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OPTIMAL SHAPE ANALYSIS OF ELASTIC BODIES BY USING
DIFFERENTIAL TRANSFORM METHOD

SUMMARY

In this study optimal shape analysis of elastic bodies is carried out for different
loading conditions. Simply supported rods and columns are used in the analysises as
structural elements. Loading conditions examined in this study are axial compressive
force, eccentrically placed compressive force —eccentricity at both ends and
eccentricity at one end- and follower type of loading —uniformly distributed and
exponentially varying-.

For each configuration, optimal distribution of cross-sectional area and volume of the
structure with such cross-sectional area are determined. In addition, volume of
uniform structure which is also subjected to same amount of loading is calculated
and compared to the volume of the structure with optimal shape. This comparison
gives the degree of success of the optimal shape analysis.
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DIFERANSIYEL DONUSUM YONTEMI iLE ELASTIK YAPILARIN
OPTIMAL SEKIL ANALIZI

OZET

Bu caligmada,farkli yiikleme sartlar1 altinda elastik yapilarin optimal sekil analizi
gergeklestirilmistir. Analizlerde, basit mesnetli gubuk ve kolon tipi yapisal elemanlar
gbdz Oniine alinmistir. Bu ¢alismada ele alinan yiikleme sartlar1 eksenel uygulanan
basma, eksantrik uygulanan basma —iki ucgtan eksantrik ve tek ucgtan eksantrik- ve
follower tipi —diizgiin dagiliml ve eksponensiyel degisen- yiiklemedir.

Her konfigiirasyon i¢in, yapinin kesit alaninin optimal dagilimi belirlenmistir ve
optimal kesit alanli yapinin hacmi bu dagilimdan yaralanilarak hesaplanmistir.
Bunlara ek olarak, optimal yapi1 ile aym yiiklemeye maruz kalan uniform yapinin
hacmi hesaplanmig ve optimal yapinin hacmi ile kiyaslanmistir. Bu kiyas yapilan
optimizasyonun verimliligini tayin etmektedir.

Xxi



ii



1. INTRODUCTION

1.1. Historical Development and Aim of the Study

Determination of the shape of elastic bodies was first investigated by Lagrange in
1773. Since then, the problem of maximizing the critical buckling force of a
prismatic column of given length and volume is called as Lagrange problem (Cox,
1992). Optimization of shape of the columns was treated by Clausen. (Clausen,
1851). In the presented study, rods and columns under various loading conditions are
examined and the effects of loading condition on the optimal distribution of the
cross-sectional area are determined. These conditions are uniformly distributed
follower type of loading, exponentially increasing follower type of loading and
concentrated forces at both ends and eccentrically concentrated forces at both ends.
In open literature, some studies exist, for example, Atanackovic and Simic obtained a
solution for the optimal shape of a Pfliiger column which is subjected to uniform
follower type of loading in (Atanackovic, 1999). Optimization problem for
compressed columns has been treated by Blasius (Blasius, 1914) Ratzerdorfer

(Ratzdorfer, 1936) and Keller (Keller, 1960).

In this study, for each case of loading, the optimal distribution of cross-sectional area
of a simply-supported structural element is determined under the criteria of minimum
volume and stability against buckling. The governing equation for columns is
derived by considering an Euler-Bernoulli column and then Pontryagin’s maximum
principle with special treatment as in (Atanackovic, 1999) and (Galavardanov, 2001)
is used to determine the optimal cross-sectional area. Pontryagin’s maximum
principle which is based on minimizing Hamiltonian function is used in optimal
control theory to get the desired optimal solution (Vujanovic, 2004). The related
Hamiltonian function is obtained via the governing equation and the volume of the

structure can be minimized by regarding this Hamiltonian function.

In the rest of this study, analysis of nonlinear differential equations, which are
obtained after the rearrangement of governing equations with the usage of

Pontryagin’s maximum principle, is carried out. In the analysis, Differential

1



Transform Method (DTM), which is a semi analytical-numerical computational
technique used to solve ordinary and partial differential equations, is applied. This
method which is also capable of solving fractional differential equations (Arikoglu,
2007), integral and integro-differential equations (Artkoglu, 2008) is introduced by
Zhou in 1986 with the application to electrical circuits (Zhou, 1986). As results of
this analysis, optimal shape and optimal volume of the column for three different
conditions are determined and volume saving with such a cross-sectional area

distribution is evaluated by considering the column with constant cross-section.

1.2. Content of the Study

In Section 2, general definitions and topics used in the analysis of elastic bodies are
taken into consideration. As an introduction, general properties of elastic bodies are
given under the topic of “general view to elastic bodies”. Also, beam theories used
in engineering practice are introduced in general sense and buckling behavior of

columns is analyzed.

In Section 3, basic variational principles used in mechanics are considered. These
variational principles are classified under the topics of Lagrange- D’Alembert
differential variational principle and Hamilton integral variational principle. Optimal
control theory is introduced and especially Pontryagin’s maximum principle is tried
to be introduced since this principle is used to carry out optimal shape analysis of

structures.

In Section 4, differential transform method is mentioned. After the general
description of differential transform is given; one-dimensional, two-dimensional and
finally n-dimensional differential transform are presented. General properties of

differential transform are also expressed.

In Section 5, optimal distribution of cross-sectional area of compressed rods is
obtained under the criterion of minimum volume. After the volume of the rod with
optimal cross-section is evaluated, it is compared to the volume of a uniform rod
which is stable under the same load value to determine the efficiency of the rod with
optimal cross-section. When the analysis is completed, it is noticed that the optimal
compressed rod has zero cross-sectional areas at both ends. However, this cannot be

an acceptable configuration in physical sense and for engineering applications.



Therefore, governing equations are rearranged and a minimum cross-sectional area is

defined in order to overcome the problem of having zero cross-sectional area.

In Section 6, columns which are subjected to eccentrically concentrated forces are
outlined and optimal distribution of cross-sectional area of such structures along the
column length is determined. Two different configurations are considered, which are
columns loaded eccentrically at both ends and columns loaded eccentrically at one
end. Volume of the optimal column for each loading condition is determined. After
the volume of the optimal column is evaluated, it is compared to the volume of a
uniform column which is stable under the same load value to determine the

efficiency of the optimal column.

In Section 7, columns of Euler-Bernoulli type are analyzed for the conditions
uniformly distributed and exponentially varying follower type of loading. For each
loading condition optimal distribution of cross-section along the column length and
optimal volume of such column is determined. The efficiency of the columns with
such cross-section by means of volume and load saving is determined for each
loading condition by considering uniform column which is subjected to same amount

of loading.

In Section 8, general discussions about the whole study are carried out and general

summary of the analysis is outlined.






2. ELASTIC BODIES

In this section of this study, general definitions and topics used in the analysis of
elastic bodies are taken into consideration. As an introduction, general properties of
elastic bodies are given under the topic of “general view to elastic bodies”. Also,
beam theories used in engineering practice are introduced in general sense and

buckling behavior of columns is analyzed.

2.1. General View to Elastic Bodies

In this section, general definitions and topics used in the analysis of elastic bodies are
taken into consideration. Elastic bodies utilized in engineering practice are
commonly named as structural elements. Structural elements used in structural
analysis simplify the structure by separating the structure into elements which can be
defined as the simplest part of the whole. Structural elements can be linear, surfaces
or volume. In other words, structural elements can be one-dimensional, two-
dimensional or three-dimensional. Linear structural elements are rods (axial loading),
beams (both bending and axial loading), columns (compressive loading), shafts
(torsional loading) and beam-columns (both bending and buckling). Surface
structural elements are membranes (in-plane loading only), shells (both in-plane

loading and bending moments) and shear panels (shear loads only).

A structural element serves to transfer load from one place to another. When the
dimensions and material properties of the structure, its support conditions, and loads
applied to it are given, stress and deflection calculations can be performed. There are
two main classes of methods which determine the behavior of a structure: mechanics
of materials method and theory of elasticity method. With the mechanics of materials
method, search begins by thinking about deformations. Using experiment, experience
and intuition; it is decided that how the structure deforms. The selected deformation
field may be exact. The deformation field yields to a strain field and with the use of
an elastic law (i.e. Hooke’s Law) stress field can be determined. With the theory of

elasticity method, there is no need to prescribe a deformation field to solve the

5



problem. In this method, conditions of equilibrium at every point, continuity of the
displacement field and loading and support conditions are to be satisfied
simultaneously. Since the solution obtained with the use of theory of elasticity
method meets all conditions required, this solution is called as “exact solution”.
Similar to mechanics of materials method, this method also is based on some
assumptions and is an approximation of nature. The elasticity solution is

mathematically unique if the body has a linear load-displacement relation.

Theory of elasticity method is more complicated when compared to mechanics of
materials method; however it is worth studying since it clarifies the shortcomings or

range of applicability of approximate solutions.

2.1.1. Mechanics of Materials Method

Major function of mechanics of materials is to relate applied loads to stress by
generating specific relations. The method of derivation, used in both elementary and
advanced mechanics of materials is to prescribe the geometry of deformation by
experiment, experience or intuition, to determine the strain field by analyzing the
deformation field, to determine stress field by applying stress-strain relation and to

relate stress to load.

In advanced mechanics of materials, relations derived in elementary mechanics of
materials are used. Common definitions and relations in elementary mechanics of

materials are as follows (Cook, 1985):

¢ Axial stress o and elongation A of a bar which is under axial load P
can be described as follows:

A PL

= 2.1)

P
o=—
A

where A is cross-sectional area and E is modulus of elasticity.

e Shear stress T and angle of twist 0 of a bar that carries a torque of T

can be described as follows:

=L p=T1L (22)
J JG



where r is the radius to the point where shear stress is computed, J is polar moment

of inertia and G is shear modulus.

 Flexural stress ¢ and curvature d’v/dx’ of a beam loaded by bending
moment M can be described as follows:

My  dv_M

- 2.3
I dx* EI @3)

where y is distance from the neutral surface to the point where flexural stress is

computed and I is the second moment of inertia.

Definitions given above involve many assumptions and are only given to express
general concept of mechanics of materials method. There are miscellaneous theorems
which describe the behavior of materials after detailed analysis. These theorems are

taken into consideration in the following sections.

2.1.2. Theory of Elasticity Method

Analysis of structures on the basis of theory of elasticity method concerns
determining the structural deformation via the stress-strain behavior of the system.

Classical elasticity theory is constructed under the assumptions of
e strains and deformations are small and
* material is homogeneous, isotropic and linearly elastic.
In determining the elastical behavior of the materials Hooke Law is used. In the

simplest form, for a single-axial loading this behavior can be defined as follows:

o =FE¢ £ = 2.4
p x = (2.4)

Moreover, in the case of single-axial loading there is elastic strain of the materials.
Elastic strain in these directions can be expressed with the use of Poisson Ratio v as

follows:

O-X
£, =—VE =—V
E

o
E =—VE =—-D—= 2.5
£ (2.5)



By generalizing the equations given above, “Elasticity Constitutive Equations” can

be obtained for three-axial loading as follows:

£, =%[O‘x —U(O'y +0,)]
& —l[O' -v(o. +0.)]
y E x z
e = %[az —v(0, +0,)] (2.6)

Shear strains can be expressed as follows:

7xy = 7yz - 2= 7/@( — (2.7)
For isotropic materials there is a relation between modulus of elasticity and shear
modulus which can be given as follows:

_E
C2(1+v)

(2.8)

2.2. Beam Theories used in Engineering Practice

There are four beam theories commonly used in engineering practice to formulate the
partial differential equation of motion by considering the behavior of the structure
under given loading, boundary conditions and initial conditions. Beam theories are
Euler-Bernoulli beam theory, Rayleigh beam theory, Shear theory and Timoshenko
beam theory.

The Euler-Bernoulli model, which is also known as classical beam theory, includes
the strain energy due to bending and kinetic energy due to lateral displacement
(Haym,1998). The effect of rotation of the cross-section is included by Rayleigh
beam theory in addition to Euler-Bernoulli beam model (1877). The shear model
adds shear distortion effect to the Euler-Bernoulli beam theory. Timoshenko beam
theory is proposed in 1921, 1922 to add the effect of both shear and rotation.

Namely, it can be said that Timoshenko beam theory covers the other beam theories.



2.2.1. Euler-Bernoulli model

2.2.1.1. Moment-curvature relation

Deflections due to bending are determined with the consideration of deformations
taking place along a span (Popov,1990). Deflections due to shear are not considered

in the Euler-Bernoulli model.

Radius of the elastic curve p, as it is shown in Fig. (2.1), is assumed as changing
along the span. For positive y’s, deformation of any fiber can be expressed as

follows:

Au = —yAf 2.9)

al| As

Au

nlb

Figure 2.1 Deformation of a beam under bending

For negative y’s, this yields elongation of fibers. By dividing the both sides of Eq.

(2.9) by As and using the definition of normal strain (du/ds=¢), one can obtain

du dao

— = —y— 2.10
ds yds ( )



With the aid of Fig.(2.1), it can be seen that As=pA46 . On this basis, fundamental

relation between curvature of the elastic curve and normal strain can be given as

follows:
1 £ (2.11)
—_—=K=—— .
p y

Note that, no material properties are used in the derivation of this relation. Therefore,
this relation can also be used for inelastic problems as for elastic problems. By using
elastic material relations given in Eq. (2.4) and longitudinal stress occurred by
bending moment which is given in Eq. (2.3), relation between bending moment at a

given section and curvature of elastic curve can be given as follows:

1_Hu 2.12

2.2.1.2. Governing differential equation

In Cartesian coordinates, the curvature of a line is defined as

R :
2 v

r dx? - (2.13)
dn?z [1+®@)2)2

(@]

where x and v are the coordinates of a point on a curve. By assuming that the term
(dv/dx)? goes to zero, geometric nonlinearity is eliminated from the problem and
Eq. (2.13) simplifies to
1 d%*v ) 14
p  dx? (2.14)

By combining Eq. (2.12) and Eq. (2.14), constitutive relation can be obtained as

follows:
d>v M

2.2.1.3. Derivation of equation of motion

Equation of motion for an Euler-Bernoulli column or beam can be derived both by

using Newton’s equilibrium considerations and also applying energy method.

10



In the further sections of this study, Newton equilibrium equations are used to derive
the equation of motion for the given systems. Therefore, it can be enough to analyze

the system according to Newton approach.

Equation of motion of a beam or a column varies due to the loading condition.
Therefore, derivation of equation of motion of a beam or column can be introduced

by considering a structure under a certain loading condition.

2.2.1.4. An example- Beam loaded by distributed force

Consider a beam under given distributed force of f{(x,#) which is the external force
per unit length of the beam. A beam element under this type of loading can be shown

as in Fig. (2.2).

A y
M(x,t)+dM(x,t)

—

U(x,t)
Vix.t) V(x,0)+dV(x,1t)

v

Figure 2.2 Configuration of an Euler-Bernoulli beam element after deformation

where M(x,t) is the bending moment, V(x,?) is the shear force. In addition dM and dV

can be given in the following form

dM—aMd av = an 2.16
o T (2.16)

By accepting the counterclockwise direction as positive direction, moment

equilibrium can be written (see Fig. (2.2)) as follows

M(x,t) + %dx —M(x,t) — [V(x,t)
+ avg;, D dxldx + £, t)dxdz—x -0 2.17)
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By eliminating the terms including the multiplication of dx - dx , Eq. (2.16) goes

OM(x,t)

=V(x,t 2.18
= V(x,0) (2.18)
Equilibrium along y-direction, by accepting y-direction is positive, can be written as

v (x,t) 02U (x,t)
0x ot?

V(x,t)— <V(x, t) + dx) + f(x,t)dx = pA(x)dx (2.19)

By eliminating the terms including the multiplication of dx - dx , Eq. (2.16) goes

f’Vg" D _ fx,0) = pace 22D ZU(" 2 (2.20)

By taking the first derivative of Eq. (2.18) and substituting Eq. (2.20) into the

obtained relation, one can obtain

w — (6 t) — pAx )azu(x 2 2.21)

Constitutive relation for the column is as follows

o°U (x,1)

M =EI
() ox*

(2.22)

By substituting Eq. (2.22) into Eq. (2.21) equation of motion can be obtained as

follows
02 02U (x,t) 02U (x,t)
= [EI( )—] PAGC) — 5= f(D) (2.23)

2.2.2. Timoshenko model

Timoshenko model is derived by adding the rotary inertia and shear deformation into
the Euler-Bernoulli beam theory. Timoshenko beam theory is also known as the thick
beam theory, since the cross-sectional dimensions are not small when compared to

length of the beam.

Consider a beam element which has the configuration under deformation as it is
shown in Fig. (2.3). As a result of shear deformation, the element undergoes

distortion but no rotation (Rao, 2000).

12



Angle y which is between the tangent to the deformed center line O'T and the normal

to the face O'R’ can be defined as follows:

= ou 2.24
y_ ax (' )

where ¢ is the slope of the deflection curve due to bending deformation.

Since ¢ = dU/0dx, constitutive relation can be written in terms of the slope of the

deflection curve

_ 99
M= El—— (2.25)
V = kA(x)Gy = kA(x)G (qb - Z—:) (2.26)

where G denotes the modulus of rigidity and k is Timoshenko’s shear coefficient.
Timoshenko’s shear coefficient is a constant and depends on the geometry of the
cross-section. For a rectangular cross-section k equals to 5/6 and equals to 9/10 for a

circular cross-section (Cowper,1966).

o0

Figure 2.3 Configuration of a Timoshenko beam element after deformation

13



Translational inertia of the element equals to

02U (x,t)

A(x)dx ———— 2.27
pA()dx —7 (2.27)
Rotational inertia of the element equals to

0%2p(x,t
pI(x)dx% (2.28)

By accepting the counterclockwise direction as positive direction, moment

equilibrium about point D can be written (see Fig. (2.3)) as follows

M(x,t) + %dx M t) - [V(x, ) + avg;, D dxldx
92¢(x, 1)

dx
+f (x, dx — = pl(x)dx (2.29)

ot?
By eliminating the terms including the multiplication of dx - dx , Eq. (2.29) goes

M (x, t) 0%p(x, t)

F Vix, t) + pl(x) 92 (2.30)

Equilibrium along y-direction, by accepting y-direction is positive, can be written as

oV(x,t
(x,1) dx)
0x

V(x,t) — <V(x, t) +

92U (x, t)

+f(x,t)dx = pA(x)dx 32

(2.31)

By eliminating the terms including the multiplication of dx - dx , Eq. (2.31) goes

2
VO fae) - paco Lo (2.32)

By substituting Eqgs. (2.25) and (2.26), Egs. (2.30) and (2.32) can be obtained in the

form of
op 02U 02U
—kA(x)G <£ — W) + f(x,t) = pA(x) ﬂ (2.33)
02 ou 02
El(x)_"’— kAQ)G (¢ = ) pI(x) ‘gg 2 (2.34)

14



Egs. (2.33) and (2.34) describes the equations of motion of the given system.

2.3. Buckling of Columns

Structural instability as a result of compressive stresses is one of the basic
engineering problems. Narrow beams, vacuum tanks, submarine hulls unless

properly designed can collapse under an applied load (Popov,1990).

2.3.1. Criteria for stability of equilibrium

Consider a rigid beam as it is shown in Fig. (2.4) with a torsional spring of stiffness k
at the base point and is subjected to vertical force P and horizontal force F. System
has only one degree of freedom. For an assumed small rotation angle 6, stability

limits are defined as follows:

k6 > PL6O the system is stable (2.35)
k6 < PL6O the system is stable (2.36)
k6 = PL6O the system is in equilibrium (2.37)

This means that if restoring moment k6 which tends to upset the system is smaller
than upsetting moment PLsin6), system becomes unstable. Equality of this two
moments yields to the equilibrium condition of the system. This condition is also
known as the neutral point of the system. The force associated with this condition is

called as the critical or buckling load.

k
Po=7 (2.38)

2.3.2. Euler load for columns

Euler load or critical buckling load is the least force value at which a buckled mode

is possible. Euler load varies with the applied force.
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Figure 2.4 Buckling of a rigid bar

2.3.3. An example- Euler load of a simply supported column

Moment distribution of a simply supported column can be given as follows:
M(x) = Pu(x) (2.39)

where u(x) is the displacement field of the column which is independent of time and

P is the applied force as it is shown in Fig. (2.5).

By substituting Eq. (2.39) into Eq. (2.22) governing equation of the corresponding

system can be obtained as follows:

2

Y A2u=0 (2.40)
dxz u= .

where A2 = P/EI with the boundary conditions of
u(0) =u(L) =0 (2.41)

For a uniform column, solution of the differential equation given in Eq. (2.40) is in

the form of

u(x) = A sin Ax + B cos Ax (2.42)
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By applying the boundary conditions following relations are obtained as follows:

B=0
AsinAL =0 (2.43)

Eq. (2.43) is satisfied for A=0, but this gives trivial solution of the analyzed system.

Non-trivial solution is obtained for

sinAL=0 AL =nm n=12,.. (2.44)
n?m?El
= Iz (2.45)
P P
N v
'y N I -
X
L M
Y U
%x 1
1~
T x

Figure 2.5 Buckling of a simply supported column

P, is called as the eigenvalue of the problem. In buckling problems, smallest value of

P, is important, therefore critical buckling load or the Euler load for an initially

perfectly straight elastic column can be given as follows:

m2El
cor = 12 (2.46)
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Figure 2.6 First three buckling modes for a simply supported column
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3. VARIATIONAL METHODS IN MECHANICS

In this section, basic variational principles used in mechanics are considered. These
variational principles can be classified under the topics of Lagrange- D’Alembert
differential variational principle and Hamilton integral variational principle These

two principles are the main subjects of analytical mechanics.

After the utility of variational principles are realized by physicians and engineers,
optimal control theory is developed. In this section, optimal control theory is also
taken into consideration and especially Pontryagin’s maximum principle is tried to be
introduced since this principle is used to carry out optimal shape analysis of

structures.

3.1. Lagrange- D’ Alembert Differential Variational Principle

This principle is based upon the local characteristics of motion; that is, the relations
between its scalar and vector characteristics are considered simultaneously in one
particular instant of time(Vujanovic, 2004).. The problem of describing the global
characteristics of motion has been reduced to the integration of differential equation

of motion.

Applications of Lagrange-D’Alembert differential variational principle include
holonomic and non-holonomic dynamical systems and also conservative and non-

conservative dynamical systems.

3.1.1. General definitions

As a simple approach, dynamical systems can be divided into two main groups as
free dynamical systems and constrained dynamical systems. For the motion of a free
dynamical system, Newton’s second law determines the full configuration of the
dynamical system. In fact, particles of a dynamical system are not completely free to

move in the defined space of the motion. Namely, the motion of a dynamical system
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is commonly limited. Such limitations are called as constraints. Constraints of a

dynamical system are specified by certain geometrical and kinematical relations.

For the case of constrained motion, dynamical systems are classified according to the
structure of constraints they have. It can be possible to classify constraints in various
ways. The most important classification of constraints named as holonomic

dynamical systems and non-dynamical systems.
3.1.1.1. Holonomic dynamical systems

Holonomic dynamical systems are dynamical systems whose motion is restricted by
holonomic constraints. It must be stated that all of the constraints of the dynamical
system must be holonomic to define a dynamical system as holonomic dynamical

system.

Holonomic constraints are of purely geometrical character and can be given as

follows:

f:(t,q1,,q,) =0 s=1,..,k 3.1

where k is the number of holonomic constraints given in the definition of the
problem. In the case of free dynamical system without restrictions, such a dynamical
system can be described as having n generalized coordinates. For constrained
dynamical systems, number of degree of freedom is the difference between the
number of generalized coordinates and number of constraints, namely for such a
dynamical system degree of freedom equals to n-k. This is because the existence of

constraints reduces the number of degree of freedom of the dynamical system.

3.1.1.1. Non-holonomic dynamical systems

Non-holonomic dynamical systems are dynamical systems whose motion is restricted
by non-holonomic constraints. Non-holonomic constraints are of a kinematical

character and can be given as follows:
Apgs@s + B, =0 a=1,..,7 3.2)

where r is the number of non-holonomic constraints of the dynamical system. Ag
and B, depend on generalized coordinates and time £. non-holonomic systems can

also be defined as the non-linear functions of generalized velocities.

a1 ,q2) =0 a=1,..,r 3.3)
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The term non-holonomic is used to express the non-integrability of the differential
equations given in Egs. (3.1) and (3.2) and the impossibility of reducing them into

the form of

0,(t, q4,..,q,) = C, = constant 3.4)

3.1.2. Euler-Lagrangian equations of motion

Euler-Lagrangian equations in classical mechanics basically can be expressed as

follows:
d oL aL _ —1 3.5
dt o3, aqS—QS s=1,..,n (3.5)

L(t' q1, - qn, C'h: bR qn)
= T(t' q1, - qn, C'h: bR qn) _T[(t' qi ) qn) (3’6)

where L is the Lagrangian function, T is the kinetic energy function, 7 is potential
energy function and Qs is non-conservative forces. Note that potential forces do not

depend on the generalized velocities.

In analytical mechanics, Lagrangian equation is used in the form of

Z(d JdL odL )6 _0 —1 3.7
dtaqs aqs QS qS_ s = ""'n (' )

This form 