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OPTIMAL SHAPE ANALYSIS OF ELASTIC BODIES BY USING 
DIFFERENTIAL TRANSFORM METHOD 

SUMMARY 

In this study optimal shape analysis of elastic bodies is carried out for different 
loading conditions. Simply supported rods and columns are used in the analysises as 
structural elements. Loading conditions examined in this study are axial compressive 
force, eccentrically placed compressive force –eccentricity at both ends and 
eccentricity at one end- and follower type of loading –uniformly distributed and 
exponentially varying-.  
 
For each configuration, optimal distribution of cross-sectional area and volume of the 
structure with such cross-sectional area are determined. In addition, volume of 
uniform structure which is also subjected to same amount of loading is calculated 
and compared to the volume of the structure with optimal shape. This comparison 
gives the degree of success of the optimal shape analysis. 
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DĐFERANSĐYEL DÖNÜŞÜM YÖNTEMĐ ĐLE ELASTĐK YAPILARIN 
OPTĐMAL ŞEKĐL ANALĐZĐ 

ÖZET 

Bu çalışmada,farklı yükleme şartları altında elastik yapıların optimal şekil analizi 
gerçekleştirilmiştir. Analizlerde, basit mesnetli çubuk ve kolon tipi yapısal elemanlar 
göz önüne alınmıştır. Bu çalışmada ele alınan yükleme şartları eksenel uygulanan 
basma, eksantrik uygulanan basma –iki uçtan eksantrik ve tek uçtan eksantrik- ve 
follower tipi –düzgün dağılımlı ve eksponensiyel değişen-  yüklemedir.  
 

Her konfigürasyon için, yapının kesit alanının optimal dağılımı belirlenmiştir ve 
optimal kesit alanlı yapının hacmi bu dağılımdan yaralanılarak hesaplanmıştır. 
Bunlara ek olarak, optimal yapı ile aynı yüklemeye maruz kalan uniform yapının 
hacmi hesaplanmış ve optimal yapının hacmi ile kıyaslanmıştır. Bu kıyas yapılan 
optimizasyonun verimliliğini tayin etmektedir. 
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1. INTRODUCTION 

1.1. Historical Development and Aim of the Study  

Determination of the shape of elastic bodies was first investigated by Lagrange in 

1773. Since then, the problem of maximizing the critical buckling force of a 

prismatic column of given length and volume is called as Lagrange problem (Cox, 

1992). Optimization of shape of the columns was treated by Clausen. (Clausen, 

1851). In the presented study, rods and columns under various loading conditions are 

examined and the effects of loading condition on the optimal distribution of the 

cross-sectional area are determined. These conditions are uniformly distributed 

follower type of loading, exponentially increasing follower type of loading and 

concentrated forces at both ends and eccentrically concentrated forces at both ends. 

In open literature, some studies exist, for example, Atanackovic and Simic obtained a 

solution for the optimal shape of a Pflüger column which is subjected to uniform 

follower type of loading in (Atanackovic, 1999). Optimization problem for 

compressed columns has been treated by Blasius (Blasius, 1914) Ratzerdorfer 

(Ratzdorfer, 1936) and Keller (Keller, 1960).   

In this study, for each case of loading, the optimal distribution of cross-sectional area 

of a simply-supported structural element is determined under the criteria of minimum 

volume and stability against buckling. The governing equation for columns is 

derived by considering an Euler-Bernoulli column and then Pontryagin’s maximum 

principle with special treatment as in (Atanackovic, 1999) and (Galavardanov, 2001) 

is used to determine the optimal cross-sectional area. Pontryagin’s maximum 

principle which is based on minimizing Hamiltonian function is used in optimal 

control theory to get the desired optimal solution (Vujanovic, 2004). The related 

Hamiltonian function is obtained via the governing equation and the volume of the 

structure can be minimized by regarding this Hamiltonian function.  

In the rest of this study, analysis of nonlinear differential equations, which are 

obtained after the rearrangement of governing equations with the usage of 

Pontryagin’s maximum principle, is carried out. In the analysis, Differential 
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Transform Method (DTM), which is a semi analytical-numerical computational 

technique used to solve ordinary and partial differential equations, is applied. This 

method which is also capable of solving fractional differential equations (Arıkoğlu, 

2007), integral and integro-differential equations (Arıkoğlu, 2008) is introduced by 

Zhou in 1986 with the application to electrical circuits (Zhou, 1986). As results of 

this analysis, optimal shape and optimal volume of the column for three different 

conditions are determined and volume saving with such a cross-sectional area 

distribution is evaluated by considering the column with constant cross-section.  

1.2. Content of the Study 

In Section 2, general definitions and topics used in the analysis of elastic bodies are 

taken into consideration. As an introduction, general properties of elastic bodies are 

given under the topic of “general view to elastic bodies”.  Also, beam theories used 

in engineering practice are introduced in general sense and buckling behavior of 

columns is analyzed. 

In Section 3, basic variational principles used in mechanics are considered. These 

variational principles are classified under the topics of Lagrange- D’Alembert 

differential variational principle and Hamilton integral variational principle. Optimal 

control theory is introduced and especially Pontryagin’s maximum principle is tried 

to be introduced since this principle is used to carry out optimal shape analysis of 

structures.  

In Section 4, differential transform method is mentioned. After the general 

description of differential transform is given; one-dimensional, two-dimensional and 

finally n-dimensional differential transform are presented. General properties of 

differential transform are also expressed. 

In Section 5, optimal distribution of cross-sectional area of compressed rods is 

obtained under the criterion of minimum volume. After the volume of the rod with 

optimal cross-section is evaluated, it is compared to the volume of a uniform rod 

which is stable under the same load value to determine the efficiency of the rod with 

optimal cross-section. When the analysis is completed, it is noticed that the optimal 

compressed rod has zero cross-sectional areas at both ends. However, this cannot be 

an acceptable configuration in physical sense and for engineering applications. 
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Therefore, governing equations are rearranged and a minimum cross-sectional area is 

defined in order to overcome the problem of having zero cross-sectional area.  

In Section 6, columns which are subjected to eccentrically concentrated forces are 

outlined and optimal distribution of cross-sectional area of such structures along the 

column length is determined. Two different configurations are considered, which are 

columns loaded eccentrically at both ends and columns loaded eccentrically at one 

end. Volume of the optimal column for each loading condition is determined. After 

the volume of the optimal column is evaluated, it is compared to the volume of a 

uniform column which is stable under the same load value to determine the 

efficiency of the optimal column. 

In Section 7, columns of Euler-Bernoulli type are analyzed for the conditions 

uniformly distributed and exponentially varying follower type of loading. For each 

loading condition optimal distribution of cross-section along the column length and 

optimal volume of such column is determined. The efficiency of the columns with 

such cross-section by means of volume and load saving is determined for each 

loading condition by considering uniform column which is subjected to same amount 

of loading. 

In Section 8, general discussions about the whole study are carried out and general 

summary of the analysis is outlined.  
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2. ELASTIC BODIES 

In this section of this study, general definitions and topics used in the analysis of 

elastic bodies are taken into consideration. As an introduction, general properties of 

elastic bodies are given under the topic of “general view to elastic bodies”.  Also, 

beam theories used in engineering practice are introduced in general sense and 

buckling behavior of columns is analyzed. 

2.1. General View to Elastic Bodies 

In this section, general definitions and topics used in the analysis of elastic bodies are 

taken into consideration. Elastic bodies utilized in engineering practice are 

commonly named as structural elements. Structural elements used in structural 

analysis simplify the structure by separating the structure into elements which can be 

defined as the simplest part of the whole. Structural elements can be linear, surfaces 

or volume. In other words, structural elements can be one-dimensional, two-

dimensional or three-dimensional. Linear structural elements are rods (axial loading), 

beams (both bending and axial loading), columns (compressive loading), shafts 

(torsional loading) and beam-columns (both bending and buckling).  Surface 

structural elements are membranes (in-plane loading only), shells (both in-plane 

loading and bending moments) and shear panels (shear loads only).  

A structural element serves to transfer load from one place to another. When the 

dimensions and material properties of the structure, its support conditions, and loads 

applied to it are given, stress and deflection calculations can be performed. There are 

two main classes of methods which determine the behavior of a structure: mechanics 

of materials method and theory of elasticity method. With the mechanics of materials 

method, search begins by thinking about deformations. Using experiment, experience 

and intuition; it is decided that how the structure deforms. The selected deformation 

field may be exact. The deformation field yields to a strain field and with the use of 

an elastic law (i.e. Hooke’s Law) stress field can be determined.  With the theory of 

elasticity method, there is no need to prescribe a deformation field to solve the 
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problem. In this method, conditions of equilibrium at every point, continuity of the 

displacement field and loading and support conditions are to be satisfied 

simultaneously. Since the solution obtained with the use of theory of elasticity 

method meets all conditions required, this solution is called as “exact solution”. 

Similar to mechanics of materials method, this method also is based on some 

assumptions and is an approximation of nature. The elasticity solution is 

mathematically unique if the body has a linear load-displacement relation.  

Theory of elasticity method is more complicated when compared to mechanics of 

materials method; however it is worth studying since it clarifies the shortcomings or 

range of applicability of approximate solutions.  

2.1.1. Mechanics of Materials Method 

Major function of mechanics of materials is to relate applied loads to stress by 

generating specific relations. The method of derivation, used in both elementary and 

advanced mechanics of materials is to prescribe the geometry of deformation by 

experiment, experience or intuition, to determine the strain field by analyzing the 

deformation field, to determine stress field by applying stress-strain relation and to 

relate stress to load.  

In advanced mechanics of materials, relations derived in elementary mechanics of 

materials are used. Common definitions and relations in elementary mechanics of 

materials are as follows (Cook, 1985): 

• Axial stress σ and elongation ∆ of a bar which is under axial load P 

can be described as follows: 

P

A
σ =                

PL

AE
∆ =                                                              (2.1) 

where A is cross-sectional area and E is modulus of elasticity. 

• Shear stress τ and angle of twist θ of a bar that carries a torque of T 

can be described as follows: 

Tr

J
τ =               

TL

JG
θ =                                                               (2.2) 
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where r is the radius to the point where shear stress is computed, J is polar moment 

of inertia and G is shear modulus. 

• Flexural stress σ and curvature 2 2/d dxυ of a beam loaded by bending 

moment M can be described as follows: 

My

I
σ =          

2

2

d M

dx EI

υ
=                                                              (2.3) 

where y is distance from the neutral surface to the point where flexural stress is 

computed and I is the second moment of inertia.  

Definitions given above involve many assumptions and are only given to express 

general concept of mechanics of materials method. There are miscellaneous theorems 

which describe the behavior of materials after detailed analysis. These theorems are 

taken into consideration in the following sections. 

2.1.2. Theory of Elasticity Method 

Analysis of structures on the basis of theory of elasticity method concerns 

determining the structural deformation via the stress-strain behavior of the system. 

Classical elasticity theory is constructed under the assumptions of  

• strains and deformations are small and 

• material is homogeneous, isotropic and linearly elastic.  

In determining the elastical behavior of the materials Hooke Law is used. In the 

simplest form, for a single-axial loading this behavior can be defined as follows: 

x xEσ ε=           x
x

E

σ
ε =                                                                                      (2.4) 

Moreover, in the case of single-axial loading there is elastic strain of the materials. 

Elastic strain in these directions can be expressed with the use of Poisson Ratio υ as 

follows: 

x
y x

E

σ
ε υε υ= − = −  

x
z x

E

σ
ε υε υ= − = −                                                                                               (2.5) 
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By generalizing the equations given above, “Elasticity Constitutive Equations” can 

be obtained for three-axial loading as follows: 

1
[ ( )]x x y z

E
ε σ υ σ σ= − +  

1
[ ( )]y y x z

E
ε σ υ σ σ= − +  

1
[ ( )]

z z x y
E

ε σ υ σ σ= − +

                                                                                    
(2.6) 

Shear strains can be expressed as follows: 

xy

xy
G

τ
γ =         

yz

yz
G

τ
γ =        zx

zx
G

τ
γ =                                                                 (2.7) 

For isotropic materials there is a relation between modulus of elasticity and shear 

modulus which can be given as follows: 

2(1 )

E
G

υ
=

+
                                                                                                       (2.8) 

2.2. Beam Theories used in Engineering Practice 

There are four beam theories commonly used in engineering practice to formulate the 

partial differential equation of motion by considering the behavior of the structure 

under given loading, boundary conditions and initial conditions. Beam theories are 

Euler-Bernoulli beam theory, Rayleigh beam theory, Shear theory and Timoshenko 

beam theory.  

The Euler-Bernoulli model, which is also known as classical beam theory, includes 

the strain energy due to bending and kinetic energy due to lateral displacement 

(Haym,1998). The effect of rotation of the cross-section is included by Rayleigh 

beam theory in addition to Euler-Bernoulli beam model (1877). The shear model 

adds shear distortion effect to the Euler-Bernoulli beam theory. Timoshenko beam 

theory is proposed in 1921, 1922 to add the effect of both shear and rotation. 

Namely, it can be said that Timoshenko beam theory covers the other beam theories.  
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2.2.1. Euler-Bernoulli model 

2.2.1.1. Moment-curvature relation 

Deflections due to bending are determined with the consideration of deformations 

taking place along a span (Popov,1990). Deflections due to shear are not considered 

in the Euler-Bernoulli model.  

Radius of the elastic curve ρ, as it is shown in Fig. (2.1), is assumed as changing 

along the span. For positive y’s, deformation of any fiber can be expressed as 

follows: 

∆� = −�∆�                                                                                                        (2.9) 

 

Figure 2.1 Deformation of a beam under bending 

For negative y’s, this yields elongation of fibers. By dividing the both sides of Eq. 

(2.9) by ∆s and using the definition of normal strain (du/ds=ε), one can obtain 

��
�� = −� ��

��                                                                                                                 (�. 
�) 
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With the aid of Fig.(2.1), it can be seen that ∆s=ρ∆θ . On this basis, fundamental 

relation between curvature of the elastic curve and normal strain can be given as 

follows: 

1
� = � = − �

�                                                                                                               (�. 

) 

Note that, no material properties are used in the derivation of this relation. Therefore, 

this relation can also be used for inelastic problems as for elastic problems. By using 

elastic material relations given in Eq. (2.4) and longitudinal stress occurred by 

bending moment which is given in Eq. (2.3), relation between bending moment at a 

given section and curvature of elastic curve can be given as follows: 

1
� = �

��                                                                                                                         (�. 
�) 

2.2.1.2. Governing differential equation 

In Cartesian coordinates, the curvature of a line is defined as  

1
� =

������

�1 + ��������
��

= � ′′
 1 + (! ′)�"��

                                                                        (�. 
#) 

where x and v are the coordinates of a point on a curve. By assuming that the term 

(��/��)� goes to zero, geometric nonlinearity is eliminated from the problem and 

Eq. (2.13) simplifies to 

1
� ≈ ��!

���                                                                                                                        (�. 
&) 

By combining Eq. (2.12) and Eq. (2.14), constitutive relation can be obtained as 

follows:  
��!
��� = �

��                                                                                                                     (�. 
') 

2.2.1.3. Derivation of equation of motion  

Equation of motion for an Euler-Bernoulli column or beam can be derived both by 

using Newton’s equilibrium considerations and also applying energy method.  
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In the further sections of this study, Newton equilibrium equations are used to derive 

the equation of motion for the given systems. Therefore, it can be enough to analyze 

the system according to Newton approach.  

Equation of motion of a beam or a column varies due to the loading condition. 

Therefore, derivation of equation of motion of a beam or column can be introduced 

by considering a structure under a certain loading condition.   

2.2.1.4. An example- Beam loaded by distributed force 

Consider a beam under given distributed force of f(x,t) which is the external force 

per unit length of the beam. A beam element under this type of loading can be shown 

as in Fig. (2.2).  

        

Figure 2.2 Configuration of an Euler-Bernoulli beam element after deformation 

where M(x,t) is the bending moment, V(x,t) is the shear force. In addition dM and dV 

can be given in the following form  

�� = (�
(� ��      �) =  ()

(� ��                                                                                 (�. 
*) 

By accepting the counterclockwise direction as positive direction, moment 

equilibrium can be written (see Fig. (2.2)) as follows 

�(�, ,) + (�(�, ,)
(� �� − �(�, ,) −  )(�, ,) 

+ ()(�, ,)
(� ��"�� + -(�, ,)�� ��

2 = 0                                               (�. 
0) 

dx 

U(x,t) 

M(x,t) 
M(x,t)+dM(x,t) 

f(x,t) 

O O’ 

V(x,t) V(x,t)+dV(x,t) 

x 

y 
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By eliminating the terms including the multiplication of dx dx⋅ , Eq. (2.16) goes 

(�(�, ,)
(� = )(�, ,)                                                                                                     (�. 
1) 

Equilibrium along y-direction, by accepting y-direction is positive, can be written as 

)(�, ,) − 2)(�, ,) + ()(�, ,)
(� ��3 + -(�, ,)�� = �4(�)�� (�5(�, ,)

(,�        (�. 
6) 

By eliminating the terms including the multiplication of dx dx⋅ , Eq. (2.16) goes 

()(�, ,)
(� = -(�, ,) − �4(�) (�5(�, ,)

(,�                                                                  (�. ��) 

By taking the first derivative of Eq. (2.18) and substituting Eq. (2.20) into the 

obtained relation, one can obtain 

(��(�, ,)
(�� = -(�, ,) − �4(�) (�5(�, ,)

(,�                                                               (�. �
) 

Constitutive relation for the column is as follows 

2

2

( , )
( )

U x t
M EI x

x

∂
=

∂
                                                                                        (2.22) 

By substituting Eq. (2.22) into Eq. (2.21) equation  of motion can be obtained as 

follows  

(�
(�� ���(�) (�5(�, ,)

(�� � + �4(�) (�5(�, ,)
(,� = -(�, ,)                                        (�. �#) 

2.2.2. Timoshenko model 

Timoshenko model is derived by adding the rotary inertia and shear deformation into 

the Euler-Bernoulli beam theory. Timoshenko beam theory is also known as the thick 

beam theory, since the cross-sectional dimensions are not small when compared to 

length of the beam.  

Consider a beam element which has the configuration under deformation as it is 

shown in Fig. (2.3). As a result of shear deformation, the element undergoes 

distortion but no rotation (Rao, 2000).  
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Angle γ which is between the tangent to the deformed center line 789 and the normal 

to the face 7′;′ can be defined as follows: 

< = = − (5
(�                                                                                                                 (�. �&) 

where = is the slope of the deflection curve due to bending deformation.  

Since = = (5 (�⁄ , constitutive relation can be written in terms of the slope of the 

deflection curve  

� = �� (=
(�                                                                                                                   (�. �') 

) = ?4(�)@< = ?4(�)@ A= − (5
(� B                                                                     (�. �*) 

where G denotes the modulus of rigidity and k is Timoshenko’s shear coefficient. 

Timoshenko’s shear coefficient is a constant and depends on the geometry of the 

cross-section. For a rectangular cross-section k equals to 5/6 and equals to 9/10 for a 

circular cross-section (Cowper,1966). 

 

            

Figure 2.3 Configuration of a Timoshenko beam element after deformation 
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Translational inertia of the element equals to 

�4(�)�� (�5(�, ,)
(,�                                                                                             (�. �0)   

 

Rotational inertia of the element equals to 

��(�)�� (�=(�, ,)
(,�                                                                                                     (�. �1) 

By accepting the counterclockwise direction as positive direction, moment 

equilibrium about point D can be written (see Fig. (2.3)) as follows 

�(�, ,) + (�(�, ,)
(� �� − �(�, ,) −  )(�, ,) + ()(�, ,)

(� ��"�� 

+-(�, ,)�� ��
2 = ��(�)�� (�=(�, ,)

(,�                                            (�. �6) 

By eliminating the terms including the multiplication of dx dx⋅ , Eq. (2.29) goes 

(�(�, ,)
(� = )(�, ,) + ��(�) (�=(�, ,)

(,�                                                                  (�. #�) 

Equilibrium along y-direction, by accepting y-direction is positive, can be written as 

)(�, ,) − 2)(�, ,) + ()(�, ,)
(� ��3 

+-(�, ,)�� = �4(�)�� (�5(�, ,)
(,�                                                  (�. #
) 

By eliminating the terms including the multiplication of dx dx⋅ , Eq. (2.31) goes 

()(�, ,)
(� = -(�, ,) − �4(�) (�5(�, ,)

(,�                                                                  (�. #�) 

By substituting Eqs. (2.25) and (2.26), Eqs. (2.30) and (2.32) can be obtained in the 

form of 

−?4(�)@ 2(=
(� − (�5

(�� 3 + -(�, ,) = �4(�) (�5(�, ,)
(,�                                       (�. ##) 

��(�) (�=
(�� − ?4(�)@ A= − (5

(� B = ��(�) (�=(�, ,)
(,�                                         (�. #&) 
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Eqs. (2.33) and (2.34) describes the equations of motion of the given system. 

2.3. Buckling of Columns 

Structural instability as a result of compressive stresses is one of the basic 

engineering problems. Narrow beams, vacuum tanks, submarine hulls unless 

properly designed can collapse under an applied load (Popov,1990). 

2.3.1. Criteria for stability of equilibrium 

Consider a rigid beam as it is shown in Fig. (2.4) with a torsional spring of stiffness k 

at the base point and is subjected to vertical force P and horizontal force F. System 

has only one degree of freedom. For an assumed small rotation angle θ, stability 

limits are defined as follows: 

?� > NO�         the system is stable                                  (2.35) 

?� < NO�         the system is stable                                  (2.36) 

?� = NO�         the system is in equilibrium                     (2.37) 

This means that if restoring moment kθ which tends to upset the system is smaller 

than upsetting moment PLsinθ, system becomes unstable. Equality of this two 

moments yields to the equilibrium condition of the system. This condition is also 

known as the neutral point of the system. The force associated with this condition is 

called as the critical or buckling load. 

NQR = ?
O                                                                                                                          (�. #1) 

2.3.2. Euler load for columns  

Euler load or critical buckling load is the least force value at which a buckled mode 

is possible. Euler load varies with the applied force. 
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Figure 2.4 Buckling of a rigid bar 

2.3.3. An example- Euler load of a simply supported column 

Moment distribution of a simply supported column can be given as follows: 

�(�) = N�(�)                                                                                                            (�. #6)  

where u(x) is the displacement field of the column which is independent of time and 

P is the applied force as it is shown in Fig. (2.5).          

By substituting Eq. (2.39) into Eq. (2.22) governing equation of the corresponding 

system can be obtained as follows: 

���
��� + S�� = 0                                                                                                            (�. &�) 

where S� = N/��  with the boundary conditions of  

�(0) = �(O) = 0                                                                                                        (�. &
) 

For a uniform column, solution of the differential equation given in Eq. (2.40) is in 

the form of 

�(�) = 4 �TU S� + V cos S�                                                                                   (�. &�) 
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By applying the boundary conditions following relations are obtained as follows: 

 V = 0  

4 sin SO = 0                                                                                                                (�. &#) 

Eq. (2.43) is satisfied for A=0, but this gives trivial solution of the analyzed system. 

Non-trivial solution is obtained for  

sin SO = 0       SO = U\        U = 1,2, …                                                                 (�. &&) 

N̂ = U�π�EI
O�                                                                                                                (�. &') 

           

Figure 2.5 Buckling of a simply supported column 

Pn is called as the eigenvalue of the problem. In buckling problems, smallest value of 

Pn is important, therefore critical buckling load or the Euler load for an initially 

perfectly straight elastic column can be given as follows: 

NQR = π�EI
O�                                                                                                                    (�. &*) 
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Figure 2.6 First three buckling modes for a simply supported column 
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3. VARIATIONAL METHODS IN MECHANICS 

In this section, basic variational principles used in mechanics are considered. These 

variational principles can be classified under the topics of Lagrange- D’Alembert 

differential variational principle and Hamilton integral variational principle These 

two principles are the main subjects of analytical mechanics.  

After the utility of variational principles are realized by physicians and engineers, 

optimal control theory is developed. In this section, optimal control theory is also 

taken into consideration and especially Pontryagin’s maximum principle is tried to be 

introduced since this principle is used to carry out optimal shape analysis of 

structures.  

3.1. Lagrange- D’Alembert Differential Variational Principle 

This principle is based upon the local characteristics of motion; that is, the relations 

between its scalar and vector characteristics are considered simultaneously in one 

particular instant of time(Vujanovic, 2004).. The problem of describing the global 

characteristics of motion has been reduced to the integration of differential equation 

of motion. 

Applications of Lagrange-D’Alembert differential variational principle include 

holonomic and non-holonomic dynamical systems and also conservative and non-

conservative dynamical systems.  

3.1.1. General definitions 

As a simple approach, dynamical systems can be divided into two main groups as 

free dynamical systems and constrained dynamical systems. For the motion of a free 

dynamical system, Newton’s second law determines the full configuration of the 

dynamical system. In fact, particles of a dynamical system are not completely free to 

move in the defined space of the motion. Namely, the motion of a dynamical system 
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is commonly limited. Such limitations are called as constraints. Constraints of a 

dynamical system are specified by certain geometrical and kinematical relations.  

For the case of constrained motion, dynamical systems are classified according to the 

structure of constraints they have. It can be possible to classify constraints in various 

ways. The most important classification of constraints named as holonomic 

dynamical systems and non-dynamical systems. 

3.1.1.1. Holonomic dynamical systems 

Holonomic dynamical systems are dynamical systems whose motion is restricted by 

holonomic constraints. It must be stated that all of the constraints of the dynamical 

system must be holonomic to define a dynamical system as holonomic dynamical 

system.  

Holonomic constraints are of purely geometrical character and can be given as 

follows: 

-b(,, cd, … , c^) = 0       � = 1, … , ?                                                                    (3.1) 

where k is the number of holonomic constraints given in the definition of the 

problem. In the case of free dynamical system without restrictions, such a dynamical 

system can be described as having n generalized coordinates. For constrained 

dynamical systems, number of degree of freedom is the difference between the 

number of generalized coordinates and number of constraints, namely for such a 

dynamical system degree of freedom equals to n-k. This is because the existence of 

constraints reduces the number of degree of freedom of the dynamical system. 

3.1.1.1. Non-holonomic dynamical systems 

Non-holonomic dynamical systems are dynamical systems whose motion is restricted 

by non-holonomic constraints. Non-holonomic constraints are of a kinematical 

character and can be given as follows: 

4ebcfb + Ve = 0     g = 1, … , h                                                                                   (#. �)                               

where r is the number of non-holonomic constraints of the dynamical system. Aαs 

and Bα depend on generalized coordinates and time t. non-holonomic systems can 

also be defined as the non-linear functions of generalized velocities. 

-b(,, cd, … , c^, cfd, … , cf^) = 0      g = 1, … , h                                                     (3.3) 
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The term non-holonomic is used to express the non-integrability of the differential 

equations given in Eqs. (3.1) and (3.2) and the impossibility of reducing them into 

the form of  

�e(,, cd, … , c^) = ie = jkU�,lU,                                                                    (3.4) 

3.1.2. Euler-Lagrangian equations of motion 

Euler-Lagrangian equations in classical mechanics basically can be expressed as 

follows: 

�
�,

(O
(cfb − (O

(cb = mb       � = 1, … , U                                                                            (#. ') 

O(,, cd, … , c^, cfd, … , cf^)    

= 9(,, cd, … , c^, cfd, … , cf^) −\(,, cd, … , c^)                                       (3.6)                                  

 where L is the Lagrangian function, T is the kinetic energy function, π is potential 

energy function and Qs is non-conservative forces. Note that potential forces do not 

depend on the generalized velocities.  

In analytical mechanics, Lagrangian equation is used in the form of 

n A �
�,

(O
(cfb − (O

(cb − mbB ocb = 0      � = 1, … , U                                                  (#. 0) 

This form of Lagrangian equation has a great importance in the applications of 

analytical mechanics and is called as central Lagrangian equation. 

3.1.3. Canonical differential equations of motion 

Hamiltonian or canonical differential equations are of the first order with respect to 

the generalized coordinates cp. Generalized momenta qp and generalized velocities 

cfp can be defined by the following relations 

qp = (O
(cfp          T = 1, … , U                                                                                             (#. 1) 

cfp = -(,, cd, … , c^, qd, … , q^)      T = 1, … , U                                                     (3.9) 

Canonical equations given above can be represented in different forms. A common 

representation can be given by means of Hamiltonian function. Hamiltonian function 
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of dynamical system can be defined by transforming the Lagrangian position 

coordinates cd, … , c^ into 2n canonical variables cd, … , c^, qd, … , q^. This 

transformation is usually referred to as the Legendre transformation. 

r(,, cd, … , c^, qd, … , q^) = qpcfp − O(,, cd, … , c^, cfd, … , cf^)                          (3.10) 

By using Eq. (3.9) Lagrangian function can be obtained by means canonical 

variables as follows: 

O(,, cd, … , c^, cfd, … , cf^) = qpcfp − r(,, cd, … , c^, qd, … , q^)                          (3.11) 

By substituting Eq. (3.11) into central Lagrangian equation given in Eq. (3.7) one can 

obtain 

Aqfp + (r
(cp − mpB ocp + A−cfb + (r

(qbB oqb = 0                                                     (#. 
�) 

Since the generalized coordinates and generalized momenta are considered as 

mutually independent, Eq. (3.12) can be written in the form of 

cfb = (r
(qb                                                                                                                       (#. 
#) 

 qfp = − (r
(cp + mp(,, cd, … , c^, qd, … , q^)                                                         (#. 
&) 

These equations are called as Hamiltonian canonical differential equations of motion 

for non-conservative dynamical systems. For conservative systems for which Qi 

equals to zero, Hamilton’s canonical equations can be written as follows: 

cfb = (r
(qb                                                                                                                       (#. 
') 

 qfp = − (r
(cp                                                                                                                 (#. 
*) 

3.2. Hamilton Integral Variational Principle 

This principle is also known as Hamilton’s principle of stationary action or 

Hamiltonian principle. Hamiltonian principle gives the central importance to global 

characteristics of motion. Hamiltonian principle is accepted as the cornerstone of the 

analytical mechanics. Variational calculus is the mathematical instrument used for 

the applications of Hamiltonian principle. Also many engineering problems which 
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are formulated by variational calculus can be treated as characteristic formulations of 

the Hamiltonian principle.  

3.2.1. General Definitions  

Consider a dynamical system with a degree of freedom n ,whose position at any time 

t can be described by n independent generalized coordinates, q1(t),…, q2(t). It is 

considered that all physical behavior of the so-called Lagrangian systems is 

completely described by the Lagrangian function O(,, cd, … , c^, cfd, … , cf^).  

Configuration of such dynamical system at two instant time, to and t1 is presented in 

Fig. (3.1). Actual trajectory describes the motion of a given dynamical system which 

joins configurations A and B and satisfies the differential equations of motion.          

                    

Figure 3.1 Definition of variation 

Varied trajectory can be given as follows: 

csp = cp(,) + ocp(,) = cp(,) + tℎp(,)                                                             (3.17) 

where hi(t) represents continuously differentiable arbitrary functions of time and 

δqi(t) represents variations or virtual displacements of the dynamical system. 

Variations at end points equal to zero as it is seen in Fig. (3.1) and given as follows: 

ocp(,v) = ocp(,d) = 0,          T = 1, … , U                                                         (3.18) 

Hamilton’s action integral for the given holonomic dynamical system in the time 

interval of [to, t1] is given in Eq.(3.19).  

 

q 

t 

A 

B 

variation δq(t) 
varied trajectory 

actual  trajectory 
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Hamilton’s principle states that the actual motion takes place on actual trajectory, 

makes the action integral I stationary. 

� = w O(,, cd, … , c^, cfd, … , cf^)�,   xy

xz
                                                                    (#. 
6) 

o� = o w O(,, cd, … , c^, cfd, … , cf^)�,xy

xz
= w oO(,, {, {f )xy

xz
�, = 0                    (#. ��) 

By employing the commutativity property of variational calculus and integrating by 

parts, one can obtain 

o� = | (O
(cfp}

xz

xy + w A (O
(cp − �

�,
(O
(cfpB ocfp�,xy

xz
= 0                                                     (#. �
) 

By applying the boundary conditions given in Eq.(3.18) , Eq. (3.21) yields to Euler-

Lagrangian equations of motion.  

(O
(cp − �

�,
(O
(cfp = 0,    T = 1, … , U                                                                               (#. ��) 

Hamiltonian principle is based on the selection of actual trajectory qi (t) which 

satisfies the boundary conditions given in Eq. (3.18) and along which the functional 

affords an extreme value. It can also possible to express the action integral by means 

of canonical variables. By taking the Legendre transformation of Lagrangian L, 

Hamiltonian action integral can be introduced in the form of 

�Q~^ = w  qpcfpO(,, cd, … , c^, cfd, … , cf^)"�,xy

xz
                                                       (#. �#) 

It can be shown that Hamiltonian principle o�Q~^ = 0 leads to the Hamilton’s 

canonical equation of motion with the use of boundary conditions as follows: 

o�Q~^ = qp |ocp|xz
xy + w �Acfp − (r

(qpB oqp − Aqfp − (r
(cpB ocp� �, = 0xy

xz
              (#. �&) 

cfp = (r
(qp        cfp = − (r

(cp      T = 1, … , U                                                                 (#. �') 
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3.2.2. Constrained problems 

In constrained problems, dynamical system is described by means of independent, 

but restricted by auxiliary conditions, generalized coordinates. This restrictions 

defined on the generalized coordinates are called as constraints. Constraints are 

classified under three groups as isoperimetric constraints, algebraic constraints and 

differential equations constraints. Action integral which is constructed by using 

described constraints is called as augmented functional and represented as Iaug. 

3.2.2.1. Isoperimetric constraints 

Dynamical problem with isoperimetric constraints seeks the extremal of given action 

integral for the class of trajectories for which the auxiliary conditions occur as a set 

of definite integrals which must have specified constant values Ck, ? = 1, … , h as 

follows 

w @�(,, cd, … , c^ , cfd, … , cf^)�,xy

xz
= i�                                                              (#. �*) 

where Ck are given constants. Extremal of isoperimetric variational problems can be 

found by using the method of Lagrangian undetermined multipliers.   

Augmented functional can be defined by accounting for the constraints by 

introducing r unknown constant Lagrangian multipliers λk ,k=1,…,r as follows: 

�~�� = w O~��(,, {, {,fxy

xz
�)�, 

= w  O(,, {, {f ) + S�@�(,, {, {f )"�,xy

xz
                                                             (#. �0) 

3.2.2.2. Algebraic constraints 

Dynamical problem with algebraic constraints seeks the extremal of given action 

integral in the presence of such constraints given below 

-b(,, cd, … , c^) = 0      � = 1, … , ?     ? < U                                                     (3.28) 

where n is the number of degree of freedom of the dynamical system and k is the 

number of algebraic constraints given in the definition of the problem. It can be said 
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that there are k dependent and (n-k) independent generalized coordinates which 

describes the configuration of the dynamical system.  

Extremal of algebraic variational problems can be found by using the method of 

Lagrangian undetermined multipliers by considering the augmented functional in the 

form of 

�~�� = w  O(,, {, {f ) + Sb(,)-b(,, {, {f )"�,xy

xz
                                                         (#. �6) 

3.2.2.3. Differential equations constraints 

Dynamical problem with algebraic constraints seeks the extremal of given action 

integral subject to constraints in the form of differential equation as it can be given as 

follows: 

ℎb(,, cd, … , c^, cfd, … , cf^) = 0      � = 1, … , ?     ? < U                                    (3.30) 

where n is the number of degree of freedom of the dynamical system and k is the 

number of differential equation  constraints given in the definition of the 

problem. It can be said that there are k dependent and (n-k) independent generalized 

coordinates which describes the configuration of the dynamical system.  

Extremal of algebraic variational problems can be found by using the method of 

Lagrangian undetermined multipliers by considering the augmented functional in the 

form of 

�~�� = w  O(,, {, {f ) + Sb(,)ℎb(,, {, {f )"�,xy

xz
                                                        (#. #
) 

3.3. Optimal Control Theory 

Optimal control theory depends of Hamilton’s variational principle and can be 

defined as a mathematical optimization method used for controlling the given system 

and obtaining the extremal solution. This method is mostly constructed by Lev 

Pontryagin and his collaborators and Richard Bellman. 
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3.3.1. General definitions 

The objective of the optimal control theory is to obtain desired extremal solution of a 

given constrained system by determining the control signals that satisfies the 

physical constraints. A problem can be formulated by means of optimal control 

theory with the requirements of (Dirk, 2004) 

- A mathematical description of the process to be controlled 

- A statement of the physical constraints 

- Specification of a performance criterion 

Optimal control problems are generally has a non-linear characteristic and therefore 

cannot be solved analytically. Numerical methods are employed to optimal control 

problems to obtain the solution. There are indirect and direct methods used for 

solving optimal control problems. 

3.3.1.1. Indirect methods 

In the early years of optimal control (between nearly 1950 and 1980) indirect 

methods are commonly used to solve the optimal control problems. An indirect 

method uses calculus of variations to obtain first order optimality conditions, which 

results in a two-point boundary-value problem. More clearly, by taking the derivative 

of Hamiltonian, a boundary value problem which concerns the optimality conditions 

of the given optimal control problem is obtained.  

There is a great disadvantage of indirect methods, since it is generally difficult to 

solve the obtained boundary value problem. Specially for problems with span large 

time intervals and problems with interior point constraints, solution is more difficult. 

A well-known software program which can be used for obtaining the desired solution 

is BNDSCO (Oberle, 1989). 

3.3.1.2. Direct methods 

With the increasing interest on numerical optimal control over the past two decades 

(after 1980s), direct methods are developed to solve the optimal control problems. A 

direct method controls the given system by using an appropriate function 

approximation, e.g. polynomial approximation. Coefficients of the corresponding 
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function approximations are considered as optimization variables and the problem is 

adapted to a non-linear optimization problem. 

Size of the non-linear optimization problem depends on the type of direct methods. 

For instance, for a direct shooting or quasi-linearization method size of the non-linear 

optimization problem is quite small and for a direct collocation method size is quite 

large. There are a lot of well-known software programs which can be used for 

obtaining the desired solution, such as SNOPT (Gill, 2007). Many such programs 

written in FORTRAN and MATLAB exists and commonly used for solving such 

problems.  

3.3.2. Pontryagin’s maximum principle 

Pontryagin’s maximum principle can also be called as Pontryagin’s minimum 

principle. This principle is used in optimal control theory to find best possible 

solution for a given dynamical system in the presence of constraints (Vujanovic, 

2004). Here, best solution means the optimal solution of the system. The content of 

optimal solution varies in accordance with the aim of the problem. For instance, a 

benefit function is tried to be maximized but a cost function is tried to be minimized.  

In the previous steps of this study, Pontryagin’s maximum principle is used to 

determine the extremals of an action integral. Therefore, a special case of 

Pontryagin’s maximum principle is considered in this section which is compatible 

with the optimal control problem considered in this study. Note that, in the previous 

section optimal distribution of cross-sectional area is tried to be determined with the 

criterion of minimum volume. Since the problem depends on minimization 

phenomena, this principle must be referred as Pontryagin’s minimum principle. 

Consider an action integral which is in the form of 

� = w O(,, cd, … , c^, cfd, … , cf^)�,xy

xz
                                                                       (#. #�) 

where the time interval is specified as [to,t1]. Assume that the initial and terminal 

configurations A and B are defined as follows: 

cp(, = ,�) = 4p            cp(, = ,d) = Vp                                                          (3.33) 
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where Ai and Bi are constants. Hamilton’s principle o� = 0 can be reformulated by 

considering the functional  

� � = w O(,, cd, … , c^, �d, … , �^)�,xy

xz
                                                                       (#. #&) 

subject to the differential constraints 

cfd = �d ,    cf� = �� , …,   cf^ = �^                                                                    (3.35) 

Differential constraints of the system can be written in accordance with Eq. (3.30) as 

follows: 

ℎp = �p −  cfp = 0                                                                                             (3.36) 

This functional can be called as criterion of optimality, objective functional or 

performance measure. According to optimal control theory generalized coordinates qi 

are called as state variables and ui are called as control variables or costate 

variables. By substituting Eq. (3.36) into Eq. (3.31), augmented functional can be 

obtained as follows 

� �~�� = w  O(,, cd, … , c�, �d, … , �^) + Sp(�p − cfp)"�,xy

xz
                                    (#. #0) 

By taking the first variation of Eq. (3.37) , using commutativity rule of calculus of 

variations and applying the partial integration one can obtain  

o� �~�� = −Sp(,)|ocp|xz
xy  + w  xy

xz
A (O

(�p + SpB o�p     

 + A (O
(�p + SfpB ocp + oSp(�p − cfp)"�, = 0                        (#. #1) 

By considering that the variations at the end points equal to zero as it is given in Eq. 

(3.18) and by applying the extremality condition o�~�� = 0, the following system of 

equations are obtained as follows: 

Sp = − (O
(�p         Sfp = − (O

(cp                                                                                       (#. #6) 

Augmented action integral can be transformed appropriately to generate Hamiltonian 

canonical differential equations.  
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Hamiltonian function can be introduced as follows: 

r�(,, {, �, �) = O(,, {, �) + Sp�p                                                                      (3.40) 

Augmented action integral can be constructed by substituting Eq. (3.40) into Eq. 

(3.34) as follows: 

� �~�� = w  r�(,, {, �, �) − Spcfp"�,xy

xz
                                                                       (#. &
) 

By taking the first variation of Eq. (3.41) and applying the extremality 

condition  o�~�� = 0, canonical equations are obtained in the form of system of 

equations as follows: 

Sfp = − (r�
(cp                cf p = (r�

(Sp                                                                                    (#. &�) 
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4. DIFFERENTIAL TRANSFORM METHOD 

In this section, differential transform method is mentioned. After the general 

description of differential transform is given; one-dimensional, two-dimensional and 

finally n-dimensional differential transform are presented. General properties of 

differential transform are also expressed. 

4.1. Description of Differential Transform 

Differential transform method is a semi analytical-numerical computational 

technique which is used to solve ordinary and partial differential equations. This 

method uses the form of polynomials which are sufficiently differentiable in 

approximating to the exact solution. Differential transform method provides iterative 

procedures to obtain the high-order Taylor series. In contrast, the traditional Taylor 

series method requires symbolic computation of the necessary derivatives and is 

expensive for large orders. Differential transform method, which is capable of 

solving fractional differential equations, integral and integro-differential equations is 

introduced by Zhou in 1986 with the application to electrical circuits. (Zhou,1986) 

4.2. One-Dimensional Differential Transform 

If function of ( )u x can be differentiated continuously in the domain X with respect to 

variable x, it can be said that ( )u x  is an analytic function.  

( )
( , )

k

k

u x
x k

x
ϕ

∂
=

∂
         k K∀ ∈                                                                            (4.1) 

For ix x=  then ( , ) ( , )ix k x kϕ ϕ= , where k belongs to the set of non-negative 

integers, denoted as K domain. Therefore Eq. (4.1) can be written as  

( )
( ) ( )

i

k

i k

x x

u x
U k x k

x
ϕ

=

 ∂
= =  

∂ 
      k K∀ ∈                                                           (4.2) 

where ( )U k is called the spectrum of ( )u x .  
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If ( )u x  can be expressed by Taylor series then ( )u x  can be represented as  

0

( )
( ) ( )

!

k

i

k

x x
u x U k

k

∞

=

−
=∑                                                                                       (4.3) 

In Eq. (4.3), ( )u x is the inverse transformation of ( )U k . If ( )U k  is defined as  

0

( ) ( )
( ) ( )

k

k

x x

q x u x
U k M k

x
=

 ∂
=  

∂ 
     ,   where   0,1, 2,...,k = ∞                             (4.4) 

then the function ( )u x  can be described as  

0

0

( )1 ( )
( )

( ) ! ( )

k

k

x x U k
u x

q x k M k

∞

=

−
= ∑                                                                            (4.5) 

where ( )M k is called the weighting factor ( ( ) 0M k ≠ ) and ( )q x  is regardless as a 

kernel corresponding to ( )u x ( ( ) 0q x ≠ ). If ( ) 1M k =  and ( ) 1q x =  then Eqs. (4.2) 

and (4.4) are equivalent. As a result of this, Eq. (4.3) can be treated as a special case 

of Eq. (4.5).  

With the use of definitions above, one dimensional differential transform of the kth 

derivative of a function ( )u x around xo and the differential inverse transformation 

can be defined as (Abdel, 2002) 

1 ( )
( )

!
o

k

k

x x

d u x
U k

k dx
=

 
=  

 
                                                                                      (4.6) 

0

( ) ( )( )
n

k

o

k

u x U k x x
=

= −∑                                                                                      (4.7) 

where ( )u x  is the original function and ( )U k  is the transformed function. Here 

/k kd dx  means the kth derivative of the function with respect to x. 

By combining Eqs. (4.6) and (4.7), original function can be expressed by a finite 

series as follows: 

�(�) = n (� − ��)�
?!

^

��v
|����(�)

��� ��
����

                                                                      (&. 1) 
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which means that 
1

(( ) / !)( ( ) / )
o

k k k

o x x

k n

x x k d u x dx
∞

=

= +

−∑ is negligibly small. Number of 

terms which are taken into consideration in the solution process (n in Eq. (4.8)) 

depends on the convergence decision of the solution. 

These definitions show that the Differential Transform Method is derived from 

Taylor series expansion. By using Eqs. (4.6) and (4.7), some basic properties of one-

dimensional differential transform can be represented as follows: 

( ) ( ) ( )u x f x g x= m                      ( ) ( ) ( )U k F k G k= m                               (4.9) 

( ) ( )u x f xβ=                             ( ) ( )U k F kβ=                                       (4.10) 

( ) ( ) ( )u x f x g x=                         
1

1 1
0

( ) ( ) ( )
k

k

U k F k G k k
=

= −∑                     (4.11) 

( )
( )

m

m

d f t
u x

dx
=                            

( )!
( ) ( )

!

m k
U k F k m

k

+
= +                      (4.12) 

( ) mu x x=                                    
1

( ) ( )
0

U k k mδ


= − = 


  
k m

k m

=

≠
              (4.13) 

where F(k) and G(k) are differential transforms of functions u(x) and v(x), 

respectively and β is a constant. 

4.2.1. Differential transform of boundary conditions 

As the original functions described in Eqs. (4.9)-(4.14), boundary conditions of the 

problem which is desired to be solved can also be transformed as follows: 

At point 0x = ,  

(0) 0u =                         (0) 0U =                                                                      (4.14) 

0

( )
0

m

m

x

d u x

dx
=

=               ( ) 0U m =                                                                     (4.15) 

At point x=1, 

(1) 0u =              
0

( ) 0
k

U k
∞

=

=∑                                                                   (4.16) 
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1

( )
0

x

du x

dx
=

=                
0

( ) 0
k

kU k
∞

=

=∑                                                     (4.17) 

2

2

1

( )
0

x

d u x

dx
=

=              
0

( 1) ( ) 0
k

k k U k
∞

=

− =∑                                            (4.18) 

 
1

( )
0

m

m

x

d u x

dx
=

=             
0

( 1) ( ( 1)) ( ) 0
k

k k k m U k
∞

=

− − − =∑ L                    (4.19) 

4.3. Two-Dimensional Differential Transform  

Two-dimensional differential transform is used to obtain solutions of partial 

differential equations. By using two-dimensional differential transform technique, a 

closed form series solution or an approximate solution of partial differential 

equations can be obtained.  

Two-dimensional differential transform of function ( , )w x y  around xo and yo can be 

defined as follows: 

1
( , ) ( , )

! ! o

o

r s

r s
x x

y y

W r s w x y
r s x y

+

=

=

 ∂
=  

∂ ∂ 
                                                                  (4.20) 

where ( , )w x y  is the original function and ( , )W r s  is the transformed function. 

Differential inverse transform of ( , )W r s is as follows: 

0 0

( , ) ( , )( ) ( )r s

o o

k k

w x y W r s x x y y
∞ ∞

= =

= − −∑∑                                                          (4.21) 

By combining Eqs. (4.20) and (4.21), original function can be expressed as 

0 0

( ) ( )
( , ) ( , )

! ! o

o

r s r s

o o

r s
x xk k
y y

x x y y
w x y w x y

r s x y

+∞ ∞

=
= =

=

 − − ∂
=  

∂ ∂ 
∑∑                                    (4.22) 

Eq. (4.22) signifies that the concept of two-dimensional differential transform is also 

derived from two-dimensional Taylor series expansion. In real applications, original 

function ( , )w x y is expressed by a finite series and can be written as follows: 

 
0 0

( ) ( )
( , ) ( , )

! ! o

o

r s r sm n
o o

r s
x xk k
y y

x x y y
w x y w x y

r s x y

+

=
= =

=

 − − ∂
=  

∂ ∂ 
∑∑                                   (4.23) 
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This means  

1 1

( ) ( )
( , ) ( , )

! ! o

o

r s r s

o o

r s
x xk m k n
y y

x x y y
w x y w x y

r s x y

+∞ ∞

=
= + = +

=

 − − ∂
=  

∂ ∂ 
∑ ∑                                (4.24) 

is negligibly small. By using Eqs. (4.20) and (4.21), some basic properties of two-

dimensional differential transform can be represented as follows: 

( , ) ( , ) ( , )w x y f x y g x y= m         ( , ) ( , ) ( , )W r s F r s G r s= m                               (4.25) 

( , ) ( , )w x y f x yβ=                    ( , ) ( , )W r s F r sβ=                                           (4.26) 

( , ) ( , ) ( , )w x y f x y g x y=           
1 1

1 1 1 1
0 0

( , ) ( , ) ( , )
r s

r s

W r s F r s s G r r s
= =

= − −∑∑            (4.27) 

( , )
( , )

h

h

f x y
w x y

x y

+
∂

=
∂ ∂

l

l
              ( , ) ( 1)( 2) ( )W r s r r r h= + + +L     

( 1)( 2) ( ) ( , )s s s W r h s× + + + + +L l l           (4.28) 

( , ) m nw x y x y=                        ( , ) ( , ) ( ) ( )W r s r m s n r m s nδ δ δ= − − = − −       (4.29) 

where  

1
( )

0
r mδ


− = 


  

r m

r m

=

≠
         and     

1
( )

0
s nδ


− = 


  

s n

s n

=

≠
                                   (4.30) 

4.4. n-Dimensional Differential Transformation 

Let 1 2( , , , )nx x x x= K  be a vector of n variable and 1 2( , , , )nk k k k= K  be a vector of n 

nonnegative integers then n-dimensional transform of function 1 2( , , , )nw x x xK  about 

point 0x =  is as follows: 

1 2

1 21 2 1 2

1 2 1 2 (0,0, ,0)

1
( , , , ) ( , , , )

! ! !

n

n

k k k

n nkk k

n n

W k k k w x x x
k k k x x x

+ + + ∂
=  

∂ ∂ ∂ 

L

K

K K
L L

            (4.31) 

where 1 2( ) ( , , , )nw x w x x x= K  is the original function and 1 2( ) ( , , , )nW k W k k k= K  is 

the transformed function.  
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Differential inverse transform of ( )W k can be defined as follows: 

1 2

1 2 1 2
0 0 0 1

( , , , ) ( , , , ) i

n

n
k

n n i

k k k i

w x x x W k k k x
∞ ∞ ∞

= = = =

=∑∑ ∑ ∏K L K                                        (4.32) 

By substituting Eq. (4.31) into Eq. (4.32), original function can be obtained as 

1 2

1
1 2

0 0 0 1 2

( , , , )
! ! !

i

n

n
k

i

i
n

k k k n

x

w x x x
k k k

∞ ∞ ∞

=

= = =

=

∏
∑∑ ∑K L

L
 

1 2

1 2 1 2

1 2 (0,0, ,0)

( , , , )
n

n

k k k

nkk k

n

w x x x
x x x

+ + + ∂
×  

∂ ∂ ∂ 

L

K

K
L

                            (4.33) 

In real applications, original function 1 2( ) ( , , , )nw x w x x x= K  is expressed by a finite 

series and can be written as follows: 

1 2

1 2

1
1 2

0 0 0 1 2

( , , , )
! ! !

i

n

n

n
k

mm m i

i
n

k k k n

x

w x x x
k k k

=

= = =

=

∏
∑∑ ∑K L

L
 

1 2

1 2 1 2

1 2 (0,0, ,0)

( , , , )
n

n

k k k

nkk k

n

w x x x
x x x

+ + + ∂
×  

∂ ∂ ∂ 

L

K

K
L

                       (4.34) 

By using Eqs. (4.31) and (4.32), some basic properties of n-dimensional differential 

transform can be represented as follows: 

1 2 1 2 1 2( , , , ) ( , , , ) ( , , , )n n nw x x x u x x x v x x x= ±K K K  

1 2 1 2 1 2( , , , ) ( , , , ) ( , , , )n n nW k k k U k k k V k k k= ±K K K                           (4.35) 

1 2 1 2( , , , ) ( , , , )n nw x x x u x x xβ= ⋅K K  

1 2 1 2( , , , ) ( , , , )n nW k k k U k k kβ= ⋅K K                                                   (4.36) 

1

1

1 2
1 2

1

( , , , )
( , , , )

n

n

r r

n
n rr

n

u x x x
w x x x

x x

+ +
∂

=
∂ ∂

L
K

K
L

 

1 1
1 2 1 1

1

( )! ( )!
( , , , ) ( , , )

! !
n n

n n n

n

k r k r
W k k k U k r k r

k k

+ +
= + +

L
K K

L                   
(4.37) 
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1 2

1 2 1 2( , , , ) nmm m

n n
w x x x x x x=K L  

1 2 1 1 2 2
1

( , , , ) ( , , , ) ( )
n

n n n i i

i

W k k k k m k m k m k mδ δ
=

= − − − = −∏K K       (4.38) 
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5. OPTIMAL SHAPE OF COMPRESSED RODS 

In this section, optimal distribution of cross-sectional area of compressed rods is 

obtained under the criterion of minimum volume. After the volume of the rod with 

optimal cross-section is evaluated, it is compared to the volume of a uniform rod 

which is stable under the same load value to determine the efficiency of the rod with 

optimal cross-section.  

When the analysis is completed, it is noticed that the optimal compressed rod has 

zero cross-sectional areas at both ends. However, this cannot be an acceptable 

configuration in physical sense and for engineering applications. Therefore, 

governing equations are rearranged and a minimum cross-sectional area is defined in 

order to overcome the problem of having zero cross-sectional area. 

Note that, the problem of determining the optimal shape of compressed rods is also 

known as Lagrange’s problem in open literature. 

5.1. Governing Equation for the Problem 

Consider a rod with length L and subjected to concentrated forces at both ends. Then 

for such a centrally compressed rod with inextensible axis, equilibrium equation 

without influence of shear is as follows (Rao, 2004) 

2

2
0

u P
u

x EI

∂
+ =

∂
                                                                                                   (5.1) 

where E is modulus of elasticity, I is area moment of inertia, u(x) is displacement 

field.  

 

Figure 5.1 Simply Supported Compressed Rod 

P P 
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Since the optimal shape analysis concerns the determination of the cross-sectional 

area distribution, rod is taken as having variable cross-section. As a result of this 

assumption, second moment of inertia I and volume W can be expressed in terms of 

cross-sectional area A(x) as follows: 

2( ) ( )I x A xα=            
0

( )
L

W A x dx= ∫                                                                    (5.2) 

Table 5.1 : Shape factors for cross-sections with regular geometries. 

Description Figure 
Area 

moment of 
inertia 

Area α 

 
 

Circular 
 
  

4

4
I r

π
=  2A rπ=  

1

4π
 

 
Square 

 
 

 

41

12
I b=  2A b=  

1

12
 

 
Triangular 

 

 

43

32
I b=  23

4
A b=  

3

6
 

 
 

Hexagonal 
 
 

 

45 3

16
I b=  23 3

2
A b=  

5 3

108
 

 

α is a constant for regular geometries such as circular, triangular, etc., since cross-

sectional area and second moment of inertia depend on only one parameter for this 

type of geometries. For regular geometries see Table 5.1. For irregular geometries, α 

also depends on the parameters on which cross-sectional area and second moment of 

inertia depend. For regular geometries see Table 5.2. Note that, α is a dimensionless 

quantity for either regular or irregular geometries. 

 
 

b 

b 

r 

b 



Table 5.2 : Shape factors for cross
 

Description 

 
 

Elliptical 
 
 
 

Rectangular 
 
 

 

By substituting (5.2) into (5.1), 

2
0

P
u u

E Aα
′′ + =             

where ( ) ( ) /d dx′⋅ = ⋅ .  Boundary conditions for the simply supported rod can be 

expressed as: 

(0) 0u =         ( ) 0u L =              

For the sake of simplicity, some

u
u

L
=       

x

L
ξ =       a =

With the use of preceding dimensionless quantities, (5.3) can be written in the form 

of: 

2
0

( )
u u

a

λ

ξ
+ =&&                                                         

(0) 0u =         (1) 0u =             

where ( ) ( ) /d dξ⋅ = ⋅
�

. 

 

 

 

41 

Shape factors for cross-sections with irregular geometries.

Figure 
Area 

moment 
of inertia 

Area 

 

3

4
I ab

π
=  A abπ=  

 

31

12
I bh=  A bh=  

By substituting (5.2) into (5.1),  

                                                                                                 

Boundary conditions for the simply supported rod can be 

                                                                                        

For the sake of simplicity, some dimensionless quantities can be introduced as:

2

A
a

L
=       2

P

E L
λ

α
=      3

W
w

L
=                                 

use of preceding dimensionless quantities, (5.3) can be written in the form 

                                                                                        

                                                                                        

sections with irregular geometries. 

α 

1

4

b

aπ
  

1

12

h

b
 

                                  (5.3) 

Boundary conditions for the simply supported rod can be 

                            (5.4) 

dimensionless quantities can be introduced as: 

                       (5.5) 

use of preceding dimensionless quantities, (5.3) can be written in the form 

                                          (5.6) 

                              (5.7) 
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5.2. Optimization Problem 

Optimization problem can be defined as the determination of a(ξ) in Eq. (5.6) which 

minimizes volume of the rod by using Pontryagin’s maximum principle. For this 

problem; this principle is based on minimization of Hamiltonian function, since the 

aim is to minimize volume within the stability limits. To construct Hamiltonian 

function it is required to define state and costate variables. State variables are 

determined by separating the governing equations into a system of differential 

equations.  

The volume which is aimed to be minimized can be given in the dimensionless form 

as follows: 

1

0

( )w a dξ ξ= ∫                                                                                                       (5.8) 

Eqs.(5.6) and (5.7) can be written by means of state variables q1 and q2 as follows: 

1 2q q=&             2 12 ( )
q q

a

λ

ξ
= −&                                                                             (5.9) 

1 1(0) (1) 0q q= =                                                                                                 (5.10) 

 

where q1(ξ) denotes ( )u ξ  in the original differential equation. Costate variables p1 

and p2 have to satisfy the following system of differential equations 

1 2 1 2
1

1

( , , , , , )H a p p q q
p

q

ξ∂
= −

∂
&       

(5.11) 

1 2 1 2
2

2

( , , , , , )H a p p q q
p

q

ξ∂
= −

∂
&  

where H(a,p1,p2,q1,q2,ξ) represents Hamiltonian function which can be constructed 

by using Eq.(5.8) and corresponding variables defined above (See Section 3.3.2). 

1 2 2 12
( )

( )
H a p q p q

a

λ
ξ

ξ
= + −                                                                            (5.12) 

After constructing Hamiltonian function, it is necessary to control whether Eq.(5.11) 

is satisfied.  
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By substituting Eq.(5.12) into Eq.(5.11), relation between state and costate variables 

can be obtained as 

1 2( ) ( )p qξ ξ=       2 1( ) ( )p qξ ξ= −                                                                      (5.13)  

It is possible to obtain different relations between state and costate variables, but this 

does not change the conclusion, only affects the solution procedure. 

Optimal cross-sectional area function is such a(ξ) which minimizes Hamiltonian 

function. Therefore, Eq.(5.12) is differentiated with respect to a(ξ) to determine the 

optimal shape where H is minimum. 

2 13

2
1 0

H
p q

a a

λ∂
= + =

∂
                                                                                       (5.14) 

By solving Eqs. (5.13) and (5.14), a(ξ) is obtained in terms of q1(ξ). By replacing 

q1(ξ) to ( )u ξ , optimal cross-sectional area function is found in the form of 

2 1/3( ) (2 ( ))a uξ λ ξ=                                                                                           (5.15) 

Substituting Eq.(5.15) into Eqs.(5.6) and (5.7) gives the nonlinear differential 

equation system as 

1/ 3 1/ 3( ) 0
4

u u
λ −

+ =&&                                                                                             (5.16) 

(0) (1) 0u u= =                                                                                                  (5.17) 

5.3. Solution of Governing System 

In the solution step, Differential Transform Method (DTM) is applied to the system. 

To simplify the application of differential transform method, governing equation can 

be written in the form of  

3 3( )u u λ=&&                                                                                                         (5.18) 

where 1/ 3( / 4)λ λ= .  

Differential transform of Eq. (5.18) around ξ0=0 is 

3 2

3 2 1

1 2 1 2 1 2 1 3 2 3 2 3 2
0 0 0

( )( 1 )( 2 ) ( 2 )( 1 )( 2 ) ( 2 )
k kk

k k k

U k k k k k U k k k k k k U k k
= = =

+ − + − + − + − + − + −∑∑∑

                            3
3 3 3( 1 )( 2 ) ( 2 ) ( )k k k k U k k kλ δ× + − + − + − = −         (5.19) 



44 

 

 
where U(k) represents the differential transform of ( )u ξ .  

Differential transform of boundary conditions (5.17) are respectively leads to 

(0) 0U =         
0

( ) 0
n

k

U k
=

=∑                                                                                (5.20) 

Insert (1)U b= , where b is a constant which will be evaluated at the end of solution 

with the use of Eq.(5.20).  

At k=1 with substituting U(0) and U(1) into Eq.(5.19) 

(2) 0U =                                                                                                            (5.21) 

At k=2 with substituting (5.21) into (5.22), the result of (3) 0U =  is obtained. 

Following the same procedure, n terms of the series is calculated as 

(3) (4) ( ) 0U U U n= = = =L  

By using the differential transform of second boundary condition, which is given in 

(3.19), missed boundary condition b is obtained as b=0.  

Therefore, it can be said that Differential Transform Method gives the trivial solution 

of the system. To obtain the non-trivial solution of the system (5.16)-(5.17), it can be 

useful to analyze the non-linear differential equation analytically.  

Differential equation which is aimed to be analyzed can be written in the form of  

1/3 0x xλ
−

+ =&&                                                                                                    (5.22) 

with the replacement of ( ) ( )u xξ ξ= . Eq. (5.22) can be written in the form of 

2 1/ 31
( ) 0

2

d dx
x

dx d
λ

ξ

−
+ =                                                                                     (5.23) 

By integrating Eq. (5.23) 

2 2/ 3
1

2
( )

2 / 3

dx
x C

d

λ

ξ
= − +                                                                                     (5.24) 

2 /313
3

Cdx
x

d
λ

ξ λ
= −                                                                                       (5.25) 
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To get the solution of Eq.(5.25), a transformation, which is in the following form, 

can be used. 

1/ 3 1 sin
3

C
x θ

λ
=                                                                                                (5.26) 

2/ 313 cos
3

Cdx d
x

d d

θ
θ

ξ λ ξ
=                                                                                  (5.27) 

By substituting Eqs.(5.26) and (5.27) into Eq.(5.28),  

21 sin 3
C

d dθ θ λ ξ
λ

=                                                                                       (5.28) 

Eq.(5.28) is integrated by using the trigonometric relation of 2sin (1 cos 2 ) / 2θ θ= −  

to obtain a solution to the system. Therefore, the solution is in the form of 

1
2

sin 2
( ) 3

2 2

C
C

θ
θ λξ

λ
− = +                                                                            (5.29) 

5.4. Obtaining the Integration Constants 

Boundary conditions are applied to Eq. (5.29) to get the constants of integration C1 

and C2.  

( 0) 0x ξ = =    sin 0θ =   nθ π=   0,1,n = K                                                    (5.30) 

( 1) 0x ξ = =    sin 0θ =   nθ π=   0,1,n = K                                                     (5.31) 

Applying first boundary condition (5.30) to Eq. (5.29) gives 

2 1
2

n
C C

π

λ
=                     0,1,n = K                                                                    (5.32) 

Applying second boundary condition (5.31) to Eq. (5.29) gives 

2 1 3
2

n
C C

π
λ

λ
= −          0,1,n = K                                                                   (5.33) 

The condition of n=0 gives trivial solution to the problem.  
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Nontrivial solution can be obtained for the condition of n=0 and C2=0 as follows: 

3/ 2

1 2 3C
λ

π
=                                                                                                   (5.34) 

5.5. Results for Centrally Compressed Rod 

5.5.1. Optimal distribution of cross-sectional area 

Taking the inverse transform of Eq. (5.35) by using Eq.(5.26) gives the solution of 

the function x(ξ). 

1/ 3 1/ 3 2/33 3 3
arcsin( ) 1

4 4 4
x x xπ π π πξ

λ λ λ
− − =                                  (5.35) 

For a given critical load λ , distribution of x(ξ) can be obtained from Eq. (5.35). By 

changing x(ξ) to ( )u ξ , optimal distribution of cross-sectional area which is a 

function of ( )u ξ , as it is described in Eq.(3.15), can be obtained for any given λ . 

Eq. (5.36) gives optimal distribution of cross-sectional area.  

1/ 2 1/ 23 3 3
arcsin( ) 1

4 4 4
a a a

π π π
πξ

λ λ λ λ λ λ
− − =                                 (5.36) 

Fig.(5.2) shows the optimal distribution of cross-sectional area, corresponding 

moment distribution and optimal distribution of radius for circular cross-sectional 

rods for 2
λ π=   

For the rod with circular cross-sectional area with the representation of 

( ) ( ) / ( ) /r r L aξ ξ ξ π= = . ( )r ξ  in Fig.(5.2) denotes the dimensionless radius of the 

rod. 

Cross-sectional area distribution cannot be obtained as a smooth function of rod-

length. At some selected points; dimensionless displacement, dimensionless cross-

sectional area and dimensionless radius of the rod is evaluated and a curve is fitted as 

it is seen in Fig. (5.2). 
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Figure 5.2 Optimal shape distribution of a centrally compressed rod 

5.5.2. Volume of optimal rod 

By using the obtained cross-sectional area distribution volume of the optimal 

compressed rod can be evaluated by using Eq. (5.8) as optimal
w =  

Alternate to this evaluation, volume of the optimal rod can be calculated by using the 

fact that the optimal distribution of the cross-sectional area has a symmetrical 

attribute and therefore has a maximum at mid-point. This leads to the conclusion of 

that first derivative of the obtained cross-sectional area distribution must be equal to 

zero at mid-point. This conclusion can be represented as follows: 

0.5

0
da

d
ξ

ξ
=

=                                                                                                        (5.37) 

By differentiating Eq. (5.36) with respect to ξ gives  

2

3 1/ 2
( ) 1 ( )

( )
a a

a

π
ξ γ ξ

γ ξ
= −&        where        

3

4

π
γ

λ λ
=                             (5.38) 

Applying the condition given in Eq. (5.37) leads to 

21 ( 0.5) 0aγ ξ− = =                                                                                           (5.39) 
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3
2

2

16

3
oa

λ

π
=                                                                                                        (5.40) 

where ao is the mid-point cross-sectional area. By replacing 
1/ 3( / 4)λ λ=   

1 4

3o
a

λ

π
=                                                                                                      (5.41) 

Eq. (5.8) can be written with the property of symmetrical distribution of cross-

sectional area as follows: 

1/ 2

0

2 ( )w a dξ ξ= ∫                                                                                                  (5.42) 

Eq. (5.38) can be written in the form of 

3 1/ 2

2

( )

1 ( )

a
d da

a

γ ξ
ξ

π γ ξ
=

−
                                                                                      (5.43) 

Substituting Eq.(5.43) into Eq. (5.42) gives 

3 3/ 2

2
0

2

1

oa
a

w da
a

γ

π γ
=

−
∫                                                                                      (5.44) 

After integrating Eq. (5.44) and using Eq. (5.41) gives the volume of the optimal rod 

as follows: 

1 3

4optimalw
λ

π
=                                                                                                (5.45) 

For given λ volume of the optimal rod can be found by using Eq. (5.45). For 
2

λ π=  

volume of the rod with optimal shape leads to 0.866025optimalw = . 

5.6. Comparison of results with a uniform rod  

To determine the efficiency of the optimal rod, deformation analysis of the rod with 

constant cross-sectional area must be carried out.  
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By considering cross-sectional area a is a constant, solution of the governing system 

given in Eqs. (5.6) and (5.7) can be obtained as follows: 

2 2
( ) sin( ) cos( )u A B

a a

λ λ
ξ ξ ξ= +                                                                  (5.46) 

By applying the boundary conditions, B=0 is obtained and the eigenvalues of the 

system are as follows: 

S^ = U�\�l�           U = 1,2, . .                                                                                 ('. &0) 

Critical load for centrally compressed rod is the least eigenvalue of the system. 

Therefore, by taking n=1 in the Eq. (5.47), critical load of the system can be given as 

follows 

SQR = \�l�           U = 1,2, . .                                                                                     ('. &1) 

5.6.1. Comparison of volume 

For uniform rod w a=  from Eq. (5.8), therefore volume of a centrally compressed 

rod which is stable under the given critical load can be obtained as follows:  

tan

1
cons tw λ

π
=                                                                                                 (5.49) 

For a uniform rod, volume of the column is evaluated as tan 1cons tw =  for the given 

load 2
λ π= . This means volume saving of optimal rod with respect to uniform rod 

leads to 13.4% for the given load. 

For given load, relation between volumes of optimal and uniform rods is 

tan

3

4optimal cons tw w=                                                                                           (5.50) 

From Eq. (5.50) it can be seen that the ratio between the volumes of optimal rod and 

uniform rod does not depend on the  given critical load value. It can be said that, for 

an arbitrary critical load, volume saving of optimal rod with respect to uniform load 

always equals to 13.4%.  
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5.6.2. Comparison of critical loads 

Another comparison between optimal rod and uniform rod can be made through the 

dimensionless load which will be carried by each rod. For a given volume, amount of 

critical loads are evaluated for each rod.  

For this comparison, Eq. (5.45) can be rearranged as follows to obtain the critical 

load which simply supported compressed rod with optimal distribution of cross-

sectional area can carry for a given volume. 

2 24

3optimal wλ π=                                                                                                 (5.51) 

Eq. (5.49) can also be written in the form of  

2 2
tancons t wλ π=                                                                                                   (5.52) 

For a given volume of 1w = , optimal rod can carry a load of 13.1595
optimal

λ =  from 

Eq. (5.51) and uniform can carry a load of tan 9.8696cons tλ =  from Eq. (5.52). This 

means optimal rod carries 33.3% mucher than that of carried by constant cross-

sectional area. 

For given volume, relation between critical load which can be carried by optimal and 

constant cross-sectional rods can be given as follows: 

tan

4

3
optimal cons t

λ λ=                                                                                              (5.53) 

From Eq. (5.53) it can be seen that the ratio between the critical loads of optimal rod 

and uniform rod does not depend on the  given volume. It can be said that, for an 

arbitrary volume, critical load saving of optimal rod with respect to uniform load 

always equals to 33.3%.  

5.7. Further Considerations – Rearranged Compressed Rod Problem 

It can be seen from Fig. (5.2) that the optimal compressed rod has zero cross-

sectional area at end points. But this is not an acceptable configuration for 

engineering practice. Therefore, problem can be modeled by using material limits of 

the rod. By using limits of given material of which compressed rod is composed, the 

cross-sectional area at end points can be defined as a condition of the problem.  
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5.7.1. Rearranging governing equations 

Eq. (5.16) can be constructed by means of optimal distribution of cross-sectional area 

a(ξ) which is given in Eq. (5.15). Eq. (5.15) can be written as follows: 

3/ 2 ( )
( )

2

a
u

ξ
ξ

λ
=                                                                                                   (5.54) 

By differentiating Eq. (5.54) two times and substituting into Eq. (5.16), governing 

equation can be obtained as follows: 

21 2
0

2 3
aa a λ+ + =&& &                                                                                            (5.55) 

5.7.2. Defining end point cross-sectional areas 

Boundary conditions of the problem can be defined by using the minimal cross-

sectional area that is allowed by material limits. In other words, for every rod-length

iξ , optimal cross-section of the column must satisfy the condition of  

( )i i oa a aξ ξ= = ≥                                                                                             (5.56) 

where ao is a constant given in the definition of the problem and denotes the 

allowable minimum cross-sectional area.  

End point cross-sectional area, which is decided to be defined as a condition of the 

problem (See Eq. (5.56)), is the minimum cross-sectional area allowed by material 

limits. For a compressive loading, by ignoring the bending effect, compressive stress 

can be found as follows: 

P

A
σ =                                                                                                                (5.57) 

In the dimensionless form it can be written as follows: 

a

λ
σ =                                                                                                                (5.58) 

where /( )Eσ σ α=  is the dimensionless compressive stress. For a material, 

compressive strength is known and by using this limit minimum cross-sectional area 

can be determined by using the condition of lim itσ σ≤ .  
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By substituting this condition  into the condition given in Eq. (5.58), allowable 

minimum cross-sectional area can be obtained as follows: 

l� = S
�s�p�px                                                                                                                   ('. '6) 

By substituting Eq. (5.59) into (5.56), optimal distribution of cross-sectional are is 

limited with the use of material limits and applied force as follows: 

lim it

a
λ

σ
≥                                                                                                           (5.60) 

By using given limitation on the minimum cross-sectional area, boundary conditions 

of the problem can be defined as follows: 

(0) (1) oa a a= =                                                                                                 (5.61) 

5.7.3. Solution of governing system 

In the solution step, Differential Transform Method (DTM) is applied to the 

governing system given in Eqs. (5.55) and (5.61).  

Differential transform of Eq. (5.55) around ξ0=0 is 

1

1 1 1 1
0

( 1)( 2) ( 2) ( )
k

k

k k A k A k k
=

+ + + −∑  

1

1 1 1 1
0

1 2
( 1) ( 1)( 1) ( 1) ( ) 0

2 3

k

k

k A k k k A k k kλδ
=

+ + + − + − + + =∑
           

    (5.62) 

where A(k) represents the differential transform of ( )a ξ . Differential transform of 

boundary conditions (5.61) are respectively leads to 

(0) oA a=         
0

( )
n

o

k

A k a
=

=∑                                                                              (5.63) 

Insert (1)A b= , where b is a constant which will be evaluated at the end of solution 

with the use of Eq.(5.63).  

At k=1 with substituting A(0) and A(1) into Eq.(5.62) 

23 4
(2)

12 o

b
A

a

λ+
= −                                                                                             (5.64) 
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At k=2 with additionally substituting (5.64) into (5.62) 

3

2

3 4 )
(3)

18 o

b b
A

a

λ+
=                                                                                             (5.65) 

By following the same procedure, the other terms of the series can be evaluated as 

follows: 

4 2 2

3

63 96 16
(4)

432 o

b b
A

a

λ λ+ +
= −                                                                           (5.66) 

5 3 2

4

315 552 176
(5)

2160 o

b b b
A

a

λ λ+ +
=                                                                      (5.67) 

6 4 2 2 3

5

12285 24516 11376 704
(6)

77760 o

b b b
A

a

λ λ λ+ + +
= −                                        (5.68) 

         M  

         M  

By substituting the terms A(0) to A(n) into second boundary condition given in Eq. 

(5.63), b can be found for given end point cross-sectional area ao and critical load 

value λ.  

According to one dimensional differential transform method (See Section 4.2), 

inverse transform can be obtained as having the following form 

0

( ) ( )
n

k

k

a A kξ ξ
=

=∑                                                                                              (5.69) 

After missed boundary condition b is found, all terms of the series can be obtained 

for a given load and optimal distribution of cross-sectional area can be determined by 

using Eq. (5.69).  

5.7.4. Results for rearranged compressed rod problem 

Results for this problem is given for 1λ =  and for a material with a dimensionless 

compressive strength of lim 0.2itσ = . For these given values of dimensionless critical 

load and compressive strength of the material, minimum cross-sectionl area that is 

allowed can be found by using Eq. (5.59) as 5oa = . 
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5.7.4.1. Optimal distribution of cross-sectional area  

For 1λ = , lim 0.2itσ =  and 5oa = , the terms of the series given in Eqs. (5.64)- (5.68) 

are obtained and substituted into Eq. (5.69) to obtain optimal distribution of cross-

sectional area. Optimal shape of the compressed rod is presented in Fig. (5.3). Fig. 

(5.4) also presents the distribution of dimensionless radius of the column which has 

circular cross-section ( ( ) ( ) / ( ) /r r L aξ ξ ξ π= = ).  

5.7.4.2. Volume of optimal rod 

Dimensionless volume of the optimal column is calculated from Eq.(5.8) as 

5.0119
optimal

w = . 

(a)                                                                    (b) 

   Figure 5.3 (a) Optimal distribution of cross-sectional area of compressed rod 

with end point constraint 

                      (b) Optimal distribution of radius with end point cross-section 

along rod-length for circular cross-sectional rod 
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6. OPTIMAL SHAPE OF ECCENTRICALLY COMPRESSED COLUMNS 

In this section, columns which are subjected to eccentrically concentrated forces are 

outlined and optimal distribution of cross-sectional area of such structures along the 

column length is determined. Two different configurations are considered, which are 

columns loaded eccentrically at both ends and columns loaded eccentrically at one 

end. Volume of the optimal column for each loading condition is determined. After 

the volume of the optimal column is evaluated, it is compared to the volume of a 

uniform column which is stable under the same load value to determine the 

efficiency of the optimal column. 

6.1. Eccentrically Concentrated Forces at Both Ends 

6.1.1. Governing equation for the problem 

Governing equation which describes the dynamical behavior of a column which is 

subjected to concentrated forces at both ends as it is seen in Fig. (6.1) can be 

obtained by considering an Euler-Bernoulli column (See Section 2.2.1). 

                   

Figure 6.1 Eccentrically Compressed Column at Both Ends 

By accepting the counterclockwise direction as positive direction, moment 

equilibrium can be written (see Fig. (6.2)) as follows; 

( , )
( , ) ( , ) [ ( , )

M x t
M x t dx M x t V x t

x

∂
+ − +

∂
 

( , ) ( , )
] ( , ) 0

V x t U x t
dx dx H x t dx

x x

∂ ∂
+ − =

∂ ∂
                            (6.1) 
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By eliminating the terms including the multiplication of dx dx⋅ , Eq. (6.1) goes to 

( , ) ( , )
( , ) ( , )

M x t U x t
H x t V x t

x x

∂ ∂
= −

∂ ∂
                                                                  (6.2) 

Equilibrium along y-direction, by accepting y-direction is positive, can be written as 

2

2

( , ) ( , )
( , ) ( , ) ( )

V x t U x t
V x t dx V x t A x dx

x t
ρ

∂ ∂
+ − =

∂ ∂
                                            (6.3) 

2

2

( , ) ( , )
( )

V x t U x t
A x

x t
ρ

∂ ∂
=

∂ ∂
                                                                                (6.4) 

Equilibrium along x-direction, by accepting x-direction is positive, can be written as 

( , )
( , ) ( , ) 0

H x t
H x t dx H x t

x

∂
+ − =

∂
                                                                      (6.5) 

( , )
0

H x t

x

∂
=

∂
                                                                                                       (6.6) 

( , ) .H x t cons P= =                                                                                              (6.7) 

 

      Figure 6.2 Configuration of the column after deformation 
 

Constitutive relation for the column is as follows 

2

2

( , )
( )

U x t
M EI x

x

∂
=

∂
                                                                                          (6.8) 

dx 

 

u′  

M(x,t)+
( , )M x t

dx
x

∂

∂
 

M(x,t) 

H(x,t)+
( , )H x t

dx
x

∂

∂
 

H(x,t) 

V(x,t) 

V(x,t)+
( , )V x t

dx
x

∂

∂
 

y 

x 
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By substituting Eqs.(6.4) and (6.7) into Eq.(6.2) gives the equation of motion for the 

compressed columns. Equation of motion for this type of loading can be represented 

as follows: 

2 2 2

2 2 2

( , ) ( , ) ( , )
( ) 0

M x t U x t U x t
A x P

x t x
ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂
                                                   (6.9) 

where E is modulus of elasticity, I is area moment of inertia of the column, ρ  is 

mass density, A is cross-sectional area of the column, P is the applied concentrated 

force and U(x,t) is displacement field.  

For the steady-state solution where ( , ) ( )U x t u x= , then the governing equation 

reduces to the following form 

2 2

2 2

( )
0

d M x d u
P

dx dx
+ =                                                                                         (6.10)     

By substituting Eq. (6.8) into Eq. (6.10), governing equation can be written by means 

of moment distribution as follows: 

0
( )

P
M M

EI x
′′ + =                                                                                            (6.11) 

where ( ) ( ) /d dx′⋅ = ⋅ . By using Eq.(5.2) which gives the second moment of inertia 

distribution of the column with variable cross-section, Eq. (6.11) can be written in 

the following form 

2
0

( )

P
M M

E A xα
′′ + =                                                                                       (6.12) 

Boundary conditions for simply supported columns loaded by eccentrically 

concentrated forces at both ends are as follows: 

(0)M Pe=           ( )M L Pe=                                                                            (6.13) 

 where e is eccentricity (see Fig. 6.1).  

Dimensionless quantities for this problem can be defined as  

3

M
m

E Lα
=      

2

P

E L
λ

α
=       

x

L
ξ =       

2

A
a

L
=      

e
e

L
=                                 (6.14) 
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Governing equation for eccentrically compressed column is obtained in terms of 

preceeding dimensionless quantities as follows  

2
0

( )
m m

a

λ

ξ
+ =&&                                                                                                (6.15) 

(0) (1)m m eλ= =                                                                                              (6.16) 

where ( ) ( ) /d dξ⋅ = ⋅
�

 

6.1.2. Optimization problem 

By following the same procedure described in Section (5.2), Hamiltonian function 

can be obtained by separating Eq.(6.15) by means of state and costate variables as 

follows (See Section 3.3.2) 

1 2q q=&             2 12 ( )
q q

a

λ

ξ
= −&                                                                           (6.17) 

Hamiltonian function can be represented as follows: 

1 2 2 12
( )

( )
H a p q p q

a

λ
ξ

ξ
= + −                                                                            (6.18) 

By using Eq.(5.11), 

1 22
p p

a

λ
=&           2 1p p= −&                                                                                (6.19) 

By using Eq (6.19), the relation between state and costate variables can be obtained 

as 

1 2( ) ( )p qξ ξ=       2 1( ) ( )p qξ ξ= −                                                                     (6.20) 

Optimal cross-sectional area function is such a(ξ) which minimizes Hamiltonian 

function. Therefore, Eq.(6.18) is differentiated with respect to a(ξ) to determine the 

optimal shape where H is minimum. 

2 13

2
1 0

H
p q

a a

λ∂
= + =

∂
                                                                                       (6.21) 
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As a result of solving Eq. (6.21) for a(ξ) and replacing q1(ξ) to m(ξ), optimal shape of 

the eccentrically compressed column can be represented by means of the related 

moment distribution of the column as follows 

2 1/ 3( ) (2 ( ( )) )a mξ λ ξ=                                                                                        (6.22) 

By substituting Eq.(6.22) into Eq.(6.15), the system reduces to a second-order 

nonlinear differential equation as follows 

1/3 1/3( ) 0
4

m m
λ −

+ =&&                                                                                            (6.23)     

(0) (1)m m eλ= =                                                                                              (6.24) 

6.1.3. Solution of governing system 

In the solution step, Differential Transform Method (DTM) is applied to the system. 

To simplify the application of differential transform method, governing equation can 

be written in the form of  

3( )
4

m m
λ

=&&                                                                                                        (6.25) 

Differential transform of Eq. (6.23) around ξ0=0 is 

3 2

3 2 1

1 2 1 2 1 2 1 3 2 3 2 3 2
0 0 0

( )( 1 )( 2 ) ( 2 )( 1 )( 2 ) ( 2 )
k kk

k k k

M k k k k k M k k k k k k M k k
= = =

+ − + − + − + − + − + −∑∑∑

                            3 3 3( 1 )( 2 ) ( 2 ) ( )
4

k k k k M k k k
λ

δ× + − + − + − = −        (6.26) 

where M(k) represents the differential transform of m(ξ). 

Differential transforms of boundary conditions (6.24) are respectively 

(0)M eλ=         
0

( )
n

k

M k eλ
=

=∑                                                                         (6.27) 

Insert (0)M eλ= and (1)M b= , where b is a constant which will be evaluated at the 

end of solution with the use of Eq.(6.27). At k=1 with substituting M(0) and M(1) 

into Eq.(6.26) 

5/ 3 1/ 3

1
(2)

2
M

e
= −                                                                                              (6.28) 
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At k=2 with additionally substituting (7.30) into (7.28)  

5/ 3 1/3

1
(3)

2 9

b
M

e eλ
=                                                                                         (6.29) 

By following the same procedure, the other terms of the series can be evaluated as 

follows: 

2

2/ 3 1/3 1/ 3 2/ 3

1 1 1 1 1
(4)

2 54 2 144

b
M

e e e eλ λ

 
= − − 

 
                                                (6.30) 

3 2

2 /3 1/ 3 1/ 3 2 /3

1 7 1 13 1
(5)

2 810 2 2160

b
M

e e e eλ λ

   
= +   

   
                                         (6.31) 

4 2 2

2 /3 1/3 1/3 2 /3

1 7 1 47 1 1 13 1
(6)

2 1458 2 9720 25920

b b
M

e e e e e e eλ λ λ λ

      
= − − −      

      
(6.32)                                     

  M  

  M  

Following the same procedure, n terms of the series are calculated. Terms of the 

corresponding series can be represented by new parameters which can be described 

as follows: 

b

e
β

λ
=     and    

1

e
µ

λ
=                                                                                   (6.33) 

All of the terms evaluated are as follows: 

1
(0)M

µ
=  

1
(1)M β

µ
=                                          

5/ 3 1/ 3

1
(2)

2
M

e
= −                                                  

5/ 3 1/ 3

1
(3)

2 9
M

e
β=                                             
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2

2/ 3 1/3 1/3 2 /3

1
(4)

2 54 2 144
M

e e

µ
β

 
= − + 

 
                                                      

2
3

2 /3 1/3 1/3 2 /3

7 13
(5)

2 810 2 2160
M

e e

µ
β= +                                                   

2
4 2

2/ 3 1/ 3 1/ 3 2/ 3

7 47 13
(6)

2 1458 2 9720 25920
M

e e e

µ µ
β β

 
= − + + 

 
           

          M  

          M                                                                                                               (6.34) 

By substituting the terms M(0) to M(n) into second boundary condition given in 

Eq.(6.27), one can obtain 

2

5/3 1/3 5/3 1/3 2/ 3 1/3 1/ 3 2/ 3

1 1 1 1 1

2 2 9 2 54 2 144e e e e

µ
β β β

µ µ

 
+ − + − + 

 
 

2
3

2/ 3 1/3 1/3 2/ 3

7 13 1

2 810 2 2160e e

µ
β

µ

 
+ + − = 
 

L                    (6.35) 

It can be useful to re-arrange Eq. (6.35) as  

2

5/ 3 1/ 3 5/ 3 1/3 2/ 3 1/ 3 1/ 3 2/ 3

1 1 1 1
0

2 2 9 2 54 2 144e e e e

µ
β β β

µ

 
− + − + + = 

 
L                (6.36) 

to get the following form  

( ) ( ) 0n
f β =                                                                                                        (6.37) 

In the case of known λ  and e , b can be found by solving Eq.(6.37) for β. By 

considering n terms of the series, and solving Eq.(6.37) gives the eigenvalue ( )n

i
β  

corresponding to the n-term estimation.  

Computation can be stopped for such n which satisfies the following inequality 

( ) ( 1)n n

i i
β β ε

−
− ≤                                                                                                (6.38) 

where ε is the value of acceptable truncation error.   

For this problem Eq. (6.37) can be constructed as follows: 

( ) 2

5/3 1/3 5/3 1/3 1/3 2 /3 2/3 1/3

1 1 1 1
( ) 0

2 2 9 2 144 2 54
nf

e e e e

µ
β β β

µ

 
= − + + − − + = 

 
L

   
(6.39) 
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Since λ  and e  are given, µ  is a known parameter, therefore missed boundary 

condition b can be obtained by solving Eq.(6.39) for β .  Fig. (6.3) presents change in 

b with respect to critical load for given eccentricity. All terms of the series can be 

determined by substituting missed boundary condition into Eq. (6.34). 

 

Figure 6.3 Effect of critical load on the solution for column subjected to 

eccentrically concentrate forces at both ends 

According to one dimensional differential transform method (See Section 4.2), 

inverse transform can be obtained as having the following form 

0

( ) ( )
n

k

k

m M kξ ξ
=

=∑                                                                                           (6.40) 

6.1.4. Results for eccentrically compressed column at both ends 

Since there are two parameters which have to be given in the description of problem 

(load and eccentricity), first of all optimal shape of the column for 15λ =  and for 

different values of eccentricity is represented in Fig. (6.4). Optimal distribution of 

cross-sectional area is obtained from Eq.(6.22) by determining the moment 

distribution along column-length for given λ  and e .  
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6.1.4.1. Optimal distribution of cross-sectional area for 15λ =  and 0.07e =  

For 15λ =  and 0.07e = , missed boundary condition can be evaluated as 

0.6883β =  and 0.7227b = . Moment distribution corresponding to this problem can 

be obtained as follows:  

2 3 4 5( ) 1.05 0.7227 0.7643 0.0584 0.0443 0.0227m ξ ξ ξ ξ ξ ξ= + − + − + −L      (6.41) 

           

Figure 6.4 Optimal shape of column subjected to eccentrically concentrated forces at 

both ends for different values of eccentricity 

By using obtained m(ξ), optimal distribution of cross-sectional area is determined for 

eccentrically compressed columns at both ends from Eq.(6.22) as it is shown in Fig. 

(6.5). Fig. (6.5) also presents the distribution of dimensionless radius of the column 

which has circular cross-section ( ( ) ( ) / ( ) /r r L aξ ξ ξ π= = ).  

6.1.4.2. Volume of optimal column 15λ =  and 0.07e =  

Dimensionless volume of the optimal column is calculated from Eq.(5.8) as

3.4398optimalw = . The values of optimal volume corresponding to each eccentricity 

value are given in Fig. (6.5). 
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Figure 6.5 Optimal shape of column subjected to eccentrically concentrated forces at 

both ends for 15λ =  and 0.07e =  

6.1.5. Comparison of results with uniform column 

To determine the efficiency of the optimal column it can be useful to analyze the 

behavior of the column which has constant cross-section.  

For a column with constant cross-section, solution of Eq. (6.15) has the form of  

2 2
( ) sin cosm A B

a a

λ λ
ξ ξ ξ= +                                                                      (6.42) 

by accepting that a is a constant.  

By applying boundary conditions given in Eq. (6.16), moment distribution along the 

column length can be determined as follows: 

2 2 2

1
( ) (tan sin cos )

2
m e

a a a

λ λ λ
ξ λ ξ ξ= +                                                    (6.43) 

Dimensionless moment at the midpoint M  is as follows: 

2

1
sec

2
M e

a

λ
λ=                                                                                            (6.44) 
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where 3/( )M M E Lα=  and M is the midpoint moment (Chilver, 1993).  

 

Figure 6.6 Effect of eccentricity on the optimal volume 

As it is seen in Fig. (6.7), moment at the midpoint goes to zero as 2 2/ aλ π→ . 

Hence, it can be said that the critical load for the eccentrically compressed column 

can be taken as  

2 2aλ π=                                                                                                            (6.45) 

From Eq. (5.8), it can be seen that the dimensionless volume of constant cross-

sectional column equals to dimensionless cross-sectional area, namely tancons tw a= . 

Therefore volume of constant cross-sectional column can be determined by using Eq. 

(6.45) as follows: 

tancons t
w

λ

π
=                                                                                                    (6.46) 

However, it cannot be accepted as the critical value of the applied force since this 

would imply an infinitely large value of midpoint deflection and material breakdown 

would occur at some smaller value of λ . Therefore, it is needed to use material limits 

to evaluate the volume of the column which has constant cross-sectional area. Since 

the largest lateral deflection and also greatest bending moment occurs at mid-length 

of the column, it can be useful to determine the longitudinal stresses at this section.  
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6.1.5.1. Maximum compressive stress for uniform column 

The bending moment at mid-length of the column is determined before and given in 

Eq. (6.44). By using this bending moment, longitudinal stress at mid-length can be 

determined as  

1 2

Mc

A
σ

α
=                                                                                                          (6.47) 

where c is the distance from centroidal axis. The average longitudinal compressive 

stress can be determined as follows: 

2

P

A
σ =                                                                                                              (6.48) 

In the dimensionless form, maximum longitudinal compressive stress given above 

can be described as follows: 

max 2

Mr

a a

λα
σ = +       where     1 2

max

( )
c r

E

σ σ
σ =

+
=                                           (6.49) 

where /r r L=  is the dimensionless radius of the column with constant cross-

section. By substituting Eq. (6.44) into Eq. (6.49), maximum longitudinal stress for 

the compressed column which has constant cross-sectional area can be obtained as  

max 2 2

1
( sec )

2

er

a a a

λ α
σ λ= +                                                                             (6.50) 

For the columns with circular cross-section, maximum longitudinal stress 

max 2 3 2 2 2

1 1
( sec )

2 4

e

r r r

λ
σ λ

π π π
= +                                                                   (6.51) 

6.1.5.2. Volume of uniform column 

Consider a material with a dimensionless compressive stress limit of lim 0.01itσ = , 

then the results for 0.07e =  and 15λ =  can be represented as tan 2.0777cons tr =  and

tan 13.5618cons tw = . 
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            Figure 6.7 Effect of eccentricity on the optimal volume 

6.2. Eccentrically Concentrated Forces at One End 

Optimal shape analysis of columns which are loaded by eccentrically concentrated 

forces at one end differs only in the solution step, since the only difference is sourced 

by the boundary conditions.  

 

Figure 6.8 Eccentrically Compressed Column at One End 

6.2.1. Governing system for the problem  

Governing system has the same form as it is in the problem of eccentrically 

concentrated force at both ends. Therefore, there is no need to define a new 

optimization problem.  
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Governing system for the optimal shape analysis of columns subjected to eccentric 

loading at one end can be given as follows: 

1/3 1/3( ) 0
4

m m
λ −

+ =&&                                                                                            (6.52)     

(0)m eλ=        (1) 0m =                                                                                    (6.53) 

6.2.2. Solution of governing system 

Since the governing system is same, differential transform of the system does not 

differ. Only difference comes from the differential transform of boundary conditions.  

Differential transforms of boundary conditions (6.53) are respectively 

(0)M eλ=         
0

( ) 0
n

k

M k
=

=∑                                                                           (6.54) 

The terms of the series are same since the first boundary condition is same with the 

problem defined for the columns loaded by eccentrically concentrated forces at both 

ends. 

By substituting the terms M(0) to M(n) (refer to Eq. (6.34)) into second boundary 

condition given in Eq.(6.54), one can obtain 

2

5 /3 1/3 5 /3 1/3 2 / 3 1/3 1/ 3 2 / 3

1 1 1 1 1

2 2 9 2 54 2 144e e e e

µ
β β β

µ µ

 
+ − + − + 

 
 

2
3

2/3 1/3 1/3 2/3

7 13
0

2 810 2 2160e e

µ
β

 
+ + − = 
 

L                      (6.55) 

In the case of known λ  and e , b can be found by solving Eq.(6.55) for β. Since λ  

and e  are given, µ  is a known parameter, therefore missed boundary condition b 

can be obtained by solving Eq.(6.55) for β .  Fig. (6.2) presents change in b with 

respect to different values of critical load for given eccentricity. All terms of the 

series can be determined by substituting missed boundary condition into Eq. (6.34). 

According to one dimensional differential transform method (See Section 4.2), 

inverse transform can be obtained as having the following form 

0

( ) ( )
n

k

k

m M kξ ξ
=

=∑                                                                                            (6.56) 
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6.2.3. Results for eccentrically compressed column at one end 

For 15λ =  and 0.07e = , missed boundary condition can be evaluated as 

0.2014β = −  and 0.2114b = −  by solving Eq. (6.55).  

6.2.3.1. Optimal distribution of cross-sectional area for 15λ =  and 0.07e =  

 

Figure 6.9 Optimal shape of column subjected to eccentrically concentrated forces at 

both ends for 15λ =  and 0.07e =  

Moment distribution corresponding to this problem can be obtained as follows:  

2 3 4 5( ) 1.05 0.2114 0.7643 0.0171 0.0321 0.0055m ξ ξ ξ ξ ξ ξ= − − − − − −L            (6.57) 

By using obtained m(ξ), optimal distribution of cross-sectional area is determined for 

eccentrically compressed columns at one end from Eq.(6.22) as it is shown in Fig. 

(6.9). Fig. (6.9) also presents the distribution of dimensionless radius of the column 

which has circular cross-section ( ( ) ( ) / ( ) /r r L aξ ξ ξ π= = ).  

6.2.3.2. Volume of optimal column 15λ =  and 0.07e =  

Dimensionless volume of the optimal column is calculated from Eq.(5.8) as

2.3172optimalw = . 
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6.2.4. Comparison of results with uniform column 

To make a comparison and determine the efficiency of the optimal column, column 

with constant cross-section can be taken into consideration. For a column with 

constant cross-section, solution of Eq. (6.15) has the form of  

2 2
( ) sin cosm A B

a a

λ λ
ξ ξ ξ= +                                                                      (6.58) 

by accepting that a is a constant. By applying boundary conditions given in Eq. 

(6.53), moment distribution along the column length can be determined as follows: 

2 2 2

1
( ) ( cot sin cos )

2
m e

a a a

λ λ λ
ξ λ ξ ξ= − +                                                 (6.59) 

Dimensionless moment at the midpoint M  is as follows: 

2

1
sec

2 2

e
M

a

λ λ
=                                                                                            (6.60) 

As it is seen in Fig. (7.6), moment at the midpoint goes to zero as 2 2/ aλ π→ . 

Hence, it can be said that the critical load for the eccentrically compressed column 

can be taken as 2 2aλ π= . However, as it is explained above, it cannot be accepted as 

the critical value of the applied force since this would imply an infinitely large value 

of midpoint deflection and material breakdown would occur at some smaller value of

λ . Therefore, it is needed to use material limits to evaluate the volume of the column 

which has constant cross-sectional area. Since the greatest bending moment occurs at 

one end of column on which eccentric loading applied (ξ=0) , it can be useful to 

determine the longitudinal stresses at this cross-section and make a comparison.  

6.2.4.1 Maximum compressive stress for uniform column 

At ξ=0, moment is (0)m eλ= . Maximum longitudinal stress for the compressed 

column which has constant cross-sectional area can be obtained by using Eqs. (6.47) 

and (6.48) as follows: 

max 2
( )
er

a a

α
σ λ= +                                                                                              (6.61) 
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For the columns with circular cross-section, maximum longitudinal stress 

max 2 3 2 2

1
( )

4

e

r r
σ λ

π π
= +                                                                                   (6.62) 

6.2.4.2. Volume of uniform column 

Consider a material with a dimensionless compressive stress limit of lim 0.01itσ = , 

then the results for 0.07e =  and 15λ =  can be represented as tan 2.0765cons tr =  and

tan 13.5462cons tw = . 
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7. OPTIMAL SHAPE OF COLUMNS UNDER FOLLOWER TYPE 

LOADING 

In this section, columns of Euler-Bernoulli type are analyzed for the conditions 

uniformly distributed and exponentially varying follower type of loading. For each 

loading condition optimal distribution of cross-section along the column length and 

optimal volume of such column is determined. The efficiency of the columns with 

such cross-section by means of volume and load saving is determined for each 

loading condition by considering uniform column which is subjected to same amount 

of loading. 

7.1. Uniformly Distributed Follower Type of Loading 

7.1.1. Governing equation for the problem 

For the optimal shape analysis of the column subjected to uniformly distributed 

follower type of loading, it is considered that the loading has a constant intensity of 

fo.  

                           

Figure 7.1 Simply supported column subjected to uniformly distributed 

follower loading 

By considering the differential element shown in Fig. (6.2), moment equilibrium can 

be written with the acceptance that counterclockwise direction is positive direction. 

( , )
( , ) ( , ) [ ( , )

M x t
M x t dx M x t V x t

x

∂
+ − +

∂
 

( , ) ( , )
] ( , ) 0

V x t U x t
dx dx H x t dx

x x

∂ ∂
+ − =

∂ ∂
          (7.1) 

 

fo 
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By eliminating the terms including the multiplication of dx dx⋅ , Eq. (7.1) goes  

( , ) ( , )
( , ) ( , )

M x t U x t
H x t V x t

x x

∂ ∂
= −

∂ ∂
                                                                  (7.2) 

Equilibrium along y-direction, by accepting y-direction is positive, can be written as 

2

2

( , ) ( , )
( , ) ( , ) ( )

V x t W x t
V x t dx V x t A x dx

x t
ρ

∂ ∂
+ − =

∂ ∂
                                            (7.3) 

2

2

( , ) ( , )
( )

V x t W x t
A x

x t
ρ

∂ ∂
=

∂ ∂
                                                                                (7.4) 

Equilibrium along x-direction, by accepting x-direction is positive, can be written as 

( , )
( , ) ( , ) 0

o

H x t
H x t dx H x t f dx

x

∂
+ − − =

∂
                                                           (7.5) 

( , )
o

H x t
f

x

∂
=

∂
                                                                                                      (7.6) 

Constitutive relation for the column is as follows 

2

2

( , )
( )

U x t
M EI x

x

∂
=

∂
                                                                                          (7.7) 

where E is modulus of elasticity, I is area moment of inertia of the column, ρ  is 

mass density, A is cross-sectional area of the column, P is the applied concentrated 

force and U(x,t) is displacement field.  

For the steady-state solution where ( , ) ( )U x t u x= , Eqs. (7.2), (7.4) and (7.6) leads to  

( ) ( )
( ) ( )

dM x du x
H x V x

dx dx
= −                                                                               (7.8) 

( ) 0V x =                                                                                                              (7.9) 

( ) ( )oH x f L x= − −                                                                                             (7.10) 

respectively, by using that H(L)=0 at the movable end. 

Substituting Eqs. (7.9) and (7.10) into Eq. (7.8) and taking the first derivative of 

released equation gives 

2 2

02 2

( ) ( )
( )

d M x d u x
f L x

dx dx
= − −                                                                            (7.11) 
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By using constitutive relation given in Eq. (6.8), governing equation can be written 

by means of moment distribution as follows: 

0 ( ) 0
( )

f
M L x M

EI x
′′ + − =                                                                                  (7.12) 

where ( ) ( ) /d dx′⋅ = ⋅ . By using Eq.(5.2) which gives the second moment of inertia 

distribution of the column with variable cross-section, Eq. (7.12) can be written in 

the following form 

0
2

( ) 0
( )

f
M L x M

E A xα
′′ + − =                                                                            (7.13) 

Boundary conditions for simply supported columns loaded by follower type loading 

are as follows: 

(0) 0M =           ( ) 0M L =                                                                                 (7.14) 

To simplify and generalize Eq.(7.13), it can be useful to define some dimensionless 

quantities as follows: 

3

M
m

E Lα
=       0f

E L
λ

α
=        

x

L
ξ =        

2

A
a

L
=        

3

W
w

L
=                            (7.15) 

By using Eq.(7.15), the governing system can be obtained in terms of dimensionless 

quantities as follows: 

2
(1 ) 0

( )
m m

a

λ
ξ

ξ
+ − =&&                                                                                       (7.16) 

(0) (1) 0m m= =                                                                                                 (7.17) 

where ( ) ( ) /d dξ⋅ = ⋅
�

.  

7.1.2. Optimization problem 

By following the same procedure described in Section (5.2), state and costate 

variables of the optimization problem can be defined as follows: 

1 2q q=&             2 12
(1 )

( )
q q

a

λ
ξ

ξ
= − −&                                                                 (7.18) 

1 1(0) (1) 0q q= =                                                                                                 (7.19) 
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where q1(ξ) denotes m(ξ) in the original differential equation.  

Hamiltonian function can be constructed by using Eq.(5.8) which gives the volume 

of the rod that is aimed to be minimized and corresponding variables defined above. 

1 2 2 12
( ) (1 )

( )
H a p q p q

a

λ
ξ ξ

ξ
= + − −                                                                  (7.20) 

By using Eq.(5.11), 

1 22
(1 )p p

a

λ
ξ= −&           2 1p p= −&                                                                       (7.21) 

By using Eq (6.19), the relation between state and costate variables can be obtained 

as 

1 2( ) ( )p qξ ξ=       2 1( ) ( )p qξ ξ= −                                                                     (7.22) 

Optimal cross-sectional area function is such a(ξ) which minimizes Hamiltonian 

function. Therefore, Eq.(7.20) is differentiated with respect to a(ξ) to determine the 

optimal shape where H is minimum. 

2 13

2
1 (1 ) 0

H
p q

a a

λ
ξ

∂
= + − =

∂
                                                                             (7.23) 

By solving Eqs. (7.23) with the substitution of Eq.(7.22), a(ξ) is obtained in terms of 

q1(ξ). By replacing q1(ξ) to m(ξ), optimal cross-sectional area function is found in the 

form of 

2 1/3( ) (2 (1 ) ( ))a mξ λ ξ ξ= −                                                                                 (7.24) 

Substituting Eq.(7.24) into Eqs.(7.16) gives the nonlinear differential equation 

system as 

1/ 3 1/ 3 1/ 3( ) (1 ) 0
4

m m
λ

ξ
−

+ − =&&                                                                               (7.25) 

(0) (1) 0m m= =                                                                                                 (7.26) 
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7.1.3. Solution of governing system 

In the solution step, Differential Transform Method (DTM) is applied to the system. 

To simplify the application of differential transform method, governing equation can 

be written in the form of  

3 3( ) (1 )m m λ ξ= −&&                                                                                             (7.27) 

where 1/3( / 4)λ λ= . Differential transform of Eq. (7.27) around ξ0=0 is 

3 2

3 2 1

1 2 1 2 1 2 1 3 2 3 2 3 2
0 0 0

( )( 1 )( 2 ) ( 2 )( 1 )( 2 ) ( 2 )
k kk

k k k

M k k k k k M k k k k k k M k k
= = =

+ − + − + − + − + − + −∑∑∑

 
 

              3
3 3 3( 1 )( 2 ) ( 2 ) ( ( ) ( 1))k k k k M k k k kλ δ δ× + − + − + − = − − −   (7.28) 

Differential transform of boundary conditions (7.26) are respectively leads to 

(0) 0M =         
0

( ) 0
n

k

M k
=

=∑                                                                              (7.29) 

Insert (0) 0M =  and (1)M b= , where b is a constant which will be calculated at the 

end of solution with the use of Eq.(7.29).  

At k=1 with substituting M(0) and M(1) into Eq.(7.28) 

1/ 3

1
(2)

2
M

b
λ=                                                                                                 (7.30) 

At k=2 with additionally substituting (7.30) into (7.28)  

2

5/ 3

1
(3)

36
M

b
λ= −                                                                                           (7.31) 

By following the same procedure, the other terms of the series can be evaluated as 

follows: 

3

3

7
(4)

1296
M

b
λ=                                                                                            (7.32) 

4

13/3

23
(5)

15552
M

b
λ= −                                                                                     (7.33) 

5

17 / 3

5
(6)

10368
M

b
λ=                                                                                       (7.34) 
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6

17 / 3

6179
(7)

35271936
M

b
λ= −                                                                              (7.35) 

  M  

  M  

Following the same procedure, n terms of the series are calculated. Terms of 

the corresponding series can be represented by a new parameter which can be 

described as follows: 

4/3
b

λ
β =                                                                                                            (7.36) 

All of the terms evaluated are as follows: 

(0) 0M =         

(1)M b=                                                         

(2)
2

M b
β

=                                                          

5 /3

1
(3)

36
M

b
λ= −                                                     

27
(4)

1296
M b

β
=                                                       

323
(5)

15552
M b

β
= −                                          

45
(6)

10368
M b

β
=                                               

56179
(7)

35271936
M b

β
= −                                              

           M  

M                                                                                                               (7.37) 

By substituting the terms M(0) to M(n) into second boundary condition given in Eq. 

(7.29), the following form can be obtained. 

( ) ( ) 0nbf β =                                                                                                       (7.38) 
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In the case of known λ , b can be found by solving Eq.(7.38) for β, since 0b ≠ . 

( ) ( ) 0nf β =                                                                                                        (7.39) 

By considering n terms of the series, and solving Eq.(7.39) gives the eigenvalue ( )n

i
β  

corresponding to the n-term estimation. Computation can be stopped for such n 

which satisfies the following inequality 

( ) ( 1)n n

i i
β β ε

−
− ≤                                                                                                (7.40) 

where ε is the value of acceptable truncation error.  

For this problem Eq. (7.39) can be constructed as follows: 

2 3 4 5
( ) 7 23 5

( ) 1 0
2 36 1296 15552 10368

n
f

β β β β β
β = + − + − + − =L                                     (7.41) 

By taking n=50 terms, (50) 1.70872
i

β = and for error estimation (49) 1.70874
i

β = . 

Substituting these values into Eq. (7.40) gives (50) (49) 0.00002
i i

β β− = . This error 

value is in the acceptable region.  

According to one dimensional differential transform method (See Section 4.2), 

inverse transform can be obtained as having the following form 

0

( ) ( )
n

k

k

m M kξ ξ
=

=∑                                                                                            (7.42) 

 

Figure 7.2 Effect of critical load on the solution for column subjected to 

uniformly distributed follower type of loading 
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Therefore, moment distribution along the length of the column m(ξ) which is 

governed by Eq. (7.25) can be obtained by using (7.42) with n=50 and 1.70872β = . 

2 3 4 5 6( ) ( 0.85456 0.0811 0.0270 0.0126 0.0070 )m bξ ξ ξ ξ ξ ξ ξ= + − + − + −L  (7.43) 

where b for different values of critical load is shown in Fig. (7.2). 

7.1.4. Results for uniformly distributed follower type of loading 

The results for the column which is subjected to uniformly distributed follower type 

of loading are presented for the case of 15λ = .  

7.1.4.1. Optimal distribution of cross-sectional area for 15λ =  

Optimal shape of the column is determined by calculating the missed boundary 

condition b for the given critical load from Fig. (7.2) to obtain moment distribution 

given in Eq. (7.43). By using obtained m(ξ), optimal distribution of cross-sectional 

area is determined for uniformly distributed follower type of loading from Eq.(7.24) 

as it is shown in Fig. (7.3). Fig. (7.3) also presents the distribution of dimensionless 

radius of the column which has circular cross-section ( ( ) ( ) / ( ) /r r L aξ ξ ξ π= = ). 

 

Figure 7.3 Optimal shape of column subjected to uniformly distributed 

follower type of loading 
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7.1.4.2. Volume of optimal column for 15λ =  

Dimensionless volume of the optimal column is calculated from Eq.(5.8) as

0.7083
optimal

w = .  

7.1.5. Comparison of results with uniform column 

For a comparison, volume of the column, which has constant cross-sectional area and 

is stable under the case of 15λ = , is evaluated. To determine the efficiency of the 

optimal column it can be useful to analyze the behavior of the column with constant 

cross-section. For a column with constant cross-section, differential transforms of 

Eqs. (7.16) and (7.17) are  

1

1 1 12
0

( 1)( 2) ( 2) ( ( ) ( 1)) ( ) 0
k

k

k k M k k k M k k
a

λ
δ δ

=

+ + + + − − − =∑                        (7.44) 

(0) 0M =         
0

( ) 0
n

k

M k
=

=∑                                                                              (7.45) 

After calculation of few terms of the series and application of boundary conditions, 

the general form as in Eq.(7.38) is obtained with ( ) ( )nf β of 

2 3 4
( ) ( ) 1 0

12 504 45360 798336
nf

β β β β
β = − + − + − =L                                            (7.46) 

where 2/ aβ λ= . 

Solving Eq.(7.46) for β  gives the result of 18.956266β =  and therefore 

tan 0.8895cons tw =  for 15λ = . This means volume saving of optimal column with 

respect to uniform column leads to 20.4% for the given load. 

We also compared our result with the literature. We obtained the result of 

0.7961
optimal

w =  by considering the moment distribution corresponding to the case of

18.956266λ = . The same result was obtained by Atanackovic and Simic 

(Atanackovic, 1999) as 0.8105
optimal

w =  for 18.956266λ = . 
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7.2. Exponentially Varying Follower Type of Loading 

7.2.1. Governing equation for the problem 

For the optimal shape analysis of the column subjected to exponentially increasing 

follower type of loading, it is considered that loading has the form of 
/

0( ) x L
f x f e= . 

 

Figure 7.4 Simply supported column subjected to exponentially varying 

follower type of loading 

By considering the differential element shown in Fig. (6.2), moment equilibrium can 

be written with the acceptance that counterclockwise direction is positive direction 

(See Section 2.2.1).  

( , )
( , ) ( , ) [ ( , )

M x t
M x t dx M x t V x t

x

∂
+ − +

∂
 

( , ) ( , )
] ( , ) 0

V x t U x t
dx dx H x t dx

x x

∂ ∂
+ − =

∂ ∂
                         (7.47) 

By eliminating the terms including the multiplication of dx dx⋅ , Eq. (7.47) goes  

( , ) ( , )
( , ) ( , )

M x t U x t
H x t V x t

x x

∂ ∂
= −

∂ ∂
                                                                (7.48) 

Equilibrium along y-direction, by accepting y-direction is positive, can be written as 

2

2

( , ) ( , )
( , ) ( , ) ( )

V x t W x t
V x t dx V x t A x dx

x t
ρ

∂ ∂
+ − =

∂ ∂
                                          (7.49) 

2

2

( , ) ( , )
( )

V x t W x t
A x

x t
ρ

∂ ∂
=

∂ ∂
                                                                              (7.50) 

Equilibrium along x-direction, by accepting x-direction is positive, is 

/( , )
( , ) ( , ) 0x L

o

H x t
H x t dx H x t f e dx

x

∂
+ − − =

∂
                                                   (7.51) 

/( , ) x L

o

H x t
f e

x

∂
=

∂
                                                                                              (7.52) 



85 

 

For the steady-state solution where ( , ) ( )U x t u x= , Eqs. (7.48), (7.50) and (7.52) leads 

to  

( ) ( )
( ) ( )

dM x du x
H x V x

dx dx
= −                                                                             (7.53) 

( ) 0V x =                                                                                                            (7.54) 

/( ) ( )x L

o
H x f L e e= −                                                                                           (7.55) 

respectively, by using that H(L)=0 at the movable end. Substituting Eqs. (7.54) and 

(7.55) into Eq. (7.53) and taking the first derivative of released equation gives 

2 2
/

02 2

( ) ( )
( )x Ld M x d u x

f L e e
dx dx

= − −                                                                      (7.56) 

By using constitutive relation given in Eq. (6.8), governing equation can be written 

by means of moment distribution as follows: 

/0 ( ) 0
( )

x Lf L
M e e M

EI x
′′ + − =                                                                              (7.57) 

where ( ) ( ) /d dx′⋅ = ⋅ . By using Eq.(5.2) which gives the second moment of inertia 

distribution of the column with variable cross-section, Eq. (7.57) can be written in 

the following form 

/0
2

( ) 0
( )

x Lf L
M e e M

E A xα
′′ + − =                                                                         (7.58) 

(0) 0M =           ( ) 0M L =                                                                                 (7.59) 

By using Eq.(7.15), the governing system can be obtained in terms of dimensionless 

quantities as follows: 

2
( ) 0

( )
m e e m

a

ξλ

ξ
+ − =&&                                                                                     (7.60) 

(0) (1) 0m m= =                                                                                                 (7.61) 

where ( ) ( ) /d dξ⋅ = ⋅
�

.  
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7.2.2. Optimization problem 

By following the same procedure described in Section (5.2), state and costate 

variables of the optimization problem can be defined as follows (See Section 3.3.2): 

1 2q q=&             2 12
( )

( )
q e e q

a

ξλ

ξ
= − −&                                                               (7.62) 

1 1(0) (1) 0q q= =                                                                                                 (7.63) 

where q1(ξ) denotes m(ξ) in the original differential equation.  

Hamiltonian function can be constructed by using Eq.(5.8) which gives the volume 

of the rod that is aimed to be minimized and corresponding variables defined above. 

1 2 2 12
( ) ( )

( )
H a p q p e e q

a

ξλ
ξ

ξ
= + − −                                                                (7.64) 

By using Eq.(5.11), 

1 22
( )p e e p

a

ξλ
= −&           2 1p p= −&                                                                     (7.65) 

By using Eq (6.19), the relation between state and costate variables can be obtained 

as 

1 2( ) ( )p qξ ξ=       2 1( ) ( )p qξ ξ= −                                                                     (7.66) 

Optimal cross-sectional area function is such a(ξ) which minimizes Hamiltonian 

function. Therefore, Eq.(7.64) is differentiated with respect to a(ξ) to determine the 

optimal shape where H is minimum. 

2 13

2
1 ( ) 0

H
p e e q

a a

ξλ∂
= + − =

∂
                                                                           (7.67) 

By solving Eqs. (7.67) with the substitution of Eq.(7.66), a(ξ) is obtained in terms of 

q1(ξ). By replacing q1(ξ) to m(ξ), optimal cross-sectional area function is found in the 

form of 

2 1/3( ) (2 ( ) ( ))a e e mξ
ξ λ ξ= −                                                                               (7.68) 
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Substituting Eq.(7.24) into Eqs.(7.16) gives the nonlinear differential equation 

system as 

1/ 3 1/ 3 1/3( ) ( ) 0
4

m e e m
ξλ −

+ − =&&                                                                             (7.69) 

(0) (1) 0m m= =                                                                                                 (7.70) 

7.2.3. Solution of governing system 

In the solution step, Differential Transform Method (DTM) is applied to the system. 

To simplify the application of differential transform method, governing equation can 

be written in the form of  

3 3( ) ( )m m e eξ
λ= −&&                                                                                            (7.71) 

where 1/3( / 4)λ λ= .  

Differential transform of Eq. (7.69) around ξ0=0 is 

3 2

3 2 1

1 2 1 2 1 2 1 3 2 3 2 3 2
0 0 0

( )( 1 )( 2 ) ( 2 )( 1 )( 2 ) ( 2 )
k kk

k k k

M k k k k k M k k k k k k M k k
= = =

+ − + − + − + − + − + −∑∑∑

                   3
3 3 3( 1 )( 2 ) ( 2 ) (1/ ! ( ))k k k k M k k k e kλ δ× + − + − + − = − −  (7.72) 

 

Differential transform of boundary conditions (7.70) are respectively leads to 

(0) 0M =         
0

( ) 0
n

k

M k
=

=∑                                                                              (7.73) 

Insert (1)M b= , where b is a constant which will be calculated at the end of solution 

with the use of Eq.(7.73).  

At k=1 with substituting M(0) and M(1) into Eq.(7.72) 

1/ 3

1
(2)

2
M

b
λ=                                                                                                 (7.74) 

At k=2 with additionally substituting (7.30) into (7.28)  

4/3

5/3

( )
(3)

36

b
M

b

λ λ+
= −                                                                                        (7.75) 
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By following the same procedure, the other terms of the series can be evaluated as 

follows: 

8/3 4 /3 2

3

( 9 4 7 )
(4)

1296

b b
M

b

λ λ λ− + +
=                                                                    (7.76)

4 8/3 4/3 2 3

13/3

(156 57 70 115 )
(5)

77760

b b b
M

b

λ λ λ λ− + +
= −                                            (7.77) 

16/3 4 8/3 2 4/3 3 4

17 /3

(4848 1446 1357 2300 3375 )
(6)

6998400

b b b b
M

b

λ λ λ λ λ− + − −
= −         (7.78)                        

           M  

  M  

Following the same procedure, n terms of the series are calculated. Terms of the 

corresponding series can be represented a new parameter which can be described as 

follows: 

4/3b

λ
β =                                                                                                            (7.79) 

All of the terms evaluated are as follows: 

(0) 0M =         

(1)M b=                                                         

(2)
2

M b
β

=         

2

(3) ( )
36 36

M b
β β

= − +  

2 39 4 7
(4) ( )

1296 1296 1296
M bβ β β= − + +  

2 3 4156 57 70 115
(5) ( )

77760 77760 77760 77760
M bβ β β β= − − + +        

2 3 4 54848 1446 1357 2300 3375
(6) ( )

6998400 6998400 6998400 6998400 6998400
M bβ β β β β= − − + − −  

  M  

  M                                                                                                              (7.80) 
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By substituting the terms M(0) to M(n) into second boundary condition given in Eq. 

(7.73), the general form as in Eq. (7.38) is obtained with ( ) ( )nf β  which is in the 

form of 

2 3 4 5
( ) 7 23 5

( ) 1 0
2 36 1296 15552 10368

n
f

β β β β β
β = + − + − + − =L                                     (7.81) 

By taking n=20 terms, (20) 1.61374
i

β = and for error estimation (19) 1.61404
i

β = . 

Substituting these values into (7.40) gives (20) (19) 0.0003
i i

β β− = . This error value is 

in the acceptable region.  

Moment distribution along the length of the column m(ξ) which is governed by Eq. 

(7.60) can be calculated by using (7.42) with n=20 and 1.61374β = . 

2 3 4 5 6( ) ( 0.8070 0.1172 0.0345 0.01498 0.0081 )m bξ ξ ξ ξ ξ ξ ξ= − − − − − −L  (7.82) 

where b for different values of critical load is shown in Fig. (7.3). 

7.2.4. Results for exponentially varying follower type of loading 

The results for the column which is subjected to exponentially varying follower type 

of loading are presented for the case of 15λ = . 

 

 

Figure 7.5 Effect of critical load on the solution for column subjected to 

exponentially varying follower type of loading 
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7.2.4.1. Optimal distribution of column for 15λ =  

Optimal shape of the column is determined by calculating the missed boundary 

condition b for the given critical load from Fig. (7.5) to obtain moment distribution 

given in Eq. (7.82). By using obtained m(ξ), optimal distribution of cross-sectional 

area is determined for exponentially varying follower type of loading from Eq.(7.68) 

as it is shown in Fig. (7.6). Fig. (7.6) also presents the distribution of dimensionless 

radius of the column which has circular cross-section ( ( ) ( ) / ( ) /r r L aξ ξ ξ π= = ).

  

Figure 7.6 Optimal shape of column subjected to exponentially varying 

follower type of loading 

7.2.4.2. Volume of the column for 15λ =  

Dimensionless volume of the optimal column is calculated from Eq.(5.8) as

0.9476optimalw = .  

7.2.5. Comparison of results with uniform column 

For a comparison, volume of the column, which has constant cross-sectional area and 

is stable under the case of 15λ = , is evaluated. To determine the efficiency of the 

optimal column it can be useful to analyze the behavior of the column with constant 

cross-section.  
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For a uniform column, differential transforms of Eqs. (7.60) and (7.61) can be 

written as 

1

1
1 12

0 1

1
( 1)( 2) ( 2) ( ( )) ( ) 0

!

k

k

k k M k e k M k k
a k

λ
δ

=

+ + + + − − =∑                              (7.83) 

(0) 0M =         
0

( ) 0
n

k

M k
=

=∑                                                                              (7.84) 

Carrying the calculation of few terms and applying the boundary conditions, the 

general form as in Eq.(7.38) is obtained with ( ) ( )nf β of 

( ) 2 3( ) 1 0.171329 0.008390 0.000192 0nf β β β β= − + − − =L                        (7.85) 

where 2/ aβ λ= . By solving Eq.(7.85) for β , then the result becomes 9.222766β = . 

Volume of the column, which has constant cross-sectional area and is stable under 

the case of 15λ = , is tan 1.2753cons tw = . 

This means volume saving of optimal column with respect to uniform column leads 

to 25.7% for the given load. 
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8. DISCUSSIONS AND CONCLUSION 

In this study optimal shape analysis of elastic bodies is carried out for different 

loading conditions. Rods are the structural elements which generally carries axial 

loading, bending effects of the applied load is neglected in the derivation of the 

equation of motion. Columns are the structural elements which are subjected to 

compressive loading and for this type of elements bending effect is not negligible 

since the ratio between the column length and column thickness is bigger than 10 for 

columns.  

Loading conditions examined in this study are axial compressive force, eccentrically 

placed compressive force –eccentricity at both ends and eccentricity at one end- and 

follower type of loading –uniformly distributed and exponentially varying-. For each 

configuration, optimal distribution of cross-sectional area and volume of the structure 

with such cross-sectional area are determined. In addition, volume of uniform 

structure which is also subjected to same amount of loading is calculated and 

compared to the volume of the structure with optimal shape. This comparison gives 

the degree of success of the optimal shape analysis. Percent of volume saving (svolume) 

is computed at the end of the study to determine the efficiency of the optimal 

structure. 

In Sections 6&7, the effect of loading condition on the optimal shape of an Euler-

Bernoulli column is analyzed by using Pontryagin’s maximum principle and 

applying Differential Transform Method. Two types of loading, follower type 

loading and eccentric loading are considered in this section. It is seen that for the 

same critical load value, volume of the column which is subjected to uniformly 

distributed follower type of loading is smaller than that of exponentially increasing 

follower type of loading. Additionally, effect of eccentricity on the volume is 

analyzed and it is also observed that the volume of the column which is stable under 

the given load is increasing with increasing eccentricity.  
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CONFIGURATION   1:  CENTRALLY COMPRESSED ROD 

 

 

   Volume for given critical load 2
λ π= ;         

               Optimal Rod:      0.866025
optimal

w =
 

       Uniform Rod:      tan 1cons tw =
 

               Volume Saving:   svolume=13.4% 

 

    Critical load for given volume 1w = ; 

    Optimal Rod:     13.1595
optimal

λ =
 

               Uniform Rod:    tan 9.8696cons tλ =
 

                              Critical Load Saving:   svolume=33.3% 

  

P P 

             

a(ξ)                    

r(ξ)           

m(ξ) 
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CONFIGURATION   2:  CENTRALLY COMPRESSED ROD WITH END POINT CONSTRAINT 

 

 

Material limits:  lim 0.2itσ =
 

End-point cross-sectional area for 1λ = :  

           Allowable minimum cross-sectional area: 5
o

a =  

Volume for 1λ = :  

           Optimal Rod: 5.0119
optimal

w =
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CONFIGURATION   3:  ECCENTRICALLY COMPRESSED COLUMN AT BOTH ENDS 

                                                           

 Volume for given critical load 15λ =  and 0.07e = ;         

               Optimal Column:      3.4398
optimal

w =
 

        Uniform Column:      tan 13.5618cons tw =
 

  

             

a(ξ)          

r(ξ)           

m(ξ) 
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CONFIGURATION   4:  ECCENTRICALLY COMPRESSED COLUMN AT ONE END 

 

 

Volume for given critical load 15λ =  and 0.07e = ;         

               Optimal Column:      2.3172
optimal

w =
 

        Uniform Column:      tan 13.5462cons tw =
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CONFIGURATION   5:  COLUMN SUBJECTED TO UNIFORM FOLLOWER TYPE OF LOADING 

 

 

 

Volume for given critical load 15λ = ;         

               Optimal Column:      0.7083
optimal

w =
 

       Uniform Column:      tan
0.8895

cons t
w =

 

               Volume Saving:          svolume=20.4% 

 

Volume for given critical load 18.956266λ = ;    

               Optimal Column:      0.7961
optimal

w =
 

       Uniform Column:      tan 1cons tw =
 

                                                                                                                                        Volume Saving:          svolume=20.4% 
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CONFIGURATION   6:  COLUMN SUBJECTED TO EXPONENTIALLY VARYING  FOLLOWER TYPE OF LOADING 

 

 

 

     Volume for given critical load 15λ = ;         

                  Optimal Column:      0.9476
optimal

w =
 

          Uniform Column:      tan
1.2753

cons t
w =

 

                  Volume Saving:          svolume=25.7% 

 

             

a(ξ)          

r(ξ)           

m(ξ) 
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