE, =E,U =T 1 (3.22)

Proof: From (3.21) we havé, = I — ¢~ *. Pre- and post-multiply,, by

1 yields the equation in the lemma. |
Lemma 2
UMY =T,5 + O Zup + Tap¥ (3.23)

Proof: From (3.17) we hav®M = T, — 6$ Zap &y. Pre- and post-multiplv by
yT andy, and using (3.22) we get

MY = (" + D) Zap(Y + 1) — 0T E TapEyt)

yields the equation in the lemma. |}

Lemma 3
v '® = I+HK® (3.24)
&y ! = I+ PHK (3.25)

Proof: From (3.21), (3.18) and (3.16) we have

Tl = 18,
= (I-&,)+HK
= & '+HK
Pre- and post-multiplying this b$ yields the equations in the lemma. |
Lemma 4
H 145 &) =0 (3.26)
Proof: Let us start withH” I, &;. Premultiplying this byDD ™' and then using

(3.14) we get

H' 1,56 = DD 'H" 145 &

= H' Ly HD'H" 145 &,
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Taking this inH” 1,5 paranthesis and using (3.18) yields the equation in the mm

Lemma 5

H'¢"M¥H =D (3.27)
Proof: Pre- and post-multiplying (3.23) Bd” andH, we get

H"U"MYH = H'Z,;H + H"$"T,;H + H'Z,5 H

Using (3.14) and (3.22), we have

H"W"MUH =D + H'OT(H"Z,3E,)"H + (H ZapE,)PH

(3.26) yields the equation in the lemma. |}
In the light of the lemmas given above, we can achieve the Liji¢ factorization
of the mass matrix. The followings steps and their explanatiafterwards, yield the

mass matrix factorization and its proof.

M = H'®"M®H (3.28)
= H' (v '&)" "My (T '®)H (3.29)
= H'I+HK®)"v"M¥((I+HK®)H (3.30)
= [(I+HK®)H]" $"M¥(I+ HK®)H (3.31)
= [H(I+K®H)" v"M¥H(I + K®H) (3.32)
= (I+K®H)"H'¢"MYH(I + K®H) (3.33)
= I+K®H)" D (I+K®H) (3.34)

(3.28) is the definition of generalized mass matrix giver2ii38). Pre-multiplyingd

by ¥~ and post-multiplyingd” by (¥¥ )T, we have (3.29) in which the term
-1 is put in paranthesis to help understand the next step, )(3a8tere the terms
in paranthesis are replaced by HK® according to (3.24). Then (3.31) is obtained
using the distribution property of the transpose operatoff” (I + HK®)”. Next
we use the fact thal + HK®)H = H(I + K®H) to obtain (3.32). Distributing

30



the transpose over the square paranthesis, we have (3.B@)llyFwe use (3.27) to
get (3.34), the factorization for which we have been aimi(®)34) is an LDU type

factorization because+ K®H is a lower diagonal matrix anD is a diagonal matrix.

3.2 Mass Matrix Inversion

The following is the key lemma for the inversion of the masgrima

Lemma 6

I+ K®H) ' =1—-K¥H (3.35)

Proof: We utilize the following Matrix Inversion Lemma which can fmeind in many

textbooks such as [57]:
X'-YQ'Z) ' =X+ X'Y(Q-ZX'Y)'ZzX ! (3.36)

Now, we make the following assignments for the variableSiB3§)

X =1 Z =1

Y = Ko Q = H

and we have

I+K®H)'=1-K&I+HK®) 'H (3.37)

Using (3.24) in (3.37) yields the equation in the lemma.|j
Using (3.35), the factorization given in (3.34) yields tloergutationally fast inversion

of the mass matrix as

M?'=I-K¥H)D ' (I-K¥H)” (3.38)

3.3 Discussion

We have studied the factorization and inversion of the gdizexd mass matrix. How-
ever, we need to make it clear that we do not claim the algorithcompletelyO(n)

since there are matrices due to constraints need to beeavastwell, and the factor-
ization and inversion technique presented in this chapterad apply them. This does

not prevent it to bérigh performanceinless the system is dominated by constraints.
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4. DYNAMICAL MODELING OF COMPLEX TOPOLOGY SYSTEMS

A mechanical system is said to be ircamplex topologyvhen it includes multiple

subgroups; the main subgroup forms closed topology andthay form same or
different topologies. An example of such a system is showkigure 4.1.

The methodology so far presented is modular enough to exfpairiie modeling of

complex topology systems, provided that all of the constsaare properly defined.
However, one should note that there are limitations. Eachipogator in the system
has to be non-singular and fully actuated. In other wordgrmocan be kinematically
deficient and/or underactuated. These are fatal shortgsntirat make the algorithm

not applicable to almost any real life system. In this chayp®ewill investigate how to

overcome these shortcomings.

4.1 Dynamics of Cooperating Underactuated Manipulators

A linear operatosS is constructed by reordering the rows of an identity matirear-

range the joint space into four subspaces;
e base,
e actuated joints,
¢ free joints, and
e flexible joints.

in the order given above. Sin@&is an orthogonal matrix, the proper§! = S”

holds. When we apply this operator to (2.32), we have
(SMST)Si+SC +SJTF, =ST (4.1)
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Figure 4.1 An example of a complex topology system
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Letd,,; consist of base, actuated and free joint anglegfangpresent only the flexible
joint angles. Then, we introducg, for the torques (or forces) generated by the joint

flexibility. Others are similarly defined.

M M Q a Q a ‘7{5 I a
1 2 l.).f n baf baf F, = baf 4.2)
M; M,y 8, ¢y Vi 7,
We know from the joint flexibility tha, is of the following form
T,= L, — Ly, (4.3)

whereL, andL, are diagonal matrices representing spring and damperatkasdics,

respectively. Using (4.3) in (4.2) we get,

M1ébaf + Maf, + Chraf + \Z)EfEt = Ty (4.4)

Mabpa; + Mafy, + Lo, + L0, + C, + J'F, = 0 (4.5)

SinceM,; is a positive definite matri>_ébaf can be solved from (4.4).

ébaf =M (Tpoy — Mol — Cpoy — \Z)Zfﬂt) (4.6)

When (4.6) is substituted in (4.5), we get

M. 0, + Lab, + L0, + C, + J'E, = BT,,; (4.7)

where

M, 2 M, - M;M;'M, (4.8)
C, £ C,—MM;'C,,; (4.9)
T & T — FoaM7 MY (4.10)
B £ —M;M;! (4.11)

(4.7) can be reduced from second order to first order difteabequation as

MW + LW + C, + JI'F, = BT, (4.12)
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0 I O 0 I
w = n s = sd —

9, 0 M, L, Ly

0 0 0
Qs = \78 = Bs =

C, T B
Defining

A

T,=B.1,,;—C; (4.13)
equation (4.12) becomes
MW + LW + J'F, =T, (4.14)

Now we will continue our model to include closed-kinematams.
Joint accelerations can be written as the sum of so cﬁ@acceleration@f ) and

correction acceleration@d). (For more detail, please refer to [1])

O(T,F,) = 6(Z,0) +6(0, F,) (4.15)

~—— —

i’ @

Free accelerationﬁ,f, are nothing more than joint accelerations when the loops (d
to cooperation of multiple manipulators) are cut. Therefave defineﬁg as the an-
gle of the flexible joints without taking the constraints iogng grasp into account.

Similarly, W/ is defined as

f
W/ = Q.Z
o7

For such case, equation (4.14) becomes
MW + L =T, (4.16)

HereL,, is a constant matrix. The time step of the integrator is chaseall when
compared to the time scale b, which is the time varying term itMI,. Therefore,

(4.16) approximately yields the solution as

Wf _ Ms—lLsde—MglLsd(t—tO)Ls—dlMswo

1 . (4.17)
wf = —eMs Loat=to) L, MW, + L} T,
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L;'L; L;!
-1 0

Solution of (4.17) gives us an approximation for the freestemations of flexible joints.

bl = { 0T }Ef (4.18)

Once we knov@ﬁ , we can now obtain the free accelerations of base, actuatefiee

joints using (4.6)
Qbaf = Ml 1(Ibaf - MZQZ - Qbaf) (4-19)

Putting the two together, and sorting them back in theirinabform, gives us the full
set of free joint accelerations.
éf
g =sr| (4.20)
0y
Now the question is how to solve (4.17) without disturbing dinder n characteristic

of the algorithm.

Let us partition a full rank square matrk and its inverséy'.

X; Xy
X35 Xy

Y, Yo
Y; Yy

X =

(4.21)

Since they are the inverses of each other, they hold thesfwitprelationship.

o
= (4.22)
01

X1 Xy
X3 Xy

Y Y,
Y; Yy

Here, we are particularly interested¥n, for a reason that will be obvious very shortly.
Y4 — (X4 - X3X1_1X2>_1 (423)

Comparing (4.8) with (4.23), we conclude thHsE! is easily obtained from\1—1.
This shows that the matrix factorization®df_! can be done as given by (3.38).
Let'Y, be defined a&’, = —~ ML, At. Series expansion ef* is

k n
€Yt%I—|—ZYt

n=1

— k — oo (4.24)
n!
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As the L, norm of Y, gets largerk needs to be incremented enough to prevent unrea-
sonable error. Herg; may be overvalued to eliminate this problem. This yields the
computation ofi’.

Now we will concentrate on the computationé)‘st For that we will need to obtain
the tip forces of the cooperating manipulators. First, thelrgrasping of the common
load needs to be taken into consideration. Let the spatiaknmetrix, the spatial bias
forces and the spatial accelerations of the common loadiat pde M., I?c and 520
respectively. Furthermore, the propagation matrix deffn@a tip of the manipulators

to pointc of the common load is

- th,C -

Newton-Euler equation in spatial form is stated for the cannoad as
M.d, + b. = ®T F, (4.25)

Tip point accelerationgy,, and the acceleration of poin,tozjc, are not all independent

due to the grasping.

a = Jéirjé (4.26)
= ®,.a.+a,
From (4.25) and (4.26)
T6 = ®, M '@ F, — ®, M-'D, +a, — J0 (4.27)
On the other hand7é can also be obtained using (2.32)
J)=IM T, — TM'J"F, (4.28)
where
T,27-C
Combining (4.27) and (4.28)
QF, = TM T, + &, M.'b, — a, + J0 (4.29)
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where
Q=JM'J"+ &, M '®/
Correction joint accelerations can now be obtained from:

§

MG =-JF, (4.30)

Since we now know free and correction accelerations, trim¢ gcelerations follow

—§ 48 (4.31)

|

This solves the forward dynamics problem of underactuavegerating systems.

4.2 Kinematically Deficient Cooperating Manipulators

Kinematically deficient manipulators are those that hawefalegrees of freedom than
necessary to achieve any admissible configuration in thpgrasional space. When
multiple manipulators, some or all of which are kinematicdleficient, cooperate to
perform a common task, the constrained forces at the coptéets cannot be solved
directly due to rank deficiency of the jacobian. This sectiddresses this challenge
associated with the computation of constrained forceseattimtact points by intro-
ducing a novel approach called “pseudo joint.” Forward dgizal model utilizing
pseudo joint has been driven for cooperating kinematiacient manipulators.
Many industrial applications do not require the full kingrnaapability to move and
rotate the tip point of the manipulator in any direction. dky the desired trajectory
lies in a subset of this six dimensional operational spacdeds$ kinematic redundancy
is needed for both task space and joint space controls suchsiscle avoidance or
joint limit avoidance problems, kinematically deficient miyaulators gain superiority
over more DOF manipulators in terms of cost, manufacturamgl compactness. In
addition, cooperating manipulators bring unprecedentisdrage over serial manip-
ulators in terms of precision, load balancing, high payloagacity, etc. Therefore,
certain applications require to utilize multiple manigols that cooperate to perform

a common task and are kinematically deficient.
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Kinematically redundant manipulators have been studigehsively such as [58], the
book by Nakamura. In contrary, kinematically deficient npatétors have not at-
tracted such interest from the research community. Outeofithited number of pub-
lications, some confused constrained manipulators witlerkiatically deficient ones.
Constraint manipulators and kinematically redundant malators have been studied
by Bruyninckx and Khatib [39]. Abdel-Malek et al. [40] stedi the workspace issues
of kinematically deficient manipulators. Dynamics of twoefer grippers as kinemati-
cally deficient manipulators was studied by Prattichizzd Bitchi [41]. Teleoperated
surgical robots were considered in both kinematically netdunt and kinematically de-
ficient cases by Funda et al. [42]. The temanmanipulable graswas used by Mur-
ray et.al. [53] instead of kinematically deficient manipulator. Theiethod is based
on finding the nonmanipulable directions and reducing tkk space. They also use
lagrange multipliers in finding the constraint forces.

This section of the thesis is aimed at addressing the nualgioblems associated

with contact force calculations by introducing a new cotagfied ‘pseudo joint

4.2.1 Numerical approach

In order to deal with the rank deficiency problem of the jaankin the case of singular
configuration or with the manipulators having less than sBHDone may suggest
to reduce the size of the task space. To do that, first we neédddhe directions
towards which the tip of the manipulator cannot move. Therimfation regarding
these directions is hidden in jacobiafi, which is a linear operator that maps joint
space to task space.

Generally speaking, task space is a 6 dimensional maniélchyanipulator. This man-
ifold is formed by%? for rotations andr? for translations. For the sake of simplicity,
let us consider only one manipulator in the system withoss lof generality. Hence,
mathematical reiteration of the previous statement alzmatjian is thay7 : " — R°

or simply 7 € %", This mapping is displayed in Figure 4.2 wheYerepresents
thenull space andR represents theange spaceClearly,R(.7) is the space in which
the tip of the manipulator is free to move. On the other haxid.7?) is perpendic-
ular to and therefore linearly independent fr@dt.7). Both of these spaces together

form :°. Consequently)V (J7) represents the directions towards which the tip of the
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manipulator cannot move.

Figure 4.2 Jacobian maps joint space to task space

Now that we know these inadmissible directions, the questdiow to find a coor-
dinate transformation matrig to reduce the task space such tikaf spans it com-

pletely. The answer is as follows:

R=NWN(IH" (4.32)
Using equation (4.32) we can replace the Jacobiaf.las

J, =RJ (4.33)
This is an orthogonal transformation yielding the inversas$formation as

J =R"J, (4.34)
The six step forward dynamic calculations are updated byacapy A, with A, where

A, = AR (4.35)
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The drawback of this method is that the computation of nudicgprequires Singular
Value Decomposition (SVD) which introduces instabilityedo the fact that singular
vectors are not unique, and may introduce discontinuitys dhrawback alone makes
this methodology impractical, not to mention the cost asged with the numerical

computation of SVD.

4.2.2 Pseudo joint

An easy to implement and computationally efficient alteusafpproach, is to calcu-
late link internal torques. First we assume as if there wateagoints and then we
have to calculate the torques to keep those joints at zelle ahgll times as displayed
in Figure 4.3.

First kinematic analysis needs to be done to decide at wisatitm of which link
pseudo joint to be placed in what direction. This analysigsisally straight forward
and easy enough to decide by visual inspection of the maatgulin the more com-
plicated cases, forward kinematic model is obtained andamged jacobian is desired
to be full rank.

We first need to obtain a linear operator dividing the joird@pinto two sub spaces;
real joints and pseudo joints. Létdo that. S can be obtained easily by rearranging
the rows ofn x n identity matrix, where n is the total DOF including pseudmis.
Rearranging the rows of an identity matrix does not disttgloithogonality property.
Therefore,S is an orthogonal matrix anél=! = S7 holds. The rearranged form of the

inverse dynamics (2.53) becomes:

Séaugmentad - (SDST)S,];ugmented + SE (436)
0 dy d T
O i N I ) (4.37)
9p dg d4 7;7 €2

Here, D and E matrices are obtained for the augmented system. By the tierfirf
the pseudo joint we know thﬁ; = 0. Therefore, the equation of motion is achieved

as.
0 =D, T +E, (4.38)
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Figure 4.3 Pseudo jointin the form of a joint constrained by a key-ligimechanism
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Dr - dl—dgdzld:;

ET = el—deZIGQ

provided thati, is full rank.

How to maked, full rank is, in a way, a design issue that needs to be disdussee.
First, consider a planar four-bar linkage mechanism showiigure 4.4. Let say we
want to constrain joints 2 and 3 so that = 0 andf; = 0 at all times. Using the
methodology presented in this section, one may assignsj@@nd 3 as the pseudo-
joints. On the other hand, the four anglés;f-, 65 andd, shown in Figure 4.4 are all
equal to eachother, hence, dependent on one another. Genmsiggalthough there are
four joints in the system, only one of them is independent.aAssult, if we ensure,

for examplef, to remain zero at all times by applying the necessary tortpig will
already ensure tha} to be zero as well. In this simplified system we can see that the

termd, looses rank to mean that there is a dependency in betweesdhdjoints.

joint 3

joint joint 4

Figure 4.4: Planar four-bar linkage mechanism

If it is desired to apply the method of pseudo-joint to a fbar-mechanism as shown
in Figure 4.4, first we need to divide the structuratm 1andarm 2to claim that they
are cooperating. A logical choice is to divide it from the diiglof the bar parallel to
the ground. Then we need to add extra joints to each arm tg benh one to a desired

number of DOF so that defined in (2.52) becomes invertible. Figure 4.5 displays a
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possible configuration where joints 2 and 5 to be chosen gsstigdo joints.

joint 3 joint 4

Figure 4.5 Planar four-bar mechanism with slider

4.3 Dynamics of Wheeled Systems Subject to Pure Rolling Camaint

A rolling wheel is a member of nonholonomic systems that atgext to constraints
expressed as functions of generalized speeds but not asofumof positions. The
root of the termholonomycomes fromwhole-lawwhich refers to the system obeying
the laws of Lagrangian mechanics, Hamiltonian mechanicsthe conservation of
momentum. Dynamics of nonholonomic systems, on the othet, it not obey these
laws in general. Instead, Lagrange d’Alembert mechanmshalonomic Hamiltonian
mechanics and momentum equation are available for nonbwimsystems [59].
Without a doubt, the most common and basic nonholonomiesyst a rolling wheel
subject to no-slip (pure rolling) constraint. In fact, deethe limitation of the scope,
rolling wheel is the only nonholonomic system that has bemrsidered in this thesis.
The reason why this section is dedicated for it is becausal&ashes a whole new
world of dynamical modeling of wheeled mobile robots withaabto observe the full
set of forces and torques at the contact points. This is itrashnto most of the algo-
rithms in the literature regarding the dynamics of wheelelligles where constraint
forces and torques are eliminated. However, these forcgdaaques play a crucial
role in many applications such as rollover prevention of @ée ground vehicles.
Figure 4.6 displays rolling wheel subject to no-slip coaisir. As seen from this fig-
ure, the system has 3 DOF. Its symbolic representationatidig joint assignments as
well as tip and base assignments, shown in Figure 4.7, isdfiestep here. In this
modeling approach, the wheel mass and inertia are assigried mobile base. These

assignments may not be intuitive as intuition may deem jbitd be placed together
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y,”

Figure 4.6. Rolling wheel subject to no-slippage constraint
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mobile base (center of the wheel)

w0 jointl

joint 2

constrained tip (contact point)

Figure 4.7. Symbolic representation of a rolling wheel where r is thdiua of the
wheel
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with joint 2, and the choice of base and tip to be reversedreraee few publications
on the dynamics of wheeled vehicles using robotic formaksich as [60] and [61].
All of such publications known to us follow this intuition wdh poses problems unless
the system to be modeled consists of only the single wheets& problems will be

explained at the end of this section.

Figure 4.8 Unicycle and its symbolic representation

To help understand the methodology, let us consider a ulei@gshown in Figure 4.8.

Orthogonal frames obeyingght hand ruleare assigned as shown in Figure 4.9. It
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joint 2

Figure 4.9 Frame assignment for a single wheel or unicycle
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needs to be highlighted here that joint 2 has two revolute HD# therefore has two
axes of rotation; one id, and the other inyj;. 1t may be confusing to those who are
accustomed to see each axis of rotation defined in its own fsadye. This is not the
case here.

Let us start with the constraint analysis. There are twottaimgs at the tip point; one
prevents lateral slip, and the other prevents longitudstipl First we will write the

lateral one in a form reducible toRfaffian constrainti.e., f(z)z = 0.

ATV, =0 (4.39)

where

N 0

A= (4.40)
7

Now, let A be the annihilator ofA. In other words, lefA be the matrix such thak

spans its null-space. This is stated as
AA =0 (4.41)

Although there is no unique solution of (4.41), one possibieice ofA is

A= 7 (4.42)

Note thatA, as defined in (4.42), is an orthogonal matrix and therefoldshorthogo-
nality property

AAT =1 (4.43)

There exists a velocity vectdr, in a five dimensional manifold to express the tip
velocity using (4.39) and (4.41).

V,=ATV, (4.44)
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Using the longitudinal slip constraint,, can be expressed as a function of the joint

space of the wheel.

V.=Bf (4.45)
where

oL 000000 0 00

Vi

; 000000 0 00
Qzél B=|000000 0 00

; 000000 — 00

L 000000 0 00

The constraints considered so far were kinematic. To stuelgonstraint forces let us

look at the work done at the tip point and utilize (4.44)

=T

e >, 2\ T
FoV, = F ATV, = (AFt) V.= F'V, (4.46)

which is true for all/ .. Here,F'. is the externally applied force/torque corresponding
to V.. From (4.46) we have

F, — AF, (4.47)
Let us decomposg'; as
F,=F, +F, (4.48)

whereF,, € R(AT) andF, € R(A) as shown in Figure 4.10. Her®, refers to

range spaceAs a result of this decompositioﬁ,t can be written as

F,=AT¢ + Ay (4.49)
Plugging (4.49) into (4.47) and using (4.43), we get

F.=¢ (4.50)
From (4.49) and (4.50)

F,=ATF, + Ap (4.51)
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Figure 4.10 Decomposition of the task space

Heren corresponds to thevorkless force Minimum norm solution would be to set it

to zero. This leaves us with
F,=A"F, (4.52)

Similar to (4.46), let us write the work done at the tip poigaan. This time, we will

utilize (4.52), (4.43) and (4.45) in the order given to obtthie equations below.

BV = (ATE)TATY,
= FV,
= FIBf
= (B'E)"0 (4.53)
= 779 (4.54)

HereZ, is the induced torque due to the constraint forces. Fron8j4bd (4.54)
7,-B'FE. (4.55)
Inverse dynamics equation of the system is

T, +T,=Mi+C+TF, (4.56)
whereZ , is the applied torques. Plugging (4.52) and (4.55) into@}%.&we have

T.=Mi+ (AT -—B)E, (4.57)
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whereZ7, =7, —C.

Forward dynamics equation is obtained from (4.57) as
=M1 (T.- (AT -B)'F,) (4.58)

Now, let us go back to kinematics. From (4.44) and (4.45), asidg the jacobian

operator, we have

V,= ATBi = 76 (4.59)
Taking the time derivative of (4.59)

xi = A"Bi+ ATBf = g0+ J0 (4.60)
We know from Section 2.3.1 that

Jb = &,®a+ (4.61)

Here,d, is zero because the length of the link between the last jointhee tip is zero.

Using (4.61) and rearranging (4.60) we have

(J — ATB)d = ATBY — &, da (4.62)
Premultiplying (4.62) byA yields

(AJ —B)) = AATB) — A®,Pa (4.63)
On the other hand, premultiplying (4.58) By7 — B, we have

(AJ -B)i = (AT ~BJM'T, — (AJ - B)M '(AJ - B)'E, (4.64)

Equating (4.63) and (4.64) yields the solution for

F.=Q" (A®,®a+ (AT - B)M T, — AA"B)) (4.65)
where
Q=(AJ -BM(AJ - B)” (4.66)

It is clear that(2 needs to be full rank in order to have a solution. Generakbakmg,
this is directly related with the rank of the jacobian, hettnumber of DOF of each

manipulator in the system and their singularity issuesuifwheel model were similar
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to those available in the literature on the dynamics of wérkekhicles using robotic
formalism such as [60] and [61], the jacobian wouldibe3 and we would suffer from
rank deficiency irnf2. As we gain full 6 DOF from the mobile base, our jacobian for
a single wheel i$ x 9. At last but not least, we need to mention that having 3 DOF
at the contact is a poor choice because the tip forces caenoarbputed correctly if
link 1 posses an angular acceleration corresponding tolwbegion. As is done in
our approach, this angular acceleration should apply te bal/. To comprehend the
methodology, one can think of the following analogy. Coesid unicycle in space
without gravity and without contact to any surface. Nowjskithat mass and inertia

of the wheel to a point and call thtte base The rest is to impose constraints.

4.4 Discussion

Dynamic modeling of cooperating kinematically deficientmpalators yielding full
set of force, torque and acceleration distributions inicigdhose at the constraint un-
covers a very important domain of multibody dynami®seudo Joints a stable yet
efficient method to deal with such systems. The best way,ginlgbis to demonstrate

the use of the algorithm on some examples. Next chapter isated for this purpose.
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5. CASE STUDIES

This chapter includes both theory and application. It emjbye theoretical foundations
established in the previous chapter, and utilizes themastmal cases. While doing
that, through explanation of the theoretical details on howpply the algorithm is
the goal of this chapter. It starts with general underaetliaboperating manipulators
in space manipulation and continues on the dynamical nrogleli two-wheeled cart.
The following sections include the dynamics of four-whetglesed and four-wheel

driven mobile robot and a four-wheeled full-suspensiorspager vehicle dynamics.

5.1 General Underactuated Cooperating Manipulators in Spae Manipulation

The example system on which the algorithm will be explaireechiosen to be simple
enough so that the reader can easily follow the algorithrhout getting lost in the
structural details. The task space of the 3 DOF arm showngarEi5.1 is only 2

dimensional. Here, we will define the third coordinate as

Y
Il
8y
X
<y

Angular velocity of the joints will always be parallel tband linear velocity of the
joints will always remain in the plane @¢f, y/). Therefore, the spatial velocity of the

kth joint of thesth arm can be written as:

. iw
Ve=| | er® (5.1)
ZUk;

Spatial velocity defined in (5.1) holds the following retatship with its counterpart in

3 dimensional space.
W, = AV, Wy e RO (5.2)
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2y common load 20%

actuatec

flexible

free—flying platform in 2D/

Figure 5.1 Initial configuration

where,
001000

A=100 010 0
000 O0T1OQO0

Let ‘@, be a linear operator that translatés, to ‘V ... In 2 dimensional space,

we will represent this operator &gy ;1 .

1 0 0
‘Oppip = A' @y AT = —, 10 (5.3)
i, 01

The rest of the elements of the spatial algebra in 2 and 3 diroeal analysis have
similar relationships as given in equations (5.2) and (5.3)

The closed chain system consisting of two arms and a comnazhifoshown at its
initial configuration in Figure 5.1 in which joints are drawlifferently according to
their actuation. There is no actuation provided to so céfie joints”. Flexible joint,
on the other hand, has a spring and a damper attached to it.

In this proposed system, all the links and the common loadrigre bodies. The

contacts between the common load and the arms are also rigid.
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Joints are numbered in an increasing order from base to &ipe B common for both
arm 1 and 2 and it is numbered zero. The third joint of Arm 1 doedfirst joint of Arm
2 are free joints. The first joint of Arm 1 and the second joihAom 2 are flexible

joints. The second joint of Arm 1 and the third joint of Arm 2actuated joints.

Velocity of the base:

1‘/0 — 2‘/0 — V*O (54)

Acceleration of the base:

Loy = 20, = o, (5.5)

The forces on the base:

fo="010 1+ 2010 *f1 + Moor + b, (5.6)

Figure 5.2 Joint angles
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The propagation matrix for each arm is:

| 1 00 0 0000 0]
0 10 0 00000

0 01 0 00000

1 00 1 00000

= —ify, 10 0 10000
g, 01 0 01000

1 00 1 00100
(U, + ) 10 =y 100 10
(,+ ) 01 4, 01001,

Since it is a planar system and all of the joints are revolite$, the axis of rotation

stays constant. Therefore, the axis of rotation matrix fitree arm is:

T
100000O0O0O

‘'H=100010000 0
00000DO0T100

The spatial acceleration bias term and the spatial forcetbrans for either arm is:

0 0
0 g2,
0 027,
0 0
iq = _29% %135 iy — _% ze% %w
g2, 62,
0 0
—i02 %, 02 iy,
=03, |03, |
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Propagation to base and propagation to tip operators greatgely:

- . - 4T
1 00 0 0 0
—%, 10 0 0 0
0, 0 1 0 0 0
0 00 0 0 0
‘=1 0 00 ‘=10 0 0
0 00 0 0 0
0 00 1 W, s,
0 00 01 0
0 0 0| 00 1 |

Mass matrix will be given next. It is assumed that each link &ainiform mass dis-
tribution and the vector from the joint to the center of massazh link is the half of
the link vector.‘Z, is the moment of inertia of link: of manipulator: defined at the

point‘0,, on the axis of rotation. Mass matrix for each manipulatonithie following

form:
_ I % ‘my, Uy, —% ‘my g,
i, = % iy i, iy, 0
— 3ty U, 0 “my,
_ ‘M, 0 0
M = | 0 M 0
0 0 Ms

Mass matrix for the base and the mass matrix for the compysters which is formed

by stacking up the mass matrices for the base and the arm#/areas follows:

, 0 0 M, 0 0
My=10 my O M= 0 M 0
0 0 my 0 0 M

Spatial acceleration bias term, spatial force bias teropggation to tip operator, prop-

agation operator, axis of motion matrix and the separateraipr for the complete
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system are formed as:

0 0

il o | 1, Ut[olat 0}
2, 2 0 0 %
_3><3]00 axal 0 0

p=1|1po, ¢ 0 H=| 0 'H 0
20%, 0 26 0 0 2H
(10000000 0]
010000000
001000000
000010000

S=1000000001
000001000
000000100
000100000
(0000000 10|

Simulation results associated with the given system caoloedin Appendix A.

5.2 Two Wheeled Cart

The system consists of two independently actuated whestisith connected by a rod,
as shown in Figure 5.3.

As explained in Section 4.3, each wheel is modeled as a oke¥lechanism having
3 DOF. Each actuator introduces one DOF at the wheel cengdingn four DOF per
arm. Although the sum of the number of DOF each joint has insifstem is eight,
only two of them are independently actuated. However, tlygeseof underactuation
in the system is only one (not six) due to the no-slip constreeducing the overall
DOF. The explained configuration is shown in Figure 5.4 whkeemass and inertia
of wheeli are assigned tdink; (i = 1,2) as in the case of a unicycle explained in
Section 4.3.
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06

Figure 5.3 Two-wheeled cart: pictorial representation

x|

1 2
link,, link,,

N

Figure 5.4 Two-wheeled cart: manipulator representation
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Frames are assigned in the same way for both arms as folloase Bame, frame,

is attached to the axle. Framas on the actuator. Framgis attached to a one-DOF
joint at the wheel center. Fram3ds a two-DOF revolute joint, and its origin coincides
with that of the tool frame which is the contact point to thewud.

Equation of motion is obtained similar, to some extend, &t tf a single wheel intro-
duced in Section 4.3. In order to keep the continuity withiis section, there will be
some repetitions with Section 4.3, but we believe that tiferdinces are great enough
not to mind the similarities.

Here, we present two approaches for the dynamical modelihg.main difference is
in the definition of the axis of rotation. For the first appriodice axis of rotation matrix

is defined per arm as

% 000 0
0 0 0 0
IR A
'H = R, (5.7)
0 0O 0 O
0 0 ‘g 'Z
s

where'Z; and‘Z, are unit vectors along the rod (axel); is in the travel direction of
the wheel andz; is the normal vector of the tangent plane of the contact puiifitthe
ground.

Now, we start with the lateral slip condition.

lfg Ut = ng 2’l7t (58)

We can express (5.8) in a form reducible to a Pfaffian comdtrai

ATV, =0 (5.9)
where
_ ; a
~ 1 _’2
A= ~ (5.10)
0
L _252 .
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Now, let A be the annihilator ofA. In other words, lefA be the matrix such thak

spans its null-space. This is stated as

AA=0 (5.11)

Although there is no unique solution of (5.11), one possibleice ofA is

li.g“ OT OT

1y—{21“ OT OT

=

H
4
(@)
&
o
&
=

<2
0T OT T Gr
0T OT T T
A=|gr o7 2 o7 (5.12)
or L oor 2
0T T GroGr
i 12{2r or or

(@)
~

[a)
~

(@)
=
N

S Sy

[an]
N

[a)
~

[an]
<
N

Note thatA, as defined in (5.12), is an orthogonal matrix and therefoldshorthogo-
nality property

AAT =1 (5.13)

There exists a velocity vectdf, in an eleven dimensional manifold to express the tip
velocity using (5.9) and (5.11).

V,=ATV, (5.14)

Using the longitudinal slip constraint,, can be expressed as a function of the joint

space of the wheel.

V,=Bd (5.15)

C
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where

(S

I

—_

>

|
[a) [a] (] o O [a] [a] [a) o o [a)
[a) (aw] (aw] o O aw] aw] [a) aw] aw] [a)
(@) o] o] o O o] o] (@) o] ] (@)
(@) o] o] o O o] o] (@) o] o] (@)
(@) o] ] o O o] o] (@) @] o] (@)
(@) o] o] o O o] o] (@) o] o] (@)
(@) o] ] o O o] o] (@) o] o] (@)
(@) aw] ew] o O e ] [e) e e [a)
o [a] (@] o O o o o o o o
o [a] [a] o O o [a] o (e (@] o
[a] o O [a] (@] o o o o
(@) ] ] o O e ] [e) ] ] [a)
[a) ] ] o O ] ] (@) ] ] [a)

wherer is the radius of the wheel.
The rest of the formulations here are very similar to thosgention 4.3. We will skip
the intermediate steps and write down the more significa@s.on

Tip force can be decomposed as
F,=A"F.+ Ap (5.16)

Heren corresponds to the squeeze force. Minimum norm solutioravog: to set it to
zero.

Forward dynamics equation becomes
f=Mm"(Z.- (AT -B)'E,) (5.17)

whereZ, =7, — C, andZ, is the applied torques.

Finally, we have

F.=Q" (A®,®a+ (AT - B)M T, — AA"B)) (5.18)
where
Q=(AJ -BM'(AJ - B)” (5.19)
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An alternative approach is the following. Let us change tbBnihg of the axis of

rotation matrix from (5.7) to

R
0 0 0 0
. 0 @ 0 0
H = B | o (5.20)
0 0 0 O
0 0 ‘5 'z
I 0 T "o 0 0 |

This means that the longitudinal slip condition is augmeritethe Jacobian. Hence,
there is no need to externally enforce the system to obeyhits 3mall modification
of the matrixH results in the removal of the matrR® from the equation of motion.

Therefore, we have

Q = ATJMIJTAT
F, = ATQ'A(TM'T, + ®®a)
6 = M (T.-J"F,)

Simulation results associated with this system can be fauAgpendix B.

5.3 Four-Wheel-Drive Four-Wheel-Steer Mobile Manipulata

Mechanical and electrical design details of the four-wAtralen and four-wheel-steered
mobile robot manufactured as a mobile platform for the Miishi PA10-7C robotic
arm can be found in [62] and shown in Figure 5.9. We will modtel platform only.

A photograph of the mobile platform without the manipulatdisplayed in Figure
5.5 and a generated image using a computer aided three donahdesign package
is shown in Figure 5.6.

Let us concentrate only on the backbone, leg and wheel paheasystem as shown
in Figure 5.7 which helps us understand the analogy betweadtiphe constrained

manipulators and the actual system, where “the base” is dbklbwne, and each leg
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Figure 5.5 A photograph of the 4x4x4 mobile robot

Figure 5.6 Computer generated image of the 4x4x4 mobile robot
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and the wheel are constituted by a manipulator. Manipulegpresentation of the
system is given in Figure 5.8. The unconstrained system 6 &F in total; 6 from

the base, and 5 from each arm.

backbone driving

system

Figure 5.7. Backbone, leg and wheel parts of the mobile robot

Dynamical modeling formulation of the four-wheel-drivemdgfour-wheel-steered mo-
bile robot is very similar to that of the two-wheeled cart kexped in the previous sec-
tion except that this system has four “arms” instead of twbe Tost important part
is to come up with the constraint matriA,. As the system gets complicated, it gets
harder to predict it. An easy way to obtain it is to use theoral basis null space of

JT in MATLAB for once. It yields the following independent canaints:

7, = 2 2, (5.21)
873 30, = 7t 4, (5.22)
°z %0, = 173 17, (5.23)

Simulation results associated with this system can be fauAgpendix C.
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Figure 5.8 Manipulator representation of the mobile robot

5.4 Four Wheeled Passenger Vehicle with Full Suspension Magnism

The proposed model of vehicle will be explained for sepapatts first of which is the
tire model. Tire characteristics are known to be highly nmoedr and very complicated.
Since the motivation here is to demonstrate the use of thaitign, the point contact
tire model [63] is employed. The algorithm, on the other hatah be extended to
include more complicated tire models.

The joint at the point contact has 3 rotational DOF. Pnewradtaracteristics of tire
are represented by spring and damper pairs in both vertichharizontal directions.
The end effector shown in Fig.5.10 corresponds to the centée wheel.

As shown in Fig.5.11, the suspension model has 5-DOF. Alhefbtational joints are
represented with a cylinder whose axis is aligned with the akrotation. A small
circle in the cylinder indicates that there is a torsionalrgpand a damper attached
to that joint. Figure 5.12 shows the trapezoidal geometrthefsteering mechanism.
This design closely approximates the Ackerman condition.

Finally, in Fig.5.13, the full model of a vehicle is given. dkotal number of DOF is
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Figure 5.9 Mobile manipulator with Mitsubishi PA10-7C

1 DOF
e < &nd effector

representation
of pneumatic
L % / characteristic
t // 2 DOF
joint

]
L]
terrain x //

S

Figure 5.1Q Tire model
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Figure 5.11 Suspension model
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Figure 5.12 Trapezoidal geometry to partially satisfy the Ackermanditon
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51; however, as to be shown later, only 24 of them are indegpend

N\

OO

arm 7
arm 6
&
(G O)
&
[]
C_ 0 I i 0O
arm 3 - arm 4
O . ) O
- ¢ )
common object (axle)
arm 1 arm 2

[ |

Figure 5.13 Full model of a four-wheeled full suspension vehicle

Let V,, andV;_ represent the base spatial velocities of all the arms onrthesale,
and on the base side respectively. No slip condition reguingh velocities to be the

same. Let them be equal 1.

Vi
Vo,

Vi (5.24)

Let V¢ be the stacked up spatial velocities of contact points wierbases and the tips
of arms meet. LeV® consist of the time derivatives of each of the four wheelstigal

displacements due to the surface geometry of the terramceShese displacements
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are known to be vertical, each elementd/df ‘v,, is scalar.

T
ve = v v ove vp |

T
‘)S
- |: 1/US ZUS 31)3 4/US :|

Base velocity part of the kinematic constraints can be amits:

VS
V;L = |: AbsO AObc:| (525)
VC
- . I 00 O
1 00 0
I 00 O
0« 00
Abs = Abc: 0 I 0 0
00 ¢ 0
0 0 0 ¢y
00 0 2
) l 0 0 0 ¢of
- T - -
it = 100000 1]
r T T
AbsO = Ag; 0] AObc: { 0 Ag;]
Tip velocity part of the kinematic constraints are:
Vi = Ay Ve (5.26)
- 4T
0 O 7 00O0O0O0O0
0 0O 07 I 0000
Atc:
0 0O 0001 I 11
Ty ¢35, 000000 0]
Putting (5.25) and (5.26) together,
Vi Ay Vs
= (5.27)
Vi Ay Ve

where 4, = [ Ao Aope } A = [ 0 A } Kinematic constraints are fully ob-
tained from (5.24) and (5.27).
Spatial velocities of the joints with respect to an inerfiaime can be obtained by using

velocity propagation.

V = ¢HO + ¢y Vi (5.28)
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Furthermore, tip velocities of arms can be calculated.

‘/t = atV

= JO+ bV

= O+ drp AV + drpAneVE (5.29)
From (5.26):
Ve=ALV, Al =(ALAL)T AL (5.30)

Substituting (5.30) in (5.29)
V, = LJ0 + LV? (5.31)

where L, = (I — gbt,bAObcAIc)_l, Ly = Li¢ipApso. Let us take time derivative of
(5.31)

oy = LyJ0+ Ly JO+ LyJO + Lya® + LV? (5.32)
Using the known equality7 0 = o,¢a + a,, finally we get

a; = LT+ L JO + Lya® + LV* + Ly(opa + a;) (5.33)
Now let us focus on the base accelerations. Taking the timeati®e of (5.25)

ap = Apso@® + Agpea® + AgpcVE (5.34)
Substituting (5.31) in (5.30)

Ve = AlL(LJ6 + L,V?) (5.35)
Taking time derivative of (5.30) and substituting (5.31)

of = Al.ay + Al (L, TJ0 + L,V?) (5.36)
Substituting (5.35) and (5.36) in (5.34)

ap. = AweAlcy + LyLi T + Apo® + Ly LV* (5.37)

whereL, = Ay Al + AgeAl.. Plugging (5.33) in (5.37), now we can obtain the

equation for base accelerations in termé,df, o and V.

o, = LoJ0+ Ly J0 + Leo® + LyVe + L. (5.38)
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Ly = AncAlL

Ly = LyLi+ ApALL

Lo = Apo+ AneAlLs

Li = LuLs+ AgcAlL,

Lo = ApAlLi(opa+ a)) = Lo(oia + a)

Now we will investigate the feasible sets@f Combining (5.26) and (5.31), and pre-

multiplying both sides of the result b&; we get:
AL JO=V" V= —A.LV* (5.39)

To uniquely determine the dependent joint velocities imieof the independent ones,
the elements of the joint space, are reordered in a way that these elements are
grouped into independent and dependent subspaces usimgathig S* formed by
rearranging the rows of an identity matrix. As the choiceldse subspaces is not

unique, one can determine his/her choice based on preteegntthe structure.
AL, TS 5% =V"

With the following definitions, (5.40) is obtained.

N ) : gdep

A LTS = { Eder pind ] S =1 .
Qind

édep _ Edep*1<_Eind‘9'ind + vr) (5.40)

If E9P is not full rank, it means that the choice 6f is wrong. Similar equation to
(5.40) can be written for accelerations too. In order to @, tlet us first take the time
derivative of (5.26).

o = Apea® + A VE (5.41)
From(5.33) and (5.41)

At + A Ve = LJ0+ Ly J0 + Lo, + LV, + Lioyda + Liay (5.42)
Using (5.35) in (5.42), and pre-multiplying it with,.

ALy J0 = A(AAlLL — L) T+ o" (5.43)
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where

a" = —Ap(Lsas + (Ly — Ay Al L) Vi + Lioréa + Lyay)

Let us apply the operatdi® to separate the dependent and independent variables.
AL TS S0 = Ayo(A Al Ly — L) TSS9 + "

Assigning

Au(AAlL = L) TS = | con ona |

Finally we get

gjdep _ Ede[T1<_Eind"9'ind L orgnd o o7 1 depppdep ! V) (5.44)

whereC = (¢ind _ ¢depgdep™" pind
Dynamic constraints have a dual relationship with the kiagenconstraints. Dual of
(5.24)is

1]

whereF, is a spatial force whose torque component represents ttiofral term that

= F (5.45)
By,

slows down rolling wheel. Dual of (5.27) is

Fy F*
AT AT — (5.46)
F; Fe
where
_ " - %
*fs 0
P = F¢= K/ (Myay +b;) K=
3
Js 0
s 1]
From the acceleration propagation we can obtain all thel@ateons as:
a=¢(HO+ a+ opoy,_ ) (5.47)
Now we can substitute (5.38) in (5.47)
o = ¢((H + 0y Lo T)0 + 00 Lo T0 + 0, Lo’ + 0, LgV® + 0y Le + a) (5.48)
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General force equation is

F=¢"(Ma+b)+¢" o/ F, (5.49)
Base forces can be written as:

By, =0y o F (5.50)
Using (5.50) and (5.49)

F,, =0l ¢" (Ma+b) + ¢, F, (5.51)
We can write two dynamic constraints using (5.45)

AL F, =F® AL Fy + ALF, = F° (5.52)
using (5.52) and annihilator of;., A,.

Fo= Al (FC— AL F, )+ A, Fi, (5.53)

Using (5.45), let us substitute (5.51) in (5.53).

F = AICTFC (¢UbA0bc tc) (Ma+b)

(¢t bAObc tc) Ft + Atc Fta (AObcAIc)TFb

Finally we get
F, = (¢popLo)T (Mo +b) + (AlLL)TF¢ + (A L) F,, — LTF, (5.54)

Let us substitute (5.54) in (5.49)

F = [6(I + 0yLeo®)]" (Ma +b) + (Al Liovg) " F° +
(A L4, 0) Frg — (La010) T F (5.55)

Next, substituting (5.48) in (5.55) we get the force equaiioterms of the joint accel-
erations
F=(I + 0, Lo$) 76" [ M (H + 0y Lo T )0+
oy (LT O+ Loo® + LV + L) +a) + b + (5.56)
(AleLi0y)"F* — (La01)" Fy + (AreLi010)" Fra
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The torques on the links can be extractedas H” F. Hence,

T = MO+CO+ Lo + L,V +D+ BIF, + BIE, (5.57)

H+0yL,J)"¢" M¢(H + 0, Lo T)
H + 0yLoJ) 6" Moy, Ly T

H + 0yLoJ) ¢" Mooy L.
)
)

L,
Ly
D

H + 0,LoJ) ¢" Moy Lg

H + oy L, J) " (Mp(oyLe + a) + b)+
Al L, J)TFe

B=—L.J B, =A.LJ

M=(
C=(
(
(
(
(

Now the equation of motion can be obtained as
0= MY T —CO—Lo0°— L,V —D+B'F,—Bl'E,) (5.58)

Taking the time derivative of (5.39) and substituting (§.B8that, we obtain

Fio = GoT + GyFy + G0 + Gao® 4+ GV + Gy (5.59)
Ga:( IBT) 1BM™!
Gy=(B,M 1BT) 15 1BT
G=(BM™'BT)~ 1(Atthj + Awled — BMIC)
Gy=(BMBI) YAy Ly — BM™L,)
Go=(BMBT) " (AnL, — BMLy)
G=(BM™ 1B~ 1(Atth(at<ba+at) B,M™'D)

As for the suspension dynamics, we substitute (5.59) ir8j5.5
6 = N,T + NyF, + N8 + Nya® + N,V* + Ny (5.60)

No=M-UI = B'G,) N,= M-\(BI —B'G,)
Nee—M-Y(C+BIG.) Ny= M- (L, +B'Gy)
NEZ—M_I(,Cb—FBtTGe) Nf = —M_I(D—I-Bng)

AssigningB(Fy, o, Vi) = NyFy + Ny, + NV, + Ny

0 =N,T+ N6+ B
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Now, let us separate the joint variables subject to dynafffectof suspension mech-

anism from the others. To do that, we first reorder the equstio
S% = SPN,SY SPT + SPN,SY' 5% + S B

Here, S’ is obtained by rearranging the rows o5& x 54 identity matrix. Separation

is done as follows:

. [ ésusp ) [ ésusp
St = | . S = '
gnosusp gnosusp
SPN,SV = Noy No, SPN.S = New Ney
I Na3 Na4 L Ncg NC4
[ J'susp [ Bsusp
ST = S*B =
Tnosusp Bnosusp
Suspension dynamics equation is
Msusrgsusp: —d ésusp_ L GSUsP (5.61)

whered andk are damper and spring constants respectively.

{ [ ] N L P e
enosusp Na4 BI’]OSUSp
—Ng,d+ N, N, fous .
i _Na3d+ NcS NC4 9'nosusp
—Nak 0 gsusp
(5.62)
_Na;;k 0 gnosusp
Let the following be defined as:
p =gt | N poogt | Nk O g
N, Ngk 0
Pb _ Slfl Na1d+Nc1 Nc2 Sb
Ng,d+ N., N,

Now, the equation of motion can be modified to include suspergynamics.

6 =P, T %P+ PO+ P.H+ B (5.63)
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Let S¢, and.S¢ be sorting matrices.

Scé _ ScPanflsdTnosusp_‘_ Sch5071509‘ + SCPCSC*1509 +S°B

épseudo B Pa1 Pa2 7 pseudo . Pb1 Pb2 épseudo .
étrue - Pa3 Pa4 -7 hosusptrue Pb3 Pb4 étrue
P P Hpseudo Bpseudo
oo + (5.64)
PCS PC4 etrue Btrue
By definitiondPseudo— q, geseudo_ ), gpseudo_
pseudo__  p-—1 nosusptrue jtrue true pseud
T = —P (P.,T + P,,0™¢ + P.,0""° + BP%eUYY
Including pseudo joint torques in the equation of motion gee
étrue _ Ya,]—nosusptrue + YE)étrue + YCG true + Yd (5.65)
Y, = Pu,—Py,P;'P, Y, = P, — P, PP,
Yc — Pc4 _ Pagpcalpcz Yd — Btrue - Paspa—lprseudo
et us write (5. In the form of first order :
L ite (5.65) inthe f ffi der ODE
étrue Y, Y. étrue Y, - nosusptrue | Y,
| = n (5.66)
gtrue I 0 gtrue 0

Simulation results associated with this system can be fauf@#].

5.5 Discussion

Both theory and application has been presented in this ehafitutilized the theo-
retical foundations established in the previous chaptet, applied them in practical
cases. The selection of these cases were done so that théeg@ygtem dynamical
modeling is demonstrated without making it too complicédtedhe reader to follow.

The simulation results are in the appendices.
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6. CONCLUDING REMARKS

The research presented in this thesis provides the tookssaxy for the analysis of
complex topology system dynamics and concentrates on tredagement of a frame-
work for the dynamical modeling of wheeled ground vehiclEse contributions were
in the fields of cooperating underactuated systems, kineatigtdeficient cooperating
manipulators and the nonholonomic systems as well as mass fiaatorization and
inversion techniques. Although they may seem to be distireads, they are, in fact, the
significant players under one umbrella; multibody dynamidserefore, to understand
how these areas all fit together is essential for evaluatiegpramount importance
of this work. Vehicle dynamical simulation can be a good egknto see that each
aforementioned field constitutes as an ingredient of anrilhgo for high fidelity and
hight efficiency.

We conclude this dissertation with a summary of the work tiogrewith proposals for

problems suggesting future research.

6.1 Summary

The focus of this dissertation was the development of dyoahmodeling algorithm
capable of handling complex topology systems. Consideretbbrts have been made
to apply the presented methodology to wheeled ground \esgweith the goal of achiev-
ing high fidelity simulations while attaining high performze. To achieve this out-
come, we first started with unconstrained problems for tke sasimplicity from the
reader’s point of view. Then we moved to cooperating mamifouldynamics and in-
cluded the base dynamics as a free-flying platform. There weo important cases
which we addressed in detail; 1) The case when there areuatadtjoints in the sys-
tem forming a closed kinematic chain where the number ofadots are less then the

number of DOF of the system. 2) The case which can be brieftgdstas the singu-
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larity issues. The jacobian is required to be a full rank ato that the tip forces
of cooperating manipulators can be computed. If a manipulatat a singularity, the
jacobian looses rank and prevents the computation of tigegrhence the dynamics.
We introduced both a numerical and an analytical method éwamme this problem,
and explained that analytical approach was superior to timenical one. With the
mass matrix factorization and inversion@n) and the application of the algorithm
to nonholonomic systems made it a complete tool for commprlobgy systems.

A complex topology systems, from our perspective, is regduab a system composed
of multiple “arms’ treated as if they were robotic arms. For example a bicyatevery
well be considered as a cooperating manipulator if each Wheegarded as a manip-
ulator subject to nonholonomic constraint. To be able to mat® the traction forces
between the wheel and the terrain and even perform a stragsanon the spokes of
the wheel motivated us. These traction forces are cruciabléover estimation and,
therefore, to compute them has a major value.

Application of the algorithm to an example underactuatestesy was demonstrated
with simulation results. Two wheeled cart, and four wheeéstd and driven (4x4x4)
system were the next case studies. Finally the full dynannicalel of a passenger

vehicle was shown.

6.2 Future Directions

Trucking industry can gain substantial economic benefitsuph use of larger trucks,
there has been rapidly growing interest in using multiéraiehicles to obtain higher
cargo volume while retaining the practical benefit of goocheaverability. On the
other hand, multitrailer vehicles are known to suffer fropecal dynamic character-
istics that can limit their stability and emergency maneatdity.

This dynamic characteristic leads a concern over the patdot degradation of the
safety quality of highways. Some noted problems are redyaedstability and sus-
ceptibility to roll-over in steady turn, slower responsel grossible instability during
braking, reduced level of sensory feedback of trailer comat, off tracking, ampli-
fied trailer response to rapid steering, and oscillatoryysg#e to road disturbances.

In addition to these problems, due to their isolation in thbkig, most drivers of such
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vehicles do not receive early sensory feedback of immir@hower.

This research can be extended as the basis of the developfreeftamework for the
control of multitrailer vehicles. Establishing the feabip of providing the drivers of
articulated vehicles with information on the roll stalyildf their trailer can be the goal
of such work.

In this regard, the developed algorithm can be applied,an®le, to a triple-trailer-
tractor vehicle to obtain highly accurate analytical dyi@hmodel on any given
terrain. To give an idea, this system would consist of 166tgpwith 48 indepen-
dent degrees of freedom in total. Given the steering tordieng torque and terrain
structure, the forward dynamics algorithm obtains the cities, the accelerations, the
forces and torques of all joints. Among these, contact bs#ween tires and the road
can be used to prevent roll-over by adjusting the speed.slipen both longitudinal
and lateral directions and frictional characteristic ofd@ [65] can be included in the

model.
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A. SIMULATION RESULTS: GENERAL UNDERACTUATED
COOPERATING MANIPULATORS IN SPACE MANIPULATION

Using the methodology presented in Chapter 5.1, the systamsinulated using
MATLAB on a Pentium 4 computer. Torques are applied at theseégoint of arm 1
and at the third joint of arm 2 in the form of a ramp function fiee seconds as shown
in Figure A.1 and then the system is let to swing by its own orea flying platform
in 2D without gravity.

A.1 Results

o
i
o

0.08 -0.02}
T —
£ 006 2 -0.04
() ()
s s
g 0.04 5 -0.06
0.02 -0.08
0 : : : -0.1 : : :
0 50 100 150 200 0 50 100 150 200
time [s] time [s]
(@) t=5s (b)t=15s

Figure A.1: Applied torques at the actuated joints

Under the applied torques shown in Figure A.1, the resuihotted for a total time
period of 200s. Figure A.2 shows the joint angles, velositied accelerations for arm
1 on the left and arm 2 on the right.

Next we look at the motion of the platform. Plots on the top wiFigure A.3 are for
the platform angle, angular velocity and angular accatmmatThe bottom row plots
of the same figure are the position, linear velocity and thedr acceleration of the
platform.

Interaction forces and torques with the common load is ptesein Figure A.4.

Figures A.5 through A.11 display the pictorial represaatabf the configuration of
the system in 5 seconds intervals.

To contribute to the understanding of the numerical stiytnli the algorithm, the con-
dition number of Jacobian which is defined as the ratio of éingdst singular value of
Jacobian matrix to the smallest one, is given in Figure A.12.
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X, dotted lines are for y and dashed lines are for z)
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Figure A.4: Torques and forces on the common load

Figure A.5: Initial configuration
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Condition number of the Jacobian
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Figure A.12: The condition number of thg’
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A.2 Conclusion

We have demonstrated the use of a dynamic algorithm for genederactuated coop-
erating manipulators. We utilized two planar arms eachriga@iDOF. Only one joint

is actuated at each arm. The results were displayed as bathchiarts and pictorial
representation using MATLAB'’s visual environment.
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B. SIMULATION RESULTS: TWO WHEELED CART

Using the methodology presented in Chapter 5.2, the systammsinulated using
MATLAB on a Pentium 4 computer. Although the simulation ticen be made arbi-
trarily long, here we demonstrate 2 seconds of simulatioe fior the sake of simplic-
ity in terms of the interprotation.

B.1 Results

Three cases were considered;

e going forward, where equal torques are applied to each wheel

e rotating around the center, where equal but opposite tgrgreeapplied

e rotating around off center, where different torques ardiagp

B.1.1 Going forward
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Figure B.1: Applied torques
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Figure B.3: Angular velocities of the links of Arm 1

99




v_[m/s]

t.ox[rad/s]

w [rad/s]

ooz[rad/s]

1Llink1 1Link 2 1Link3

y

y

1 1 1
Q @ Q
E 0 E o E o0
>™ < >%
b 05 1 15 2 . 05 1 15 2 b 05 1 15
time [s] time [s] time [s]
0.2 0.2 1
@ Q
0.1] E 01 E 0
> >7
% 05 1 15 2 % 05 1 15 2 o 05 1 15
time [s] time [s] time [s]
1 1 1
Q @ Q
£ o0 E 0 £ o0
4 3 N
> > >
b 0.5 1 15 2 X 0.5 1 1.5 2 b 0.5 1 15
time [s] time [s] time [s]
Figure B.4: Linear velocities of the links of Arm 1
2 Link 1 2 Link 2 2 Link 3
0.2 1 1,
@ @
3 3
0.1] s 0 g o
Es T
% 0.5 1 1.5 2 . 0.5 1 15 2 = 0.5 1 1.5
time [s] time [s] time [s]
1 1 1,
@ @
3 3
0 S 0 S 0
Eg Eg
= 0.5 1 1.5 2 -, 0.5 1 15 2 = 0.5 1 1.5
time [s] time [s] time [s]
1 1 1
@ @
bS] 3
0 8 0 S 0
B Ex
-15 -1 -1
0.5 1 1.5 2 0 0.5 1 15 2 0 0.5 1 1.5
time [s] time [s] time [s]

Figure B.5: Angular velocities of the links of Arm 2
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Figure B.9: Forces at the links of Arm 1
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Figure B.11 Forces at the links of Arm 2
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Figure B.13 Applied torques
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Figure B.15:. Angular velocities of the links of Arm 1
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Figure B.16. Linear velocities of the links of Arm 1
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Figure B.18 Linear velocities of the links of Arm 2
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Figure B.20: Torques at the links of Arm 1
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Figure B.22 Torques at the links of Arm 2
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Figure B.24: Tip spatial forces
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Figure B.26. Base velocities
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Figure B.27: Angular velocities of the links of Arm 1
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Figure B.28 Linear velocities of the links of Arm 1
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Figure B.30 Linear velocities of the links of Arm 2
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Figure B.32 Torques at the links of Arm 1
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Figure B.34: Torques at the links of Arm 2
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Figure B.36. Tip spatial forces
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C. SIMULATION RESULTS: FOUR-WHEEL-DRIVE FOUR-WHEEL-STEE R
MOBILE MANIPULATOR

Using the methodology presented in Chapter 5.3, the systammsiwnulated using
MATLAB on a Pentium 4 computer.

C.1 RESULTS

Two cases were considered;

e drive only, where the driving torques are applied to eacheihe

e steering only, where the steering torques are applied to wheel
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Figure C.1: Applied torques
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Figure C.3: Angular velocities of the links of Arm 1
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Figure C.4: Linear velocities of the links of Arm 1
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Figure C.5: Angular velocities of the links of Arm 2
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Figure C.7: Angular velocities of the links of Arm 3

120



3 Link1 3 Link2 3 Link3 3 Link4

1 1 1 0.1
Q Q Q Q
£ o £ 0 £ 0 £ 005
> > > >
-1 -1 -1
0 1 2 0 1 2 0 1 2 % 1 2
time [s] time [s] time [s] time [s]
0 1 0.1 0
@ Q Q) Q
£ -0.05 E 0 £ 005 £ -0.05
>7 > >7 e
0% 1 2 T 1 2 % 1 2 0% 1 2
time [s] time [s] time [s] time [s]
1 1 1 1
Q Q Q Q
E o0 E o0 E o0 £ o0
SN SN SN SN
o 1 2 o 1 2 o 1 2 o 1 2
time [s] time [s] time [s] time [s]
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Figure C.9: Angular velocities of the links of Arm 4
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Figure C.11 Torques at the links of Arm 1
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Figure C.1Q Linear velocities of the links of Arm 4
1 Link1 1 Link2 1 Link3 1 Link4
2 1 1 0.5
E E E E
Z 1 Z 0 £, £,
S S S S
B B 2“05 B 0\[/
g 0 g -1 g g
(=} (=} (=} (=}
= = = =
- 1 2 1 2 % 1 2 0% 1 2
time [s] time [s] time [s] time [s]
2 1 0.5 2
E E E E
Z 1 Z, Z, Z 1
S S S S
g g05 g 0 g
S 0 g <3 g 0
o o o (=}
= = = =
- 1 2 % 1 2 05 1 o 1 2
time [s] time [s] time [s] time [s]
0.02 0.1 0.02, 1
E E E E
Z 001 Z Z 001 Z
= = o = /\V = 0
<3 0| <3 <3 0 g
= = = =
004 1 0 1 2 0% 1 o 1 2
time [s] time [s] time [s] time [s]



ForceZ[N]

1 Link1 1 Link2 1 Link3 1 Link4

2 1 2.4525 2
Z 1 Z 05 Z, 2.4525 Z 1
g g g g
S 0 S 0 S 2.4525 S o
-1 -0.5 2.4525 -1
0 1 2 %% 1 2 52% 1 2 0 1 2
time [s] time [s] time [s] time [s]
1 12.2625 2 0.5
Z 05 Z, 12.2625 Z 1 z
g 8 g g 0
S 0 S 122625 8 o 5
—0.50 > 12.26”50 1 > -1 1 ) —OASO 1 )
time [s] time [s] time [s] time [s]
22.0725 2 0.5 31.8825
22,0725 Z 1 = Z 318825
8 g 0 8
22,0725 S o S S 31.8825
- 05 o
22.07250 > 10 1 > 0.5/ 1 31.88 % 1 )
time [s] time [s] time [s] time [s]

Figure C.12 Forces at the links of Arm 1
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Figure C.14
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Figure C.16: Forces at the links of Arm 3
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Figure C.17: Torques at the links of Arm 4
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Figure C.18 Forces at the links of Arm 4
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Figure C.21 Angular velocities of the links of Arm 1
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Figure C.22 Linear velocities of the links of Arm 1
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Figure C.23 Angular velocities of the links of Arm 2
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Figure C.24: Linear velocities of the links of Arm 2
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Figure C.25. Angular velocities of the links of Arm 3
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Figure C.27: Angular velocities of the links of Arm 4
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Figure C.29 Torques at the links of Arm 1
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Figure C.30: Forces at the links of Arm 1
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Figure C.31 Torques at the links of Arm 2
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Figure C.33 Torques at the links of Arm 3
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Figure C.35 Torques at the links of Arm 4
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